OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [newlib-1.17.0/] [newlib/] [libm/] [machine/] [spu/] [headers/] [divd2.h] - Blame information for rev 864

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 148 jeremybenn
/* --------------------------------------------------------------  */
2
/* (C)Copyright 2001,2008,                                         */
3
/* International Business Machines Corporation,                    */
4
/* Sony Computer Entertainment, Incorporated,                      */
5
/* Toshiba Corporation,                                            */
6
/*                                                                 */
7
/* All Rights Reserved.                                            */
8
/*                                                                 */
9
/* Redistribution and use in source and binary forms, with or      */
10
/* without modification, are permitted provided that the           */
11
/* following conditions are met:                                   */
12
/*                                                                 */
13
/* - Redistributions of source code must retain the above copyright*/
14
/*   notice, this list of conditions and the following disclaimer. */
15
/*                                                                 */
16
/* - Redistributions in binary form must reproduce the above       */
17
/*   copyright notice, this list of conditions and the following   */
18
/*   disclaimer in the documentation and/or other materials        */
19
/*   provided with the distribution.                               */
20
/*                                                                 */
21
/* - Neither the name of IBM Corporation nor the names of its      */
22
/*   contributors may be used to endorse or promote products       */
23
/*   derived from this software without specific prior written     */
24
/*   permission.                                                   */
25
/*                                                                 */
26
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
27
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
28
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
29
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
30
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
31
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
32
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
33
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
34
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
35
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
36
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
37
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
38
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
39
/* --------------------------------------------------------------  */
40
/* PROLOG END TAG zYx                                              */
41
#ifdef __SPU__
42
 
43
#ifndef _DIVD2_H_
44
#define _DIVD2_H_                1
45
 
46
#include <spu_intrinsics.h>
47
 
48
/*
49
 * FUNCTION
50
 *      vector double _divd2(vector double a, vector double b)
51
 *
52
 * DESCRIPTION
53
 *      _divd2 divides the vector dividend a by the vector divisor b and
54
 *      returns the resulting vector quotient.  Maximum error about 0.5 ulp
55
 *      over entire double range including denorms, compared to true result
56
 *      in round-to-nearest rounding mode.  Handles Inf or NaN operands and
57
 *      results correctly.
58
 */
59
static __inline vector double _divd2(vector double a_in, vector double b_in)
60
{
61
  /* Variables */
62
  vec_int4    exp, exp_bias;
63
  vec_uint4   no_underflow, overflow;
64
  vec_float4  mant_bf, inv_bf;
65
  vec_ullong2 exp_a, exp_b;
66
  vec_ullong2 a_nan, a_zero, a_inf, a_denorm;
67
  vec_ullong2 b_nan, b_zero, b_inf, b_denorm;
68
  vec_ullong2 nan;
69
  vec_double2 a, b;
70
  vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
71
 
72
  /* Constants */
73
  vec_float4  onef = spu_splats(1.0f);
74
  vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
75
  vec_double2 one = spu_splats(1.0);
76
 
77
#ifdef __SPU_EDP__  
78
  vec_double2 denorm_scale = (vec_double2)spu_splats(0x4330000000000000ULL);
79
 
80
  /* Identify all possible special values that must be accomodated including:
81
   * +-0, +-infinity, +-denorm, and NaNs.
82
   */
83
  a_nan    = spu_testsv(a_in, (SPU_SV_NAN));
84
  a_zero   = spu_testsv(a_in, (SPU_SV_NEG_ZERO     | SPU_SV_POS_ZERO));
85
  a_inf    = spu_testsv(a_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
86
  a_denorm = spu_testsv(a_in, (SPU_SV_NEG_DENORM   | SPU_SV_POS_DENORM));
87
 
88
  b_nan    = spu_testsv(b_in, (SPU_SV_NAN));
89
  b_zero   = spu_testsv(b_in, (SPU_SV_NEG_ZERO     | SPU_SV_POS_ZERO));
90
  b_inf    = spu_testsv(b_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
91
  b_denorm = spu_testsv(b_in, (SPU_SV_NEG_DENORM   | SPU_SV_POS_DENORM));
92
 
93
  /* Scale denorm inputs to into normalized numbers by conditionally scaling the
94
   * input parameters.
95
   */
96
  a = spu_sel(a_in, spu_mul(a_in, denorm_scale), a_denorm);
97
  b = spu_sel(b_in, spu_mul(b_in, denorm_scale), b_denorm);
98
 
99
#else /* !__SPU_EDP__ */
100
  vec_uint4   a_exp, b_exp;
101
  vec_ullong2 a_mant_0, b_mant_0;
102
  vec_ullong2 a_exp_1s, b_exp_1s;
103
  vec_ullong2 sign_exp_mask;
104
 
