OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [bfd/] [doc/] [syms.texi] - Blame information for rev 281

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
@section Symbols
2
BFD tries to maintain as much symbol information as it can when
3
it moves information from file to file. BFD passes information
4
to applications though the @code{asymbol} structure. When the
5
application requests the symbol table, BFD reads the table in
6
the native form and translates parts of it into the internal
7
format. To maintain more than the information passed to
8
applications, some targets keep some information ``behind the
9
scenes'' in a structure only the particular back end knows
10
about. For example, the coff back end keeps the original
11
symbol table structure as well as the canonical structure when
12
a BFD is read in. On output, the coff back end can reconstruct
13
the output symbol table so that no information is lost, even
14
information unique to coff which BFD doesn't know or
15
understand. If a coff symbol table were read, but were written
16
through an a.out back end, all the coff specific information
17
would be lost. The symbol table of a BFD
18
is not necessarily read in until a canonicalize request is
19
made. Then the BFD back end fills in a table provided by the
20
application with pointers to the canonical information.  To
21
output symbols, the application provides BFD with a table of
22
pointers to pointers to @code{asymbol}s. This allows applications
23
like the linker to output a symbol as it was read, since the ``behind
24
the scenes'' information will be still available.
25
@menu
26
* Reading Symbols::
27
* Writing Symbols::
28
* Mini Symbols::
29
* typedef asymbol::
30
* symbol handling functions::
31
@end menu
32
 
33
@node Reading Symbols, Writing Symbols, Symbols, Symbols
34
@subsection Reading symbols
35
There are two stages to reading a symbol table from a BFD:
36
allocating storage, and the actual reading process. This is an
37
excerpt from an application which reads the symbol table:
38
 
39
@example
40
         long storage_needed;
41
         asymbol **symbol_table;
42
         long number_of_symbols;
43
         long i;
44
 
45
         storage_needed = bfd_get_symtab_upper_bound (abfd);
46
 
47
         if (storage_needed < 0)
48
           FAIL
49
 
50
         if (storage_needed == 0)
51
           return;
52
 
53
         symbol_table = xmalloc (storage_needed);
54
           ...
55
         number_of_symbols =
56
            bfd_canonicalize_symtab (abfd, symbol_table);
57
 
58
         if (number_of_symbols < 0)
59
           FAIL
60
 
61
         for (i = 0; i < number_of_symbols; i++)
62
           process_symbol (symbol_table[i]);
63
@end example
64
 
65
All storage for the symbols themselves is in an objalloc
66
connected to the BFD; it is freed when the BFD is closed.
67
 
68
@node Writing Symbols, Mini Symbols, Reading Symbols, Symbols
69
@subsection Writing symbols
70
Writing of a symbol table is automatic when a BFD open for
71
writing is closed. The application attaches a vector of
72
pointers to pointers to symbols to the BFD being written, and
73
fills in the symbol count. The close and cleanup code reads
74
through the table provided and performs all the necessary
75
operations. The BFD output code must always be provided with an
76
``owned'' symbol: one which has come from another BFD, or one
77
which has been created using @code{bfd_make_empty_symbol}.  Here is an
78
example showing the creation of a symbol table with only one element:
79
 
80
@example
81
       #include "bfd.h"
82
       int main (void)
83
       @{
84
         bfd *abfd;
85
         asymbol *ptrs[2];
86
         asymbol *new;
87
 
88
         abfd = bfd_openw ("foo","a.out-sunos-big");
89
         bfd_set_format (abfd, bfd_object);
90
         new = bfd_make_empty_symbol (abfd);
91
         new->name = "dummy_symbol";
92
         new->section = bfd_make_section_old_way (abfd, ".text");
93
         new->flags = BSF_GLOBAL;
94
         new->value = 0x12345;
95
 
96
         ptrs[0] = new;
97
         ptrs[1] = 0;
98
 
99
         bfd_set_symtab (abfd, ptrs, 1);
100
         bfd_close (abfd);
101
         return 0;
102
       @}
103
 
104
       ./makesym
105
       nm foo
106
       00012345 A dummy_symbol
107
@end example
108
 
109
Many formats cannot represent arbitrary symbol information; for
110
instance, the @code{a.out} object format does not allow an
111
arbitrary number of sections. A symbol pointing to a section
112
which is not one  of @code{.text}, @code{.data} or @code{.bss} cannot
113
be described.
114
 
