1 |
148 |
jeremybenn |
/* -------------------------------------------------------------- */
|
2 |
|
|
/* (C)Copyright 2007,2008, */
|
3 |
|
|
/* International Business Machines Corporation */
|
4 |
|
|
/* All Rights Reserved. */
|
5 |
|
|
/* */
|
6 |
|
|
/* Redistribution and use in source and binary forms, with or */
|
7 |
|
|
/* without modification, are permitted provided that the */
|
8 |
|
|
/* following conditions are met: */
|
9 |
|
|
/* */
|
10 |
|
|
/* - Redistributions of source code must retain the above copyright*/
|
11 |
|
|
/* notice, this list of conditions and the following disclaimer. */
|
12 |
|
|
/* */
|
13 |
|
|
/* - Redistributions in binary form must reproduce the above */
|
14 |
|
|
/* copyright notice, this list of conditions and the following */
|
15 |
|
|
/* disclaimer in the documentation and/or other materials */
|
16 |
|
|
/* provided with the distribution. */
|
17 |
|
|
/* */
|
18 |
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
19 |
|
|
/* contributors may be used to endorse or promote products */
|
20 |
|
|
/* derived from this software without specific prior written */
|
21 |
|
|
/* permission. */
|
22 |
|
|
/* */
|
23 |
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
24 |
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
25 |
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
26 |
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
27 |
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
28 |
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
29 |
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
30 |
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
31 |
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
32 |
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
33 |
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
34 |
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
35 |
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
36 |
|
|
/* -------------------------------------------------------------- */
|
37 |
|
|
/* PROLOG END TAG zYx */
|
38 |
|
|
#ifdef __SPU__
|
39 |
|
|
|
40 |
|
|
#ifndef _TGAMMAD2_H_
|
41 |
|
|
#define _TGAMMAD2_H_ 1
|
42 |
|
|
|
43 |
|
|
#include <spu_intrinsics.h>
|
44 |
|
|
#include "simdmath.h"
|
45 |
|
|
|
46 |
|
|
#include "recipd2.h"
|
47 |
|
|
#include "truncd2.h"
|
48 |
|
|
#include "expd2.h"
|
49 |
|
|
#include "logd2.h"
|
50 |
|
|
#include "divd2.h"
|
51 |
|
|
#include "sind2.h"
|
52 |
|
|
#include "powd2.h"
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
/*
|
56 |
|
|
* FUNCTION
|
57 |
|
|
* vector double _tgammad2(vector double x)
|
58 |
|
|
*
|
59 |
|
|
* DESCRIPTION
|
60 |
|
|
* _tgammad2
|
61 |
|
|
*
|
62 |
|
|
* This is an interesting function to approximate fast
|
63 |
|
|
* and accurately. We take a fairly standard approach - break
|
64 |
|
|
* the domain into 5 separate regions:
|
65 |
|
|
*
|
66 |
|
|
* 1. [-infinity, 0) - use
|
67 |
|
|
* 2. [0, 1) - push x into [1,2), then adjust the
|
68 |
|
|
* result.
|
69 |
|
|
* 3. [1, 2) - use a rational approximation.
|
70 |
|
|
* 4. [2, 10) - pull back into [1, 2), then adjust
|
71 |
|
|
* the result.
|
72 |
|
|
* 5. [10, +infinity] - use Stirling's Approximation.
