1 |
148 |
jeremybenn |
/* -------------------------------------------------------------- */
|
2 |
|
|
/* (C)Copyright 2001,2008, */
|
3 |
|
|
/* International Business Machines Corporation, */
|
4 |
|
|
/* Sony Computer Entertainment, Incorporated, */
|
5 |
|
|
/* Toshiba Corporation, */
|
6 |
|
|
/* */
|
7 |
|
|
/* All Rights Reserved. */
|
8 |
|
|
/* */
|
9 |
|
|
/* Redistribution and use in source and binary forms, with or */
|
10 |
|
|
/* without modification, are permitted provided that the */
|
11 |
|
|
/* following conditions are met: */
|
12 |
|
|
/* */
|
13 |
|
|
/* - Redistributions of source code must retain the above copyright*/
|
14 |
|
|
/* notice, this list of conditions and the following disclaimer. */
|
15 |
|
|
/* */
|
16 |
|
|
/* - Redistributions in binary form must reproduce the above */
|
17 |
|
|
/* copyright notice, this list of conditions and the following */
|
18 |
|
|
/* disclaimer in the documentation and/or other materials */
|
19 |
|
|
/* provided with the distribution. */
|
20 |
|
|
/* */
|
21 |
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
22 |
|
|
/* contributors may be used to endorse or promote products */
|
23 |
|
|
/* derived from this software without specific prior written */
|
24 |
|
|
/* permission. */
|
25 |
|
|
/* */
|
26 |
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
27 |
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
28 |
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
29 |
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
30 |
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
31 |
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
32 |
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
33 |
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
34 |
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
35 |
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
36 |
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
37 |
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
38 |
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
39 |
|
|
/* -------------------------------------------------------------- */
|
40 |
|
|
/* PROLOG END TAG zYx */
|
41 |
|
|
#ifdef __SPU__
|
42 |
|
|
|
43 |
|
|
#ifndef _DIVD2_H_
|
44 |
|
|
#define _DIVD2_H_ 1
|
45 |
|
|
|
46 |
|
|
#include <spu_intrinsics.h>
|
47 |
|
|
|
48 |
|
|
/*
|
49 |
|
|
* FUNCTION
|
50 |
|
|
* vector double _divd2(vector double a, vector double b)
|
51 |
|
|
*
|
52 |
|
|
* DESCRIPTION
|
53 |
|
|
* _divd2 divides the vector dividend a by the vector divisor b and
|
54 |
|
|
* returns the resulting vector quotient. Maximum error about 0.5 ulp
|
55 |
|
|
* over entire double range including denorms, compared to true result
|
56 |
|
|
* in round-to-nearest rounding mode. Handles Inf or NaN operands and
|
57 |
|
|
* results correctly.
|
58 |
|
|
*/
|
59 |
|
|
static __inline vector double _divd2(vector double a_in, vector double b_in)
|
60 |
|
|
{
|
61 |
|
|
/* Variables */
|
62 |
|
|
vec_int4 exp, exp_bias;
|
63 |
|
|
vec_uint4 no_underflow, overflow;
|
64 |
|
|
vec_float4 mant_bf, inv_bf;
|
65 |
|
|
vec_ullong2 exp_a, exp_b;
|
66 |
|
|
vec_ullong2 a_nan, a_zero, a_inf, a_denorm;
|
67 |
|
|
vec_ullong2 b_nan, b_zero, b_inf, b_denorm;
|
68 |
|
|
vec_ullong2 nan;
|
69 |
|
|
vec_double2 a, b;
|
70 |
|
|
vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
|
71 |
|
|
|
72 |
|
|
/* Constants */
|
73 |
|
|
vec_float4 onef = spu_splats(1.0f);
|
74 |
|
|
vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
|
75 |
|
|
vec_double2 one = spu_splats(1.0);
|
76 |
|
|
|
77 |
|
|
#ifdef __SPU_EDP__
|
78 |
|
|
vec_double2 denorm_scale = (vec_double2)spu_splats(0x4330000000000000ULL);
|
79 |
|
|
|
80 |
|
|
/* Identify all possible special values that must be accomodated including:
|
81 |
|
|
* +-0, +-infinity, +-denorm, and NaNs.