115
@node Mini Symbols, typedef asymbol, Writing Symbols, Symbols
116
@subsection Mini Symbols
117
Mini symbols provide read-only access to the symbol table.
118
They use less memory space, but require more time to access.
119
They can be useful for tools like nm or objdump, which may
120
have to handle symbol tables of extremely large executables.
121
 
122
The @code{bfd_read_minisymbols} function will read the symbols
123
into memory in an internal form.  It will return a @code{void *}
124
pointer to a block of memory, a symbol count, and the size of
125
each symbol.  The pointer is allocated using @code{malloc}, and
126
should be freed by the caller when it is no longer needed.
127
 
128
The function @code{bfd_minisymbol_to_symbol} will take a pointer
129
to a minisymbol, and a pointer to a structure returned by
130
@code{bfd_make_empty_symbol}, and return a @code{asymbol} structure.
131
The return value may or may not be the same as the value from
132
@code{bfd_make_empty_symbol} which was passed in.
133
 
134
 
135
@node typedef asymbol, symbol handling functions, Mini Symbols, Symbols
136
@subsection typedef asymbol
137
An @code{asymbol} has the form:
138
 
139
 
140
@example
141
 
142
typedef struct bfd_symbol
143
@{
144
  /* A pointer to the BFD which owns the symbol. This information
145
     is necessary so that a back end can work out what additional
146
     information (invisible to the application writer) is carried
147
     with the symbol.
148
 
149
     This field is *almost* redundant, since you can use section->owner
150
     instead, except that some symbols point to the global sections
151
     bfd_@{abs,com,und@}_section.  This could be fixed by making
152
     these globals be per-bfd (or per-target-flavor).  FIXME.  */
153
  struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field.  */
154
 
155
  /* The text of the symbol. The name is left alone, and not copied; the
156
     application may not alter it.  */
157
  const char *name;
158
 
159
  /* The value of the symbol.  This really should be a union of a
160
     numeric value with a pointer, since some flags indicate that
161
     a pointer to another symbol is stored here.  */
162
  symvalue value;
163
 
164
  /* Attributes of a symbol.  */
165
#define BSF_NO_FLAGS    0x00
166
 
167
  /* The symbol has local scope; @code{static} in @code{C}. The value
168
     is the offset into the section of the data.  */
169
#define BSF_LOCAL      0x01
170
 
171
  /* The symbol has global scope; initialized data in @code{C}. The
172
     value is the offset into the section of the data.  */
173
#define BSF_GLOBAL     0x02
174
 
175
  /* The symbol has global scope and is exported. The value is
176
     the offset into the section of the data.  */
177
#define BSF_EXPORT     BSF_GLOBAL /* No real difference.  */
178
 
179
  /* A normal C symbol would be one of:
180
     @code{BSF_LOCAL}, @code{BSF_FORT_COMM},  @code{BSF_UNDEFINED} or
181
     @code{BSF_GLOBAL}.  */
182
 
183
  /* The symbol is a debugging record. The value has an arbitrary
184
     meaning, unless BSF_DEBUGGING_RELOC is also set.  */
185
#define BSF_DEBUGGING  0x08
186
 
187
  /* The symbol denotes a function entry point.  Used in ELF,
188
     perhaps others someday.  */
189
#define BSF_FUNCTION    0x10
190
 
191
  /* Used by the linker.  */
192
#define BSF_KEEP        0x20
193
#define BSF_KEEP_G      0x40
194
 
195
  /* A weak global symbol, overridable without warnings by
196
     a regular global symbol of the same name.  */
197
#define BSF_WEAK        0x80
198
 
199
  /* This symbol was created to point to a section, e.g. ELF's
200
     STT_SECTION symbols.  */
201
#define BSF_SECTION_SYM 0x100
202
 
203
  /* The symbol used to be a common symbol, but now it is
204
     allocated.  */
205
#define BSF_OLD_COMMON  0x200
206
 
207
  /* The default value for common data.  */
208
#define BFD_FORT_COMM_DEFAULT_VALUE 0
209
 
210
  /* In some files the type of a symbol sometimes alters its
211
     location in an output file - ie in coff a @code{ISFCN} symbol
212
     which is also @code{C_EXT} symbol appears where it was
213
     declared and not at the end of a section.  This bit is set
214
     by the target BFD part to convey this information.  */
215
#define BSF_NOT_AT_END    0x400
216
 
