1 |
148 |
jeremybenn |
/* -------------------------------------------------------------- */
|
2 |
|
|
/* (C)Copyright 2007,2008, */
|
3 |
|
|
/* International Business Machines Corporation */
|
4 |
|
|
/* All Rights Reserved. */
|
5 |
|
|
/* */
|
6 |
|
|
/* Redistribution and use in source and binary forms, with or */
|
7 |
|
|
/* without modification, are permitted provided that the */
|
8 |
|
|
/* following conditions are met: */
|
9 |
|
|
/* */
|
10 |
|
|
/* - Redistributions of source code must retain the above copyright*/
|
11 |
|
|
/* notice, this list of conditions and the following disclaimer. */
|
12 |
|
|
/* */
|
13 |
|
|
/* - Redistributions in binary form must reproduce the above */
|
14 |
|
|
/* copyright notice, this list of conditions and the following */
|
15 |
|
|
/* disclaimer in the documentation and/or other materials */
|
16 |
|
|
/* provided with the distribution. */
|
17 |
|
|
/* */
|
18 |
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
19 |
|
|
/* contributors may be used to endorse or promote products */
|
20 |
|
|
/* derived from this software without specific prior written */
|
21 |
|
|
/* permission. */
|
22 |
|
|
/* */
|
23 |
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
24 |
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
25 |
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
26 |
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
27 |
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
28 |
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
29 |
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
30 |
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
31 |
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
32 |
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
33 |
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
34 |
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
35 |
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
36 |
|
|
/* -------------------------------------------------------------- */
|
37 |
|
|
/* PROLOG END TAG zYx */
|
38 |
|
|
#ifdef __SPU__
|
39 |
|
|
#ifndef _TGAMMAF4_H_
|
40 |
|
|
#define _TGAMMAF4_H_ 1
|
41 |
|
|
|
42 |
|
|
#include <spu_intrinsics.h>
|
43 |
|
|
#include "simdmath.h"
|
44 |
|
|
|
45 |
|
|
#include "recipf4.h"
|
46 |
|
|
#include "truncf4.h"
|
47 |
|
|
#include "expf4.h"
|
48 |
|
|
#include "logf4.h"
|
49 |
|
|
#include "divf4.h"
|
50 |
|
|
#include "sinf4.h"
|
51 |
|
|
#include "powf4.h"
|
52 |
|
|
#include "tgammad2.h"
|
53 |
|
|
|
54 |
|
|
/*
|
55 |
|
|
* FUNCTION
|
56 |
|
|
* vector float _tgammaf4(vector float x)
|
57 |
|
|
*
|
58 |
|
|
* DESCRIPTION
|
59 |
|
|
* The tgammaf4 function returns a vector containing tgamma for each
|
60 |
|
|
* element of x
|
61 |
|
|
*
|
62 |
|
|
* We take a fairly standard approach - break the domain into 5 separate regions:
|
63 |
|
|
*
|
64 |
|
|
* 1. [-infinity, 0) - use gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
|
65 |
|
|
* 2. [0, 1) - push x into [1,2), then adjust the
|
66 |
|
|
* result.
|
67 |
|
|
* 3. [1, 2) - use a rational approximation.
|
68 |
|
|
* 4. [2, 10) - pull back into [1, 2), then adjust
|
69 |
|
|
* the result.
|
70 |
|
|
* 5. [10, +infinity] - use Stirling's Approximation.
|
71 |
|
|
*
|
72 |
|
|
*
|
73 |
|
|
* Special Cases:
|
74 |
|
|
* - tgamma(+/- 0) returns +/- infinity
|
75 |
|
|
* - tgamma(negative integer) returns NaN
|
76 |
|
|
* - tgamma(-infinity) returns NaN
|
77 |
|
|
* - tgamma(infinity) returns infinity
|
78 |
|
|
*
|
79 |
|
|
*/
|
80 |
|
|
|
81 |
|
|
/*
|
82 |
|
|
* Coefficients for Stirling's Series for Gamma() are defined in
|
83 |
|
|
* tgammad2.h
|
84 |
|
|
*/
|
85 |
|
|
|
86 |
|
|
/*
|
87 |
|
|
* Rational Approximation Coefficients for the
|
88 |
|
|
* domain [1, 2) are defined in tgammad2.h
|
89 |
|
|
*/
|
90 |
|
|
|
91 |
|
|
|
92 |
|
|
static __inline vector float _tgammaf4(vector float x)
|
93 |
|
|
{
|
94 |
|
|
vector float signbit = spu_splats(-0.0f);
|
95 |
|
|
vector float zerof = spu_splats(0.0f);
|
96 |
|
|
vector float halff = spu_splats(0.5f);
|
97 |
|
|
vector float onef = spu_splats(1.0f);
|
98 |
|
|
vector float ninep9f = (vector float)spu_splats(0x411FFFFF); /* Next closest to 10.0 */
|
99 |
|
|
vector float t38f = spu_splats(38.0f);
|
100 |
|
|
vector float pi = spu_splats((float)SM_PI);
|
101 |
|
|
vector float sqrt2pi = spu_splats(2.506628274631000502415765284811f);
|
102 |
|
|
vector float inf = (vec_float4)spu_splats(0x7F800000);
|
103 |
|
|
vector float nan = (vec_float4)spu_splats(0x7FFFFFFF);
|
104 |
|
|
|
105 |
|
|
vector float xabs;
|
106 |
|
|
vector float xscaled;
|
107 |
|
|
vector float xtrunc;
|
108 |
|
|
vector float xinv;
|
109 |
|
|
vector float nresult; /* Negative x result */
|
110 |
|
|
vector float rresult; /* Rational Approx result */
|
111 |
|
|
vector float sresult; /* Stirling's result */
|
112 |
|
|
vector float result;
|
113 |
|
|
vector float pr,qr;
|
114 |
|
|
|
115 |
|
|
vector unsigned int gt0 = spu_cmpgt(x, zerof);
|
116 |
|
|
vector unsigned int gt1 = spu_cmpgt(x, onef);
|
117 |
|
|
vector unsigned int gt9p9 = spu_cmpgt(x, ninep9f);
|
118 |
|
|
vector unsigned int gt38 = spu_cmpgt(x, t38f);
|
119 |
|
|
|
120 |
|
|
xabs = spu_andc(x, signbit);
|
121 |
|
|
|
122 |
|
|
/*
|
123 |
|
|
* For x in [0, 1], add 1 to x, use rational
|
124 |
|
|
* approximation, then use:
|
125 |
|
|
*
|
126 |
|
|
* gamma(x) = gamma(x+1)/x
|
127 |
|
|
*
|
128 |
|
|
*/
|
129 |
|
|
xabs = spu_sel(spu_add(xabs, onef), xabs, gt1);
|
130 |
|
|
xtrunc = _truncf4(xabs);
|
131 |
|
|
|
132 |
|
|
|
133 |
|
|
/*
|
134 |
|
|
* For x in [2, 10):
|
135 |
|
|
*/
|
136 |
|
|
xscaled = spu_add(onef, spu_sub(xabs, xtrunc));
|
137 |
|
|
|
138 |
|
|
/*
|
139 |
|
|
* For x in [1,2), use a rational approximation.