|
73 |
|
|
*
|
74 |
|
|
*
|
75 |
|
|
* Special Cases:
|
76 |
|
|
* - tgamma(+/- 0) returns +/- infinity
|
77 |
|
|
* - tgamma(negative integer) returns NaN
|
78 |
|
|
* - tgamma(-infinity) returns NaN
|
79 |
|
|
* - tgamma(infinity) returns infinity
|
80 |
|
|
*
|
81 |
|
|
*/
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
/*
|
85 |
|
|
* Coefficients for Stirling's Series for Gamma()
|
86 |
|
|
*/
|
87 |
|
|
/* 1/ 1 */
|
88 |
|
|
#define STIRLING_00 1.000000000000000000000000000000000000E0
|
89 |
|
|
/* 1/ 12 */
|
90 |
|
|
#define STIRLING_01 8.333333333333333333333333333333333333E-2
|
91 |
|
|
/* 1/ 288 */
|
92 |
|
|
#define STIRLING_02 3.472222222222222222222222222222222222E-3
|
93 |
|
|
/* -139/ 51840 */
|
94 |
|
|
#define STIRLING_03 -2.681327160493827160493827160493827160E-3
|
95 |
|
|
/* -571/ 2488320 */
|
96 |
|
|
#define STIRLING_04 -2.294720936213991769547325102880658436E-4
|
97 |
|
|
/* 163879/ 209018880 */
|
98 |
|
|
#define STIRLING_05 7.840392217200666274740348814422888497E-4
|
99 |
|
|
/* 5246819/ 75246796800 */
|
100 |
|
|
#define STIRLING_06 6.972813758365857774293988285757833083E-5
|
101 |
|
|
/* -534703531/ 902961561600 */
|
102 |
|
|
#define STIRLING_07 -5.921664373536938828648362256044011874E-4
|
103 |
|
|
/* -4483131259/ 86684309913600 */
|
104 |
|
|
#define STIRLING_08 -5.171790908260592193370578430020588228E-5
|
105 |
|
|
/* 432261921612371/ 514904800886784000 */
|
106 |
|
|
#define STIRLING_09 8.394987206720872799933575167649834452E-4
|
107 |
|
|
/* 6232523202521089/ 86504006548979712000 */
|
108 |
|
|
#define STIRLING_10 7.204895416020010559085719302250150521E-5
|
109 |
|
|
/* -25834629665134204969/ 13494625021640835072000 */
|
110 |
|
|
#define STIRLING_11 -1.914438498565477526500898858328522545E-3
|
111 |
|
|
/* -1579029138854919086429/ 9716130015581401251840000 */
|
112 |
|
|
#define STIRLING_12 -1.625162627839158168986351239802709981E-4
|
113 |
|
|
/* 746590869962651602203151/ 116593560186976815022080000 */
|
114 |
|
|
#define STIRLING_13 6.403362833808069794823638090265795830E-3
|
115 |
|
|
/* 1511513601028097903631961/ 2798245444487443560529920000 */
|
116 |
|
|
#define STIRLING_14 5.401647678926045151804675085702417355E-4
|
117 |
|
|
/* -8849272268392873147705987190261/ 299692087104605205332754432000000 */
|
118 |
|
|
#define STIRLING_15 -2.952788094569912050544065105469382445E-2
|
119 |
|
|
/* -142801712490607530608130701097701/ 57540880724084199423888850944000000 */
|
120 |
|
|
#define STIRLING_16 -2.481743600264997730915658368743464324E-3
|
121 |
|
|
|
122 |
|
|
|
123 |
|
|
/*
|
124 |
|
|
* Rational Approximation Coefficients for the
|
125 |
|
|
* domain [1, 2).