217
  /* Signal that the symbol is the label of constructor section.  */
218
#define BSF_CONSTRUCTOR   0x800
219
 
220
  /* Signal that the symbol is a warning symbol.  The name is a
221
     warning.  The name of the next symbol is the one to warn about;
222
     if a reference is made to a symbol with the same name as the next
223
     symbol, a warning is issued by the linker.  */
224
#define BSF_WARNING       0x1000
225
 
226
  /* Signal that the symbol is indirect.  This symbol is an indirect
227
     pointer to the symbol with the same name as the next symbol.  */
228
#define BSF_INDIRECT      0x2000
229
 
230
  /* BSF_FILE marks symbols that contain a file name.  This is used
231
     for ELF STT_FILE symbols.  */
232
#define BSF_FILE          0x4000
233
 
234
  /* Symbol is from dynamic linking information.  */
235
#define BSF_DYNAMIC       0x8000
236
 
237
  /* The symbol denotes a data object.  Used in ELF, and perhaps
238
     others someday.  */
239
#define BSF_OBJECT        0x10000
240
 
241
  /* This symbol is a debugging symbol.  The value is the offset
242
     into the section of the data.  BSF_DEBUGGING should be set
243
     as well.  */
244
#define BSF_DEBUGGING_RELOC 0x20000
245
 
246
  /* This symbol is thread local.  Used in ELF.  */
247
#define BSF_THREAD_LOCAL  0x40000
248
 
249
  /* This symbol represents a complex relocation expression,
250
     with the expression tree serialized in the symbol name.  */
251
#define BSF_RELC 0x80000
252
 
253
  /* This symbol represents a signed complex relocation expression,
254
     with the expression tree serialized in the symbol name.  */
255
#define BSF_SRELC 0x100000
256
 
257
  flagword flags;
258
 
259
  /* A pointer to the section to which this symbol is
260
     relative.  This will always be non NULL, there are special
261
     sections for undefined and absolute symbols.  */
262
  struct bfd_section *section;
263
 
264
  /* Back end special data.  */
265
  union
266
    @{
267
      void *p;
268
      bfd_vma i;
269
    @}
270
  udata;
271
@}
272
asymbol;
273
 
274
@end example
275
 
276
@node symbol handling functions,  , typedef asymbol, Symbols
277
@subsection Symbol handling functions
278
 
279
 
280
@findex bfd_get_symtab_upper_bound
281
@subsubsection @code{bfd_get_symtab_upper_bound}
282
@strong{Description}@*
283
Return the number of bytes required to store a vector of pointers
284
to @code{asymbols} for all the symbols in the BFD @var{abfd},
285
including a terminal NULL pointer. If there are no symbols in
286
the BFD, then return 0.  If an error occurs, return -1.
287
@example
288
#define bfd_get_symtab_upper_bound(abfd) \
289
     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
290
 
291
@end example
292
 
293
@findex bfd_is_local_label
294
@subsubsection @code{bfd_is_local_label}
295
@strong{Synopsis}
296
@example
297
bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
298
@end example
299
@strong{Description}@*
300
Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
301
a compiler generated local label, else return FALSE.
302
 
303
@findex bfd_is_local_label_name
304
@subsubsection @code{bfd_is_local_label_name}
305
@strong{Synopsis}
306
@example
307
bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
308
@end example
309
@strong{Description}@*
310
Return TRUE if a symbol with the name @var{name} in the BFD
311
@var{abfd} is a compiler generated local label, else return
312
FALSE.  This just checks whether the name has the form of a
313
local label.
314
@example
315
#define bfd_is_local_label_name(abfd, name) \
316
  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
317
 
318
@end example
319
 
320
@findex bfd_is_target_special_symbol
321
@subsubsection @code{bfd_is_target_special_symbol}
322
@strong{Synopsis}
323
@example
324
bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
325
@end example
326
@strong{Description}@*
327
Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
328
special to the particular target represented by the BFD.  Such symbols
329
should normally not be mentioned to the user.
330
@example
331
#define bfd_is_target_special_symbol(abfd, sym) \
332
  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
333
 
334
@end example
335
 
336
@findex bfd_canonicalize_symtab
337
@subsubsection @code{bfd_canonicalize_symtab}
338
@strong{Description}@*
339
Read the symbols from the BFD @var{abfd}, and fills in
340
the vector @var{location} with pointers to the symbols and
341
a trailing NULL.
342
Return the actual number of symbol pointers, not
343
including the NULL.
344
@example
345
#define bfd_canonicalize_symtab(abfd, location) \
346
  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
347
 
