OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [newlib-1.17.0/] [newlib/] [libm/] [machine/] [spu/] [headers/] [cos_sin.h] - Blame information for rev 148

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 148 jeremybenn
/* --------------------------------------------------------------  */
2
/* (C)Copyright 2001,2008,                                         */
3
/* International Business Machines Corporation,                    */
4
/* Sony Computer Entertainment, Incorporated,                      */
5
/* Toshiba Corporation,                                            */
6
/*                                                                 */
7
/* All Rights Reserved.                                            */
8
/*                                                                 */
9
/* Redistribution and use in source and binary forms, with or      */
10
/* without modification, are permitted provided that the           */
11
/* following conditions are met:                                   */
12
/*                                                                 */
13
/* - Redistributions of source code must retain the above copyright*/
14
/*   notice, this list of conditions and the following disclaimer. */
15
/*                                                                 */
16
/* - Redistributions in binary form must reproduce the above       */
17
/*   copyright notice, this list of conditions and the following   */
18
/*   disclaimer in the documentation and/or other materials        */
19
/*   provided with the distribution.                               */
20
/*                                                                 */
21
/* - Neither the name of IBM Corporation nor the names of its      */
22
/*   contributors may be used to endorse or promote products       */
23
/*   derived from this software without specific prior written     */
24
/*   permission.                                                   */
25
/*                                                                 */
26
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
27
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
28
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
29
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
30
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
31
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
32
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
33
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
34
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
35
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
36
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
37
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
38
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
39
/* --------------------------------------------------------------  */
40
/* PROLOG END TAG zYx                                              */
41
#ifdef __SPU__
42
#ifndef _COS_SIN_H_
43
#define _COS_SIN_H_     1
44
 
45
#define M_PI_OVER_4_HI_32 0x3fe921fb
46
 
47
#define M_PI_OVER_4     0.78539816339744827900
48
#define M_FOUR_OVER_PI  1.27323954478442180616
49
 
50
#define M_PI_OVER_2     1.57079632679489655800
51
#define M_PI_OVER_2_HI  1.57079632673412561417
52
#define M_PI_OVER_2_LO  0.0000000000607710050650619224932
53
 
54
#define M_PI_OVER_2F_HI   1.570312500000000000
55
#define M_PI_OVER_2F_LO   0.000483826794896558
56
 
57
/* The following coefficients correspond to the Taylor series
58
 * coefficients for cos and sin.
59
 */
60
#define COS_14 -0.00000000001138218794258068723867
61
#define COS_12  0.000000002087614008917893178252
62
#define COS_10 -0.0000002755731724204127572108
63
#define COS_08  0.00002480158729870839541888
64
#define COS_06 -0.001388888888888735934799
65
#define COS_04  0.04166666666666666534980
66
#define COS_02 -0.5000000000000000000000
67
#define COS_00  1.0
68
 
69
#define SIN_15 -0.00000000000076471637318198164759
70
#define SIN_13  0.00000000016059043836821614599
71
#define SIN_11 -0.000000025052108385441718775
72
#define SIN_09  0.0000027557319223985890653
73
#define SIN_07 -0.0001984126984126984127
74
#define SIN_05  0.008333333333333333333
75
#define SIN_03 -0.16666666666666666666
76
#define SIN_01  1.0
77
 
78
 
79
/* Compute the following for each floating point element of x.
80
 *      x  = fmod(x, PI/4);
81
 *      ix = (int)x * PI/4;
82
 * This allows one to compute cos / sin over the limited range
83
 * and select the sign and correct result based upon the octant
84
 * of the original angle (as defined by the ix result).
85
 *
86
 * Expected Inputs Types:
87
 *      x  = vec_float4
88
 *      ix = vec_int4
89
 */
90
#define MOD_PI_OVER_FOUR_F(_x, _ix) {                                   \
91
    vec_float4 fx;                                                      \
92
                                                                        \
93
    _ix = spu_convts(spu_mul(_x, spu_splats((float)M_FOUR_OVER_PI)), 0); \
94
    _ix = spu_add(_ix, spu_add(spu_rlmaska((vec_int4)_x, -31), 1));     \
95
                                                                        \
96
    fx = spu_convtf(spu_rlmaska(_ix, -1), 0);                            \
97
    _x  = spu_nmsub(fx, spu_splats((float)M_PI_OVER_2F_HI), _x);        \
98
    _x  = spu_nmsub(fx, spu_splats((float)M_PI_OVER_2F_LO), _x);        \
99
  }
100
 
101
/* Double precision MOD_PI_OVER_FOUR
102
 *
103
 * Expected Inputs Types:
104
 *      x  = vec_double2
105
 *      ix = vec_int4
106
 */
107
#define MOD_PI_OVER_FOUR(_x, _ix) {                                     \
108
    vec_float4 fx;                                                      \
109
    vec_double2 dix;                                                    \
110
                                                                        \
111
    fx = spu_roundtf(spu_mul(_x, spu_splats(M_FOUR_OVER_PI)));  \
112
    _ix = spu_convts(fx, 0);                                             \
113
    _ix = spu_add(_ix, spu_add(spu_rlmaska((vec_int4)fx, -31), 1));     \
114
                                                                        \
115
    dix = spu_extend(spu_convtf(spu_rlmaska(_ix, -1), 0));               \
116
    _x  = spu_nmsub(spu_splats(M_PI_OVER_2_HI), dix, _x);               \
117
    _x  = spu_nmsub(spu_splats(M_PI_OVER_2_LO), dix, _x);               \
118
  }
119
 
