1 |
38 |
julius |
/* MIPS-specific support for ELF
|
2 |
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
3 |
|
|
2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Most of the information added by Ian Lance Taylor, Cygnus Support,
|
6 |
|
|
<ian@cygnus.com>.
|
7 |
|
|
N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
|
8 |
|
|
<mark@codesourcery.com>
|
9 |
|
|
Traditional MIPS targets support added by Koundinya.K, Dansk Data
|
10 |
|
|
Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
|
11 |
|
|
|
12 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
13 |
|
|
|
14 |
|
|
This program is free software; you can redistribute it and/or modify
|
15 |
|
|
it under the terms of the GNU General Public License as published by
|
16 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
17 |
|
|
(at your option) any later version.
|
18 |
|
|
|
19 |
|
|
This program is distributed in the hope that it will be useful,
|
20 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
21 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
22 |
|
|
GNU General Public License for more details.
|
23 |
|
|
|
24 |
|
|
You should have received a copy of the GNU General Public License
|
25 |
|
|
along with this program; if not, write to the Free Software
|
26 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
27 |
|
|
MA 02110-1301, USA. */
|
28 |
|
|
|
29 |
|
|
|
30 |
|
|
/* This file handles functionality common to the different MIPS ABI's. */
|
31 |
|
|
|
32 |
|
|
#include "sysdep.h"
|
33 |
|
|
#include "bfd.h"
|
34 |
|
|
#include "libbfd.h"
|
35 |
|
|
#include "libiberty.h"
|
36 |
|
|
#include "elf-bfd.h"
|
37 |
|
|
#include "elfxx-mips.h"
|
38 |
|
|
#include "elf/mips.h"
|
39 |
|
|
#include "elf-vxworks.h"
|
40 |
|
|
|
41 |
|
|
/* Get the ECOFF swapping routines. */
|
42 |
|
|
#include "coff/sym.h"
|
43 |
|
|
#include "coff/symconst.h"
|
44 |
|
|
#include "coff/ecoff.h"
|
45 |
|
|
#include "coff/mips.h"
|
46 |
|
|
|
47 |
|
|
#include "hashtab.h"
|
48 |
|
|
|
49 |
|
|
/* This structure is used to hold information about one GOT entry.
|
50 |
|
|
There are three types of entry:
|
51 |
|
|
|
52 |
|
|
(1) absolute addresses
|
53 |
|
|
(abfd == NULL)
|
54 |
|
|
(2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
|
55 |
|
|
(abfd != NULL, symndx >= 0)
|
56 |
|
|
(3) global and forced-local symbols
|
57 |
|
|
(abfd != NULL, symndx == -1)
|
58 |
|
|
|
59 |
|
|
Type (3) entries are treated differently for different types of GOT.
|
60 |
|
|
In the "master" GOT -- i.e. the one that describes every GOT
|
61 |
|
|
reference needed in the link -- the mips_got_entry is keyed on both
|
62 |
|
|
the symbol and the input bfd that references it. If it turns out
|
63 |
|
|
that we need multiple GOTs, we can then use this information to
|
64 |
|
|
create separate GOTs for each input bfd.
|
65 |
|
|
|
66 |
|
|
However, we want each of these separate GOTs to have at most one
|
67 |
|
|
entry for a given symbol, so their type (3) entries are keyed only
|
68 |
|
|
on the symbol. The input bfd given by the "abfd" field is somewhat
|
69 |
|
|
arbitrary in this case.
|
70 |
|
|
|
71 |
|
|
This means that when there are multiple GOTs, each GOT has a unique
|
72 |
|
|
mips_got_entry for every symbol within it. We can therefore use the
|
73 |
|
|
mips_got_entry fields (tls_type and gotidx) to track the symbol's
|
74 |
|
|
GOT index.
|
75 |
|
|
|
76 |
|
|
However, if it turns out that we need only a single GOT, we continue
|
77 |
|
|
to use the master GOT to describe it. There may therefore be several
|
78 |
|
|
mips_got_entries for the same symbol, each with a different input bfd.
|
79 |
|
|
We want to make sure that each symbol gets a unique GOT entry, so when
|
80 |
|
|
there's a single GOT, we use the symbol's hash entry, not the
|
81 |
|
|
mips_got_entry fields, to track a symbol's GOT index. */
|
82 |
|
|
struct mips_got_entry
|
83 |
|
|
{
|
84 |
|
|
/* The input bfd in which the symbol is defined. */
|
85 |
|
|
bfd *abfd;
|
86 |
|
|
/* The index of the symbol, as stored in the relocation r_info, if
|
87 |
|
|
we have a local symbol; -1 otherwise. */
|
88 |
|
|
long symndx;
|
89 |
|
|
union
|
90 |
|
|
{
|
91 |
|
|
/* If abfd == NULL, an address that must be stored in the got. */
|
92 |
|
|
bfd_vma address;
|
93 |
|
|
/* If abfd != NULL && symndx != -1, the addend of the relocation
|
94 |
|
|
that should be added to the symbol value. */
|
95 |
|
|
bfd_vma addend;
|
96 |
|
|
/* If abfd != NULL && symndx == -1, the hash table entry
|
97 |
|
|
corresponding to a global symbol in the got (or, local, if
|
98 |
|
|
h->forced_local). */
|
99 |
|
|
struct mips_elf_link_hash_entry *h;
|
100 |
|
|
} d;
|
101 |
|
|
|
102 |
|
|
/* The TLS types included in this GOT entry (specifically, GD and
|
103 |
|
|
IE). The GD and IE flags can be added as we encounter new
|
104 |
|
|
relocations. LDM can also be set; it will always be alone, not
|
105 |
|
|
combined with any GD or IE flags. An LDM GOT entry will be
|
106 |
|
|
a local symbol entry with r_symndx == 0. */
|
107 |
|
|
unsigned char tls_type;
|
108 |
|
|
|
109 |
|
|
/* The offset from the beginning of the .got section to the entry
|
110 |
|
|
corresponding to this symbol+addend. If it's a global symbol
|
111 |
|
|
whose offset is yet to be decided, it's going to be -1. */
|
112 |
|
|
long gotidx;
|
113 |
|
|
};
|
114 |
|
|
|
115 |
|
|
/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
|
116 |
|
|
The structures form a non-overlapping list that is sorted by increasing
|
117 |
|
|
MIN_ADDEND. */
|
118 |
|
|
struct mips_got_page_range
|
119 |
|
|
{
|
120 |
|
|
struct mips_got_page_range *next;
|
121 |
|
|
bfd_signed_vma min_addend;
|
122 |
|
|
bfd_signed_vma max_addend;
|
123 |
|
|
};
|
124 |
|
|
|
125 |
|
|
/* This structure describes the range of addends that are applied to page
|
126 |
|
|
relocations against a given symbol. */
|
127 |
|
|
struct mips_got_page_entry
|
128 |
|
|
{
|
129 |
|
|
/* The input bfd in which the symbol is defined. */
|
130 |
|
|
bfd *abfd;
|
131 |
|
|
/* The index of the symbol, as stored in the relocation r_info. */
|
132 |
|
|
long symndx;
|
133 |
|
|
/* The ranges for this page entry. */
|
134 |
|
|
struct mips_got_page_range *ranges;
|
135 |
|
|
/* The maximum number of page entries needed for RANGES. */
|
136 |
|
|
bfd_vma num_pages;
|
137 |
|
|
};
|
138 |
|
|
|
139 |
|
|
/* This structure is used to hold .got information when linking. */
|
140 |
|
|
|
141 |
|
|
struct mips_got_info
|
142 |
|
|
{
|
143 |
|
|
/* The global symbol in the GOT with the lowest index in the dynamic
|
144 |
|
|
symbol table. */
|
145 |
|
|
struct elf_link_hash_entry *global_gotsym;
|
146 |
|
|
/* The number of global .got entries. */
|
147 |
|
|
unsigned int global_gotno;
|
148 |
|
|
/* The number of .got slots used for TLS. */
|
149 |
|
|
unsigned int tls_gotno;
|
150 |
|
|
/* The first unused TLS .got entry. Used only during
|
151 |
|
|
mips_elf_initialize_tls_index. */
|
152 |
|
|
unsigned int tls_assigned_gotno;
|
153 |
|
|
/* The number of local .got entries, eventually including page entries. */
|
154 |
|
|
unsigned int local_gotno;
|
155 |
|
|
/* The maximum number of page entries needed. */
|
156 |
|
|
unsigned int page_gotno;
|
157 |
|
|
/* The number of local .got entries we have used. */
|
158 |
|
|
unsigned int assigned_gotno;
|
159 |
|
|
/* A hash table holding members of the got. */
|
160 |
|
|
struct htab *got_entries;
|
161 |
|
|
/* A hash table of mips_got_page_entry structures. */
|
162 |
|
|
struct htab *got_page_entries;
|
163 |
|
|
/* A hash table mapping input bfds to other mips_got_info. NULL
|
164 |
|
|
unless multi-got was necessary. */
|
165 |
|
|
struct htab *bfd2got;
|
166 |
|
|
/* In multi-got links, a pointer to the next got (err, rather, most
|
167 |
|
|
of the time, it points to the previous got). */
|
168 |
|
|
struct mips_got_info *next;
|
169 |
|
|
/* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
|
170 |
|
|
for none, or MINUS_TWO for not yet assigned. This is needed
|
171 |
|
|
because a single-GOT link may have multiple hash table entries
|
172 |
|
|
for the LDM. It does not get initialized in multi-GOT mode. */
|
173 |
|
|
bfd_vma tls_ldm_offset;
|
174 |
|
|
};
|
175 |
|
|
|
176 |
|
|
/* Map an input bfd to a got in a multi-got link. */
|
177 |
|
|
|
178 |
|
|
struct mips_elf_bfd2got_hash {
|
179 |
|
|
bfd *bfd;
|
180 |
|
|
struct mips_got_info *g;
|
181 |
|
|
};
|
182 |
|
|
|
183 |
|
|
/* Structure passed when traversing the bfd2got hash table, used to
|
184 |
|
|
create and merge bfd's gots. */
|
185 |
|
|
|
186 |
|
|
struct mips_elf_got_per_bfd_arg
|
187 |
|
|
{
|
188 |
|
|
/* A hashtable that maps bfds to gots. */
|
189 |
|
|
htab_t bfd2got;
|
190 |
|
|
/* The output bfd. */
|
191 |
|
|
bfd *obfd;
|
192 |
|
|
/* The link information. */
|
193 |
|
|
struct bfd_link_info *info;
|
194 |
|
|
/* A pointer to the primary got, i.e., the one that's going to get
|
195 |
|
|
the implicit relocations from DT_MIPS_LOCAL_GOTNO and
|
196 |
|
|
DT_MIPS_GOTSYM. */
|
197 |
|
|
struct mips_got_info *primary;
|
198 |
|
|
/* A non-primary got we're trying to merge with other input bfd's
|
199 |
|
|
gots. */
|
200 |
|
|
struct mips_got_info *current;
|
201 |
|
|
/* The maximum number of got entries that can be addressed with a
|
202 |
|
|
16-bit offset. */
|
203 |
|
|
unsigned int max_count;
|
204 |
|
|
/* The maximum number of page entries needed by each got. */
|
205 |
|
|
unsigned int max_pages;
|
206 |
|
|
/* The total number of global entries which will live in the
|
207 |
|
|
primary got and be automatically relocated. This includes
|
208 |
|
|
those not referenced by the primary GOT but included in
|
209 |
|
|
the "master" GOT. */
|
210 |
|
|
unsigned int global_count;
|
211 |
|
|
};
|
212 |
|
|
|
213 |
|
|
/* Another structure used to pass arguments for got entries traversal. */
|
214 |
|
|
|
215 |
|
|
struct mips_elf_set_global_got_offset_arg
|
216 |
|
|
{
|
217 |
|
|
struct mips_got_info *g;
|
218 |
|
|
int value;
|
219 |
|
|
unsigned int needed_relocs;
|
220 |
|
|
struct bfd_link_info *info;
|
221 |
|
|
};
|
222 |
|
|
|
223 |
|
|
/* A structure used to count TLS relocations or GOT entries, for GOT
|
224 |
|
|
entry or ELF symbol table traversal. */
|
225 |
|
|
|
226 |
|
|
struct mips_elf_count_tls_arg
|
227 |
|
|
{
|
228 |
|
|
struct bfd_link_info *info;
|
229 |
|
|
unsigned int needed;
|
230 |
|
|
};
|
231 |
|
|
|
232 |
|
|
struct _mips_elf_section_data
|
233 |
|
|
{
|
234 |
|
|
struct bfd_elf_section_data elf;
|
235 |
|
|
union
|
236 |
|
|
{
|
237 |
|
|
struct mips_got_info *got_info;
|
238 |
|
|
bfd_byte *tdata;
|
239 |
|
|
} u;
|
240 |
|
|
};
|
241 |
|
|
|
242 |
|
|
#define mips_elf_section_data(sec) \
|
243 |
|
|
((struct _mips_elf_section_data *) elf_section_data (sec))
|
244 |
|
|
|
245 |
|
|
/* This structure is passed to mips_elf_sort_hash_table_f when sorting
|
246 |
|
|
the dynamic symbols. */
|
247 |
|
|
|
248 |
|
|
struct mips_elf_hash_sort_data
|
249 |
|
|
{
|
250 |
|
|
/* The symbol in the global GOT with the lowest dynamic symbol table
|
251 |
|
|
index. */
|
252 |
|
|
struct elf_link_hash_entry *low;
|
253 |
|
|
/* The least dynamic symbol table index corresponding to a non-TLS
|
254 |
|
|
symbol with a GOT entry. */
|
255 |
|
|
long min_got_dynindx;
|
256 |
|
|
/* The greatest dynamic symbol table index corresponding to a symbol
|
257 |
|
|
with a GOT entry that is not referenced (e.g., a dynamic symbol
|
258 |
|
|
with dynamic relocations pointing to it from non-primary GOTs). */
|
259 |
|
|
long max_unref_got_dynindx;
|
260 |
|
|
/* The greatest dynamic symbol table index not corresponding to a
|
261 |
|
|
symbol without a GOT entry. */
|
262 |
|
|
long max_non_got_dynindx;
|
263 |
|
|
};
|
264 |
|
|
|
265 |
|
|
/* The MIPS ELF linker needs additional information for each symbol in
|
266 |
|
|
the global hash table. */
|
267 |
|
|
|
268 |
|
|
struct mips_elf_link_hash_entry
|
269 |
|
|
{
|
270 |
|
|
struct elf_link_hash_entry root;
|
271 |
|
|
|
272 |
|
|
/* External symbol information. */
|
273 |
|
|
EXTR esym;
|
274 |
|
|
|
275 |
|
|
/* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
|
276 |
|
|
this symbol. */
|
277 |
|
|
unsigned int possibly_dynamic_relocs;
|
278 |
|
|
|
279 |
|
|
/* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
|
280 |
|
|
a readonly section. */
|
281 |
|
|
bfd_boolean readonly_reloc;
|
282 |
|
|
|
283 |
|
|
/* We must not create a stub for a symbol that has relocations
|
284 |
|
|
related to taking the function's address, i.e. any but
|
285 |
|
|
R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
|
286 |
|
|
p. 4-20. */
|
287 |
|
|
bfd_boolean no_fn_stub;
|
288 |
|
|
|
289 |
|
|
/* If there is a stub that 32 bit functions should use to call this
|
290 |
|
|
16 bit function, this points to the section containing the stub. */
|
291 |
|
|
asection *fn_stub;
|
292 |
|
|
|
293 |
|
|
/* Whether we need the fn_stub; this is set if this symbol appears
|
294 |
|
|
in any relocs other than a 16 bit call. */
|
295 |
|
|
bfd_boolean need_fn_stub;
|
296 |
|
|
|
297 |
|
|
/* If there is a stub that 16 bit functions should use to call this
|
298 |
|
|
32 bit function, this points to the section containing the stub. */
|
299 |
|
|
asection *call_stub;
|
300 |
|
|
|
301 |
|
|
/* This is like the call_stub field, but it is used if the function
|
302 |
|
|
being called returns a floating point value. */
|
303 |
|
|
asection *call_fp_stub;
|
304 |
|
|
|
305 |
|
|
/* Are we forced local? This will only be set if we have converted
|
306 |
|
|
the initial global GOT entry to a local GOT entry. */
|
307 |
|
|
bfd_boolean forced_local;
|
308 |
|
|
|
309 |
|
|
/* Are we referenced by some kind of relocation? */
|
310 |
|
|
bfd_boolean is_relocation_target;
|
311 |
|
|
|
312 |
|
|
/* Are we referenced by branch relocations? */
|
313 |
|
|
bfd_boolean is_branch_target;
|
314 |
|
|
|
315 |
|
|
#define GOT_NORMAL 0
|
316 |
|
|
#define GOT_TLS_GD 1
|
317 |
|
|
#define GOT_TLS_LDM 2
|
318 |
|
|
#define GOT_TLS_IE 4
|
319 |
|
|
#define GOT_TLS_OFFSET_DONE 0x40
|
320 |
|
|
#define GOT_TLS_DONE 0x80
|
321 |
|
|
unsigned char tls_type;
|
322 |
|
|
/* This is only used in single-GOT mode; in multi-GOT mode there
|
323 |
|
|
is one mips_got_entry per GOT entry, so the offset is stored
|
324 |
|
|
there. In single-GOT mode there may be many mips_got_entry
|
325 |
|
|
structures all referring to the same GOT slot. It might be
|
326 |
|
|
possible to use root.got.offset instead, but that field is
|
327 |
|
|
overloaded already. */
|
328 |
|
|
bfd_vma tls_got_offset;
|
329 |
|
|
};
|
330 |
|
|
|
331 |
|
|
/* MIPS ELF linker hash table. */
|
332 |
|
|
|
333 |
|
|
struct mips_elf_link_hash_table
|
334 |
|
|
{
|
335 |
|
|
struct elf_link_hash_table root;
|
336 |
|
|
#if 0
|
337 |
|
|
/* We no longer use this. */
|
338 |
|
|
/* String section indices for the dynamic section symbols. */
|
339 |
|
|
bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
|
340 |
|
|
#endif
|
341 |
|
|
/* The number of .rtproc entries. */
|
342 |
|
|
bfd_size_type procedure_count;
|
343 |
|
|
/* The size of the .compact_rel section (if SGI_COMPAT). */
|
344 |
|
|
bfd_size_type compact_rel_size;
|
345 |
|
|
/* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
|
346 |
|
|
entry is set to the address of __rld_obj_head as in IRIX5. */
|
347 |
|
|
bfd_boolean use_rld_obj_head;
|
348 |
|
|
/* This is the value of the __rld_map or __rld_obj_head symbol. */
|
349 |
|
|
bfd_vma rld_value;
|
350 |
|
|
/* This is set if we see any mips16 stub sections. */
|
351 |
|
|
bfd_boolean mips16_stubs_seen;
|
352 |
|
|
/* True if we've computed the size of the GOT. */
|
353 |
|
|
bfd_boolean computed_got_sizes;
|
354 |
|
|
/* True if we're generating code for VxWorks. */
|
355 |
|
|
bfd_boolean is_vxworks;
|
356 |
|
|
/* True if we already reported the small-data section overflow. */
|
357 |
|
|
bfd_boolean small_data_overflow_reported;
|
358 |
|
|
/* Shortcuts to some dynamic sections, or NULL if they are not
|
359 |
|
|
being used. */
|
360 |
|
|
asection *srelbss;
|
361 |
|
|
asection *sdynbss;
|
362 |
|
|
asection *srelplt;
|
363 |
|
|
asection *srelplt2;
|
364 |
|
|
asection *sgotplt;
|
365 |
|
|
asection *splt;
|
366 |
|
|
/* The size of the PLT header in bytes (VxWorks only). */
|
367 |
|
|
bfd_vma plt_header_size;
|
368 |
|
|
/* The size of a PLT entry in bytes (VxWorks only). */
|
369 |
|
|
bfd_vma plt_entry_size;
|
370 |
|
|
/* The size of a function stub entry in bytes. */
|
371 |
|
|
bfd_vma function_stub_size;
|
372 |
|
|
};
|
373 |
|
|
|
374 |
|
|
#define TLS_RELOC_P(r_type) \
|
375 |
|
|
(r_type == R_MIPS_TLS_DTPMOD32 \
|
376 |
|
|
|| r_type == R_MIPS_TLS_DTPMOD64 \
|
377 |
|
|
|| r_type == R_MIPS_TLS_DTPREL32 \
|
378 |
|
|
|| r_type == R_MIPS_TLS_DTPREL64 \
|
379 |
|
|
|| r_type == R_MIPS_TLS_GD \
|
380 |
|
|
|| r_type == R_MIPS_TLS_LDM \
|
381 |
|
|
|| r_type == R_MIPS_TLS_DTPREL_HI16 \
|
382 |
|
|
|| r_type == R_MIPS_TLS_DTPREL_LO16 \
|
383 |
|
|
|| r_type == R_MIPS_TLS_GOTTPREL \
|
384 |
|
|
|| r_type == R_MIPS_TLS_TPREL32 \
|
385 |
|
|
|| r_type == R_MIPS_TLS_TPREL64 \
|
386 |
|
|
|| r_type == R_MIPS_TLS_TPREL_HI16 \
|
387 |
|
|
|| r_type == R_MIPS_TLS_TPREL_LO16)
|
388 |
|
|
|
389 |
|
|
/* Structure used to pass information to mips_elf_output_extsym. */
|
390 |
|
|
|
391 |
|
|
struct extsym_info
|
392 |
|
|
{
|
393 |
|
|
bfd *abfd;
|
394 |
|
|
struct bfd_link_info *info;
|
395 |
|
|
struct ecoff_debug_info *debug;
|
396 |
|
|
const struct ecoff_debug_swap *swap;
|
397 |
|
|
bfd_boolean failed;
|
398 |
|
|
};
|
399 |
|
|
|
400 |
|
|
/* The names of the runtime procedure table symbols used on IRIX5. */
|
401 |
|
|
|
402 |
|
|
static const char * const mips_elf_dynsym_rtproc_names[] =
|
403 |
|
|
{
|
404 |
|
|
"_procedure_table",
|
405 |
|
|
"_procedure_string_table",
|
406 |
|
|
"_procedure_table_size",
|
407 |
|
|
NULL
|
408 |
|
|
};
|
409 |
|
|
|
410 |
|
|
/* These structures are used to generate the .compact_rel section on
|
411 |
|
|
IRIX5. */
|
412 |
|
|
|
413 |
|
|
typedef struct
|
414 |
|
|
{
|
415 |
|
|
unsigned long id1; /* Always one? */
|
416 |
|
|
unsigned long num; /* Number of compact relocation entries. */
|
417 |
|
|
unsigned long id2; /* Always two? */
|
418 |
|
|
unsigned long offset; /* The file offset of the first relocation. */
|
419 |
|
|
unsigned long reserved0; /* Zero? */
|
420 |
|
|
unsigned long reserved1; /* Zero? */
|
421 |
|
|
} Elf32_compact_rel;
|
422 |
|
|
|
423 |
|
|
typedef struct
|
424 |
|
|
{
|
425 |
|
|
bfd_byte id1[4];
|
426 |
|
|
bfd_byte num[4];
|
427 |
|
|
bfd_byte id2[4];
|
428 |
|
|
bfd_byte offset[4];
|
429 |
|
|
bfd_byte reserved0[4];
|
430 |
|
|
bfd_byte reserved1[4];
|
431 |
|
|
} Elf32_External_compact_rel;
|
432 |
|
|
|
433 |
|
|
typedef struct
|
434 |
|
|
{
|
435 |
|
|
unsigned int ctype : 1; /* 1: long 0: short format. See below. */
|
436 |
|
|
unsigned int rtype : 4; /* Relocation types. See below. */
|
437 |
|
|
unsigned int dist2to : 8;
|
438 |
|
|
unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
|
439 |
|
|
unsigned long konst; /* KONST field. See below. */
|
440 |
|
|
unsigned long vaddr; /* VADDR to be relocated. */
|
441 |
|
|
} Elf32_crinfo;
|
442 |
|
|
|
443 |
|
|
typedef struct
|
444 |
|
|
{
|
445 |
|
|
unsigned int ctype : 1; /* 1: long 0: short format. See below. */
|
446 |
|
|
unsigned int rtype : 4; /* Relocation types. See below. */
|
447 |
|
|
unsigned int dist2to : 8;
|
448 |
|
|
unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
|
449 |
|
|
unsigned long konst; /* KONST field. See below. */
|
450 |
|
|
} Elf32_crinfo2;
|
451 |
|
|
|
452 |
|
|
typedef struct
|
453 |
|
|
{
|
454 |
|
|
bfd_byte info[4];
|
455 |
|
|
bfd_byte konst[4];
|
456 |
|
|
bfd_byte vaddr[4];
|
457 |
|
|
} Elf32_External_crinfo;
|
458 |
|
|
|
459 |
|
|
typedef struct
|
460 |
|
|
{
|
461 |
|
|
bfd_byte info[4];
|
462 |
|
|
bfd_byte konst[4];
|
463 |
|
|
} Elf32_External_crinfo2;
|
464 |
|
|
|
465 |
|
|
/* These are the constants used to swap the bitfields in a crinfo. */
|
466 |
|
|
|
467 |
|
|
#define CRINFO_CTYPE (0x1)
|
468 |
|
|
#define CRINFO_CTYPE_SH (31)
|
469 |
|
|
#define CRINFO_RTYPE (0xf)
|
470 |
|
|
#define CRINFO_RTYPE_SH (27)
|
471 |
|
|
#define CRINFO_DIST2TO (0xff)
|
472 |
|
|
#define CRINFO_DIST2TO_SH (19)
|
473 |
|
|
#define CRINFO_RELVADDR (0x7ffff)
|
474 |
|
|
#define CRINFO_RELVADDR_SH (0)
|
475 |
|
|
|
476 |
|
|
/* A compact relocation info has long (3 words) or short (2 words)
|
477 |
|
|
formats. A short format doesn't have VADDR field and relvaddr
|
478 |
|
|
fields contains ((VADDR - vaddr of the previous entry) >> 2). */
|
479 |
|
|
#define CRF_MIPS_LONG 1
|
480 |
|
|
#define CRF_MIPS_SHORT 0
|
481 |
|
|
|
482 |
|
|
/* There are 4 types of compact relocation at least. The value KONST
|
483 |
|
|
has different meaning for each type:
|
484 |
|
|
|
485 |
|
|
(type) (konst)
|
486 |
|
|
CT_MIPS_REL32 Address in data
|
487 |
|
|
CT_MIPS_WORD Address in word (XXX)
|
488 |
|
|
CT_MIPS_GPHI_LO GP - vaddr
|
489 |
|
|
CT_MIPS_JMPAD Address to jump
|
490 |
|
|
*/
|
491 |
|
|
|
492 |
|
|
#define CRT_MIPS_REL32 0xa
|
493 |
|
|
#define CRT_MIPS_WORD 0xb
|
494 |
|
|
#define CRT_MIPS_GPHI_LO 0xc
|
495 |
|
|
#define CRT_MIPS_JMPAD 0xd
|
496 |
|
|
|
497 |
|
|
#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
|
498 |
|
|
#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
|
499 |
|
|
#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
|
500 |
|
|
#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
|
501 |
|
|
|
502 |
|
|
/* The structure of the runtime procedure descriptor created by the
|
503 |
|
|
loader for use by the static exception system. */
|
504 |
|
|
|
505 |
|
|
typedef struct runtime_pdr {
|
506 |
|
|
bfd_vma adr; /* Memory address of start of procedure. */
|
507 |
|
|
long regmask; /* Save register mask. */
|
508 |
|
|
long regoffset; /* Save register offset. */
|
509 |
|
|
long fregmask; /* Save floating point register mask. */
|
510 |
|
|
long fregoffset; /* Save floating point register offset. */
|
511 |
|
|
long frameoffset; /* Frame size. */
|
512 |
|
|
short framereg; /* Frame pointer register. */
|
513 |
|
|
short pcreg; /* Offset or reg of return pc. */
|
514 |
|
|
long irpss; /* Index into the runtime string table. */
|
515 |
|
|
long reserved;
|
516 |
|
|
struct exception_info *exception_info;/* Pointer to exception array. */
|
517 |
|
|
} RPDR, *pRPDR;
|
518 |
|
|
#define cbRPDR sizeof (RPDR)
|
519 |
|
|
#define rpdNil ((pRPDR) 0)
|
520 |
|
|
|
521 |
|
|
static struct mips_got_entry *mips_elf_create_local_got_entry
|
522 |
|
|
(bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
|
523 |
|
|
bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
|
524 |
|
|
static bfd_boolean mips_elf_sort_hash_table_f
|
525 |
|
|
(struct mips_elf_link_hash_entry *, void *);
|
526 |
|
|
static bfd_vma mips_elf_high
|
527 |
|
|
(bfd_vma);
|
528 |
|
|
static bfd_boolean mips16_stub_section_p
|
529 |
|
|
(bfd *, asection *);
|
530 |
|
|
static bfd_boolean mips_elf_create_dynamic_relocation
|
531 |
|
|
(bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
|
532 |
|
|
struct mips_elf_link_hash_entry *, asection *, bfd_vma,
|
533 |
|
|
bfd_vma *, asection *);
|
534 |
|
|
static hashval_t mips_elf_got_entry_hash
|
535 |
|
|
(const void *);
|
536 |
|
|
static bfd_vma mips_elf_adjust_gp
|
537 |
|
|
(bfd *, struct mips_got_info *, bfd *);
|
538 |
|
|
static struct mips_got_info *mips_elf_got_for_ibfd
|
539 |
|
|
(struct mips_got_info *, bfd *);
|
540 |
|
|
|
541 |
|
|
/* This will be used when we sort the dynamic relocation records. */
|
542 |
|
|
static bfd *reldyn_sorting_bfd;
|
543 |
|
|
|
544 |
|
|
/* Nonzero if ABFD is using the N32 ABI. */
|
545 |
|
|
#define ABI_N32_P(abfd) \
|
546 |
|
|
((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
|
547 |
|
|
|
548 |
|
|
/* Nonzero if ABFD is using the N64 ABI. */
|
549 |
|
|
#define ABI_64_P(abfd) \
|
550 |
|
|
(get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
|
551 |
|
|
|
552 |
|
|
/* Nonzero if ABFD is using NewABI conventions. */
|
553 |
|
|
#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
|
554 |
|
|
|
555 |
|
|
/* The IRIX compatibility level we are striving for. */
|
556 |
|
|
#define IRIX_COMPAT(abfd) \
|
557 |
|
|
(get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
|
558 |
|
|
|
559 |
|
|
/* Whether we are trying to be compatible with IRIX at all. */
|
560 |
|
|
#define SGI_COMPAT(abfd) \
|
561 |
|
|
(IRIX_COMPAT (abfd) != ict_none)
|
562 |
|
|
|
563 |
|
|
/* The name of the options section. */
|
564 |
|
|
#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
|
565 |
|
|
(NEWABI_P (abfd) ? ".MIPS.options" : ".options")
|
566 |
|
|
|
567 |
|
|
/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
|
568 |
|
|
Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
|
569 |
|
|
#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
|
570 |
|
|
(strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
|
571 |
|
|
|
572 |
|
|
/* Whether the section is readonly. */
|
573 |
|
|
#define MIPS_ELF_READONLY_SECTION(sec) \
|
574 |
|
|
((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
|
575 |
|
|
== (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
576 |
|
|
|
577 |
|
|
/* The name of the stub section. */
|
578 |
|
|
#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
|
579 |
|
|
|
580 |
|
|
/* The size of an external REL relocation. */
|
581 |
|
|
#define MIPS_ELF_REL_SIZE(abfd) \
|
582 |
|
|
(get_elf_backend_data (abfd)->s->sizeof_rel)
|
583 |
|
|
|
584 |
|
|
/* The size of an external RELA relocation. */
|
585 |
|
|
#define MIPS_ELF_RELA_SIZE(abfd) \
|
586 |
|
|
(get_elf_backend_data (abfd)->s->sizeof_rela)
|
587 |
|
|
|
588 |
|
|
/* The size of an external dynamic table entry. */
|
589 |
|
|
#define MIPS_ELF_DYN_SIZE(abfd) \
|
590 |
|
|
(get_elf_backend_data (abfd)->s->sizeof_dyn)
|
591 |
|
|
|
592 |
|
|
/* The size of a GOT entry. */
|
593 |
|
|
#define MIPS_ELF_GOT_SIZE(abfd) \
|
594 |
|
|
(get_elf_backend_data (abfd)->s->arch_size / 8)
|
595 |
|
|
|
596 |
|
|
/* The size of a symbol-table entry. */
|
597 |
|
|
#define MIPS_ELF_SYM_SIZE(abfd) \
|
598 |
|
|
(get_elf_backend_data (abfd)->s->sizeof_sym)
|
599 |
|
|
|
600 |
|
|
/* The default alignment for sections, as a power of two. */
|
601 |
|
|
#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
|
602 |
|
|
(get_elf_backend_data (abfd)->s->log_file_align)
|
603 |
|
|
|
604 |
|
|
/* Get word-sized data. */
|
605 |
|
|
#define MIPS_ELF_GET_WORD(abfd, ptr) \
|
606 |
|
|
(ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
|
607 |
|
|
|
608 |
|
|
/* Put out word-sized data. */
|
609 |
|
|
#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
|
610 |
|
|
(ABI_64_P (abfd) \
|
611 |
|
|
? bfd_put_64 (abfd, val, ptr) \
|
612 |
|
|
: bfd_put_32 (abfd, val, ptr))
|
613 |
|
|
|
614 |
|
|
/* Add a dynamic symbol table-entry. */
|
615 |
|
|
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
|
616 |
|
|
_bfd_elf_add_dynamic_entry (info, tag, val)
|
617 |
|
|
|
618 |
|
|
#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
|
619 |
|
|
(get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
|
620 |
|
|
|
621 |
|
|
/* Determine whether the internal relocation of index REL_IDX is REL
|
622 |
|
|
(zero) or RELA (non-zero). The assumption is that, if there are
|
623 |
|
|
two relocation sections for this section, one of them is REL and
|
624 |
|
|
the other is RELA. If the index of the relocation we're testing is
|
625 |
|
|
in range for the first relocation section, check that the external
|
626 |
|
|
relocation size is that for RELA. It is also assumed that, if
|
627 |
|
|
rel_idx is not in range for the first section, and this first
|
628 |
|
|
section contains REL relocs, then the relocation is in the second
|
629 |
|
|
section, that is RELA. */
|
630 |
|
|
#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
|
631 |
|
|
((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
|
632 |
|
|
* get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
|
633 |
|
|
> (bfd_vma)(rel_idx)) \
|
634 |
|
|
== (elf_section_data (sec)->rel_hdr.sh_entsize \
|
635 |
|
|
== (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
|
636 |
|
|
: sizeof (Elf32_External_Rela))))
|
637 |
|
|
|
638 |
|
|
/* The name of the dynamic relocation section. */
|
639 |
|
|
#define MIPS_ELF_REL_DYN_NAME(INFO) \
|
640 |
|
|
(mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
|
641 |
|
|
|
642 |
|
|
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
|
643 |
|
|
from smaller values. Start with zero, widen, *then* decrement. */
|
644 |
|
|
#define MINUS_ONE (((bfd_vma)0) - 1)
|
645 |
|
|
#define MINUS_TWO (((bfd_vma)0) - 2)
|
646 |
|
|
|
647 |
|
|
/* The number of local .got entries we reserve. */
|
648 |
|
|
#define MIPS_RESERVED_GOTNO(INFO) \
|
649 |
|
|
(mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
|
650 |
|
|
|
651 |
|
|
/* The value to write into got[1] for SVR4 targets, to identify it is
|
652 |
|
|
a GNU object. The dynamic linker can then use got[1] to store the
|
653 |
|
|
module pointer. */
|
654 |
|
|
#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
|
655 |
|
|
((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
|
656 |
|
|
|
657 |
|
|
/* The offset of $gp from the beginning of the .got section. */
|
658 |
|
|
#define ELF_MIPS_GP_OFFSET(INFO) \
|
659 |
|
|
(mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
|
660 |
|
|
|
661 |
|
|
/* The maximum size of the GOT for it to be addressable using 16-bit
|
662 |
|
|
offsets from $gp. */
|
663 |
|
|
#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
|
664 |
|
|
|
665 |
|
|
/* Instructions which appear in a stub. */
|
666 |
|
|
#define STUB_LW(abfd) \
|
667 |
|
|
((ABI_64_P (abfd) \
|
668 |
|
|
? 0xdf998010 /* ld t9,0x8010(gp) */ \
|
669 |
|
|
: 0x8f998010)) /* lw t9,0x8010(gp) */
|
670 |
|
|
#define STUB_MOVE(abfd) \
|
671 |
|
|
((ABI_64_P (abfd) \
|
672 |
|
|
? 0x03e0782d /* daddu t7,ra */ \
|
673 |
|
|
: 0x03e07821)) /* addu t7,ra */
|
674 |
|
|
#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
|
675 |
|
|
#define STUB_JALR 0x0320f809 /* jalr t9,ra */
|
676 |
|
|
#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
|
677 |
|
|
#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
|
678 |
|
|
#define STUB_LI16S(abfd, VAL) \
|
679 |
|
|
((ABI_64_P (abfd) \
|
680 |
|
|
? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
|
681 |
|
|
: (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
|
682 |
|
|
|
683 |
|
|
#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
|
684 |
|
|
#define MIPS_FUNCTION_STUB_BIG_SIZE 20
|
685 |
|
|
|
686 |
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
687 |
|
|
section. */
|
688 |
|
|
|
689 |
|
|
#define ELF_DYNAMIC_INTERPRETER(abfd) \
|
690 |
|
|
(ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
|
691 |
|
|
: ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
|
692 |
|
|
: "/usr/lib/libc.so.1")
|
693 |
|
|
|
694 |
|
|
#ifdef BFD64
|
695 |
|
|
#define MNAME(bfd,pre,pos) \
|
696 |
|
|
(ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
|
697 |
|
|
#define ELF_R_SYM(bfd, i) \
|
698 |
|
|
(ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
|
699 |
|
|
#define ELF_R_TYPE(bfd, i) \
|
700 |
|
|
(ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
|
701 |
|
|
#define ELF_R_INFO(bfd, s, t) \
|
702 |
|
|
(ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
|
703 |
|
|
#else
|
704 |
|
|
#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
|
705 |
|
|
#define ELF_R_SYM(bfd, i) \
|
706 |
|
|
(ELF32_R_SYM (i))
|
707 |
|
|
#define ELF_R_TYPE(bfd, i) \
|
708 |
|
|
(ELF32_R_TYPE (i))
|
709 |
|
|
#define ELF_R_INFO(bfd, s, t) \
|
710 |
|
|
(ELF32_R_INFO (s, t))
|
711 |
|
|
#endif
|
712 |
|
|
|
713 |
|
|
/* The mips16 compiler uses a couple of special sections to handle
|
714 |
|
|
floating point arguments.
|
715 |
|
|
|
716 |
|
|
Section names that look like .mips16.fn.FNNAME contain stubs that
|
717 |
|
|
copy floating point arguments from the fp regs to the gp regs and
|
718 |
|
|
then jump to FNNAME. If any 32 bit function calls FNNAME, the
|
719 |
|
|
call should be redirected to the stub instead. If no 32 bit
|
720 |
|
|
function calls FNNAME, the stub should be discarded. We need to
|
721 |
|
|
consider any reference to the function, not just a call, because
|
722 |
|
|
if the address of the function is taken we will need the stub,
|
723 |
|
|
since the address might be passed to a 32 bit function.
|
724 |
|
|
|
725 |
|
|
Section names that look like .mips16.call.FNNAME contain stubs
|
726 |
|
|
that copy floating point arguments from the gp regs to the fp
|
727 |
|
|
regs and then jump to FNNAME. If FNNAME is a 32 bit function,
|
728 |
|
|
then any 16 bit function that calls FNNAME should be redirected
|
729 |
|
|
to the stub instead. If FNNAME is not a 32 bit function, the
|
730 |
|
|
stub should be discarded.
|
731 |
|
|
|
732 |
|
|
.mips16.call.fp.FNNAME sections are similar, but contain stubs
|
733 |
|
|
which call FNNAME and then copy the return value from the fp regs
|
734 |
|
|
to the gp regs. These stubs store the return value in $18 while
|
735 |
|
|
calling FNNAME; any function which might call one of these stubs
|
736 |
|
|
must arrange to save $18 around the call. (This case is not
|
737 |
|
|
needed for 32 bit functions that call 16 bit functions, because
|
738 |
|
|
16 bit functions always return floating point values in both
|
739 |
|
|
$f0/$f1 and $2/$3.)
|
740 |
|
|
|
741 |
|
|
Note that in all cases FNNAME might be defined statically.
|
742 |
|
|
Therefore, FNNAME is not used literally. Instead, the relocation
|
743 |
|
|
information will indicate which symbol the section is for.
|
744 |
|
|
|
745 |
|
|
We record any stubs that we find in the symbol table. */
|
746 |
|
|
|
747 |
|
|
#define FN_STUB ".mips16.fn."
|
748 |
|
|
#define CALL_STUB ".mips16.call."
|
749 |
|
|
#define CALL_FP_STUB ".mips16.call.fp."
|
750 |
|
|
|
751 |
|
|
#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
|
752 |
|
|
#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
|
753 |
|
|
#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
|
754 |
|
|
|
755 |
|
|
/* The format of the first PLT entry in a VxWorks executable. */
|
756 |
|
|
static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
|
757 |
|
|
0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
|
758 |
|
|
0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
|
759 |
|
|
0x8f390008, /* lw t9, 8(t9) */
|
760 |
|
|
0x00000000, /* nop */
|
761 |
|
|
0x03200008, /* jr t9 */
|
762 |
|
|
0x00000000 /* nop */
|
763 |
|
|
};
|
764 |
|
|
|
765 |
|
|
/* The format of subsequent PLT entries. */
|
766 |
|
|
static const bfd_vma mips_vxworks_exec_plt_entry[] = {
|
767 |
|
|
0x10000000, /* b .PLT_resolver */
|
768 |
|
|
0x24180000, /* li t8, <pltindex> */
|
769 |
|
|
0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
|
770 |
|
|
0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
|
771 |
|
|
0x8f390000, /* lw t9, 0(t9) */
|
772 |
|
|
0x00000000, /* nop */
|
773 |
|
|
0x03200008, /* jr t9 */
|
774 |
|
|
0x00000000 /* nop */
|
775 |
|
|
};
|
776 |
|
|
|
777 |
|
|
/* The format of the first PLT entry in a VxWorks shared object. */
|
778 |
|
|
static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
|
779 |
|
|
0x8f990008, /* lw t9, 8(gp) */
|
780 |
|
|
0x00000000, /* nop */
|
781 |
|
|
0x03200008, /* jr t9 */
|
782 |
|
|
0x00000000, /* nop */
|
783 |
|
|
0x00000000, /* nop */
|
784 |
|
|
0x00000000 /* nop */
|
785 |
|
|
};
|
786 |
|
|
|
787 |
|
|
/* The format of subsequent PLT entries. */
|
788 |
|
|
static const bfd_vma mips_vxworks_shared_plt_entry[] = {
|
789 |
|
|
0x10000000, /* b .PLT_resolver */
|
790 |
|
|
0x24180000 /* li t8, <pltindex> */
|
791 |
|
|
};
|
792 |
|
|
|
793 |
|
|
/* Look up an entry in a MIPS ELF linker hash table. */
|
794 |
|
|
|
795 |
|
|
#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
|
796 |
|
|
((struct mips_elf_link_hash_entry *) \
|
797 |
|
|
elf_link_hash_lookup (&(table)->root, (string), (create), \
|
798 |
|
|
(copy), (follow)))
|
799 |
|
|
|
800 |
|
|
/* Traverse a MIPS ELF linker hash table. */
|
801 |
|
|
|
802 |
|
|
#define mips_elf_link_hash_traverse(table, func, info) \
|
803 |
|
|
(elf_link_hash_traverse \
|
804 |
|
|
(&(table)->root, \
|
805 |
|
|
(bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
|
806 |
|
|
(info)))
|
807 |
|
|
|
808 |
|
|
/* Get the MIPS ELF linker hash table from a link_info structure. */
|
809 |
|
|
|
810 |
|
|
#define mips_elf_hash_table(p) \
|
811 |
|
|
((struct mips_elf_link_hash_table *) ((p)->hash))
|
812 |
|
|
|
813 |
|
|
/* Find the base offsets for thread-local storage in this object,
|
814 |
|
|
for GD/LD and IE/LE respectively. */
|
815 |
|
|
|
816 |
|
|
#define TP_OFFSET 0x7000
|
817 |
|
|
#define DTP_OFFSET 0x8000
|
818 |
|
|
|
819 |
|
|
static bfd_vma
|
820 |
|
|
dtprel_base (struct bfd_link_info *info)
|
821 |
|
|
{
|
822 |
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
823 |
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
824 |
|
|
return 0;
|
825 |
|
|
return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
static bfd_vma
|
829 |
|
|
tprel_base (struct bfd_link_info *info)
|
830 |
|
|
{
|
831 |
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
832 |
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
833 |
|
|
return 0;
|
834 |
|
|
return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Create an entry in a MIPS ELF linker hash table. */
|
838 |
|
|
|
839 |
|
|
static struct bfd_hash_entry *
|
840 |
|
|
mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
|
841 |
|
|
struct bfd_hash_table *table, const char *string)
|
842 |
|
|
{
|
843 |
|
|
struct mips_elf_link_hash_entry *ret =
|
844 |
|
|
(struct mips_elf_link_hash_entry *) entry;
|
845 |
|
|
|
846 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
847 |
|
|
subclass. */
|
848 |
|
|
if (ret == NULL)
|
849 |
|
|
ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
|
850 |
|
|
if (ret == NULL)
|
851 |
|
|
return (struct bfd_hash_entry *) ret;
|
852 |
|
|
|
853 |
|
|
/* Call the allocation method of the superclass. */
|
854 |
|
|
ret = ((struct mips_elf_link_hash_entry *)
|
855 |
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
856 |
|
|
table, string));
|
857 |
|
|
if (ret != NULL)
|
858 |
|
|
{
|
859 |
|
|
/* Set local fields. */
|
860 |
|
|
memset (&ret->esym, 0, sizeof (EXTR));
|
861 |
|
|
/* We use -2 as a marker to indicate that the information has
|
862 |
|
|
not been set. -1 means there is no associated ifd. */
|
863 |
|
|
ret->esym.ifd = -2;
|
864 |
|
|
ret->possibly_dynamic_relocs = 0;
|
865 |
|
|
ret->readonly_reloc = FALSE;
|
866 |
|
|
ret->no_fn_stub = FALSE;
|
867 |
|
|
ret->fn_stub = NULL;
|
868 |
|
|
ret->need_fn_stub = FALSE;
|
869 |
|
|
ret->call_stub = NULL;
|
870 |
|
|
ret->call_fp_stub = NULL;
|
871 |
|
|
ret->forced_local = FALSE;
|
872 |
|
|
ret->is_branch_target = FALSE;
|
873 |
|
|
ret->is_relocation_target = FALSE;
|
874 |
|
|
ret->tls_type = GOT_NORMAL;
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
return (struct bfd_hash_entry *) ret;
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
bfd_boolean
|
881 |
|
|
_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
|
882 |
|
|
{
|
883 |
|
|
if (!sec->used_by_bfd)
|
884 |
|
|
{
|
885 |
|
|
struct _mips_elf_section_data *sdata;
|
886 |
|
|
bfd_size_type amt = sizeof (*sdata);
|
887 |
|
|
|
888 |
|
|
sdata = bfd_zalloc (abfd, amt);
|
889 |
|
|
if (sdata == NULL)
|
890 |
|
|
return FALSE;
|
891 |
|
|
sec->used_by_bfd = sdata;
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
return _bfd_elf_new_section_hook (abfd, sec);
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
/* Read ECOFF debugging information from a .mdebug section into a
|
898 |
|
|
ecoff_debug_info structure. */
|
899 |
|
|
|
900 |
|
|
bfd_boolean
|
901 |
|
|
_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
|
902 |
|
|
struct ecoff_debug_info *debug)
|
903 |
|
|
{
|
904 |
|
|
HDRR *symhdr;
|
905 |
|
|
const struct ecoff_debug_swap *swap;
|
906 |
|
|
char *ext_hdr;
|
907 |
|
|
|
908 |
|
|
swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
909 |
|
|
memset (debug, 0, sizeof (*debug));
|
910 |
|
|
|
911 |
|
|
ext_hdr = bfd_malloc (swap->external_hdr_size);
|
912 |
|
|
if (ext_hdr == NULL && swap->external_hdr_size != 0)
|
913 |
|
|
goto error_return;
|
914 |
|
|
|
915 |
|
|
if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
|
916 |
|
|
swap->external_hdr_size))
|
917 |
|
|
goto error_return;
|
918 |
|
|
|
919 |
|
|
symhdr = &debug->symbolic_header;
|
920 |
|
|
(*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
|
921 |
|
|
|
922 |
|
|
/* The symbolic header contains absolute file offsets and sizes to
|
923 |
|
|
read. */
|
924 |
|
|
#define READ(ptr, offset, count, size, type) \
|
925 |
|
|
if (symhdr->count == 0) \
|
926 |
|
|
debug->ptr = NULL; \
|
927 |
|
|
else \
|
928 |
|
|
{ \
|
929 |
|
|
bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
|
930 |
|
|
debug->ptr = bfd_malloc (amt); \
|
931 |
|
|
if (debug->ptr == NULL) \
|
932 |
|
|
goto error_return; \
|
933 |
|
|
if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
|
934 |
|
|
|| bfd_bread (debug->ptr, amt, abfd) != amt) \
|
935 |
|
|
goto error_return; \
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
|
939 |
|
|
READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
|
940 |
|
|
READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
|
941 |
|
|
READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
|
942 |
|
|
READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
|
943 |
|
|
READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
|
944 |
|
|
union aux_ext *);
|
945 |
|
|
READ (ss, cbSsOffset, issMax, sizeof (char), char *);
|
946 |
|
|
READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
|
947 |
|
|
READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
|
948 |
|
|
READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
|
949 |
|
|
READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
|
950 |
|
|
#undef READ
|
951 |
|
|
|
952 |
|
|
debug->fdr = NULL;
|
953 |
|
|
|
954 |
|
|
return TRUE;
|
955 |
|
|
|
956 |
|
|
error_return:
|
957 |
|
|
if (ext_hdr != NULL)
|
958 |
|
|
free (ext_hdr);
|
959 |
|
|
if (debug->line != NULL)
|
960 |
|
|
free (debug->line);
|
961 |
|
|
if (debug->external_dnr != NULL)
|
962 |
|
|
free (debug->external_dnr);
|
963 |
|
|
if (debug->external_pdr != NULL)
|
964 |
|
|
free (debug->external_pdr);
|
965 |
|
|
if (debug->external_sym != NULL)
|
966 |
|
|
free (debug->external_sym);
|
967 |
|
|
if (debug->external_opt != NULL)
|
968 |
|
|
free (debug->external_opt);
|
969 |
|
|
if (debug->external_aux != NULL)
|
970 |
|
|
free (debug->external_aux);
|
971 |
|
|
if (debug->ss != NULL)
|
972 |
|
|
free (debug->ss);
|
973 |
|
|
if (debug->ssext != NULL)
|
974 |
|
|
free (debug->ssext);
|
975 |
|
|
if (debug->external_fdr != NULL)
|
976 |
|
|
free (debug->external_fdr);
|
977 |
|
|
if (debug->external_rfd != NULL)
|
978 |
|
|
free (debug->external_rfd);
|
979 |
|
|
if (debug->external_ext != NULL)
|
980 |
|
|
free (debug->external_ext);
|
981 |
|
|
return FALSE;
|
982 |
|
|
}
|
983 |
|
|
|
984 |
|
|
/* Swap RPDR (runtime procedure table entry) for output. */
|
985 |
|
|
|
986 |
|
|
static void
|
987 |
|
|
ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
|
988 |
|
|
{
|
989 |
|
|
H_PUT_S32 (abfd, in->adr, ex->p_adr);
|
990 |
|
|
H_PUT_32 (abfd, in->regmask, ex->p_regmask);
|
991 |
|
|
H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
|
992 |
|
|
H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
|
993 |
|
|
H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
|
994 |
|
|
H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
|
995 |
|
|
|
996 |
|
|
H_PUT_16 (abfd, in->framereg, ex->p_framereg);
|
997 |
|
|
H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
|
998 |
|
|
|
999 |
|
|
H_PUT_32 (abfd, in->irpss, ex->p_irpss);
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
/* Create a runtime procedure table from the .mdebug section. */
|
1003 |
|
|
|
1004 |
|
|
static bfd_boolean
|
1005 |
|
|
mips_elf_create_procedure_table (void *handle, bfd *abfd,
|
1006 |
|
|
struct bfd_link_info *info, asection *s,
|
1007 |
|
|
struct ecoff_debug_info *debug)
|
1008 |
|
|
{
|
1009 |
|
|
const struct ecoff_debug_swap *swap;
|
1010 |
|
|
HDRR *hdr = &debug->symbolic_header;
|
1011 |
|
|
RPDR *rpdr, *rp;
|
1012 |
|
|
struct rpdr_ext *erp;
|
1013 |
|
|
void *rtproc;
|
1014 |
|
|
struct pdr_ext *epdr;
|
1015 |
|
|
struct sym_ext *esym;
|
1016 |
|
|
char *ss, **sv;
|
1017 |
|
|
char *str;
|
1018 |
|
|
bfd_size_type size;
|
1019 |
|
|
bfd_size_type count;
|
1020 |
|
|
unsigned long sindex;
|
1021 |
|
|
unsigned long i;
|
1022 |
|
|
PDR pdr;
|
1023 |
|
|
SYMR sym;
|
1024 |
|
|
const char *no_name_func = _("static procedure (no name)");
|
1025 |
|
|
|
1026 |
|
|
epdr = NULL;
|
1027 |
|
|
rpdr = NULL;
|
1028 |
|
|
esym = NULL;
|
1029 |
|
|
ss = NULL;
|
1030 |
|
|
sv = NULL;
|
1031 |
|
|
|
1032 |
|
|
swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
1033 |
|
|
|
1034 |
|
|
sindex = strlen (no_name_func) + 1;
|
1035 |
|
|
count = hdr->ipdMax;
|
1036 |
|
|
if (count > 0)
|
1037 |
|
|
{
|
1038 |
|
|
size = swap->external_pdr_size;
|
1039 |
|
|
|
1040 |
|
|
epdr = bfd_malloc (size * count);
|
1041 |
|
|
if (epdr == NULL)
|
1042 |
|
|
goto error_return;
|
1043 |
|
|
|
1044 |
|
|
if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
|
1045 |
|
|
goto error_return;
|
1046 |
|
|
|
1047 |
|
|
size = sizeof (RPDR);
|
1048 |
|
|
rp = rpdr = bfd_malloc (size * count);
|
1049 |
|
|
if (rpdr == NULL)
|
1050 |
|
|
goto error_return;
|
1051 |
|
|
|
1052 |
|
|
size = sizeof (char *);
|
1053 |
|
|
sv = bfd_malloc (size * count);
|
1054 |
|
|
if (sv == NULL)
|
1055 |
|
|
goto error_return;
|
1056 |
|
|
|
1057 |
|
|
count = hdr->isymMax;
|
1058 |
|
|
size = swap->external_sym_size;
|
1059 |
|
|
esym = bfd_malloc (size * count);
|
1060 |
|
|
if (esym == NULL)
|
1061 |
|
|
goto error_return;
|
1062 |
|
|
|
1063 |
|
|
if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
|
1064 |
|
|
goto error_return;
|
1065 |
|
|
|
1066 |
|
|
count = hdr->issMax;
|
1067 |
|
|
ss = bfd_malloc (count);
|
1068 |
|
|
if (ss == NULL)
|
1069 |
|
|
goto error_return;
|
1070 |
|
|
if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
|
1071 |
|
|
goto error_return;
|
1072 |
|
|
|
1073 |
|
|
count = hdr->ipdMax;
|
1074 |
|
|
for (i = 0; i < (unsigned long) count; i++, rp++)
|
1075 |
|
|
{
|
1076 |
|
|
(*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
|
1077 |
|
|
(*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
|
1078 |
|
|
rp->adr = sym.value;
|
1079 |
|
|
rp->regmask = pdr.regmask;
|
1080 |
|
|
rp->regoffset = pdr.regoffset;
|
1081 |
|
|
rp->fregmask = pdr.fregmask;
|
1082 |
|
|
rp->fregoffset = pdr.fregoffset;
|
1083 |
|
|
rp->frameoffset = pdr.frameoffset;
|
1084 |
|
|
rp->framereg = pdr.framereg;
|
1085 |
|
|
rp->pcreg = pdr.pcreg;
|
1086 |
|
|
rp->irpss = sindex;
|
1087 |
|
|
sv[i] = ss + sym.iss;
|
1088 |
|
|
sindex += strlen (sv[i]) + 1;
|
1089 |
|
|
}
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
|
1093 |
|
|
size = BFD_ALIGN (size, 16);
|
1094 |
|
|
rtproc = bfd_alloc (abfd, size);
|
1095 |
|
|
if (rtproc == NULL)
|
1096 |
|
|
{
|
1097 |
|
|
mips_elf_hash_table (info)->procedure_count = 0;
|
1098 |
|
|
goto error_return;
|
1099 |
|
|
}
|
1100 |
|
|
|
1101 |
|
|
mips_elf_hash_table (info)->procedure_count = count + 2;
|
1102 |
|
|
|
1103 |
|
|
erp = rtproc;
|
1104 |
|
|
memset (erp, 0, sizeof (struct rpdr_ext));
|
1105 |
|
|
erp++;
|
1106 |
|
|
str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
|
1107 |
|
|
strcpy (str, no_name_func);
|
1108 |
|
|
str += strlen (no_name_func) + 1;
|
1109 |
|
|
for (i = 0; i < count; i++)
|
1110 |
|
|
{
|
1111 |
|
|
ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
|
1112 |
|
|
strcpy (str, sv[i]);
|
1113 |
|
|
str += strlen (sv[i]) + 1;
|
1114 |
|
|
}
|
1115 |
|
|
H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
|
1116 |
|
|
|
1117 |
|
|
/* Set the size and contents of .rtproc section. */
|
1118 |
|
|
s->size = size;
|
1119 |
|
|
s->contents = rtproc;
|
1120 |
|
|
|
1121 |
|
|
/* Skip this section later on (I don't think this currently
|
1122 |
|
|
matters, but someday it might). */
|
1123 |
|
|
s->map_head.link_order = NULL;
|
1124 |
|
|
|
1125 |
|
|
if (epdr != NULL)
|
1126 |
|
|
free (epdr);
|
1127 |
|
|
if (rpdr != NULL)
|
1128 |
|
|
free (rpdr);
|
1129 |
|
|
if (esym != NULL)
|
1130 |
|
|
free (esym);
|
1131 |
|
|
if (ss != NULL)
|
1132 |
|
|
free (ss);
|
1133 |
|
|
if (sv != NULL)
|
1134 |
|
|
free (sv);
|
1135 |
|
|
|
1136 |
|
|
return TRUE;
|
1137 |
|
|
|
1138 |
|
|
error_return:
|
1139 |
|
|
if (epdr != NULL)
|
1140 |
|
|
free (epdr);
|
1141 |
|
|
if (rpdr != NULL)
|
1142 |
|
|
free (rpdr);
|
1143 |
|
|
if (esym != NULL)
|
1144 |
|
|
free (esym);
|
1145 |
|
|
if (ss != NULL)
|
1146 |
|
|
free (ss);
|
1147 |
|
|
if (sv != NULL)
|
1148 |
|
|
free (sv);
|
1149 |
|
|
return FALSE;
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* Check the mips16 stubs for a particular symbol, and see if we can
|
1153 |
|
|
discard them. */
|
1154 |
|
|
|
1155 |
|
|
static bfd_boolean
|
1156 |
|
|
mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
|
1157 |
|
|
void *data ATTRIBUTE_UNUSED)
|
1158 |
|
|
{
|
1159 |
|
|
if (h->root.root.type == bfd_link_hash_warning)
|
1160 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
1161 |
|
|
|
1162 |
|
|
if (h->fn_stub != NULL
|
1163 |
|
|
&& ! h->need_fn_stub)
|
1164 |
|
|
{
|
1165 |
|
|
/* We don't need the fn_stub; the only references to this symbol
|
1166 |
|
|
are 16 bit calls. Clobber the size to 0 to prevent it from
|
1167 |
|
|
being included in the link. */
|
1168 |
|
|
h->fn_stub->size = 0;
|
1169 |
|
|
h->fn_stub->flags &= ~SEC_RELOC;
|
1170 |
|
|
h->fn_stub->reloc_count = 0;
|
1171 |
|
|
h->fn_stub->flags |= SEC_EXCLUDE;
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
if (h->call_stub != NULL
|
1175 |
|
|
&& h->root.other == STO_MIPS16)
|
1176 |
|
|
{
|
1177 |
|
|
/* We don't need the call_stub; this is a 16 bit function, so
|
1178 |
|
|
calls from other 16 bit functions are OK. Clobber the size
|
1179 |
|
|
to 0 to prevent it from being included in the link. */
|
1180 |
|
|
h->call_stub->size = 0;
|
1181 |
|
|
h->call_stub->flags &= ~SEC_RELOC;
|
1182 |
|
|
h->call_stub->reloc_count = 0;
|
1183 |
|
|
h->call_stub->flags |= SEC_EXCLUDE;
|
1184 |
|
|
}
|
1185 |
|
|
|
1186 |
|
|
if (h->call_fp_stub != NULL
|
1187 |
|
|
&& h->root.other == STO_MIPS16)
|
1188 |
|
|
{
|
1189 |
|
|
/* We don't need the call_stub; this is a 16 bit function, so
|
1190 |
|
|
calls from other 16 bit functions are OK. Clobber the size
|
1191 |
|
|
to 0 to prevent it from being included in the link. */
|
1192 |
|
|
h->call_fp_stub->size = 0;
|
1193 |
|
|
h->call_fp_stub->flags &= ~SEC_RELOC;
|
1194 |
|
|
h->call_fp_stub->reloc_count = 0;
|
1195 |
|
|
h->call_fp_stub->flags |= SEC_EXCLUDE;
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
return TRUE;
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
|
1202 |
|
|
Most mips16 instructions are 16 bits, but these instructions
|
1203 |
|
|
are 32 bits.