|
140 |
|
|
*/
|
141 |
|
|
pr = spu_madd(xscaled, spu_splats((float)TGD2_P07), spu_splats((float)TGD2_P06));
|
142 |
|
|
pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P05));
|
143 |
|
|
pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P04));
|
144 |
|
|
pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P03));
|
145 |
|
|
pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P02));
|
146 |
|
|
pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P01));
|
147 |
|
|
pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P00));
|
148 |
|
|
|
149 |
|
|
qr = spu_madd(xscaled, spu_splats((float)TGD2_Q07), spu_splats((float)TGD2_Q06));
|
150 |
|
|
qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q05));
|
151 |
|
|
qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q04));
|
152 |
|
|
qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q03));
|
153 |
|
|
qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q02));
|
154 |
|
|
qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q01));
|
155 |
|
|
qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q00));
|
156 |
|
|
|
157 |
|
|
rresult = _divf4(pr, qr);
|
158 |
|
|
rresult = spu_sel(_divf4(rresult, x), rresult, gt1);
|
159 |
|
|
|
160 |
|
|
/*
|
161 |
|
|
* If x was in [2,10) and we pulled it into [1,2), we need to push
|
162 |
|
|
* it back out again.
|
163 |
|
|
*/
|
164 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [2,3) */
|
165 |
|
|
xscaled = spu_add(xscaled, onef);
|
166 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [3,4) */
|
167 |
|
|
xscaled = spu_add(xscaled, onef);
|
168 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [4,5) */
|
169 |
|
|
xscaled = spu_add(xscaled, onef);
|
170 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [5,6) */
|
171 |
|
|
xscaled = spu_add(xscaled, onef);
|
172 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [6,7) */
|
173 |
|
|
xscaled = spu_add(xscaled, onef);
|
174 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [7,8) */
|
175 |
|
|
xscaled = spu_add(xscaled, onef);
|
176 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [8,9) */
|
177 |
|
|
xscaled = spu_add(xscaled, onef);
|
178 |
|
|
rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [9,10) */
|
179 |
|
|
|
180 |
|
|
|
181 |
|
|
/*
|
182 |
|
|
* For x >= 10, we use Stirling's Approximation
|
183 |
|
|
*/
|
184 |
|
|
vector float sum;
|
185 |
|
|
xinv = _recipf4(xabs);
|
186 |
|
|
sum = spu_madd(xinv, spu_splats((float)STIRLING_16), spu_splats((float)STIRLING_15));
|
187 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_14));
|
188 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_13));
|
189 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_12));
|
190 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_11));
|
191 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_10));
|
192 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_09));
|
193 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_08));
|
194 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_07));
|
195 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_06));
|
196 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_05));
|
197 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_04));
|
198 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_03));
|
199 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_02));
|
200 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_01));
|
201 |
|
|
sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_00));
|
202 |
|
|
|
203 |
|
|
sum = spu_mul(sum, sqrt2pi);
|
204 |
|
|
sum = spu_mul(sum, _powf4(x, spu_sub(x, halff)));
|
205 |
|
|
sresult = spu_mul(sum, _expf4(spu_or(x, signbit)));
|
206 |
|
|
|
207 |
|
|
/*
|
208 |
|
|
* Choose rational approximation or Stirling's result.
|
209 |
|
|
*/
|
210 |
|
|
result = spu_sel(rresult, sresult, gt9p9);
|
211 |
|
|
|
212 |
|
|
result = spu_sel(result, inf, gt38);
|
213 |
|
|
|
214 |
|
|
/* For x < 0, use:
|
215 |
|
|
* gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
|
216 |
|
|
*/
|
217 |
|
|
nresult = _divf4(pi, spu_mul(x, spu_mul(result, _sinf4(spu_mul(x, pi)))));
|
218 |
|
|
result = spu_sel(nresult, result, gt0);
|
219 |
|
|
|
220 |
|
|
/*
|
221 |
|
|
* x = non-positive integer, return NaN.
|
222 |
|
|
*/
|
223 |
|
|
result = spu_sel(result, nan, spu_andc(spu_cmpeq(x, xtrunc), gt0));
|
224 |
|
|
|
225 |
|
|
return result;
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
#endif /* _TGAMMAF4_H_ */
|
229 |
|
|
#endif /* __SPU__ */
|