OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [newlib-1.17.0/] [newlib/] [libm/] [math/] [e_log.c] - Blame information for rev 855

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 148 jeremybenn
 
2
/* @(#)e_log.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/* __ieee754_log(x)
15
 * Return the logrithm of x
16
 *
17
 * Method :
18
 *   1. Argument Reduction: find k and f such that
19
 *                      x = 2^k * (1+f),
20
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
21
 *
22
 *   2. Approximation of log(1+f).
23
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
24
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25
 *               = 2s + s*R
26
 *      We use a special Reme algorithm on [0,0.1716] to generate
27
 *      a polynomial of degree 14 to approximate R The maximum error
28
 *      of this polynomial approximation is bounded by 2**-58.45. In
29
 *      other words,
30
 *                      2      4      6      8      10      12      14
31
 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
32
 *      (the values of Lg1 to Lg7 are listed in the program)
33
 *      and
34
 *          |      2          14          |     -58.45
35
 *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
36
 *          |                             |
37
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38
 *      In order to guarantee error in log below 1ulp, we compute log
39
 *      by
40
 *              log(1+f) = f - s*(f - R)        (if f is not too large)
41
 *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
42
 *
43
 *      3. Finally,  log(x) = k*ln2 + log(1+f).
44
 *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45
 *         Here ln2 is split into two floating point number:
46
 *                      ln2_hi + ln2_lo,
47
 *         where n*ln2_hi is always exact for |n| < 2000.
48
 *
49
 * Special cases:
50
 *      log(x) is NaN with signal if x < 0 (including -INF) ;
51
 *      log(+INF) is +INF; log(0) is -INF with signal;
52
 *      log(NaN) is that NaN with no signal.
53
 *
54
 * Accuracy:
55
 *      according to an error analysis, the error is always less than
56
 *      1 ulp (unit in the last place).
57
 *
58
 * Constants:
59
 * The hexadecimal values are the intended ones for the following
60
 * constants. The decimal values may be used, provided that the
61
 * compiler will convert from decimal to binary accurately enough
62
 * to produce the hexadecimal values shown.
63
 */
64
 
65
#include "fdlibm.h"
66
 
67
#ifndef _DOUBLE_IS_32BITS
68
 
69
#ifdef __STDC__
70
static const double
71
#else
72
static double
73
#endif
74
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
75
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
76
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
77
Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
78
Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
79
Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
80
Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
81
Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
82
Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
83
Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
84
 
85
#ifdef __STDC__
86
static const double zero   =  0.0;
87
#else
88
static double zero   =  0.0;
89
#endif
90
 
91
#ifdef __STDC__
92
        double __ieee754_log(double x)
93
#else
94
        double __ieee754_log(x)
95
        double x;
96
#endif
97
{
98
        double hfsq,f,s,z,R,w,t1,t2,dk;
99
        __int32_t k,hx,i,j;
100
        __uint32_t lx;
101
 
102
        EXTRACT_WORDS(hx,lx,x);
103
 
104
        k=0;
105
        if (hx < 0x00100000) {                  /* x < 2**-1022  */
106
            if (((hx&0x7fffffff)|lx)==0)
107
                return -two54/zero;             /* log(+-0)=-inf */
108
            if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
109
            k -= 54; x *= two54; /* subnormal number, scale up x */
110
            GET_HIGH_WORD(hx,x);
111
        }
112
        if (hx >= 0x7ff00000) return x+x;
113
        k += (hx>>20)-1023;
114
        hx &= 0x000fffff;
115
        i = (hx+0x95f64)&0x100000;
116
        SET_HIGH_WORD(x,hx|(i^0x3ff00000));     /* normalize x or x/2 */
117
        k += (i>>20);
118
        f = x-1.0;
119
        if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
120
          if(f==zero) { if(k==0) return zero;  else {dk=(double)k;
121
                               return dk*ln2_hi+dk*ln2_lo;}}
122
            R = f*f*(0.5-0.33333333333333333*f);
123
            if(k==0) return f-R; else {dk=(double)k;
124
                     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
125
        }
126
        s = f/(2.0+f);
127
        dk = (double)k;
128
        z = s*s;
129
        i = hx-0x6147a;
130
        w = z*z;
131
        j = 0x6b851-hx;
132
        t1= w*(Lg2+w*(Lg4+w*Lg6));
133
        t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
134
        i |= j;
135
        R = t2+t1;
136
        if(i>0) {
137
            hfsq=0.5*f*f;
138
            if(k==0) return f-(hfsq-s*(hfsq+R)); else
139
                     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
140
        } else {
141
            if(k==0) return f-s*(f-R); else
142
                     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
143
        }
144
}
145
 
146
#endif /* defined(_DOUBLE_IS_32BITS) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.