|
1204 |
|
|
|
1205 |
|
|
The format of these instructions is:
|
1206 |
|
|
|
1207 |
|
|
+--------------+--------------------------------+
|
1208 |
|
|
| JALX | X| Imm 20:16 | Imm 25:21 |
|
1209 |
|
|
+--------------+--------------------------------+
|
1210 |
|
|
| Immediate 15:0 |
|
1211 |
|
|
+-----------------------------------------------+
|
1212 |
|
|
|
1213 |
|
|
JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
|
1214 |
|
|
Note that the immediate value in the first word is swapped.
|
1215 |
|
|
|
1216 |
|
|
When producing a relocatable object file, R_MIPS16_26 is
|
1217 |
|
|
handled mostly like R_MIPS_26. In particular, the addend is
|
1218 |
|
|
stored as a straight 26-bit value in a 32-bit instruction.
|
1219 |
|
|
(gas makes life simpler for itself by never adjusting a
|
1220 |
|
|
R_MIPS16_26 reloc to be against a section, so the addend is
|
1221 |
|
|
always zero). However, the 32 bit instruction is stored as 2
|
1222 |
|
|
16-bit values, rather than a single 32-bit value. In a
|
1223 |
|
|
big-endian file, the result is the same; in a little-endian
|
1224 |
|
|
file, the two 16-bit halves of the 32 bit value are swapped.
|
1225 |
|
|
This is so that a disassembler can recognize the jal
|
1226 |
|
|
instruction.
|
1227 |
|
|
|
1228 |
|
|
When doing a final link, R_MIPS16_26 is treated as a 32 bit
|
1229 |
|
|
instruction stored as two 16-bit values. The addend A is the
|
1230 |
|
|
contents of the targ26 field. The calculation is the same as
|
1231 |
|
|
R_MIPS_26. When storing the calculated value, reorder the
|
1232 |
|
|
immediate value as shown above, and don't forget to store the
|
1233 |
|
|
value as two 16-bit values.
|
1234 |
|
|
|
1235 |
|
|
To put it in MIPS ABI terms, the relocation field is T-targ26-16,
|
1236 |
|
|
defined as
|
1237 |
|
|
|
1238 |
|
|
big-endian:
|
1239 |
|
|
+--------+----------------------+
|
1240 |
|
|
| | |
|
1241 |
|
|
| | targ26-16 |
|
1242 |
|
|
|31 26|25 0|
|
1243 |
|
|
+--------+----------------------+
|
1244 |
|
|
|
1245 |
|
|
little-endian:
|
1246 |
|
|
+----------+------+-------------+
|
1247 |
|
|
| | | |
|
1248 |
|
|
| sub1 | | sub2 |
|
1249 |
|
|
|0 9|10 15|16 31|
|
1250 |
|
|
+----------+--------------------+
|
1251 |
|
|
where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
|
1252 |
|
|
((sub1 << 16) | sub2)).
|
1253 |
|
|
|
1254 |
|
|
When producing a relocatable object file, the calculation is
|
1255 |
|
|
(((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
|
1256 |
|
|
When producing a fully linked file, the calculation is
|
1257 |
|
|
let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
|
1258 |
|
|
((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
|
1259 |
|
|
|
1260 |
|
|
R_MIPS16_GPREL is used for GP-relative addressing in mips16
|
1261 |
|
|
mode. A typical instruction will have a format like this:
|
1262 |
|
|
|
1263 |
|
|
+--------------+--------------------------------+
|
1264 |
|
|
| EXTEND | Imm 10:5 | Imm 15:11 |
|
1265 |
|
|
+--------------+--------------------------------+
|
1266 |
|
|
| Major | rx | ry | Imm 4:0 |
|
1267 |
|
|
+--------------+--------------------------------+
|
1268 |
|
|
|
1269 |
|
|
EXTEND is the five bit value 11110. Major is the instruction
|
1270 |
|
|
opcode.
|
1271 |
|
|
|
1272 |
|
|
This is handled exactly like R_MIPS_GPREL16, except that the
|
1273 |
|
|
addend is retrieved and stored as shown in this diagram; that
|
1274 |
|
|
is, the Imm fields above replace the V-rel16 field.
|
1275 |
|
|
|
1276 |
|
|
All we need to do here is shuffle the bits appropriately. As
|
1277 |
|
|
above, the two 16-bit halves must be swapped on a
|
1278 |
|
|
little-endian system.
|
1279 |
|
|
|
1280 |
|
|
R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
|
1281 |
|
|
access data when neither GP-relative nor PC-relative addressing
|
1282 |
|
|
can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
|
1283 |
|
|
except that the addend is retrieved and stored as shown above
|
1284 |
|
|
for R_MIPS16_GPREL.
|
1285 |
|
|
*/
|
1286 |
|
|
void
|
1287 |
|
|
_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
|
1288 |
|
|
bfd_boolean jal_shuffle, bfd_byte *data)
|
1289 |
|
|
{
|
1290 |
|
|
bfd_vma extend, insn, val;
|
1291 |
|
|
|
1292 |
|
|
if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
|
1293 |
|
|
&& r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
|
1294 |
|
|
return;
|
1295 |
|
|
|
1296 |
|
|
/* Pick up the mips16 extend instruction and the real instruction. */
|
1297 |
|
|
extend = bfd_get_16 (abfd, data);
|
1298 |
|
|
insn = bfd_get_16 (abfd, data + 2);
|
1299 |
|
|
if (r_type == R_MIPS16_26)
|
1300 |
|
|
{
|
1301 |
|
|
if (jal_shuffle)
|
1302 |
|
|
val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
|
1303 |
|
|
| ((extend & 0x1f) << 21) | insn;
|
1304 |
|
|
else
|
1305 |
|
|
val = extend << 16 | insn;
|
1306 |
|
|
}
|
1307 |
|
|
else
|
1308 |
|
|
val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
|
1309 |
|
|
| ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
|
1310 |
|
|
bfd_put_32 (abfd, val, data);
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
void
|
1314 |
|
|
_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
|
1315 |
|
|
bfd_boolean jal_shuffle, bfd_byte *data)
|
1316 |
|
|
{
|
1317 |
|
|
bfd_vma extend, insn, val;
|
1318 |
|
|
|
1319 |
|
|
if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
|
1320 |
|
|
&& r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
|
1321 |
|
|
return;
|
1322 |
|
|
|
1323 |
|
|
val = bfd_get_32 (abfd, data);
|
1324 |
|
|
if (r_type == R_MIPS16_26)
|
1325 |
|
|
{
|
1326 |
|
|
if (jal_shuffle)
|
1327 |
|
|
{
|
1328 |
|
|
insn = val & 0xffff;
|
1329 |
|
|
extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
|
1330 |
|
|
| ((val >> 21) & 0x1f);
|
1331 |
|
|
}
|
1332 |
|
|
else
|
1333 |
|
|
{
|
1334 |
|
|
insn = val & 0xffff;
|
1335 |
|
|
extend = val >> 16;
|
1336 |
|
|
}
|
1337 |
|
|
}
|
1338 |
|
|
else
|
1339 |
|
|
{
|
1340 |
|
|
insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
|
1341 |
|
|
extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
|
1342 |
|
|
}
|
1343 |
|
|
bfd_put_16 (abfd, insn, data + 2);
|
1344 |
|
|
bfd_put_16 (abfd, extend, data);
|
1345 |
|
|
}
|
1346 |
|
|
|
1347 |
|
|
bfd_reloc_status_type
|
1348 |
|
|
_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
|
1349 |
|
|
arelent *reloc_entry, asection *input_section,
|
1350 |
|
|
bfd_boolean relocatable, void *data, bfd_vma gp)
|
1351 |
|
|
{
|
1352 |
|
|
bfd_vma relocation;
|
1353 |
|
|
bfd_signed_vma val;
|
1354 |
|
|
bfd_reloc_status_type status;
|
1355 |
|
|
|
1356 |
|
|
if (bfd_is_com_section (symbol->section))
|
1357 |
|
|
relocation = 0;
|
1358 |
|
|
else
|
1359 |
|
|
relocation = symbol->value;
|
1360 |
|
|
|
1361 |
|
|
relocation += symbol->section->output_section->vma;
|
1362 |
|
|
relocation += symbol->section->output_offset;
|
1363 |
|
|
|
1364 |
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
1365 |
|
|
return bfd_reloc_outofrange;
|
1366 |
|
|
|
1367 |
|
|
/* Set val to the offset into the section or symbol. */
|
1368 |
|
|
val = reloc_entry->addend;
|
1369 |
|
|
|
1370 |
|
|
_bfd_mips_elf_sign_extend (val, 16);
|
1371 |
|
|
|
1372 |
|
|
/* Adjust val for the final section location and GP value. If we
|
1373 |
|
|
are producing relocatable output, we don't want to do this for
|
1374 |
|
|
an external symbol. */
|
1375 |
|
|
if (! relocatable
|
1376 |
|
|
|| (symbol->flags & BSF_SECTION_SYM) != 0)
|
1377 |
|
|
val += relocation - gp;
|
1378 |
|
|
|
1379 |
|
|
if (reloc_entry->howto->partial_inplace)
|
1380 |
|
|
{
|
1381 |
|
|
status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
|
1382 |
|
|
(bfd_byte *) data
|
1383 |
|
|
+ reloc_entry->address);
|
1384 |
|
|
if (status != bfd_reloc_ok)
|
1385 |
|
|
return status;
|
1386 |
|
|
}
|
1387 |
|
|
else
|
1388 |
|
|
reloc_entry->addend = val;
|
1389 |
|
|
|
1390 |
|
|
if (relocatable)
|
1391 |
|
|
reloc_entry->address += input_section->output_offset;
|
1392 |
|
|
|
1393 |
|
|
return bfd_reloc_ok;
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
|
1397 |
|
|
R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
|
1398 |
|
|
that contains the relocation field and DATA points to the start of
|
1399 |
|
|
INPUT_SECTION. */
|
1400 |
|
|
|
1401 |
|
|
struct mips_hi16
|
1402 |
|
|
{
|
1403 |
|
|
struct mips_hi16 *next;
|
1404 |
|
|
bfd_byte *data;
|
1405 |
|
|
asection *input_section;
|
1406 |
|
|
arelent rel;
|
1407 |
|
|
};
|
1408 |
|
|
|
1409 |
|
|
/* FIXME: This should not be a static variable. */
|
1410 |
|
|
|
1411 |
|
|
static struct mips_hi16 *mips_hi16_list;
|
1412 |
|
|
|
1413 |
|
|
/* A howto special_function for REL *HI16 relocations. We can only
|
1414 |
|
|
calculate the correct value once we've seen the partnering
|
1415 |
|
|
*LO16 relocation, so just save the information for later.
|
1416 |
|
|
|
1417 |
|
|
The ABI requires that the *LO16 immediately follow the *HI16.
|
1418 |
|
|
However, as a GNU extension, we permit an arbitrary number of
|
1419 |
|
|
*HI16s to be associated with a single *LO16. This significantly
|
1420 |
|
|
simplies the relocation handling in gcc. */
|
1421 |
|
|
|
1422 |
|
|
bfd_reloc_status_type
|
1423 |
|
|
_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
|
1424 |
|
|
asymbol *symbol ATTRIBUTE_UNUSED, void *data,
|
1425 |
|
|
asection *input_section, bfd *output_bfd,
|
1426 |
|
|
char **error_message ATTRIBUTE_UNUSED)
|
1427 |
|
|
{
|
1428 |
|
|
struct mips_hi16 *n;
|
1429 |
|
|
|
1430 |
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
1431 |
|
|
return bfd_reloc_outofrange;
|
1432 |
|
|
|
1433 |
|
|
n = bfd_malloc (sizeof *n);
|
1434 |
|
|
if (n == NULL)
|
1435 |
|
|
return bfd_reloc_outofrange;
|
1436 |
|
|
|
1437 |
|
|
n->next = mips_hi16_list;
|
1438 |
|
|
n->data = data;
|
1439 |
|
|
n->input_section = input_section;
|
1440 |
|
|
n->rel = *reloc_entry;
|
1441 |
|
|
mips_hi16_list = n;
|
1442 |
|
|
|
1443 |
|
|
if (output_bfd != NULL)
|
1444 |
|
|
reloc_entry->address += input_section->output_offset;
|
1445 |
|
|
|
1446 |
|
|
return bfd_reloc_ok;
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
|
1450 |
|
|
like any other 16-bit relocation when applied to global symbols, but is
|
1451 |
|
|
treated in the same as R_MIPS_HI16 when applied to local symbols. */
|
1452 |
|
|
|
1453 |
|
|
bfd_reloc_status_type
|
1454 |
|
|
_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
1455 |
|
|
void *data, asection *input_section,
|
1456 |
|
|
bfd *output_bfd, char **error_message)
|
1457 |
|
|
{
|
1458 |
|
|
if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|
1459 |
|
|
|| bfd_is_und_section (bfd_get_section (symbol))
|
1460 |
|
|
|| bfd_is_com_section (bfd_get_section (symbol)))
|
1461 |
|
|
/* The relocation is against a global symbol. */
|
1462 |
|
|
return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
|
1463 |
|
|
input_section, output_bfd,
|
1464 |
|
|
error_message);
|
1465 |
|
|
|
1466 |
|
|
return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
|
1467 |
|
|
input_section, output_bfd, error_message);
|
1468 |
|
|
}
|
1469 |
|
|
|
1470 |
|
|
/* A howto special_function for REL *LO16 relocations. The *LO16 itself
|
1471 |
|
|
is a straightforward 16 bit inplace relocation, but we must deal with
|
1472 |
|
|
any partnering high-part relocations as well. */
|
1473 |
|
|
|
1474 |
|
|
bfd_reloc_status_type
|
1475 |
|
|
_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
1476 |
|
|
void *data, asection *input_section,
|
1477 |
|
|
bfd *output_bfd, char **error_message)
|
1478 |
|
|
{
|
1479 |
|
|
bfd_vma vallo;
|
1480 |
|
|
bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
|
1481 |
|
|
|
1482 |
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
1483 |
|
|
return bfd_reloc_outofrange;
|
1484 |
|
|
|
1485 |
|
|
_bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
|
1486 |
|
|
location);
|
1487 |
|
|
vallo = bfd_get_32 (abfd, location);
|
1488 |
|
|
_bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
|
1489 |
|
|
location);
|
1490 |
|
|
|
1491 |
|
|
while (mips_hi16_list != NULL)
|
1492 |
|
|
{
|
1493 |
|
|
bfd_reloc_status_type ret;
|
1494 |
|
|
struct mips_hi16 *hi;
|
1495 |
|
|
|
1496 |
|
|
hi = mips_hi16_list;
|
1497 |
|
|
|
1498 |
|
|
/* R_MIPS_GOT16 relocations are something of a special case. We
|
1499 |
|
|
want to install the addend in the same way as for a R_MIPS_HI16
|
1500 |
|
|
relocation (with a rightshift of 16). However, since GOT16
|
1501 |
|
|
relocations can also be used with global symbols, their howto
|
1502 |
|
|
has a rightshift of 0. */
|
1503 |
|
|
if (hi->rel.howto->type == R_MIPS_GOT16)
|
1504 |
|
|
hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
|
1505 |
|
|
|
1506 |
|
|
/* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
|
1507 |
|
|
carry or borrow will induce a change of +1 or -1 in the high part. */
|
1508 |
|
|
hi->rel.addend += (vallo + 0x8000) & 0xffff;
|
1509 |
|
|
|
1510 |
|
|
ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
|
1511 |
|
|
hi->input_section, output_bfd,
|
1512 |
|
|
error_message);
|
1513 |
|
|
if (ret != bfd_reloc_ok)
|
1514 |
|
|
return ret;
|
1515 |
|
|
|
1516 |
|
|
mips_hi16_list = hi->next;
|
1517 |
|
|
free (hi);
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
|
1521 |
|
|
input_section, output_bfd,
|
1522 |
|
|
error_message);
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
/* A generic howto special_function. This calculates and installs the
|
1526 |
|
|
relocation itself, thus avoiding the oft-discussed problems in
|
1527 |
|
|
bfd_perform_relocation and bfd_install_relocation. */
|
1528 |
|
|
|
1529 |
|
|
bfd_reloc_status_type
|
1530 |
|
|
_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
|
1531 |
|
|
asymbol *symbol, void *data ATTRIBUTE_UNUSED,
|
1532 |
|
|
asection *input_section, bfd *output_bfd,
|
1533 |
|
|
char **error_message ATTRIBUTE_UNUSED)
|
1534 |
|
|
{
|
1535 |
|
|
bfd_signed_vma val;
|
1536 |
|
|
bfd_reloc_status_type status;
|
1537 |
|
|
bfd_boolean relocatable;
|
1538 |
|
|
|
1539 |
|
|
relocatable = (output_bfd != NULL);
|
1540 |
|
|
|
1541 |
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
1542 |
|
|
return bfd_reloc_outofrange;
|
1543 |
|
|
|
1544 |
|
|
/* Build up the field adjustment in VAL. */
|
1545 |
|
|
val = 0;
|
1546 |
|
|
if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
|
1547 |
|
|
{
|
1548 |
|
|
/* Either we're calculating the final field value or we have a
|
1549 |
|
|
relocation against a section symbol. Add in the section's
|
1550 |
|
|
offset or address. */
|
1551 |
|
|
val += symbol->section->output_section->vma;
|
1552 |
|
|
val += symbol->section->output_offset;
|
1553 |
|
|
}
|
1554 |
|
|
|
1555 |
|
|
if (!relocatable)
|
1556 |
|
|
{
|
1557 |
|
|
/* We're calculating the final field value. Add in the symbol's value
|
1558 |
|
|
and, if pc-relative, subtract the address of the field itself. */
|
1559 |
|
|
val += symbol->value;
|
1560 |
|
|
if (reloc_entry->howto->pc_relative)
|
1561 |
|
|
{
|
1562 |
|
|
val -= input_section->output_section->vma;
|
1563 |
|
|
val -= input_section->output_offset;
|
1564 |
|
|
val -= reloc_entry->address;
|
1565 |
|
|
}
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
/* VAL is now the final adjustment. If we're keeping this relocation
|
1569 |
|
|
in the output file, and if the relocation uses a separate addend,
|
1570 |
|
|
we just need to add VAL to that addend. Otherwise we need to add
|
1571 |
|
|
VAL to the relocation field itself. */
|
1572 |
|
|
if (relocatable && !reloc_entry->howto->partial_inplace)
|
1573 |
|
|
reloc_entry->addend += val;
|
1574 |
|
|
else
|
1575 |
|
|
{
|
1576 |
|
|
bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
|
1577 |
|
|
|
1578 |
|
|
/* Add in the separate addend, if any. */
|
1579 |
|
|
val += reloc_entry->addend;
|
1580 |
|
|
|
1581 |
|
|
/* Add VAL to the relocation field. */
|
1582 |
|
|
_bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
|
1583 |
|
|
location);
|
1584 |
|
|
status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
|
1585 |
|
|
location);
|
1586 |
|
|
_bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
|
1587 |
|
|
location);
|
1588 |
|
|
|
1589 |
|
|
if (status != bfd_reloc_ok)
|
1590 |
|
|
return status;
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
if (relocatable)
|
1594 |
|
|
reloc_entry->address += input_section->output_offset;
|
1595 |
|
|
|
1596 |
|
|
return bfd_reloc_ok;
|
1597 |
|
|
}
|
1598 |
|
|
|
1599 |
|
|
/* Swap an entry in a .gptab section. Note that these routines rely
|
1600 |
|
|
on the equivalence of the two elements of the union. */
|
1601 |
|
|
|
1602 |
|
|
static void
|
1603 |
|
|
bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
|
1604 |
|
|
Elf32_gptab *in)
|
1605 |
|
|
{
|
1606 |
|
|
in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
|
1607 |
|
|
in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
static void
|
1611 |
|
|
bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
|
1612 |
|
|
Elf32_External_gptab *ex)
|
1613 |
|
|
{
|
1614 |
|
|
H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
|
1615 |
|
|
H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
|
1616 |
|
|
}
|
1617 |
|
|
|
1618 |
|
|
static void
|
1619 |
|
|
bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
|
1620 |
|
|
Elf32_External_compact_rel *ex)
|
1621 |
|
|
{
|
1622 |
|
|
H_PUT_32 (abfd, in->id1, ex->id1);
|
1623 |
|
|
H_PUT_32 (abfd, in->num, ex->num);
|
1624 |
|
|
H_PUT_32 (abfd, in->id2, ex->id2);
|
1625 |
|
|
H_PUT_32 (abfd, in->offset, ex->offset);
|
1626 |
|
|
H_PUT_32 (abfd, in->reserved0, ex->reserved0);
|
1627 |
|
|
H_PUT_32 (abfd, in->reserved1, ex->reserved1);
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
static void
|
1631 |
|
|
bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
|
1632 |
|
|
Elf32_External_crinfo *ex)
|
1633 |
|
|
{
|
1634 |
|
|
unsigned long l;
|
1635 |
|
|
|
1636 |
|
|
l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
|
1637 |
|
|
| ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
|
1638 |
|
|
| ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
|
1639 |
|
|
| ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
|
1640 |
|
|
H_PUT_32 (abfd, l, ex->info);
|
1641 |
|
|
H_PUT_32 (abfd, in->konst, ex->konst);
|
1642 |
|
|
H_PUT_32 (abfd, in->vaddr, ex->vaddr);
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
/* A .reginfo section holds a single Elf32_RegInfo structure. These
|
1646 |
|
|
routines swap this structure in and out. They are used outside of
|
1647 |
|
|
BFD, so they are globally visible. */
|
1648 |
|
|
|
1649 |
|
|
void
|
1650 |
|
|
bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
|
1651 |
|
|
Elf32_RegInfo *in)
|
1652 |
|
|
{
|
1653 |
|
|
in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
|
1654 |
|
|
in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
|
1655 |
|
|
in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
|
1656 |
|
|
in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
|
1657 |
|
|
in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
|
1658 |
|
|
in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
void
|
1662 |
|
|
bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
|
1663 |
|
|
Elf32_External_RegInfo *ex)
|
1664 |
|
|
{
|
1665 |
|
|
H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
|
1666 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
|
1667 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
|
1668 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
|
1669 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
|
1670 |
|
|
H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
/* In the 64 bit ABI, the .MIPS.options section holds register
|
1674 |
|
|
information in an Elf64_Reginfo structure. These routines swap
|
1675 |
|
|
them in and out. They are globally visible because they are used
|
1676 |
|
|
outside of BFD. These routines are here so that gas can call them
|
1677 |
|
|
without worrying about whether the 64 bit ABI has been included. */
|
1678 |
|
|
|
1679 |
|
|
void
|
1680 |
|
|
bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
|
1681 |
|
|
Elf64_Internal_RegInfo *in)
|
1682 |
|
|
{
|
1683 |
|
|
in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
|
1684 |
|
|
in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
|
1685 |
|
|
in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
|
1686 |
|
|
in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
|
1687 |
|
|
in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
|
1688 |
|
|
in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
|
1689 |
|
|
in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
void
|
1693 |
|
|
bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
|
1694 |
|
|
Elf64_External_RegInfo *ex)
|
1695 |
|
|
{
|
1696 |
|
|
H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
|
1697 |
|
|
H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
|
1698 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
|
1699 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
|
1700 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
|
1701 |
|
|
H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
|
1702 |
|
|
H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
/* Swap in an options header. */
|
1706 |
|
|
|
1707 |
|
|
void
|
1708 |
|
|
bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
|
1709 |
|
|
Elf_Internal_Options *in)
|
1710 |
|
|
{
|
1711 |
|
|
in->kind = H_GET_8 (abfd, ex->kind);
|
1712 |
|
|
in->size = H_GET_8 (abfd, ex->size);
|
1713 |
|
|
in->section = H_GET_16 (abfd, ex->section);
|
1714 |
|
|
in->info = H_GET_32 (abfd, ex->info);
|
1715 |
|
|
}
|
1716 |
|
|
|
1717 |
|
|
/* Swap out an options header. */
|
1718 |
|
|
|
1719 |
|
|
void
|
1720 |
|
|
bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
|
1721 |
|
|
Elf_External_Options *ex)
|
1722 |
|
|
{
|
1723 |
|
|
H_PUT_8 (abfd, in->kind, ex->kind);
|
1724 |
|
|
H_PUT_8 (abfd, in->size, ex->size);
|
1725 |
|
|
H_PUT_16 (abfd, in->section, ex->section);
|
1726 |
|
|
H_PUT_32 (abfd, in->info, ex->info);
|
1727 |
|
|
}
|
1728 |
|
|
|
1729 |
|
|
/* This function is called via qsort() to sort the dynamic relocation
|
1730 |
|
|
entries by increasing r_symndx value. */
|
1731 |
|
|
|
1732 |
|
|
static int
|
1733 |
|
|
sort_dynamic_relocs (const void *arg1, const void *arg2)
|
1734 |
|
|
{
|
1735 |
|
|
Elf_Internal_Rela int_reloc1;
|
1736 |
|
|
Elf_Internal_Rela int_reloc2;
|
1737 |
|
|
int diff;
|
1738 |
|
|
|
1739 |
|
|
bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
|
1740 |
|
|
bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
|
1741 |
|
|
|
1742 |
|
|
diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
|
1743 |
|
|
if (diff != 0)
|
1744 |
|
|
return diff;
|
1745 |
|
|
|
1746 |
|
|
if (int_reloc1.r_offset < int_reloc2.r_offset)
|
1747 |
|
|
return -1;
|
1748 |
|
|
if (int_reloc1.r_offset > int_reloc2.r_offset)
|
1749 |
|
|
return 1;
|
1750 |
|
|
return 0;
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
/* Like sort_dynamic_relocs, but used for elf64 relocations. */
|
1754 |
|
|
|
1755 |
|
|
static int
|
1756 |
|
|
sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
|
1757 |
|
|
const void *arg2 ATTRIBUTE_UNUSED)
|
1758 |
|
|
{
|
1759 |
|
|
#ifdef BFD64
|
1760 |
|
|
Elf_Internal_Rela int_reloc1[3];
|
1761 |
|
|
Elf_Internal_Rela int_reloc2[3];
|
1762 |
|
|
|
1763 |
|
|
(*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
|
1764 |
|
|
(reldyn_sorting_bfd, arg1, int_reloc1);
|
1765 |
|
|
(*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
|
1766 |
|
|
(reldyn_sorting_bfd, arg2, int_reloc2);
|
1767 |
|
|
|
1768 |
|
|
if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
|
1769 |
|
|
return -1;
|
1770 |
|
|
if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
|
1771 |
|
|
return 1;
|
1772 |
|
|
|
1773 |
|
|
if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
|
1774 |
|
|
return -1;
|
1775 |
|
|
if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
|
1776 |
|
|
return 1;
|
1777 |
|
|
return 0;
|
1778 |
|
|
#else
|
1779 |
|
|
abort ();
|
1780 |
|
|
#endif
|
1781 |
|
|
}
|
1782 |
|
|
|
1783 |
|
|
|
1784 |
|
|
/* This routine is used to write out ECOFF debugging external symbol
|
1785 |
|
|
information. It is called via mips_elf_link_hash_traverse. The
|
1786 |
|
|
ECOFF external symbol information must match the ELF external
|
1787 |
|
|
symbol information. Unfortunately, at this point we don't know
|
1788 |
|
|
whether a symbol is required by reloc information, so the two
|
1789 |
|
|
tables may wind up being different. We must sort out the external
|
1790 |
|
|
symbol information before we can set the final size of the .mdebug
|
1791 |
|
|
section, and we must set the size of the .mdebug section before we
|
1792 |
|
|
can relocate any sections, and we can't know which symbols are
|
1793 |
|
|
required by relocation until we relocate the sections.
|
1794 |
|
|
Fortunately, it is relatively unlikely that any symbol will be
|
1795 |
|
|
stripped but required by a reloc. In particular, it can not happen
|
1796 |
|
|
when generating a final executable. */
|
1797 |
|
|
|
1798 |
|
|
static bfd_boolean
|
1799 |
|
|
mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
|
1800 |
|
|
{
|
1801 |
|
|
struct extsym_info *einfo = data;
|
1802 |
|
|
bfd_boolean strip;
|
1803 |
|
|
asection *sec, *output_section;
|
1804 |
|
|
|
1805 |
|
|
if (h->root.root.type == bfd_link_hash_warning)
|
1806 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
1807 |
|
|
|
1808 |
|
|
if (h->root.indx == -2)
|
1809 |
|
|
strip = FALSE;
|
1810 |
|
|
else if ((h->root.def_dynamic
|
1811 |
|
|
|| h->root.ref_dynamic
|
1812 |
|
|
|| h->root.type == bfd_link_hash_new)
|
1813 |
|
|
&& !h->root.def_regular
|
1814 |
|
|
&& !h->root.ref_regular)
|
1815 |
|
|
strip = TRUE;
|
1816 |
|
|
else if (einfo->info->strip == strip_all
|
1817 |
|
|
|| (einfo->info->strip == strip_some
|
1818 |
|
|
&& bfd_hash_lookup (einfo->info->keep_hash,
|
1819 |
|
|
h->root.root.root.string,
|
1820 |
|
|
FALSE, FALSE) == NULL))
|
1821 |
|
|
strip = TRUE;
|
1822 |
|
|
else
|
1823 |
|
|
strip = FALSE;
|
1824 |
|
|
|
1825 |
|
|
if (strip)
|
1826 |
|
|
return TRUE;
|
1827 |
|
|
|
1828 |
|
|
if (h->esym.ifd == -2)
|
1829 |
|
|
{
|
1830 |
|
|
h->esym.jmptbl = 0;
|
1831 |
|
|
h->esym.cobol_main = 0;
|
1832 |
|
|
h->esym.weakext = 0;
|
1833 |
|
|
h->esym.reserved = 0;
|
1834 |
|
|
h->esym.ifd = ifdNil;
|
1835 |
|
|
h->esym.asym.value = 0;
|
1836 |
|
|
h->esym.asym.st = stGlobal;
|
1837 |
|
|
|
1838 |
|
|
if (h->root.root.type == bfd_link_hash_undefined
|
1839 |
|
|
|| h->root.root.type == bfd_link_hash_undefweak)
|
1840 |
|
|
{
|
1841 |
|
|
const char *name;
|
1842 |
|
|
|
1843 |
|
|
/* Use undefined class. Also, set class and type for some
|
1844 |
|
|
special symbols. */
|
1845 |
|
|
name = h->root.root.root.string;
|
1846 |
|
|
if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
|
1847 |
|
|
|| strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
|
1848 |
|
|
{
|
1849 |
|
|
h->esym.asym.sc = scData;
|
1850 |
|
|
h->esym.asym.st = stLabel;
|
1851 |
|
|
h->esym.asym.value = 0;
|
1852 |
|
|
}
|
1853 |
|
|
else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
|
1854 |
|
|
{
|
1855 |
|
|
h->esym.asym.sc = scAbs;
|
1856 |
|
|
h->esym.asym.st = stLabel;
|
1857 |
|
|
h->esym.asym.value =
|
1858 |
|
|
mips_elf_hash_table (einfo->info)->procedure_count;
|
1859 |
|
|
}
|
1860 |
|
|
else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
|
1861 |
|
|
{
|
1862 |
|
|
h->esym.asym.sc = scAbs;
|
1863 |
|
|
h->esym.asym.st = stLabel;
|
1864 |
|
|
h->esym.asym.value = elf_gp (einfo->abfd);
|
1865 |
|
|
}
|
1866 |
|
|
else
|
1867 |
|
|
h->esym.asym.sc = scUndefined;
|
1868 |
|
|
}
|
1869 |
|
|
else if (h->root.root.type != bfd_link_hash_defined
|
1870 |
|
|
&& h->root.root.type != bfd_link_hash_defweak)
|
1871 |
|
|
h->esym.asym.sc = scAbs;
|
1872 |
|
|
else
|
1873 |
|
|
{
|
1874 |
|
|
const char *name;
|
1875 |
|
|
|
1876 |
|
|
sec = h->root.root.u.def.section;
|
1877 |
|
|
output_section = sec->output_section;
|
1878 |
|
|
|
1879 |
|
|
/* When making a shared library and symbol h is the one from
|
1880 |
|
|
the another shared library, OUTPUT_SECTION may be null. */
|
1881 |
|
|
if (output_section == NULL)
|
1882 |
|
|
h->esym.asym.sc = scUndefined;
|
1883 |
|
|
else
|
1884 |
|
|
{
|
1885 |
|
|
name = bfd_section_name (output_section->owner, output_section);
|
1886 |
|
|
|
1887 |
|
|
if (strcmp (name, ".text") == 0)
|
1888 |
|
|
h->esym.asym.sc = scText;
|
1889 |
|
|
else if (strcmp (name, ".data") == 0)
|
1890 |
|
|
h->esym.asym.sc = scData;
|
1891 |
|
|
else if (strcmp (name, ".sdata") == 0)
|
1892 |
|
|
h->esym.asym.sc = scSData;
|
1893 |
|
|
else if (strcmp (name, ".rodata") == 0
|
1894 |
|
|
|| strcmp (name, ".rdata") == 0)
|
1895 |
|
|
h->esym.asym.sc = scRData;
|
1896 |
|
|
else if (strcmp (name, ".bss") == 0)
|
1897 |
|
|
h->esym.asym.sc = scBss;
|
1898 |
|
|
else if (strcmp (name, ".sbss") == 0)
|
1899 |
|
|
h->esym.asym.sc = scSBss;
|
1900 |
|
|
else if (strcmp (name, ".init") == 0)
|
1901 |
|
|
h->esym.asym.sc = scInit;
|
1902 |
|
|
else if (strcmp (name, ".fini") == 0)
|
1903 |
|
|
h->esym.asym.sc = scFini;
|
1904 |
|
|
else
|
1905 |
|
|
h->esym.asym.sc = scAbs;
|
1906 |
|
|
}
|
1907 |
|
|
}
|
1908 |
|
|
|
1909 |
|
|
h->esym.asym.reserved = 0;
|
1910 |
|
|
h->esym.asym.index = indexNil;
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
if (h->root.root.type == bfd_link_hash_common)
|
1914 |
|
|
h->esym.asym.value = h->root.root.u.c.size;
|
1915 |
|
|
else if (h->root.root.type == bfd_link_hash_defined
|
1916 |
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
1917 |
|
|
{
|
1918 |
|
|
if (h->esym.asym.sc == scCommon)
|
1919 |
|
|
h->esym.asym.sc = scBss;
|
1920 |
|
|
else if (h->esym.asym.sc == scSCommon)
|
1921 |
|
|
h->esym.asym.sc = scSBss;
|
1922 |
|
|
|
1923 |
|
|
sec = h->root.root.u.def.section;
|
1924 |
|
|
output_section = sec->output_section;
|
1925 |
|
|
if (output_section != NULL)
|
1926 |
|
|
h->esym.asym.value = (h->root.root.u.def.value
|
1927 |
|
|
+ sec->output_offset
|
1928 |
|
|
+ output_section->vma);
|
1929 |
|
|
else
|
1930 |
|
|
h->esym.asym.value = 0;
|
1931 |
|
|
}
|
1932 |
|
|
else if (h->root.needs_plt)
|
1933 |
|
|
{
|
1934 |
|
|
struct mips_elf_link_hash_entry *hd = h;
|
1935 |
|
|
bfd_boolean no_fn_stub = h->no_fn_stub;
|
1936 |
|
|
|
1937 |
|
|
while (hd->root.root.type == bfd_link_hash_indirect)
|
1938 |
|
|
{
|
1939 |
|
|
hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
|
1940 |
|
|
no_fn_stub = no_fn_stub || hd->no_fn_stub;
|
1941 |
|
|
}
|
1942 |
|
|
|
1943 |
|
|
if (!no_fn_stub)
|
1944 |
|
|
{
|
1945 |
|
|
/* Set type and value for a symbol with a function stub. */
|
1946 |
|
|
h->esym.asym.st = stProc;
|
1947 |
|
|
sec = hd->root.root.u.def.section;
|
1948 |
|
|
if (sec == NULL)
|
1949 |
|
|
h->esym.asym.value = 0;
|
1950 |
|
|
else
|
1951 |
|
|
{
|
1952 |
|
|
output_section = sec->output_section;
|
1953 |
|
|
if (output_section != NULL)
|
1954 |
|
|
h->esym.asym.value = (hd->root.plt.offset
|
1955 |
|
|
+ sec->output_offset
|
1956 |
|
|
+ output_section->vma);
|
1957 |
|
|
else
|
1958 |
|
|
h->esym.asym.value = 0;
|
1959 |
|
|
}
|
1960 |
|
|
}
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
|
1964 |
|
|
h->root.root.root.string,
|
1965 |
|
|
&h->esym))
|
1966 |
|
|
{
|
1967 |
|
|
einfo->failed = TRUE;
|
1968 |
|
|
return FALSE;
|
1969 |
|
|
}
|
1970 |
|
|
|
1971 |
|
|
return TRUE;
|
1972 |
|
|
}
|
1973 |
|
|
|
1974 |
|
|
/* A comparison routine used to sort .gptab entries. */
|
1975 |
|
|
|
1976 |
|
|
static int
|
1977 |
|
|
gptab_compare (const void *p1, const void *p2)
|
1978 |
|
|
{
|
1979 |
|
|
const Elf32_gptab *a1 = p1;
|
1980 |
|
|
const Elf32_gptab *a2 = p2;
|
1981 |
|
|
|
1982 |
|
|
return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* Functions to manage the got entry hash table. */
|
1986 |
|
|
|
1987 |
|
|
/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
|
1988 |
|
|
hash number. */
|
1989 |
|
|
|
1990 |
|
|
static INLINE hashval_t
|
1991 |
|
|
mips_elf_hash_bfd_vma (bfd_vma addr)
|
1992 |
|
|
{
|
1993 |
|
|
#ifdef BFD64
|
1994 |
|
|
return addr + (addr >> 32);
|
1995 |
|
|
#else
|
1996 |
|
|
return addr;
|
1997 |
|
|
#endif
|
1998 |
|
|
}
|
1999 |
|
|
|
2000 |
|
|
/* got_entries only match if they're identical, except for gotidx, so
|
2001 |
|
|
use all fields to compute the hash, and compare the appropriate
|
2002 |
|
|
union members. */
|
2003 |
|
|
|
2004 |
|
|
static hashval_t
|
2005 |
|
|
mips_elf_got_entry_hash (const void *entry_)
|
2006 |
|
|
{
|
2007 |
|
|
const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
|
2008 |
|
|
|
2009 |
|
|
return entry->symndx
|
2010 |
|
|
+ ((entry->tls_type & GOT_TLS_LDM) << 17)
|
2011 |
|
|
+ (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
|
2012 |
|
|
: entry->abfd->id
|
2013 |
|
|
+ (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
|
2014 |
|
|
: entry->d.h->root.root.root.hash));
|
2015 |
|
|
}
|
2016 |
|
|
|
2017 |
|
|
static int
|
2018 |
|
|
mips_elf_got_entry_eq (const void *entry1, const void *entry2)
|
2019 |
|
|
{
|
2020 |
|
|
const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
|
2021 |
|
|
const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
|
2022 |
|
|
|
2023 |
|
|
/* An LDM entry can only match another LDM entry. */
|
2024 |
|
|
if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
|
2025 |
|
|
return 0;
|
2026 |
|
|
|
2027 |
|
|
return e1->abfd == e2->abfd && e1->symndx == e2->symndx
|
2028 |
|
|
&& (! e1->abfd ? e1->d.address == e2->d.address
|
2029 |
|
|
: e1->symndx >= 0 ? e1->d.addend == e2->d.addend
|
2030 |
|
|
: e1->d.h == e2->d.h);
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
/* multi_got_entries are still a match in the case of global objects,
|
2034 |
|
|
even if the input bfd in which they're referenced differs, so the
|
2035 |
|
|
hash computation and compare functions are adjusted
|
2036 |
|
|
accordingly. */
|
2037 |
|
|
|
2038 |
|
|
static hashval_t
|
2039 |
|
|
mips_elf_multi_got_entry_hash (const void *entry_)
|
2040 |
|
|
{
|
2041 |
|
|
const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
|
2042 |
|
|
|
2043 |
|
|
return entry->symndx
|
2044 |
|
|
+ (! entry->abfd
|
2045 |
|
|
? mips_elf_hash_bfd_vma (entry->d.address)
|
2046 |
|
|
: entry->symndx >= 0
|
2047 |
|
|
? ((entry->tls_type & GOT_TLS_LDM)
|
2048 |
|
|
? (GOT_TLS_LDM << 17)
|
2049 |
|
|
: (entry->abfd->id
|
2050 |
|
|
+ mips_elf_hash_bfd_vma (entry->d.addend)))
|
2051 |
|
|
: entry->d.h->root.root.root.hash);
|
2052 |
|
|
}
|
2053 |
|
|
|
2054 |
|
|
static int
|
2055 |
|
|
mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
|
2056 |
|
|
{
|
2057 |
|
|
const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
|
2058 |
|
|
const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
|
2059 |
|
|
|
2060 |
|
|
/* Any two LDM entries match. */
|
2061 |
|
|
if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
|
2062 |
|
|
return 1;
|
2063 |
|
|
|
2064 |
|
|
/* Nothing else matches an LDM entry. */
|
2065 |
|
|
if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
|
2066 |
|
|
return 0;
|
2067 |
|
|
|
2068 |
|
|
return e1->symndx == e2->symndx
|
2069 |
|
|
&& (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
|
2070 |
|
|
: e1->abfd == NULL || e2->abfd == NULL
|
2071 |
|
|
? e1->abfd == e2->abfd && e1->d.address == e2->d.address
|
2072 |
|
|
: e1->d.h == e2->d.h);
|
2073 |
|
|
}
|
2074 |
|
|
|
2075 |
|
|
static hashval_t
|
2076 |
|
|
mips_got_page_entry_hash (const void *entry_)
|
2077 |
|
|
{
|
2078 |
|
|
const struct mips_got_page_entry *entry;
|
2079 |
|
|
|
2080 |
|
|
entry = (const struct mips_got_page_entry *) entry_;
|
2081 |
|
|
return entry->abfd->id + entry->symndx;
|
2082 |
|
|
}
|
2083 |
|
|
|
2084 |
|
|
static int
|
2085 |
|
|
mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
|
2086 |
|
|
{
|
2087 |
|
|
const struct mips_got_page_entry *entry1, *entry2;
|
2088 |
|
|
|
2089 |
|
|
entry1 = (const struct mips_got_page_entry *) entry1_;
|
2090 |
|
|
entry2 = (const struct mips_got_page_entry *) entry2_;
|
2091 |
|
|
return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
|
2092 |
|
|
}
|
2093 |
|
|
|
2094 |
|
|
/* Return the dynamic relocation section. If it doesn't exist, try to
|
2095 |
|
|
create a new it if CREATE_P, otherwise return NULL. Also return NULL
|
2096 |
|
|
if creation fails. */
|
2097 |
|
|
|
2098 |
|
|
static asection *
|
2099 |
|
|
mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
|
2100 |
|
|
{
|
2101 |
|
|
const char *dname;
|
2102 |
|
|
asection *sreloc;
|
2103 |
|
|
bfd *dynobj;
|
2104 |
|
|
|
2105 |
|
|
dname = MIPS_ELF_REL_DYN_NAME (info);
|
2106 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2107 |
|
|
sreloc = bfd_get_section_by_name (dynobj, dname);
|
2108 |
|
|
if (sreloc == NULL && create_p)
|
2109 |
|
|
{
|
2110 |
|
|
sreloc = bfd_make_section_with_flags (dynobj, dname,
|
2111 |
|
|
(SEC_ALLOC
|
2112 |
|
|
| SEC_LOAD
|
2113 |
|
|
| SEC_HAS_CONTENTS
|
2114 |
|
|
| SEC_IN_MEMORY
|
2115 |
|
|
| SEC_LINKER_CREATED
|
2116 |
|
|
| SEC_READONLY));
|
2117 |
|
|
if (sreloc == NULL
|
2118 |
|
|
|| ! bfd_set_section_alignment (dynobj, sreloc,
|
2119 |
|
|
MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
|
2120 |
|
|
return NULL;
|
2121 |
|
|
}
|
2122 |
|
|
return sreloc;
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
/* Returns the GOT section for ABFD. */
|
2126 |
|
|
|
2127 |
|
|
static asection *
|
2128 |
|
|
mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
|
2129 |
|
|
{
|
2130 |
|
|
asection *sgot = bfd_get_section_by_name (abfd, ".got");
|
2131 |
|
|
if (sgot == NULL
|
2132 |
|
|
|| (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
|
2133 |
|
|
return NULL;
|
2134 |
|
|
return sgot;
|
2135 |
|
|
}
|
2136 |
|
|
|
2137 |
|
|
/* Returns the GOT information associated with the link indicated by
|
2138 |
|
|
INFO. If SGOTP is non-NULL, it is filled in with the GOT
|
2139 |
|
|
section. */
|
2140 |
|
|
|
2141 |
|
|
static struct mips_got_info *
|
2142 |
|
|
mips_elf_got_info (bfd *abfd, asection **sgotp)
|
2143 |
|
|
{
|
2144 |
|
|
asection *sgot;
|
2145 |
|
|
struct mips_got_info *g;
|
2146 |
|
|
|
2147 |
|
|
sgot = mips_elf_got_section (abfd, TRUE);
|
2148 |
|
|
BFD_ASSERT (sgot != NULL);
|
2149 |
|
|
BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
|
2150 |
|
|
g = mips_elf_section_data (sgot)->u.got_info;
|
2151 |
|
|
BFD_ASSERT (g != NULL);
|
2152 |
|
|
|
2153 |
|
|
if (sgotp)
|
2154 |
|
|
*sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
|
2155 |
|
|
|
2156 |
|
|
return g;
|
2157 |
|
|
}
|
2158 |
|
|
|
2159 |
|
|
/* Count the number of relocations needed for a TLS GOT entry, with
|
2160 |
|
|
access types from TLS_TYPE, and symbol H (or a local symbol if H
|
2161 |
|
|
is NULL). */
|
2162 |
|
|
|
2163 |
|
|
static int
|
2164 |
|
|
mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
|
2165 |
|
|
struct elf_link_hash_entry *h)
|
2166 |
|
|
{
|
2167 |
|
|
int indx = 0;
|
2168 |
|
|
int ret = 0;
|
2169 |
|
|
bfd_boolean need_relocs = FALSE;
|
2170 |
|
|
bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
|
2171 |
|
|
|
2172 |
|
|
if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
2173 |
|
|
&& (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
|
2174 |
|
|
indx = h->dynindx;
|
2175 |
|
|
|
2176 |
|
|
if ((info->shared || indx != 0)
|
2177 |
|
|
&& (h == NULL
|
2178 |
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
2179 |
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
2180 |
|
|
need_relocs = TRUE;
|
2181 |
|
|
|
2182 |
|
|
if (!need_relocs)
|
2183 |
|
|
return FALSE;
|
2184 |
|
|
|
2185 |
|
|
if (tls_type & GOT_TLS_GD)
|
2186 |
|
|
{
|
2187 |
|
|
ret++;
|
2188 |
|
|
if (indx != 0)
|
2189 |
|
|
ret++;
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
if (tls_type & GOT_TLS_IE)
|
2193 |
|
|
ret++;
|
2194 |
|
|
|
2195 |
|
|
if ((tls_type & GOT_TLS_LDM) && info->shared)
|
2196 |
|
|
ret++;
|
2197 |
|
|
|
2198 |
|
|
return ret;
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
/* Count the number of TLS relocations required for the GOT entry in
|
2202 |
|
|
ARG1, if it describes a local symbol. */
|
2203 |
|
|
|
2204 |
|
|
static int
|
2205 |
|
|
mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
|
2206 |
|
|
{
|
2207 |
|
|
struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
|
2208 |
|
|
struct mips_elf_count_tls_arg *arg = arg2;
|
2209 |
|
|
|
2210 |
|
|
if (entry->abfd != NULL && entry->symndx != -1)
|
2211 |
|
|
arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
|
2212 |
|
|
|
2213 |
|
|
return 1;
|
2214 |
|
|
}
|
2215 |
|
|
|
2216 |
|
|
/* Count the number of TLS GOT entries required for the global (or
|
2217 |
|
|
forced-local) symbol in ARG1. */
|
2218 |
|
|
|
2219 |
|
|
static int
|
2220 |
|
|
mips_elf_count_global_tls_entries (void *arg1, void *arg2)
|
2221 |
|
|
{
|
2222 |
|
|
struct mips_elf_link_hash_entry *hm
|
2223 |
|
|
= (struct mips_elf_link_hash_entry *) arg1;
|
2224 |
|
|
struct mips_elf_count_tls_arg *arg = arg2;
|
2225 |
|
|
|
2226 |
|
|
if (hm->tls_type & GOT_TLS_GD)
|
2227 |
|
|
arg->needed += 2;
|
2228 |
|
|
if (hm->tls_type & GOT_TLS_IE)
|
2229 |
|
|
arg->needed += 1;
|
2230 |
|
|
|
2231 |
|
|
return 1;
|
2232 |
|
|
}
|
2233 |
|
|
|
2234 |
|
|
/* Count the number of TLS relocations required for the global (or
|
2235 |
|
|
forced-local) symbol in ARG1. */
|
2236 |
|
|
|
2237 |
|
|
static int
|
2238 |
|
|
mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
|
2239 |
|
|
{
|
2240 |
|
|
struct mips_elf_link_hash_entry *hm
|
2241 |
|
|
= (struct mips_elf_link_hash_entry *) arg1;
|
2242 |
|
|
struct mips_elf_count_tls_arg *arg = arg2;
|
2243 |
|
|
|
2244 |
|
|
arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
|
2245 |
|
|
|
2246 |
|
|
return 1;
|
2247 |
|
|
}
|
2248 |
|
|
|
2249 |
|
|
/* Output a simple dynamic relocation into SRELOC. */
|
2250 |
|
|
|
2251 |
|
|
static void
|
2252 |
|
|
mips_elf_output_dynamic_relocation (bfd *output_bfd,
|
2253 |
|
|
asection *sreloc,
|
2254 |
|
|
unsigned long indx,
|
2255 |
|
|
int r_type,
|
2256 |
|
|
bfd_vma offset)
|
2257 |
|
|
{
|
2258 |
|
|
Elf_Internal_Rela rel[3];
|
2259 |
|
|
|
2260 |
|
|
memset (rel, 0, sizeof (rel));
|
2261 |
|
|
|
2262 |
|
|
rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
|
2263 |
|
|
rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
|
2264 |
|
|
|
2265 |
|
|
if (ABI_64_P (output_bfd))
|
2266 |
|
|
{
|
2267 |
|
|
(*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
|
2268 |
|
|
(output_bfd, &rel[0],
|
2269 |
|
|
(sreloc->contents
|
2270 |
|
|
+ sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
|
2271 |
|
|
}
|
2272 |
|
|
else
|
2273 |
|
|
bfd_elf32_swap_reloc_out
|
2274 |
|
|
(output_bfd, &rel[0],
|
2275 |
|
|
(sreloc->contents
|
2276 |
|
|
+ sreloc->reloc_count * sizeof (Elf32_External_Rel)));
|
2277 |
|
|
++sreloc->reloc_count;
|
2278 |
|
|
}
|
2279 |
|
|
|
2280 |
|
|
/* Initialize a set of TLS GOT entries for one symbol. */
|
2281 |
|
|
|
2282 |
|
|
static void
|
2283 |
|
|
mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
|
2284 |
|
|
unsigned char *tls_type_p,
|
2285 |
|
|
struct bfd_link_info *info,
|
2286 |
|
|
struct mips_elf_link_hash_entry *h,
|
2287 |
|
|
bfd_vma value)
|
2288 |
|
|
{
|
2289 |
|
|
int indx;
|
2290 |
|
|
asection *sreloc, *sgot;
|
2291 |
|
|
bfd_vma offset, offset2;
|
2292 |
|
|
bfd *dynobj;
|
2293 |
|
|
bfd_boolean need_relocs = FALSE;
|
2294 |
|
|
|
2295 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2296 |
|
|
sgot = mips_elf_got_section (dynobj, FALSE);
|
2297 |
|
|
|
2298 |
|
|
indx = 0;
|
2299 |
|
|
if (h != NULL)
|
2300 |
|
|
{
|
2301 |
|
|
bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
|
2302 |
|
|
|
2303 |
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
|
2304 |
|
|
&& (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
|
2305 |
|
|
indx = h->root.dynindx;
|
2306 |
|
|
}
|
2307 |
|
|
|
2308 |
|
|
if (*tls_type_p & GOT_TLS_DONE)
|
2309 |
|
|
return;
|
2310 |
|
|
|
2311 |
|
|
if ((info->shared || indx != 0)
|
2312 |
|
|
&& (h == NULL
|
2313 |
|
|
|| ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
|
2314 |
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
2315 |
|
|
need_relocs = TRUE;
|
2316 |
|
|
|
2317 |
|
|
/* MINUS_ONE means the symbol is not defined in this object. It may not
|
2318 |
|
|
be defined at all; assume that the value doesn't matter in that
|
2319 |
|
|
case. Otherwise complain if we would use the value. */
|
2320 |
|
|
BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
|
2321 |
|
|
|| h->root.root.type == bfd_link_hash_undefweak);
|
2322 |
|
|
|
2323 |
|
|
/* Emit necessary relocations. */
|
2324 |
|
|
sreloc = mips_elf_rel_dyn_section (info, FALSE);
|
2325 |
|
|
|
2326 |
|
|
/* General Dynamic. */
|
2327 |
|
|
if (*tls_type_p & GOT_TLS_GD)
|
2328 |
|
|
{
|
2329 |
|
|
offset = got_offset;
|
2330 |
|
|
offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
|
2331 |
|
|
|
2332 |
|
|
if (need_relocs)
|
2333 |
|
|
{
|
2334 |
|
|
mips_elf_output_dynamic_relocation
|
2335 |
|
|
(abfd, sreloc, indx,
|
2336 |
|
|
ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
|
2337 |
|
|
sgot->output_offset + sgot->output_section->vma + offset);
|
2338 |
|
|
|
2339 |
|
|
if (indx)
|
2340 |
|
|
mips_elf_output_dynamic_relocation
|
2341 |
|
|
(abfd, sreloc, indx,
|
2342 |
|
|
ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
|
2343 |
|
|
sgot->output_offset + sgot->output_section->vma + offset2);
|
2344 |
|
|
else
|
2345 |
|
|
MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
|
2346 |
|
|
sgot->contents + offset2);
|
2347 |
|
|
}
|
2348 |
|
|
else
|
2349 |
|
|
{
|
2350 |
|
|
MIPS_ELF_PUT_WORD (abfd, 1,
|
2351 |
|
|
sgot->contents + offset);
|
2352 |
|
|
MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
|
2353 |
|
|
sgot->contents + offset2);
|
2354 |
|
|
}
|
2355 |
|
|
|
2356 |
|
|
got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
|
2357 |
|
|
}
|
2358 |
|
|
|
2359 |
|
|
/* Initial Exec model. */
|
2360 |
|
|
if (*tls_type_p & GOT_TLS_IE)
|
2361 |
|
|
{
|
2362 |
|
|
offset = got_offset;
|
2363 |
|
|
|
2364 |
|
|
if (need_relocs)
|
2365 |
|
|
{
|
2366 |
|
|
if (indx == 0)
|
2367 |
|
|
MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
|
2368 |
|
|
sgot->contents + offset);
|
2369 |
|
|
else
|
2370 |
|
|
MIPS_ELF_PUT_WORD (abfd, 0,
|
2371 |
|
|
sgot->contents + offset);
|
2372 |
|
|
|
2373 |
|
|
mips_elf_output_dynamic_relocation
|
2374 |
|
|
(abfd, sreloc, indx,
|
2375 |
|
|
ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
|
2376 |
|
|
sgot->output_offset + sgot->output_section->vma + offset);
|
2377 |
|
|
}
|
2378 |
|
|
else
|
2379 |
|
|
MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
|
2380 |
|
|
sgot->contents + offset);
|
2381 |
|
|
}
|
2382 |
|
|
|
2383 |
|
|
if (*tls_type_p & GOT_TLS_LDM)
|
2384 |
|
|
{
|
2385 |
|
|
/* The initial offset is zero, and the LD offsets will include the
|
2386 |
|
|
bias by DTP_OFFSET. */
|
2387 |
|
|
MIPS_ELF_PUT_WORD (abfd, 0,
|
2388 |
|
|
sgot->contents + got_offset
|
2389 |
|
|
+ MIPS_ELF_GOT_SIZE (abfd));
|
2390 |
|
|
|
2391 |
|
|
if (!info->shared)
|
2392 |
|
|
MIPS_ELF_PUT_WORD (abfd, 1,
|
2393 |
|
|
sgot->contents + got_offset);
|
2394 |
|
|
else
|
2395 |
|
|
mips_elf_output_dynamic_relocation
|
2396 |
|
|
(abfd, sreloc, indx,
|
2397 |
|
|
ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
|
2398 |
|
|
sgot->output_offset + sgot->output_section->vma + got_offset);
|
2399 |
|
|
}
|
2400 |
|
|
|
2401 |
|
|
*tls_type_p |= GOT_TLS_DONE;
|
2402 |
|
|
}
|
2403 |
|
|
|
2404 |
|
|
/* Return the GOT index to use for a relocation of type R_TYPE against
|
2405 |
|
|
a symbol accessed using TLS_TYPE models. The GOT entries for this
|
2406 |
|
|
symbol in this GOT start at GOT_INDEX. This function initializes the
|
2407 |
|
|
GOT entries and corresponding relocations. */
|
2408 |
|
|
|
2409 |
|
|
static bfd_vma
|
2410 |
|
|
mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
|
2411 |
|
|
int r_type, struct bfd_link_info *info,
|
2412 |
|
|
struct mips_elf_link_hash_entry *h, bfd_vma symbol)
|
2413 |
|
|
{
|
2414 |
|
|
BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
|
2415 |
|
|
|| r_type == R_MIPS_TLS_LDM);
|
2416 |
|
|
|
2417 |
|
|
mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
|
2418 |
|
|
|
2419 |
|
|
if (r_type == R_MIPS_TLS_GOTTPREL)
|
2420 |
|
|
{
|
2421 |
|
|
BFD_ASSERT (*tls_type & GOT_TLS_IE);
|
2422 |
|
|
if (*tls_type & GOT_TLS_GD)
|
2423 |
|
|
return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
|
2424 |
|
|
else
|
2425 |
|
|
return got_index;
|
2426 |
|
|
}
|
2427 |
|
|
|
2428 |
|
|
if (r_type == R_MIPS_TLS_GD)
|
2429 |
|
|
{
|
2430 |
|
|
BFD_ASSERT (*tls_type & GOT_TLS_GD);
|
2431 |
|
|
return got_index;
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
if (r_type == R_MIPS_TLS_LDM)
|
2435 |
|
|
{
|
2436 |
|
|
BFD_ASSERT (*tls_type & GOT_TLS_LDM);
|
2437 |
|
|
return got_index;
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
return got_index;
|
2441 |
|
|
}
|
2442 |
|
|
|
2443 |
|
|
/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
|
2444 |
|
|
for global symbol H. .got.plt comes before the GOT, so the offset