|
126 |
|
|
*/
|
127 |
|
|
#define TGD2_P00 -1.8211798563156931777484715e+05
|
128 |
|
|
#define TGD2_P01 -8.7136501560410004458390176e+04
|
129 |
|
|
#define TGD2_P02 -3.9304030489789496641606092e+04
|
130 |
|
|
#define TGD2_P03 -1.2078833505605729442322627e+04
|
131 |
|
|
#define TGD2_P04 -2.2149136023607729839568492e+03
|
132 |
|
|
#define TGD2_P05 -7.2672456596961114883015398e+02
|
133 |
|
|
#define TGD2_P06 -2.2126466212611862971471055e+01
|
134 |
|
|
#define TGD2_P07 -2.0162424149396112937893122e+01
|
135 |
|
|
|
136 |
|
|
#define TGD2_Q00 1.0000000000000000000000000
|
137 |
|
|
#define TGD2_Q01 -1.8212849094205905566923320e+05
|
138 |
|
|
#define TGD2_Q02 -1.9220660507239613798446953e+05
|
139 |
|
|
#define TGD2_Q03 2.9692670736656051303725690e+04
|
140 |
|
|
#define TGD2_Q04 3.0352658363629092491464689e+04
|
141 |
|
|
#define TGD2_Q05 -1.0555895821041505769244395e+04
|
142 |
|
|
#define TGD2_Q06 1.2786642579487202056043316e+03
|
143 |
|
|
#define TGD2_Q07 -5.5279768804094054246434098e+01
|
144 |
|
|
|
145 |
|
|
static __inline vector double _tgammad2(vector double x)
|
146 |
|
|
{
|
147 |
|
|
vector double signbit = spu_splats(-0.0);
|
148 |
|
|
vector double zerod = spu_splats(0.0);
|
149 |
|
|
vector double halfd = spu_splats(0.5);
|
150 |
|
|
vector double oned = spu_splats(1.0);
|
151 |
|
|
vector double ninep9d = (vec_double2)spu_splats(0x4023FFFFFFFFFFFFull);
|
152 |
|
|
vector double twohd = spu_splats(200.0);
|
153 |
|
|
vector double pi = spu_splats(SM_PI);
|
154 |
|
|
vector double sqrt2pi = spu_splats(2.50662827463100050241576528481);
|
155 |
|
|
vector double inf = (vector double)spu_splats(0x7FF0000000000000ull);
|
156 |
|
|
vector double nan = (vector double)spu_splats(0x7FF8000000000000ull);
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
vector double xabs;
|
160 |
|
|
vector double xscaled;
|
161 |
|
|
vector double xtrunc;
|
162 |
|
|
vector double xinv;
|
163 |
|
|
vector double nresult;
|
164 |
|
|
vector double rresult; /* Rational Approx result */
|
165 |
|
|
vector double sresult; /* Stirling's result */
|
166 |
|
|
vector double result;
|
167 |
|
|
vector double pr,qr;
|
168 |
|
|
|
169 |
|
|
vector unsigned long long gt0 = spu_cmpgt(x, zerod);
|
170 |
|
|
vector unsigned long long gt1 = spu_cmpgt(x, oned);
|
171 |
|
|
vector unsigned long long gt9p9 = spu_cmpgt(x, ninep9d);
|
172 |
|
|
vector unsigned long long gt200 = spu_cmpgt(x, twohd);
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
xabs = spu_andc(x, signbit);
|
176 |
|
|
|
177 |
|
|
/*
|
178 |
|
|
* For x in [0, 1], add 1 to x, use rational
|
179 |
|
|
* approximation, then use:
|
180 |
|
|
*
|
181 |
|
|
* gamma(x) = gamma(x+1)/x
|
182 |
|
|
*
|
183 |
|
|
*/
|
184 |
|
|
xabs = spu_sel(spu_add(xabs, oned), xabs, gt1);
|
185 |
|
|
xtrunc = _truncd2(xabs);
|
186 |
|
|
|
187 |
|
|
|
188 |
|
|
/*
|
189 |
|
|
* For x in [2, 10):
|
190 |
|
|
*/
|
191 |
|
|
xscaled = spu_add(oned, spu_sub(xabs, xtrunc));
|
192 |
|
|
|
193 |
|
|
/*
|
194 |
|
|
* For x in [1,2), use a rational approximation.
|
195 |
|
|
*/
|
196 |
|
|
pr = spu_madd(xscaled, spu_splats(TGD2_P07), spu_splats(TGD2_P06));
|
197 |
|
|
pr = spu_madd(pr, xscaled, spu_splats(TGD2_P05));
|
198 |
|
|
pr = spu_madd(pr, xscaled, spu_splats(TGD2_P04));
|
199 |
|
|
pr = spu_madd(pr, xscaled, spu_splats(TGD2_P03));
|
200 |
|
|
pr = spu_madd(pr, xscaled, spu_splats(TGD2_P02));
|
201 |
|
|
pr = spu_madd(pr, xscaled, spu_splats(TGD2_P01));
|
202 |
|
|
pr = spu_madd(pr, xscaled, spu_splats(TGD2_P00));
|
203 |
|
|
|
204 |
|
|
qr = spu_madd(xscaled, spu_splats(TGD2_Q07), spu_splats(TGD2_Q06));
|
205 |
|
|
qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q05));
|
206 |
|
|
qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q04));
|
207 |
|
|
qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q03));
|
208 |
|
|
qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q02));
|
209 |
|
|
qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q01));
|
210 |
|
|
qr = spu_madd(qr, xscaled, spu_splats(TGD2_Q00));
|
211 |
|
|
|
212 |
|
|
rresult = _divd2(pr, qr);
|
213 |
|
|
rresult = spu_sel(_divd2(rresult, x), rresult, gt1);
|
214 |
|
|
|
215 |
|
|
/*
|
216 |
|
|
* If x was in [2,10) and we pulled it into [1,2), we need to push
|
217 |
|
|
* it back out again.