105
  vec_uint4   exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
106
  vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3,  8, 9,10,11, 8,9,10,11};
107
  vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
108
  vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
109
  vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
110
 
111
  sign_exp_mask = spu_or(sign_mask, exp_mask);
112
 
113
  /* Extract the floating point components from each of the operands including
114
   * exponent and mantissa.
115
   */
116
  a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
117
  a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
118
  b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
119
  b_exp = spu_shuffle(b_exp, b_exp, splat_hi);
120
 
121
  a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
122
  a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));
123
 
124
  b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
125
  b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));
126
 
127
  a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
128
  b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);
129
 
130
  /* Identify all possible special values that must be accomodated including:
131
   * +-denorm, +-0, +-infinity, and NaNs.
132
   */
133
  a_denorm = (vec_ullong2)spu_cmpeq(a_exp, 0);           /* really is a_exp_0 */
134
  a_nan    = spu_andc(a_exp_1s, a_mant_0);
135
  a_zero   = spu_and (a_denorm, a_mant_0);
136
  a_inf    = spu_and (a_exp_1s, a_mant_0);
137
 
138
  b_denorm = (vec_ullong2)spu_cmpeq(b_exp, 0);           /* really is b_exp_0 */
139
  b_nan    = spu_andc(b_exp_1s, b_mant_0);
140
  b_zero   = spu_and (b_denorm, b_mant_0);
141
  b_inf    = spu_and (b_exp_1s, b_mant_0);
142
 
143
  /* Scale denorm inputs to into normalized numbers by conditionally scaling the
144
   * input parameters.
145
   */
146
  a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
147
  a = spu_sel(a_in, a, a_denorm);
148
 
149
  b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
150
  b = spu_sel(b_in, b, b_denorm);
151
 
152
#endif /* __SPU_EDP__ */
153
 
154
  /* Extract the divisor and dividend exponent and force parameters into the signed
155
   * range [1.0,2.0) or [-1.0,2.0).
156
   */
157
  exp_a = spu_and((vec_ullong2)a, exp_mask);
158
  exp_b = spu_and((vec_ullong2)b, exp_mask);
159
 
160
  mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
161
  mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
162
 
163
  /* Approximate the single reciprocal of b by using
164
   * the single precision reciprocal estimate followed by one
165
   * single precision iteration of Newton-Raphson.
166
   */
167
  mant_bf = spu_roundtf(mant_b);
168
  inv_bf = spu_re(mant_bf);
169
  inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);
170
 
171
  /* Perform 2 more Newton-Raphson iterations in double precision. The
172
   * result (q1) is in the range (0.5, 2.0).
173
   */
174
  inv_b = spu_extend(inv_bf);
175
  inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
176
  q0 = spu_mul(mant_a, inv_b);
177
  q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);
178
 
179
 
180
  /* Determine the exponent correction factor that must be applied
181
   * to q1 by taking into account the exponent of the normalized inputs
182
   * and the scale factors that were applied to normalize them.
183
   */
184
  exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
185
  exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
186
 
187
  /* Bias the quotient exponent depending on the sign of the exponent correction
188
   * factor so that a single multiplier will ensure the entire double precision
189
   * domain (including denorms) can be achieved.
190
   *
191
   *    exp            bias q1     adjust exp
192
   *   =====           ========    ==========
193
   *   positive         2^+65         -65
194
   *   negative         2^-64         +64
195
   */
196
  exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
197
 
198
 
199
  exp = spu_sub(exp, exp_bias);
200
 
201
  q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);
202
 
203
  /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
204
   * expected result.
205
   */
206
  exp = spu_add(exp, 0x3FF);
207
  no_underflow = spu_cmpgt(exp, 0);
208
  overflow = spu_cmpgt(exp, 0x7FF);
209
  exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
210
  exp = spu_and(exp, (vec_int4)exp_mask);
211
  mult = spu_sel((vec_double2)exp, (vec_double2)exp_mask, (vec_ullong2)overflow);
212
 
213
  /* Handle special value conditions. These include:
214
   *
215
   * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
216
   *    results.
217
   * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
218
   * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
219
   */
220
  mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
221
  mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));
222
 
223
  nan = spu_or(a_nan, b_nan);
224
  nan = spu_or(nan, spu_and(a_zero, b_zero));
225
  nan = spu_or(nan, spu_and(a_inf, b_inf));
226
 
227
  mult = spu_or(mult, (vec_double2)nan);
228
 
229
  /* Scale the final quotient */
230
 
231
  q2 = spu_mul(q1, mult);
232
 
233
  return (q2);
234
}
235
 
236
#endif /* _DIVD2_H_ */
237
#endif /* __SPU__ */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.