|
2445 |
|
|
will be negative. */
|
2446 |
|
|
|
2447 |
|
|
static bfd_vma
|
2448 |
|
|
mips_elf_gotplt_index (struct bfd_link_info *info,
|
2449 |
|
|
struct elf_link_hash_entry *h)
|
2450 |
|
|
{
|
2451 |
|
|
bfd_vma plt_index, got_address, got_value;
|
2452 |
|
|
struct mips_elf_link_hash_table *htab;
|
2453 |
|
|
|
2454 |
|
|
htab = mips_elf_hash_table (info);
|
2455 |
|
|
BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
|
2456 |
|
|
|
2457 |
|
|
/* Calculate the index of the symbol's PLT entry. */
|
2458 |
|
|
plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
|
2459 |
|
|
|
2460 |
|
|
/* Calculate the address of the associated .got.plt entry. */
|
2461 |
|
|
got_address = (htab->sgotplt->output_section->vma
|
2462 |
|
|
+ htab->sgotplt->output_offset
|
2463 |
|
|
+ plt_index * 4);
|
2464 |
|
|
|
2465 |
|
|
/* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
|
2466 |
|
|
got_value = (htab->root.hgot->root.u.def.section->output_section->vma
|
2467 |
|
|
+ htab->root.hgot->root.u.def.section->output_offset
|
2468 |
|
|
+ htab->root.hgot->root.u.def.value);
|
2469 |
|
|
|
2470 |
|
|
return got_address - got_value;
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
/* Return the GOT offset for address VALUE. If there is not yet a GOT
|
2474 |
|
|
entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
|
2475 |
|
|
create a TLS GOT entry instead. Return -1 if no satisfactory GOT
|
2476 |
|
|
offset can be found. */
|
2477 |
|
|
|
2478 |
|
|
static bfd_vma
|
2479 |
|
|
mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
|
2480 |
|
|
bfd_vma value, unsigned long r_symndx,
|
2481 |
|
|
struct mips_elf_link_hash_entry *h, int r_type)
|
2482 |
|
|
{
|
2483 |
|
|
asection *sgot;
|
2484 |
|
|
struct mips_got_info *g;
|
2485 |
|
|
struct mips_got_entry *entry;
|
2486 |
|
|
|
2487 |
|
|
g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
|
2488 |
|
|
|
2489 |
|
|
entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
|
2490 |
|
|
value, r_symndx, h, r_type);
|
2491 |
|
|
if (!entry)
|
2492 |
|
|
return MINUS_ONE;
|
2493 |
|
|
|
2494 |
|
|
if (TLS_RELOC_P (r_type))
|
2495 |
|
|
{
|
2496 |
|
|
if (entry->symndx == -1 && g->next == NULL)
|
2497 |
|
|
/* A type (3) entry in the single-GOT case. We use the symbol's
|
2498 |
|
|
hash table entry to track the index. */
|
2499 |
|
|
return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
|
2500 |
|
|
r_type, info, h, value);
|
2501 |
|
|
else
|
2502 |
|
|
return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
|
2503 |
|
|
r_type, info, h, value);
|
2504 |
|
|
}
|
2505 |
|
|
else
|
2506 |
|
|
return entry->gotidx;
|
2507 |
|
|
}
|
2508 |
|
|
|
2509 |
|
|
/* Returns the GOT index for the global symbol indicated by H. */
|
2510 |
|
|
|
2511 |
|
|
static bfd_vma
|
2512 |
|
|
mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
|
2513 |
|
|
int r_type, struct bfd_link_info *info)
|
2514 |
|
|
{
|
2515 |
|
|
bfd_vma index;
|
2516 |
|
|
asection *sgot;
|
2517 |
|
|
struct mips_got_info *g, *gg;
|
2518 |
|
|
long global_got_dynindx = 0;
|
2519 |
|
|
|
2520 |
|
|
gg = g = mips_elf_got_info (abfd, &sgot);
|
2521 |
|
|
if (g->bfd2got && ibfd)
|
2522 |
|
|
{
|
2523 |
|
|
struct mips_got_entry e, *p;
|
2524 |
|
|
|
2525 |
|
|
BFD_ASSERT (h->dynindx >= 0);
|
2526 |
|
|
|
2527 |
|
|
g = mips_elf_got_for_ibfd (g, ibfd);
|
2528 |
|
|
if (g->next != gg || TLS_RELOC_P (r_type))
|
2529 |
|
|
{
|
2530 |
|
|
e.abfd = ibfd;
|
2531 |
|
|
e.symndx = -1;
|
2532 |
|
|
e.d.h = (struct mips_elf_link_hash_entry *)h;
|
2533 |
|
|
e.tls_type = 0;
|
2534 |
|
|
|
2535 |
|
|
p = htab_find (g->got_entries, &e);
|
2536 |
|
|
|
2537 |
|
|
BFD_ASSERT (p->gotidx > 0);
|
2538 |
|
|
|
2539 |
|
|
if (TLS_RELOC_P (r_type))
|
2540 |
|
|
{
|
2541 |
|
|
bfd_vma value = MINUS_ONE;
|
2542 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
2543 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
2544 |
|
|
&& h->root.u.def.section->output_section)
|
2545 |
|
|
value = (h->root.u.def.value
|
2546 |
|
|
+ h->root.u.def.section->output_offset
|
2547 |
|
|
+ h->root.u.def.section->output_section->vma);
|
2548 |
|
|
|
2549 |
|
|
return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
|
2550 |
|
|
info, e.d.h, value);
|
2551 |
|
|
}
|
2552 |
|
|
else
|
2553 |
|
|
return p->gotidx;
|
2554 |
|
|
}
|
2555 |
|
|
}
|
2556 |
|
|
|
2557 |
|
|
if (gg->global_gotsym != NULL)
|
2558 |
|
|
global_got_dynindx = gg->global_gotsym->dynindx;
|
2559 |
|
|
|
2560 |
|
|
if (TLS_RELOC_P (r_type))
|
2561 |
|
|
{
|
2562 |
|
|
struct mips_elf_link_hash_entry *hm
|
2563 |
|
|
= (struct mips_elf_link_hash_entry *) h;
|
2564 |
|
|
bfd_vma value = MINUS_ONE;
|
2565 |
|
|
|
2566 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
2567 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
2568 |
|
|
&& h->root.u.def.section->output_section)
|
2569 |
|
|
value = (h->root.u.def.value
|
2570 |
|
|
+ h->root.u.def.section->output_offset
|
2571 |
|
|
+ h->root.u.def.section->output_section->vma);
|
2572 |
|
|
|
2573 |
|
|
index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
|
2574 |
|
|
r_type, info, hm, value);
|
2575 |
|
|
}
|
2576 |
|
|
else
|
2577 |
|
|
{
|
2578 |
|
|
/* Once we determine the global GOT entry with the lowest dynamic
|
2579 |
|
|
symbol table index, we must put all dynamic symbols with greater
|
2580 |
|
|
indices into the GOT. That makes it easy to calculate the GOT
|
2581 |
|
|
offset. */
|
2582 |
|
|
BFD_ASSERT (h->dynindx >= global_got_dynindx);
|
2583 |
|
|
index = ((h->dynindx - global_got_dynindx + g->local_gotno)
|
2584 |
|
|
* MIPS_ELF_GOT_SIZE (abfd));
|
2585 |
|
|
}
|
2586 |
|
|
BFD_ASSERT (index < sgot->size);
|
2587 |
|
|
|
2588 |
|
|
return index;
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
/* Find a GOT page entry that points to within 32KB of VALUE. These
|
2592 |
|
|
entries are supposed to be placed at small offsets in the GOT, i.e.,
|
2593 |
|
|
within 32KB of GP. Return the index of the GOT entry, or -1 if no
|
2594 |
|
|
entry could be created. If OFFSETP is nonnull, use it to return the
|
2595 |
|
|
offset of the GOT entry from VALUE. */
|
2596 |
|
|
|
2597 |
|
|
static bfd_vma
|
2598 |
|
|
mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
|
2599 |
|
|
bfd_vma value, bfd_vma *offsetp)
|
2600 |
|
|
{
|
2601 |
|
|
asection *sgot;
|
2602 |
|
|
struct mips_got_info *g;
|
2603 |
|
|
bfd_vma page, index;
|
2604 |
|
|
struct mips_got_entry *entry;
|
2605 |
|
|
|
2606 |
|
|
g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
|
2607 |
|
|
|
2608 |
|
|
page = (value + 0x8000) & ~(bfd_vma) 0xffff;
|
2609 |
|
|
entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
|
2610 |
|
|
page, 0, NULL, R_MIPS_GOT_PAGE);
|
2611 |
|
|
|
2612 |
|
|
if (!entry)
|
2613 |
|
|
return MINUS_ONE;
|
2614 |
|
|
|
2615 |
|
|
index = entry->gotidx;
|
2616 |
|
|
|
2617 |
|
|
if (offsetp)
|
2618 |
|
|
*offsetp = value - entry->d.address;
|
2619 |
|
|
|
2620 |
|
|
return index;
|
2621 |
|
|
}
|
2622 |
|
|
|
2623 |
|
|
/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
|
2624 |
|
|
EXTERNAL is true if the relocation was against a global symbol
|
2625 |
|
|
that has been forced local. */
|
2626 |
|
|
|
2627 |
|
|
static bfd_vma
|
2628 |
|
|
mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
|
2629 |
|
|
bfd_vma value, bfd_boolean external)
|
2630 |
|
|
{
|
2631 |
|
|
asection *sgot;
|
2632 |
|
|
struct mips_got_info *g;
|
2633 |
|
|
struct mips_got_entry *entry;
|
2634 |
|
|
|
2635 |
|
|
/* GOT16 relocations against local symbols are followed by a LO16
|
2636 |
|
|
relocation; those against global symbols are not. Thus if the
|
2637 |
|
|
symbol was originally local, the GOT16 relocation should load the
|
2638 |
|
|
equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
|
2639 |
|
|
if (! external)
|
2640 |
|
|
value = mips_elf_high (value) << 16;
|
2641 |
|
|
|
2642 |
|
|
g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
|
2643 |
|
|
|
2644 |
|
|
entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
|
2645 |
|
|
value, 0, NULL, R_MIPS_GOT16);
|
2646 |
|
|
if (entry)
|
2647 |
|
|
return entry->gotidx;
|
2648 |
|
|
else
|
2649 |
|
|
return MINUS_ONE;
|
2650 |
|
|
}
|
2651 |
|
|
|
2652 |
|
|
/* Returns the offset for the entry at the INDEXth position
|
2653 |
|
|
in the GOT. */
|
2654 |
|
|
|
2655 |
|
|
static bfd_vma
|
2656 |
|
|
mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
|
2657 |
|
|
bfd *input_bfd, bfd_vma index)
|
2658 |
|
|
{
|
2659 |
|
|
asection *sgot;
|
2660 |
|
|
bfd_vma gp;
|
2661 |
|
|
struct mips_got_info *g;
|
2662 |
|
|
|
2663 |
|
|
g = mips_elf_got_info (dynobj, &sgot);
|
2664 |
|
|
gp = _bfd_get_gp_value (output_bfd)
|
2665 |
|
|
+ mips_elf_adjust_gp (output_bfd, g, input_bfd);
|
2666 |
|
|
|
2667 |
|
|
return sgot->output_section->vma + sgot->output_offset + index - gp;
|
2668 |
|
|
}
|
2669 |
|
|
|
2670 |
|
|
/* Create and return a local GOT entry for VALUE, which was calculated
|
2671 |
|
|
from a symbol belonging to INPUT_SECTON. Return NULL if it could not
|
2672 |
|
|
be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
|
2673 |
|
|
instead. */
|
2674 |
|
|
|
2675 |
|
|
static struct mips_got_entry *
|
2676 |
|
|
mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
|
2677 |
|
|
bfd *ibfd, struct mips_got_info *gg,
|
2678 |
|
|
asection *sgot, bfd_vma value,
|
2679 |
|
|
unsigned long r_symndx,
|
2680 |
|
|
struct mips_elf_link_hash_entry *h,
|
2681 |
|
|
int r_type)
|
2682 |
|
|
{
|
2683 |
|
|
struct mips_got_entry entry, **loc;
|
2684 |
|
|
struct mips_got_info *g;
|
2685 |
|
|
struct mips_elf_link_hash_table *htab;
|
2686 |
|
|
|
2687 |
|
|
htab = mips_elf_hash_table (info);
|
2688 |
|
|
|
2689 |
|
|
entry.abfd = NULL;
|
2690 |
|
|
entry.symndx = -1;
|
2691 |
|
|
entry.d.address = value;
|
2692 |
|
|
entry.tls_type = 0;
|
2693 |
|
|
|
2694 |
|
|
g = mips_elf_got_for_ibfd (gg, ibfd);
|
2695 |
|
|
if (g == NULL)
|
2696 |
|
|
{
|
2697 |
|
|
g = mips_elf_got_for_ibfd (gg, abfd);
|
2698 |
|
|
BFD_ASSERT (g != NULL);
|
2699 |
|
|
}
|
2700 |
|
|
|
2701 |
|
|
/* We might have a symbol, H, if it has been forced local. Use the
|
2702 |
|
|
global entry then. It doesn't matter whether an entry is local
|
2703 |
|
|
or global for TLS, since the dynamic linker does not
|
2704 |
|
|
automatically relocate TLS GOT entries. */
|
2705 |
|
|
BFD_ASSERT (h == NULL || h->root.forced_local);
|
2706 |
|
|
if (TLS_RELOC_P (r_type))
|
2707 |
|
|
{
|
2708 |
|
|
struct mips_got_entry *p;
|
2709 |
|
|
|
2710 |
|
|
entry.abfd = ibfd;
|
2711 |
|
|
if (r_type == R_MIPS_TLS_LDM)
|
2712 |
|
|
{
|
2713 |
|
|
entry.tls_type = GOT_TLS_LDM;
|
2714 |
|
|
entry.symndx = 0;
|
2715 |
|
|
entry.d.addend = 0;
|
2716 |
|
|
}
|
2717 |
|
|
else if (h == NULL)
|
2718 |
|
|
{
|
2719 |
|
|
entry.symndx = r_symndx;
|
2720 |
|
|
entry.d.addend = 0;
|
2721 |
|
|
}
|
2722 |
|
|
else
|
2723 |
|
|
entry.d.h = h;
|
2724 |
|
|
|
2725 |
|
|
p = (struct mips_got_entry *)
|
2726 |
|
|
htab_find (g->got_entries, &entry);
|
2727 |
|
|
|
2728 |
|
|
BFD_ASSERT (p);
|
2729 |
|
|
return p;
|
2730 |
|
|
}
|
2731 |
|
|
|
2732 |
|
|
loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
|
2733 |
|
|
INSERT);
|
2734 |
|
|
if (*loc)
|
2735 |
|
|
return *loc;
|
2736 |
|
|
|
2737 |
|
|
entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
|
2738 |
|
|
entry.tls_type = 0;
|
2739 |
|
|
|
2740 |
|
|
*loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
|
2741 |
|
|
|
2742 |
|
|
if (! *loc)
|
2743 |
|
|
return NULL;
|
2744 |
|
|
|
2745 |
|
|
memcpy (*loc, &entry, sizeof entry);
|
2746 |
|
|
|
2747 |
|
|
if (g->assigned_gotno > g->local_gotno)
|
2748 |
|
|
{
|
2749 |
|
|
(*loc)->gotidx = -1;
|
2750 |
|
|
/* We didn't allocate enough space in the GOT. */
|
2751 |
|
|
(*_bfd_error_handler)
|
2752 |
|
|
(_("not enough GOT space for local GOT entries"));
|
2753 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2754 |
|
|
return NULL;
|
2755 |
|
|
}
|
2756 |
|
|
|
2757 |
|
|
MIPS_ELF_PUT_WORD (abfd, value,
|
2758 |
|
|
(sgot->contents + entry.gotidx));
|
2759 |
|
|
|
2760 |
|
|
/* These GOT entries need a dynamic relocation on VxWorks. */
|
2761 |
|
|
if (htab->is_vxworks)
|
2762 |
|
|
{
|
2763 |
|
|
Elf_Internal_Rela outrel;
|
2764 |
|
|
asection *s;
|
2765 |
|
|
bfd_byte *loc;
|
2766 |
|
|
bfd_vma got_address;
|
2767 |
|
|
|
2768 |
|
|
s = mips_elf_rel_dyn_section (info, FALSE);
|
2769 |
|
|
got_address = (sgot->output_section->vma
|
2770 |
|
|
+ sgot->output_offset
|
2771 |
|
|
+ entry.gotidx);
|
2772 |
|
|
|
2773 |
|
|
loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
|
2774 |
|
|
outrel.r_offset = got_address;
|
2775 |
|
|
outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
|
2776 |
|
|
outrel.r_addend = value;
|
2777 |
|
|
bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
|
2778 |
|
|
}
|
2779 |
|
|
|
2780 |
|
|
return *loc;
|
2781 |
|
|
}
|
2782 |
|
|
|
2783 |
|
|
/* Sort the dynamic symbol table so that symbols that need GOT entries
|
2784 |
|
|
appear towards the end. This reduces the amount of GOT space
|
2785 |
|
|
required. MAX_LOCAL is used to set the number of local symbols
|
2786 |
|
|
known to be in the dynamic symbol table. During
|
2787 |
|
|
_bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
|
2788 |
|
|
section symbols are added and the count is higher. */
|
2789 |
|
|
|
2790 |
|
|
static bfd_boolean
|
2791 |
|
|
mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
|
2792 |
|
|
{
|
2793 |
|
|
struct mips_elf_hash_sort_data hsd;
|
2794 |
|
|
struct mips_got_info *g;
|
2795 |
|
|
bfd *dynobj;
|
2796 |
|
|
|
2797 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2798 |
|
|
|
2799 |
|
|
g = mips_elf_got_info (dynobj, NULL);
|
2800 |
|
|
|
2801 |
|
|
hsd.low = NULL;
|
2802 |
|
|
hsd.max_unref_got_dynindx =
|
2803 |
|
|
hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
|
2804 |
|
|
/* In the multi-got case, assigned_gotno of the master got_info
|
2805 |
|
|
indicate the number of entries that aren't referenced in the
|
2806 |
|
|
primary GOT, but that must have entries because there are
|
2807 |
|
|
dynamic relocations that reference it. Since they aren't
|
2808 |
|
|
referenced, we move them to the end of the GOT, so that they
|
2809 |
|
|
don't prevent other entries that are referenced from getting
|
2810 |
|
|
too large offsets. */
|
2811 |
|
|
- (g->next ? g->assigned_gotno : 0);
|
2812 |
|
|
hsd.max_non_got_dynindx = max_local;
|
2813 |
|
|
mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
|
2814 |
|
|
elf_hash_table (info)),
|
2815 |
|
|
mips_elf_sort_hash_table_f,
|
2816 |
|
|
&hsd);
|
2817 |
|
|
|
2818 |
|
|
/* There should have been enough room in the symbol table to
|
2819 |
|
|
accommodate both the GOT and non-GOT symbols. */
|
2820 |
|
|
BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
|
2821 |
|
|
BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
|
2822 |
|
|
<= elf_hash_table (info)->dynsymcount);
|
2823 |
|
|
|
2824 |
|
|
/* Now we know which dynamic symbol has the lowest dynamic symbol
|
2825 |
|
|
table index in the GOT. */
|
2826 |
|
|
g->global_gotsym = hsd.low;
|
2827 |
|
|
|
2828 |
|
|
return TRUE;
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
/* If H needs a GOT entry, assign it the highest available dynamic
|
2832 |
|
|
index. Otherwise, assign it the lowest available dynamic
|
2833 |
|
|
index. */
|
2834 |
|
|
|
2835 |
|
|
static bfd_boolean
|
2836 |
|
|
mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
|
2837 |
|
|
{
|
2838 |
|
|
struct mips_elf_hash_sort_data *hsd = data;
|
2839 |
|
|
|
2840 |
|
|
if (h->root.root.type == bfd_link_hash_warning)
|
2841 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
2842 |
|
|
|
2843 |
|
|
/* Symbols without dynamic symbol table entries aren't interesting
|
2844 |
|
|
at all. */
|
2845 |
|
|
if (h->root.dynindx == -1)
|
2846 |
|
|
return TRUE;
|
2847 |
|
|
|
2848 |
|
|
/* Global symbols that need GOT entries that are not explicitly
|
2849 |
|
|
referenced are marked with got offset 2. Those that are
|
2850 |
|
|
referenced get a 1, and those that don't need GOT entries get
|
2851 |
|
|
-1. Forced local symbols may also be marked with got offset 1,
|
2852 |
|
|
but are never given global GOT entries. */
|
2853 |
|
|
if (h->root.got.offset == 2)
|
2854 |
|
|
{
|
2855 |
|
|
BFD_ASSERT (h->tls_type == GOT_NORMAL);
|
2856 |
|
|
|
2857 |
|
|
if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
|
2858 |
|
|
hsd->low = (struct elf_link_hash_entry *) h;
|
2859 |
|
|
h->root.dynindx = hsd->max_unref_got_dynindx++;
|
2860 |
|
|
}
|
2861 |
|
|
else if (h->root.got.offset != 1 || h->forced_local)
|
2862 |
|
|
h->root.dynindx = hsd->max_non_got_dynindx++;
|
2863 |
|
|
else
|
2864 |
|
|
{
|
2865 |
|
|
BFD_ASSERT (h->tls_type == GOT_NORMAL);
|
2866 |
|
|
|
2867 |
|
|
h->root.dynindx = --hsd->min_got_dynindx;
|
2868 |
|
|
hsd->low = (struct elf_link_hash_entry *) h;
|
2869 |
|
|
}
|
2870 |
|
|
|
2871 |
|
|
return TRUE;
|
2872 |
|
|
}
|
2873 |
|
|
|
2874 |
|
|
/* If H is a symbol that needs a global GOT entry, but has a dynamic
|
2875 |
|
|
symbol table index lower than any we've seen to date, record it for
|
2876 |
|
|
posterity. */
|
2877 |
|
|
|
2878 |
|
|
static bfd_boolean
|
2879 |
|
|
mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
|
2880 |
|
|
bfd *abfd, struct bfd_link_info *info,
|
2881 |
|
|
struct mips_got_info *g,
|
2882 |
|
|
unsigned char tls_flag)
|
2883 |
|
|
{
|
2884 |
|
|
struct mips_got_entry entry, **loc;
|
2885 |
|
|
|
2886 |
|
|
/* A global symbol in the GOT must also be in the dynamic symbol
|
2887 |
|
|
table. */
|
2888 |
|
|
if (h->dynindx == -1)
|
2889 |
|
|
{
|
2890 |
|
|
switch (ELF_ST_VISIBILITY (h->other))
|
2891 |
|
|
{
|
2892 |
|
|
case STV_INTERNAL:
|
2893 |
|
|
case STV_HIDDEN:
|
2894 |
|
|
_bfd_mips_elf_hide_symbol (info, h, TRUE);
|
2895 |
|
|
break;
|
2896 |
|
|
}
|
2897 |
|
|
if (!bfd_elf_link_record_dynamic_symbol (info, h))
|
2898 |
|
|
return FALSE;
|
2899 |
|
|
}
|
2900 |
|
|
|
2901 |
|
|
/* Make sure we have a GOT to put this entry into. */
|
2902 |
|
|
BFD_ASSERT (g != NULL);
|
2903 |
|
|
|
2904 |
|
|
entry.abfd = abfd;
|
2905 |
|
|
entry.symndx = -1;
|
2906 |
|
|
entry.d.h = (struct mips_elf_link_hash_entry *) h;
|
2907 |
|
|
entry.tls_type = 0;
|
2908 |
|
|
|
2909 |
|
|
loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
|
2910 |
|
|
INSERT);
|
2911 |
|
|
|
2912 |
|
|
/* If we've already marked this entry as needing GOT space, we don't
|
2913 |
|
|
need to do it again. */
|
2914 |
|
|
if (*loc)
|
2915 |
|
|
{
|
2916 |
|
|
(*loc)->tls_type |= tls_flag;
|
2917 |
|
|
return TRUE;
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
*loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
|
2921 |
|
|
|
2922 |
|
|
if (! *loc)
|
2923 |
|
|
return FALSE;
|
2924 |
|
|
|
2925 |
|
|
entry.gotidx = -1;
|
2926 |
|
|
entry.tls_type = tls_flag;
|
2927 |
|
|
|
2928 |
|
|
memcpy (*loc, &entry, sizeof entry);
|
2929 |
|
|
|
2930 |
|
|
if (h->got.offset != MINUS_ONE)
|
2931 |
|
|
return TRUE;
|
2932 |
|
|
|
2933 |
|
|
if (tls_flag == 0)
|
2934 |
|
|
{
|
2935 |
|
|
/* By setting this to a value other than -1, we are indicating that
|
2936 |
|
|
there needs to be a GOT entry for H. Avoid using zero, as the
|
2937 |
|
|
generic ELF copy_indirect_symbol tests for <= 0. */
|
2938 |
|
|
h->got.offset = 1;
|
2939 |
|
|
if (h->forced_local)
|
2940 |
|
|
g->local_gotno++;
|
2941 |
|
|
}
|
2942 |
|
|
|
2943 |
|
|
return TRUE;
|
2944 |
|
|
}
|
2945 |
|
|
|
2946 |
|
|
/* Reserve space in G for a GOT entry containing the value of symbol
|
2947 |
|
|
SYMNDX in input bfd ABDF, plus ADDEND. */
|
2948 |
|
|
|
2949 |
|
|
static bfd_boolean
|
2950 |
|
|
mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
|
2951 |
|
|
struct mips_got_info *g,
|
2952 |
|
|
unsigned char tls_flag)
|
2953 |
|
|
{
|
2954 |
|
|
struct mips_got_entry entry, **loc;
|
2955 |
|
|
|
2956 |
|
|
entry.abfd = abfd;
|
2957 |
|
|
entry.symndx = symndx;
|
2958 |
|
|
entry.d.addend = addend;
|
2959 |
|
|
entry.tls_type = tls_flag;
|
2960 |
|
|
loc = (struct mips_got_entry **)
|
2961 |
|
|
htab_find_slot (g->got_entries, &entry, INSERT);
|
2962 |
|
|
|
2963 |
|
|
if (*loc)
|
2964 |
|
|
{
|
2965 |
|
|
if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
|
2966 |
|
|
{
|
2967 |
|
|
g->tls_gotno += 2;
|
2968 |
|
|
(*loc)->tls_type |= tls_flag;
|
2969 |
|
|
}
|
2970 |
|
|
else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
|
2971 |
|
|
{
|
2972 |
|
|
g->tls_gotno += 1;
|
2973 |
|
|
(*loc)->tls_type |= tls_flag;
|
2974 |
|
|
}
|
2975 |
|
|
return TRUE;
|
2976 |
|
|
}
|
2977 |
|
|
|
2978 |
|
|
if (tls_flag != 0)
|
2979 |
|
|
{
|
2980 |
|
|
entry.gotidx = -1;
|
2981 |
|
|
entry.tls_type = tls_flag;
|
2982 |
|
|
if (tls_flag == GOT_TLS_IE)
|
2983 |
|
|
g->tls_gotno += 1;
|
2984 |
|
|
else if (tls_flag == GOT_TLS_GD)
|
2985 |
|
|
g->tls_gotno += 2;
|
2986 |
|
|
else if (g->tls_ldm_offset == MINUS_ONE)
|
2987 |
|
|
{
|
2988 |
|
|
g->tls_ldm_offset = MINUS_TWO;
|
2989 |
|
|
g->tls_gotno += 2;
|
2990 |
|
|
}
|
2991 |
|
|
}
|
2992 |
|
|
else
|
2993 |
|
|
{
|
2994 |
|
|
entry.gotidx = g->local_gotno++;
|
2995 |
|
|
entry.tls_type = 0;
|
2996 |
|
|
}
|
2997 |
|
|
|
2998 |
|
|
*loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
|
2999 |
|
|
|
3000 |
|
|
if (! *loc)
|
3001 |
|
|
return FALSE;
|
3002 |
|
|
|
3003 |
|
|
memcpy (*loc, &entry, sizeof entry);
|
3004 |
|
|
|
3005 |
|
|
return TRUE;
|
3006 |
|
|
}
|
3007 |
|
|
|
3008 |
|
|
/* Return the maximum number of GOT page entries required for RANGE. */
|
3009 |
|
|
|
3010 |
|
|
static bfd_vma
|
3011 |
|
|
mips_elf_pages_for_range (const struct mips_got_page_range *range)
|
3012 |
|
|
{
|
3013 |
|
|
return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
|
3014 |
|
|
}
|
3015 |
|
|
|
3016 |
|
|
/* Record that ABFD has a page relocation against symbol SYMNDX and
|
3017 |
|
|
that ADDEND is the addend for that relocation. G is the GOT
|
3018 |
|
|
information. This function creates an upper bound on the number of
|
3019 |
|
|
GOT slots required; no attempt is made to combine references to
|
3020 |
|
|
non-overridable global symbols across multiple input files. */
|
3021 |
|
|
|
3022 |
|
|
static bfd_boolean
|
3023 |
|
|
mips_elf_record_got_page_entry (bfd *abfd, long symndx, bfd_signed_vma addend,
|
3024 |
|
|
struct mips_got_info *g)
|
3025 |
|
|
{
|
3026 |
|
|
struct mips_got_page_entry lookup, *entry;
|
3027 |
|
|
struct mips_got_page_range **range_ptr, *range;
|
3028 |
|
|
bfd_vma old_pages, new_pages;
|
3029 |
|
|
void **loc;
|
3030 |
|
|
|
3031 |
|
|
/* Find the mips_got_page_entry hash table entry for this symbol. */
|
3032 |
|
|
lookup.abfd = abfd;
|
3033 |
|
|
lookup.symndx = symndx;
|
3034 |
|
|
loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
|
3035 |
|
|
if (loc == NULL)
|
3036 |
|
|
return FALSE;
|
3037 |
|
|
|
3038 |
|
|
/* Create a mips_got_page_entry if this is the first time we've
|
3039 |
|
|
seen the symbol. */
|
3040 |
|
|
entry = (struct mips_got_page_entry *) *loc;
|
3041 |
|
|
if (!entry)
|
3042 |
|
|
{
|
3043 |
|
|
entry = bfd_alloc (abfd, sizeof (*entry));
|
3044 |
|
|
if (!entry)
|
3045 |
|
|
return FALSE;
|
3046 |
|
|
|
3047 |
|
|
entry->abfd = abfd;
|
3048 |
|
|
entry->symndx = symndx;
|
3049 |
|
|
entry->ranges = NULL;
|
3050 |
|
|
entry->num_pages = 0;
|
3051 |
|
|
*loc = entry;
|
3052 |
|
|
}
|
3053 |
|
|
|
3054 |
|
|
/* Skip over ranges whose maximum extent cannot share a page entry
|
3055 |
|
|
with ADDEND. */
|
3056 |
|
|
range_ptr = &entry->ranges;
|
3057 |
|
|
while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
|
3058 |
|
|
range_ptr = &(*range_ptr)->next;
|
3059 |
|
|
|
3060 |
|
|
/* If we scanned to the end of the list, or found a range whose
|
3061 |
|
|
minimum extent cannot share a page entry with ADDEND, create
|
3062 |
|
|
a new singleton range. */
|
3063 |
|
|
range = *range_ptr;
|
3064 |
|
|
if (!range || addend < range->min_addend - 0xffff)
|
3065 |
|
|
{
|
3066 |
|
|
range = bfd_alloc (abfd, sizeof (*range));
|
3067 |
|
|
if (!range)
|
3068 |
|
|
return FALSE;
|
3069 |
|
|
|
3070 |
|
|
range->next = *range_ptr;
|
3071 |
|
|
range->min_addend = addend;
|
3072 |
|
|
range->max_addend = addend;
|
3073 |
|
|
|
3074 |
|
|
*range_ptr = range;
|
3075 |
|
|
entry->num_pages++;
|
3076 |
|
|
g->page_gotno++;
|
3077 |
|
|
return TRUE;
|
3078 |
|
|
}
|
3079 |
|
|
|
3080 |
|
|
/* Remember how many pages the old range contributed. */
|
3081 |
|
|
old_pages = mips_elf_pages_for_range (range);
|
3082 |
|
|
|
3083 |
|
|
/* Update the ranges. */
|
3084 |
|
|
if (addend < range->min_addend)
|
3085 |
|
|
range->min_addend = addend;
|
3086 |
|
|
else if (addend > range->max_addend)
|
3087 |
|
|
{
|
3088 |
|
|
if (range->next && addend >= range->next->min_addend - 0xffff)
|
3089 |
|
|
{
|
3090 |
|
|
old_pages += mips_elf_pages_for_range (range->next);
|
3091 |
|
|
range->max_addend = range->next->max_addend;
|
3092 |
|
|
range->next = range->next->next;
|
3093 |
|
|
}
|
3094 |
|
|
else
|
3095 |
|
|
range->max_addend = addend;
|
3096 |
|
|
}
|
3097 |
|
|
|
3098 |
|
|
/* Record any change in the total estimate. */
|
3099 |
|
|
new_pages = mips_elf_pages_for_range (range);
|
3100 |
|
|
if (old_pages != new_pages)
|
3101 |
|
|
{
|
3102 |
|
|
entry->num_pages += new_pages - old_pages;
|
3103 |
|
|
g->page_gotno += new_pages - old_pages;
|
3104 |
|
|
}
|
3105 |
|
|
|
3106 |
|
|
return TRUE;
|
3107 |
|
|
}
|
3108 |
|
|
|
3109 |
|
|
/* Compute the hash value of the bfd in a bfd2got hash entry. */
|
3110 |
|
|
|
3111 |
|
|
static hashval_t
|
3112 |
|
|
mips_elf_bfd2got_entry_hash (const void *entry_)
|
3113 |
|
|
{
|
3114 |
|
|
const struct mips_elf_bfd2got_hash *entry
|
3115 |
|
|
= (struct mips_elf_bfd2got_hash *)entry_;
|
3116 |
|
|
|
3117 |
|
|
return entry->bfd->id;
|
3118 |
|
|
}
|
3119 |
|
|
|
3120 |
|
|
/* Check whether two hash entries have the same bfd. */
|
3121 |
|
|
|
3122 |
|
|
static int
|
3123 |
|
|
mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
|
3124 |
|
|
{
|
3125 |
|
|
const struct mips_elf_bfd2got_hash *e1
|
3126 |
|
|
= (const struct mips_elf_bfd2got_hash *)entry1;
|
3127 |
|
|
const struct mips_elf_bfd2got_hash *e2
|
3128 |
|
|
= (const struct mips_elf_bfd2got_hash *)entry2;
|
3129 |
|
|
|
3130 |
|
|
return e1->bfd == e2->bfd;
|
3131 |
|
|
}
|
3132 |
|
|
|
3133 |
|
|
/* In a multi-got link, determine the GOT to be used for IBFD. G must
|
3134 |
|
|
be the master GOT data. */
|
3135 |
|
|
|
3136 |
|
|
static struct mips_got_info *
|
3137 |
|
|
mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
|
3138 |
|
|
{
|
3139 |
|
|
struct mips_elf_bfd2got_hash e, *p;
|
3140 |
|
|
|
3141 |
|
|
if (! g->bfd2got)
|
3142 |
|
|
return g;
|
3143 |
|
|
|
3144 |
|
|
e.bfd = ibfd;
|
3145 |
|
|
p = htab_find (g->bfd2got, &e);
|
3146 |
|
|
return p ? p->g : NULL;
|
3147 |
|
|
}
|
3148 |
|
|
|
3149 |
|
|
/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
|
3150 |
|
|
Return NULL if an error occured. */
|
3151 |
|
|
|
3152 |
|
|
static struct mips_got_info *
|
3153 |
|
|
mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
|
3154 |
|
|
bfd *input_bfd)
|
3155 |
|
|
{
|
3156 |
|
|
struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
|
3157 |
|
|
struct mips_got_info *g;
|
3158 |
|
|
void **bfdgotp;
|
3159 |
|
|
|
3160 |
|
|
bfdgot_entry.bfd = input_bfd;
|
3161 |
|
|
bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
|
3162 |
|
|
bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
|
3163 |
|
|
|
3164 |
|
|
if (bfdgot == NULL)
|
3165 |
|
|
{
|
3166 |
|
|
bfdgot = ((struct mips_elf_bfd2got_hash *)
|
3167 |
|
|
bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
|
3168 |
|
|
if (bfdgot == NULL)
|
3169 |
|
|
return NULL;
|
3170 |
|
|
|
3171 |
|
|
*bfdgotp = bfdgot;
|
3172 |
|
|
|
3173 |
|
|
g = ((struct mips_got_info *)
|
3174 |
|
|
bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
|
3175 |
|
|
if (g == NULL)
|
3176 |
|
|
return NULL;
|
3177 |
|
|
|
3178 |
|
|
bfdgot->bfd = input_bfd;
|
3179 |
|
|
bfdgot->g = g;
|
3180 |
|
|
|
3181 |
|
|
g->global_gotsym = NULL;
|
3182 |
|
|
g->global_gotno = 0;
|
3183 |
|
|
g->local_gotno = 0;
|
3184 |
|
|
g->page_gotno = 0;
|
3185 |
|
|
g->assigned_gotno = -1;
|
3186 |
|
|
g->tls_gotno = 0;
|
3187 |
|
|
g->tls_assigned_gotno = 0;
|
3188 |
|
|
g->tls_ldm_offset = MINUS_ONE;
|
3189 |
|
|
g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
|
3190 |
|
|
mips_elf_multi_got_entry_eq, NULL);
|
3191 |
|
|
if (g->got_entries == NULL)
|
3192 |
|
|
return NULL;
|
3193 |
|
|
|
3194 |
|
|
g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
|
3195 |
|
|
mips_got_page_entry_eq, NULL);
|
3196 |
|
|
if (g->got_page_entries == NULL)
|
3197 |
|
|
return NULL;
|
3198 |
|
|
|
3199 |
|
|
g->bfd2got = NULL;
|
3200 |
|
|
g->next = NULL;
|
3201 |
|
|
}
|
3202 |
|
|
|
3203 |
|
|
return bfdgot->g;
|
3204 |
|
|
}
|
3205 |
|
|
|
3206 |
|
|
/* A htab_traverse callback for the entries in the master got.
|
3207 |
|
|
Create one separate got for each bfd that has entries in the global
|
3208 |
|
|
got, such that we can tell how many local and global entries each
|
3209 |
|
|
bfd requires. */
|
3210 |
|
|
|
3211 |
|
|
static int
|
3212 |
|
|
mips_elf_make_got_per_bfd (void **entryp, void *p)
|
3213 |
|
|
{
|
3214 |
|
|
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
3215 |
|
|
struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
|
3216 |
|
|
struct mips_got_info *g;
|
3217 |
|
|
|
3218 |
|
|
g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
|
3219 |
|
|
if (g == NULL)
|
3220 |
|
|
{
|
3221 |
|
|
arg->obfd = NULL;
|
3222 |
|
|
return 0;
|
3223 |
|
|
}
|
3224 |
|
|
|
3225 |
|
|
/* Insert the GOT entry in the bfd's got entry hash table. */
|
3226 |
|
|
entryp = htab_find_slot (g->got_entries, entry, INSERT);
|
3227 |
|
|
if (*entryp != NULL)
|
3228 |
|
|
return 1;
|
3229 |
|
|
|
3230 |
|
|
*entryp = entry;
|
3231 |
|
|
|
3232 |
|
|
if (entry->tls_type)
|
3233 |
|
|
{
|
3234 |
|
|
if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
|
3235 |
|
|
g->tls_gotno += 2;
|
3236 |
|
|
if (entry->tls_type & GOT_TLS_IE)
|
3237 |
|
|
g->tls_gotno += 1;
|
3238 |
|
|
}
|
3239 |
|
|
else if (entry->symndx >= 0 || entry->d.h->forced_local)
|
3240 |
|
|
++g->local_gotno;
|
3241 |
|
|
else
|
3242 |
|
|
++g->global_gotno;
|
3243 |
|
|
|
3244 |
|
|
return 1;
|
3245 |
|
|
}
|
3246 |
|
|
|
3247 |
|
|
/* A htab_traverse callback for the page entries in the master got.
|
3248 |
|
|
Associate each page entry with the bfd's got. */
|
3249 |
|
|
|
3250 |
|
|
static int
|
3251 |
|
|
mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
|
3252 |
|
|
{
|
3253 |
|
|
struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
|
3254 |
|
|
struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
|
3255 |
|
|
struct mips_got_info *g;
|
3256 |
|
|
|
3257 |
|
|
g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
|
3258 |
|
|
if (g == NULL)
|
3259 |
|
|
{
|
3260 |
|
|
arg->obfd = NULL;
|
3261 |
|
|
return 0;
|
3262 |
|
|
}
|
3263 |
|
|
|
3264 |
|
|
/* Insert the GOT entry in the bfd's got entry hash table. */
|
3265 |
|
|
entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
|
3266 |
|
|
if (*entryp != NULL)
|
3267 |
|
|
return 1;
|
3268 |
|
|
|
3269 |
|
|
*entryp = entry;
|
3270 |
|
|
g->page_gotno += entry->num_pages;
|
3271 |
|
|
return 1;
|
3272 |
|
|
}
|
3273 |
|
|
|
3274 |
|
|
/* Consider merging the got described by BFD2GOT with TO, using the
|
3275 |
|
|
information given by ARG. Return -1 if this would lead to overflow,
|
3276 |
|
|
1 if they were merged successfully, and 0 if a merge failed due to
|
3277 |
|
|
lack of memory. (These values are chosen so that nonnegative return
|
3278 |
|
|
values can be returned by a htab_traverse callback.) */
|
3279 |
|
|
|
3280 |
|
|
static int
|
3281 |
|
|
mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
|
3282 |
|
|
struct mips_got_info *to,
|
3283 |
|
|
struct mips_elf_got_per_bfd_arg *arg)
|
3284 |
|
|
{
|
3285 |
|
|
struct mips_got_info *from = bfd2got->g;
|
3286 |
|
|
unsigned int estimate;
|
3287 |
|
|
|
3288 |
|
|
/* Work out how many page entries we would need for the combined GOT. */
|
3289 |
|
|
estimate = arg->max_pages;
|
3290 |
|
|
if (estimate >= from->page_gotno + to->page_gotno)
|
3291 |
|
|
estimate = from->page_gotno + to->page_gotno;
|
3292 |
|
|
|
3293 |
|
|
/* And conservatively estimate how many local, global and TLS entries
|
3294 |
|
|
would be needed. */
|
3295 |
|
|
estimate += (from->local_gotno
|
3296 |
|
|
+ from->global_gotno
|
3297 |
|
|
+ from->tls_gotno
|
3298 |
|
|
+ to->local_gotno
|
3299 |
|
|
+ to->global_gotno
|
3300 |
|
|
+ to->tls_gotno);
|
3301 |
|
|
|
3302 |
|
|
/* Bail out if the combined GOT might be too big. */
|
3303 |
|
|
if (estimate > arg->max_count)
|
3304 |
|
|
return -1;
|
3305 |
|
|
|
3306 |
|
|
/* Commit to the merge. Record that TO is now the bfd for this got. */
|
3307 |
|
|
bfd2got->g = to;
|
3308 |
|
|
|
3309 |
|
|
/* Transfer the bfd's got information from FROM to TO. */
|
3310 |
|
|
htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
|
3311 |
|
|
if (arg->obfd == NULL)
|
3312 |
|
|
return 0;
|
3313 |
|
|
|
3314 |
|
|
htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
|
3315 |
|
|
if (arg->obfd == NULL)
|
3316 |
|
|
return 0;
|
3317 |
|
|
|
3318 |
|
|
/* We don't have to worry about releasing memory of the actual
|
3319 |
|
|
got entries, since they're all in the master got_entries hash
|
3320 |
|
|
table anyway. */
|
3321 |
|
|
htab_delete (from->got_entries);
|
3322 |
|
|
htab_delete (from->got_page_entries);
|
3323 |
|
|
return 1;
|
3324 |
|
|
}
|
3325 |
|
|
|
3326 |
|
|
/* Attempt to merge gots of different input bfds. Try to use as much
|
3327 |
|
|
as possible of the primary got, since it doesn't require explicit
|
3328 |
|
|
dynamic relocations, but don't use bfds that would reference global
|
3329 |
|
|
symbols out of the addressable range. Failing the primary got,
|
3330 |
|
|
attempt to merge with the current got, or finish the current got
|
3331 |
|
|
and then make make the new got current. */
|
3332 |
|
|
|
3333 |
|
|
static int
|
3334 |
|
|
mips_elf_merge_gots (void **bfd2got_, void *p)
|
3335 |
|
|
{
|
3336 |
|
|
struct mips_elf_bfd2got_hash *bfd2got
|
3337 |
|
|
= (struct mips_elf_bfd2got_hash *)*bfd2got_;
|
3338 |
|
|
struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
|
3339 |
|
|
struct mips_got_info *g;
|
3340 |
|
|
unsigned int estimate;
|
3341 |
|
|
int result;
|
3342 |
|
|
|
3343 |
|
|
g = bfd2got->g;
|
3344 |
|
|
|
3345 |
|
|
/* Work out the number of page, local and TLS entries. */
|
3346 |
|
|
estimate = arg->max_pages;
|
3347 |
|
|
if (estimate > g->page_gotno)
|
3348 |
|
|
estimate = g->page_gotno;
|
3349 |
|
|
estimate += g->local_gotno + g->tls_gotno;
|
3350 |
|
|
|
3351 |
|
|
/* We place TLS GOT entries after both locals and globals. The globals
|
3352 |
|
|
for the primary GOT may overflow the normal GOT size limit, so be
|
3353 |
|
|
sure not to merge a GOT which requires TLS with the primary GOT in that
|
3354 |
|
|
case. This doesn't affect non-primary GOTs. */
|
3355 |
|
|
estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
|
3356 |
|
|
|
3357 |
|
|
if (estimate <= arg->max_count)
|
3358 |
|
|
{
|
3359 |
|
|
/* If we don't have a primary GOT, use it as
|
3360 |
|
|
a starting point for the primary GOT. */
|
3361 |
|
|
if (!arg->primary)
|
3362 |
|
|
{
|
3363 |
|
|
arg->primary = bfd2got->g;
|
3364 |
|
|
return 1;
|
3365 |
|
|
}
|
3366 |
|
|
|
3367 |
|
|
/* Try merging with the primary GOT. */
|
3368 |
|
|
result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
|
3369 |
|
|
if (result >= 0)
|
3370 |
|
|
return result;
|
3371 |
|
|
}
|
3372 |
|
|
|
3373 |
|
|
/* If we can merge with the last-created got, do it. */
|
3374 |
|
|
if (arg->current)
|
3375 |
|
|
{
|
3376 |
|
|
result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
|
3377 |
|
|
if (result >= 0)
|
3378 |
|
|
return result;
|
3379 |
|
|
}
|
3380 |
|
|
|
3381 |
|
|
/* Well, we couldn't merge, so create a new GOT. Don't check if it
|
3382 |
|
|
fits; if it turns out that it doesn't, we'll get relocation
|
3383 |
|
|
overflows anyway. */
|
3384 |
|
|
g->next = arg->current;
|
3385 |
|
|
arg->current = g;
|
3386 |
|
|
|
3387 |
|
|
return 1;
|
3388 |
|
|
}
|
3389 |
|
|
|
3390 |
|
|
/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
|
3391 |
|
|
is null iff there is just a single GOT. */
|
3392 |
|
|
|
3393 |
|
|
static int
|
3394 |
|
|
mips_elf_initialize_tls_index (void **entryp, void *p)
|
3395 |
|
|
{
|
3396 |
|
|
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
3397 |
|
|
struct mips_got_info *g = p;
|
3398 |
|
|
bfd_vma next_index;
|
3399 |
|
|
unsigned char tls_type;
|
3400 |
|
|
|
3401 |
|
|
/* We're only interested in TLS symbols. */
|
3402 |
|
|
if (entry->tls_type == 0)
|
3403 |
|
|
return 1;
|
3404 |
|
|
|
3405 |
|
|
next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
|
3406 |
|
|
|
3407 |
|
|
if (entry->symndx == -1 && g->next == NULL)
|
3408 |
|
|
{
|
3409 |
|
|
/* A type (3) got entry in the single-GOT case. We use the symbol's
|
3410 |
|
|
hash table entry to track its index. */
|
3411 |
|
|
if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
|
3412 |
|
|
return 1;
|
3413 |
|
|
entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
|
3414 |
|
|
entry->d.h->tls_got_offset = next_index;
|
3415 |
|
|
tls_type = entry->d.h->tls_type;
|
3416 |
|
|
}
|
3417 |
|
|
else
|
3418 |
|
|
{
|
3419 |
|
|
if (entry->tls_type & GOT_TLS_LDM)
|
3420 |
|
|
{
|
3421 |
|
|
/* There are separate mips_got_entry objects for each input bfd
|
3422 |
|
|
that requires an LDM entry. Make sure that all LDM entries in
|
3423 |
|
|
a GOT resolve to the same index. */
|
3424 |
|
|
if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
|
3425 |
|
|
{
|
3426 |
|
|
entry->gotidx = g->tls_ldm_offset;
|
3427 |
|
|
return 1;
|
3428 |
|
|
}
|
3429 |
|
|
g->tls_ldm_offset = next_index;
|
3430 |
|
|
}
|
3431 |
|
|
entry->gotidx = next_index;
|
3432 |
|
|
tls_type = entry->tls_type;
|
3433 |
|
|
}
|
3434 |
|
|
|
3435 |
|
|
/* Account for the entries we've just allocated. */
|
3436 |
|
|
if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
|
3437 |
|
|
g->tls_assigned_gotno += 2;
|
3438 |
|
|
if (tls_type & GOT_TLS_IE)
|
3439 |
|
|
g->tls_assigned_gotno += 1;
|
3440 |
|
|
|
3441 |
|
|
return 1;
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
/* If passed a NULL mips_got_info in the argument, set the marker used
|
3445 |
|
|
to tell whether a global symbol needs a got entry (in the primary
|
3446 |
|
|
got) to the given VALUE.
|
3447 |
|
|
|
3448 |
|
|
If passed a pointer G to a mips_got_info in the argument (it must
|
3449 |
|
|
not be the primary GOT), compute the offset from the beginning of
|
3450 |
|
|
the (primary) GOT section to the entry in G corresponding to the
|
3451 |
|
|
global symbol. G's assigned_gotno must contain the index of the
|
3452 |
|
|
first available global GOT entry in G. VALUE must contain the size
|
3453 |
|
|
of a GOT entry in bytes. For each global GOT entry that requires a
|
3454 |
|
|
dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
|
3455 |
|
|
marked as not eligible for lazy resolution through a function
|
3456 |
|
|
stub. */
|
3457 |
|
|
static int
|
3458 |
|
|
mips_elf_set_global_got_offset (void **entryp, void *p)
|
3459 |
|
|
{
|
3460 |
|
|
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
3461 |
|
|
struct mips_elf_set_global_got_offset_arg *arg
|
3462 |
|
|
= (struct mips_elf_set_global_got_offset_arg *)p;
|
3463 |
|
|
struct mips_got_info *g = arg->g;
|
3464 |
|
|
|
3465 |
|
|
if (g && entry->tls_type != GOT_NORMAL)
|
3466 |
|
|
arg->needed_relocs +=
|
3467 |
|
|
mips_tls_got_relocs (arg->info, entry->tls_type,
|
3468 |
|
|
entry->symndx == -1 ? &entry->d.h->root : NULL);
|
3469 |
|
|
|
3470 |
|
|
if (entry->abfd != NULL && entry->symndx == -1
|
3471 |
|
|
&& entry->d.h->root.dynindx != -1
|
3472 |
|
|
&& !entry->d.h->forced_local
|
3473 |
|
|
&& entry->d.h->tls_type == GOT_NORMAL)
|
3474 |
|
|
{
|
3475 |
|
|
if (g)
|
3476 |
|
|
{
|
3477 |
|
|
BFD_ASSERT (g->global_gotsym == NULL);
|
3478 |
|
|
|
3479 |
|
|
entry->gotidx = arg->value * (long) g->assigned_gotno++;
|
3480 |
|
|
if (arg->info->shared
|
3481 |
|
|
|| (elf_hash_table (arg->info)->dynamic_sections_created
|
3482 |
|
|
&& entry->d.h->root.def_dynamic
|
3483 |
|
|
&& !entry->d.h->root.def_regular))
|
3484 |
|
|
++arg->needed_relocs;
|
3485 |
|
|
}
|
3486 |
|
|
else
|
3487 |
|
|
entry->d.h->root.got.offset = arg->value;
|
3488 |
|
|
}
|
3489 |
|
|
|
3490 |
|
|
return 1;
|
3491 |
|
|
}
|
3492 |
|
|
|
3493 |
|
|
/* Mark any global symbols referenced in the GOT we are iterating over
|
3494 |
|
|
as inelligible for lazy resolution stubs. */
|
3495 |
|
|
static int
|
3496 |
|
|
mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
|
3497 |
|
|
{
|
3498 |
|
|
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
3499 |
|
|
|
3500 |
|
|
if (entry->abfd != NULL
|
3501 |
|
|
&& entry->symndx == -1
|
3502 |
|
|
&& entry->d.h->root.dynindx != -1)
|
3503 |
|
|
entry->d.h->no_fn_stub = TRUE;
|
3504 |
|
|
|
3505 |
|
|
return 1;
|
3506 |
|
|
}
|
3507 |
|
|
|
3508 |
|
|
/* Follow indirect and warning hash entries so that each got entry
|
3509 |
|
|
points to the final symbol definition. P must point to a pointer
|
3510 |
|
|
to the hash table we're traversing. Since this traversal may
|
3511 |
|
|
modify the hash table, we set this pointer to NULL to indicate
|
3512 |
|
|
we've made a potentially-destructive change to the hash table, so
|
3513 |
|
|
the traversal must be restarted. */
|
3514 |
|
|
static int
|
3515 |
|
|
mips_elf_resolve_final_got_entry (void **entryp, void *p)
|
3516 |
|
|
{
|
3517 |
|
|
struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
|
3518 |
|
|
htab_t got_entries = *(htab_t *)p;
|
3519 |
|
|
|
3520 |
|
|
if (entry->abfd != NULL && entry->symndx == -1)
|
3521 |
|
|
{
|
3522 |
|
|
struct mips_elf_link_hash_entry *h = entry->d.h;
|
3523 |
|
|
|
3524 |
|
|
while (h->root.root.type == bfd_link_hash_indirect
|
3525 |
|
|
|| h->root.root.type == bfd_link_hash_warning)
|
3526 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
3527 |
|
|
|
3528 |
|
|
if (entry->d.h == h)
|
3529 |
|
|
return 1;
|
3530 |
|
|
|
3531 |
|
|
entry->d.h = h;
|
3532 |
|
|
|
3533 |
|
|
/* If we can't find this entry with the new bfd hash, re-insert
|
3534 |
|
|
it, and get the traversal restarted. */
|
3535 |
|
|
if (! htab_find (got_entries, entry))
|
3536 |
|
|
{
|
3537 |
|
|
htab_clear_slot (got_entries, entryp);
|
3538 |
|
|
entryp = htab_find_slot (got_entries, entry, INSERT);
|
3539 |
|
|
if (! *entryp)
|
3540 |
|
|
*entryp = entry;
|
3541 |
|
|
/* Abort the traversal, since the whole table may have
|
3542 |
|
|
moved, and leave it up to the parent to restart the
|
3543 |
|
|
process. */
|
3544 |
|
|
*(htab_t *)p = NULL;
|
3545 |
|
|
return 0;
|
3546 |
|
|
}
|
3547 |
|
|
/* We might want to decrement the global_gotno count, but it's
|
3548 |
|
|
either too early or too late for that at this point. */
|
3549 |
|
|
}
|
3550 |
|
|
|
3551 |
|
|
return 1;
|
3552 |
|
|
}
|
3553 |
|
|
|
3554 |
|
|
/* Turn indirect got entries in a got_entries table into their final
|
3555 |
|
|
locations. */
|
3556 |
|
|
static void
|
3557 |
|
|
mips_elf_resolve_final_got_entries (struct mips_got_info *g)
|
3558 |
|
|
{
|
3559 |
|
|
htab_t got_entries;
|
3560 |
|
|
|
3561 |
|
|
do
|
3562 |
|
|
{
|
3563 |
|
|
got_entries = g->got_entries;
|
3564 |
|
|
|
3565 |
|
|
htab_traverse (got_entries,
|
3566 |
|
|
mips_elf_resolve_final_got_entry,
|
3567 |
|
|
&got_entries);
|
3568 |
|
|
}
|
3569 |
|
|
while (got_entries == NULL);
|
3570 |
|
|
}
|
3571 |
|
|
|
3572 |
|
|
/* Return the offset of an input bfd IBFD's GOT from the beginning of
|
3573 |
|
|
the primary GOT. */
|
3574 |
|
|
static bfd_vma
|
3575 |
|
|
mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
|
3576 |
|
|
{
|
3577 |
|
|
if (g->bfd2got == NULL)
|
3578 |
|
|
return 0;
|
3579 |
|
|
|
3580 |
|
|
g = mips_elf_got_for_ibfd (g, ibfd);
|
3581 |
|
|
if (! g)
|
3582 |
|
|
return 0;
|
3583 |
|
|
|
3584 |
|
|
BFD_ASSERT (g->next);
|
3585 |
|
|
|
3586 |
|
|
g = g->next;
|
3587 |
|
|
|
3588 |
|
|
return (g->local_gotno + g->global_gotno + g->tls_gotno)
|
3589 |
|
|
* MIPS_ELF_GOT_SIZE (abfd);
|
3590 |
|
|
}
|
3591 |
|
|
|
3592 |
|
|
/* Turn a single GOT that is too big for 16-bit addressing into
|
3593 |
|
|
a sequence of GOTs, each one 16-bit addressable. */
|
3594 |
|
|
|
3595 |
|
|
static bfd_boolean
|
3596 |
|
|
mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
|
3597 |
|
|
struct mips_got_info *g, asection *got,
|
3598 |
|
|
bfd_size_type pages)
|
3599 |
|
|
{
|
3600 |
|
|
struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
|
3601 |
|
|
struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
|
3602 |
|
|
struct mips_got_info *gg;
|
3603 |
|
|
unsigned int assign;
|
3604 |
|
|
|
3605 |
|
|
g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
|
3606 |
|
|
mips_elf_bfd2got_entry_eq, NULL);
|
3607 |
|
|
if (g->bfd2got == NULL)
|
3608 |
|
|
return FALSE;
|
3609 |
|
|
|
3610 |
|
|
got_per_bfd_arg.bfd2got = g->bfd2got;
|
3611 |
|
|
got_per_bfd_arg.obfd = abfd;
|
3612 |
|
|
got_per_bfd_arg.info = info;
|
3613 |
|
|
|
3614 |
|
|
/* Count how many GOT entries each input bfd requires, creating a
|
3615 |
|
|
map from bfd to got info while at that. */
|
3616 |
|
|
htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
|
3617 |
|
|
if (got_per_bfd_arg.obfd == NULL)
|
3618 |
|
|
return FALSE;
|
3619 |
|
|
|
3620 |
|
|
/* Also count how many page entries each input bfd requires. */
|
3621 |
|
|
htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
|
3622 |
|
|
&got_per_bfd_arg);
|
3623 |
|
|
if (got_per_bfd_arg.obfd == NULL)
|
3624 |
|
|
return FALSE;
|
3625 |
|
|
|
3626 |
|
|
got_per_bfd_arg.current = NULL;
|
3627 |
|
|
got_per_bfd_arg.primary = NULL;
|
3628 |
|
|
got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
|
3629 |
|
|
/ MIPS_ELF_GOT_SIZE (abfd))
|
3630 |
|
|
- MIPS_RESERVED_GOTNO (info));
|
3631 |
|
|
got_per_bfd_arg.max_pages = pages;
|
3632 |
|
|
/* The number of globals that will be included in the primary GOT.
|
3633 |
|
|
See the calls to mips_elf_set_global_got_offset below for more
|
3634 |
|
|
information. */
|
3635 |
|
|
got_per_bfd_arg.global_count = g->global_gotno;
|
3636 |
|
|
|
3637 |
|
|
/* Try to merge the GOTs of input bfds together, as long as they
|
3638 |
|
|
don't seem to exceed the maximum GOT size, choosing one of them
|
3639 |
|
|
to be the primary GOT. */
|
3640 |
|
|
htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
|
3641 |
|
|
if (got_per_bfd_arg.obfd == NULL)
|
3642 |
|
|
return FALSE;
|
3643 |
|
|
|
3644 |
|
|
/* If we do not find any suitable primary GOT, create an empty one. */
|
3645 |
|
|
if (got_per_bfd_arg.primary == NULL)
|
3646 |
|
|
{
|
3647 |
|
|
g->next = (struct mips_got_info *)
|
3648 |
|
|
bfd_alloc (abfd, sizeof (struct mips_got_info));
|
3649 |
|
|
if (g->next == NULL)
|
3650 |
|
|
return FALSE;
|
3651 |
|
|
|
3652 |
|
|
g->next->global_gotsym = NULL;
|
3653 |
|
|
g->next->global_gotno = 0;
|
3654 |
|
|
g->next->local_gotno = 0;
|
3655 |
|
|
g->next->page_gotno = 0;
|
3656 |
|
|
g->next->tls_gotno = 0;
|
3657 |
|
|
g->next->assigned_gotno = 0;
|
3658 |
|
|
g->next->tls_assigned_gotno = 0;
|
3659 |
|
|
g->next->tls_ldm_offset = MINUS_ONE;
|
3660 |
|
|
g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
|
3661 |
|
|
mips_elf_multi_got_entry_eq,
|
3662 |
|
|
NULL);
|
3663 |
|
|
if (g->next->got_entries == NULL)
|
3664 |
|
|
return FALSE;
|
3665 |
|
|
g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
|
3666 |
|
|
mips_got_page_entry_eq,
|
3667 |
|
|
NULL);
|
3668 |
|
|
if (g->next->got_page_entries == NULL)
|
3669 |
|
|
return FALSE;
|
3670 |
|
|
g->next->bfd2got = NULL;
|
3671 |
|
|
}
|
3672 |
|
|
else
|
3673 |
|
|
g->next = got_per_bfd_arg.primary;
|
3674 |
|
|
g->next->next = got_per_bfd_arg.current;
|
3675 |
|
|
|
3676 |
|
|
/* GG is now the master GOT, and G is the primary GOT. */
|
3677 |
|
|
gg = g;
|
3678 |
|
|
g = g->next;
|
3679 |
|
|
|
3680 |
|
|
/* Map the output bfd to the primary got. That's what we're going
|
3681 |
|
|
to use for bfds that use GOT16 or GOT_PAGE relocations that we
|
3682 |
|
|
didn't mark in check_relocs, and we want a quick way to find it.
|
3683 |
|
|
We can't just use gg->next because we're going to reverse the
|
3684 |
|
|
list. */
|
3685 |
|
|
{
|
3686 |
|
|
struct mips_elf_bfd2got_hash *bfdgot;
|
3687 |
|
|
void **bfdgotp;
|
3688 |
|
|
|
3689 |
|
|
bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
|
3690 |
|
|
(abfd, sizeof (struct mips_elf_bfd2got_hash));
|
3691 |
|
|
|
3692 |
|
|
if (bfdgot == NULL)
|
3693 |
|
|
return FALSE;
|
3694 |
|
|
|
3695 |
|
|
bfdgot->bfd = abfd;
|
3696 |
|
|
bfdgot->g = g;
|
3697 |
|
|
bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
|
3698 |
|
|
|
3699 |
|
|
BFD_ASSERT (*bfdgotp == NULL);
|
3700 |
|
|
*bfdgotp = bfdgot;
|
3701 |
|
|
}
|
3702 |
|
|
|
3703 |
|
|
/* The IRIX dynamic linker requires every symbol that is referenced
|
3704 |
|
|
in a dynamic relocation to be present in the primary GOT, so
|
3705 |
|
|
arrange for them to appear after those that are actually
|
3706 |
|
|
referenced.