|
218 |
|
|
*/
|
219 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [2,3) */
|
220 |
|
|
xscaled = spu_add(xscaled, oned);
|
221 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [3,4) */
|
222 |
|
|
xscaled = spu_add(xscaled, oned);
|
223 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [4,5) */
|
224 |
|
|
xscaled = spu_add(xscaled, oned);
|
225 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [5,6) */
|
226 |
|
|
xscaled = spu_add(xscaled, oned);
|
227 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [6,7) */
|
228 |
|
|
xscaled = spu_add(xscaled, oned);
|
229 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [7,8) */
|
230 |
|
|
xscaled = spu_add(xscaled, oned);
|
231 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [8,9) */
|
232 |
|
|
xscaled = spu_add(xscaled, oned);
|
233 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [9,10) */
|
234 |
|
|
|
235 |
|
|
|
236 |
|
|
/*
|
237 |
|
|
* For x >= 10, we use Stirling's Approximation
|
238 |
|
|
*/
|
239 |
|
|
vector double sum;
|
240 |
|
|
xinv = _recipd2(xabs);
|
241 |
|
|
sum = spu_madd(xinv, spu_splats(STIRLING_16), spu_splats(STIRLING_15));
|
242 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_14));
|
243 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_13));
|
244 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_12));
|
245 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_11));
|
246 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_10));
|
247 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_09));
|
248 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_08));
|
249 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_07));
|
250 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_06));
|
251 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_05));
|
252 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_04));
|
253 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_03));
|
254 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_02));
|
255 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_01));
|
256 |
|
|
sum = spu_madd(sum, xinv, spu_splats(STIRLING_00));
|
257 |
|
|
|
258 |
|
|
sum = spu_mul(sum, sqrt2pi);
|
259 |
|
|
sum = spu_mul(sum, _powd2(x, spu_sub(x, halfd)));
|
260 |
|
|
sresult = spu_mul(sum, _expd2(spu_or(x, signbit)));
|
261 |
|
|
|
262 |
|
|
/*
|
263 |
|
|
* Choose rational approximation or Stirling's result.
|
264 |
|
|
*/
|
265 |
|
|
result = spu_sel(rresult, sresult, gt9p9);
|
266 |
|
|
|
267 |
|
|
|
268 |
|
|
result = spu_sel(result, inf, gt200);
|
269 |
|
|
|
270 |
|
|
/* For x < 0, use:
|
271 |
|
|
*
|
272 |
|
|
* gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
|
273 |
|
|
* or
|
274 |
|
|
* gamma(x) = pi/(gamma(1 - x)*sin(x*pi))
|
275 |
|
|
*/
|
276 |
|
|
nresult = _divd2(pi, spu_mul(x, spu_mul(result, _sind2(spu_mul(x, pi)))));
|
277 |
|
|
result = spu_sel(nresult, result, gt0);
|
278 |
|
|
|
279 |
|
|
/*
|
280 |
|
|
* x = non-positive integer, return NaN.
|
281 |
|
|
*/
|
282 |
|
|
result = spu_sel(result, nan, spu_andc(spu_cmpeq(x, xtrunc), gt0));
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
return result;
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
#endif /* _TGAMMAD2_H_ */
|
289 |
|
|
#endif /* __SPU__ */
|