348
@end example
349
 
350
@findex bfd_set_symtab
351
@subsubsection @code{bfd_set_symtab}
352
@strong{Synopsis}
353
@example
354
bfd_boolean bfd_set_symtab
355
   (bfd *abfd, asymbol **location, unsigned int count);
356
@end example
357
@strong{Description}@*
358
Arrange that when the output BFD @var{abfd} is closed,
359
the table @var{location} of @var{count} pointers to symbols
360
will be written.
361
 
362
@findex bfd_print_symbol_vandf
363
@subsubsection @code{bfd_print_symbol_vandf}
364
@strong{Synopsis}
365
@example
366
void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
367
@end example
368
@strong{Description}@*
369
Print the value and flags of the @var{symbol} supplied to the
370
stream @var{file}.
371
 
372
@findex bfd_make_empty_symbol
373
@subsubsection @code{bfd_make_empty_symbol}
374
@strong{Description}@*
375
Create a new @code{asymbol} structure for the BFD @var{abfd}
376
and return a pointer to it.
377
 
378
This routine is necessary because each back end has private
379
information surrounding the @code{asymbol}. Building your own
380
@code{asymbol} and pointing to it will not create the private
381
information, and will cause problems later on.
382
@example
383
#define bfd_make_empty_symbol(abfd) \
384
  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
385
 
386
@end example
387
 
388
@findex _bfd_generic_make_empty_symbol
389
@subsubsection @code{_bfd_generic_make_empty_symbol}
390
@strong{Synopsis}
391
@example
392
asymbol *_bfd_generic_make_empty_symbol (bfd *);
393
@end example
394
@strong{Description}@*
395
Create a new @code{asymbol} structure for the BFD @var{abfd}
396
and return a pointer to it.  Used by core file routines,
397
binary back-end and anywhere else where no private info
398
is needed.
399
 
400
@findex bfd_make_debug_symbol
401
@subsubsection @code{bfd_make_debug_symbol}
402
@strong{Description}@*
403
Create a new @code{asymbol} structure for the BFD @var{abfd},
404
to be used as a debugging symbol.  Further details of its use have
405
yet to be worked out.
406
@example
407
#define bfd_make_debug_symbol(abfd,ptr,size) \
408
  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
409
 
410
@end example
411
 
412
@findex bfd_decode_symclass
413
@subsubsection @code{bfd_decode_symclass}
414
@strong{Description}@*
415
Return a character corresponding to the symbol
416
class of @var{symbol}, or '?' for an unknown class.
417
 
418
@strong{Synopsis}
419
@example
420
int bfd_decode_symclass (asymbol *symbol);
421
@end example
422
@findex bfd_is_undefined_symclass
423
@subsubsection @code{bfd_is_undefined_symclass}
424
@strong{Description}@*
425
Returns non-zero if the class symbol returned by
426
bfd_decode_symclass represents an undefined symbol.
427
Returns zero otherwise.
428
 
429
@strong{Synopsis}
430
@example
431
bfd_boolean bfd_is_undefined_symclass (int symclass);
432
@end example
433
@findex bfd_symbol_info
434
@subsubsection @code{bfd_symbol_info}
435
@strong{Description}@*
436
Fill in the basic info about symbol that nm needs.
437
Additional info may be added by the back-ends after
438
calling this function.
439
 
440
@strong{Synopsis}
441
@example
442
void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
443
@end example
444
@findex bfd_copy_private_symbol_data
445
@subsubsection @code{bfd_copy_private_symbol_data}
446
@strong{Synopsis}
447
@example
448
bfd_boolean bfd_copy_private_symbol_data
449
   (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
450
@end example
451
@strong{Description}@*
452
Copy private symbol information from @var{isym} in the BFD
453
@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
454
Return @code{TRUE} on success, @code{FALSE} on error.  Possible error
455
returns are:
456
 
457
@itemize @bullet
458
 
459
@item
460
@code{bfd_error_no_memory} -
461
Not enough memory exists to create private data for @var{osec}.
462
@end itemize
463
@example
464
#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
465
  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
466
            (ibfd, isymbol, obfd, osymbol))
467
 
468
@end example
469
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.