|
3707 |
|
|
|
3708 |
|
|
GNU/Linux could very well do without it, but it would slow down
|
3709 |
|
|
the dynamic linker, since it would have to resolve every dynamic
|
3710 |
|
|
symbol referenced in other GOTs more than once, without help from
|
3711 |
|
|
the cache. Also, knowing that every external symbol has a GOT
|
3712 |
|
|
helps speed up the resolution of local symbols too, so GNU/Linux
|
3713 |
|
|
follows IRIX's practice.
|
3714 |
|
|
|
3715 |
|
|
The number 2 is used by mips_elf_sort_hash_table_f to count
|
3716 |
|
|
global GOT symbols that are unreferenced in the primary GOT, with
|
3717 |
|
|
an initial dynamic index computed from gg->assigned_gotno, where
|
3718 |
|
|
the number of unreferenced global entries in the primary GOT is
|
3719 |
|
|
preserved. */
|
3720 |
|
|
if (1)
|
3721 |
|
|
{
|
3722 |
|
|
gg->assigned_gotno = gg->global_gotno - g->global_gotno;
|
3723 |
|
|
g->global_gotno = gg->global_gotno;
|
3724 |
|
|
set_got_offset_arg.value = 2;
|
3725 |
|
|
}
|
3726 |
|
|
else
|
3727 |
|
|
{
|
3728 |
|
|
/* This could be used for dynamic linkers that don't optimize
|
3729 |
|
|
symbol resolution while applying relocations so as to use
|
3730 |
|
|
primary GOT entries or assuming the symbol is locally-defined.
|
3731 |
|
|
With this code, we assign lower dynamic indices to global
|
3732 |
|
|
symbols that are not referenced in the primary GOT, so that
|
3733 |
|
|
their entries can be omitted. */
|
3734 |
|
|
gg->assigned_gotno = 0;
|
3735 |
|
|
set_got_offset_arg.value = -1;
|
3736 |
|
|
}
|
3737 |
|
|
|
3738 |
|
|
/* Reorder dynamic symbols as described above (which behavior
|
3739 |
|
|
depends on the setting of VALUE). */
|
3740 |
|
|
set_got_offset_arg.g = NULL;
|
3741 |
|
|
htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
|
3742 |
|
|
&set_got_offset_arg);
|
3743 |
|
|
set_got_offset_arg.value = 1;
|
3744 |
|
|
htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
|
3745 |
|
|
&set_got_offset_arg);
|
3746 |
|
|
if (! mips_elf_sort_hash_table (info, 1))
|
3747 |
|
|
return FALSE;
|
3748 |
|
|
|
3749 |
|
|
/* Now go through the GOTs assigning them offset ranges.
|
3750 |
|
|
[assigned_gotno, local_gotno[ will be set to the range of local
|
3751 |
|
|
entries in each GOT. We can then compute the end of a GOT by
|
3752 |
|
|
adding local_gotno to global_gotno. We reverse the list and make
|
3753 |
|
|
it circular since then we'll be able to quickly compute the
|
3754 |
|
|
beginning of a GOT, by computing the end of its predecessor. To
|
3755 |
|
|
avoid special cases for the primary GOT, while still preserving
|
3756 |
|
|
assertions that are valid for both single- and multi-got links,
|
3757 |
|
|
we arrange for the main got struct to have the right number of
|
3758 |
|
|
global entries, but set its local_gotno such that the initial
|
3759 |
|
|
offset of the primary GOT is zero. Remember that the primary GOT
|
3760 |
|
|
will become the last item in the circular linked list, so it
|
3761 |
|
|
points back to the master GOT. */
|
3762 |
|
|
gg->local_gotno = -g->global_gotno;
|
3763 |
|
|
gg->global_gotno = g->global_gotno;
|
3764 |
|
|
gg->tls_gotno = 0;
|
3765 |
|
|
assign = 0;
|
3766 |
|
|
gg->next = gg;
|
3767 |
|
|
|
3768 |
|
|
do
|
3769 |
|
|
{
|
3770 |
|
|
struct mips_got_info *gn;
|
3771 |
|
|
|
3772 |
|
|
assign += MIPS_RESERVED_GOTNO (info);
|
3773 |
|
|
g->assigned_gotno = assign;
|
3774 |
|
|
g->local_gotno += assign;
|
3775 |
|
|
g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
|
3776 |
|
|
assign = g->local_gotno + g->global_gotno + g->tls_gotno;
|
3777 |
|
|
|
3778 |
|
|
/* Take g out of the direct list, and push it onto the reversed
|
3779 |
|
|
list that gg points to. g->next is guaranteed to be nonnull after
|
3780 |
|
|
this operation, as required by mips_elf_initialize_tls_index. */
|
3781 |
|
|
gn = g->next;
|
3782 |
|
|
g->next = gg->next;
|
3783 |
|
|
gg->next = g;
|
3784 |
|
|
|
3785 |
|
|
/* Set up any TLS entries. We always place the TLS entries after
|
3786 |
|
|
all non-TLS entries. */
|
3787 |
|
|
g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
|
3788 |
|
|
htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
|
3789 |
|
|
|
3790 |
|
|
/* Move onto the next GOT. It will be a secondary GOT if nonull. */
|
3791 |
|
|
g = gn;
|
3792 |
|
|
|
3793 |
|
|
/* Mark global symbols in every non-primary GOT as ineligible for
|
3794 |
|
|
stubs. */
|
3795 |
|
|
if (g)
|
3796 |
|
|
htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
|
3797 |
|
|
}
|
3798 |
|
|
while (g);
|
3799 |
|
|
|
3800 |
|
|
got->size = (gg->next->local_gotno
|
3801 |
|
|
+ gg->next->global_gotno
|
3802 |
|
|
+ gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
|
3803 |
|
|
|
3804 |
|
|
return TRUE;
|
3805 |
|
|
}
|
3806 |
|
|
|
3807 |
|
|
|
3808 |
|
|
/* Returns the first relocation of type r_type found, beginning with
|
3809 |
|
|
RELOCATION. RELEND is one-past-the-end of the relocation table. */
|
3810 |
|
|
|
3811 |
|
|
static const Elf_Internal_Rela *
|
3812 |
|
|
mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
|
3813 |
|
|
const Elf_Internal_Rela *relocation,
|
3814 |
|
|
const Elf_Internal_Rela *relend)
|
3815 |
|
|
{
|
3816 |
|
|
unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
|
3817 |
|
|
|
3818 |
|
|
while (relocation < relend)
|
3819 |
|
|
{
|
3820 |
|
|
if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
|
3821 |
|
|
&& ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
|
3822 |
|
|
return relocation;
|
3823 |
|
|
|
3824 |
|
|
++relocation;
|
3825 |
|
|
}
|
3826 |
|
|
|
3827 |
|
|
/* We didn't find it. */
|
3828 |
|
|
return NULL;
|
3829 |
|
|
}
|
3830 |
|
|
|
3831 |
|
|
/* Return whether a relocation is against a local symbol. */
|
3832 |
|
|
|
3833 |
|
|
static bfd_boolean
|
3834 |
|
|
mips_elf_local_relocation_p (bfd *input_bfd,
|
3835 |
|
|
const Elf_Internal_Rela *relocation,
|
3836 |
|
|
asection **local_sections,
|
3837 |
|
|
bfd_boolean check_forced)
|
3838 |
|
|
{
|
3839 |
|
|
unsigned long r_symndx;
|
3840 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
3841 |
|
|
struct mips_elf_link_hash_entry *h;
|
3842 |
|
|
size_t extsymoff;
|
3843 |
|
|
|
3844 |
|
|
r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
|
3845 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
3846 |
|
|
extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
|
3847 |
|
|
|
3848 |
|
|
if (r_symndx < extsymoff)
|
3849 |
|
|
return TRUE;
|
3850 |
|
|
if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
|
3851 |
|
|
return TRUE;
|
3852 |
|
|
|
3853 |
|
|
if (check_forced)
|
3854 |
|
|
{
|
3855 |
|
|
/* Look up the hash table to check whether the symbol
|
3856 |
|
|
was forced local. */
|
3857 |
|
|
h = (struct mips_elf_link_hash_entry *)
|
3858 |
|
|
elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
|
3859 |
|
|
/* Find the real hash-table entry for this symbol. */
|
3860 |
|
|
while (h->root.root.type == bfd_link_hash_indirect
|
3861 |
|
|
|| h->root.root.type == bfd_link_hash_warning)
|
3862 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
3863 |
|
|
if (h->root.forced_local)
|
3864 |
|
|
return TRUE;
|
3865 |
|
|
}
|
3866 |
|
|
|
3867 |
|
|
return FALSE;
|
3868 |
|
|
}
|
3869 |
|
|
|
3870 |
|
|
/* Sign-extend VALUE, which has the indicated number of BITS. */
|
3871 |
|
|
|
3872 |
|
|
bfd_vma
|
3873 |
|
|
_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
|
3874 |
|
|
{
|
3875 |
|
|
if (value & ((bfd_vma) 1 << (bits - 1)))
|
3876 |
|
|
/* VALUE is negative. */
|
3877 |
|
|
value |= ((bfd_vma) - 1) << bits;
|
3878 |
|
|
|
3879 |
|
|
return value;
|
3880 |
|
|
}
|
3881 |
|
|
|
3882 |
|
|
/* Return non-zero if the indicated VALUE has overflowed the maximum
|
3883 |
|
|
range expressible by a signed number with the indicated number of
|
3884 |
|
|
BITS. */
|
3885 |
|
|
|
3886 |
|
|
static bfd_boolean
|
3887 |
|
|
mips_elf_overflow_p (bfd_vma value, int bits)
|
3888 |
|
|
{
|
3889 |
|
|
bfd_signed_vma svalue = (bfd_signed_vma) value;
|
3890 |
|
|
|
3891 |
|
|
if (svalue > (1 << (bits - 1)) - 1)
|
3892 |
|
|
/* The value is too big. */
|
3893 |
|
|
return TRUE;
|
3894 |
|
|
else if (svalue < -(1 << (bits - 1)))
|
3895 |
|
|
/* The value is too small. */
|
3896 |
|
|
return TRUE;
|
3897 |
|
|
|
3898 |
|
|
/* All is well. */
|
3899 |
|
|
return FALSE;
|
3900 |
|
|
}
|
3901 |
|
|
|
3902 |
|
|
/* Calculate the %high function. */
|
3903 |
|
|
|
3904 |
|
|
static bfd_vma
|
3905 |
|
|
mips_elf_high (bfd_vma value)
|
3906 |
|
|
{
|
3907 |
|
|
return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
|
3908 |
|
|
}
|
3909 |
|
|
|
3910 |
|
|
/* Calculate the %higher function. */
|
3911 |
|
|
|
3912 |
|
|
static bfd_vma
|
3913 |
|
|
mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
|
3914 |
|
|
{
|
3915 |
|
|
#ifdef BFD64
|
3916 |
|
|
return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
|
3917 |
|
|
#else
|
3918 |
|
|
abort ();
|
3919 |
|
|
return MINUS_ONE;
|
3920 |
|
|
#endif
|
3921 |
|
|
}
|
3922 |
|
|
|
3923 |
|
|
/* Calculate the %highest function. */
|
3924 |
|
|
|
3925 |
|
|
static bfd_vma
|
3926 |
|
|
mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
|
3927 |
|
|
{
|
3928 |
|
|
#ifdef BFD64
|
3929 |
|
|
return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
|
3930 |
|
|
#else
|
3931 |
|
|
abort ();
|
3932 |
|
|
return MINUS_ONE;
|
3933 |
|
|
#endif
|
3934 |
|
|
}
|
3935 |
|
|
|
3936 |
|
|
/* Create the .compact_rel section. */
|
3937 |
|
|
|
3938 |
|
|
static bfd_boolean
|
3939 |
|
|
mips_elf_create_compact_rel_section
|
3940 |
|
|
(bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
3941 |
|
|
{
|
3942 |
|
|
flagword flags;
|
3943 |
|
|
register asection *s;
|
3944 |
|
|
|
3945 |
|
|
if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
|
3946 |
|
|
{
|
3947 |
|
|
flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
|
3948 |
|
|
| SEC_READONLY);
|
3949 |
|
|
|
3950 |
|
|
s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
|
3951 |
|
|
if (s == NULL
|
3952 |
|
|
|| ! bfd_set_section_alignment (abfd, s,
|
3953 |
|
|
MIPS_ELF_LOG_FILE_ALIGN (abfd)))
|
3954 |
|
|
return FALSE;
|
3955 |
|
|
|
3956 |
|
|
s->size = sizeof (Elf32_External_compact_rel);
|
3957 |
|
|
}
|
3958 |
|
|
|
3959 |
|
|
return TRUE;
|
3960 |
|
|
}
|
3961 |
|
|
|
3962 |
|
|
/* Create the .got section to hold the global offset table. */
|
3963 |
|
|
|
3964 |
|
|
static bfd_boolean
|
3965 |
|
|
mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
|
3966 |
|
|
bfd_boolean maybe_exclude)
|
3967 |
|
|
{
|
3968 |
|
|
flagword flags;
|
3969 |
|
|
register asection *s;
|
3970 |
|
|
struct elf_link_hash_entry *h;
|
3971 |
|
|
struct bfd_link_hash_entry *bh;
|
3972 |
|
|
struct mips_got_info *g;
|
3973 |
|
|
bfd_size_type amt;
|
3974 |
|
|
struct mips_elf_link_hash_table *htab;
|
3975 |
|
|
|
3976 |
|
|
htab = mips_elf_hash_table (info);
|
3977 |
|
|
|
3978 |
|
|
/* This function may be called more than once. */
|
3979 |
|
|
s = mips_elf_got_section (abfd, TRUE);
|
3980 |
|
|
if (s)
|
3981 |
|
|
{
|
3982 |
|
|
if (! maybe_exclude)
|
3983 |
|
|
s->flags &= ~SEC_EXCLUDE;
|
3984 |
|
|
return TRUE;
|
3985 |
|
|
}
|
3986 |
|
|
|
3987 |
|
|
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
3988 |
|
|
| SEC_LINKER_CREATED);
|
3989 |
|
|
|
3990 |
|
|
if (maybe_exclude)
|
3991 |
|
|
flags |= SEC_EXCLUDE;
|
3992 |
|
|
|
3993 |
|
|
/* We have to use an alignment of 2**4 here because this is hardcoded
|
3994 |
|
|
in the function stub generation and in the linker script. */
|
3995 |
|
|
s = bfd_make_section_with_flags (abfd, ".got", flags);
|
3996 |
|
|
if (s == NULL
|
3997 |
|
|
|| ! bfd_set_section_alignment (abfd, s, 4))
|
3998 |
|
|
return FALSE;
|
3999 |
|
|
|
4000 |
|
|
/* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
|
4001 |
|
|
linker script because we don't want to define the symbol if we
|
4002 |
|
|
are not creating a global offset table. */
|
4003 |
|
|
bh = NULL;
|
4004 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
4005 |
|
|
(info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
|
4006 |
|
|
0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
|
4007 |
|
|
return FALSE;
|
4008 |
|
|
|
4009 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
4010 |
|
|
h->non_elf = 0;
|
4011 |
|
|
h->def_regular = 1;
|
4012 |
|
|
h->type = STT_OBJECT;
|
4013 |
|
|
elf_hash_table (info)->hgot = h;
|
4014 |
|
|
|
4015 |
|
|
if (info->shared
|
4016 |
|
|
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
4017 |
|
|
return FALSE;
|
4018 |
|
|
|
4019 |
|
|
amt = sizeof (struct mips_got_info);
|
4020 |
|
|
g = bfd_alloc (abfd, amt);
|
4021 |
|
|
if (g == NULL)
|
4022 |
|
|
return FALSE;
|
4023 |
|
|
g->global_gotsym = NULL;
|
4024 |
|
|
g->global_gotno = 0;
|
4025 |
|
|
g->tls_gotno = 0;
|
4026 |
|
|
g->local_gotno = MIPS_RESERVED_GOTNO (info);
|
4027 |
|
|
g->page_gotno = 0;
|
4028 |
|
|
g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
|
4029 |
|
|
g->bfd2got = NULL;
|
4030 |
|
|
g->next = NULL;
|
4031 |
|
|
g->tls_ldm_offset = MINUS_ONE;
|
4032 |
|
|
g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
|
4033 |
|
|
mips_elf_got_entry_eq, NULL);
|
4034 |
|
|
if (g->got_entries == NULL)
|
4035 |
|
|
return FALSE;
|
4036 |
|
|
g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
|
4037 |
|
|
mips_got_page_entry_eq, NULL);
|
4038 |
|
|
if (g->got_page_entries == NULL)
|
4039 |
|
|
return FALSE;
|
4040 |
|
|
mips_elf_section_data (s)->u.got_info = g;
|
4041 |
|
|
mips_elf_section_data (s)->elf.this_hdr.sh_flags
|
4042 |
|
|
|= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
|
4043 |
|
|
|
4044 |
|
|
/* VxWorks also needs a .got.plt section. */
|
4045 |
|
|
if (htab->is_vxworks)
|
4046 |
|
|
{
|
4047 |
|
|
s = bfd_make_section_with_flags (abfd, ".got.plt",
|
4048 |
|
|
SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
|
4049 |
|
|
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
4050 |
|
|
if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
|
4051 |
|
|
return FALSE;
|
4052 |
|
|
|
4053 |
|
|
htab->sgotplt = s;
|
4054 |
|
|
}
|
4055 |
|
|
return TRUE;
|
4056 |
|
|
}
|
4057 |
|
|
|
4058 |
|
|
/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
|
4059 |
|
|
__GOTT_INDEX__ symbols. These symbols are only special for
|
4060 |
|
|
shared objects; they are not used in executables. */
|
4061 |
|
|
|
4062 |
|
|
static bfd_boolean
|
4063 |
|
|
is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
|
4064 |
|
|
{
|
4065 |
|
|
return (mips_elf_hash_table (info)->is_vxworks
|
4066 |
|
|
&& info->shared
|
4067 |
|
|
&& (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
|
4068 |
|
|
|| strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
|
4069 |
|
|
}
|
4070 |
|
|
|
4071 |
|
|
/* Calculate the value produced by the RELOCATION (which comes from
|
4072 |
|
|
the INPUT_BFD). The ADDEND is the addend to use for this
|
4073 |
|
|
RELOCATION; RELOCATION->R_ADDEND is ignored.
|
4074 |
|
|
|
4075 |
|
|
The result of the relocation calculation is stored in VALUEP.
|
4076 |
|
|
REQUIRE_JALXP indicates whether or not the opcode used with this
|
4077 |
|
|
relocation must be JALX.
|
4078 |
|
|
|
4079 |
|
|
This function returns bfd_reloc_continue if the caller need take no
|
4080 |
|
|
further action regarding this relocation, bfd_reloc_notsupported if
|
4081 |
|
|
something goes dramatically wrong, bfd_reloc_overflow if an
|
4082 |
|
|
overflow occurs, and bfd_reloc_ok to indicate success. */
|
4083 |
|
|
|
4084 |
|
|
static bfd_reloc_status_type
|
4085 |
|
|
mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
|
4086 |
|
|
asection *input_section,
|
4087 |
|
|
struct bfd_link_info *info,
|
4088 |
|
|
const Elf_Internal_Rela *relocation,
|
4089 |
|
|
bfd_vma addend, reloc_howto_type *howto,
|
4090 |
|
|
Elf_Internal_Sym *local_syms,
|
4091 |
|
|
asection **local_sections, bfd_vma *valuep,
|
4092 |
|
|
const char **namep, bfd_boolean *require_jalxp,
|
4093 |
|
|
bfd_boolean save_addend)
|
4094 |
|
|
{
|
4095 |
|
|
/* The eventual value we will return. */
|
4096 |
|
|
bfd_vma value;
|
4097 |
|
|
/* The address of the symbol against which the relocation is
|
4098 |
|
|
occurring. */
|
4099 |
|
|
bfd_vma symbol = 0;
|
4100 |
|
|
/* The final GP value to be used for the relocatable, executable, or
|
4101 |
|
|
shared object file being produced. */
|
4102 |
|
|
bfd_vma gp = MINUS_ONE;
|
4103 |
|
|
/* The place (section offset or address) of the storage unit being
|
4104 |
|
|
relocated. */
|
4105 |
|
|
bfd_vma p;
|
4106 |
|
|
/* The value of GP used to create the relocatable object. */
|
4107 |
|
|
bfd_vma gp0 = MINUS_ONE;
|
4108 |
|
|
/* The offset into the global offset table at which the address of
|
4109 |
|
|
the relocation entry symbol, adjusted by the addend, resides
|
4110 |
|
|
during execution. */
|
4111 |
|
|
bfd_vma g = MINUS_ONE;
|
4112 |
|
|
/* The section in which the symbol referenced by the relocation is
|
4113 |
|
|
located. */
|
4114 |
|
|
asection *sec = NULL;
|
4115 |
|
|
struct mips_elf_link_hash_entry *h = NULL;
|
4116 |
|
|
/* TRUE if the symbol referred to by this relocation is a local
|
4117 |
|
|
symbol. */
|
4118 |
|
|
bfd_boolean local_p, was_local_p;
|
4119 |
|
|
/* TRUE if the symbol referred to by this relocation is "_gp_disp". */
|
4120 |
|
|
bfd_boolean gp_disp_p = FALSE;
|
4121 |
|
|
/* TRUE if the symbol referred to by this relocation is
|
4122 |
|
|
"__gnu_local_gp". */
|
4123 |
|
|
bfd_boolean gnu_local_gp_p = FALSE;
|
4124 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
4125 |
|
|
size_t extsymoff;
|
4126 |
|
|
unsigned long r_symndx;
|
4127 |
|
|
int r_type;
|
4128 |
|
|
/* TRUE if overflow occurred during the calculation of the
|
4129 |
|
|
relocation value. */
|
4130 |
|
|
bfd_boolean overflowed_p;
|
4131 |
|
|
/* TRUE if this relocation refers to a MIPS16 function. */
|
4132 |
|
|
bfd_boolean target_is_16_bit_code_p = FALSE;
|
4133 |
|
|
struct mips_elf_link_hash_table *htab;
|
4134 |
|
|
bfd *dynobj;
|
4135 |
|
|
|
4136 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
4137 |
|
|
htab = mips_elf_hash_table (info);
|
4138 |
|
|
|
4139 |
|
|
/* Parse the relocation. */
|
4140 |
|
|
r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
|
4141 |
|
|
r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
|
4142 |
|
|
p = (input_section->output_section->vma
|
4143 |
|
|
+ input_section->output_offset
|
4144 |
|
|
+ relocation->r_offset);
|
4145 |
|
|
|
4146 |
|
|
/* Assume that there will be no overflow. */
|
4147 |
|
|
overflowed_p = FALSE;
|
4148 |
|
|
|
4149 |
|
|
/* Figure out whether or not the symbol is local, and get the offset
|
4150 |
|
|
used in the array of hash table entries. */
|
4151 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
4152 |
|
|
local_p = mips_elf_local_relocation_p (input_bfd, relocation,
|
4153 |
|
|
local_sections, FALSE);
|
4154 |
|
|
was_local_p = local_p;
|
4155 |
|
|
if (! elf_bad_symtab (input_bfd))
|
4156 |
|
|
extsymoff = symtab_hdr->sh_info;
|
4157 |
|
|
else
|
4158 |
|
|
{
|
4159 |
|
|
/* The symbol table does not follow the rule that local symbols
|
4160 |
|
|
must come before globals. */
|
4161 |
|
|
extsymoff = 0;
|
4162 |
|
|
}
|
4163 |
|
|
|
4164 |
|
|
/* Figure out the value of the symbol. */
|
4165 |
|
|
if (local_p)
|
4166 |
|
|
{
|
4167 |
|
|
Elf_Internal_Sym *sym;
|
4168 |
|
|
|
4169 |
|
|
sym = local_syms + r_symndx;
|
4170 |
|
|
sec = local_sections[r_symndx];
|
4171 |
|
|
|
4172 |
|
|
symbol = sec->output_section->vma + sec->output_offset;
|
4173 |
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
|
4174 |
|
|
|| (sec->flags & SEC_MERGE))
|
4175 |
|
|
symbol += sym->st_value;
|
4176 |
|
|
if ((sec->flags & SEC_MERGE)
|
4177 |
|
|
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
4178 |
|
|
{
|
4179 |
|
|
addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
|
4180 |
|
|
addend -= symbol;
|
4181 |
|
|
addend += sec->output_section->vma + sec->output_offset;
|
4182 |
|
|
}
|
4183 |
|
|
|
4184 |
|
|
/* MIPS16 text labels should be treated as odd. */
|
4185 |
|
|
if (sym->st_other == STO_MIPS16)
|
4186 |
|
|
++symbol;
|
4187 |
|
|
|
4188 |
|
|
/* Record the name of this symbol, for our caller. */
|
4189 |
|
|
*namep = bfd_elf_string_from_elf_section (input_bfd,
|
4190 |
|
|
symtab_hdr->sh_link,
|
4191 |
|
|
sym->st_name);
|
4192 |
|
|
if (*namep == '\0')
|
4193 |
|
|
*namep = bfd_section_name (input_bfd, sec);
|
4194 |
|
|
|
4195 |
|
|
target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
|
4196 |
|
|
}
|
4197 |
|
|
else
|
4198 |
|
|
{
|
4199 |
|
|
/* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
|
4200 |
|
|
|
4201 |
|
|
/* For global symbols we look up the symbol in the hash-table. */
|
4202 |
|
|
h = ((struct mips_elf_link_hash_entry *)
|
4203 |
|
|
elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
|
4204 |
|
|
/* Find the real hash-table entry for this symbol. */
|
4205 |
|
|
while (h->root.root.type == bfd_link_hash_indirect
|
4206 |
|
|
|| h->root.root.type == bfd_link_hash_warning)
|
4207 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
4208 |
|
|
|
4209 |
|
|
/* Record the name of this symbol, for our caller. */
|
4210 |
|
|
*namep = h->root.root.root.string;
|
4211 |
|
|
|
4212 |
|
|
/* See if this is the special _gp_disp symbol. Note that such a
|
4213 |
|
|
symbol must always be a global symbol. */
|
4214 |
|
|
if (strcmp (*namep, "_gp_disp") == 0
|
4215 |
|
|
&& ! NEWABI_P (input_bfd))
|
4216 |
|
|
{
|
4217 |
|
|
/* Relocations against _gp_disp are permitted only with
|
4218 |
|
|
R_MIPS_HI16 and R_MIPS_LO16 relocations. */
|
4219 |
|
|
if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
|
4220 |
|
|
&& r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
|
4221 |
|
|
return bfd_reloc_notsupported;
|
4222 |
|
|
|
4223 |
|
|
gp_disp_p = TRUE;
|
4224 |
|
|
}
|
4225 |
|
|
/* See if this is the special _gp symbol. Note that such a
|
4226 |
|
|
symbol must always be a global symbol. */
|
4227 |
|
|
else if (strcmp (*namep, "__gnu_local_gp") == 0)
|
4228 |
|
|
gnu_local_gp_p = TRUE;
|
4229 |
|
|
|
4230 |
|
|
|
4231 |
|
|
/* If this symbol is defined, calculate its address. Note that
|
4232 |
|
|
_gp_disp is a magic symbol, always implicitly defined by the
|
4233 |
|
|
linker, so it's inappropriate to check to see whether or not
|
4234 |
|
|
its defined. */
|
4235 |
|
|
else if ((h->root.root.type == bfd_link_hash_defined
|
4236 |
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
4237 |
|
|
&& h->root.root.u.def.section)
|
4238 |
|
|
{
|
4239 |
|
|
sec = h->root.root.u.def.section;
|
4240 |
|
|
if (sec->output_section)
|
4241 |
|
|
symbol = (h->root.root.u.def.value
|
4242 |
|
|
+ sec->output_section->vma
|
4243 |
|
|
+ sec->output_offset);
|
4244 |
|
|
else
|
4245 |
|
|
symbol = h->root.root.u.def.value;
|
4246 |
|
|
}
|
4247 |
|
|
else if (h->root.root.type == bfd_link_hash_undefweak)
|
4248 |
|
|
/* We allow relocations against undefined weak symbols, giving
|
4249 |
|
|
it the value zero, so that you can undefined weak functions
|
4250 |
|
|
and check to see if they exist by looking at their
|
4251 |
|
|
addresses. */
|
4252 |
|
|
symbol = 0;
|
4253 |
|
|
else if (info->unresolved_syms_in_objects == RM_IGNORE
|
4254 |
|
|
&& ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
|
4255 |
|
|
symbol = 0;
|
4256 |
|
|
else if (strcmp (*namep, SGI_COMPAT (input_bfd)
|
4257 |
|
|
? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
|
4258 |
|
|
{
|
4259 |
|
|
/* If this is a dynamic link, we should have created a
|
4260 |
|
|
_DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
|
4261 |
|
|
in in _bfd_mips_elf_create_dynamic_sections.
|
4262 |
|
|
Otherwise, we should define the symbol with a value of 0.
|
4263 |
|
|
FIXME: It should probably get into the symbol table
|
4264 |
|
|
somehow as well. */
|
4265 |
|
|
BFD_ASSERT (! info->shared);
|
4266 |
|
|
BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
|
4267 |
|
|
symbol = 0;
|
4268 |
|
|
}
|
4269 |
|
|
else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
|
4270 |
|
|
{
|
4271 |
|
|
/* This is an optional symbol - an Irix specific extension to the
|
4272 |
|
|
ELF spec. Ignore it for now.
|
4273 |
|
|
XXX - FIXME - there is more to the spec for OPTIONAL symbols
|
4274 |
|
|
than simply ignoring them, but we do not handle this for now.
|
4275 |
|
|
For information see the "64-bit ELF Object File Specification"
|
4276 |
|
|
which is available from here:
|
4277 |
|
|
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
|
4278 |
|
|
symbol = 0;
|
4279 |
|
|
}
|
4280 |
|
|
else
|
4281 |
|
|
{
|
4282 |
|
|
if (! ((*info->callbacks->undefined_symbol)
|
4283 |
|
|
(info, h->root.root.root.string, input_bfd,
|
4284 |
|
|
input_section, relocation->r_offset,
|
4285 |
|
|
(info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
|
4286 |
|
|
|| ELF_ST_VISIBILITY (h->root.other))))
|
4287 |
|
|
return bfd_reloc_undefined;
|
4288 |
|
|
symbol = 0;
|
4289 |
|
|
}
|
4290 |
|
|
|
4291 |
|
|
target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
|
4292 |
|
|
}
|
4293 |
|
|
|
4294 |
|
|
/* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
|
4295 |
|
|
need to redirect the call to the stub, unless we're already *in*
|
4296 |
|
|
a stub. */
|
4297 |
|
|
if (r_type != R_MIPS16_26 && !info->relocatable
|
4298 |
|
|
&& ((h != NULL && h->fn_stub != NULL)
|
4299 |
|
|
|| (local_p
|
4300 |
|
|
&& elf_tdata (input_bfd)->local_stubs != NULL
|
4301 |
|
|
&& elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
|
4302 |
|
|
&& !mips16_stub_section_p (input_bfd, input_section))
|
4303 |
|
|
{
|
4304 |
|
|
/* This is a 32- or 64-bit call to a 16-bit function. We should
|
4305 |
|
|
have already noticed that we were going to need the
|
4306 |
|
|
stub. */
|
4307 |
|
|
if (local_p)
|
4308 |
|
|
sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
|
4309 |
|
|
else
|
4310 |
|
|
{
|
4311 |
|
|
BFD_ASSERT (h->need_fn_stub);
|
4312 |
|
|
sec = h->fn_stub;
|
4313 |
|
|
}
|
4314 |
|
|
|
4315 |
|
|
symbol = sec->output_section->vma + sec->output_offset;
|
4316 |
|
|
/* The target is 16-bit, but the stub isn't. */
|
4317 |
|
|
target_is_16_bit_code_p = FALSE;
|
4318 |
|
|
}
|
4319 |
|
|
/* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
|
4320 |
|
|
need to redirect the call to the stub. */
|
4321 |
|
|
else if (r_type == R_MIPS16_26 && !info->relocatable
|
4322 |
|
|
&& ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
|
4323 |
|
|
|| (local_p
|
4324 |
|
|
&& elf_tdata (input_bfd)->local_call_stubs != NULL
|
4325 |
|
|
&& elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
|
4326 |
|
|
&& !target_is_16_bit_code_p)
|
4327 |
|
|
{
|
4328 |
|
|
if (local_p)
|
4329 |
|
|
sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
|
4330 |
|
|
else
|
4331 |
|
|
{
|
4332 |
|
|
/* If both call_stub and call_fp_stub are defined, we can figure
|
4333 |
|
|
out which one to use by checking which one appears in the input
|
4334 |
|
|
file. */
|
4335 |
|
|
if (h->call_stub != NULL && h->call_fp_stub != NULL)
|
4336 |
|
|
{
|
4337 |
|
|
asection *o;
|
4338 |
|
|
|
4339 |
|
|
sec = NULL;
|
4340 |
|
|
for (o = input_bfd->sections; o != NULL; o = o->next)
|
4341 |
|
|
{
|
4342 |
|
|
if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
|
4343 |
|
|
{
|
4344 |
|
|
sec = h->call_fp_stub;
|
4345 |
|
|
break;
|
4346 |
|
|
}
|
4347 |
|
|
}
|
4348 |
|
|
if (sec == NULL)
|
4349 |
|
|
sec = h->call_stub;
|
4350 |
|
|
}
|
4351 |
|
|
else if (h->call_stub != NULL)
|
4352 |
|
|
sec = h->call_stub;
|
4353 |
|
|
else
|
4354 |
|
|
sec = h->call_fp_stub;
|
4355 |
|
|
}
|
4356 |
|
|
|
4357 |
|
|
BFD_ASSERT (sec->size > 0);
|
4358 |
|
|
symbol = sec->output_section->vma + sec->output_offset;
|
4359 |
|
|
}
|
4360 |
|
|
|
4361 |
|
|
/* Calls from 16-bit code to 32-bit code and vice versa require the
|
4362 |
|
|
special jalx instruction. */
|
4363 |
|
|
*require_jalxp = (!info->relocatable
|
4364 |
|
|
&& (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
|
4365 |
|
|
|| ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
|
4366 |
|
|
|
4367 |
|
|
local_p = mips_elf_local_relocation_p (input_bfd, relocation,
|
4368 |
|
|
local_sections, TRUE);
|
4369 |
|
|
|
4370 |
|
|
/* If we haven't already determined the GOT offset, or the GP value,
|
4371 |
|
|
and we're going to need it, get it now. */
|
4372 |
|
|
switch (r_type)
|
4373 |
|
|
{
|
4374 |
|
|
case R_MIPS_GOT_PAGE:
|
4375 |
|
|
case R_MIPS_GOT_OFST:
|
4376 |
|
|
/* We need to decay to GOT_DISP/addend if the symbol doesn't
|
4377 |
|
|
bind locally. */
|
4378 |
|
|
local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
|
4379 |
|
|
if (local_p || r_type == R_MIPS_GOT_OFST)
|
4380 |
|
|
break;
|
4381 |
|
|
/* Fall through. */
|
4382 |
|
|
|
4383 |
|
|
case R_MIPS_CALL16:
|
4384 |
|
|
case R_MIPS_GOT16:
|
4385 |
|
|
case R_MIPS_GOT_DISP:
|
4386 |
|
|
case R_MIPS_GOT_HI16:
|
4387 |
|
|
case R_MIPS_CALL_HI16:
|
4388 |
|
|
case R_MIPS_GOT_LO16:
|
4389 |
|
|
case R_MIPS_CALL_LO16:
|
4390 |
|
|
case R_MIPS_TLS_GD:
|
4391 |
|
|
case R_MIPS_TLS_GOTTPREL:
|
4392 |
|
|
case R_MIPS_TLS_LDM:
|
4393 |
|
|
/* Find the index into the GOT where this value is located. */
|
4394 |
|
|
if (r_type == R_MIPS_TLS_LDM)
|
4395 |
|
|
{
|
4396 |
|
|
g = mips_elf_local_got_index (abfd, input_bfd, info,
|
4397 |
|
|
0, 0, NULL, r_type);
|
4398 |
|
|
if (g == MINUS_ONE)
|
4399 |
|
|
return bfd_reloc_outofrange;
|
4400 |
|
|
}
|
4401 |
|
|
else if (!local_p)
|
4402 |
|
|
{
|
4403 |
|
|
/* On VxWorks, CALL relocations should refer to the .got.plt
|
4404 |
|
|
entry, which is initialized to point at the PLT stub. */
|
4405 |
|
|
if (htab->is_vxworks
|
4406 |
|
|
&& (r_type == R_MIPS_CALL_HI16
|
4407 |
|
|
|| r_type == R_MIPS_CALL_LO16
|
4408 |
|
|
|| r_type == R_MIPS_CALL16))
|
4409 |
|
|
{
|
4410 |
|
|
BFD_ASSERT (addend == 0);
|
4411 |
|
|
BFD_ASSERT (h->root.needs_plt);
|
4412 |
|
|
g = mips_elf_gotplt_index (info, &h->root);
|
4413 |
|
|
}
|
4414 |
|
|
else
|
4415 |
|
|
{
|
4416 |
|
|
/* GOT_PAGE may take a non-zero addend, that is ignored in a
|
4417 |
|
|
GOT_PAGE relocation that decays to GOT_DISP because the
|
4418 |
|
|
symbol turns out to be global. The addend is then added
|
4419 |
|
|
as GOT_OFST. */
|
4420 |
|
|
BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
|
4421 |
|
|
g = mips_elf_global_got_index (dynobj, input_bfd,
|
4422 |
|
|
&h->root, r_type, info);
|
4423 |
|
|
if (h->tls_type == GOT_NORMAL
|
4424 |
|
|
&& (! elf_hash_table(info)->dynamic_sections_created
|
4425 |
|
|
|| (info->shared
|
4426 |
|
|
&& (info->symbolic || h->root.forced_local)
|
4427 |
|
|
&& h->root.def_regular)))
|
4428 |
|
|
{
|
4429 |
|
|
/* This is a static link or a -Bsymbolic link. The
|
4430 |
|
|
symbol is defined locally, or was forced to be local.
|
4431 |
|
|
We must initialize this entry in the GOT. */
|
4432 |
|
|
asection *sgot = mips_elf_got_section (dynobj, FALSE);
|
4433 |
|
|
MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
|
4434 |
|
|
}
|
4435 |
|
|
}
|
4436 |
|
|
}
|
4437 |
|
|
else if (!htab->is_vxworks
|
4438 |
|
|
&& (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
|
4439 |
|
|
/* The calculation below does not involve "g". */
|
4440 |
|
|
break;
|
4441 |
|
|
else
|
4442 |
|
|
{
|
4443 |
|
|
g = mips_elf_local_got_index (abfd, input_bfd, info,
|
4444 |
|
|
symbol + addend, r_symndx, h, r_type);
|
4445 |
|
|
if (g == MINUS_ONE)
|
4446 |
|
|
return bfd_reloc_outofrange;
|
4447 |
|
|
}
|
4448 |
|
|
|
4449 |
|
|
/* Convert GOT indices to actual offsets. */
|
4450 |
|
|
g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
|
4451 |
|
|
break;
|
4452 |
|
|
|
4453 |
|
|
case R_MIPS_HI16:
|
4454 |
|
|
case R_MIPS_LO16:
|
4455 |
|
|
case R_MIPS_GPREL16:
|
4456 |
|
|
case R_MIPS_GPREL32:
|
4457 |
|
|
case R_MIPS_LITERAL:
|
4458 |
|
|
case R_MIPS16_HI16:
|
4459 |
|
|
case R_MIPS16_LO16:
|
4460 |
|
|
case R_MIPS16_GPREL:
|
4461 |
|
|
gp0 = _bfd_get_gp_value (input_bfd);
|
4462 |
|
|
gp = _bfd_get_gp_value (abfd);
|
4463 |
|
|
if (dynobj)
|
4464 |
|
|
gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
|
4465 |
|
|
input_bfd);
|
4466 |
|
|
break;
|
4467 |
|
|
|
4468 |
|
|
default:
|
4469 |
|
|
break;
|
4470 |
|
|
}
|
4471 |
|
|
|
4472 |
|
|
if (gnu_local_gp_p)
|
4473 |
|
|
symbol = gp;
|
4474 |
|
|
|
4475 |
|
|
/* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
|
4476 |
|
|
symbols are resolved by the loader. Add them to .rela.dyn. */
|
4477 |
|
|
if (h != NULL && is_gott_symbol (info, &h->root))
|
4478 |
|
|
{
|
4479 |
|
|
Elf_Internal_Rela outrel;
|
4480 |
|
|
bfd_byte *loc;
|
4481 |
|
|
asection *s;
|
4482 |
|
|
|
4483 |
|
|
s = mips_elf_rel_dyn_section (info, FALSE);
|
4484 |
|
|
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
|
4485 |
|
|
|
4486 |
|
|
outrel.r_offset = (input_section->output_section->vma
|
4487 |
|
|
+ input_section->output_offset
|
4488 |
|
|
+ relocation->r_offset);
|
4489 |
|
|
outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
|
4490 |
|
|
outrel.r_addend = addend;
|
4491 |
|
|
bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
|
4492 |
|
|
|
4493 |
|
|
/* If we've written this relocation for a readonly section,
|
4494 |
|
|
we need to set DF_TEXTREL again, so that we do not delete the
|
4495 |
|
|
DT_TEXTREL tag. */
|
4496 |
|
|
if (MIPS_ELF_READONLY_SECTION (input_section))
|
4497 |
|
|
info->flags |= DF_TEXTREL;
|
4498 |
|
|
|
4499 |
|
|
*valuep = 0;
|
4500 |
|
|
return bfd_reloc_ok;
|
4501 |
|
|
}
|
4502 |
|
|
|
4503 |
|
|
/* Figure out what kind of relocation is being performed. */
|
4504 |
|
|
switch (r_type)
|
4505 |
|
|
{
|
4506 |
|
|
case R_MIPS_NONE:
|
4507 |
|
|
return bfd_reloc_continue;
|
4508 |
|
|
|
4509 |
|
|
case R_MIPS_16:
|
4510 |
|
|
value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
|
4511 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4512 |
|
|
break;
|
4513 |
|
|
|
4514 |
|
|
case R_MIPS_32:
|
4515 |
|
|
case R_MIPS_REL32:
|
4516 |
|
|
case R_MIPS_64:
|
4517 |
|
|
if ((info->shared
|
4518 |
|
|
|| (!htab->is_vxworks
|
4519 |
|
|
&& htab->root.dynamic_sections_created
|
4520 |
|
|
&& h != NULL
|
4521 |
|
|
&& h->root.def_dynamic
|
4522 |
|
|
&& !h->root.def_regular))
|
4523 |
|
|
&& r_symndx != 0
|
4524 |
|
|
&& (input_section->flags & SEC_ALLOC) != 0)
|
4525 |
|
|
{
|
4526 |
|
|
/* If we're creating a shared library, or this relocation is
|
4527 |
|
|
against a symbol in a shared library, then we can't know
|
4528 |
|
|
where the symbol will end up. So, we create a relocation
|
4529 |
|
|
record in the output, and leave the job up to the dynamic
|
4530 |
|
|
linker.
|
4531 |
|
|
|
4532 |
|
|
In VxWorks executables, references to external symbols
|
4533 |
|
|
are handled using copy relocs or PLT stubs, so there's
|
4534 |
|
|
no need to add a dynamic relocation here. */
|
4535 |
|
|
value = addend;
|
4536 |
|
|
if (!mips_elf_create_dynamic_relocation (abfd,
|
4537 |
|
|
info,
|
4538 |
|
|
relocation,
|
4539 |
|
|
h,
|
4540 |
|
|
sec,
|
4541 |
|
|
symbol,
|
4542 |
|
|
&value,
|
4543 |
|
|
input_section))
|
4544 |
|
|
return bfd_reloc_undefined;
|
4545 |
|
|
}
|
4546 |
|
|
else
|
4547 |
|
|
{
|
4548 |
|
|
if (r_type != R_MIPS_REL32)
|
4549 |
|
|
value = symbol + addend;
|
4550 |
|
|
else
|
4551 |
|
|
value = addend;
|
4552 |
|
|
}
|
4553 |
|
|
value &= howto->dst_mask;
|
4554 |
|
|
break;
|
4555 |
|
|
|
4556 |
|
|
case R_MIPS_PC32:
|
4557 |
|
|
value = symbol + addend - p;
|
4558 |
|
|
value &= howto->dst_mask;
|
4559 |
|
|
break;
|
4560 |
|
|
|
4561 |
|
|
case R_MIPS16_26:
|
4562 |
|
|
/* The calculation for R_MIPS16_26 is just the same as for an
|
4563 |
|
|
R_MIPS_26. It's only the storage of the relocated field into
|
4564 |
|
|
the output file that's different. That's handled in
|
4565 |
|
|
mips_elf_perform_relocation. So, we just fall through to the
|
4566 |
|
|
R_MIPS_26 case here. */
|
4567 |
|
|
case R_MIPS_26:
|
4568 |
|
|
if (local_p)
|
4569 |
|
|
value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
|
4570 |
|
|
else
|
4571 |
|
|
{
|
4572 |
|
|
value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
|
4573 |
|
|
if (h->root.root.type != bfd_link_hash_undefweak)
|
4574 |
|
|
overflowed_p = (value >> 26) != ((p + 4) >> 28);
|
4575 |
|
|
}
|
4576 |
|
|
value &= howto->dst_mask;
|
4577 |
|
|
break;
|
4578 |
|
|
|
4579 |
|
|
case R_MIPS_TLS_DTPREL_HI16:
|
4580 |
|
|
value = (mips_elf_high (addend + symbol - dtprel_base (info))
|
4581 |
|
|
& howto->dst_mask);
|
4582 |
|
|
break;
|
4583 |
|
|
|
4584 |
|
|
case R_MIPS_TLS_DTPREL_LO16:
|
4585 |
|
|
case R_MIPS_TLS_DTPREL32:
|
4586 |
|
|
case R_MIPS_TLS_DTPREL64:
|
4587 |
|
|
value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
|
4588 |
|
|
break;
|
4589 |
|
|
|
4590 |
|
|
case R_MIPS_TLS_TPREL_HI16:
|
4591 |
|
|
value = (mips_elf_high (addend + symbol - tprel_base (info))
|
4592 |
|
|
& howto->dst_mask);
|
4593 |
|
|
break;
|
4594 |
|
|
|
4595 |
|
|
case R_MIPS_TLS_TPREL_LO16:
|
4596 |
|
|
value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
|
4597 |
|
|
break;
|
4598 |
|
|
|
4599 |
|
|
case R_MIPS_HI16:
|
4600 |
|
|
case R_MIPS16_HI16:
|
4601 |
|
|
if (!gp_disp_p)
|
4602 |
|
|
{
|
4603 |
|
|
value = mips_elf_high (addend + symbol);
|
4604 |
|
|
value &= howto->dst_mask;
|
4605 |
|
|
}
|
4606 |
|
|
else
|
4607 |
|
|
{
|
4608 |
|
|
/* For MIPS16 ABI code we generate this sequence
|
4609 |
|
|
0: li $v0,%hi(_gp_disp)
|
4610 |
|
|
4: addiupc $v1,%lo(_gp_disp)
|
4611 |
|
|
8: sll $v0,16
|
4612 |
|
|
12: addu $v0,$v1
|
4613 |
|
|
14: move $gp,$v0
|
4614 |
|
|
So the offsets of hi and lo relocs are the same, but the
|
4615 |
|
|
$pc is four higher than $t9 would be, so reduce
|
4616 |
|
|
both reloc addends by 4. */
|
4617 |
|
|
if (r_type == R_MIPS16_HI16)
|
4618 |
|
|
value = mips_elf_high (addend + gp - p - 4);
|
4619 |
|
|
else
|
4620 |
|
|
value = mips_elf_high (addend + gp - p);
|
4621 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4622 |
|
|
}
|
4623 |
|
|
break;
|
4624 |
|
|
|
4625 |
|
|
case R_MIPS_LO16:
|
4626 |
|
|
case R_MIPS16_LO16:
|
4627 |
|
|
if (!gp_disp_p)
|
4628 |
|
|
value = (symbol + addend) & howto->dst_mask;
|
4629 |
|
|
else
|
4630 |
|
|
{
|
4631 |
|
|
/* See the comment for R_MIPS16_HI16 above for the reason
|
4632 |
|
|
for this conditional. */
|
4633 |
|
|
if (r_type == R_MIPS16_LO16)
|
4634 |
|
|
value = addend + gp - p;
|
4635 |
|
|
else
|
4636 |
|
|
value = addend + gp - p + 4;
|
4637 |
|
|
/* The MIPS ABI requires checking the R_MIPS_LO16 relocation
|
4638 |
|
|
for overflow. But, on, say, IRIX5, relocations against
|
4639 |
|
|
_gp_disp are normally generated from the .cpload
|
4640 |
|
|
pseudo-op. It generates code that normally looks like
|
4641 |
|
|
this:
|
4642 |
|
|
|
4643 |
|
|
lui $gp,%hi(_gp_disp)
|
4644 |
|
|
addiu $gp,$gp,%lo(_gp_disp)
|
4645 |
|
|
addu $gp,$gp,$t9
|
4646 |
|
|
|
4647 |
|
|
Here $t9 holds the address of the function being called,
|
4648 |
|
|
as required by the MIPS ELF ABI. The R_MIPS_LO16
|
4649 |
|
|
relocation can easily overflow in this situation, but the
|
4650 |
|
|
R_MIPS_HI16 relocation will handle the overflow.
|
4651 |
|
|
Therefore, we consider this a bug in the MIPS ABI, and do
|
4652 |
|
|
not check for overflow here. */
|
4653 |
|
|
}
|
4654 |
|
|
break;
|
4655 |
|
|
|
4656 |
|
|
case R_MIPS_LITERAL:
|
4657 |
|
|
/* Because we don't merge literal sections, we can handle this
|
4658 |
|
|
just like R_MIPS_GPREL16. In the long run, we should merge
|
4659 |
|
|
shared literals, and then we will need to additional work
|
4660 |
|
|
here. */
|
4661 |
|
|
|
4662 |
|
|
/* Fall through. */
|
4663 |
|
|
|
4664 |
|
|
case R_MIPS16_GPREL:
|
4665 |
|
|
/* The R_MIPS16_GPREL performs the same calculation as
|
4666 |
|
|
R_MIPS_GPREL16, but stores the relocated bits in a different
|
4667 |
|
|
order. We don't need to do anything special here; the
|
4668 |
|
|
differences are handled in mips_elf_perform_relocation. */
|
4669 |
|
|
case R_MIPS_GPREL16:
|
4670 |
|
|
/* Only sign-extend the addend if it was extracted from the
|
4671 |
|
|
instruction. If the addend was separate, leave it alone,
|
4672 |
|
|
otherwise we may lose significant bits. */
|
4673 |
|
|
if (howto->partial_inplace)
|
4674 |
|
|
addend = _bfd_mips_elf_sign_extend (addend, 16);
|
4675 |
|
|
value = symbol + addend - gp;
|
4676 |
|
|
/* If the symbol was local, any earlier relocatable links will
|
4677 |
|
|
have adjusted its addend with the gp offset, so compensate
|
4678 |
|
|
for that now. Don't do it for symbols forced local in this
|
4679 |
|
|
link, though, since they won't have had the gp offset applied
|
4680 |
|
|
to them before. */
|
4681 |
|
|
if (was_local_p)
|
4682 |
|
|
value += gp0;
|
4683 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4684 |
|
|
break;
|
4685 |
|
|
|
4686 |
|
|
case R_MIPS_GOT16:
|
4687 |
|
|
case R_MIPS_CALL16:
|
4688 |
|
|
/* VxWorks does not have separate local and global semantics for
|
4689 |
|
|
R_MIPS_GOT16; every relocation evaluates to "G". */
|
4690 |
|
|
if (!htab->is_vxworks && local_p)
|
4691 |
|
|
{
|
4692 |
|
|
bfd_boolean forced;
|
4693 |
|
|
|
4694 |
|
|
forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
|
4695 |
|
|
local_sections, FALSE);
|
4696 |
|
|
value = mips_elf_got16_entry (abfd, input_bfd, info,
|
4697 |
|
|
symbol + addend, forced);
|
4698 |
|
|
if (value == MINUS_ONE)
|
4699 |
|
|
return bfd_reloc_outofrange;
|
4700 |
|
|
value
|
4701 |
|
|
= mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
|
4702 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4703 |
|
|
break;
|
4704 |
|
|
}
|
4705 |
|
|
|
4706 |
|
|
/* Fall through. */
|
4707 |
|
|
|
4708 |
|
|
case R_MIPS_TLS_GD:
|
4709 |
|
|
case R_MIPS_TLS_GOTTPREL:
|
4710 |
|
|
case R_MIPS_TLS_LDM:
|
4711 |
|
|
case R_MIPS_GOT_DISP:
|
4712 |
|
|
got_disp:
|
4713 |
|
|
value = g;
|
4714 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4715 |
|
|
break;
|
4716 |
|
|
|
4717 |
|
|
case R_MIPS_GPREL32:
|
4718 |
|
|
value = (addend + symbol + gp0 - gp);
|
4719 |
|
|
if (!save_addend)
|
4720 |
|
|
value &= howto->dst_mask;
|
4721 |
|
|
break;
|
4722 |
|
|
|
4723 |
|
|
case R_MIPS_PC16:
|
4724 |
|
|
case R_MIPS_GNU_REL16_S2:
|
4725 |
|
|
value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
|
4726 |
|
|
overflowed_p = mips_elf_overflow_p (value, 18);
|
4727 |
|
|
value >>= howto->rightshift;
|
4728 |
|
|
value &= howto->dst_mask;
|
4729 |
|
|
break;
|
4730 |
|
|
|
4731 |
|
|
case R_MIPS_GOT_HI16:
|
4732 |
|
|
case R_MIPS_CALL_HI16:
|
4733 |
|
|
/* We're allowed to handle these two relocations identically.
|
4734 |
|
|
The dynamic linker is allowed to handle the CALL relocations
|
4735 |
|
|
differently by creating a lazy evaluation stub. */
|
4736 |
|
|
value = g;
|
4737 |
|
|
value = mips_elf_high (value);
|
4738 |
|
|
value &= howto->dst_mask;
|
4739 |
|
|
break;
|
4740 |
|
|
|
4741 |
|
|
case R_MIPS_GOT_LO16:
|
4742 |
|
|
case R_MIPS_CALL_LO16:
|
4743 |
|
|
value = g & howto->dst_mask;
|
4744 |
|
|
break;
|
4745 |
|
|
|
4746 |
|
|
case R_MIPS_GOT_PAGE:
|
4747 |
|
|
/* GOT_PAGE relocations that reference non-local symbols decay
|
4748 |
|
|
to GOT_DISP. The corresponding GOT_OFST relocation decays to
|
4749 |
|
|
0. */
|
4750 |
|
|
if (! local_p)
|
4751 |
|
|
goto got_disp;
|
4752 |
|
|
value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
|
4753 |
|
|
if (value == MINUS_ONE)
|
4754 |
|
|
return bfd_reloc_outofrange;
|
4755 |
|
|
value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
|
4756 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4757 |
|
|
break;
|
4758 |
|
|
|
4759 |
|
|
case R_MIPS_GOT_OFST:
|
4760 |
|
|
if (local_p)
|
4761 |
|
|
mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
|
4762 |
|
|
else
|
4763 |
|
|
value = addend;
|
4764 |
|
|
overflowed_p = mips_elf_overflow_p (value, 16);
|
4765 |
|
|
break;
|
4766 |
|
|
|
4767 |
|
|
case R_MIPS_SUB:
|
4768 |
|
|
value = symbol - addend;
|
4769 |
|
|
value &= howto->dst_mask;
|
4770 |
|
|
break;
|
4771 |
|
|
|
4772 |
|
|
case R_MIPS_HIGHER:
|
4773 |
|
|
value = mips_elf_higher (addend + symbol);
|
4774 |
|
|
value &= howto->dst_mask;
|
4775 |
|
|
break;
|
4776 |
|
|
|
4777 |
|
|
case R_MIPS_HIGHEST:
|
4778 |
|
|
value = mips_elf_highest (addend + symbol);
|
4779 |
|
|
value &= howto->dst_mask;
|
4780 |
|
|
break;
|
4781 |
|
|
|
4782 |
|
|
case R_MIPS_SCN_DISP:
|
4783 |
|
|
value = symbol + addend - sec->output_offset;
|
4784 |
|
|
value &= howto->dst_mask;
|
4785 |
|
|
break;
|
4786 |
|
|
|
4787 |
|
|
case R_MIPS_JALR:
|
4788 |
|
|
/* This relocation is only a hint. In some cases, we optimize
|
4789 |
|
|
it into a bal instruction. But we don't try to optimize
|
4790 |
|
|
branches to the PLT; that will wind up wasting time. */
|
4791 |
|
|
if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
|
4792 |
|
|
return bfd_reloc_continue;
|
4793 |
|
|
value = symbol + addend;
|
4794 |
|
|
break;
|
4795 |
|
|
|
4796 |
|
|
case R_MIPS_PJUMP:
|
4797 |
|
|
case R_MIPS_GNU_VTINHERIT:
|
4798 |
|
|
case R_MIPS_GNU_VTENTRY:
|
4799 |
|
|
/* We don't do anything with these at present. */
|
4800 |
|
|
return bfd_reloc_continue;
|
4801 |
|
|
|
4802 |
|
|
default:
|
4803 |
|
|
/* An unrecognized relocation type. */
|
4804 |
|
|
return bfd_reloc_notsupported;
|
4805 |
|
|
}
|
4806 |
|
|
|
4807 |
|
|
/* Store the VALUE for our caller. */
|
4808 |
|
|
*valuep = value;
|
4809 |
|
|
return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
|
4810 |
|
|
}
|
4811 |
|
|
|
4812 |
|
|
/* Obtain the field relocated by RELOCATION. */
|
4813 |
|
|
|
4814 |
|
|
static bfd_vma
|
4815 |
|
|
mips_elf_obtain_contents (reloc_howto_type *howto,
|
4816 |
|
|
const Elf_Internal_Rela *relocation,
|
4817 |
|
|
bfd *input_bfd, bfd_byte *contents)
|
4818 |
|
|
{
|
4819 |
|
|
bfd_vma x;
|
4820 |
|
|
bfd_byte *location = contents + relocation->r_offset;
|
4821 |
|
|
|
4822 |
|
|
/* Obtain the bytes. */
|
4823 |
|
|
x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
|
4824 |
|
|
|
4825 |
|
|
return x;
|
4826 |
|
|
}
|
4827 |
|
|
|
4828 |
|
|
/* It has been determined that the result of the RELOCATION is the
|
4829 |
|
|
VALUE. Use HOWTO to place VALUE into the output file at the
|
4830 |
|
|
appropriate position. The SECTION is the section to which the
|
4831 |
|
|
relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
|
4832 |
|
|
for the relocation must be either JAL or JALX, and it is
|
4833 |
|
|
unconditionally converted to JALX.