|
82 |
|
|
*/
|
83 |
|
|
a_nan = spu_testsv(a_in, (SPU_SV_NAN));
|
84 |
|
|
a_zero = spu_testsv(a_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO));
|
85 |
|
|
a_inf = spu_testsv(a_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
86 |
|
|
a_denorm = spu_testsv(a_in, (SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
87 |
|
|
|
88 |
|
|
b_nan = spu_testsv(b_in, (SPU_SV_NAN));
|
89 |
|
|
b_zero = spu_testsv(b_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO));
|
90 |
|
|
b_inf = spu_testsv(b_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
91 |
|
|
b_denorm = spu_testsv(b_in, (SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
92 |
|
|
|
93 |
|
|
/* Scale denorm inputs to into normalized numbers by conditionally scaling the
|
94 |
|
|
* input parameters.
|
95 |
|
|
*/
|
96 |
|
|
a = spu_sel(a_in, spu_mul(a_in, denorm_scale), a_denorm);
|
97 |
|
|
b = spu_sel(b_in, spu_mul(b_in, denorm_scale), b_denorm);
|
98 |
|
|
|
99 |
|
|
#else /* !__SPU_EDP__ */
|
100 |
|
|
vec_uint4 a_exp, b_exp;
|
101 |
|
|
vec_ullong2 a_mant_0, b_mant_0;
|
102 |
|
|
vec_ullong2 a_exp_1s, b_exp_1s;
|
103 |
|
|
vec_ullong2 sign_exp_mask;
|
104 |
|
|
|
105 |
|
|
vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
|
106 |
|
|
vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11};
|
107 |
|
|
vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
|
108 |
|
|
vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
|
109 |
|
|
vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
|
110 |
|
|
|
111 |
|
|
sign_exp_mask = spu_or(sign_mask, exp_mask);
|
112 |
|
|
|
113 |
|
|
/* Extract the floating point components from each of the operands including
|
114 |
|
|
* exponent and mantissa.
|
115 |
|
|
*/
|
116 |
|
|
a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
|
117 |
|
|
a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
|
118 |
|
|
b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
|
119 |
|
|
b_exp = spu_shuffle(b_exp, b_exp, splat_hi);
|
120 |
|
|
|
121 |
|
|
a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
|
122 |
|
|
a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));
|
123 |
|
|
|
124 |
|
|
b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
|
125 |
|
|
b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));
|
126 |
|
|
|
127 |
|
|
a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
|
128 |
|
|
b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);
|
129 |
|
|
|
130 |
|
|
/* Identify all possible special values that must be accomodated including:
|
131 |
|
|
* +-denorm, +-0, +-infinity, and NaNs.
|
132 |
|
|
*/
|
133 |
|
|
a_denorm = (vec_ullong2)spu_cmpeq(a_exp, 0); /* really is a_exp_0 */
|
134 |
|
|
a_nan = spu_andc(a_exp_1s, a_mant_0);
|
135 |
|
|
a_zero = spu_and (a_denorm, a_mant_0);
|
136 |
|
|
a_inf = spu_and (a_exp_1s, a_mant_0);
|
137 |
|
|
|
138 |
|
|
b_denorm = (vec_ullong2)spu_cmpeq(b_exp, 0); /* really is b_exp_0 */
|
139 |
|
|
b_nan = spu_andc(b_exp_1s, b_mant_0);
|
140 |
|
|
b_zero = spu_and (b_denorm, b_mant_0);
|
141 |
|
|
b_inf = spu_and (b_exp_1s, b_mant_0);
|
142 |
|
|
|
143 |
|
|
/* Scale denorm inputs to into normalized numbers by conditionally scaling the
|
144 |
|
|
* input parameters.
|
145 |
|
|
*/
|
146 |
|
|
a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
|
147 |
|
|
a = spu_sel(a_in, a, a_denorm);
|
148 |
|
|
|
149 |
|
|
b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
|
150 |
|
|
b = spu_sel(b_in, b, b_denorm);
|
151 |
|
|
|
152 |
|
|
#endif /* __SPU_EDP__ */
|
153 |
|
|
|
154 |
|
|
/* Extract the divisor and dividend exponent and force parameters into the signed
|
155 |
|
|
* range [1.0,2.0) or [-1.0,2.0).