120
 
121
/* Compute the cos(x) and sin(x) for the range reduced angle x.
122
 * In order to compute these trig functions to full single precision
123
 * accuracy, we solve the Taylor series.
124
 *
125
 *   c = cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^10/10!
126
 *   s = sin(x) = x - x^3/4! + x^5/5! - x^7/7! + x^9/9! - x^11/11!
127
 *
128
 * Expected Inputs Types:
129
 *      x = vec_float4
130
 *      c = vec_float4
131
 *      s = vec_float4
132
 */
133
 
134
#define COMPUTE_COS_SIN_F(_x, _c, _s) {                                 \
135
    vec_float4 x2, x4, x6;                                              \
136
    vec_float4 cos_hi, cos_lo;                                          \
137
    vec_float4 sin_hi, sin_lo;                                          \
138
                                                                        \
139
    x2 = spu_mul(_x, _x);                                               \
140
    x4 = spu_mul(x2, x2);                                               \
141
    x6 = spu_mul(x2, x4);                                               \
142
                                                                        \
143
    cos_hi = spu_madd(spu_splats((float)COS_10), x2, spu_splats((float)COS_08)); \
144
    cos_lo = spu_madd(spu_splats((float)COS_04), x2, spu_splats((float)COS_02)); \
145
    cos_hi = spu_madd(cos_hi, x2, spu_splats((float)COS_06));           \
146
    cos_lo = spu_madd(cos_lo, x2, spu_splats((float)COS_00));           \
147
    _c     = spu_madd(cos_hi, x6, cos_lo);                              \
148
                                                                        \
149
    sin_hi = spu_madd(spu_splats((float)SIN_11), x2, spu_splats((float)SIN_09)); \
150
    sin_lo = spu_madd(spu_splats((float)SIN_05), x2, spu_splats((float)SIN_03)); \
151
    sin_hi = spu_madd(sin_hi, x2, spu_splats((float)SIN_07));           \
152
    sin_lo = spu_madd(sin_lo, x2, spu_splats((float)SIN_01));           \
153
    _s    = spu_madd(sin_hi, x6, sin_lo);                               \
154
    _s     = spu_mul(_s, _x);                                           \
155
  }
156
 
157
 
158
/* Compute the cos(x) and sin(x) for the range reduced angle x.
159
 * This version computes the cosine and sine to double precision
160
 * accuracy using the Taylor series:
161
 *
162
 *   c = cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12! - x^14/14!
163
 *   s = sin(x) = x - x^3/4! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13! - x^15/15!
164
 *
165
 * Expected Inputs Types:
166
 *      x = vec_double2
167
 *      c = vec_double2
168
 *      s = vec_double2
169
 */
170
 
171
#define COMPUTE_COS_SIN(_x, _c, _s) {                                   \
172
    vec_double2 x2, x4, x8;                                             \
173
    vec_double2 cos_hi, cos_lo;                                         \
174
    vec_double2 sin_hi, sin_lo;                                         \
175
                                                                        \
176
    x2 = spu_mul(_x, _x);                                               \
177
    x4 = spu_mul(x2, x2);                                               \
178
    x8 = spu_mul(x4, x4);                                               \
179
                                                                        \
180
    cos_hi = spu_madd(spu_splats(COS_14), x2, spu_splats(COS_12));      \
181
    cos_lo = spu_madd(spu_splats(COS_06), x2, spu_splats(COS_04));      \
182
    cos_hi = spu_madd(cos_hi, x2, spu_splats(COS_10));                  \
183
    cos_lo = spu_madd(cos_lo, x2, spu_splats(COS_02));                  \
184
    cos_hi = spu_madd(cos_hi, x2, spu_splats(COS_08));                  \
185
    cos_lo = spu_madd(cos_lo, x2, spu_splats(COS_00));                  \
186
    _c     = spu_madd(cos_hi, x8, cos_lo);                              \
187
                                                                        \
188
    sin_hi = spu_madd(spu_splats(SIN_15), x2, spu_splats(SIN_13));      \
189
    sin_lo = spu_madd(spu_splats(SIN_07), x2, spu_splats(SIN_05));      \
190
    sin_hi = spu_madd(sin_hi, x2, spu_splats(SIN_11));                  \
191
    sin_lo = spu_madd(sin_lo, x2, spu_splats(SIN_03));                  \
192
    sin_hi = spu_madd(sin_hi, x2, spu_splats(SIN_09));                  \
193
    sin_lo = spu_madd(sin_lo, x2, spu_splats(SIN_01));                  \
194
    _s     = spu_madd(sin_hi, x8, sin_lo);                              \
195
    _s     = spu_mul(_s, _x);                                           \
196
  }
197
 
198
 
199
 
200
 
201
#endif /* _COS_SIN_H_ */
202
#endif /* __SPU__ */
203
 
204
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.