|
4834 |
|
|
|
4835 |
|
|
Returns FALSE if anything goes wrong. */
|
4836 |
|
|
|
4837 |
|
|
static bfd_boolean
|
4838 |
|
|
mips_elf_perform_relocation (struct bfd_link_info *info,
|
4839 |
|
|
reloc_howto_type *howto,
|
4840 |
|
|
const Elf_Internal_Rela *relocation,
|
4841 |
|
|
bfd_vma value, bfd *input_bfd,
|
4842 |
|
|
asection *input_section, bfd_byte *contents,
|
4843 |
|
|
bfd_boolean require_jalx)
|
4844 |
|
|
{
|
4845 |
|
|
bfd_vma x;
|
4846 |
|
|
bfd_byte *location;
|
4847 |
|
|
int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
|
4848 |
|
|
|
4849 |
|
|
/* Figure out where the relocation is occurring. */
|
4850 |
|
|
location = contents + relocation->r_offset;
|
4851 |
|
|
|
4852 |
|
|
_bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
|
4853 |
|
|
|
4854 |
|
|
/* Obtain the current value. */
|
4855 |
|
|
x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
|
4856 |
|
|
|
4857 |
|
|
/* Clear the field we are setting. */
|
4858 |
|
|
x &= ~howto->dst_mask;
|
4859 |
|
|
|
4860 |
|
|
/* Set the field. */
|
4861 |
|
|
x |= (value & howto->dst_mask);
|
4862 |
|
|
|
4863 |
|
|
/* If required, turn JAL into JALX. */
|
4864 |
|
|
if (require_jalx)
|
4865 |
|
|
{
|
4866 |
|
|
bfd_boolean ok;
|
4867 |
|
|
bfd_vma opcode = x >> 26;
|
4868 |
|
|
bfd_vma jalx_opcode;
|
4869 |
|
|
|
4870 |
|
|
/* Check to see if the opcode is already JAL or JALX. */
|
4871 |
|
|
if (r_type == R_MIPS16_26)
|
4872 |
|
|
{
|
4873 |
|
|
ok = ((opcode == 0x6) || (opcode == 0x7));
|
4874 |
|
|
jalx_opcode = 0x7;
|
4875 |
|
|
}
|
4876 |
|
|
else
|
4877 |
|
|
{
|
4878 |
|
|
ok = ((opcode == 0x3) || (opcode == 0x1d));
|
4879 |
|
|
jalx_opcode = 0x1d;
|
4880 |
|
|
}
|
4881 |
|
|
|
4882 |
|
|
/* If the opcode is not JAL or JALX, there's a problem. */
|
4883 |
|
|
if (!ok)
|
4884 |
|
|
{
|
4885 |
|
|
(*_bfd_error_handler)
|
4886 |
|
|
(_("%B: %A+0x%lx: jump to stub routine which is not jal"),
|
4887 |
|
|
input_bfd,
|
4888 |
|
|
input_section,
|
4889 |
|
|
(unsigned long) relocation->r_offset);
|
4890 |
|
|
bfd_set_error (bfd_error_bad_value);
|
4891 |
|
|
return FALSE;
|
4892 |
|
|
}
|
4893 |
|
|
|
4894 |
|
|
/* Make this the JALX opcode. */
|
4895 |
|
|
x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
|
4896 |
|
|
}
|
4897 |
|
|
|
4898 |
|
|
/* On the RM9000, bal is faster than jal, because bal uses branch
|
4899 |
|
|
prediction hardware. If we are linking for the RM9000, and we
|
4900 |
|
|
see jal, and bal fits, use it instead. Note that this
|
4901 |
|
|
transformation should be safe for all architectures. */
|
4902 |
|
|
if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
|
4903 |
|
|
&& !info->relocatable
|
4904 |
|
|
&& !require_jalx
|
4905 |
|
|
&& ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
|
4906 |
|
|
|| (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
|
4907 |
|
|
{
|
4908 |
|
|
bfd_vma addr;
|
4909 |
|
|
bfd_vma dest;
|
4910 |
|
|
bfd_signed_vma off;
|
4911 |
|
|
|
4912 |
|
|
addr = (input_section->output_section->vma
|
4913 |
|
|
+ input_section->output_offset
|
4914 |
|
|
+ relocation->r_offset
|
4915 |
|
|
+ 4);
|
4916 |
|
|
if (r_type == R_MIPS_26)
|
4917 |
|
|
dest = (value << 2) | ((addr >> 28) << 28);
|
4918 |
|
|
else
|
4919 |
|
|
dest = value;
|
4920 |
|
|
off = dest - addr;
|
4921 |
|
|
if (off <= 0x1ffff && off >= -0x20000)
|
4922 |
|
|
x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
|
4923 |
|
|
}
|
4924 |
|
|
|
4925 |
|
|
/* Put the value into the output. */
|
4926 |
|
|
bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
|
4927 |
|
|
|
4928 |
|
|
_bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
|
4929 |
|
|
location);
|
4930 |
|
|
|
4931 |
|
|
return TRUE;
|
4932 |
|
|
}
|
4933 |
|
|
|
4934 |
|
|
/* Returns TRUE if SECTION is a MIPS16 stub section. */
|
4935 |
|
|
|
4936 |
|
|
static bfd_boolean
|
4937 |
|
|
mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
|
4938 |
|
|
{
|
4939 |
|
|
const char *name = bfd_get_section_name (abfd, section);
|
4940 |
|
|
|
4941 |
|
|
return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
|
4942 |
|
|
}
|
4943 |
|
|
|
4944 |
|
|
/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
|
4945 |
|
|
|
4946 |
|
|
static void
|
4947 |
|
|
mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
|
4948 |
|
|
unsigned int n)
|
4949 |
|
|
{
|
4950 |
|
|
asection *s;
|
4951 |
|
|
struct mips_elf_link_hash_table *htab;
|
4952 |
|
|
|
4953 |
|
|
htab = mips_elf_hash_table (info);
|
4954 |
|
|
s = mips_elf_rel_dyn_section (info, FALSE);
|
4955 |
|
|
BFD_ASSERT (s != NULL);
|
4956 |
|
|
|
4957 |
|
|
if (htab->is_vxworks)
|
4958 |
|
|
s->size += n * MIPS_ELF_RELA_SIZE (abfd);
|
4959 |
|
|
else
|
4960 |
|
|
{
|
4961 |
|
|
if (s->size == 0)
|
4962 |
|
|
{
|
4963 |
|
|
/* Make room for a null element. */
|
4964 |
|
|
s->size += MIPS_ELF_REL_SIZE (abfd);
|
4965 |
|
|
++s->reloc_count;
|
4966 |
|
|
}
|
4967 |
|
|
s->size += n * MIPS_ELF_REL_SIZE (abfd);
|
4968 |
|
|
}
|
4969 |
|
|
}
|
4970 |
|
|
|
4971 |
|
|
/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
|
4972 |
|
|
is the original relocation, which is now being transformed into a
|
4973 |
|
|
dynamic relocation. The ADDENDP is adjusted if necessary; the
|
4974 |
|
|
caller should store the result in place of the original addend. */
|
4975 |
|
|
|
4976 |
|
|
static bfd_boolean
|
4977 |
|
|
mips_elf_create_dynamic_relocation (bfd *output_bfd,
|
4978 |
|
|
struct bfd_link_info *info,
|
4979 |
|
|
const Elf_Internal_Rela *rel,
|
4980 |
|
|
struct mips_elf_link_hash_entry *h,
|
4981 |
|
|
asection *sec, bfd_vma symbol,
|
4982 |
|
|
bfd_vma *addendp, asection *input_section)
|
4983 |
|
|
{
|
4984 |
|
|
Elf_Internal_Rela outrel[3];
|
4985 |
|
|
asection *sreloc;
|
4986 |
|
|
bfd *dynobj;
|
4987 |
|
|
int r_type;
|
4988 |
|
|
long indx;
|
4989 |
|
|
bfd_boolean defined_p;
|
4990 |
|
|
struct mips_elf_link_hash_table *htab;
|
4991 |
|
|
|
4992 |
|
|
htab = mips_elf_hash_table (info);
|
4993 |
|
|
r_type = ELF_R_TYPE (output_bfd, rel->r_info);
|
4994 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
4995 |
|
|
sreloc = mips_elf_rel_dyn_section (info, FALSE);
|
4996 |
|
|
BFD_ASSERT (sreloc != NULL);
|
4997 |
|
|
BFD_ASSERT (sreloc->contents != NULL);
|
4998 |
|
|
BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
|
4999 |
|
|
< sreloc->size);
|
5000 |
|
|
|
5001 |
|
|
outrel[0].r_offset =
|
5002 |
|
|
_bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
|
5003 |
|
|
if (ABI_64_P (output_bfd))
|
5004 |
|
|
{
|
5005 |
|
|
outrel[1].r_offset =
|
5006 |
|
|
_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
|
5007 |
|
|
outrel[2].r_offset =
|
5008 |
|
|
_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
|
5009 |
|
|
}
|
5010 |
|
|
|
5011 |
|
|
if (outrel[0].r_offset == MINUS_ONE)
|
5012 |
|
|
/* The relocation field has been deleted. */
|
5013 |
|
|
return TRUE;
|
5014 |
|
|
|
5015 |
|
|
if (outrel[0].r_offset == MINUS_TWO)
|
5016 |
|
|
{
|
5017 |
|
|
/* The relocation field has been converted into a relative value of
|
5018 |
|
|
some sort. Functions like _bfd_elf_write_section_eh_frame expect
|
5019 |
|
|
the field to be fully relocated, so add in the symbol's value. */
|
5020 |
|
|
*addendp += symbol;
|
5021 |
|
|
return TRUE;
|
5022 |
|
|
}
|
5023 |
|
|
|
5024 |
|
|
/* We must now calculate the dynamic symbol table index to use
|
5025 |
|
|
in the relocation. */
|
5026 |
|
|
if (h != NULL
|
5027 |
|
|
&& (!h->root.def_regular
|
5028 |
|
|
|| (info->shared && !info->symbolic && !h->root.forced_local)))
|
5029 |
|
|
{
|
5030 |
|
|
indx = h->root.dynindx;
|
5031 |
|
|
if (SGI_COMPAT (output_bfd))
|
5032 |
|
|
defined_p = h->root.def_regular;
|
5033 |
|
|
else
|
5034 |
|
|
/* ??? glibc's ld.so just adds the final GOT entry to the
|
5035 |
|
|
relocation field. It therefore treats relocs against
|
5036 |
|
|
defined symbols in the same way as relocs against
|
5037 |
|
|
undefined symbols. */
|
5038 |
|
|
defined_p = FALSE;
|
5039 |
|
|
}
|
5040 |
|
|
else
|
5041 |
|
|
{
|
5042 |
|
|
if (sec != NULL && bfd_is_abs_section (sec))
|
5043 |
|
|
indx = 0;
|
5044 |
|
|
else if (sec == NULL || sec->owner == NULL)
|
5045 |
|
|
{
|
5046 |
|
|
bfd_set_error (bfd_error_bad_value);
|
5047 |
|
|
return FALSE;
|
5048 |
|
|
}
|
5049 |
|
|
else
|
5050 |
|
|
{
|
5051 |
|
|
indx = elf_section_data (sec->output_section)->dynindx;
|
5052 |
|
|
if (indx == 0)
|
5053 |
|
|
{
|
5054 |
|
|
asection *osec = htab->root.text_index_section;
|
5055 |
|
|
indx = elf_section_data (osec)->dynindx;
|
5056 |
|
|
}
|
5057 |
|
|
if (indx == 0)
|
5058 |
|
|
abort ();
|
5059 |
|
|
}
|
5060 |
|
|
|
5061 |
|
|
/* Instead of generating a relocation using the section
|
5062 |
|
|
symbol, we may as well make it a fully relative
|
5063 |
|
|
relocation. We want to avoid generating relocations to
|
5064 |
|
|
local symbols because we used to generate them
|
5065 |
|
|
incorrectly, without adding the original symbol value,
|
5066 |
|
|
which is mandated by the ABI for section symbols. In
|
5067 |
|
|
order to give dynamic loaders and applications time to
|
5068 |
|
|
phase out the incorrect use, we refrain from emitting
|
5069 |
|
|
section-relative relocations. It's not like they're
|
5070 |
|
|
useful, after all. This should be a bit more efficient
|
5071 |
|
|
as well. */
|
5072 |
|
|
/* ??? Although this behavior is compatible with glibc's ld.so,
|
5073 |
|
|
the ABI says that relocations against STN_UNDEF should have
|
5074 |
|
|
a symbol value of 0. Irix rld honors this, so relocations
|
5075 |
|
|
against STN_UNDEF have no effect. */
|
5076 |
|
|
if (!SGI_COMPAT (output_bfd))
|
5077 |
|
|
indx = 0;
|
5078 |
|
|
defined_p = TRUE;
|
5079 |
|
|
}
|
5080 |
|
|
|
5081 |
|
|
/* If the relocation was previously an absolute relocation and
|
5082 |
|
|
this symbol will not be referred to by the relocation, we must
|
5083 |
|
|
adjust it by the value we give it in the dynamic symbol table.
|
5084 |
|
|
Otherwise leave the job up to the dynamic linker. */
|
5085 |
|
|
if (defined_p && r_type != R_MIPS_REL32)
|
5086 |
|
|
*addendp += symbol;
|
5087 |
|
|
|
5088 |
|
|
if (htab->is_vxworks)
|
5089 |
|
|
/* VxWorks uses non-relative relocations for this. */
|
5090 |
|
|
outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
|
5091 |
|
|
else
|
5092 |
|
|
/* The relocation is always an REL32 relocation because we don't
|
5093 |
|
|
know where the shared library will wind up at load-time. */
|
5094 |
|
|
outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
|
5095 |
|
|
R_MIPS_REL32);
|
5096 |
|
|
|
5097 |
|
|
/* For strict adherence to the ABI specification, we should
|
5098 |
|
|
generate a R_MIPS_64 relocation record by itself before the
|
5099 |
|
|
_REL32/_64 record as well, such that the addend is read in as
|
5100 |
|
|
a 64-bit value (REL32 is a 32-bit relocation, after all).
|
5101 |
|
|
However, since none of the existing ELF64 MIPS dynamic
|
5102 |
|
|
loaders seems to care, we don't waste space with these
|
5103 |
|
|
artificial relocations. If this turns out to not be true,
|
5104 |
|
|
mips_elf_allocate_dynamic_relocation() should be tweaked so
|
5105 |
|
|
as to make room for a pair of dynamic relocations per
|
5106 |
|
|
invocation if ABI_64_P, and here we should generate an
|
5107 |
|
|
additional relocation record with R_MIPS_64 by itself for a
|
5108 |
|
|
NULL symbol before this relocation record. */
|
5109 |
|
|
outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
|
5110 |
|
|
ABI_64_P (output_bfd)
|
5111 |
|
|
? R_MIPS_64
|
5112 |
|
|
: R_MIPS_NONE);
|
5113 |
|
|
outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
|
5114 |
|
|
|
5115 |
|
|
/* Adjust the output offset of the relocation to reference the
|
5116 |
|
|
correct location in the output file. */
|
5117 |
|
|
outrel[0].r_offset += (input_section->output_section->vma
|
5118 |
|
|
+ input_section->output_offset);
|
5119 |
|
|
outrel[1].r_offset += (input_section->output_section->vma
|
5120 |
|
|
+ input_section->output_offset);
|
5121 |
|
|
outrel[2].r_offset += (input_section->output_section->vma
|
5122 |
|
|
+ input_section->output_offset);
|
5123 |
|
|
|
5124 |
|
|
/* Put the relocation back out. We have to use the special
|
5125 |
|
|
relocation outputter in the 64-bit case since the 64-bit
|
5126 |
|
|
relocation format is non-standard. */
|
5127 |
|
|
if (ABI_64_P (output_bfd))
|
5128 |
|
|
{
|
5129 |
|
|
(*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
|
5130 |
|
|
(output_bfd, &outrel[0],
|
5131 |
|
|
(sreloc->contents
|
5132 |
|
|
+ sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
|
5133 |
|
|
}
|
5134 |
|
|
else if (htab->is_vxworks)
|
5135 |
|
|
{
|
5136 |
|
|
/* VxWorks uses RELA rather than REL dynamic relocations. */
|
5137 |
|
|
outrel[0].r_addend = *addendp;
|
5138 |
|
|
bfd_elf32_swap_reloca_out
|
5139 |
|
|
(output_bfd, &outrel[0],
|
5140 |
|
|
(sreloc->contents
|
5141 |
|
|
+ sreloc->reloc_count * sizeof (Elf32_External_Rela)));
|
5142 |
|
|
}
|
5143 |
|
|
else
|
5144 |
|
|
bfd_elf32_swap_reloc_out
|
5145 |
|
|
(output_bfd, &outrel[0],
|
5146 |
|
|
(sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
|
5147 |
|
|
|
5148 |
|
|
/* We've now added another relocation. */
|
5149 |
|
|
++sreloc->reloc_count;
|
5150 |
|
|
|
5151 |
|
|
/* Make sure the output section is writable. The dynamic linker
|
5152 |
|
|
will be writing to it. */
|
5153 |
|
|
elf_section_data (input_section->output_section)->this_hdr.sh_flags
|
5154 |
|
|
|= SHF_WRITE;
|
5155 |
|
|
|
5156 |
|
|
/* On IRIX5, make an entry of compact relocation info. */
|
5157 |
|
|
if (IRIX_COMPAT (output_bfd) == ict_irix5)
|
5158 |
|
|
{
|
5159 |
|
|
asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
|
5160 |
|
|
bfd_byte *cr;
|
5161 |
|
|
|
5162 |
|
|
if (scpt)
|
5163 |
|
|
{
|
5164 |
|
|
Elf32_crinfo cptrel;
|
5165 |
|
|
|
5166 |
|
|
mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
|
5167 |
|
|
cptrel.vaddr = (rel->r_offset
|
5168 |
|
|
+ input_section->output_section->vma
|
5169 |
|
|
+ input_section->output_offset);
|
5170 |
|
|
if (r_type == R_MIPS_REL32)
|
5171 |
|
|
mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
|
5172 |
|
|
else
|
5173 |
|
|
mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
|
5174 |
|
|
mips_elf_set_cr_dist2to (cptrel, 0);
|
5175 |
|
|
cptrel.konst = *addendp;
|
5176 |
|
|
|
5177 |
|
|
cr = (scpt->contents
|
5178 |
|
|
+ sizeof (Elf32_External_compact_rel));
|
5179 |
|
|
mips_elf_set_cr_relvaddr (cptrel, 0);
|
5180 |
|
|
bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
|
5181 |
|
|
((Elf32_External_crinfo *) cr
|
5182 |
|
|
+ scpt->reloc_count));
|
5183 |
|
|
++scpt->reloc_count;
|
5184 |
|
|
}
|
5185 |
|
|
}
|
5186 |
|
|
|
5187 |
|
|
/* If we've written this relocation for a readonly section,
|
5188 |
|
|
we need to set DF_TEXTREL again, so that we do not delete the
|
5189 |
|
|
DT_TEXTREL tag. */
|
5190 |
|
|
if (MIPS_ELF_READONLY_SECTION (input_section))
|
5191 |
|
|
info->flags |= DF_TEXTREL;
|
5192 |
|
|
|
5193 |
|
|
return TRUE;
|
5194 |
|
|
}
|
5195 |
|
|
|
5196 |
|
|
/* Return the MACH for a MIPS e_flags value. */
|
5197 |
|
|
|
5198 |
|
|
unsigned long
|
5199 |
|
|
_bfd_elf_mips_mach (flagword flags)
|
5200 |
|
|
{
|
5201 |
|
|
switch (flags & EF_MIPS_MACH)
|
5202 |
|
|
{
|
5203 |
|
|
case E_MIPS_MACH_3900:
|
5204 |
|
|
return bfd_mach_mips3900;
|
5205 |
|
|
|
5206 |
|
|
case E_MIPS_MACH_4010:
|
5207 |
|
|
return bfd_mach_mips4010;
|
5208 |
|
|
|
5209 |
|
|
case E_MIPS_MACH_4100:
|
5210 |
|
|
return bfd_mach_mips4100;
|
5211 |
|
|
|
5212 |
|
|
case E_MIPS_MACH_4111:
|
5213 |
|
|
return bfd_mach_mips4111;
|
5214 |
|
|
|
5215 |
|
|
case E_MIPS_MACH_4120:
|
5216 |
|
|
return bfd_mach_mips4120;
|
5217 |
|
|
|
5218 |
|
|
case E_MIPS_MACH_4650:
|
5219 |
|
|
return bfd_mach_mips4650;
|
5220 |
|
|
|
5221 |
|
|
case E_MIPS_MACH_5400:
|
5222 |
|
|
return bfd_mach_mips5400;
|
5223 |
|
|
|
5224 |
|
|
case E_MIPS_MACH_5500:
|
5225 |
|
|
return bfd_mach_mips5500;
|
5226 |
|
|
|
5227 |
|
|
case E_MIPS_MACH_9000:
|
5228 |
|
|
return bfd_mach_mips9000;
|
5229 |
|
|
|
5230 |
|
|
case E_MIPS_MACH_SB1:
|
5231 |
|
|
return bfd_mach_mips_sb1;
|
5232 |
|
|
|
5233 |
|
|
case E_MIPS_MACH_LS2E:
|
5234 |
|
|
return bfd_mach_mips_loongson_2e;
|
5235 |
|
|
|
5236 |
|
|
case E_MIPS_MACH_LS2F:
|
5237 |
|
|
return bfd_mach_mips_loongson_2f;
|
5238 |
|
|
|
5239 |
|
|
case E_MIPS_MACH_OCTEON:
|
5240 |
|
|
return bfd_mach_mips_octeon;
|
5241 |
|
|
|
5242 |
|
|
default:
|
5243 |
|
|
switch (flags & EF_MIPS_ARCH)
|
5244 |
|
|
{
|
5245 |
|
|
default:
|
5246 |
|
|
case E_MIPS_ARCH_1:
|
5247 |
|
|
return bfd_mach_mips3000;
|
5248 |
|
|
|
5249 |
|
|
case E_MIPS_ARCH_2:
|
5250 |
|
|
return bfd_mach_mips6000;
|
5251 |
|
|
|
5252 |
|
|
case E_MIPS_ARCH_3:
|
5253 |
|
|
return bfd_mach_mips4000;
|
5254 |
|
|
|
5255 |
|
|
case E_MIPS_ARCH_4:
|
5256 |
|
|
return bfd_mach_mips8000;
|
5257 |
|
|
|
5258 |
|
|
case E_MIPS_ARCH_5:
|
5259 |
|
|
return bfd_mach_mips5;
|
5260 |
|
|
|
5261 |
|
|
case E_MIPS_ARCH_32:
|
5262 |
|
|
return bfd_mach_mipsisa32;
|
5263 |
|
|
|
5264 |
|
|
case E_MIPS_ARCH_64:
|
5265 |
|
|
return bfd_mach_mipsisa64;
|
5266 |
|
|
|
5267 |
|
|
case E_MIPS_ARCH_32R2:
|
5268 |
|
|
return bfd_mach_mipsisa32r2;
|
5269 |
|
|
|
5270 |
|
|
case E_MIPS_ARCH_64R2:
|
5271 |
|
|
return bfd_mach_mipsisa64r2;
|
5272 |
|
|
}
|
5273 |
|
|
}
|
5274 |
|
|
|
5275 |
|
|
return 0;
|
5276 |
|
|
}
|
5277 |
|
|
|
5278 |
|
|
/* Return printable name for ABI. */
|
5279 |
|
|
|
5280 |
|
|
static INLINE char *
|
5281 |
|
|
elf_mips_abi_name (bfd *abfd)
|
5282 |
|
|
{
|
5283 |
|
|
flagword flags;
|
5284 |
|
|
|
5285 |
|
|
flags = elf_elfheader (abfd)->e_flags;
|
5286 |
|
|
switch (flags & EF_MIPS_ABI)
|
5287 |
|
|
{
|
5288 |
|
|
case 0:
|
5289 |
|
|
if (ABI_N32_P (abfd))
|
5290 |
|
|
return "N32";
|
5291 |
|
|
else if (ABI_64_P (abfd))
|
5292 |
|
|
return "64";
|
5293 |
|
|
else
|
5294 |
|
|
return "none";
|
5295 |
|
|
case E_MIPS_ABI_O32:
|
5296 |
|
|
return "O32";
|
5297 |
|
|
case E_MIPS_ABI_O64:
|
5298 |
|
|
return "O64";
|
5299 |
|
|
case E_MIPS_ABI_EABI32:
|
5300 |
|
|
return "EABI32";
|
5301 |
|
|
case E_MIPS_ABI_EABI64:
|
5302 |
|
|
return "EABI64";
|
5303 |
|
|
default:
|
5304 |
|
|
return "unknown abi";
|
5305 |
|
|
}
|
5306 |
|
|
}
|
5307 |
|
|
|
5308 |
|
|
/* MIPS ELF uses two common sections. One is the usual one, and the
|
5309 |
|
|
other is for small objects. All the small objects are kept
|
5310 |
|
|
together, and then referenced via the gp pointer, which yields
|
5311 |
|
|
faster assembler code. This is what we use for the small common
|
5312 |
|
|
section. This approach is copied from ecoff.c. */
|
5313 |
|
|
static asection mips_elf_scom_section;
|
5314 |
|
|
static asymbol mips_elf_scom_symbol;
|
5315 |
|
|
static asymbol *mips_elf_scom_symbol_ptr;
|
5316 |
|
|
|
5317 |
|
|
/* MIPS ELF also uses an acommon section, which represents an
|
5318 |
|
|
allocated common symbol which may be overridden by a
|
5319 |
|
|
definition in a shared library. */
|
5320 |
|
|
static asection mips_elf_acom_section;
|
5321 |
|
|
static asymbol mips_elf_acom_symbol;
|
5322 |
|
|
static asymbol *mips_elf_acom_symbol_ptr;
|
5323 |
|
|
|
5324 |
|
|
/* Handle the special MIPS section numbers that a symbol may use.
|
5325 |
|
|
This is used for both the 32-bit and the 64-bit ABI. */
|
5326 |
|
|
|
5327 |
|
|
void
|
5328 |
|
|
_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
|
5329 |
|
|
{
|
5330 |
|
|
elf_symbol_type *elfsym;
|
5331 |
|
|
|
5332 |
|
|
elfsym = (elf_symbol_type *) asym;
|
5333 |
|
|
switch (elfsym->internal_elf_sym.st_shndx)
|
5334 |
|
|
{
|
5335 |
|
|
case SHN_MIPS_ACOMMON:
|
5336 |
|
|
/* This section is used in a dynamically linked executable file.
|
5337 |
|
|
It is an allocated common section. The dynamic linker can
|
5338 |
|
|
either resolve these symbols to something in a shared
|
5339 |
|
|
library, or it can just leave them here. For our purposes,
|
5340 |
|
|
we can consider these symbols to be in a new section. */
|
5341 |
|
|
if (mips_elf_acom_section.name == NULL)
|
5342 |
|
|
{
|
5343 |
|
|
/* Initialize the acommon section. */
|
5344 |
|
|
mips_elf_acom_section.name = ".acommon";
|
5345 |
|
|
mips_elf_acom_section.flags = SEC_ALLOC;
|
5346 |
|
|
mips_elf_acom_section.output_section = &mips_elf_acom_section;
|
5347 |
|
|
mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
|
5348 |
|
|
mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
|
5349 |
|
|
mips_elf_acom_symbol.name = ".acommon";
|
5350 |
|
|
mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
|
5351 |
|
|
mips_elf_acom_symbol.section = &mips_elf_acom_section;
|
5352 |
|
|
mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
|
5353 |
|
|
}
|
5354 |
|
|
asym->section = &mips_elf_acom_section;
|
5355 |
|
|
break;
|
5356 |
|
|
|
5357 |
|
|
case SHN_COMMON:
|
5358 |
|
|
/* Common symbols less than the GP size are automatically
|
5359 |
|
|
treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
|
5360 |
|
|
if (asym->value > elf_gp_size (abfd)
|
5361 |
|
|
|| ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
|
5362 |
|
|
|| IRIX_COMPAT (abfd) == ict_irix6)
|
5363 |
|
|
break;
|
5364 |
|
|
/* Fall through. */
|
5365 |
|
|
case SHN_MIPS_SCOMMON:
|
5366 |
|
|
if (mips_elf_scom_section.name == NULL)
|
5367 |
|
|
{
|
5368 |
|
|
/* Initialize the small common section. */
|
5369 |
|
|
mips_elf_scom_section.name = ".scommon";
|
5370 |
|
|
mips_elf_scom_section.flags = SEC_IS_COMMON;
|
5371 |
|
|
mips_elf_scom_section.output_section = &mips_elf_scom_section;
|
5372 |
|
|
mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
|
5373 |
|
|
mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
|
5374 |
|
|
mips_elf_scom_symbol.name = ".scommon";
|
5375 |
|
|
mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
|
5376 |
|
|
mips_elf_scom_symbol.section = &mips_elf_scom_section;
|
5377 |
|
|
mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
|
5378 |
|
|
}
|
5379 |
|
|
asym->section = &mips_elf_scom_section;
|
5380 |
|
|
asym->value = elfsym->internal_elf_sym.st_size;
|
5381 |
|
|
break;
|
5382 |
|
|
|
5383 |
|
|
case SHN_MIPS_SUNDEFINED:
|
5384 |
|
|
asym->section = bfd_und_section_ptr;
|
5385 |
|
|
break;
|
5386 |
|
|
|
5387 |
|
|
case SHN_MIPS_TEXT:
|
5388 |
|
|
{
|
5389 |
|
|
asection *section = bfd_get_section_by_name (abfd, ".text");
|
5390 |
|
|
|
5391 |
|
|
BFD_ASSERT (SGI_COMPAT (abfd));
|
5392 |
|
|
if (section != NULL)
|
5393 |
|
|
{
|
5394 |
|
|
asym->section = section;
|
5395 |
|
|
/* MIPS_TEXT is a bit special, the address is not an offset
|
5396 |
|
|
to the base of the .text section. So substract the section
|
5397 |
|
|
base address to make it an offset. */
|
5398 |
|
|
asym->value -= section->vma;
|
5399 |
|
|
}
|
5400 |
|
|
}
|
5401 |
|
|
break;
|
5402 |
|
|
|
5403 |
|
|
case SHN_MIPS_DATA:
|
5404 |
|
|
{
|
5405 |
|
|
asection *section = bfd_get_section_by_name (abfd, ".data");
|
5406 |
|
|
|
5407 |
|
|
BFD_ASSERT (SGI_COMPAT (abfd));
|
5408 |
|
|
if (section != NULL)
|
5409 |
|
|
{
|
5410 |
|
|
asym->section = section;
|
5411 |
|
|
/* MIPS_DATA is a bit special, the address is not an offset
|
5412 |
|
|
to the base of the .data section. So substract the section
|
5413 |
|
|
base address to make it an offset. */
|
5414 |
|
|
asym->value -= section->vma;
|
5415 |
|
|
}
|
5416 |
|
|
}
|
5417 |
|
|
break;
|
5418 |
|
|
}
|
5419 |
|
|
}
|
5420 |
|
|
|
5421 |
|
|
/* Implement elf_backend_eh_frame_address_size. This differs from
|
5422 |
|
|
the default in the way it handles EABI64.
|
5423 |
|
|
|
5424 |
|
|
EABI64 was originally specified as an LP64 ABI, and that is what
|
5425 |
|
|
-mabi=eabi normally gives on a 64-bit target. However, gcc has
|
5426 |
|
|
historically accepted the combination of -mabi=eabi and -mlong32,
|
5427 |
|
|
and this ILP32 variation has become semi-official over time.
|
5428 |
|
|
Both forms use elf32 and have pointer-sized FDE addresses.
|
5429 |
|
|
|
5430 |
|
|
If an EABI object was generated by GCC 4.0 or above, it will have
|
5431 |
|
|
an empty .gcc_compiled_longXX section, where XX is the size of longs
|
5432 |
|
|
in bits. Unfortunately, ILP32 objects generated by earlier compilers
|
5433 |
|
|
have no special marking to distinguish them from LP64 objects.
|
5434 |
|
|
|
5435 |
|
|
We don't want users of the official LP64 ABI to be punished for the
|
5436 |
|
|
existence of the ILP32 variant, but at the same time, we don't want
|
5437 |
|
|
to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
|
5438 |
|
|
We therefore take the following approach:
|
5439 |
|
|
|
5440 |
|
|
- If ABFD contains a .gcc_compiled_longXX section, use it to
|
5441 |
|
|
determine the pointer size.
|
5442 |
|
|
|
5443 |
|
|
- Otherwise check the type of the first relocation. Assume that
|
5444 |
|
|
the LP64 ABI is being used if the relocation is of type R_MIPS_64.
|
5445 |
|
|
|
5446 |
|
|
- Otherwise punt.
|
5447 |
|
|
|
5448 |
|
|
The second check is enough to detect LP64 objects generated by pre-4.0
|
5449 |
|
|
compilers because, in the kind of output generated by those compilers,
|
5450 |
|
|
the first relocation will be associated with either a CIE personality
|
5451 |
|
|
routine or an FDE start address. Furthermore, the compilers never
|
5452 |
|
|
used a special (non-pointer) encoding for this ABI.
|
5453 |
|
|
|
5454 |
|
|
Checking the relocation type should also be safe because there is no
|
5455 |
|
|
reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
|
5456 |
|
|
did so. */
|
5457 |
|
|
|
5458 |
|
|
unsigned int
|
5459 |
|
|
_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
|
5460 |
|
|
{
|
5461 |
|
|
if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
5462 |
|
|
return 8;
|
5463 |
|
|
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
|
5464 |
|
|
{
|
5465 |
|
|
bfd_boolean long32_p, long64_p;
|
5466 |
|
|
|
5467 |
|
|
long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
|
5468 |
|
|
long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
|
5469 |
|
|
if (long32_p && long64_p)
|
5470 |
|
|
return 0;
|
5471 |
|
|
if (long32_p)
|
5472 |
|
|
return 4;
|
5473 |
|
|
if (long64_p)
|
5474 |
|
|
return 8;
|
5475 |
|
|
|
5476 |
|
|
if (sec->reloc_count > 0
|
5477 |
|
|
&& elf_section_data (sec)->relocs != NULL
|
5478 |
|
|
&& (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
|
5479 |
|
|
== R_MIPS_64))
|
5480 |
|
|
return 8;
|
5481 |
|
|
|
5482 |
|
|
return 0;
|
5483 |
|
|
}
|
5484 |
|
|
return 4;
|
5485 |
|
|
}
|
5486 |
|
|
|
5487 |
|
|
/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
|
5488 |
|
|
relocations against two unnamed section symbols to resolve to the
|
5489 |
|
|
same address. For example, if we have code like:
|
5490 |
|
|
|
5491 |
|
|
lw $4,%got_disp(.data)($gp)
|
5492 |
|
|
lw $25,%got_disp(.text)($gp)
|
5493 |
|
|
jalr $25
|
5494 |
|
|
|
5495 |
|
|
then the linker will resolve both relocations to .data and the program
|
5496 |
|
|
will jump there rather than to .text.
|
5497 |
|
|
|
5498 |
|
|
We can work around this problem by giving names to local section symbols.
|
5499 |
|
|
This is also what the MIPSpro tools do. */
|
5500 |
|
|
|
5501 |
|
|
bfd_boolean
|
5502 |
|
|
_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
|
5503 |
|
|
{
|
5504 |
|
|
return SGI_COMPAT (abfd);
|
5505 |
|
|
}
|
5506 |
|
|
|
5507 |
|
|
/* Work over a section just before writing it out. This routine is
|
5508 |
|
|
used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
|
5509 |
|
|
sections that need the SHF_MIPS_GPREL flag by name; there has to be
|
5510 |
|
|
a better way. */
|
5511 |
|
|
|
5512 |
|
|
bfd_boolean
|
5513 |
|
|
_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
|
5514 |
|
|
{
|
5515 |
|
|
if (hdr->sh_type == SHT_MIPS_REGINFO
|
5516 |
|
|
&& hdr->sh_size > 0)
|
5517 |
|
|
{
|
5518 |
|
|
bfd_byte buf[4];
|
5519 |
|
|
|
5520 |
|
|
BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
|
5521 |
|
|
BFD_ASSERT (hdr->contents == NULL);
|
5522 |
|
|
|
5523 |
|
|
if (bfd_seek (abfd,
|
5524 |
|
|
hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
|
5525 |
|
|
SEEK_SET) != 0)
|
5526 |
|
|
return FALSE;
|
5527 |
|
|
H_PUT_32 (abfd, elf_gp (abfd), buf);
|
5528 |
|
|
if (bfd_bwrite (buf, 4, abfd) != 4)
|
5529 |
|
|
return FALSE;
|
5530 |
|
|
}
|
5531 |
|
|
|
5532 |
|
|
if (hdr->sh_type == SHT_MIPS_OPTIONS
|
5533 |
|
|
&& hdr->bfd_section != NULL
|
5534 |
|
|
&& mips_elf_section_data (hdr->bfd_section) != NULL
|
5535 |
|
|
&& mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
|
5536 |
|
|
{
|
5537 |
|
|
bfd_byte *contents, *l, *lend;
|
5538 |
|
|
|
5539 |
|
|
/* We stored the section contents in the tdata field in the
|
5540 |
|
|
set_section_contents routine. We save the section contents
|
5541 |
|
|
so that we don't have to read them again.
|
5542 |
|
|
At this point we know that elf_gp is set, so we can look
|
5543 |
|
|
through the section contents to see if there is an
|
5544 |
|
|
ODK_REGINFO structure. */
|
5545 |
|
|
|
5546 |
|
|
contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
|
5547 |
|
|
l = contents;
|
5548 |
|
|
lend = contents + hdr->sh_size;
|
5549 |
|
|
while (l + sizeof (Elf_External_Options) <= lend)
|
5550 |
|
|
{
|
5551 |
|
|
Elf_Internal_Options intopt;
|
5552 |
|
|
|
5553 |
|
|
bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
|
5554 |
|
|
&intopt);
|
5555 |
|
|
if (intopt.size < sizeof (Elf_External_Options))
|
5556 |
|
|
{
|
5557 |
|
|
(*_bfd_error_handler)
|
5558 |
|
|
(_("%B: Warning: bad `%s' option size %u smaller than its header"),
|
5559 |
|
|
abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
|
5560 |
|
|
break;
|
5561 |
|
|
}
|
5562 |
|
|
if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
|
5563 |
|
|
{
|
5564 |
|
|
bfd_byte buf[8];
|
5565 |
|
|
|
5566 |
|
|
if (bfd_seek (abfd,
|
5567 |
|
|
(hdr->sh_offset
|
5568 |
|
|
+ (l - contents)
|
5569 |
|
|
+ sizeof (Elf_External_Options)
|
5570 |
|
|
+ (sizeof (Elf64_External_RegInfo) - 8)),
|
5571 |
|
|
SEEK_SET) != 0)
|
5572 |
|
|
return FALSE;
|
5573 |
|
|
H_PUT_64 (abfd, elf_gp (abfd), buf);
|
5574 |
|
|
if (bfd_bwrite (buf, 8, abfd) != 8)
|
5575 |
|
|
return FALSE;
|
5576 |
|
|
}
|
5577 |
|
|
else if (intopt.kind == ODK_REGINFO)
|
5578 |
|
|
{
|
5579 |
|
|
bfd_byte buf[4];
|
5580 |
|
|
|
5581 |
|
|
if (bfd_seek (abfd,
|
5582 |
|
|
(hdr->sh_offset
|
5583 |
|
|
+ (l - contents)
|
5584 |
|
|
+ sizeof (Elf_External_Options)
|
5585 |
|
|
+ (sizeof (Elf32_External_RegInfo) - 4)),
|
5586 |
|
|
SEEK_SET) != 0)
|
5587 |
|
|
return FALSE;
|
5588 |
|
|
H_PUT_32 (abfd, elf_gp (abfd), buf);
|
5589 |
|
|
if (bfd_bwrite (buf, 4, abfd) != 4)
|
5590 |
|
|
return FALSE;
|
5591 |
|
|
}
|
5592 |
|
|
l += intopt.size;
|
5593 |
|
|
}
|
5594 |
|
|
}
|
5595 |
|
|
|
5596 |
|
|
if (hdr->bfd_section != NULL)
|
5597 |
|
|
{
|
5598 |
|
|
const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
|
5599 |
|
|
|
5600 |
|
|
if (strcmp (name, ".sdata") == 0
|
5601 |
|
|
|| strcmp (name, ".lit8") == 0
|
5602 |
|
|
|| strcmp (name, ".lit4") == 0)
|
5603 |
|
|
{
|
5604 |
|
|
hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
|
5605 |
|
|
hdr->sh_type = SHT_PROGBITS;
|
5606 |
|
|
}
|
5607 |
|
|
else if (strcmp (name, ".sbss") == 0)
|
5608 |
|
|
{
|
5609 |
|
|
hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
|
5610 |
|
|
hdr->sh_type = SHT_NOBITS;
|
5611 |
|
|
}
|
5612 |
|
|
else if (strcmp (name, ".srdata") == 0)
|
5613 |
|
|
{
|
5614 |
|
|
hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
|
5615 |
|
|
hdr->sh_type = SHT_PROGBITS;
|
5616 |
|
|
}
|
5617 |
|
|
else if (strcmp (name, ".compact_rel") == 0)
|
5618 |
|
|
{
|
5619 |
|
|
hdr->sh_flags = 0;
|
5620 |
|
|
hdr->sh_type = SHT_PROGBITS;
|
5621 |
|
|
}
|
5622 |
|
|
else if (strcmp (name, ".rtproc") == 0)
|
5623 |
|
|
{
|
5624 |
|
|
if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
|
5625 |
|
|
{
|
5626 |
|
|
unsigned int adjust;
|
5627 |
|
|
|
5628 |
|
|
adjust = hdr->sh_size % hdr->sh_addralign;
|
5629 |
|
|
if (adjust != 0)
|
5630 |
|
|
hdr->sh_size += hdr->sh_addralign - adjust;
|
5631 |
|
|
}
|
5632 |
|
|
}
|
5633 |
|
|
}
|
5634 |
|
|
|
5635 |
|
|
return TRUE;
|
5636 |
|
|
}
|
5637 |
|
|
|
5638 |
|
|
/* Handle a MIPS specific section when reading an object file. This
|
5639 |
|
|
is called when elfcode.h finds a section with an unknown type.
|
5640 |
|
|
This routine supports both the 32-bit and 64-bit ELF ABI.
|
5641 |
|
|
|
5642 |
|
|
FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
|
5643 |
|
|
how to. */
|
5644 |
|
|
|
5645 |
|
|
bfd_boolean
|
5646 |
|
|
_bfd_mips_elf_section_from_shdr (bfd *abfd,
|
5647 |
|
|
Elf_Internal_Shdr *hdr,
|
5648 |
|
|
const char *name,
|
5649 |
|
|
int shindex)
|
5650 |
|
|
{
|
5651 |
|
|
flagword flags = 0;
|
5652 |
|
|
|
5653 |
|
|
/* There ought to be a place to keep ELF backend specific flags, but
|
5654 |
|
|
at the moment there isn't one. We just keep track of the
|
5655 |
|
|
sections by their name, instead. Fortunately, the ABI gives
|
5656 |
|
|
suggested names for all the MIPS specific sections, so we will
|
5657 |
|
|
probably get away with this. */
|
5658 |
|
|
switch (hdr->sh_type)
|
5659 |
|
|
{
|
5660 |
|
|
case SHT_MIPS_LIBLIST:
|
5661 |
|
|
if (strcmp (name, ".liblist") != 0)
|
5662 |
|
|
return FALSE;
|
5663 |
|
|
break;
|
5664 |
|
|
case SHT_MIPS_MSYM:
|
5665 |
|
|
if (strcmp (name, ".msym") != 0)
|
5666 |
|
|
return FALSE;
|
5667 |
|
|
break;
|
5668 |
|
|
case SHT_MIPS_CONFLICT:
|
5669 |
|
|
if (strcmp (name, ".conflict") != 0)
|
5670 |
|
|
return FALSE;
|
5671 |
|
|
break;
|
5672 |
|
|
case SHT_MIPS_GPTAB:
|
5673 |
|
|
if (! CONST_STRNEQ (name, ".gptab."))
|
5674 |
|
|
return FALSE;
|
5675 |
|
|
break;
|
5676 |
|
|
case SHT_MIPS_UCODE:
|
5677 |
|
|
if (strcmp (name, ".ucode") != 0)
|
5678 |
|
|
return FALSE;
|
5679 |
|
|
break;
|
5680 |
|
|
case SHT_MIPS_DEBUG:
|
5681 |
|
|
if (strcmp (name, ".mdebug") != 0)
|
5682 |
|
|
return FALSE;
|
5683 |
|
|
flags = SEC_DEBUGGING;
|
5684 |
|
|
break;
|
5685 |
|
|
case SHT_MIPS_REGINFO:
|
5686 |
|
|
if (strcmp (name, ".reginfo") != 0
|
5687 |
|
|
|| hdr->sh_size != sizeof (Elf32_External_RegInfo))
|
5688 |
|
|
return FALSE;
|
5689 |
|
|
flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
|
5690 |
|
|
break;
|
5691 |
|
|
case SHT_MIPS_IFACE:
|
5692 |
|
|
if (strcmp (name, ".MIPS.interfaces") != 0)
|
5693 |
|
|
return FALSE;
|
5694 |
|
|
break;
|
5695 |
|
|
case SHT_MIPS_CONTENT:
|
5696 |
|
|
if (! CONST_STRNEQ (name, ".MIPS.content"))
|
5697 |
|
|
return FALSE;
|
5698 |
|
|
break;
|
5699 |
|
|
case SHT_MIPS_OPTIONS:
|
5700 |
|
|
if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
|
5701 |
|
|
return FALSE;
|
5702 |
|
|
break;
|
5703 |
|
|
case SHT_MIPS_DWARF:
|
5704 |
|
|
if (! CONST_STRNEQ (name, ".debug_"))
|
5705 |
|
|
return FALSE;
|
5706 |
|
|
break;
|
5707 |
|
|
case SHT_MIPS_SYMBOL_LIB:
|
5708 |
|
|
if (strcmp (name, ".MIPS.symlib") != 0)
|
5709 |
|
|
return FALSE;
|
5710 |
|
|
break;
|
5711 |
|
|
case SHT_MIPS_EVENTS:
|
5712 |
|
|
if (! CONST_STRNEQ (name, ".MIPS.events")
|
5713 |
|
|
&& ! CONST_STRNEQ (name, ".MIPS.post_rel"))
|
5714 |
|
|
return FALSE;
|
5715 |
|
|
break;
|
5716 |
|
|
default:
|
5717 |
|
|
break;
|
5718 |
|
|
}
|
5719 |
|
|
|
5720 |
|
|
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
5721 |
|
|
return FALSE;
|
5722 |
|
|
|
5723 |
|
|
if (flags)
|
5724 |
|
|
{
|
5725 |
|
|
if (! bfd_set_section_flags (abfd, hdr->bfd_section,
|
5726 |
|
|
(bfd_get_section_flags (abfd,
|
5727 |
|
|
hdr->bfd_section)
|
5728 |
|
|
| flags)))
|
5729 |
|
|
return FALSE;
|
5730 |
|
|
}
|
5731 |
|
|
|
5732 |
|
|
/* FIXME: We should record sh_info for a .gptab section. */
|
5733 |
|
|
|
5734 |
|
|
/* For a .reginfo section, set the gp value in the tdata information
|
5735 |
|
|
from the contents of this section. We need the gp value while
|
5736 |
|
|
processing relocs, so we just get it now. The .reginfo section
|
5737 |
|
|
is not used in the 64-bit MIPS ELF ABI. */
|
5738 |
|
|
if (hdr->sh_type == SHT_MIPS_REGINFO)
|
5739 |
|
|
{
|
5740 |
|
|
Elf32_External_RegInfo ext;
|
5741 |
|
|
Elf32_RegInfo s;
|
5742 |
|
|
|
5743 |
|
|
if (! bfd_get_section_contents (abfd, hdr->bfd_section,
|
5744 |
|
|
&ext, 0, sizeof ext))
|
5745 |
|
|
return FALSE;
|
5746 |
|
|
bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
|
5747 |
|
|
elf_gp (abfd) = s.ri_gp_value;
|
5748 |
|
|
}
|
5749 |
|
|
|
5750 |
|
|
/* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
|
5751 |
|
|
set the gp value based on what we find. We may see both
|
5752 |
|
|
SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
|
5753 |
|
|
they should agree. */
|
5754 |
|
|
if (hdr->sh_type == SHT_MIPS_OPTIONS)
|
5755 |
|
|
{
|
5756 |
|
|
bfd_byte *contents, *l, *lend;
|
5757 |
|
|
|
5758 |
|
|
contents = bfd_malloc (hdr->sh_size);
|
5759 |
|
|
if (contents == NULL)
|
5760 |
|
|
return FALSE;
|
5761 |
|
|
if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
|
5762 |
|
|
0, hdr->sh_size))
|
5763 |
|
|
{
|
5764 |
|
|
free (contents);
|
5765 |
|
|
return FALSE;
|
5766 |
|
|
}
|
5767 |
|
|
l = contents;
|
5768 |
|
|
lend = contents + hdr->sh_size;
|
5769 |
|
|
while (l + sizeof (Elf_External_Options) <= lend)
|
5770 |
|
|
{
|
5771 |
|
|
Elf_Internal_Options intopt;
|
5772 |
|
|
|
5773 |
|
|
bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
|
5774 |
|
|
&intopt);
|
5775 |
|
|
if (intopt.size < sizeof (Elf_External_Options))
|
5776 |
|
|
{
|
5777 |
|
|
(*_bfd_error_handler)
|
5778 |
|
|
(_("%B: Warning: bad `%s' option size %u smaller than its header"),
|
5779 |
|
|
abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
|
5780 |
|
|
break;
|
5781 |
|
|
}
|
5782 |
|
|
if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
|
5783 |
|
|
{
|
5784 |
|
|
Elf64_Internal_RegInfo intreg;
|
5785 |
|
|
|
5786 |
|
|
bfd_mips_elf64_swap_reginfo_in
|
5787 |
|
|
(abfd,
|
5788 |
|
|
((Elf64_External_RegInfo *)
|
5789 |
|
|
(l + sizeof (Elf_External_Options))),
|
5790 |
|
|
&intreg);
|
5791 |
|
|
elf_gp (abfd) = intreg.ri_gp_value;
|
5792 |
|
|
}
|
5793 |
|
|
else if (intopt.kind == ODK_REGINFO)
|
5794 |
|
|
{
|
5795 |
|
|
Elf32_RegInfo intreg;
|
5796 |
|
|
|
5797 |
|
|
bfd_mips_elf32_swap_reginfo_in
|
5798 |
|
|
(abfd,
|
5799 |
|
|
((Elf32_External_RegInfo *)
|
5800 |
|
|
(l + sizeof (Elf_External_Options))),
|
5801 |
|
|
&intreg);
|
5802 |
|
|
elf_gp (abfd) = intreg.ri_gp_value;
|
5803 |
|
|
}
|
5804 |
|
|
l += intopt.size;
|
5805 |
|
|
}
|
5806 |
|
|
free (contents);
|
5807 |
|
|
}
|
5808 |
|
|
|
5809 |
|
|
return TRUE;
|
5810 |
|
|
}
|
5811 |
|
|
|
5812 |
|
|
/* Set the correct type for a MIPS ELF section. We do this by the
|
5813 |
|
|
section name, which is a hack, but ought to work. This routine is
|
5814 |
|
|
used by both the 32-bit and the 64-bit ABI. */
|
5815 |
|
|
|
5816 |
|
|
bfd_boolean
|
5817 |
|
|
_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
|
5818 |
|
|
{
|
5819 |
|
|
const char *name = bfd_get_section_name (abfd, sec);
|
5820 |
|
|
|
5821 |
|
|
if (strcmp (name, ".liblist") == 0)
|
5822 |
|
|
{
|
5823 |
|
|
hdr->sh_type = SHT_MIPS_LIBLIST;
|
5824 |
|
|
hdr->sh_info = sec->size / sizeof (Elf32_Lib);
|
5825 |
|
|
/* The sh_link field is set in final_write_processing. */
|
5826 |
|
|
}
|
5827 |
|
|
else if (strcmp (name, ".conflict") == 0)
|
5828 |
|
|
hdr->sh_type = SHT_MIPS_CONFLICT;
|
5829 |
|
|
else if (CONST_STRNEQ (name, ".gptab."))
|
5830 |
|
|
{
|
5831 |
|
|
hdr->sh_type = SHT_MIPS_GPTAB;
|
5832 |
|
|
hdr->sh_entsize = sizeof (Elf32_External_gptab);
|
5833 |
|
|
/* The sh_info field is set in final_write_processing. */
|
5834 |
|
|
}
|
5835 |
|
|
else if (strcmp (name, ".ucode") == 0)
|
5836 |
|
|
hdr->sh_type = SHT_MIPS_UCODE;
|
5837 |
|
|
else if (strcmp (name, ".mdebug") == 0)
|
5838 |
|
|
{
|
5839 |
|
|
hdr->sh_type = SHT_MIPS_DEBUG;
|
5840 |
|
|
/* In a shared object on IRIX 5.3, the .mdebug section has an
|
5841 |
|
|
entsize of 0. FIXME: Does this matter? */
|
5842 |
|
|
if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
|
5843 |
|
|
hdr->sh_entsize = 0;
|
5844 |
|
|
else
|
5845 |
|
|
hdr->sh_entsize = 1;
|
5846 |
|
|
}
|
5847 |
|
|
else if (strcmp (name, ".reginfo") == 0)
|
5848 |
|
|
{
|
5849 |
|
|
hdr->sh_type = SHT_MIPS_REGINFO;
|
5850 |
|
|
/* In a shared object on IRIX 5.3, the .reginfo section has an
|
5851 |
|
|
entsize of 0x18. FIXME: Does this matter? */
|
5852 |
|
|
if (SGI_COMPAT (abfd))
|
5853 |
|
|
{
|
5854 |
|
|
if ((abfd->flags & DYNAMIC) != 0)
|
5855 |
|
|
hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
|
5856 |
|
|
else
|
5857 |
|
|
hdr->sh_entsize = 1;
|
5858 |
|
|
}
|
5859 |
|
|
else
|
5860 |
|
|
hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
|
5861 |
|
|
}
|
5862 |
|
|
else if (SGI_COMPAT (abfd)
|
5863 |
|
|
&& (strcmp (name, ".hash") == 0
|
5864 |
|
|
|| strcmp (name, ".dynamic") == 0
|
5865 |
|
|
|| strcmp (name, ".dynstr") == 0))
|
5866 |
|
|
{
|
5867 |
|
|
if (SGI_COMPAT (abfd))
|
5868 |
|
|
hdr->sh_entsize = 0;
|
5869 |
|
|
#if 0
|
5870 |
|
|
/* This isn't how the IRIX6 linker behaves. */
|
5871 |
|
|
hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
|
5872 |
|
|
#endif
|
5873 |
|
|
}
|
5874 |
|
|
else if (strcmp (name, ".got") == 0
|
5875 |
|
|
|| strcmp (name, ".srdata") == 0
|
5876 |
|
|
|| strcmp (name, ".sdata") == 0
|
5877 |
|
|
|| strcmp (name, ".sbss") == 0
|
5878 |
|
|
|| strcmp (name, ".lit4") == 0
|
5879 |
|
|
|| strcmp (name, ".lit8") == 0)
|
5880 |
|
|
hdr->sh_flags |= SHF_MIPS_GPREL;
|
5881 |
|
|
else if (strcmp (name, ".MIPS.interfaces") == 0)
|
5882 |
|
|
{
|
5883 |
|
|
hdr->sh_type = SHT_MIPS_IFACE;
|
5884 |
|
|
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
5885 |
|
|
}
|
5886 |
|
|
else if (CONST_STRNEQ (name, ".MIPS.content"))
|
5887 |
|
|
{
|
5888 |
|
|
hdr->sh_type = SHT_MIPS_CONTENT;
|
5889 |
|
|
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
5890 |
|
|
/* The sh_info field is set in final_write_processing. */
|
5891 |
|
|
}
|
5892 |
|
|
else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
|
5893 |
|
|
{
|
5894 |
|
|
hdr->sh_type = SHT_MIPS_OPTIONS;
|
5895 |
|
|
hdr->sh_entsize = 1;
|
5896 |
|
|
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
5897 |
|
|
}
|
5898 |
|
|
else if (CONST_STRNEQ (name, ".debug_"))
|
5899 |
|
|
{
|
5900 |
|
|
hdr->sh_type = SHT_MIPS_DWARF;
|
5901 |
|
|
|
5902 |
|
|
/* Irix facilities such as libexc expect a single .debug_frame
|
5903 |
|
|
per executable, the system ones have NOSTRIP set and the linker
|
5904 |
|
|
doesn't merge sections with different flags so ... */
|
5905 |
|
|
if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
|
5906 |
|
|
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
5907 |
|
|
}
|
5908 |
|
|
else if (strcmp (name, ".MIPS.symlib") == 0)
|
5909 |
|
|
{
|
5910 |
|
|
hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
|
5911 |
|
|
/* The sh_link and sh_info fields are set in
|
5912 |
|
|
final_write_processing. */
|
5913 |
|
|
}
|
5914 |
|
|
else if (CONST_STRNEQ (name, ".MIPS.events")
|
5915 |
|
|
|| CONST_STRNEQ (name, ".MIPS.post_rel"))
|
5916 |
|
|
{
|
5917 |
|
|
hdr->sh_type = SHT_MIPS_EVENTS;
|
5918 |
|
|
hdr->sh_flags |= SHF_MIPS_NOSTRIP;
|
5919 |
|
|
/* The sh_link field is set in final_write_processing. */
|
5920 |
|
|
}
|
5921 |
|
|
else if (strcmp (name, ".msym") == 0)
|
5922 |
|
|
{
|
5923 |
|
|
hdr->sh_type = SHT_MIPS_MSYM;
|
5924 |
|
|
hdr->sh_flags |= SHF_ALLOC;
|
5925 |
|
|
hdr->sh_entsize = 8;
|
5926 |
|
|
}
|
5927 |
|
|
|
5928 |
|
|
/* The generic elf_fake_sections will set up REL_HDR using the default
|
5929 |
|
|
kind of relocations. We used to set up a second header for the
|
5930 |
|
|
non-default kind of relocations here, but only NewABI would use
|
5931 |
|
|
these, and the IRIX ld doesn't like resulting empty RELA sections.
|
5932 |
|
|
Thus we create those header only on demand now. */
|
5933 |
|
|
|
5934 |
|
|
return TRUE;
|
5935 |
|
|
}
|
5936 |
|
|
|
5937 |
|
|
/* Given a BFD section, try to locate the corresponding ELF section
|
5938 |
|
|
index. This is used by both the 32-bit and the 64-bit ABI.