|
156 |
|
|
*/
|
157 |
|
|
exp_a = spu_and((vec_ullong2)a, exp_mask);
|
158 |
|
|
exp_b = spu_and((vec_ullong2)b, exp_mask);
|
159 |
|
|
|
160 |
|
|
mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
|
161 |
|
|
mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
|
162 |
|
|
|
163 |
|
|
/* Approximate the single reciprocal of b by using
|
164 |
|
|
* the single precision reciprocal estimate followed by one
|
165 |
|
|
* single precision iteration of Newton-Raphson.
|
166 |
|
|
*/
|
167 |
|
|
mant_bf = spu_roundtf(mant_b);
|
168 |
|
|
inv_bf = spu_re(mant_bf);
|
169 |
|
|
inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);
|
170 |
|
|
|
171 |
|
|
/* Perform 2 more Newton-Raphson iterations in double precision. The
|
172 |
|
|
* result (q1) is in the range (0.5, 2.0).
|
173 |
|
|
*/
|
174 |
|
|
inv_b = spu_extend(inv_bf);
|
175 |
|
|
inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
|
176 |
|
|
q0 = spu_mul(mant_a, inv_b);
|
177 |
|
|
q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);
|
178 |
|
|
|
179 |
|
|
|
180 |
|
|
/* Determine the exponent correction factor that must be applied
|
181 |
|
|
* to q1 by taking into account the exponent of the normalized inputs
|
182 |
|
|
* and the scale factors that were applied to normalize them.
|
183 |
|
|
*/
|
184 |
|
|
exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
|
185 |
|
|
exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
|
186 |
|
|
|
187 |
|
|
/* Bias the quotient exponent depending on the sign of the exponent correction
|
188 |
|
|
* factor so that a single multiplier will ensure the entire double precision
|
189 |
|
|
* domain (including denorms) can be achieved.
|
190 |
|
|
*
|
191 |
|
|
* exp bias q1 adjust exp
|
192 |
|
|
* ===== ======== ==========
|
193 |
|
|
* positive 2^+65 -65
|
194 |
|
|
* negative 2^-64 +64
|
195 |
|
|
*/
|
196 |
|
|
exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
exp = spu_sub(exp, exp_bias);
|
200 |
|
|
|
201 |
|
|
q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);
|
202 |
|
|
|
203 |
|
|
/* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
|
204 |
|
|
* expected result.
|
205 |
|
|
*/
|
206 |
|
|
exp = spu_add(exp, 0x3FF);
|
207 |
|
|
no_underflow = spu_cmpgt(exp, 0);
|
208 |
|
|
overflow = spu_cmpgt(exp, 0x7FF);
|
209 |
|
|
exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
|
210 |
|
|
exp = spu_and(exp, (vec_int4)exp_mask);
|
211 |
|
|
mult = spu_sel((vec_double2)exp, (vec_double2)exp_mask, (vec_ullong2)overflow);
|
212 |
|
|
|
213 |
|
|
/* Handle special value conditions. These include:
|
214 |
|
|
*
|
215 |
|
|
* 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
|
216 |
|
|
* results.
|
217 |
|
|
* 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
|
218 |
|
|
* 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
|
219 |
|
|
*/
|
220 |
|
|
mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
|
221 |
|
|
mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));
|
222 |
|
|
|
223 |
|
|
nan = spu_or(a_nan, b_nan);
|
224 |
|
|
nan = spu_or(nan, spu_and(a_zero, b_zero));
|
225 |
|
|
nan = spu_or(nan, spu_and(a_inf, b_inf));
|
226 |
|
|
|
227 |
|
|
mult = spu_or(mult, (vec_double2)nan);
|
228 |
|
|
|
229 |
|
|
/* Scale the final quotient */
|
230 |
|
|
|
231 |
|
|
q2 = spu_mul(q1, mult);
|
232 |
|
|
|
233 |
|
|
return (q2);
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
#endif /* _DIVD2_H_ */
|
237 |
|
|
#endif /* __SPU__ */
|