|
5939 |
|
|
Actually, it's not clear to me that the 64-bit ABI supports these,
|
5940 |
|
|
but for non-PIC objects we will certainly want support for at least
|
5941 |
|
|
the .scommon section. */
|
5942 |
|
|
|
5943 |
|
|
bfd_boolean
|
5944 |
|
|
_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
|
5945 |
|
|
asection *sec, int *retval)
|
5946 |
|
|
{
|
5947 |
|
|
if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
|
5948 |
|
|
{
|
5949 |
|
|
*retval = SHN_MIPS_SCOMMON;
|
5950 |
|
|
return TRUE;
|
5951 |
|
|
}
|
5952 |
|
|
if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
|
5953 |
|
|
{
|
5954 |
|
|
*retval = SHN_MIPS_ACOMMON;
|
5955 |
|
|
return TRUE;
|
5956 |
|
|
}
|
5957 |
|
|
return FALSE;
|
5958 |
|
|
}
|
5959 |
|
|
|
5960 |
|
|
/* Hook called by the linker routine which adds symbols from an object
|
5961 |
|
|
file. We must handle the special MIPS section numbers here. */
|
5962 |
|
|
|
5963 |
|
|
bfd_boolean
|
5964 |
|
|
_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
|
5965 |
|
|
Elf_Internal_Sym *sym, const char **namep,
|
5966 |
|
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
5967 |
|
|
asection **secp, bfd_vma *valp)
|
5968 |
|
|
{
|
5969 |
|
|
if (SGI_COMPAT (abfd)
|
5970 |
|
|
&& (abfd->flags & DYNAMIC) != 0
|
5971 |
|
|
&& strcmp (*namep, "_rld_new_interface") == 0)
|
5972 |
|
|
{
|
5973 |
|
|
/* Skip IRIX5 rld entry name. */
|
5974 |
|
|
*namep = NULL;
|
5975 |
|
|
return TRUE;
|
5976 |
|
|
}
|
5977 |
|
|
|
5978 |
|
|
/* Shared objects may have a dynamic symbol '_gp_disp' defined as
|
5979 |
|
|
a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
|
5980 |
|
|
by setting a DT_NEEDED for the shared object. Since _gp_disp is
|
5981 |
|
|
a magic symbol resolved by the linker, we ignore this bogus definition
|
5982 |
|
|
of _gp_disp. New ABI objects do not suffer from this problem so this
|
5983 |
|
|
is not done for them. */
|
5984 |
|
|
if (!NEWABI_P(abfd)
|
5985 |
|
|
&& (sym->st_shndx == SHN_ABS)
|
5986 |
|
|
&& (strcmp (*namep, "_gp_disp") == 0))
|
5987 |
|
|
{
|
5988 |
|
|
*namep = NULL;
|
5989 |
|
|
return TRUE;
|
5990 |
|
|
}
|
5991 |
|
|
|
5992 |
|
|
switch (sym->st_shndx)
|
5993 |
|
|
{
|
5994 |
|
|
case SHN_COMMON:
|
5995 |
|
|
/* Common symbols less than the GP size are automatically
|
5996 |
|
|
treated as SHN_MIPS_SCOMMON symbols. */
|
5997 |
|
|
if (sym->st_size > elf_gp_size (abfd)
|
5998 |
|
|
|| ELF_ST_TYPE (sym->st_info) == STT_TLS
|
5999 |
|
|
|| IRIX_COMPAT (abfd) == ict_irix6)
|
6000 |
|
|
break;
|
6001 |
|
|
/* Fall through. */
|
6002 |
|
|
case SHN_MIPS_SCOMMON:
|
6003 |
|
|
*secp = bfd_make_section_old_way (abfd, ".scommon");
|
6004 |
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
6005 |
|
|
*valp = sym->st_size;
|
6006 |
|
|
break;
|
6007 |
|
|
|
6008 |
|
|
case SHN_MIPS_TEXT:
|
6009 |
|
|
/* This section is used in a shared object. */
|
6010 |
|
|
if (elf_tdata (abfd)->elf_text_section == NULL)
|
6011 |
|
|
{
|
6012 |
|
|
asymbol *elf_text_symbol;
|
6013 |
|
|
asection *elf_text_section;
|
6014 |
|
|
bfd_size_type amt = sizeof (asection);
|
6015 |
|
|
|
6016 |
|
|
elf_text_section = bfd_zalloc (abfd, amt);
|
6017 |
|
|
if (elf_text_section == NULL)
|
6018 |
|
|
return FALSE;
|
6019 |
|
|
|
6020 |
|
|
amt = sizeof (asymbol);
|
6021 |
|
|
elf_text_symbol = bfd_zalloc (abfd, amt);
|
6022 |
|
|
if (elf_text_symbol == NULL)
|
6023 |
|
|
return FALSE;
|
6024 |
|
|
|
6025 |
|
|
/* Initialize the section. */
|
6026 |
|
|
|
6027 |
|
|
elf_tdata (abfd)->elf_text_section = elf_text_section;
|
6028 |
|
|
elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
|
6029 |
|
|
|
6030 |
|
|
elf_text_section->symbol = elf_text_symbol;
|
6031 |
|
|
elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
|
6032 |
|
|
|
6033 |
|
|
elf_text_section->name = ".text";
|
6034 |
|
|
elf_text_section->flags = SEC_NO_FLAGS;
|
6035 |
|
|
elf_text_section->output_section = NULL;
|
6036 |
|
|
elf_text_section->owner = abfd;
|
6037 |
|
|
elf_text_symbol->name = ".text";
|
6038 |
|
|
elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
|
6039 |
|
|
elf_text_symbol->section = elf_text_section;
|
6040 |
|
|
}
|
6041 |
|
|
/* This code used to do *secp = bfd_und_section_ptr if
|
6042 |
|
|
info->shared. I don't know why, and that doesn't make sense,
|
6043 |
|
|
so I took it out. */
|
6044 |
|
|
*secp = elf_tdata (abfd)->elf_text_section;
|
6045 |
|
|
break;
|
6046 |
|
|
|
6047 |
|
|
case SHN_MIPS_ACOMMON:
|
6048 |
|
|
/* Fall through. XXX Can we treat this as allocated data? */
|
6049 |
|
|
case SHN_MIPS_DATA:
|
6050 |
|
|
/* This section is used in a shared object. */
|
6051 |
|
|
if (elf_tdata (abfd)->elf_data_section == NULL)
|
6052 |
|
|
{
|
6053 |
|
|
asymbol *elf_data_symbol;
|
6054 |
|
|
asection *elf_data_section;
|
6055 |
|
|
bfd_size_type amt = sizeof (asection);
|
6056 |
|
|
|
6057 |
|
|
elf_data_section = bfd_zalloc (abfd, amt);
|
6058 |
|
|
if (elf_data_section == NULL)
|
6059 |
|
|
return FALSE;
|
6060 |
|
|
|
6061 |
|
|
amt = sizeof (asymbol);
|
6062 |
|
|
elf_data_symbol = bfd_zalloc (abfd, amt);
|
6063 |
|
|
if (elf_data_symbol == NULL)
|
6064 |
|
|
return FALSE;
|
6065 |
|
|
|
6066 |
|
|
/* Initialize the section. */
|
6067 |
|
|
|
6068 |
|
|
elf_tdata (abfd)->elf_data_section = elf_data_section;
|
6069 |
|
|
elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
|
6070 |
|
|
|
6071 |
|
|
elf_data_section->symbol = elf_data_symbol;
|
6072 |
|
|
elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
|
6073 |
|
|
|
6074 |
|
|
elf_data_section->name = ".data";
|
6075 |
|
|
elf_data_section->flags = SEC_NO_FLAGS;
|
6076 |
|
|
elf_data_section->output_section = NULL;
|
6077 |
|
|
elf_data_section->owner = abfd;
|
6078 |
|
|
elf_data_symbol->name = ".data";
|
6079 |
|
|
elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
|
6080 |
|
|
elf_data_symbol->section = elf_data_section;
|
6081 |
|
|
}
|
6082 |
|
|
/* This code used to do *secp = bfd_und_section_ptr if
|
6083 |
|
|
info->shared. I don't know why, and that doesn't make sense,
|
6084 |
|
|
so I took it out. */
|
6085 |
|
|
*secp = elf_tdata (abfd)->elf_data_section;
|
6086 |
|
|
break;
|
6087 |
|
|
|
6088 |
|
|
case SHN_MIPS_SUNDEFINED:
|
6089 |
|
|
*secp = bfd_und_section_ptr;
|
6090 |
|
|
break;
|
6091 |
|
|
}
|
6092 |
|
|
|
6093 |
|
|
if (SGI_COMPAT (abfd)
|
6094 |
|
|
&& ! info->shared
|
6095 |
|
|
&& info->output_bfd->xvec == abfd->xvec
|
6096 |
|
|
&& strcmp (*namep, "__rld_obj_head") == 0)
|
6097 |
|
|
{
|
6098 |
|
|
struct elf_link_hash_entry *h;
|
6099 |
|
|
struct bfd_link_hash_entry *bh;
|
6100 |
|
|
|
6101 |
|
|
/* Mark __rld_obj_head as dynamic. */
|
6102 |
|
|
bh = NULL;
|
6103 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
6104 |
|
|
(info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
|
6105 |
|
|
get_elf_backend_data (abfd)->collect, &bh)))
|
6106 |
|
|
return FALSE;
|
6107 |
|
|
|
6108 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
6109 |
|
|
h->non_elf = 0;
|
6110 |
|
|
h->def_regular = 1;
|
6111 |
|
|
h->type = STT_OBJECT;
|
6112 |
|
|
|
6113 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
6114 |
|
|
return FALSE;
|
6115 |
|
|
|
6116 |
|
|
mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
|
6117 |
|
|
}
|
6118 |
|
|
|
6119 |
|
|
/* If this is a mips16 text symbol, add 1 to the value to make it
|
6120 |
|
|
odd. This will cause something like .word SYM to come up with
|
6121 |
|
|
the right value when it is loaded into the PC. */
|
6122 |
|
|
if (sym->st_other == STO_MIPS16)
|
6123 |
|
|
++*valp;
|
6124 |
|
|
|
6125 |
|
|
return TRUE;
|
6126 |
|
|
}
|
6127 |
|
|
|
6128 |
|
|
/* This hook function is called before the linker writes out a global
|
6129 |
|
|
symbol. We mark symbols as small common if appropriate. This is
|
6130 |
|
|
also where we undo the increment of the value for a mips16 symbol. */
|
6131 |
|
|
|
6132 |
|
|
bfd_boolean
|
6133 |
|
|
_bfd_mips_elf_link_output_symbol_hook
|
6134 |
|
|
(struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
6135 |
|
|
const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
|
6136 |
|
|
asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
|
6137 |
|
|
{
|
6138 |
|
|
/* If we see a common symbol, which implies a relocatable link, then
|
6139 |
|
|
if a symbol was small common in an input file, mark it as small
|
6140 |
|
|
common in the output file. */
|
6141 |
|
|
if (sym->st_shndx == SHN_COMMON
|
6142 |
|
|
&& strcmp (input_sec->name, ".scommon") == 0)
|
6143 |
|
|
sym->st_shndx = SHN_MIPS_SCOMMON;
|
6144 |
|
|
|
6145 |
|
|
if (sym->st_other == STO_MIPS16)
|
6146 |
|
|
sym->st_value &= ~1;
|
6147 |
|
|
|
6148 |
|
|
return TRUE;
|
6149 |
|
|
}
|
6150 |
|
|
|
6151 |
|
|
/* Functions for the dynamic linker. */
|
6152 |
|
|
|
6153 |
|
|
/* Create dynamic sections when linking against a dynamic object. */
|
6154 |
|
|
|
6155 |
|
|
bfd_boolean
|
6156 |
|
|
_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
6157 |
|
|
{
|
6158 |
|
|
struct elf_link_hash_entry *h;
|
6159 |
|
|
struct bfd_link_hash_entry *bh;
|
6160 |
|
|
flagword flags;
|
6161 |
|
|
register asection *s;
|
6162 |
|
|
const char * const *namep;
|
6163 |
|
|
struct mips_elf_link_hash_table *htab;
|
6164 |
|
|
|
6165 |
|
|
htab = mips_elf_hash_table (info);
|
6166 |
|
|
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
6167 |
|
|
| SEC_LINKER_CREATED | SEC_READONLY);
|
6168 |
|
|
|
6169 |
|
|
/* The psABI requires a read-only .dynamic section, but the VxWorks
|
6170 |
|
|
EABI doesn't. */
|
6171 |
|
|
if (!htab->is_vxworks)
|
6172 |
|
|
{
|
6173 |
|
|
s = bfd_get_section_by_name (abfd, ".dynamic");
|
6174 |
|
|
if (s != NULL)
|
6175 |
|
|
{
|
6176 |
|
|
if (! bfd_set_section_flags (abfd, s, flags))
|
6177 |
|
|
return FALSE;
|
6178 |
|
|
}
|
6179 |
|
|
}
|
6180 |
|
|
|
6181 |
|
|
/* We need to create .got section. */
|
6182 |
|
|
if (! mips_elf_create_got_section (abfd, info, FALSE))
|
6183 |
|
|
return FALSE;
|
6184 |
|
|
|
6185 |
|
|
if (! mips_elf_rel_dyn_section (info, TRUE))
|
6186 |
|
|
return FALSE;
|
6187 |
|
|
|
6188 |
|
|
/* Create .stub section. */
|
6189 |
|
|
if (bfd_get_section_by_name (abfd,
|
6190 |
|
|
MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
|
6191 |
|
|
{
|
6192 |
|
|
s = bfd_make_section_with_flags (abfd,
|
6193 |
|
|
MIPS_ELF_STUB_SECTION_NAME (abfd),
|
6194 |
|
|
flags | SEC_CODE);
|
6195 |
|
|
if (s == NULL
|
6196 |
|
|
|| ! bfd_set_section_alignment (abfd, s,
|
6197 |
|
|
MIPS_ELF_LOG_FILE_ALIGN (abfd)))
|
6198 |
|
|
return FALSE;
|
6199 |
|
|
}
|
6200 |
|
|
|
6201 |
|
|
if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
|
6202 |
|
|
&& !info->shared
|
6203 |
|
|
&& bfd_get_section_by_name (abfd, ".rld_map") == NULL)
|
6204 |
|
|
{
|
6205 |
|
|
s = bfd_make_section_with_flags (abfd, ".rld_map",
|
6206 |
|
|
flags &~ (flagword) SEC_READONLY);
|
6207 |
|
|
if (s == NULL
|
6208 |
|
|
|| ! bfd_set_section_alignment (abfd, s,
|
6209 |
|
|
MIPS_ELF_LOG_FILE_ALIGN (abfd)))
|
6210 |
|
|
return FALSE;
|
6211 |
|
|
}
|
6212 |
|
|
|
6213 |
|
|
/* On IRIX5, we adjust add some additional symbols and change the
|
6214 |
|
|
alignments of several sections. There is no ABI documentation
|
6215 |
|
|
indicating that this is necessary on IRIX6, nor any evidence that
|
6216 |
|
|
the linker takes such action. */
|
6217 |
|
|
if (IRIX_COMPAT (abfd) == ict_irix5)
|
6218 |
|
|
{
|
6219 |
|
|
for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
|
6220 |
|
|
{
|
6221 |
|
|
bh = NULL;
|
6222 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
6223 |
|
|
(info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
|
6224 |
|
|
NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
|
6225 |
|
|
return FALSE;
|
6226 |
|
|
|
6227 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
6228 |
|
|
h->non_elf = 0;
|
6229 |
|
|
h->def_regular = 1;
|
6230 |
|
|
h->type = STT_SECTION;
|
6231 |
|
|
|
6232 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
6233 |
|
|
return FALSE;
|
6234 |
|
|
}
|
6235 |
|
|
|
6236 |
|
|
/* We need to create a .compact_rel section. */
|
6237 |
|
|
if (SGI_COMPAT (abfd))
|
6238 |
|
|
{
|
6239 |
|
|
if (!mips_elf_create_compact_rel_section (abfd, info))
|
6240 |
|
|
return FALSE;
|
6241 |
|
|
}
|
6242 |
|
|
|
6243 |
|
|
/* Change alignments of some sections. */
|
6244 |
|
|
s = bfd_get_section_by_name (abfd, ".hash");
|
6245 |
|
|
if (s != NULL)
|
6246 |
|
|
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
6247 |
|
|
s = bfd_get_section_by_name (abfd, ".dynsym");
|
6248 |
|
|
if (s != NULL)
|
6249 |
|
|
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
6250 |
|
|
s = bfd_get_section_by_name (abfd, ".dynstr");
|
6251 |
|
|
if (s != NULL)
|
6252 |
|
|
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
6253 |
|
|
s = bfd_get_section_by_name (abfd, ".reginfo");
|
6254 |
|
|
if (s != NULL)
|
6255 |
|
|
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
6256 |
|
|
s = bfd_get_section_by_name (abfd, ".dynamic");
|
6257 |
|
|
if (s != NULL)
|
6258 |
|
|
bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
|
6259 |
|
|
}
|
6260 |
|
|
|
6261 |
|
|
if (!info->shared)
|
6262 |
|
|
{
|
6263 |
|
|
const char *name;
|
6264 |
|
|
|
6265 |
|
|
name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
|
6266 |
|
|
bh = NULL;
|
6267 |
|
|
if (!(_bfd_generic_link_add_one_symbol
|
6268 |
|
|
(info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
|
6269 |
|
|
NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
|
6270 |
|
|
return FALSE;
|
6271 |
|
|
|
6272 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
6273 |
|
|
h->non_elf = 0;
|
6274 |
|
|
h->def_regular = 1;
|
6275 |
|
|
h->type = STT_SECTION;
|
6276 |
|
|
|
6277 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
6278 |
|
|
return FALSE;
|
6279 |
|
|
|
6280 |
|
|
if (! mips_elf_hash_table (info)->use_rld_obj_head)
|
6281 |
|
|
{
|
6282 |
|
|
/* __rld_map is a four byte word located in the .data section
|
6283 |
|
|
and is filled in by the rtld to contain a pointer to
|
6284 |
|
|
the _r_debug structure. Its symbol value will be set in
|
6285 |
|
|
_bfd_mips_elf_finish_dynamic_symbol. */
|
6286 |
|
|
s = bfd_get_section_by_name (abfd, ".rld_map");
|
6287 |
|
|
BFD_ASSERT (s != NULL);
|
6288 |
|
|
|
6289 |
|
|
name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
|
6290 |
|
|
bh = NULL;
|
6291 |
|
|
if (!(_bfd_generic_link_add_one_symbol
|
6292 |
|
|
(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
|
6293 |
|
|
get_elf_backend_data (abfd)->collect, &bh)))
|
6294 |
|
|
return FALSE;
|
6295 |
|
|
|
6296 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
6297 |
|
|
h->non_elf = 0;
|
6298 |
|
|
h->def_regular = 1;
|
6299 |
|
|
h->type = STT_OBJECT;
|
6300 |
|
|
|
6301 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
6302 |
|
|
return FALSE;
|
6303 |
|
|
}
|
6304 |
|
|
}
|
6305 |
|
|
|
6306 |
|
|
if (htab->is_vxworks)
|
6307 |
|
|
{
|
6308 |
|
|
/* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
|
6309 |
|
|
Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
|
6310 |
|
|
if (!_bfd_elf_create_dynamic_sections (abfd, info))
|
6311 |
|
|
return FALSE;
|
6312 |
|
|
|
6313 |
|
|
/* Cache the sections created above. */
|
6314 |
|
|
htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
|
6315 |
|
|
htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
|
6316 |
|
|
htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
|
6317 |
|
|
htab->splt = bfd_get_section_by_name (abfd, ".plt");
|
6318 |
|
|
if (!htab->sdynbss
|
6319 |
|
|
|| (!htab->srelbss && !info->shared)
|
6320 |
|
|
|| !htab->srelplt
|
6321 |
|
|
|| !htab->splt)
|
6322 |
|
|
abort ();
|
6323 |
|
|
|
6324 |
|
|
/* Do the usual VxWorks handling. */
|
6325 |
|
|
if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
|
6326 |
|
|
return FALSE;
|
6327 |
|
|
|
6328 |
|
|
/* Work out the PLT sizes. */
|
6329 |
|
|
if (info->shared)
|
6330 |
|
|
{
|
6331 |
|
|
htab->plt_header_size
|
6332 |
|
|
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
|
6333 |
|
|
htab->plt_entry_size
|
6334 |
|
|
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
|
6335 |
|
|
}
|
6336 |
|
|
else
|
6337 |
|
|
{
|
6338 |
|
|
htab->plt_header_size
|
6339 |
|
|
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
|
6340 |
|
|
htab->plt_entry_size
|
6341 |
|
|
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
|
6342 |
|
|
}
|
6343 |
|
|
}
|
6344 |
|
|
|
6345 |
|
|
return TRUE;
|
6346 |
|
|
}
|
6347 |
|
|
|
6348 |
|
|
/* Return true if relocation REL against section SEC is a REL rather than
|
6349 |
|
|
RELA relocation. RELOCS is the first relocation in the section and
|
6350 |
|
|
ABFD is the bfd that contains SEC. */
|
6351 |
|
|
|
6352 |
|
|
static bfd_boolean
|
6353 |
|
|
mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
|
6354 |
|
|
const Elf_Internal_Rela *relocs,
|
6355 |
|
|
const Elf_Internal_Rela *rel)
|
6356 |
|
|
{
|
6357 |
|
|
Elf_Internal_Shdr *rel_hdr;
|
6358 |
|
|
const struct elf_backend_data *bed;
|
6359 |
|
|
|
6360 |
|
|
/* To determine which flavor or relocation this is, we depend on the
|
6361 |
|
|
fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
|
6362 |
|
|
rel_hdr = &elf_section_data (sec)->rel_hdr;
|
6363 |
|
|
bed = get_elf_backend_data (abfd);
|
6364 |
|
|
if ((size_t) (rel - relocs)
|
6365 |
|
|
>= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
|
6366 |
|
|
rel_hdr = elf_section_data (sec)->rel_hdr2;
|
6367 |
|
|
return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
|
6368 |
|
|
}
|
6369 |
|
|
|
6370 |
|
|
/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
|
6371 |
|
|
HOWTO is the relocation's howto and CONTENTS points to the contents
|
6372 |
|
|
of the section that REL is against. */
|
6373 |
|
|
|
6374 |
|
|
static bfd_vma
|
6375 |
|
|
mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
|
6376 |
|
|
reloc_howto_type *howto, bfd_byte *contents)
|
6377 |
|
|
{
|
6378 |
|
|
bfd_byte *location;
|
6379 |
|
|
unsigned int r_type;
|
6380 |
|
|
bfd_vma addend;
|
6381 |
|
|
|
6382 |
|
|
r_type = ELF_R_TYPE (abfd, rel->r_info);
|
6383 |
|
|
location = contents + rel->r_offset;
|
6384 |
|
|
|
6385 |
|
|
/* Get the addend, which is stored in the input file. */
|
6386 |
|
|
_bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
|
6387 |
|
|
addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
|
6388 |
|
|
_bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
|
6389 |
|
|
|
6390 |
|
|
return addend & howto->src_mask;
|
6391 |
|
|
}
|
6392 |
|
|
|
6393 |
|
|
/* REL is a relocation in ABFD that needs a partnering LO16 relocation
|
6394 |
|
|
and *ADDEND is the addend for REL itself. Look for the LO16 relocation
|
6395 |
|
|
and update *ADDEND with the final addend. Return true on success
|
6396 |
|
|
or false if the LO16 could not be found. RELEND is the exclusive
|
6397 |
|
|
upper bound on the relocations for REL's section. */
|
6398 |
|
|
|
6399 |
|
|
static bfd_boolean
|
6400 |
|
|
mips_elf_add_lo16_rel_addend (bfd *abfd,
|
6401 |
|
|
const Elf_Internal_Rela *rel,
|
6402 |
|
|
const Elf_Internal_Rela *relend,
|
6403 |
|
|
bfd_byte *contents, bfd_vma *addend)
|
6404 |
|
|
{
|
6405 |
|
|
unsigned int r_type, lo16_type;
|
6406 |
|
|
const Elf_Internal_Rela *lo16_relocation;
|
6407 |
|
|
reloc_howto_type *lo16_howto;
|
6408 |
|
|
bfd_vma l;
|
6409 |
|
|
|
6410 |
|
|
r_type = ELF_R_TYPE (abfd, rel->r_info);
|
6411 |
|
|
if (r_type == R_MIPS16_HI16)
|
6412 |
|
|
lo16_type = R_MIPS16_LO16;
|
6413 |
|
|
else
|
6414 |
|
|
lo16_type = R_MIPS_LO16;
|
6415 |
|
|
|
6416 |
|
|
/* The combined value is the sum of the HI16 addend, left-shifted by
|
6417 |
|
|
sixteen bits, and the LO16 addend, sign extended. (Usually, the
|
6418 |
|
|
code does a `lui' of the HI16 value, and then an `addiu' of the
|
6419 |
|
|
LO16 value.)
|
6420 |
|
|
|
6421 |
|
|
Scan ahead to find a matching LO16 relocation.
|
6422 |
|
|
|
6423 |
|
|
According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
|
6424 |
|
|
be immediately following. However, for the IRIX6 ABI, the next
|
6425 |
|
|
relocation may be a composed relocation consisting of several
|
6426 |
|
|
relocations for the same address. In that case, the R_MIPS_LO16
|
6427 |
|
|
relocation may occur as one of these. We permit a similar
|
6428 |
|
|
extension in general, as that is useful for GCC.
|
6429 |
|
|
|
6430 |
|
|
In some cases GCC dead code elimination removes the LO16 but keeps
|
6431 |
|
|
the corresponding HI16. This is strictly speaking a violation of
|
6432 |
|
|
the ABI but not immediately harmful. */
|
6433 |
|
|
lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
|
6434 |
|
|
if (lo16_relocation == NULL)
|
6435 |
|
|
return FALSE;
|
6436 |
|
|
|
6437 |
|
|
/* Obtain the addend kept there. */
|
6438 |
|
|
lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
|
6439 |
|
|
l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
|
6440 |
|
|
|
6441 |
|
|
l <<= lo16_howto->rightshift;
|
6442 |
|
|
l = _bfd_mips_elf_sign_extend (l, 16);
|
6443 |
|
|
|
6444 |
|
|
*addend <<= 16;
|
6445 |
|
|
*addend += l;
|
6446 |
|
|
return TRUE;
|
6447 |
|
|
}
|
6448 |
|
|
|
6449 |
|
|
/* Try to read the contents of section SEC in bfd ABFD. Return true and
|
6450 |
|
|
store the contents in *CONTENTS on success. Assume that *CONTENTS
|
6451 |
|
|
already holds the contents if it is nonull on entry. */
|
6452 |
|
|
|
6453 |
|
|
static bfd_boolean
|
6454 |
|
|
mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
|
6455 |
|
|
{
|
6456 |
|
|
if (*contents)
|
6457 |
|
|
return TRUE;
|
6458 |
|
|
|
6459 |
|
|
/* Get cached copy if it exists. */
|
6460 |
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
6461 |
|
|
{
|
6462 |
|
|
*contents = elf_section_data (sec)->this_hdr.contents;
|
6463 |
|
|
return TRUE;
|
6464 |
|
|
}
|
6465 |
|
|
|
6466 |
|
|
return bfd_malloc_and_get_section (abfd, sec, contents);
|
6467 |
|
|
}
|
6468 |
|
|
|
6469 |
|
|
/* Look through the relocs for a section during the first phase, and
|
6470 |
|
|
allocate space in the global offset table. */
|
6471 |
|
|
|
6472 |
|
|
bfd_boolean
|
6473 |
|
|
_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
6474 |
|
|
asection *sec, const Elf_Internal_Rela *relocs)
|
6475 |
|
|
{
|
6476 |
|
|
const char *name;
|
6477 |
|
|
bfd *dynobj;
|
6478 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
6479 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
6480 |
|
|
struct mips_got_info *g;
|
6481 |
|
|
size_t extsymoff;
|
6482 |
|
|
const Elf_Internal_Rela *rel;
|
6483 |
|
|
const Elf_Internal_Rela *rel_end;
|
6484 |
|
|
asection *sgot;
|
6485 |
|
|
asection *sreloc;
|
6486 |
|
|
const struct elf_backend_data *bed;
|
6487 |
|
|
struct mips_elf_link_hash_table *htab;
|
6488 |
|
|
bfd_byte *contents;
|
6489 |
|
|
bfd_vma addend;
|
6490 |
|
|
reloc_howto_type *howto;
|
6491 |
|
|
|
6492 |
|
|
if (info->relocatable)
|
6493 |
|
|
return TRUE;
|
6494 |
|
|
|
6495 |
|
|
htab = mips_elf_hash_table (info);
|
6496 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
6497 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
6498 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
6499 |
|
|
extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
|
6500 |
|
|
|
6501 |
|
|
/* Check for the mips16 stub sections. */
|
6502 |
|
|
|
6503 |
|
|
name = bfd_get_section_name (abfd, sec);
|
6504 |
|
|
if (FN_STUB_P (name))
|
6505 |
|
|
{
|
6506 |
|
|
unsigned long r_symndx;
|
6507 |
|
|
|
6508 |
|
|
/* Look at the relocation information to figure out which symbol
|
6509 |
|
|
this is for. */
|
6510 |
|
|
|
6511 |
|
|
r_symndx = ELF_R_SYM (abfd, relocs->r_info);
|
6512 |
|
|
|
6513 |
|
|
if (r_symndx < extsymoff
|
6514 |
|
|
|| sym_hashes[r_symndx - extsymoff] == NULL)
|
6515 |
|
|
{
|
6516 |
|
|
asection *o;
|
6517 |
|
|
|
6518 |
|
|
/* This stub is for a local symbol. This stub will only be
|
6519 |
|
|
needed if there is some relocation in this BFD, other
|
6520 |
|
|
than a 16 bit function call, which refers to this symbol. */
|
6521 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
6522 |
|
|
{
|
6523 |
|
|
Elf_Internal_Rela *sec_relocs;
|
6524 |
|
|
const Elf_Internal_Rela *r, *rend;
|
6525 |
|
|
|
6526 |
|
|
/* We can ignore stub sections when looking for relocs. */
|
6527 |
|
|
if ((o->flags & SEC_RELOC) == 0
|
6528 |
|
|
|| o->reloc_count == 0
|
6529 |
|
|
|| mips16_stub_section_p (abfd, o))
|
6530 |
|
|
continue;
|
6531 |
|
|
|
6532 |
|
|
sec_relocs
|
6533 |
|
|
= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
6534 |
|
|
info->keep_memory);
|
6535 |
|
|
if (sec_relocs == NULL)
|
6536 |
|
|
return FALSE;
|
6537 |
|
|
|
6538 |
|
|
rend = sec_relocs + o->reloc_count;
|
6539 |
|
|
for (r = sec_relocs; r < rend; r++)
|
6540 |
|
|
if (ELF_R_SYM (abfd, r->r_info) == r_symndx
|
6541 |
|
|
&& ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
|
6542 |
|
|
break;
|
6543 |
|
|
|
6544 |
|
|
if (elf_section_data (o)->relocs != sec_relocs)
|
6545 |
|
|
free (sec_relocs);
|
6546 |
|
|
|
6547 |
|
|
if (r < rend)
|
6548 |
|
|
break;
|
6549 |
|
|
}
|
6550 |
|
|
|
6551 |
|
|
if (o == NULL)
|
6552 |
|
|
{
|
6553 |
|
|
/* There is no non-call reloc for this stub, so we do
|
6554 |
|
|
not need it. Since this function is called before
|
6555 |
|
|
the linker maps input sections to output sections, we
|
6556 |
|
|
can easily discard it by setting the SEC_EXCLUDE
|
6557 |
|
|
flag. */
|
6558 |
|
|
sec->flags |= SEC_EXCLUDE;
|
6559 |
|
|
return TRUE;
|
6560 |
|
|
}
|
6561 |
|
|
|
6562 |
|
|
/* Record this stub in an array of local symbol stubs for
|
6563 |
|
|
this BFD. */
|
6564 |
|
|
if (elf_tdata (abfd)->local_stubs == NULL)
|
6565 |
|
|
{
|
6566 |
|
|
unsigned long symcount;
|
6567 |
|
|
asection **n;
|
6568 |
|
|
bfd_size_type amt;
|
6569 |
|
|
|
6570 |
|
|
if (elf_bad_symtab (abfd))
|
6571 |
|
|
symcount = NUM_SHDR_ENTRIES (symtab_hdr);
|
6572 |
|
|
else
|
6573 |
|
|
symcount = symtab_hdr->sh_info;
|
6574 |
|
|
amt = symcount * sizeof (asection *);
|
6575 |
|
|
n = bfd_zalloc (abfd, amt);
|
6576 |
|
|
if (n == NULL)
|
6577 |
|
|
return FALSE;
|
6578 |
|
|
elf_tdata (abfd)->local_stubs = n;
|
6579 |
|
|
}
|
6580 |
|
|
|
6581 |
|
|
sec->flags |= SEC_KEEP;
|
6582 |
|
|
elf_tdata (abfd)->local_stubs[r_symndx] = sec;
|
6583 |
|
|
|
6584 |
|
|
/* We don't need to set mips16_stubs_seen in this case.
|
6585 |
|
|
That flag is used to see whether we need to look through
|
6586 |
|
|
the global symbol table for stubs. We don't need to set
|
6587 |
|
|
it here, because we just have a local stub. */
|
6588 |
|
|
}
|
6589 |
|
|
else
|
6590 |
|
|
{
|
6591 |
|
|
struct mips_elf_link_hash_entry *h;
|
6592 |
|
|
|
6593 |
|
|
h = ((struct mips_elf_link_hash_entry *)
|
6594 |
|
|
sym_hashes[r_symndx - extsymoff]);
|
6595 |
|
|
|
6596 |
|
|
while (h->root.root.type == bfd_link_hash_indirect
|
6597 |
|
|
|| h->root.root.type == bfd_link_hash_warning)
|
6598 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
6599 |
|
|
|
6600 |
|
|
/* H is the symbol this stub is for. */
|
6601 |
|
|
|
6602 |
|
|
/* If we already have an appropriate stub for this function, we
|
6603 |
|
|
don't need another one, so we can discard this one. Since
|
6604 |
|
|
this function is called before the linker maps input sections
|
6605 |
|
|
to output sections, we can easily discard it by setting the
|
6606 |
|
|
SEC_EXCLUDE flag. */
|
6607 |
|
|
if (h->fn_stub != NULL)
|
6608 |
|
|
{
|
6609 |
|
|
sec->flags |= SEC_EXCLUDE;
|
6610 |
|
|
return TRUE;
|
6611 |
|
|
}
|
6612 |
|
|
|
6613 |
|
|
sec->flags |= SEC_KEEP;
|
6614 |
|
|
h->fn_stub = sec;
|
6615 |
|
|
mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
|
6616 |
|
|
}
|
6617 |
|
|
}
|
6618 |
|
|
else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
|
6619 |
|
|
{
|
6620 |
|
|
unsigned long r_symndx;
|
6621 |
|
|
struct mips_elf_link_hash_entry *h;
|
6622 |
|
|
asection **loc;
|
6623 |
|
|
|
6624 |
|
|
/* Look at the relocation information to figure out which symbol
|
6625 |
|
|
this is for. */
|
6626 |
|
|
|
6627 |
|
|
r_symndx = ELF_R_SYM (abfd, relocs->r_info);
|
6628 |
|
|
|
6629 |
|
|
if (r_symndx < extsymoff
|
6630 |
|
|
|| sym_hashes[r_symndx - extsymoff] == NULL)
|
6631 |
|
|
{
|
6632 |
|
|
asection *o;
|
6633 |
|
|
|
6634 |
|
|
/* This stub is for a local symbol. This stub will only be
|
6635 |
|
|
needed if there is some relocation (R_MIPS16_26) in this BFD
|
6636 |
|
|
that refers to this symbol. */
|
6637 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
6638 |
|
|
{
|
6639 |
|
|
Elf_Internal_Rela *sec_relocs;
|
6640 |
|
|
const Elf_Internal_Rela *r, *rend;
|
6641 |
|
|
|
6642 |
|
|
/* We can ignore stub sections when looking for relocs. */
|
6643 |
|
|
if ((o->flags & SEC_RELOC) == 0
|
6644 |
|
|
|| o->reloc_count == 0
|
6645 |
|
|
|| mips16_stub_section_p (abfd, o))
|
6646 |
|
|
continue;
|
6647 |
|
|
|
6648 |
|
|
sec_relocs
|
6649 |
|
|
= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
6650 |
|
|
info->keep_memory);
|
6651 |
|
|
if (sec_relocs == NULL)
|
6652 |
|
|
return FALSE;
|
6653 |
|
|
|
6654 |
|
|
rend = sec_relocs + o->reloc_count;
|
6655 |
|
|
for (r = sec_relocs; r < rend; r++)
|
6656 |
|
|
if (ELF_R_SYM (abfd, r->r_info) == r_symndx
|
6657 |
|
|
&& ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
|
6658 |
|
|
break;
|
6659 |
|
|
|
6660 |
|
|
if (elf_section_data (o)->relocs != sec_relocs)
|
6661 |
|
|
free (sec_relocs);
|
6662 |
|
|
|
6663 |
|
|
if (r < rend)
|
6664 |
|
|
break;
|
6665 |
|
|
}
|
6666 |
|
|
|
6667 |
|
|
if (o == NULL)
|
6668 |
|
|
{
|
6669 |
|
|
/* There is no non-call reloc for this stub, so we do
|
6670 |
|
|
not need it. Since this function is called before
|
6671 |
|
|
the linker maps input sections to output sections, we
|
6672 |
|
|
can easily discard it by setting the SEC_EXCLUDE
|
6673 |
|
|
flag. */
|
6674 |
|
|
sec->flags |= SEC_EXCLUDE;
|
6675 |
|
|
return TRUE;
|
6676 |
|
|
}
|
6677 |
|
|
|
6678 |
|
|
/* Record this stub in an array of local symbol call_stubs for
|
6679 |
|
|
this BFD. */
|
6680 |
|
|
if (elf_tdata (abfd)->local_call_stubs == NULL)
|
6681 |
|
|
{
|
6682 |
|
|
unsigned long symcount;
|
6683 |
|
|
asection **n;
|
6684 |
|
|
bfd_size_type amt;
|
6685 |
|
|
|
6686 |
|
|
if (elf_bad_symtab (abfd))
|
6687 |
|
|
symcount = NUM_SHDR_ENTRIES (symtab_hdr);
|
6688 |
|
|
else
|
6689 |
|
|
symcount = symtab_hdr->sh_info;
|
6690 |
|
|
amt = symcount * sizeof (asection *);
|
6691 |
|
|
n = bfd_zalloc (abfd, amt);
|
6692 |
|
|
if (n == NULL)
|
6693 |
|
|
return FALSE;
|
6694 |
|
|
elf_tdata (abfd)->local_call_stubs = n;
|
6695 |
|
|
}
|
6696 |
|
|
|
6697 |
|
|
sec->flags |= SEC_KEEP;
|
6698 |
|
|
elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
|
6699 |
|
|
|
6700 |
|
|
/* We don't need to set mips16_stubs_seen in this case.
|
6701 |
|
|
That flag is used to see whether we need to look through
|
6702 |
|
|
the global symbol table for stubs. We don't need to set
|
6703 |
|
|
it here, because we just have a local stub. */
|
6704 |
|
|
}
|
6705 |
|
|
else
|
6706 |
|
|
{
|
6707 |
|
|
h = ((struct mips_elf_link_hash_entry *)
|
6708 |
|
|
sym_hashes[r_symndx - extsymoff]);
|
6709 |
|
|
|
6710 |
|
|
/* H is the symbol this stub is for. */
|
6711 |
|
|
|
6712 |
|
|
if (CALL_FP_STUB_P (name))
|
6713 |
|
|
loc = &h->call_fp_stub;
|
6714 |
|
|
else
|
6715 |
|
|
loc = &h->call_stub;
|
6716 |
|
|
|
6717 |
|
|
/* If we already have an appropriate stub for this function, we
|
6718 |
|
|
don't need another one, so we can discard this one. Since
|
6719 |
|
|
this function is called before the linker maps input sections
|
6720 |
|
|
to output sections, we can easily discard it by setting the
|
6721 |
|
|
SEC_EXCLUDE flag. */
|
6722 |
|
|
if (*loc != NULL)
|
6723 |
|
|
{
|
6724 |
|
|
sec->flags |= SEC_EXCLUDE;
|
6725 |
|
|
return TRUE;
|
6726 |
|
|
}
|
6727 |
|
|
|
6728 |
|
|
sec->flags |= SEC_KEEP;
|
6729 |
|
|
*loc = sec;
|
6730 |
|
|
mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
|
6731 |
|
|
}
|
6732 |
|
|
}
|
6733 |
|
|
|
6734 |
|
|
if (dynobj == NULL)
|
6735 |
|
|
{
|
6736 |
|
|
sgot = NULL;
|
6737 |
|
|
g = NULL;
|
6738 |
|
|
}
|
6739 |
|
|
else
|
6740 |
|
|
{
|
6741 |
|
|
sgot = mips_elf_got_section (dynobj, FALSE);
|
6742 |
|
|
if (sgot == NULL)
|
6743 |
|
|
g = NULL;
|
6744 |
|
|
else
|
6745 |
|
|
{
|
6746 |
|
|
BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
|
6747 |
|
|
g = mips_elf_section_data (sgot)->u.got_info;
|
6748 |
|
|
BFD_ASSERT (g != NULL);
|
6749 |
|
|
}
|
6750 |
|
|
}
|
6751 |
|
|
|
6752 |
|
|
sreloc = NULL;
|
6753 |
|
|
bed = get_elf_backend_data (abfd);
|
6754 |
|
|
rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
|
6755 |
|
|
contents = NULL;
|
6756 |
|
|
for (rel = relocs; rel < rel_end; ++rel)
|
6757 |
|
|
{
|
6758 |
|
|
unsigned long r_symndx;
|
6759 |
|
|
unsigned int r_type;
|
6760 |
|
|
struct elf_link_hash_entry *h;
|
6761 |
|
|
|
6762 |
|
|
r_symndx = ELF_R_SYM (abfd, rel->r_info);
|
6763 |
|
|
r_type = ELF_R_TYPE (abfd, rel->r_info);
|
6764 |
|
|
|
6765 |
|
|
if (r_symndx < extsymoff)
|
6766 |
|
|
h = NULL;
|
6767 |
|
|
else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
|
6768 |
|
|
{
|
6769 |
|
|
(*_bfd_error_handler)
|
6770 |
|
|
(_("%B: Malformed reloc detected for section %s"),
|
6771 |
|
|
abfd, name);
|
6772 |
|
|
bfd_set_error (bfd_error_bad_value);
|
6773 |
|
|
return FALSE;
|
6774 |
|
|
}
|
6775 |
|
|
else
|
6776 |
|
|
{
|
6777 |
|
|
h = sym_hashes[r_symndx - extsymoff];
|
6778 |
|
|
|
6779 |
|
|
/* This may be an indirect symbol created because of a version. */
|
6780 |
|
|
if (h != NULL)
|
6781 |
|
|
{
|
6782 |
|
|
while (h->root.type == bfd_link_hash_indirect)
|
6783 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
6784 |
|
|
}
|
6785 |
|
|
}
|
6786 |
|
|
|
6787 |
|
|
/* Some relocs require a global offset table. */
|
6788 |
|
|
if (dynobj == NULL || sgot == NULL)
|
6789 |
|
|
{
|
6790 |
|
|
switch (r_type)
|
6791 |
|
|
{
|
6792 |
|
|
case R_MIPS_GOT16:
|
6793 |
|
|
case R_MIPS_CALL16:
|
6794 |
|
|
case R_MIPS_CALL_HI16:
|
6795 |
|
|
case R_MIPS_CALL_LO16:
|
6796 |
|
|
case R_MIPS_GOT_HI16:
|
6797 |
|
|
case R_MIPS_GOT_LO16:
|
6798 |
|
|
case R_MIPS_GOT_PAGE:
|
6799 |
|
|
case R_MIPS_GOT_OFST:
|
6800 |
|
|
case R_MIPS_GOT_DISP:
|
6801 |
|
|
case R_MIPS_TLS_GOTTPREL:
|
6802 |
|
|
case R_MIPS_TLS_GD:
|
6803 |
|
|
case R_MIPS_TLS_LDM:
|
6804 |
|
|
if (dynobj == NULL)
|
6805 |
|
|
elf_hash_table (info)->dynobj = dynobj = abfd;
|
6806 |
|
|
if (! mips_elf_create_got_section (dynobj, info, FALSE))
|
6807 |
|
|
return FALSE;
|
6808 |
|
|
g = mips_elf_got_info (dynobj, &sgot);
|
6809 |
|
|
if (htab->is_vxworks && !info->shared)
|
6810 |
|
|
{
|
6811 |
|
|
(*_bfd_error_handler)
|
6812 |
|
|
(_("%B: GOT reloc at 0x%lx not expected in executables"),
|
6813 |
|
|
abfd, (unsigned long) rel->r_offset);
|
6814 |
|
|
bfd_set_error (bfd_error_bad_value);
|
6815 |
|
|
return FALSE;
|
6816 |
|
|
}
|
6817 |
|
|
break;
|
6818 |
|
|
|
6819 |
|
|
case R_MIPS_32:
|
6820 |
|
|
case R_MIPS_REL32:
|
6821 |
|
|
case R_MIPS_64:
|
6822 |
|
|
/* In VxWorks executables, references to external symbols
|
6823 |
|
|
are handled using copy relocs or PLT stubs, so there's
|
6824 |
|
|
no need to add a dynamic relocation here. */
|
6825 |
|
|
if (dynobj == NULL
|
6826 |
|
|
&& (info->shared || (h != NULL && !htab->is_vxworks))
|
6827 |
|
|
&& (sec->flags & SEC_ALLOC) != 0)
|
6828 |
|
|
elf_hash_table (info)->dynobj = dynobj = abfd;
|
6829 |
|
|
break;
|
6830 |
|
|
|
6831 |
|
|
default:
|
6832 |
|
|
break;
|
6833 |
|
|
}
|
6834 |
|
|
}
|
6835 |
|
|
|
6836 |
|
|
if (h)
|
6837 |
|
|
{
|
6838 |
|
|
((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
|
6839 |
|
|
|
6840 |
|
|
/* Relocations against the special VxWorks __GOTT_BASE__ and
|
6841 |
|
|
__GOTT_INDEX__ symbols must be left to the loader. Allocate
|
6842 |
|
|
room for them in .rela.dyn. */
|
6843 |
|
|
if (is_gott_symbol (info, h))
|
6844 |
|
|
{
|
6845 |
|
|
if (sreloc == NULL)
|
6846 |
|
|
{
|
6847 |
|
|
sreloc = mips_elf_rel_dyn_section (info, TRUE);
|
6848 |
|
|
if (sreloc == NULL)
|
6849 |
|
|
return FALSE;
|
6850 |
|
|
}
|
6851 |
|
|
mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
|
6852 |
|
|
if (MIPS_ELF_READONLY_SECTION (sec))
|
6853 |
|
|
/* We tell the dynamic linker that there are
|
6854 |
|
|
relocations against the text segment. */
|
6855 |
|
|
info->flags |= DF_TEXTREL;
|
6856 |
|
|
}
|
6857 |
|
|
}
|
6858 |
|
|
else if (r_type == R_MIPS_CALL_LO16
|
6859 |
|
|
|| r_type == R_MIPS_GOT_LO16
|
6860 |
|
|
|| r_type == R_MIPS_GOT_DISP
|
6861 |
|
|
|| (r_type == R_MIPS_GOT16 && htab->is_vxworks))
|
6862 |
|
|
{
|
6863 |
|
|
/* We may need a local GOT entry for this relocation. We
|
6864 |
|
|
don't count R_MIPS_GOT_PAGE because we can estimate the
|
6865 |
|
|
maximum number of pages needed by looking at the size of
|
6866 |
|
|
the segment. Similar comments apply to R_MIPS_GOT16 and
|
6867 |
|
|
R_MIPS_CALL16, except on VxWorks, where GOT relocations
|
6868 |
|
|
always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
|
6869 |
|
|
R_MIPS_CALL_HI16 because these are always followed by an
|
6870 |
|
|
R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
|
6871 |
|
|
if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
|
6872 |
|
|
rel->r_addend, g, 0))
|
6873 |
|
|
return FALSE;
|
6874 |
|
|
}
|
6875 |
|
|
|
6876 |
|
|
switch (r_type)
|
6877 |
|
|
{
|
6878 |
|
|
case R_MIPS_CALL16:
|
6879 |
|
|
if (h == NULL)
|
6880 |
|
|
{
|
6881 |
|
|
(*_bfd_error_handler)
|
6882 |
|
|
(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
|
6883 |
|
|
abfd, (unsigned long) rel->r_offset);
|
6884 |
|
|
bfd_set_error (bfd_error_bad_value);
|
6885 |
|
|
return FALSE;
|
6886 |
|
|
}
|
6887 |
|
|
/* Fall through. */
|
6888 |
|
|
|
6889 |
|
|
case R_MIPS_CALL_HI16:
|
6890 |
|
|
case R_MIPS_CALL_LO16:
|
6891 |
|
|
if (h != NULL)
|
6892 |
|
|
{
|
6893 |
|
|
/* VxWorks call relocations point the function's .got.plt
|
6894 |
|
|
entry, which will be allocated by adjust_dynamic_symbol.
|
6895 |
|
|
Otherwise, this symbol requires a global GOT entry. */
|
6896 |
|
|
if ((!htab->is_vxworks || h->forced_local)
|
6897 |
|
|
&& !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
|
6898 |
|
|
return FALSE;
|
6899 |
|
|
|
6900 |
|
|
/* We need a stub, not a plt entry for the undefined
|
6901 |
|
|
function. But we record it as if it needs plt. See
|
6902 |
|
|
_bfd_elf_adjust_dynamic_symbol. */
|
6903 |
|
|
h->needs_plt = 1;
|
6904 |
|
|
h->type = STT_FUNC;
|
6905 |
|
|
}
|
6906 |
|
|
break;
|
6907 |
|
|
|
6908 |
|
|
case R_MIPS_GOT_PAGE:
|
6909 |
|
|
/* If this is a global, overridable symbol, GOT_PAGE will
|
6910 |
|
|
decay to GOT_DISP, so we'll need a GOT entry for it. */
|
6911 |
|
|
if (h)
|
6912 |
|
|
{
|
6913 |
|
|
struct mips_elf_link_hash_entry *hmips =
|
6914 |
|
|
(struct mips_elf_link_hash_entry *) h;
|
6915 |
|
|
|
6916 |
|
|
while (hmips->root.root.type == bfd_link_hash_indirect
|
6917 |
|
|
|| hmips->root.root.type == bfd_link_hash_warning)
|
6918 |
|
|
hmips = (struct mips_elf_link_hash_entry *)
|
6919 |
|
|
hmips->root.root.u.i.link;
|
6920 |
|
|
|
6921 |
|
|
/* This symbol is definitely not overridable. */
|
6922 |
|
|
if (hmips->root.def_regular
|
6923 |
|
|
&& ! (info->shared && ! info->symbolic
|
6924 |
|
|
&& ! hmips->root.forced_local))
|
6925 |
|
|
h = NULL;
|
6926 |
|
|
}
|
6927 |
|
|
/* Fall through. */
|
6928 |
|
|
|
6929 |
|
|
case R_MIPS_GOT16:
|
6930 |
|
|
case R_MIPS_GOT_HI16:
|
6931 |
|
|
case R_MIPS_GOT_LO16:
|
6932 |
|
|
if (!h || r_type == R_MIPS_GOT_PAGE)
|
6933 |
|
|
{
|
6934 |
|
|
/* This relocation needs (or may need, if h != NULL) a
|
6935 |
|
|
page entry in the GOT. For R_MIPS_GOT_PAGE we do not
|
6936 |
|
|
know for sure until we know whether the symbol is
|
6937 |
|
|
preemptible. */
|
6938 |
|
|
if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
|
6939 |
|
|
{
|
6940 |
|
|
if (!mips_elf_get_section_contents (abfd, sec, &contents))
|
6941 |
|
|
return FALSE;
|
6942 |
|
|
howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
|
6943 |
|
|
addend = mips_elf_read_rel_addend (abfd, rel,
|
6944 |
|
|
howto, contents);
|
6945 |
|
|
if (r_type == R_MIPS_GOT16)
|
6946 |
|
|
mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
|
6947 |
|
|
contents, &addend);
|
6948 |
|
|
else
|
6949 |
|
|
addend <<= howto->rightshift;
|
6950 |
|
|
}
|
6951 |
|
|
else
|
6952 |
|
|
addend = rel->r_addend;
|
6953 |
|
|
if (!mips_elf_record_got_page_entry (abfd, r_symndx, addend, g))
|
6954 |
|
|
return FALSE;
|
6955 |
|
|
break;
|
6956 |
|
|
}
|
6957 |
|
|
/* Fall through. */
|
6958 |
|
|
|
6959 |
|
|
case R_MIPS_GOT_DISP:
|
6960 |
|
|
if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
|
6961 |
|
|
return FALSE;
|
6962 |
|
|
break;
|
6963 |
|
|
|
6964 |
|
|
case R_MIPS_TLS_GOTTPREL:
|
6965 |
|
|
if (info->shared)
|
6966 |
|
|
info->flags |= DF_STATIC_TLS;
|
6967 |
|
|
/* Fall through */
|
6968 |
|
|
|
6969 |
|
|
case R_MIPS_TLS_LDM:
|
6970 |
|
|
if (r_type == R_MIPS_TLS_LDM)
|
6971 |
|
|
{
|
6972 |
|
|
r_symndx = 0;
|
6973 |
|
|
h = NULL;
|
6974 |
|
|
}
|
6975 |
|
|
/* Fall through */
|
6976 |
|
|
|
6977 |
|
|
case R_MIPS_TLS_GD:
|
6978 |
|
|
/* This symbol requires a global offset table entry, or two
|
6979 |
|
|
for TLS GD relocations. */
|
6980 |
|
|
{
|
6981 |
|
|
unsigned char flag = (r_type == R_MIPS_TLS_GD
|
6982 |
|
|
? GOT_TLS_GD
|
6983 |
|
|
: r_type == R_MIPS_TLS_LDM
|
6984 |
|
|
? GOT_TLS_LDM
|
6985 |
|
|
: GOT_TLS_IE);
|
6986 |
|
|
if (h != NULL)
|
6987 |
|
|
{
|
6988 |
|
|
struct mips_elf_link_hash_entry *hmips =
|
6989 |
|
|
(struct mips_elf_link_hash_entry *) h;
|
6990 |
|
|
hmips->tls_type |= flag;
|
6991 |
|
|
|
6992 |
|
|
if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
|
6993 |
|
|
return FALSE;
|
6994 |
|
|
}
|
6995 |
|
|
else
|
6996 |
|
|
{
|
6997 |
|
|
BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
|
6998 |
|
|
|
6999 |
|
|
if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
|
7000 |
|
|
rel->r_addend, g, flag))
|
7001 |
|
|
return FALSE;
|
7002 |
|
|
}
|
7003 |
|
|
}
|
7004 |
|
|
break;
|
7005 |
|
|
|
7006 |
|
|
case R_MIPS_32:
|
7007 |
|
|
case R_MIPS_REL32:
|
7008 |
|
|
case R_MIPS_64:
|
7009 |
|
|
/* In VxWorks executables, references to external symbols
|
7010 |
|
|
are handled using copy relocs or PLT stubs, so there's
|
7011 |
|
|
no need to add a .rela.dyn entry for this relocation. */
|
7012 |
|
|
if ((info->shared || (h != NULL && !htab->is_vxworks))
|
7013 |
|
|
&& (sec->flags & SEC_ALLOC) != 0)
|
7014 |
|
|
{
|
7015 |
|
|
if (sreloc == NULL)
|
7016 |
|
|
{
|
7017 |
|
|
sreloc = mips_elf_rel_dyn_section (info, TRUE);
|
7018 |
|
|
if (sreloc == NULL)
|
7019 |
|
|
return FALSE;
|
7020 |
|
|
}
|
7021 |
|
|
if (info->shared)
|
7022 |
|
|
{
|
7023 |
|
|
/* When creating a shared object, we must copy these
|
7024 |
|
|
reloc types into the output file as R_MIPS_REL32
|
7025 |
|
|
relocs. Make room for this reloc in .rel(a).dyn. */
|
7026 |
|
|
mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
|
7027 |
|
|
if (MIPS_ELF_READONLY_SECTION (sec))
|
7028 |
|
|
/* We tell the dynamic linker that there are
|
7029 |
|
|
relocations against the text segment. */
|
7030 |
|
|
info->flags |= DF_TEXTREL;
|
7031 |
|
|
}
|
7032 |
|
|
else
|
7033 |
|
|
{
|
7034 |
|
|
struct mips_elf_link_hash_entry *hmips;
|
7035 |
|
|
|
7036 |
|
|
/* We only need to copy this reloc if the symbol is
|
7037 |
|
|
defined in a dynamic object. */
|
7038 |
|
|
hmips = (struct mips_elf_link_hash_entry *) h;
|
7039 |
|
|
++hmips->possibly_dynamic_relocs;
|
7040 |
|
|
if (MIPS_ELF_READONLY_SECTION (sec))
|
7041 |
|
|
/* We need it to tell the dynamic linker if there
|
7042 |
|
|
are relocations against the text segment. */
|
7043 |
|
|
hmips->readonly_reloc = TRUE;
|
7044 |
|
|
}
|
7045 |
|
|
|
7046 |
|
|
/* Even though we don't directly need a GOT entry for
|
7047 |
|
|
this symbol, a symbol must have a dynamic symbol
|
7048 |
|
|
table index greater that DT_MIPS_GOTSYM if there are
|
7049 |
|
|
dynamic relocations against it. This does not apply
|
7050 |
|
|
to VxWorks, which does not have the usual coupling
|
7051 |
|
|
between global GOT entries and .dynsym entries. */
|
7052 |
|
|
if (h != NULL && !htab->is_vxworks)
|
7053 |
|
|
{
|
7054 |
|
|
if (dynobj == NULL)
|
7055 |
|
|
elf_hash_table (info)->dynobj = dynobj = abfd;
|
7056 |
|
|
if (! mips_elf_create_got_section (dynobj, info, TRUE))
|
7057 |
|
|
return FALSE;
|
7058 |
|
|
g = mips_elf_got_info (dynobj, &sgot);
|
7059 |
|
|
if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
|
7060 |
|
|
return FALSE;
|
7061 |
|
|
}
|
7062 |
|
|
}
|
7063 |
|
|
|
7064 |
|
|
if (SGI_COMPAT (abfd))
|
7065 |
|
|
mips_elf_hash_table (info)->compact_rel_size +=
|
7066 |
|
|
sizeof (Elf32_External_crinfo);
|
7067 |
|
|
break;
|
7068 |
|
|
|
7069 |
|
|
case R_MIPS_PC16:
|
7070 |
|
|
if (h)
|
7071 |
|
|
((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
|
7072 |
|
|
break;
|
7073 |
|
|
|
7074 |
|
|
case R_MIPS_26:
|
7075 |
|
|
if (h)
|
7076 |
|
|
((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
|
7077 |
|
|
/* Fall through. */
|
7078 |
|
|
|
7079 |
|
|
case R_MIPS_GPREL16:
|
7080 |
|
|
case R_MIPS_LITERAL:
|
7081 |
|
|
case R_MIPS_GPREL32:
|
7082 |
|
|
if (SGI_COMPAT (abfd))
|
7083 |
|
|
mips_elf_hash_table (info)->compact_rel_size +=
|
7084 |
|
|
sizeof (Elf32_External_crinfo);
|
7085 |
|
|
break;
|
7086 |
|
|
|
7087 |
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
7088 |
|
|
Reconstruct it for later use during GC. */
|
7089 |
|
|
case R_MIPS_GNU_VTINHERIT:
|
7090 |
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
7091 |
|
|
return FALSE;
|
7092 |
|
|
break;
|
7093 |
|
|
|
7094 |
|
|
/* This relocation describes which C++ vtable entries are actually
|
7095 |
|
|
used. Record for later use during GC. */
|
7096 |
|
|
case R_MIPS_GNU_VTENTRY:
|
7097 |
|
|
BFD_ASSERT (h != NULL);
|
7098 |
|
|
if (h != NULL
|
7099 |
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
7100 |
|
|
return FALSE;
|
7101 |
|
|
break;
|
7102 |
|
|
|
7103 |
|
|
default:
|
7104 |
|
|
break;
|
7105 |
|
|
}
|
7106 |
|
|
|
7107 |
|
|
/* We must not create a stub for a symbol that has relocations
|
7108 |
|
|
related to taking the function's address. This doesn't apply to
|
7109 |
|
|
VxWorks, where CALL relocs refer to a .got.plt entry instead of
|
7110 |
|
|
a normal .got entry. */
|
7111 |
|
|
if (!htab->is_vxworks && h != NULL)
|
7112 |
|
|
switch (r_type)
|
7113 |
|
|
{
|
7114 |
|
|
default:
|
7115 |
|
|
((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
|
7116 |
|
|
break;
|
7117 |
|
|
case R_MIPS_CALL16:
|
7118 |
|
|
case R_MIPS_CALL_HI16:
|
7119 |
|
|
case R_MIPS_CALL_LO16:
|
7120 |
|
|
case R_MIPS_JALR:
|
7121 |
|
|
break;
|
7122 |
|
|
}
|
7123 |
|
|
|
7124 |
|
|
/* If this reloc is not a 16 bit call, and it has a global
|
7125 |
|
|
symbol, then we will need the fn_stub if there is one.
|
7126 |
|
|
References from a stub section do not count. */
|
7127 |
|
|
if (h != NULL
|
7128 |
|
|
&& r_type != R_MIPS16_26
|
7129 |
|
|
&& !mips16_stub_section_p (abfd, sec))
|
7130 |
|
|
{
|
7131 |
|
|
struct mips_elf_link_hash_entry *mh;
|
7132 |
|
|
|
7133 |
|
|
mh = (struct mips_elf_link_hash_entry *) h;
|
7134 |
|
|
mh->need_fn_stub = TRUE;
|
7135 |
|
|
}
|
7136 |
|
|
}
|
7137 |
|
|
|
7138 |
|
|
return TRUE;
|
7139 |
|
|
}
|
7140 |
|
|
|
7141 |
|
|
bfd_boolean
|
7142 |
|
|
_bfd_mips_relax_section (bfd *abfd, asection *sec,
|
7143 |
|
|
struct bfd_link_info *link_info,
|
7144 |
|
|
bfd_boolean *again)
|
7145 |
|
|
{
|
7146 |
|
|
Elf_Internal_Rela *internal_relocs;
|
7147 |
|
|
Elf_Internal_Rela *irel, *irelend;
|
7148 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
7149 |
|
|
bfd_byte *contents = NULL;
|
7150 |
|
|
size_t extsymoff;
|
7151 |
|
|
bfd_boolean changed_contents = FALSE;
|
7152 |
|
|
bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
|
7153 |
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
7154 |
|
|
|
7155 |
|
|
/* We are not currently changing any sizes, so only one pass. */
|
7156 |
|
|
*again = FALSE;
|
7157 |
|
|
|
7158 |
|
|
if (link_info->relocatable)
|
7159 |
|
|
return TRUE;
|
7160 |
|
|
|
7161 |
|
|
internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
|
7162 |
|
|
link_info->keep_memory);
|
7163 |
|
|
if (internal_relocs == NULL)
|
7164 |
|
|
return TRUE;
|
7165 |
|
|
|
7166 |
|
|
irelend = internal_relocs + sec->reloc_count
|
7167 |
|
|
* get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
|
7168 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
7169 |
|
|
extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
|
7170 |
|
|
|
7171 |
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
7172 |
|
|
{
|
7173 |
|
|
bfd_vma symval;
|
7174 |
|
|
bfd_signed_vma sym_offset;
|
7175 |
|
|
unsigned int r_type;
|
7176 |
|
|
unsigned long r_symndx;
|
7177 |
|
|
asection *sym_sec;
|
7178 |
|
|
unsigned long instruction;
|
7179 |
|
|
|
7180 |
|
|
/* Turn jalr into bgezal, and jr into beq, if they're marked
|
7181 |
|
|
with a JALR relocation, that indicate where they jump to.
|
7182 |
|
|
This saves some pipeline bubbles. */
|
7183 |
|
|
r_type = ELF_R_TYPE (abfd, irel->r_info);
|
7184 |
|
|
if (r_type != R_MIPS_JALR)
|
7185 |
|
|
continue;
|
7186 |
|
|
|
7187 |
|
|
r_symndx = ELF_R_SYM (abfd, irel->r_info);
|
7188 |
|
|
/* Compute the address of the jump target. */
|
7189 |
|
|
if (r_symndx >= extsymoff)
|
7190 |
|
|
{
|
7191 |
|
|
struct mips_elf_link_hash_entry *h
|
7192 |
|
|
= ((struct mips_elf_link_hash_entry *)
|
7193 |
|
|
elf_sym_hashes (abfd) [r_symndx - extsymoff]);
|
7194 |
|
|
|
7195 |
|
|
while (h->root.root.type == bfd_link_hash_indirect
|
7196 |
|
|
|| h->root.root.type == bfd_link_hash_warning)
|
7197 |
|
|
h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
|
7198 |
|
|
|
7199 |
|
|
/* If a symbol is undefined, or if it may be overridden,
|
7200 |
|
|
skip it. */
|
7201 |
|
|
if (! ((h->root.root.type == bfd_link_hash_defined
|
7202 |
|
|
|| h->root.root.type == bfd_link_hash_defweak)
|
7203 |
|
|
&& h->root.root.u.def.section)
|
7204 |
|
|
|| (link_info->shared && ! link_info->symbolic
|
7205 |
|
|
&& !h->root.forced_local))
|
7206 |
|
|
continue;
|
7207 |
|
|
|
7208 |
|
|
sym_sec = h->root.root.u.def.section;
|
7209 |
|
|
if (sym_sec->output_section)
|
7210 |
|
|
symval = (h->root.root.u.def.value
|
7211 |
|
|
+ sym_sec->output_section->vma
|
7212 |
|
|
+ sym_sec->output_offset);
|
7213 |
|
|
else
|
7214 |
|
|
symval = h->root.root.u.def.value;
|
7215 |
|
|
}
|
7216 |
|
|
else
|
7217 |
|
|
{
|
7218 |
|
|
Elf_Internal_Sym *isym;
|
7219 |
|
|
|
7220 |
|
|
/* Read this BFD's symbols if we haven't done so already. */
|
7221 |
|
|
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
7222 |
|
|
{
|
7223 |
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
7224 |
|
|
if (isymbuf == NULL)
|
7225 |
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
7226 |
|
|
symtab_hdr->sh_info, 0,
|
7227 |
|
|
NULL, NULL, NULL);
|
7228 |
|
|
if (isymbuf == NULL)
|
7229 |
|
|
goto relax_return;
|
7230 |
|
|
}
|
7231 |
|
|
|
7232 |
|
|
isym = isymbuf + r_symndx;
|
7233 |
|
|
if (isym->st_shndx == SHN_UNDEF)
|
7234 |
|
|
continue;
|
7235 |
|
|
else if (isym->st_shndx == SHN_ABS)
|
7236 |
|
|
sym_sec = bfd_abs_section_ptr;
|
7237 |
|
|
else if (isym->st_shndx == SHN_COMMON)
|
7238 |
|
|
sym_sec = bfd_com_section_ptr;
|
7239 |
|
|
else
|
7240 |
|
|
sym_sec
|
7241 |
|
|
= bfd_section_from_elf_index (abfd, isym->st_shndx);
|
7242 |
|
|
symval = isym->st_value
|
7243 |
|
|
+ sym_sec->output_section->vma
|
7244 |
|
|
+ sym_sec->output_offset;
|
7245 |
|
|
}
|
7246 |
|
|
|
7247 |
|
|
/* Compute branch offset, from delay slot of the jump to the
|
7248 |
|
|
branch target. */
|
7249 |
|
|
sym_offset = (symval + irel->r_addend)
|
7250 |
|
|
- (sec_start + irel->r_offset + 4);
|
7251 |
|
|
|
7252 |
|
|
/* Branch offset must be properly aligned. */
|
7253 |
|
|
if ((sym_offset & 3) != 0)
|
7254 |
|
|
continue;
|
7255 |
|
|
|
7256 |
|
|
sym_offset >>= 2;
|
7257 |
|
|
|
7258 |
|
|
/* Check that it's in range. */
|
7259 |
|
|
if (sym_offset < -0x8000 || sym_offset >= 0x8000)
|
7260 |
|
|
continue;
|
7261 |
|
|
|
7262 |
|
|
/* Get the section contents if we haven't done so already. */
|
7263 |
|
|
if (!mips_elf_get_section_contents (abfd, sec, &contents))
|
7264 |
|
|
goto relax_return;
|
7265 |
|
|
|
7266 |
|
|
instruction = bfd_get_32 (abfd, contents + irel->r_offset);
|
7267 |
|
|
|
7268 |
|
|
/* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
|
7269 |
|
|
if ((instruction & 0xfc1fffff) == 0x0000f809)
|
7270 |
|
|
instruction = 0x04110000;
|
7271 |
|
|
/* If it was jr <reg>, turn it into b <target>. */
|
7272 |
|
|
else if ((instruction & 0xfc1fffff) == 0x00000008)
|
7273 |
|
|
instruction = 0x10000000;
|
7274 |
|
|
else
|
7275 |
|
|
continue;
|
7276 |
|
|
|
7277 |
|
|
instruction |= (sym_offset & 0xffff);
|
7278 |
|
|
bfd_put_32 (abfd, instruction, contents + irel->r_offset);
|
7279 |
|
|
changed_contents = TRUE;
|
7280 |
|
|
}
|
7281 |
|
|
|
7282 |
|
|
if (contents != NULL
|
7283 |
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
7284 |
|
|
{
|
7285 |
|
|
if (!changed_contents && !link_info->keep_memory)
|
7286 |
|
|
free (contents);
|
7287 |
|
|
else
|
7288 |
|
|
{
|
7289 |
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
7290 |
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
7291 |
|
|
}
|
7292 |
|
|
}
|
7293 |
|
|
return TRUE;
|
7294 |
|
|
|
7295 |
|
|
relax_return:
|
7296 |
|
|
if (contents != NULL
|
7297 |
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
7298 |
|
|
free (contents);
|
7299 |
|
|
return FALSE;
|
7300 |
|
|
}
|
7301 |
|
|
|
7302 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
7303 |
|
|
regular object. The current definition is in some section of the
|
7304 |
|
|
dynamic object, but we're not including those sections. We have to
|
7305 |
|
|
change the definition to something the rest of the link can
|
7306 |
|
|
understand. */
|
7307 |
|
|
|
7308 |
|
|
bfd_boolean
|
7309 |
|
|
_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
|
7310 |
|
|
struct elf_link_hash_entry *h)
|
7311 |
|
|
{
|
7312 |
|
|
bfd *dynobj;
|
7313 |
|
|
struct mips_elf_link_hash_entry *hmips;
|
7314 |
|
|
asection *s;
|
7315 |
|
|
struct mips_elf_link_hash_table *htab;
|
7316 |
|
|
|
7317 |
|
|
htab = mips_elf_hash_table (info);
|
7318 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
7319 |
|
|
|
7320 |
|
|
/* Make sure we know what is going on here. */
|
7321 |
|
|
BFD_ASSERT (dynobj != NULL
|
7322 |
|
|
&& (h->needs_plt
|
7323 |
|
|
|| h->u.weakdef != NULL
|
7324 |
|
|
|| (h->def_dynamic
|
7325 |
|
|
&& h->ref_regular
|
7326 |
|
|
&& !h->def_regular)));
|
7327 |
|
|
|
7328 |
|
|
/* If this symbol is defined in a dynamic object, we need to copy
|
7329 |
|
|
any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
|
7330 |
|
|
file. */
|
7331 |
|
|
hmips = (struct mips_elf_link_hash_entry *) h;
|
7332 |
|
|
if (! info->relocatable
|
7333 |
|
|
&& hmips->possibly_dynamic_relocs != 0
|
7334 |
|
|
&& (h->root.type == bfd_link_hash_defweak
|
7335 |
|
|
|| !h->def_regular))
|
7336 |
|
|
{
|
7337 |
|
|
mips_elf_allocate_dynamic_relocations
|
7338 |
|
|
(dynobj, info, hmips->possibly_dynamic_relocs);
|
7339 |
|
|
if (hmips->readonly_reloc)
|
7340 |
|
|
/* We tell the dynamic linker that there are relocations
|
7341 |
|
|
against the text segment. */
|
7342 |
|
|
info->flags |= DF_TEXTREL;
|
7343 |
|
|
}
|
7344 |
|
|
|
7345 |
|
|
/* For a function, create a stub, if allowed. */
|
7346 |
|
|
if (! hmips->no_fn_stub
|
7347 |
|
|
&& h->needs_plt)
|
7348 |
|
|
{
|
7349 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
7350 |
|
|
return TRUE;
|
7351 |
|
|
|
7352 |
|
|
/* If this symbol is not defined in a regular file, then set
|
7353 |
|
|
the symbol to the stub location. This is required to make
|
7354 |
|
|
function pointers compare as equal between the normal
|
7355 |
|
|
executable and the shared library. */
|
7356 |
|
|
if (!h->def_regular)
|
7357 |
|
|
{
|
7358 |
|
|
/* We need .stub section. */
|
7359 |
|
|
s = bfd_get_section_by_name (dynobj,
|
7360 |
|
|
MIPS_ELF_STUB_SECTION_NAME (dynobj));
|
7361 |
|
|
BFD_ASSERT (s != NULL);
|
7362 |
|
|
|
7363 |
|
|
h->root.u.def.section = s;
|
7364 |
|
|
h->root.u.def.value = s->size;
|
7365 |
|
|
|
7366 |
|
|
/* XXX Write this stub address somewhere. */
|
7367 |
|
|
h->plt.offset = s->size;
|
7368 |
|
|
|
7369 |
|
|
/* Make room for this stub code. */
|
7370 |
|
|
s->size += htab->function_stub_size;
|
7371 |
|
|
|
7372 |
|
|
/* The last half word of the stub will be filled with the index
|
7373 |
|
|
of this symbol in .dynsym section. */
|
7374 |
|
|
return TRUE;
|
7375 |
|
|
}
|
7376 |
|
|
}
|
7377 |
|
|
else if ((h->type == STT_FUNC)
|
7378 |
|
|
&& !h->needs_plt)
|
7379 |
|
|
{
|
7380 |
|
|
/* This will set the entry for this symbol in the GOT to 0, and
|
7381 |
|
|
the dynamic linker will take care of this. */
|
7382 |
|
|
h->root.u.def.value = 0;
|
7383 |
|
|
return TRUE;
|
7384 |
|
|
}
|
7385 |
|
|
|
7386 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
7387 |
|
|
processor independent code will have arranged for us to see the
|
7388 |
|
|
real definition first, and we can just use the same value. */
|
7389 |
|
|
if (h->u.weakdef != NULL)
|
7390 |
|
|
{
|
7391 |
|
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
7392 |
|
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
7393 |
|
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
7394 |
|
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
7395 |
|
|
return TRUE;
|
7396 |
|
|
}
|
7397 |
|
|
|
7398 |
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
7399 |
|
|
is not a function. */
|
7400 |
|
|
|
7401 |
|
|
return TRUE;
|
7402 |
|
|
}
|
7403 |
|
|
|
7404 |
|
|
/* Likewise, for VxWorks. */
|
7405 |
|
|
|
7406 |
|
|
bfd_boolean
|
7407 |
|
|
_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
|
7408 |
|
|
struct elf_link_hash_entry *h)
|
7409 |
|
|
{
|
7410 |
|
|
bfd *dynobj;
|
7411 |
|
|
struct mips_elf_link_hash_entry *hmips;
|
7412 |
|
|
struct mips_elf_link_hash_table *htab;
|
7413 |
|
|
|
7414 |
|
|
htab = mips_elf_hash_table (info);
|
7415 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
7416 |
|
|
hmips = (struct mips_elf_link_hash_entry *) h;
|
7417 |
|
|
|
7418 |
|
|
/* Make sure we know what is going on here. */
|
7419 |
|
|
BFD_ASSERT (dynobj != NULL
|
7420 |
|
|
&& (h->needs_plt
|
7421 |
|
|
|| h->needs_copy
|
7422 |
|
|
|| h->u.weakdef != NULL
|
7423 |
|
|
|| (h->def_dynamic
|
7424 |
|
|
&& h->ref_regular
|
7425 |
|
|
&& !h->def_regular)));
|
7426 |
|
|
|
7427 |
|
|
/* If the symbol is defined by a dynamic object, we need a PLT stub if
|
7428 |
|
|
either (a) we want to branch to the symbol or (b) we're linking an
|
7429 |
|
|
executable that needs a canonical function address. In the latter
|
7430 |
|
|
case, the canonical address will be the address of the executable's
|
7431 |
|
|
load stub. */
|
7432 |
|
|
if ((hmips->is_branch_target
|
7433 |
|
|
|| (!info->shared
|
7434 |
|
|
&& h->type == STT_FUNC
|
7435 |
|
|
&& hmips->is_relocation_target))
|
7436 |
|
|
&& h->def_dynamic
|
7437 |
|
|
&& h->ref_regular
|
7438 |
|
|
&& !h->def_regular
|
7439 |
|
|
&& !h->forced_local)
|
7440 |
|
|
h->needs_plt = 1;
|
7441 |
|
|
|
7442 |
|
|
/* Locally-binding symbols do not need a PLT stub; we can refer to
|
7443 |
|
|
the functions directly. */
|
7444 |
|
|
else if (h->needs_plt
|
7445 |
|
|
&& (SYMBOL_CALLS_LOCAL (info, h)
|
7446 |
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
7447 |
|
|
&& h->root.type == bfd_link_hash_undefweak)))
|
7448 |
|
|
{
|
7449 |
|
|
h->needs_plt = 0;
|
7450 |
|
|
return TRUE;
|
7451 |
|
|
}
|
7452 |
|
|
|
7453 |
|
|
if (h->needs_plt)
|
7454 |
|
|
{
|
7455 |
|
|
/* If this is the first symbol to need a PLT entry, allocate room
|
7456 |
|
|
for the header, and for the header's .rela.plt.unloaded entries. */
|
7457 |
|
|
if (htab->splt->size == 0)
|
7458 |
|
|
{
|
7459 |
|
|
htab->splt->size += htab->plt_header_size;
|
7460 |
|
|
if (!info->shared)
|
7461 |
|
|
htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
|
7462 |
|
|
}
|
7463 |
|
|
|
7464 |
|
|
/* Assign the next .plt entry to this symbol. */
|
7465 |
|
|
h->plt.offset = htab->splt->size;
|
7466 |
|
|
htab->splt->size += htab->plt_entry_size;
|
7467 |
|
|
|
7468 |
|
|
/* If the output file has no definition of the symbol, set the
|
7469 |
|
|
symbol's value to the address of the stub. Point at the PLT
|
7470 |
|
|
load stub rather than the lazy resolution stub; this stub
|
7471 |
|
|
will become the canonical function address. */
|
7472 |
|
|
if (!info->shared && !h->def_regular)
|
7473 |
|
|
{
|
7474 |
|
|
h->root.u.def.section = htab->splt;
|
7475 |
|
|
h->root.u.def.value = h->plt.offset;
|
7476 |
|
|
h->root.u.def.value += 8;
|
7477 |
|
|
}
|
7478 |
|
|
|
7479 |
|
|
/* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
|
7480 |
|
|
htab->sgotplt->size += 4;
|
7481 |
|
|
htab->srelplt->size += sizeof (Elf32_External_Rela);
|
7482 |
|
|
|
7483 |
|
|
/* Make room for the .rela.plt.unloaded relocations. */
|
7484 |
|
|
if (!info->shared)
|
7485 |
|
|
htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
|
7486 |
|
|
|
7487 |
|
|
return TRUE;
|
7488 |
|
|
}
|
7489 |
|
|
|
7490 |
|
|
/* If a function symbol is defined by a dynamic object, and we do not
|
7491 |
|
|
need a PLT stub for it, the symbol's value should be zero. */
|
7492 |
|
|
if (h->type == STT_FUNC
|
7493 |
|
|
&& h->def_dynamic
|
7494 |
|
|
&& h->ref_regular
|
7495 |
|
|
&& !h->def_regular)
|
7496 |
|
|
{
|
7497 |
|
|
h->root.u.def.value = 0;
|
7498 |
|
|
return TRUE;
|
7499 |
|
|
}
|
7500 |
|
|
|
7501 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
7502 |
|
|
processor independent code will have arranged for us to see the
|
7503 |
|
|
real definition first, and we can just use the same value. */
|
7504 |
|
|
if (h->u.weakdef != NULL)
|
7505 |
|
|
{
|
7506 |
|
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
7507 |
|
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
7508 |
|
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
7509 |
|
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
7510 |
|
|
return TRUE;
|
7511 |
|
|
}
|
7512 |
|
|
|
7513 |
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
7514 |
|
|
is not a function. */
|
7515 |
|
|
if (info->shared)
|
7516 |
|
|
return TRUE;
|
7517 |
|
|
|
7518 |
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
7519 |
|
|
become part of the .bss section of the executable. There will be
|
7520 |
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
7521 |
|
|
object will contain position independent code, so all references
|
7522 |
|
|
from the dynamic object to this symbol will go through the global
|
7523 |
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
7524 |
|
|
determine the address it must put in the global offset table, so
|
7525 |
|
|
both the dynamic object and the regular object will refer to the
|
7526 |
|
|
same memory location for the variable. */
|
7527 |
|
|
|
7528 |
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
7529 |
|
|
{
|
7530 |
|
|
htab->srelbss->size += sizeof (Elf32_External_Rela);
|
7531 |
|
|
h->needs_copy = 1;
|
7532 |
|
|
}
|
7533 |
|
|
|
7534 |
|
|
return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
|
7535 |
|
|
}
|
7536 |
|
|
|
7537 |
|
|
/* Return the number of dynamic section symbols required by OUTPUT_BFD.
|
7538 |
|
|
The number might be exact or a worst-case estimate, depending on how
|
7539 |
|
|
much information is available to elf_backend_omit_section_dynsym at
|
7540 |
|
|
the current linking stage. */
|
7541 |
|
|
|
7542 |
|
|
static bfd_size_type
|
7543 |
|
|
count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
|
7544 |
|
|
{
|
7545 |
|
|
bfd_size_type count;
|
7546 |
|
|
|
7547 |
|
|
count = 0;
|
7548 |
|
|
if (info->shared || elf_hash_table (info)->is_relocatable_executable)
|
7549 |
|
|
{
|
7550 |
|
|
asection *p;
|
7551 |
|
|
const struct elf_backend_data *bed;
|
7552 |
|
|
|
7553 |
|
|
bed = get_elf_backend_data (output_bfd);
|
7554 |
|
|
for (p = output_bfd->sections; p ; p = p->next)
|
7555 |
|
|
if ((p->flags & SEC_EXCLUDE) == 0
|
7556 |
|
|
&& (p->flags & SEC_ALLOC) != 0
|
7557 |
|
|
&& !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
|
7558 |
|
|
++count;
|
7559 |
|
|
}
|
7560 |
|
|
return count;
|
7561 |
|
|
}
|
7562 |
|
|
|
7563 |
|
|
/* This function is called after all the input files have been read,
|
7564 |
|
|
and the input sections have been assigned to output sections. We
|
7565 |
|
|
check for any mips16 stub sections that we can discard. */
|
7566 |
|
|
|
7567 |
|
|
bfd_boolean
|
7568 |
|
|
_bfd_mips_elf_always_size_sections (bfd *output_bfd,
|
7569 |
|
|
struct bfd_link_info *info)
|
7570 |
|
|
{
|
7571 |
|
|
asection *ri;
|
7572 |
|
|
|
7573 |
|
|
bfd *dynobj;
|
7574 |
|
|
asection *s;
|
7575 |
|
|
struct mips_got_info *g;
|
7576 |
|
|
int i;
|
7577 |
|
|
bfd_size_type loadable_size = 0;
|
7578 |
|
|
bfd_size_type page_gotno;
|
7579 |
|
|
bfd_size_type dynsymcount;
|
7580 |
|
|
bfd *sub;
|
7581 |
|
|
struct mips_elf_count_tls_arg count_tls_arg;
|
7582 |
|
|
struct mips_elf_link_hash_table *htab;
|
7583 |
|
|
|
7584 |
|
|
htab = mips_elf_hash_table (info);
|
7585 |
|
|
|
7586 |
|
|
/* The .reginfo section has a fixed size. */
|
7587 |
|
|
ri = bfd_get_section_by_name (output_bfd, ".reginfo");
|
7588 |
|
|
if (ri != NULL)
|
7589 |
|
|
bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
|
7590 |
|
|
|
7591 |
|
|
if (! (info->relocatable
|
7592 |
|
|
|| ! mips_elf_hash_table (info)->mips16_stubs_seen))
|
7593 |
|
|
mips_elf_link_hash_traverse (mips_elf_hash_table (info),
|
7594 |
|
|
mips_elf_check_mips16_stubs, NULL);
|
7595 |
|
|
|
7596 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
7597 |
|
|
if (dynobj == NULL)
|
7598 |
|
|
/* Relocatable links don't have it. */
|
7599 |
|
|
return TRUE;
|
7600 |
|
|
|
7601 |
|
|
g = mips_elf_got_info (dynobj, &s);
|
7602 |
|
|
if (s == NULL)
|
7603 |
|
|
return TRUE;
|
7604 |
|
|
|
7605 |
|
|
/* Calculate the total loadable size of the output. That
|
7606 |
|
|
will give us the maximum number of GOT_PAGE entries
|
7607 |
|
|
required. */
|
7608 |
|
|
for (sub = info->input_bfds; sub; sub = sub->link_next)
|
7609 |
|
|
{
|
7610 |
|
|
asection *subsection;
|
7611 |
|
|
|
7612 |
|
|
for (subsection = sub->sections;
|
7613 |
|
|
subsection;
|
7614 |
|
|
subsection = subsection->next)
|
7615 |
|
|
{
|
7616 |
|
|
if ((subsection->flags & SEC_ALLOC) == 0)
|
7617 |
|
|
continue;
|
7618 |
|
|
loadable_size += ((subsection->size + 0xf)
|
7619 |
|
|
&~ (bfd_size_type) 0xf);
|
7620 |
|
|
}
|
7621 |
|
|
}
|
7622 |
|
|
|
7623 |
|
|
/* There has to be a global GOT entry for every symbol with
|
7624 |
|
|
a dynamic symbol table index of DT_MIPS_GOTSYM or
|
7625 |
|
|
higher. Therefore, it make sense to put those symbols
|
7626 |
|
|
that need GOT entries at the end of the symbol table. We
|
7627 |
|
|
do that here. */
|
7628 |
|
|
if (! mips_elf_sort_hash_table (info, 1))
|
7629 |
|
|
return FALSE;
|
7630 |
|
|
|
7631 |
|
|
if (g->global_gotsym != NULL)
|
7632 |
|
|
i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
|
7633 |
|
|
else
|
7634 |
|
|
/* If there are no global symbols, or none requiring
|
7635 |
|
|
relocations, then GLOBAL_GOTSYM will be NULL. */
|
7636 |
|
|
i = 0;
|
7637 |
|
|
|
7638 |
|
|
/* Get a worst-case estimate of the number of dynamic symbols needed.
|
7639 |
|
|
At this point, dynsymcount does not account for section symbols
|
7640 |
|
|
and count_section_dynsyms may overestimate the number that will
|
7641 |
|
|
be needed. */
|
7642 |
|
|
dynsymcount = (elf_hash_table (info)->dynsymcount
|
7643 |
|
|
+ count_section_dynsyms (output_bfd, info));
|
7644 |
|
|
|
7645 |
|
|
/* Determine the size of one stub entry. */
|
7646 |
|
|
htab->function_stub_size = (dynsymcount > 0x10000
|
7647 |
|
|
? MIPS_FUNCTION_STUB_BIG_SIZE
|
7648 |
|
|
: MIPS_FUNCTION_STUB_NORMAL_SIZE);
|
7649 |
|
|
|
7650 |
|
|
/* In the worst case, we'll get one stub per dynamic symbol, plus
|
7651 |
|
|
one to account for the dummy entry at the end required by IRIX
|
7652 |
|
|
rld. */
|
7653 |
|
|
loadable_size += htab->function_stub_size * (i + 1);
|
7654 |
|
|
|
7655 |
|
|
if (htab->is_vxworks)
|
7656 |
|
|
/* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
|
7657 |
|
|
relocations against local symbols evaluate to "G", and the EABI does
|
7658 |
|
|
not include R_MIPS_GOT_PAGE. */
|
7659 |
|
|
page_gotno = 0;
|
7660 |
|
|
else
|
7661 |
|
|
/* Assume there are two loadable segments consisting of contiguous
|
7662 |
|
|
sections. Is 5 enough? */
|
7663 |
|
|
page_gotno = (loadable_size >> 16) + 5;
|
7664 |
|
|
|
7665 |
|
|
/* Choose the smaller of the two estimates; both are intended to be
|
7666 |
|
|
conservative. */
|
7667 |
|
|
if (page_gotno > g->page_gotno)
|
7668 |
|
|
page_gotno = g->page_gotno;
|
7669 |
|
|
|
7670 |
|
|
g->local_gotno += page_gotno;
|
7671 |
|
|
s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
|
7672 |
|
|
|
7673 |
|
|
g->global_gotno = i;
|
7674 |
|
|
s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
|
7675 |
|
|
|
7676 |
|
|
/* We need to calculate tls_gotno for global symbols at this point
|
7677 |
|
|
instead of building it up earlier, to avoid doublecounting
|
7678 |
|
|
entries for one global symbol from multiple input files. */
|
7679 |
|
|
count_tls_arg.info = info;
|
7680 |
|
|
count_tls_arg.needed = 0;
|
7681 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
7682 |
|
|
mips_elf_count_global_tls_entries,
|
7683 |
|
|
&count_tls_arg);
|
7684 |
|
|
g->tls_gotno += count_tls_arg.needed;
|
7685 |
|
|
s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
|
7686 |
|
|
|
7687 |
|
|
mips_elf_resolve_final_got_entries (g);
|
7688 |
|
|
|
7689 |
|
|
/* VxWorks does not support multiple GOTs. It initializes $gp to
|
7690 |
|
|
__GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
|
7691 |
|
|
dynamic loader. */
|
7692 |
|
|
if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
|
7693 |
|
|
{
|
7694 |
|
|
if (! mips_elf_multi_got (output_bfd, info, g, s, page_gotno))
|
7695 |
|
|
return FALSE;
|
7696 |
|
|
}
|
7697 |
|
|
else
|
7698 |
|
|
{
|
7699 |
|
|
/* Set up TLS entries for the first GOT. */
|
7700 |
|
|
g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
|
7701 |
|
|
htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
|
7702 |
|
|
}
|
7703 |
|
|
htab->computed_got_sizes = TRUE;
|
7704 |
|
|
|
7705 |
|
|
return TRUE;
|
7706 |
|
|
}
|
7707 |
|
|
|
7708 |
|
|
/* Set the sizes of the dynamic sections. */
|
7709 |
|
|
|
7710 |
|
|
bfd_boolean
|
7711 |
|
|
_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
|
7712 |
|
|
struct bfd_link_info *info)
|
7713 |
|
|
{
|
7714 |
|
|
bfd *dynobj;
|
7715 |
|
|
asection *s, *sreldyn;
|
7716 |
|
|
bfd_boolean reltext;
|
7717 |
|
|
struct mips_elf_link_hash_table *htab;
|
7718 |
|
|
|
7719 |
|
|
htab = mips_elf_hash_table (info);
|
7720 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
7721 |
|
|
BFD_ASSERT (dynobj != NULL);
|
7722 |
|
|
|
7723 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
7724 |
|
|
{
|
7725 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
7726 |
|
|
if (info->executable)
|
7727 |
|
|
{
|
7728 |
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
7729 |
|
|
BFD_ASSERT (s != NULL);
|
7730 |
|
|
s->size
|
7731 |
|
|
= strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
|
7732 |
|
|
s->contents
|
7733 |
|
|
= (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
|
7734 |
|
|
}
|
7735 |
|
|
}
|
7736 |
|
|
|
7737 |
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
7738 |
|
|
determined the sizes of the various dynamic sections. Allocate
|
7739 |
|
|
memory for them. */
|
7740 |
|
|
reltext = FALSE;
|
7741 |
|
|
sreldyn = NULL;
|
7742 |
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
7743 |
|
|
{
|
7744 |
|
|
const char *name;
|
7745 |
|
|
|
7746 |
|
|
/* It's OK to base decisions on the section name, because none
|
7747 |
|
|
of the dynobj section names depend upon the input files. */
|
7748 |
|
|
name = bfd_get_section_name (dynobj, s);
|
7749 |
|
|
|
7750 |
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
7751 |
|
|
continue;
|
7752 |
|
|
|
7753 |
|
|
if (CONST_STRNEQ (name, ".rel"))
|
7754 |
|
|
{
|
7755 |
|
|
if (s->size != 0)
|
7756 |
|
|
{
|
7757 |
|
|
const char *outname;
|
7758 |
|
|
asection *target;
|
7759 |
|
|
|
7760 |
|
|
/* If this relocation section applies to a read only
|
7761 |
|
|
section, then we probably need a DT_TEXTREL entry.
|
7762 |
|
|
If the relocation section is .rel(a).dyn, we always
|
7763 |
|
|
assert a DT_TEXTREL entry rather than testing whether
|
7764 |
|
|
there exists a relocation to a read only section or
|
7765 |
|
|
not. */
|
7766 |
|
|
outname = bfd_get_section_name (output_bfd,
|
7767 |
|
|
s->output_section);
|
7768 |
|
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
7769 |
|
|
if ((target != NULL
|
7770 |
|
|
&& (target->flags & SEC_READONLY) != 0
|
7771 |
|
|
&& (target->flags & SEC_ALLOC) != 0)
|
7772 |
|
|
|| strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
|
7773 |
|
|
reltext = TRUE;
|
7774 |
|
|
|
7775 |
|
|
/* We use the reloc_count field as a counter if we need
|
7776 |
|
|
to copy relocs into the output file. */
|
7777 |
|
|
if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
|
7778 |
|
|
s->reloc_count = 0;
|
7779 |
|
|
|
7780 |
|
|
/* If combreloc is enabled, elf_link_sort_relocs() will
|
7781 |
|
|
sort relocations, but in a different way than we do,
|
7782 |
|
|
and before we're done creating relocations. Also, it
|
7783 |
|
|
will move them around between input sections'
|
7784 |
|
|
relocation's contents, so our sorting would be
|
7785 |
|
|
broken, so don't let it run. */
|
7786 |
|
|
info->combreloc = 0;
|
7787 |
|
|
}
|
7788 |
|
|
}
|
7789 |
|
|
else if (htab->is_vxworks && strcmp (name, ".got") == 0)
|
7790 |
|
|
{
|
7791 |
|
|
/* Executables do not need a GOT. */
|
7792 |
|
|
if (info->shared)
|
7793 |
|
|
{
|
7794 |
|
|
/* Allocate relocations for all but the reserved entries. */
|
7795 |
|
|
struct mips_got_info *g;
|
7796 |
|
|
unsigned int count;
|
7797 |
|
|
|
7798 |
|
|
g = mips_elf_got_info (dynobj, NULL);
|
7799 |
|
|
count = (g->global_gotno
|
7800 |
|
|
+ g->local_gotno
|
7801 |
|
|
- MIPS_RESERVED_GOTNO (info));
|
7802 |
|
|
mips_elf_allocate_dynamic_relocations (dynobj, info, count);
|
7803 |
|
|
}
|
7804 |
|
|
}
|
7805 |
|
|
else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
|
7806 |
|
|
{
|
7807 |
|
|
/* _bfd_mips_elf_always_size_sections() has already done
|
7808 |
|
|
most of the work, but some symbols may have been mapped
|
7809 |
|
|
to versions that we must now resolve in the got_entries
|
7810 |
|
|
hash tables. */
|
7811 |
|
|
struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
|
7812 |
|
|
struct mips_got_info *g = gg;
|
7813 |
|
|
struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
|
7814 |
|
|
unsigned int needed_relocs = 0;
|
7815 |
|
|
|
7816 |
|
|
if (gg->next)
|
7817 |
|
|
{
|
7818 |
|
|
set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
|
7819 |
|
|
set_got_offset_arg.info = info;
|
7820 |
|
|
|
7821 |
|
|
/* NOTE 2005-02-03: How can this call, or the next, ever
|
7822 |
|
|
find any indirect entries to resolve? They were all
|
7823 |
|
|
resolved in mips_elf_multi_got. */
|
7824 |
|
|
mips_elf_resolve_final_got_entries (gg);
|
7825 |
|
|
for (g = gg->next; g && g->next != gg; g = g->next)
|
7826 |
|
|
{
|
7827 |
|
|
unsigned int save_assign;
|
7828 |
|
|
|
7829 |
|
|
mips_elf_resolve_final_got_entries (g);
|
7830 |
|
|
|
7831 |
|
|
/* Assign offsets to global GOT entries. */
|
7832 |
|
|
save_assign = g->assigned_gotno;
|
7833 |
|
|
g->assigned_gotno = g->local_gotno;
|
7834 |
|
|
set_got_offset_arg.g = g;
|
7835 |
|
|
set_got_offset_arg.needed_relocs = 0;
|
7836 |
|
|
htab_traverse (g->got_entries,
|
7837 |
|
|
mips_elf_set_global_got_offset,
|
7838 |
|
|
&set_got_offset_arg);
|
7839 |
|
|
needed_relocs += set_got_offset_arg.needed_relocs;
|
7840 |
|
|
BFD_ASSERT (g->assigned_gotno - g->local_gotno
|
7841 |
|
|
<= g->global_gotno);
|
7842 |
|
|
|
7843 |
|
|
g->assigned_gotno = save_assign;
|
7844 |
|
|
if (info->shared)
|
7845 |
|
|
{
|
7846 |
|
|
needed_relocs += g->local_gotno - g->assigned_gotno;
|
7847 |
|
|
BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
|
7848 |
|
|
+ g->next->global_gotno
|
7849 |
|
|
+ g->next->tls_gotno
|
7850 |
|
|
+ MIPS_RESERVED_GOTNO (info));
|
7851 |
|
|
}
|
7852 |
|
|
}
|
7853 |
|
|
}
|
7854 |
|
|
else
|
7855 |
|
|
{
|
7856 |
|
|
struct mips_elf_count_tls_arg arg;
|
7857 |
|
|
arg.info = info;
|
7858 |
|
|
arg.needed = 0;
|
7859 |
|
|
|
7860 |
|
|
htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
|
7861 |
|
|
&arg);
|
7862 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
7863 |
|
|
mips_elf_count_global_tls_relocs,
|
7864 |
|
|
&arg);
|
7865 |
|
|
|
7866 |
|
|
needed_relocs += arg.needed;
|
7867 |
|
|
}
|
7868 |
|
|
|
7869 |
|
|
if (needed_relocs)
|
7870 |
|
|
mips_elf_allocate_dynamic_relocations (dynobj, info,
|
7871 |
|
|
needed_relocs);
|
7872 |
|
|
}
|
7873 |
|
|
else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
|
7874 |
|
|
{
|
7875 |
|
|
/* IRIX rld assumes that the function stub isn't at the end
|
7876 |
|
|
of .text section. So put a dummy. XXX */
|
7877 |
|
|
s->size += htab->function_stub_size;
|
7878 |
|
|
}
|
7879 |
|
|
else if (! info->shared
|
7880 |
|
|
&& ! mips_elf_hash_table (info)->use_rld_obj_head
|
7881 |
|
|
&& CONST_STRNEQ (name, ".rld_map"))
|
7882 |
|
|
{
|
7883 |
|
|
/* We add a room for __rld_map. It will be filled in by the
|
7884 |
|
|
rtld to contain a pointer to the _r_debug structure. */
|
7885 |
|
|
s->size += 4;
|
7886 |
|
|
}
|
7887 |
|
|
else if (SGI_COMPAT (output_bfd)
|
7888 |
|
|
&& CONST_STRNEQ (name, ".compact_rel"))
|
7889 |
|
|
s->size += mips_elf_hash_table (info)->compact_rel_size;
|
7890 |
|
|
else if (! CONST_STRNEQ (name, ".init")
|
7891 |
|
|
&& s != htab->sgotplt
|
7892 |
|
|
&& s != htab->splt)
|
7893 |
|
|
{
|
7894 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
7895 |
|
|
continue;
|
7896 |
|
|
}
|
7897 |
|
|
|
7898 |
|
|
if (s->size == 0)
|
7899 |
|
|
{
|
7900 |
|
|
s->flags |= SEC_EXCLUDE;
|
7901 |
|
|
continue;
|
7902 |
|
|
}
|
7903 |
|
|
|
7904 |
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
7905 |
|
|
continue;
|
7906 |
|
|
|
7907 |
|
|
/* Allocate memory for this section last, since we may increase its
|
7908 |
|
|
size above. */
|
7909 |
|
|
if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
|
7910 |
|
|
{
|
7911 |
|
|
sreldyn = s;
|
7912 |
|
|
continue;
|
7913 |
|
|
}
|
7914 |
|
|
|
7915 |
|
|
/* Allocate memory for the section contents. */
|
7916 |
|
|
s->contents = bfd_zalloc (dynobj, s->size);
|
7917 |
|
|
if (s->contents == NULL)
|
7918 |
|
|
{
|
7919 |
|
|
bfd_set_error (bfd_error_no_memory);
|
7920 |
|
|
return FALSE;
|
7921 |
|
|
}
|
7922 |
|
|
}
|
7923 |
|
|
|
7924 |
|
|
/* Allocate memory for the .rel(a).dyn section. */
|
7925 |
|
|
if (sreldyn != NULL)
|
7926 |
|
|
{
|
7927 |
|
|
sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
|
7928 |
|
|
if (sreldyn->contents == NULL)
|
7929 |
|
|
{
|
7930 |
|
|
bfd_set_error (bfd_error_no_memory);
|
7931 |
|
|
return FALSE;
|
7932 |
|
|
}
|
7933 |
|
|
}
|
7934 |
|
|
|
7935 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
7936 |
|
|
{
|
7937 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
7938 |
|
|
values later, in _bfd_mips_elf_finish_dynamic_sections, but we
|
7939 |
|
|
must add the entries now so that we get the correct size for
|
7940 |
|
|
the .dynamic section. */
|
7941 |
|
|
|
7942 |
|
|
/* SGI object has the equivalence of DT_DEBUG in the
|
7943 |
|
|
DT_MIPS_RLD_MAP entry. This must come first because glibc
|
7944 |
|
|
only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
|
7945 |
|
|
looks at the first one it sees. */
|
7946 |
|
|
if (!info->shared
|
7947 |
|
|
&& !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
|
7948 |
|
|
return FALSE;
|
7949 |
|
|
|
7950 |
|
|
/* The DT_DEBUG entry may be filled in by the dynamic linker and
|
7951 |
|
|
used by the debugger. */
|
7952 |
|
|
if (info->executable
|
7953 |
|
|
&& !SGI_COMPAT (output_bfd)
|
7954 |
|
|
&& !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
|
7955 |
|
|
return FALSE;
|
7956 |
|
|
|
7957 |
|
|
if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
|
7958 |
|
|
info->flags |= DF_TEXTREL;
|
7959 |
|
|
|
7960 |
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
7961 |
|
|
{
|
7962 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
|
7963 |
|
|
return FALSE;
|
7964 |
|
|
|
7965 |
|
|
/* Clear the DF_TEXTREL flag. It will be set again if we
|
7966 |
|
|
write out an actual text relocation; we may not, because
|
7967 |
|
|
at this point we do not know whether e.g. any .eh_frame
|
7968 |
|
|
absolute relocations have been converted to PC-relative. */
|
7969 |
|
|
info->flags &= ~DF_TEXTREL;
|
7970 |
|
|
}
|
7971 |
|
|
|
7972 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
|
7973 |
|
|
return FALSE;
|
7974 |
|
|
|
7975 |
|
|
if (htab->is_vxworks)
|
7976 |
|
|
{
|
7977 |
|
|
/* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
|
7978 |
|
|
use any of the DT_MIPS_* tags. */
|
7979 |
|
|
if (mips_elf_rel_dyn_section (info, FALSE))
|
7980 |
|
|
{
|
7981 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
|
7982 |
|
|
return FALSE;
|
7983 |
|
|
|
7984 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
|
7985 |
|
|
return FALSE;
|
7986 |
|
|
|
7987 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
|
7988 |
|
|
return FALSE;
|
7989 |
|
|
}
|
7990 |
|
|
if (htab->splt->size > 0)
|
7991 |
|
|
{
|
7992 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
|
7993 |
|
|
return FALSE;
|
7994 |
|
|
|
7995 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
|
7996 |
|
|
return FALSE;
|
7997 |
|
|
|
7998 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
|
7999 |
|
|
return FALSE;
|
8000 |
|
|
}
|
8001 |
|
|
}
|
8002 |
|
|
else
|
8003 |
|
|
{
|
8004 |
|
|
if (mips_elf_rel_dyn_section (info, FALSE))
|
8005 |
|
|
{
|
8006 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
|
8007 |
|
|
return FALSE;
|
8008 |
|
|
|
8009 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
|
8010 |
|
|
return FALSE;
|
8011 |
|
|
|
8012 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
|
8013 |
|
|
return FALSE;
|
8014 |
|
|
}
|
8015 |
|
|
|
8016 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
|
8017 |
|
|
return FALSE;
|
8018 |
|
|
|
8019 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
|
8020 |
|
|
return FALSE;
|
8021 |
|
|
|
8022 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
|
8023 |
|
|
return FALSE;
|
8024 |
|
|
|
8025 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
|
8026 |
|
|
return FALSE;
|
8027 |
|
|
|
8028 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
|
8029 |
|
|
return FALSE;
|
8030 |
|
|
|
8031 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
|
8032 |
|
|
return FALSE;
|
8033 |
|
|
|
8034 |
|
|
if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
|
8035 |
|
|
return FALSE;
|
8036 |
|
|
|
8037 |
|
|
if (IRIX_COMPAT (dynobj) == ict_irix5
|
8038 |
|
|
&& ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
|
8039 |
|
|
return FALSE;
|
8040 |
|
|
|
8041 |
|
|
if (IRIX_COMPAT (dynobj) == ict_irix6
|
8042 |
|
|
&& (bfd_get_section_by_name
|
8043 |
|
|
(dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
|
8044 |
|
|
&& !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
|
8045 |
|
|
return FALSE;
|
8046 |
|
|
}
|
8047 |
|
|
if (htab->is_vxworks
|
8048 |
|
|
&& !elf_vxworks_add_dynamic_entries (output_bfd, info))
|
8049 |
|
|
return FALSE;
|
8050 |
|
|
}
|
8051 |
|
|
|
8052 |
|
|
return TRUE;
|
8053 |
|
|
}
|
8054 |
|
|
|
8055 |
|
|
/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
|
8056 |
|
|
Adjust its R_ADDEND field so that it is correct for the output file.
|
8057 |
|
|
LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
|
8058 |
|
|
and sections respectively; both use symbol indexes. */
|
8059 |
|
|
|
8060 |
|
|
static void
|
8061 |
|
|
mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
|
8062 |
|
|
bfd *input_bfd, Elf_Internal_Sym *local_syms,
|
8063 |
|
|
asection **local_sections, Elf_Internal_Rela *rel)
|
8064 |
|
|
{
|
8065 |
|
|
unsigned int r_type, r_symndx;
|
8066 |
|
|
Elf_Internal_Sym *sym;
|
8067 |
|
|
asection *sec;
|
8068 |
|
|
|
8069 |
|
|
if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
|
8070 |
|
|
{
|
8071 |
|
|
r_type = ELF_R_TYPE (output_bfd, rel->r_info);
|
8072 |
|
|
if (r_type == R_MIPS16_GPREL
|
8073 |
|
|
|| r_type == R_MIPS_GPREL16
|
8074 |
|
|
|| r_type == R_MIPS_GPREL32
|
8075 |
|
|
|| r_type == R_MIPS_LITERAL)
|
8076 |
|
|
{
|
8077 |
|
|
rel->r_addend += _bfd_get_gp_value (input_bfd);
|
8078 |
|
|
rel->r_addend -= _bfd_get_gp_value (output_bfd);
|
8079 |
|
|
}
|
8080 |
|
|
|
8081 |
|
|
r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
|
8082 |
|
|
sym = local_syms + r_symndx;
|
8083 |
|
|
|
8084 |
|
|
/* Adjust REL's addend to account for section merging. */
|
8085 |
|
|
if (!info->relocatable)
|
8086 |
|
|
{
|
8087 |
|
|
sec = local_sections[r_symndx];
|
8088 |
|
|
_bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
8089 |
|
|
}
|
8090 |
|
|
|
8091 |
|
|
/* This would normally be done by the rela_normal code in elflink.c. */
|
8092 |
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
8093 |
|
|
rel->r_addend += local_sections[r_symndx]->output_offset;
|
8094 |
|
|
}
|
8095 |
|
|
}
|
8096 |
|
|
|
8097 |
|
|
/* Relocate a MIPS ELF section. */
|
8098 |
|
|
|
8099 |
|
|
bfd_boolean
|
8100 |
|
|
_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
|
8101 |
|
|
bfd *input_bfd, asection *input_section,
|
8102 |
|
|
bfd_byte *contents, Elf_Internal_Rela *relocs,
|
8103 |
|
|
Elf_Internal_Sym *local_syms,
|
8104 |
|
|
asection **local_sections)
|
8105 |
|
|
{
|
8106 |
|
|
Elf_Internal_Rela *rel;
|
8107 |
|
|
const Elf_Internal_Rela *relend;
|
8108 |
|
|
bfd_vma addend = 0;
|
8109 |
|
|
bfd_boolean use_saved_addend_p = FALSE;
|
8110 |
|
|
const struct elf_backend_data *bed;
|
8111 |
|
|
|
8112 |
|
|
bed = get_elf_backend_data (output_bfd);
|
8113 |
|
|
relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
|
8114 |
|
|
for (rel = relocs; rel < relend; ++rel)
|
8115 |
|
|
{
|
8116 |
|
|
const char *name;
|
8117 |
|
|
bfd_vma value = 0;
|
8118 |
|
|
reloc_howto_type *howto;
|
8119 |
|
|
bfd_boolean require_jalx;
|
8120 |
|
|
/* TRUE if the relocation is a RELA relocation, rather than a
|
8121 |
|
|
REL relocation. */
|
8122 |
|
|
bfd_boolean rela_relocation_p = TRUE;
|
8123 |
|
|
unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
|
8124 |
|
|
const char *msg;
|
8125 |
|
|
unsigned long r_symndx;
|
8126 |
|
|
asection *sec;
|
8127 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
8128 |
|
|
struct elf_link_hash_entry *h;
|
8129 |
|
|
|
8130 |
|
|
/* Find the relocation howto for this relocation. */
|
8131 |
|
|
howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
|
8132 |
|
|
NEWABI_P (input_bfd)
|
8133 |
|
|
&& (MIPS_RELOC_RELA_P
|
8134 |
|
|
(input_bfd, input_section,
|
8135 |
|
|
rel - relocs)));
|
8136 |
|
|
|
8137 |
|
|
r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
|
8138 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
8139 |
|
|
if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
|
8140 |
|
|
{
|
8141 |
|
|
sec = local_sections[r_symndx];
|
8142 |
|
|
h = NULL;
|
8143 |
|
|
}
|
8144 |
|
|
else
|
8145 |
|
|
{
|
8146 |
|
|
unsigned long extsymoff;
|
8147 |
|
|
|
8148 |
|
|
extsymoff = 0;
|
8149 |
|
|
if (!elf_bad_symtab (input_bfd))
|
8150 |
|
|
extsymoff = symtab_hdr->sh_info;
|
8151 |
|
|
h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
|
8152 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
8153 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
8154 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
8155 |
|
|
|
8156 |
|
|
sec = NULL;
|
8157 |
|
|
if (h->root.type == bfd_link_hash_defined
|
8158 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
8159 |
|
|
sec = h->root.u.def.section;
|
8160 |
|
|
}
|
8161 |
|
|
|
8162 |
|
|
if (sec != NULL && elf_discarded_section (sec))
|
8163 |
|
|
{
|
8164 |
|
|
/* For relocs against symbols from removed linkonce sections,
|
8165 |
|
|
or sections discarded by a linker script, we just want the
|
8166 |
|
|
section contents zeroed. Avoid any special processing. */
|
8167 |
|
|
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
8168 |
|
|
rel->r_info = 0;
|
8169 |
|
|
rel->r_addend = 0;
|
8170 |
|
|
continue;
|
8171 |
|
|
}
|
8172 |
|
|
|
8173 |
|
|
if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
|
8174 |
|
|
{
|
8175 |
|
|
/* Some 32-bit code uses R_MIPS_64. In particular, people use
|
8176 |
|
|
64-bit code, but make sure all their addresses are in the
|
8177 |
|
|
lowermost or uppermost 32-bit section of the 64-bit address
|
8178 |
|
|
space. Thus, when they use an R_MIPS_64 they mean what is
|
8179 |
|
|
usually meant by R_MIPS_32, with the exception that the
|
8180 |
|
|
stored value is sign-extended to 64 bits. */
|
8181 |
|
|
howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
|
8182 |
|
|
|
8183 |
|
|
/* On big-endian systems, we need to lie about the position
|
8184 |
|
|
of the reloc. */
|
8185 |
|
|
if (bfd_big_endian (input_bfd))
|
8186 |
|
|
rel->r_offset += 4;
|
8187 |
|
|
}
|
8188 |
|
|
|
8189 |
|
|
if (!use_saved_addend_p)
|
8190 |
|
|
{
|
8191 |
|
|
/* If these relocations were originally of the REL variety,
|
8192 |
|
|
we must pull the addend out of the field that will be
|
8193 |
|
|
relocated. Otherwise, we simply use the contents of the
|
8194 |
|
|
RELA relocation. */
|
8195 |
|
|
if (mips_elf_rel_relocation_p (input_bfd, input_section,
|
8196 |
|
|
relocs, rel))
|
8197 |
|
|
{
|
8198 |
|
|
rela_relocation_p = FALSE;
|
8199 |
|
|
addend = mips_elf_read_rel_addend (input_bfd, rel,
|
8200 |
|
|
howto, contents);
|
8201 |
|
|
if (r_type == R_MIPS_HI16
|
8202 |
|
|
|| r_type == R_MIPS16_HI16
|
8203 |
|
|
|| (r_type == R_MIPS_GOT16
|
8204 |
|
|
&& mips_elf_local_relocation_p (input_bfd, rel,
|
8205 |
|
|
local_sections, FALSE)))
|
8206 |
|
|
{
|
8207 |
|
|
if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
|
8208 |
|
|
contents, &addend))
|
8209 |
|
|
{
|
8210 |
|
|
const char *name;
|
8211 |
|
|
|
8212 |
|
|
if (h)
|
8213 |
|
|
name = h->root.root.string;
|
8214 |
|
|
else
|
8215 |
|
|
name = bfd_elf_sym_name (input_bfd, symtab_hdr,
|
8216 |
|
|
local_syms + r_symndx,
|
8217 |
|
|
sec);
|
8218 |
|
|
(*_bfd_error_handler)
|
8219 |
|
|
(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
|
8220 |
|
|
input_bfd, input_section, name, howto->name,
|
8221 |
|
|
rel->r_offset);
|
8222 |
|
|
}
|
8223 |
|
|
}
|
8224 |
|
|
else
|
8225 |
|
|
addend <<= howto->rightshift;
|
8226 |
|
|
}
|
8227 |
|
|
else
|
8228 |
|
|
addend = rel->r_addend;
|
8229 |
|
|
mips_elf_adjust_addend (output_bfd, info, input_bfd,
|
8230 |
|
|
local_syms, local_sections, rel);
|
8231 |
|
|
}
|
8232 |
|
|
|
8233 |
|
|
if (info->relocatable)
|
8234 |
|
|
{
|
8235 |
|
|
if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
|
8236 |
|
|
&& bfd_big_endian (input_bfd))
|
8237 |
|
|
rel->r_offset -= 4;
|
8238 |
|
|
|
8239 |
|
|
if (!rela_relocation_p && rel->r_addend)
|
8240 |
|
|
{
|
8241 |
|
|
addend += rel->r_addend;
|
8242 |
|
|
if (r_type == R_MIPS_HI16
|
8243 |
|
|
|| r_type == R_MIPS_GOT16)
|
8244 |
|
|
addend = mips_elf_high (addend);
|
8245 |
|
|
else if (r_type == R_MIPS_HIGHER)
|
8246 |
|
|
addend = mips_elf_higher (addend);
|
8247 |
|
|
else if (r_type == R_MIPS_HIGHEST)
|
8248 |
|
|
addend = mips_elf_highest (addend);
|
8249 |
|
|
else
|
8250 |
|
|
addend >>= howto->rightshift;
|
8251 |
|
|
|
8252 |
|
|
/* We use the source mask, rather than the destination
|
8253 |
|
|
mask because the place to which we are writing will be
|
8254 |
|
|
source of the addend in the final link. */
|
8255 |
|
|
addend &= howto->src_mask;
|
8256 |
|
|
|
8257 |
|
|
if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
|
8258 |
|
|
/* See the comment above about using R_MIPS_64 in the 32-bit
|
8259 |
|
|
ABI. Here, we need to update the addend. It would be
|
8260 |
|
|
possible to get away with just using the R_MIPS_32 reloc
|
8261 |
|
|
but for endianness. */
|
8262 |
|
|
{
|
8263 |
|
|
bfd_vma sign_bits;
|
8264 |
|
|
bfd_vma low_bits;
|
8265 |
|
|
bfd_vma high_bits;
|
8266 |
|
|
|
8267 |
|
|
if (addend & ((bfd_vma) 1 << 31))
|
8268 |
|
|
#ifdef BFD64
|
8269 |
|
|
sign_bits = ((bfd_vma) 1 << 32) - 1;
|
8270 |
|
|
#else
|
8271 |
|
|
sign_bits = -1;
|
8272 |
|
|
#endif
|
8273 |
|
|
else
|
8274 |
|
|
sign_bits = 0;
|
8275 |
|
|
|
8276 |
|
|
/* If we don't know that we have a 64-bit type,
|
8277 |
|
|
do two separate stores. */
|
8278 |
|
|
if (bfd_big_endian (input_bfd))
|
8279 |
|
|
{
|
8280 |
|
|
/* Store the sign-bits (which are most significant)
|
8281 |
|
|
first. */
|
8282 |
|
|
low_bits = sign_bits;
|
8283 |
|
|
high_bits = addend;
|
8284 |
|
|
}
|
8285 |
|
|
else
|
8286 |
|
|
{
|
8287 |
|
|
low_bits = addend;
|
8288 |
|
|
high_bits = sign_bits;
|
8289 |
|
|
}
|
8290 |
|
|
bfd_put_32 (input_bfd, low_bits,
|
8291 |
|
|
contents + rel->r_offset);
|
8292 |
|
|
bfd_put_32 (input_bfd, high_bits,
|
8293 |
|
|
contents + rel->r_offset + 4);
|
8294 |
|
|
continue;
|
8295 |
|
|
}
|
8296 |
|
|
|
8297 |
|
|
if (! mips_elf_perform_relocation (info, howto, rel, addend,
|
8298 |
|
|
input_bfd, input_section,
|
8299 |
|
|
contents, FALSE))
|
8300 |
|
|
return FALSE;
|
8301 |
|
|
}
|
8302 |
|
|
|
8303 |
|
|
/* Go on to the next relocation. */
|
8304 |
|
|
continue;
|
8305 |
|
|
}
|
8306 |
|
|
|
8307 |
|
|
/* In the N32 and 64-bit ABIs there may be multiple consecutive
|
8308 |
|
|
relocations for the same offset. In that case we are
|
8309 |
|
|
supposed to treat the output of each relocation as the addend
|
8310 |
|
|
for the next. */
|
8311 |
|
|
if (rel + 1 < relend
|
8312 |
|
|
&& rel->r_offset == rel[1].r_offset
|
8313 |
|
|
&& ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
|
8314 |
|
|
use_saved_addend_p = TRUE;
|
8315 |
|
|
else
|
8316 |
|
|
use_saved_addend_p = FALSE;
|
8317 |
|
|
|
8318 |
|
|
/* Figure out what value we are supposed to relocate. */
|
8319 |
|
|
switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
|
8320 |
|
|
input_section, info, rel,
|
8321 |
|
|
addend, howto, local_syms,
|
8322 |
|
|
local_sections, &value,
|
8323 |
|
|
&name, &require_jalx,
|
8324 |
|
|
use_saved_addend_p))
|
8325 |
|
|
{
|
8326 |
|
|
case bfd_reloc_continue:
|
8327 |
|
|
/* There's nothing to do. */
|
8328 |
|
|
continue;
|
8329 |
|
|
|
8330 |
|
|
case bfd_reloc_undefined:
|
8331 |
|
|
/* mips_elf_calculate_relocation already called the
|
8332 |
|
|
undefined_symbol callback. There's no real point in
|
8333 |
|
|
trying to perform the relocation at this point, so we
|
8334 |
|
|
just skip ahead to the next relocation. */
|
8335 |
|
|
continue;
|
8336 |
|
|
|
8337 |
|
|
case bfd_reloc_notsupported:
|
8338 |
|
|
msg = _("internal error: unsupported relocation error");
|
8339 |
|
|
info->callbacks->warning
|
8340 |
|
|
(info, msg, name, input_bfd, input_section, rel->r_offset);
|
8341 |
|
|
return FALSE;
|
8342 |
|
|
|
8343 |
|
|
case bfd_reloc_overflow:
|
8344 |
|
|
if (use_saved_addend_p)
|
8345 |
|
|
/* Ignore overflow until we reach the last relocation for
|
8346 |
|
|
a given location. */
|
8347 |
|
|
;
|
8348 |
|
|
else
|
8349 |
|
|
{
|
8350 |
|
|
struct mips_elf_link_hash_table *htab;
|
8351 |
|
|
|
8352 |
|
|
htab = mips_elf_hash_table (info);
|
8353 |
|
|
BFD_ASSERT (name != NULL);
|
8354 |
|
|
if (!htab->small_data_overflow_reported
|
8355 |
|
|
&& (howto->type == R_MIPS_GPREL16
|
8356 |
|
|
|| howto->type == R_MIPS_LITERAL))
|
8357 |
|
|
{
|
8358 |
|
|
const char *msg =
|
8359 |
|
|
_("small-data section exceeds 64KB;"
|
8360 |
|
|
" lower small-data size limit (see option -G)");
|
8361 |
|
|
|
8362 |
|
|
htab->small_data_overflow_reported = TRUE;
|
8363 |
|
|
(*info->callbacks->einfo) ("%P: %s\n", msg);
|
8364 |
|
|
}
|
8365 |
|
|
if (! ((*info->callbacks->reloc_overflow)
|
8366 |
|
|
(info, NULL, name, howto->name, (bfd_vma) 0,
|
8367 |
|
|
input_bfd, input_section, rel->r_offset)))
|
8368 |
|
|
return FALSE;
|
8369 |
|
|
}
|
8370 |
|
|
break;
|
8371 |
|
|
|
8372 |
|
|
case bfd_reloc_ok:
|
8373 |
|
|
break;
|
8374 |
|
|
|
8375 |
|
|
default:
|
8376 |
|
|
abort ();
|
8377 |
|
|
break;
|
8378 |
|
|
}
|
8379 |
|
|
|
8380 |
|
|
/* If we've got another relocation for the address, keep going
|
8381 |
|
|
until we reach the last one. */
|
8382 |
|
|
if (use_saved_addend_p)
|
8383 |
|
|
{
|
8384 |
|
|
addend = value;
|
8385 |
|
|
continue;
|
8386 |
|
|
}
|
8387 |
|
|
|
8388 |
|
|
if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
|
8389 |
|
|
/* See the comment above about using R_MIPS_64 in the 32-bit
|
8390 |
|
|
ABI. Until now, we've been using the HOWTO for R_MIPS_32;
|
8391 |
|
|
that calculated the right value. Now, however, we
|
8392 |
|
|
sign-extend the 32-bit result to 64-bits, and store it as a
|
8393 |
|
|
64-bit value. We are especially generous here in that we
|
8394 |
|
|
go to extreme lengths to support this usage on systems with
|
8395 |
|
|
only a 32-bit VMA. */
|
8396 |
|
|
{
|
8397 |
|
|
bfd_vma sign_bits;
|
8398 |
|
|
bfd_vma low_bits;
|
8399 |
|
|
bfd_vma high_bits;
|
8400 |
|
|
|
8401 |
|
|
if (value & ((bfd_vma) 1 << 31))
|
8402 |
|
|
#ifdef BFD64
|
8403 |
|
|
sign_bits = ((bfd_vma) 1 << 32) - 1;
|
8404 |
|
|
#else
|
8405 |
|
|
sign_bits = -1;
|
8406 |
|
|
#endif
|
8407 |
|
|
else
|
8408 |
|
|
sign_bits = 0;
|
8409 |
|
|
|
8410 |
|
|
/* If we don't know that we have a 64-bit type,
|
8411 |
|
|
do two separate stores. */
|
8412 |
|
|
if (bfd_big_endian (input_bfd))
|
8413 |
|
|
{
|
8414 |
|
|
/* Undo what we did above. */
|
8415 |
|
|
rel->r_offset -= 4;
|
8416 |
|
|
/* Store the sign-bits (which are most significant)
|
8417 |
|
|
first. */
|
8418 |
|
|
low_bits = sign_bits;
|
8419 |
|
|
high_bits = value;
|
8420 |
|
|
}
|
8421 |
|
|
else
|
8422 |
|
|
{
|
8423 |
|
|
low_bits = value;
|
8424 |
|
|
high_bits = sign_bits;
|
8425 |
|
|
}
|
8426 |
|
|
bfd_put_32 (input_bfd, low_bits,
|
8427 |
|
|
contents + rel->r_offset);
|
8428 |
|
|
bfd_put_32 (input_bfd, high_bits,
|
8429 |
|
|
contents + rel->r_offset + 4);
|
8430 |
|
|
continue;
|
8431 |
|
|
}
|
8432 |
|
|
|
8433 |
|
|
/* Actually perform the relocation. */
|
8434 |
|
|
if (! mips_elf_perform_relocation (info, howto, rel, value,
|
8435 |
|
|
input_bfd, input_section,
|
8436 |
|
|
contents, require_jalx))
|
8437 |
|
|
return FALSE;
|
8438 |
|
|
}
|
8439 |
|
|
|
8440 |
|
|
return TRUE;
|
8441 |
|
|
}
|
8442 |
|
|
|
8443 |
|
|
/* If NAME is one of the special IRIX6 symbols defined by the linker,
|
8444 |
|
|
adjust it appropriately now. */
|
8445 |
|
|
|
8446 |
|
|
static void
|
8447 |
|
|
mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
|
8448 |
|
|
const char *name, Elf_Internal_Sym *sym)
|
8449 |
|
|
{
|
8450 |
|
|
/* The linker script takes care of providing names and values for
|
8451 |
|
|
these, but we must place them into the right sections. */
|
8452 |
|
|
static const char* const text_section_symbols[] = {
|
8453 |
|
|
"_ftext",
|
8454 |
|
|
"_etext",
|
8455 |
|
|
"__dso_displacement",
|
8456 |
|
|
"__elf_header",
|
8457 |
|
|
"__program_header_table",
|
8458 |
|
|
NULL
|
8459 |
|
|
};
|
8460 |
|
|
|
8461 |
|
|
static const char* const data_section_symbols[] = {
|
8462 |
|
|
"_fdata",
|
8463 |
|
|
"_edata",
|
8464 |
|
|
"_end",
|
8465 |
|
|
"_fbss",
|
8466 |
|
|
NULL
|
8467 |
|
|
};
|
8468 |
|
|
|
8469 |
|
|
const char* const *p;
|
8470 |
|
|
int i;
|
8471 |
|
|
|
8472 |
|
|
for (i = 0; i < 2; ++i)
|
8473 |
|
|
for (p = (i == 0) ? text_section_symbols : data_section_symbols;
|
8474 |
|
|
*p;
|
8475 |
|
|
++p)
|
8476 |
|
|
if (strcmp (*p, name) == 0)
|
8477 |
|
|
{
|
8478 |
|
|
/* All of these symbols are given type STT_SECTION by the
|
8479 |
|
|
IRIX6 linker. */
|
8480 |
|
|
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
8481 |
|
|
sym->st_other = STO_PROTECTED;
|
8482 |
|
|
|
8483 |
|
|
/* The IRIX linker puts these symbols in special sections. */
|
8484 |
|
|
if (i == 0)
|
8485 |
|
|
sym->st_shndx = SHN_MIPS_TEXT;
|
8486 |
|
|
else
|
8487 |
|
|
sym->st_shndx = SHN_MIPS_DATA;
|
8488 |
|
|
|
8489 |
|
|
break;
|
8490 |
|
|
}
|
8491 |
|
|
}
|
8492 |
|
|
|
8493 |
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
8494 |
|
|
dynamic sections here. */
|
8495 |
|
|
|
8496 |
|
|
bfd_boolean
|
8497 |
|
|
_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
|
8498 |
|
|
struct bfd_link_info *info,
|
8499 |
|
|
struct elf_link_hash_entry *h,
|
8500 |
|
|
Elf_Internal_Sym *sym)
|
8501 |
|
|
{
|
8502 |
|
|
bfd *dynobj;
|
8503 |
|
|
asection *sgot;
|
8504 |
|
|
struct mips_got_info *g, *gg;
|
8505 |
|
|
const char *name;
|
8506 |
|
|
int idx;
|
8507 |
|
|
struct mips_elf_link_hash_table *htab;
|
8508 |
|
|
|
8509 |
|
|
htab = mips_elf_hash_table (info);
|
8510 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
8511 |
|
|
|
8512 |
|
|
if (h->plt.offset != MINUS_ONE)
|
8513 |
|
|
{
|
8514 |
|
|
asection *s;
|
8515 |
|
|
bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
|
8516 |
|
|
|
8517 |
|
|
/* This symbol has a stub. Set it up. */
|
8518 |
|
|
|
8519 |
|
|
BFD_ASSERT (h->dynindx != -1);
|
8520 |
|
|
|
8521 |
|
|
s = bfd_get_section_by_name (dynobj,
|
8522 |
|
|
MIPS_ELF_STUB_SECTION_NAME (dynobj));
|
8523 |
|
|
BFD_ASSERT (s != NULL);
|
8524 |
|
|
|
8525 |
|
|
BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
|
8526 |
|
|
|| (h->dynindx <= 0xffff));
|
8527 |
|
|
|
8528 |
|
|
/* Values up to 2^31 - 1 are allowed. Larger values would cause
|
8529 |
|
|
sign extension at runtime in the stub, resulting in a negative
|
8530 |
|
|
index value. */
|
8531 |
|
|
if (h->dynindx & ~0x7fffffff)
|
8532 |
|
|
return FALSE;
|
8533 |
|
|
|
8534 |
|
|
/* Fill the stub. */
|
8535 |
|
|
idx = 0;
|
8536 |
|
|
bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
|
8537 |
|
|
idx += 4;
|
8538 |
|
|
bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
|
8539 |
|
|
idx += 4;
|
8540 |
|
|
if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
|
8541 |
|
|
{
|
8542 |
|
|
bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
|
8543 |
|
|
stub + idx);
|
8544 |
|
|
idx += 4;
|
8545 |
|
|
}
|
8546 |
|
|
bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
|
8547 |
|
|
idx += 4;
|
8548 |
|
|
|
8549 |
|
|
/* If a large stub is not required and sign extension is not a
|
8550 |
|
|
problem, then use legacy code in the stub. */
|
8551 |
|
|
if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
|
8552 |
|
|
bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
|
8553 |
|
|
else if (h->dynindx & ~0x7fff)
|
8554 |
|
|
bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
|
8555 |
|
|
else
|
8556 |
|
|
bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
|
8557 |
|
|
stub + idx);
|
8558 |
|
|
|
8559 |
|
|
BFD_ASSERT (h->plt.offset <= s->size);
|
8560 |
|
|
memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
|
8561 |
|
|
|
8562 |
|
|
/* Mark the symbol as undefined. plt.offset != -1 occurs
|
8563 |
|
|
only for the referenced symbol. */
|
8564 |
|
|
sym->st_shndx = SHN_UNDEF;
|
8565 |
|
|
|
8566 |
|
|
/* The run-time linker uses the st_value field of the symbol
|
8567 |
|
|
to reset the global offset table entry for this external
|
8568 |
|
|
to its stub address when unlinking a shared object. */
|
8569 |
|
|
sym->st_value = (s->output_section->vma + s->output_offset
|
8570 |
|
|
+ h->plt.offset);
|
8571 |
|
|
}
|
8572 |
|
|
|
8573 |
|
|
BFD_ASSERT (h->dynindx != -1
|
8574 |
|
|
|| h->forced_local);
|
8575 |
|
|
|
8576 |
|
|
sgot = mips_elf_got_section (dynobj, FALSE);
|
8577 |
|
|
BFD_ASSERT (sgot != NULL);
|
8578 |
|
|
BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
|
8579 |
|
|
g = mips_elf_section_data (sgot)->u.got_info;
|
8580 |
|
|
BFD_ASSERT (g != NULL);
|
8581 |
|
|
|
8582 |
|
|
/* Run through the global symbol table, creating GOT entries for all
|
8583 |
|
|
the symbols that need them. */
|
8584 |
|
|
if (g->global_gotsym != NULL
|
8585 |
|
|
&& h->dynindx >= g->global_gotsym->dynindx)
|
8586 |
|
|
{
|
8587 |
|
|
bfd_vma offset;
|
8588 |
|
|
bfd_vma value;
|
8589 |
|
|
|
8590 |
|
|
value = sym->st_value;
|
8591 |
|
|
offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
|
8592 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
|
8593 |
|
|
}
|
8594 |
|
|
|
8595 |
|
|
if (g->next && h->dynindx != -1 && h->type != STT_TLS)
|
8596 |
|
|
{
|
8597 |
|
|
struct mips_got_entry e, *p;
|
8598 |
|
|
bfd_vma entry;
|
8599 |
|
|
bfd_vma offset;
|
8600 |
|
|
|
8601 |
|
|
gg = g;
|
8602 |
|
|
|
8603 |
|
|
e.abfd = output_bfd;
|
8604 |
|
|
e.symndx = -1;
|
8605 |
|
|
e.d.h = (struct mips_elf_link_hash_entry *)h;
|
8606 |
|
|
e.tls_type = 0;
|
8607 |
|
|
|
8608 |
|
|
for (g = g->next; g->next != gg; g = g->next)
|
8609 |
|
|
{
|
8610 |
|
|
if (g->got_entries
|
8611 |
|
|
&& (p = (struct mips_got_entry *) htab_find (g->got_entries,
|
8612 |
|
|
&e)))
|
8613 |
|
|
{
|
8614 |
|
|
offset = p->gotidx;
|
8615 |
|
|
if (info->shared
|
8616 |
|
|
|| (elf_hash_table (info)->dynamic_sections_created
|
8617 |
|
|
&& p->d.h != NULL
|
8618 |
|
|
&& p->d.h->root.def_dynamic
|
8619 |
|
|
&& !p->d.h->root.def_regular))
|
8620 |
|
|
{
|
8621 |
|
|
/* Create an R_MIPS_REL32 relocation for this entry. Due to
|
8622 |
|
|
the various compatibility problems, it's easier to mock
|
8623 |
|
|
up an R_MIPS_32 or R_MIPS_64 relocation and leave
|
8624 |
|
|
mips_elf_create_dynamic_relocation to calculate the
|
8625 |
|
|
appropriate addend. */
|
8626 |
|
|
Elf_Internal_Rela rel[3];
|
8627 |
|
|
|
8628 |
|
|
memset (rel, 0, sizeof (rel));
|
8629 |
|
|
if (ABI_64_P (output_bfd))
|
8630 |
|
|
rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
|
8631 |
|
|
else
|
8632 |
|
|
rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
|
8633 |
|
|
rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
|
8634 |
|
|
|
8635 |
|
|
entry = 0;
|
8636 |
|
|
if (! (mips_elf_create_dynamic_relocation
|
8637 |
|
|
(output_bfd, info, rel,
|
8638 |
|
|
e.d.h, NULL, sym->st_value, &entry, sgot)))
|
8639 |
|
|
return FALSE;
|
8640 |
|
|
}
|
8641 |
|
|
else
|
8642 |
|
|
entry = sym->st_value;
|
8643 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
|
8644 |
|
|
}
|
8645 |
|
|
}
|
8646 |
|
|
}
|
8647 |
|
|
|
8648 |
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
8649 |
|
|
name = h->root.root.string;
|
8650 |
|
|
if (strcmp (name, "_DYNAMIC") == 0
|
8651 |
|
|
|| h == elf_hash_table (info)->hgot)
|
8652 |
|
|
sym->st_shndx = SHN_ABS;
|
8653 |
|
|
else if (strcmp (name, "_DYNAMIC_LINK") == 0
|
8654 |
|
|
|| strcmp (name, "_DYNAMIC_LINKING") == 0)
|
8655 |
|
|
{
|
8656 |
|
|
sym->st_shndx = SHN_ABS;
|
8657 |
|
|
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
8658 |
|
|
sym->st_value = 1;
|
8659 |
|
|
}
|
8660 |
|
|
else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
|
8661 |
|
|
{
|
8662 |
|
|
sym->st_shndx = SHN_ABS;
|
8663 |
|
|
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
8664 |
|
|
sym->st_value = elf_gp (output_bfd);
|
8665 |
|
|
}
|
8666 |
|
|
else if (SGI_COMPAT (output_bfd))
|
8667 |
|
|
{
|
8668 |
|
|
if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
|
8669 |
|
|
|| strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
|
8670 |
|
|
{
|
8671 |
|
|
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
8672 |
|
|
sym->st_other = STO_PROTECTED;
|
8673 |
|
|
sym->st_value = 0;
|
8674 |
|
|
sym->st_shndx = SHN_MIPS_DATA;
|
8675 |
|
|
}
|
8676 |
|
|
else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
|
8677 |
|
|
{
|
8678 |
|
|
sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
8679 |
|
|
sym->st_other = STO_PROTECTED;
|
8680 |
|
|
sym->st_value = mips_elf_hash_table (info)->procedure_count;
|
8681 |
|
|
sym->st_shndx = SHN_ABS;
|
8682 |
|
|
}
|
8683 |
|
|
else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
|
8684 |
|
|
{
|
8685 |
|
|
if (h->type == STT_FUNC)
|
8686 |
|
|
sym->st_shndx = SHN_MIPS_TEXT;
|
8687 |
|
|
else if (h->type == STT_OBJECT)
|
8688 |
|
|
sym->st_shndx = SHN_MIPS_DATA;
|
8689 |
|
|
}
|
8690 |
|
|
}
|
8691 |
|
|
|
8692 |
|
|
/* Handle the IRIX6-specific symbols. */
|
8693 |
|
|
if (IRIX_COMPAT (output_bfd) == ict_irix6)
|
8694 |
|
|
mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
|
8695 |
|
|
|
8696 |
|
|
if (! info->shared)
|
8697 |
|
|
{
|
8698 |
|
|
if (! mips_elf_hash_table (info)->use_rld_obj_head
|
8699 |
|
|
&& (strcmp (name, "__rld_map") == 0
|
8700 |
|
|
|| strcmp (name, "__RLD_MAP") == 0))
|
8701 |
|
|
{
|
8702 |
|
|
asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
|
8703 |
|
|
BFD_ASSERT (s != NULL);
|
8704 |
|
|
sym->st_value = s->output_section->vma + s->output_offset;
|
8705 |
|
|
bfd_put_32 (output_bfd, 0, s->contents);
|
8706 |
|
|
if (mips_elf_hash_table (info)->rld_value == 0)
|
8707 |
|
|
mips_elf_hash_table (info)->rld_value = sym->st_value;
|
8708 |
|
|
}
|
8709 |
|
|
else if (mips_elf_hash_table (info)->use_rld_obj_head
|
8710 |
|
|
&& strcmp (name, "__rld_obj_head") == 0)
|
8711 |
|
|
{
|
8712 |
|
|
/* IRIX6 does not use a .rld_map section. */
|
8713 |
|
|
if (IRIX_COMPAT (output_bfd) == ict_irix5
|
8714 |
|
|
|| IRIX_COMPAT (output_bfd) == ict_none)
|
8715 |
|
|
BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
|
8716 |
|
|
!= NULL);
|
8717 |
|
|
mips_elf_hash_table (info)->rld_value = sym->st_value;
|
8718 |
|
|
}
|
8719 |
|
|
}
|
8720 |
|
|
|
8721 |
|
|
/* If this is a mips16 symbol, force the value to be even. */
|
8722 |
|
|
if (sym->st_other == STO_MIPS16)
|
8723 |
|
|
sym->st_value &= ~1;
|
8724 |
|
|
|
8725 |
|
|
return TRUE;
|
8726 |
|
|
}
|
8727 |
|
|
|
8728 |
|
|
/* Likewise, for VxWorks. */
|
8729 |
|
|
|
8730 |
|
|
bfd_boolean
|
8731 |
|
|
_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
|
8732 |
|
|
struct bfd_link_info *info,
|
8733 |
|
|
struct elf_link_hash_entry *h,
|
8734 |
|
|
Elf_Internal_Sym *sym)
|
8735 |
|
|
{
|
8736 |
|
|
bfd *dynobj;
|
8737 |
|
|
asection *sgot;
|
8738 |
|
|
struct mips_got_info *g;
|
8739 |
|
|
struct mips_elf_link_hash_table *htab;
|
8740 |
|
|
|
8741 |
|
|
htab = mips_elf_hash_table (info);
|
8742 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
8743 |
|
|
|
8744 |
|
|
if (h->plt.offset != (bfd_vma) -1)
|
8745 |
|
|
{
|
8746 |
|
|
bfd_byte *loc;
|
8747 |
|
|
bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
|
8748 |
|
|
Elf_Internal_Rela rel;
|
8749 |
|
|
static const bfd_vma *plt_entry;
|
8750 |
|
|
|
8751 |
|
|
BFD_ASSERT (h->dynindx != -1);
|
8752 |
|
|
BFD_ASSERT (htab->splt != NULL);
|
8753 |
|
|
BFD_ASSERT (h->plt.offset <= htab->splt->size);
|
8754 |
|
|
|
8755 |
|
|
/* Calculate the address of the .plt entry. */
|
8756 |
|
|
plt_address = (htab->splt->output_section->vma
|
8757 |
|
|
+ htab->splt->output_offset
|
8758 |
|
|
+ h->plt.offset);
|
8759 |
|
|
|
8760 |
|
|
/* Calculate the index of the entry. */
|
8761 |
|
|
plt_index = ((h->plt.offset - htab->plt_header_size)
|
8762 |
|
|
/ htab->plt_entry_size);
|
8763 |
|
|
|
8764 |
|
|
/* Calculate the address of the .got.plt entry. */
|
8765 |
|
|
got_address = (htab->sgotplt->output_section->vma
|
8766 |
|
|
+ htab->sgotplt->output_offset
|
8767 |
|
|
+ plt_index * 4);
|
8768 |
|
|
|
8769 |
|
|
/* Calculate the offset of the .got.plt entry from
|
8770 |
|
|
_GLOBAL_OFFSET_TABLE_. */
|
8771 |
|
|
got_offset = mips_elf_gotplt_index (info, h);
|
8772 |
|
|
|
8773 |
|
|
/* Calculate the offset for the branch at the start of the PLT
|
8774 |
|
|
entry. The branch jumps to the beginning of .plt. */
|
8775 |
|
|
branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
|
8776 |
|
|
|
8777 |
|
|
/* Fill in the initial value of the .got.plt entry. */
|
8778 |
|
|
bfd_put_32 (output_bfd, plt_address,
|
8779 |
|
|
htab->sgotplt->contents + plt_index * 4);
|
8780 |
|
|
|
8781 |
|
|
/* Find out where the .plt entry should go. */
|
8782 |
|
|
loc = htab->splt->contents + h->plt.offset;
|
8783 |
|
|
|
8784 |
|
|
if (info->shared)
|
8785 |
|
|
{
|
8786 |
|
|
plt_entry = mips_vxworks_shared_plt_entry;
|
8787 |
|
|
bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
|
8788 |
|
|
bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
|
8789 |
|
|
}
|
8790 |
|
|
else
|
8791 |
|
|
{
|
8792 |
|
|
bfd_vma got_address_high, got_address_low;
|
8793 |
|
|
|
8794 |
|
|
plt_entry = mips_vxworks_exec_plt_entry;
|
8795 |
|
|
got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
|
8796 |
|
|
got_address_low = got_address & 0xffff;
|
8797 |
|
|
|
8798 |
|
|
bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
|
8799 |
|
|
bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
|
8800 |
|
|
bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
|
8801 |
|
|
bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
|
8802 |
|
|
bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
|
8803 |
|
|
bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
|
8804 |
|
|
bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
|
8805 |
|
|
bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
|
8806 |
|
|
|
8807 |
|
|
loc = (htab->srelplt2->contents
|
8808 |
|
|
+ (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
|
8809 |
|
|
|
8810 |
|
|
/* Emit a relocation for the .got.plt entry. */
|
8811 |
|
|
rel.r_offset = got_address;
|
8812 |
|
|
rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
|
8813 |
|
|
rel.r_addend = h->plt.offset;
|
8814 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8815 |
|
|
|
8816 |
|
|
/* Emit a relocation for the lui of %hi(<.got.plt slot>). */
|
8817 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8818 |
|
|
rel.r_offset = plt_address + 8;
|
8819 |
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
|
8820 |
|
|
rel.r_addend = got_offset;
|
8821 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8822 |
|
|
|
8823 |
|
|
/* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
|
8824 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8825 |
|
|
rel.r_offset += 4;
|
8826 |
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
|
8827 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8828 |
|
|
}
|
8829 |
|
|
|
8830 |
|
|
/* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
|
8831 |
|
|
loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
|
8832 |
|
|
rel.r_offset = got_address;
|
8833 |
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
|
8834 |
|
|
rel.r_addend = 0;
|
8835 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8836 |
|
|
|
8837 |
|
|
if (!h->def_regular)
|
8838 |
|
|
sym->st_shndx = SHN_UNDEF;
|
8839 |
|
|
}
|
8840 |
|
|
|
8841 |
|
|
BFD_ASSERT (h->dynindx != -1 || h->forced_local);
|
8842 |
|
|
|
8843 |
|
|
sgot = mips_elf_got_section (dynobj, FALSE);
|
8844 |
|
|
BFD_ASSERT (sgot != NULL);
|
8845 |
|
|
BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
|
8846 |
|
|
g = mips_elf_section_data (sgot)->u.got_info;
|
8847 |
|
|
BFD_ASSERT (g != NULL);
|
8848 |
|
|
|
8849 |
|
|
/* See if this symbol has an entry in the GOT. */
|
8850 |
|
|
if (g->global_gotsym != NULL
|
8851 |
|
|
&& h->dynindx >= g->global_gotsym->dynindx)
|
8852 |
|
|
{
|
8853 |
|
|
bfd_vma offset;
|
8854 |
|
|
Elf_Internal_Rela outrel;
|
8855 |
|
|
bfd_byte *loc;
|
8856 |
|
|
asection *s;
|
8857 |
|
|
|
8858 |
|
|
/* Install the symbol value in the GOT. */
|
8859 |
|
|
offset = mips_elf_global_got_index (dynobj, output_bfd, h,
|
8860 |
|
|
R_MIPS_GOT16, info);
|
8861 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
|
8862 |
|
|
|
8863 |
|
|
/* Add a dynamic relocation for it. */
|
8864 |
|
|
s = mips_elf_rel_dyn_section (info, FALSE);
|
8865 |
|
|
loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
|
8866 |
|
|
outrel.r_offset = (sgot->output_section->vma
|
8867 |
|
|
+ sgot->output_offset
|
8868 |
|
|
+ offset);
|
8869 |
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
|
8870 |
|
|
outrel.r_addend = 0;
|
8871 |
|
|
bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
|
8872 |
|
|
}
|
8873 |
|
|
|
8874 |
|
|
/* Emit a copy reloc, if needed. */
|
8875 |
|
|
if (h->needs_copy)
|
8876 |
|
|
{
|
8877 |
|
|
Elf_Internal_Rela rel;
|
8878 |
|
|
|
8879 |
|
|
BFD_ASSERT (h->dynindx != -1);
|
8880 |
|
|
|
8881 |
|
|
rel.r_offset = (h->root.u.def.section->output_section->vma
|
8882 |
|
|
+ h->root.u.def.section->output_offset
|
8883 |
|
|
+ h->root.u.def.value);
|
8884 |
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
|
8885 |
|
|
rel.r_addend = 0;
|
8886 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel,
|
8887 |
|
|
htab->srelbss->contents
|
8888 |
|
|
+ (htab->srelbss->reloc_count
|
8889 |
|
|
* sizeof (Elf32_External_Rela)));
|
8890 |
|
|
++htab->srelbss->reloc_count;
|
8891 |
|
|
}
|
8892 |
|
|
|
8893 |
|
|
/* If this is a mips16 symbol, force the value to be even. */
|
8894 |
|
|
if (sym->st_other == STO_MIPS16)
|
8895 |
|
|
sym->st_value &= ~1;
|
8896 |
|
|
|
8897 |
|
|
return TRUE;
|
8898 |
|
|
}
|
8899 |
|
|
|
8900 |
|
|
/* Install the PLT header for a VxWorks executable and finalize the
|
8901 |
|
|
contents of .rela.plt.unloaded. */
|
8902 |
|
|
|
8903 |
|
|
static void
|
8904 |
|
|
mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
|
8905 |
|
|
{
|
8906 |
|
|
Elf_Internal_Rela rela;
|
8907 |
|
|
bfd_byte *loc;
|
8908 |
|
|
bfd_vma got_value, got_value_high, got_value_low, plt_address;
|
8909 |
|
|
static const bfd_vma *plt_entry;
|
8910 |
|
|
struct mips_elf_link_hash_table *htab;
|
8911 |
|
|
|
8912 |
|
|
htab = mips_elf_hash_table (info);
|
8913 |
|
|
plt_entry = mips_vxworks_exec_plt0_entry;
|
8914 |
|
|
|
8915 |
|
|
/* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
|
8916 |
|
|
got_value = (htab->root.hgot->root.u.def.section->output_section->vma
|
8917 |
|
|
+ htab->root.hgot->root.u.def.section->output_offset
|
8918 |
|
|
+ htab->root.hgot->root.u.def.value);
|
8919 |
|
|
|
8920 |
|
|
got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
|
8921 |
|
|
got_value_low = got_value & 0xffff;
|
8922 |
|
|
|
8923 |
|
|
/* Calculate the address of the PLT header. */
|
8924 |
|
|
plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
|
8925 |
|
|
|
8926 |
|
|
/* Install the PLT header. */
|
8927 |
|
|
loc = htab->splt->contents;
|
8928 |
|
|
bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
|
8929 |
|
|
bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
|
8930 |
|
|
bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
|
8931 |
|
|
bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
|
8932 |
|
|
bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
|
8933 |
|
|
bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
|
8934 |
|
|
|
8935 |
|
|
/* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
|
8936 |
|
|
loc = htab->srelplt2->contents;
|
8937 |
|
|
rela.r_offset = plt_address;
|
8938 |
|
|
rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
|
8939 |
|
|
rela.r_addend = 0;
|
8940 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
8941 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8942 |
|
|
|
8943 |
|
|
/* Output the relocation for the following addiu of
|
8944 |
|
|
%lo(_GLOBAL_OFFSET_TABLE_). */
|
8945 |
|
|
rela.r_offset += 4;
|
8946 |
|
|
rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
|
8947 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
8948 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8949 |
|
|
|
8950 |
|
|
/* Fix up the remaining relocations. They may have the wrong
|
8951 |
|
|
symbol index for _G_O_T_ or _P_L_T_ depending on the order
|
8952 |
|
|
in which symbols were output. */
|
8953 |
|
|
while (loc < htab->srelplt2->contents + htab->srelplt2->size)
|
8954 |
|
|
{
|
8955 |
|
|
Elf_Internal_Rela rel;
|
8956 |
|
|
|
8957 |
|
|
bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
|
8958 |
|
|
rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
|
8959 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8960 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8961 |
|
|
|
8962 |
|
|
bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
|
8963 |
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
|
8964 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8965 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8966 |
|
|
|
8967 |
|
|
bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
|
8968 |
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
|
8969 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
|
8970 |
|
|
loc += sizeof (Elf32_External_Rela);
|
8971 |
|
|
}
|
8972 |
|
|
}
|
8973 |
|
|
|
8974 |
|
|
/* Install the PLT header for a VxWorks shared library. */
|
8975 |
|
|
|
8976 |
|
|
static void
|
8977 |
|
|
mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
|
8978 |
|
|
{
|
8979 |
|
|
unsigned int i;
|
8980 |
|
|
struct mips_elf_link_hash_table *htab;
|
8981 |
|
|
|
8982 |
|
|
htab = mips_elf_hash_table (info);
|
8983 |
|
|
|
8984 |
|
|
/* We just need to copy the entry byte-by-byte. */
|
8985 |
|
|
for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
|
8986 |
|
|
bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
|
8987 |
|
|
htab->splt->contents + i * 4);
|
8988 |
|
|
}
|
8989 |
|
|
|
8990 |
|
|
/* Finish up the dynamic sections. */
|
8991 |
|
|
|
8992 |
|
|
bfd_boolean
|
8993 |
|
|
_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
|
8994 |
|
|
struct bfd_link_info *info)
|
8995 |
|
|
{
|
8996 |
|
|
bfd *dynobj;
|
8997 |
|
|
asection *sdyn;
|
8998 |
|
|
asection *sgot;
|
8999 |
|
|
struct mips_got_info *gg, *g;
|
9000 |
|
|
struct mips_elf_link_hash_table *htab;
|
9001 |
|
|
|
9002 |
|
|
htab = mips_elf_hash_table (info);
|
9003 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
9004 |
|
|
|
9005 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
9006 |
|
|
|
9007 |
|
|
sgot = mips_elf_got_section (dynobj, FALSE);
|
9008 |
|
|
if (sgot == NULL)
|
9009 |
|
|
gg = g = NULL;
|
9010 |
|
|
else
|
9011 |
|
|
{
|
9012 |
|
|
BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
|
9013 |
|
|
gg = mips_elf_section_data (sgot)->u.got_info;
|
9014 |
|
|
BFD_ASSERT (gg != NULL);
|
9015 |
|
|
g = mips_elf_got_for_ibfd (gg, output_bfd);
|
9016 |
|
|
BFD_ASSERT (g != NULL);
|
9017 |
|
|
}
|
9018 |
|
|
|
9019 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
9020 |
|
|
{
|
9021 |
|
|
bfd_byte *b;
|
9022 |
|
|
int dyn_to_skip = 0, dyn_skipped = 0;
|
9023 |
|
|
|
9024 |
|
|
BFD_ASSERT (sdyn != NULL);
|
9025 |
|
|
BFD_ASSERT (g != NULL);
|
9026 |
|
|
|
9027 |
|
|
for (b = sdyn->contents;
|
9028 |
|
|
b < sdyn->contents + sdyn->size;
|
9029 |
|
|
b += MIPS_ELF_DYN_SIZE (dynobj))
|
9030 |
|
|
{
|
9031 |
|
|
Elf_Internal_Dyn dyn;
|
9032 |
|
|
const char *name;
|
9033 |
|
|
size_t elemsize;
|
9034 |
|
|
asection *s;
|
9035 |
|
|
bfd_boolean swap_out_p;
|
9036 |
|
|
|
9037 |
|
|
/* Read in the current dynamic entry. */
|
9038 |
|
|
(*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
|
9039 |
|
|
|
9040 |
|
|
/* Assume that we're going to modify it and write it out. */
|
9041 |
|
|
swap_out_p = TRUE;
|
9042 |
|
|
|
9043 |
|
|
switch (dyn.d_tag)
|
9044 |
|
|
{
|
9045 |
|
|
case DT_RELENT:
|
9046 |
|
|
dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
|
9047 |
|
|
break;
|
9048 |
|
|
|
9049 |
|
|
case DT_RELAENT:
|
9050 |
|
|
BFD_ASSERT (htab->is_vxworks);
|
9051 |
|
|
dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
|
9052 |
|
|
break;
|
9053 |
|
|
|
9054 |
|
|
case DT_STRSZ:
|
9055 |
|
|
/* Rewrite DT_STRSZ. */
|
9056 |
|
|
dyn.d_un.d_val =
|
9057 |
|
|
_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
|
9058 |
|
|
break;
|
9059 |
|
|
|
9060 |
|
|
case DT_PLTGOT:
|
9061 |
|
|
name = ".got";
|
9062 |
|
|
if (htab->is_vxworks)
|
9063 |
|
|
{
|
9064 |
|
|
/* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
|
9065 |
|
|
of the ".got" section in DYNOBJ. */
|
9066 |
|
|
s = bfd_get_section_by_name (dynobj, name);
|
9067 |
|
|
BFD_ASSERT (s != NULL);
|
9068 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
9069 |
|
|
}
|
9070 |
|
|
else
|
9071 |
|
|
{
|
9072 |
|
|
s = bfd_get_section_by_name (output_bfd, name);
|
9073 |
|
|
BFD_ASSERT (s != NULL);
|
9074 |
|
|
dyn.d_un.d_ptr = s->vma;
|
9075 |
|
|
}
|
9076 |
|
|
break;
|
9077 |
|
|
|
9078 |
|
|
case DT_MIPS_RLD_VERSION:
|
9079 |
|
|
dyn.d_un.d_val = 1; /* XXX */
|
9080 |
|
|
break;
|
9081 |
|
|
|
9082 |
|
|
case DT_MIPS_FLAGS:
|
9083 |
|
|
dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
|
9084 |
|
|
break;
|
9085 |
|
|
|
9086 |
|
|
case DT_MIPS_TIME_STAMP:
|
9087 |
|
|
{
|
9088 |
|
|
time_t t;
|
9089 |
|
|
time (&t);
|
9090 |
|
|
dyn.d_un.d_val = t;
|
9091 |
|
|
}
|
9092 |
|
|
break;
|
9093 |
|
|
|
9094 |
|
|
case DT_MIPS_ICHECKSUM:
|
9095 |
|
|
/* XXX FIXME: */
|
9096 |
|
|
swap_out_p = FALSE;
|
9097 |
|
|
break;
|
9098 |
|
|
|
9099 |
|
|
case DT_MIPS_IVERSION:
|
9100 |
|
|
/* XXX FIXME: */
|
9101 |
|
|
swap_out_p = FALSE;
|
9102 |
|
|
break;
|
9103 |
|
|
|
9104 |
|
|
case DT_MIPS_BASE_ADDRESS:
|
9105 |
|
|
s = output_bfd->sections;
|
9106 |
|
|
BFD_ASSERT (s != NULL);
|
9107 |
|
|
dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
|
9108 |
|
|
break;
|
9109 |
|
|
|
9110 |
|
|
case DT_MIPS_LOCAL_GOTNO:
|
9111 |
|
|
dyn.d_un.d_val = g->local_gotno;
|
9112 |
|
|
break;
|
9113 |
|
|
|
9114 |
|
|
case DT_MIPS_UNREFEXTNO:
|
9115 |
|
|
/* The index into the dynamic symbol table which is the
|
9116 |
|
|
entry of the first external symbol that is not
|
9117 |
|
|
referenced within the same object. */
|
9118 |
|
|
dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
|
9119 |
|
|
break;
|
9120 |
|
|
|
9121 |
|
|
case DT_MIPS_GOTSYM:
|
9122 |
|
|
if (gg->global_gotsym)
|
9123 |
|
|
{
|
9124 |
|
|
dyn.d_un.d_val = gg->global_gotsym->dynindx;
|
9125 |
|
|
break;
|
9126 |
|
|
}
|
9127 |
|
|
/* In case if we don't have global got symbols we default
|
9128 |
|
|
to setting DT_MIPS_GOTSYM to the same value as
|
9129 |
|
|
DT_MIPS_SYMTABNO, so we just fall through. */
|
9130 |
|
|
|
9131 |
|
|
case DT_MIPS_SYMTABNO:
|
9132 |
|
|
name = ".dynsym";
|
9133 |
|
|
elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
|
9134 |
|
|
s = bfd_get_section_by_name (output_bfd, name);
|
9135 |
|
|
BFD_ASSERT (s != NULL);
|
9136 |
|
|
|
9137 |
|
|
dyn.d_un.d_val = s->size / elemsize;
|
9138 |
|
|
break;
|
9139 |
|
|
|
9140 |
|
|
case DT_MIPS_HIPAGENO:
|
9141 |
|
|
dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
|
9142 |
|
|
break;
|
9143 |
|
|
|
9144 |
|
|
case DT_MIPS_RLD_MAP:
|
9145 |
|
|
dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
|
9146 |
|
|
break;
|
9147 |
|
|
|
9148 |
|
|
case DT_MIPS_OPTIONS:
|
9149 |
|
|
s = (bfd_get_section_by_name
|
9150 |
|
|
(output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
|
9151 |
|
|
dyn.d_un.d_ptr = s->vma;
|
9152 |
|
|
break;
|
9153 |
|
|
|
9154 |
|
|
case DT_RELASZ:
|
9155 |
|
|
BFD_ASSERT (htab->is_vxworks);
|
9156 |
|
|
/* The count does not include the JUMP_SLOT relocations. */
|
9157 |
|
|
if (htab->srelplt)
|
9158 |
|
|
dyn.d_un.d_val -= htab->srelplt->size;
|
9159 |
|
|
break;
|
9160 |
|
|
|
9161 |
|
|
case DT_PLTREL:
|
9162 |
|
|
BFD_ASSERT (htab->is_vxworks);
|
9163 |
|
|
dyn.d_un.d_val = DT_RELA;
|
9164 |
|
|
break;
|
9165 |
|
|
|
9166 |
|
|
case DT_PLTRELSZ:
|
9167 |
|
|
BFD_ASSERT (htab->is_vxworks);
|
9168 |
|
|
dyn.d_un.d_val = htab->srelplt->size;
|
9169 |
|
|
break;
|
9170 |
|
|
|
9171 |
|
|
case DT_JMPREL:
|
9172 |
|
|
BFD_ASSERT (htab->is_vxworks);
|
9173 |
|
|
dyn.d_un.d_val = (htab->srelplt->output_section->vma
|
9174 |
|
|
+ htab->srelplt->output_offset);
|
9175 |
|
|
break;
|
9176 |
|
|
|
9177 |
|
|
case DT_TEXTREL:
|
9178 |
|
|
/* If we didn't need any text relocations after all, delete
|
9179 |
|
|
the dynamic tag. */
|
9180 |
|
|
if (!(info->flags & DF_TEXTREL))
|
9181 |
|
|
{
|
9182 |
|
|
dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
|
9183 |
|
|
swap_out_p = FALSE;
|
9184 |
|
|
}
|
9185 |
|
|
break;
|
9186 |
|
|
|
9187 |
|
|
case DT_FLAGS:
|
9188 |
|
|
/* If we didn't need any text relocations after all, clear
|
9189 |
|
|
DF_TEXTREL from DT_FLAGS. */
|
9190 |
|
|
if (!(info->flags & DF_TEXTREL))
|
9191 |
|
|
dyn.d_un.d_val &= ~DF_TEXTREL;
|
9192 |
|
|
else
|
9193 |
|
|
swap_out_p = FALSE;
|
9194 |
|
|
break;
|
9195 |
|
|
|
9196 |
|
|
default:
|
9197 |
|
|
swap_out_p = FALSE;
|
9198 |
|
|
if (htab->is_vxworks
|
9199 |
|
|
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
|
9200 |
|
|
swap_out_p = TRUE;
|
9201 |
|
|
break;
|
9202 |
|
|
}
|
9203 |
|
|
|
9204 |
|
|
if (swap_out_p || dyn_skipped)
|
9205 |
|
|
(*get_elf_backend_data (dynobj)->s->swap_dyn_out)
|
9206 |
|
|
(dynobj, &dyn, b - dyn_skipped);
|
9207 |
|
|
|
9208 |
|
|
if (dyn_to_skip)
|
9209 |
|
|
{
|
9210 |
|
|
dyn_skipped += dyn_to_skip;
|
9211 |
|
|
dyn_to_skip = 0;
|
9212 |
|
|
}
|
9213 |
|
|
}
|
9214 |
|
|
|
9215 |
|
|
/* Wipe out any trailing entries if we shifted down a dynamic tag. */
|
9216 |
|
|
if (dyn_skipped > 0)
|
9217 |
|
|
memset (b - dyn_skipped, 0, dyn_skipped);
|
9218 |
|
|
}
|
9219 |
|
|
|
9220 |
|
|
if (sgot != NULL && sgot->size > 0
|
9221 |
|
|
&& !bfd_is_abs_section (sgot->output_section))
|
9222 |
|
|
{
|
9223 |
|
|
if (htab->is_vxworks)
|
9224 |
|
|
{
|
9225 |
|
|
/* The first entry of the global offset table points to the
|
9226 |
|
|
".dynamic" section. The second is initialized by the
|
9227 |
|
|
loader and contains the shared library identifier.
|
9228 |
|
|
The third is also initialized by the loader and points
|
9229 |
|
|
to the lazy resolution stub. */
|
9230 |
|
|
MIPS_ELF_PUT_WORD (output_bfd,
|
9231 |
|
|
sdyn->output_offset + sdyn->output_section->vma,
|
9232 |
|
|
sgot->contents);
|
9233 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, 0,
|
9234 |
|
|
sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
|
9235 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, 0,
|
9236 |
|
|
sgot->contents
|
9237 |
|
|
+ 2 * MIPS_ELF_GOT_SIZE (output_bfd));
|
9238 |
|
|
}
|
9239 |
|
|
else
|
9240 |
|
|
{
|
9241 |
|
|
/* The first entry of the global offset table will be filled at
|
9242 |
|
|
runtime. The second entry will be used by some runtime loaders.
|
9243 |
|
|
This isn't the case of IRIX rld. */
|
9244 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
|
9245 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
|
9246 |
|
|
sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
|
9247 |
|
|
}
|
9248 |
|
|
|
9249 |
|
|
elf_section_data (sgot->output_section)->this_hdr.sh_entsize
|
9250 |
|
|
= MIPS_ELF_GOT_SIZE (output_bfd);
|
9251 |
|
|
}
|
9252 |
|
|
|
9253 |
|
|
/* Generate dynamic relocations for the non-primary gots. */
|
9254 |
|
|
if (gg != NULL && gg->next)
|
9255 |
|
|
{
|
9256 |
|
|
Elf_Internal_Rela rel[3];
|
9257 |
|
|
bfd_vma addend = 0;
|
9258 |
|
|
|
9259 |
|
|
memset (rel, 0, sizeof (rel));
|
9260 |
|
|
rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
|
9261 |
|
|
|
9262 |
|
|
for (g = gg->next; g->next != gg; g = g->next)
|
9263 |
|
|
{
|
9264 |
|
|
bfd_vma index = g->next->local_gotno + g->next->global_gotno
|
9265 |
|
|
+ g->next->tls_gotno;
|
9266 |
|
|
|
9267 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
|
9268 |
|
|
+ index++ * MIPS_ELF_GOT_SIZE (output_bfd));
|
9269 |
|
|
MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
|
9270 |
|
|
sgot->contents
|
9271 |
|
|
+ index++ * MIPS_ELF_GOT_SIZE (output_bfd));
|
9272 |
|
|
|
9273 |
|
|
if (! info->shared)
|
9274 |
|
|
continue;
|
9275 |
|
|
|
9276 |
|
|
while (index < g->assigned_gotno)
|
9277 |
|
|
{
|
9278 |
|
|
rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
|
9279 |
|
|
= index++ * MIPS_ELF_GOT_SIZE (output_bfd);
|
9280 |
|
|
if (!(mips_elf_create_dynamic_relocation
|
9281 |
|
|
(output_bfd, info, rel, NULL,
|
9282 |
|
|
bfd_abs_section_ptr,
|
9283 |
|
|
0, &addend, sgot)))
|
9284 |
|
|
return FALSE;
|
9285 |
|
|
BFD_ASSERT (addend == 0);
|
9286 |
|
|
}
|
9287 |
|
|
}
|
9288 |
|
|
}
|
9289 |
|
|
|
9290 |
|
|
/* The generation of dynamic relocations for the non-primary gots
|
9291 |
|
|
adds more dynamic relocations. We cannot count them until
|
9292 |
|
|
here. */
|
9293 |
|
|
|
9294 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
9295 |
|
|
{
|
9296 |
|
|
bfd_byte *b;
|
9297 |
|
|
bfd_boolean swap_out_p;
|
9298 |
|
|
|
9299 |
|
|
BFD_ASSERT (sdyn != NULL);
|
9300 |
|
|
|
9301 |
|
|
for (b = sdyn->contents;
|
9302 |
|
|
b < sdyn->contents + sdyn->size;
|
9303 |
|
|
b += MIPS_ELF_DYN_SIZE (dynobj))
|
9304 |
|
|
{
|
9305 |
|
|
Elf_Internal_Dyn dyn;
|
9306 |
|
|
asection *s;
|
9307 |
|
|
|
9308 |
|
|
/* Read in the current dynamic entry. */
|
9309 |
|
|
(*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
|
9310 |
|
|
|
9311 |
|
|
/* Assume that we're going to modify it and write it out. */
|
9312 |
|
|
swap_out_p = TRUE;
|
9313 |
|
|
|
9314 |
|
|
switch (dyn.d_tag)
|
9315 |
|
|
{
|
9316 |
|
|
case DT_RELSZ:
|
9317 |
|
|
/* Reduce DT_RELSZ to account for any relocations we
|
9318 |
|
|
decided not to make. This is for the n64 irix rld,
|
9319 |
|
|
which doesn't seem to apply any relocations if there
|
9320 |
|
|
are trailing null entries. */
|
9321 |
|
|
s = mips_elf_rel_dyn_section (info, FALSE);
|
9322 |
|
|
dyn.d_un.d_val = (s->reloc_count
|
9323 |
|
|
* (ABI_64_P (output_bfd)
|
9324 |
|
|
? sizeof (Elf64_Mips_External_Rel)
|
9325 |
|
|
: sizeof (Elf32_External_Rel)));
|
9326 |
|
|
/* Adjust the section size too. Tools like the prelinker
|
9327 |
|
|
can reasonably expect the values to the same. */
|
9328 |
|
|
elf_section_data (s->output_section)->this_hdr.sh_size
|
9329 |
|
|
= dyn.d_un.d_val;
|
9330 |
|
|
break;
|
9331 |
|
|
|
9332 |
|
|
default:
|
9333 |
|
|
swap_out_p = FALSE;
|
9334 |
|
|
break;
|
9335 |
|
|
}
|
9336 |
|
|
|
9337 |
|
|
if (swap_out_p)
|
9338 |
|
|
(*get_elf_backend_data (dynobj)->s->swap_dyn_out)
|
9339 |
|
|
(dynobj, &dyn, b);
|
9340 |
|
|
}
|
9341 |
|
|
}
|
9342 |
|
|
|
9343 |
|
|
{
|
9344 |
|
|
asection *s;
|
9345 |
|
|
Elf32_compact_rel cpt;
|
9346 |
|
|
|
9347 |
|
|
if (SGI_COMPAT (output_bfd))
|
9348 |
|
|
{
|
9349 |
|
|
/* Write .compact_rel section out. */
|
9350 |
|
|
s = bfd_get_section_by_name (dynobj, ".compact_rel");
|
9351 |
|
|
if (s != NULL)
|
9352 |
|
|
{
|
9353 |
|
|
cpt.id1 = 1;
|
9354 |
|
|
cpt.num = s->reloc_count;
|
9355 |
|
|
cpt.id2 = 2;
|
9356 |
|
|
cpt.offset = (s->output_section->filepos
|
9357 |
|
|
+ sizeof (Elf32_External_compact_rel));
|
9358 |
|
|
cpt.reserved0 = 0;
|
9359 |
|
|
cpt.reserved1 = 0;
|
9360 |
|
|
bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
|
9361 |
|
|
((Elf32_External_compact_rel *)
|
9362 |
|
|
s->contents));
|
9363 |
|
|
|
9364 |
|
|
/* Clean up a dummy stub function entry in .text. */
|
9365 |
|
|
s = bfd_get_section_by_name (dynobj,
|
9366 |
|
|
MIPS_ELF_STUB_SECTION_NAME (dynobj));
|
9367 |
|
|
if (s != NULL)
|
9368 |
|
|
{
|
9369 |
|
|
file_ptr dummy_offset;
|
9370 |
|
|
|
9371 |
|
|
BFD_ASSERT (s->size >= htab->function_stub_size);
|
9372 |
|
|
dummy_offset = s->size - htab->function_stub_size;
|
9373 |
|
|
memset (s->contents + dummy_offset, 0,
|
9374 |
|
|
htab->function_stub_size);
|
9375 |
|
|
}
|
9376 |
|
|
}
|
9377 |
|
|
}
|
9378 |
|
|
|
9379 |
|
|
/* The psABI says that the dynamic relocations must be sorted in
|
9380 |
|
|
increasing order of r_symndx. The VxWorks EABI doesn't require
|
9381 |
|
|
this, and because the code below handles REL rather than RELA
|
9382 |
|
|
relocations, using it for VxWorks would be outright harmful. */
|
9383 |
|
|
if (!htab->is_vxworks)
|
9384 |
|
|
{
|
9385 |
|
|
s = mips_elf_rel_dyn_section (info, FALSE);
|
9386 |
|
|
if (s != NULL
|
9387 |
|
|
&& s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
|
9388 |
|
|
{
|
9389 |
|
|
reldyn_sorting_bfd = output_bfd;
|
9390 |
|
|
|
9391 |
|
|
if (ABI_64_P (output_bfd))
|
9392 |
|
|
qsort ((Elf64_External_Rel *) s->contents + 1,
|
9393 |
|
|
s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
|
9394 |
|
|
sort_dynamic_relocs_64);
|
9395 |
|
|
else
|
9396 |
|
|
qsort ((Elf32_External_Rel *) s->contents + 1,
|
9397 |
|
|
s->reloc_count - 1, sizeof (Elf32_External_Rel),
|
9398 |
|
|
sort_dynamic_relocs);
|
9399 |
|
|
}
|
9400 |
|
|
}
|
9401 |
|
|
}
|
9402 |
|
|
|
9403 |
|
|
if (htab->is_vxworks && htab->splt->size > 0)
|
9404 |
|
|
{
|
9405 |
|
|
if (info->shared)
|
9406 |
|
|
mips_vxworks_finish_shared_plt (output_bfd, info);
|
9407 |
|
|
else
|
9408 |
|
|
mips_vxworks_finish_exec_plt (output_bfd, info);
|
9409 |
|
|
}
|
9410 |
|
|
return TRUE;
|
9411 |
|
|
}
|
9412 |
|
|
|
9413 |
|
|
|
9414 |
|
|
/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
|
9415 |
|
|
|
9416 |
|
|
static void
|
9417 |
|
|
mips_set_isa_flags (bfd *abfd)
|
9418 |
|
|
{
|
9419 |
|
|
flagword val;
|
9420 |
|
|
|
9421 |
|
|
switch (bfd_get_mach (abfd))
|
9422 |
|
|
{
|
9423 |
|
|
default:
|
9424 |
|
|
case bfd_mach_mips3000:
|
9425 |
|
|
val = E_MIPS_ARCH_1;
|
9426 |
|
|
break;
|
9427 |
|
|
|
9428 |
|
|
case bfd_mach_mips3900:
|
9429 |
|
|
val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
|
9430 |
|
|
break;
|
9431 |
|
|
|
9432 |
|
|
case bfd_mach_mips6000:
|
9433 |
|
|
val = E_MIPS_ARCH_2;
|
9434 |
|
|
break;
|
9435 |
|
|
|
9436 |
|
|
case bfd_mach_mips4000:
|
9437 |
|
|
case bfd_mach_mips4300:
|
9438 |
|
|
case bfd_mach_mips4400:
|
9439 |
|
|
case bfd_mach_mips4600:
|
9440 |
|
|
val = E_MIPS_ARCH_3;
|
9441 |
|
|
break;
|
9442 |
|
|
|
9443 |
|
|
case bfd_mach_mips4010:
|
9444 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
|
9445 |
|
|
break;
|
9446 |
|
|
|
9447 |
|
|
case bfd_mach_mips4100:
|
9448 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
|
9449 |
|
|
break;
|
9450 |
|
|
|
9451 |
|
|
case bfd_mach_mips4111:
|
9452 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
|
9453 |
|
|
break;
|
9454 |
|
|
|
9455 |
|
|
case bfd_mach_mips4120:
|
9456 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
|
9457 |
|
|
break;
|
9458 |
|
|
|
9459 |
|
|
case bfd_mach_mips4650:
|
9460 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
|
9461 |
|
|
break;
|
9462 |
|
|
|
9463 |
|
|
case bfd_mach_mips5400:
|
9464 |
|
|
val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
|
9465 |
|
|
break;
|
9466 |
|
|
|
9467 |
|
|
case bfd_mach_mips5500:
|
9468 |
|
|
val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
|
9469 |
|
|
break;
|
9470 |
|
|
|
9471 |
|
|
case bfd_mach_mips9000:
|
9472 |
|
|
val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
|
9473 |
|
|
break;
|
9474 |
|
|
|
9475 |
|
|
case bfd_mach_mips5000:
|
9476 |
|
|
case bfd_mach_mips7000:
|
9477 |
|
|
case bfd_mach_mips8000:
|
9478 |
|
|
case bfd_mach_mips10000:
|
9479 |
|
|
case bfd_mach_mips12000:
|
9480 |
|
|
val = E_MIPS_ARCH_4;
|
9481 |
|
|
break;
|
9482 |
|
|
|
9483 |
|
|
case bfd_mach_mips5:
|
9484 |
|
|
val = E_MIPS_ARCH_5;
|
9485 |
|
|
break;
|
9486 |
|
|
|
9487 |
|
|
case bfd_mach_mips_loongson_2e:
|
9488 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
|
9489 |
|
|
break;
|
9490 |
|
|
|
9491 |
|
|
case bfd_mach_mips_loongson_2f:
|
9492 |
|
|
val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
|
9493 |
|
|
break;
|
9494 |
|
|
|
9495 |
|
|
case bfd_mach_mips_sb1:
|
9496 |
|
|
val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
|
9497 |
|
|
break;
|
9498 |
|
|
|
9499 |
|
|
case bfd_mach_mips_octeon:
|
9500 |
|
|
val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
|
9501 |
|
|
break;
|
9502 |
|
|
|
9503 |
|
|
case bfd_mach_mipsisa32:
|
9504 |
|
|
val = E_MIPS_ARCH_32;
|
9505 |
|
|
break;
|
9506 |
|
|
|
9507 |
|
|
case bfd_mach_mipsisa64:
|
9508 |
|
|
val = E_MIPS_ARCH_64;
|
9509 |
|
|
break;
|
9510 |
|
|
|
9511 |
|
|
case bfd_mach_mipsisa32r2:
|
9512 |
|
|
val = E_MIPS_ARCH_32R2;
|
9513 |
|
|
break;
|
9514 |
|
|
|
9515 |
|
|
case bfd_mach_mipsisa64r2:
|
9516 |
|
|
val = E_MIPS_ARCH_64R2;
|
9517 |
|
|
break;
|
9518 |
|
|
}
|
9519 |
|
|
elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
|
9520 |
|
|
elf_elfheader (abfd)->e_flags |= val;
|
9521 |
|
|
|
9522 |
|
|
}
|
9523 |
|
|
|
9524 |
|
|
|
9525 |
|
|
/* The final processing done just before writing out a MIPS ELF object
|
9526 |
|
|
file. This gets the MIPS architecture right based on the machine
|
9527 |
|
|
number. This is used by both the 32-bit and the 64-bit ABI. */
|
9528 |
|
|
|
9529 |
|
|
void
|
9530 |
|
|
_bfd_mips_elf_final_write_processing (bfd *abfd,
|
9531 |
|
|
bfd_boolean linker ATTRIBUTE_UNUSED)
|
9532 |
|
|
{
|
9533 |
|
|
unsigned int i;
|
9534 |
|
|
Elf_Internal_Shdr **hdrpp;
|
9535 |
|
|
const char *name;
|
9536 |
|
|
asection *sec;
|
9537 |
|
|
|
9538 |
|
|
/* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
|
9539 |
|
|
is nonzero. This is for compatibility with old objects, which used
|
9540 |
|
|
a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
|
9541 |
|
|
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
|
9542 |
|
|
mips_set_isa_flags (abfd);
|
9543 |
|
|
|
9544 |
|
|
/* Set the sh_info field for .gptab sections and other appropriate
|
9545 |
|
|
info for each special section. */
|
9546 |
|
|
for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
|
9547 |
|
|
i < elf_numsections (abfd);
|
9548 |
|
|
i++, hdrpp++)
|
9549 |
|
|
{
|
9550 |
|
|
switch ((*hdrpp)->sh_type)
|
9551 |
|
|
{
|
9552 |
|
|
case SHT_MIPS_MSYM:
|
9553 |
|
|
case SHT_MIPS_LIBLIST:
|
9554 |
|
|
sec = bfd_get_section_by_name (abfd, ".dynstr");
|
9555 |
|
|
if (sec != NULL)
|
9556 |
|
|
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
9557 |
|
|
break;
|
9558 |
|
|
|
9559 |
|
|
case SHT_MIPS_GPTAB:
|
9560 |
|
|
BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
|
9561 |
|
|
name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
|
9562 |
|
|
BFD_ASSERT (name != NULL
|
9563 |
|
|
&& CONST_STRNEQ (name, ".gptab."));
|
9564 |
|
|
sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
|
9565 |
|
|
BFD_ASSERT (sec != NULL);
|
9566 |
|
|
(*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
|
9567 |
|
|
break;
|
9568 |
|
|
|
9569 |
|
|
case SHT_MIPS_CONTENT:
|
9570 |
|
|
BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
|
9571 |
|
|
name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
|
9572 |
|
|
BFD_ASSERT (name != NULL
|
9573 |
|
|
&& CONST_STRNEQ (name, ".MIPS.content"));
|
9574 |
|
|
sec = bfd_get_section_by_name (abfd,
|
9575 |
|
|
name + sizeof ".MIPS.content" - 1);
|
9576 |
|
|
BFD_ASSERT (sec != NULL);
|
9577 |
|
|
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
9578 |
|
|
break;
|
9579 |
|
|
|
9580 |
|
|
case SHT_MIPS_SYMBOL_LIB:
|
9581 |
|
|
sec = bfd_get_section_by_name (abfd, ".dynsym");
|
9582 |
|
|
if (sec != NULL)
|
9583 |
|
|
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
9584 |
|
|
sec = bfd_get_section_by_name (abfd, ".liblist");
|
9585 |
|
|
if (sec != NULL)
|
9586 |
|
|
(*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
|
9587 |
|
|
break;
|
9588 |
|
|
|
9589 |
|
|
case SHT_MIPS_EVENTS:
|
9590 |
|
|
BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
|
9591 |
|
|
name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
|
9592 |
|
|
BFD_ASSERT (name != NULL);
|
9593 |
|
|
if (CONST_STRNEQ (name, ".MIPS.events"))
|
9594 |
|
|
sec = bfd_get_section_by_name (abfd,
|
9595 |
|
|
name + sizeof ".MIPS.events" - 1);
|
9596 |
|
|
else
|
9597 |
|
|
{
|
9598 |
|
|
BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
|
9599 |
|
|
sec = bfd_get_section_by_name (abfd,
|
9600 |
|
|
(name
|
9601 |
|
|
+ sizeof ".MIPS.post_rel" - 1));
|
9602 |
|
|
}
|
9603 |
|
|
BFD_ASSERT (sec != NULL);
|
9604 |
|
|
(*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
|
9605 |
|
|
break;
|
9606 |
|
|
|
9607 |
|
|
}
|
9608 |
|
|
}
|
9609 |
|
|
}
|
9610 |
|
|
|
9611 |
|
|
/* When creating an IRIX5 executable, we need REGINFO and RTPROC
|
9612 |
|
|
segments. */
|
9613 |
|
|
|
9614 |
|
|
int
|
9615 |
|
|
_bfd_mips_elf_additional_program_headers (bfd *abfd,
|
9616 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
9617 |
|
|
{
|
9618 |
|
|
asection *s;
|
9619 |
|
|
int ret = 0;
|
9620 |
|
|
|
9621 |
|
|
/* See if we need a PT_MIPS_REGINFO segment. */
|
9622 |
|
|
s = bfd_get_section_by_name (abfd, ".reginfo");
|
9623 |
|
|
if (s && (s->flags & SEC_LOAD))
|
9624 |
|
|
++ret;
|
9625 |
|
|
|
9626 |
|
|
/* See if we need a PT_MIPS_OPTIONS segment. */
|
9627 |
|
|
if (IRIX_COMPAT (abfd) == ict_irix6
|
9628 |
|
|
&& bfd_get_section_by_name (abfd,
|
9629 |
|
|
MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
|
9630 |
|
|
++ret;
|
9631 |
|
|
|
9632 |
|
|
/* See if we need a PT_MIPS_RTPROC segment. */
|
9633 |
|
|
if (IRIX_COMPAT (abfd) == ict_irix5
|
9634 |
|
|
&& bfd_get_section_by_name (abfd, ".dynamic")
|
9635 |
|
|
&& bfd_get_section_by_name (abfd, ".mdebug"))
|
9636 |
|
|
++ret;
|
9637 |
|
|
|
9638 |
|
|
/* Allocate a PT_NULL header in dynamic objects. See
|
9639 |
|
|
_bfd_mips_elf_modify_segment_map for details. */
|
9640 |
|
|
if (!SGI_COMPAT (abfd)
|
9641 |
|
|
&& bfd_get_section_by_name (abfd, ".dynamic"))
|
9642 |
|
|
++ret;
|
9643 |
|
|
|
9644 |
|
|
return ret;
|
9645 |
|
|
}
|
9646 |
|
|
|
9647 |
|
|
/* Modify the segment map for an IRIX5 executable. */
|
9648 |
|
|
|
9649 |
|
|
bfd_boolean
|
9650 |
|
|
_bfd_mips_elf_modify_segment_map (bfd *abfd,
|
9651 |
|
|
struct bfd_link_info *info)
|
9652 |
|
|
{
|
9653 |
|
|
asection *s;
|
9654 |
|
|
struct elf_segment_map *m, **pm;
|
9655 |
|
|
bfd_size_type amt;
|
9656 |
|
|
|
9657 |
|
|
/* If there is a .reginfo section, we need a PT_MIPS_REGINFO
|
9658 |
|
|
segment. */
|
9659 |
|
|
s = bfd_get_section_by_name (abfd, ".reginfo");
|
9660 |
|
|
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
9661 |
|
|
{
|
9662 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
9663 |
|
|
if (m->p_type == PT_MIPS_REGINFO)
|
9664 |
|
|
break;
|
9665 |
|
|
if (m == NULL)
|
9666 |
|
|
{
|
9667 |
|
|
amt = sizeof *m;
|
9668 |
|
|
m = bfd_zalloc (abfd, amt);
|
9669 |
|
|
if (m == NULL)
|
9670 |
|
|
return FALSE;
|
9671 |
|
|
|
9672 |
|
|
m->p_type = PT_MIPS_REGINFO;
|
9673 |
|
|
m->count = 1;
|
9674 |
|
|
m->sections[0] = s;
|
9675 |
|
|
|
9676 |
|
|
/* We want to put it after the PHDR and INTERP segments. */
|
9677 |
|
|
pm = &elf_tdata (abfd)->segment_map;
|
9678 |
|
|
while (*pm != NULL
|
9679 |
|
|
&& ((*pm)->p_type == PT_PHDR
|
9680 |
|
|
|| (*pm)->p_type == PT_INTERP))
|
9681 |
|
|
pm = &(*pm)->next;
|
9682 |
|
|
|
9683 |
|
|
m->next = *pm;
|
9684 |
|
|
*pm = m;
|
9685 |
|
|
}
|
9686 |
|
|
}
|
9687 |
|
|
|
9688 |
|
|
/* For IRIX 6, we don't have .mdebug sections, nor does anything but
|
9689 |
|
|
.dynamic end up in PT_DYNAMIC. However, we do have to insert a
|
9690 |
|
|
PT_MIPS_OPTIONS segment immediately following the program header
|
9691 |
|
|
table. */
|
9692 |
|
|
if (NEWABI_P (abfd)
|
9693 |
|
|
/* On non-IRIX6 new abi, we'll have already created a segment
|
9694 |
|
|
for this section, so don't create another. I'm not sure this
|
9695 |
|
|
is not also the case for IRIX 6, but I can't test it right
|
9696 |
|
|
now. */
|
9697 |
|
|
&& IRIX_COMPAT (abfd) == ict_irix6)
|
9698 |
|
|
{
|
9699 |
|
|
for (s = abfd->sections; s; s = s->next)
|
9700 |
|
|
if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
|
9701 |
|
|
break;
|
9702 |
|
|
|
9703 |
|
|
if (s)
|
9704 |
|
|
{
|
9705 |
|
|
struct elf_segment_map *options_segment;
|
9706 |
|
|
|
9707 |
|
|
pm = &elf_tdata (abfd)->segment_map;
|
9708 |
|
|
while (*pm != NULL
|
9709 |
|
|
&& ((*pm)->p_type == PT_PHDR
|
9710 |
|
|
|| (*pm)->p_type == PT_INTERP))
|
9711 |
|
|
pm = &(*pm)->next;
|
9712 |
|
|
|
9713 |
|
|
if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
|
9714 |
|
|
{
|
9715 |
|
|
amt = sizeof (struct elf_segment_map);
|
9716 |
|
|
options_segment = bfd_zalloc (abfd, amt);
|
9717 |
|
|
options_segment->next = *pm;
|
9718 |
|
|
options_segment->p_type = PT_MIPS_OPTIONS;
|
9719 |
|
|
options_segment->p_flags = PF_R;
|
9720 |
|
|
options_segment->p_flags_valid = TRUE;
|
9721 |
|
|
options_segment->count = 1;
|
9722 |
|
|
options_segment->sections[0] = s;
|
9723 |
|
|
*pm = options_segment;
|
9724 |
|
|
}
|
9725 |
|
|
}
|
9726 |
|
|
}
|
9727 |
|
|
else
|
9728 |
|
|
{
|
9729 |
|
|
if (IRIX_COMPAT (abfd) == ict_irix5)
|
9730 |
|
|
{
|
9731 |
|
|
/* If there are .dynamic and .mdebug sections, we make a room
|
9732 |
|
|
for the RTPROC header. FIXME: Rewrite without section names. */
|
9733 |
|
|
if (bfd_get_section_by_name (abfd, ".interp") == NULL
|
9734 |
|
|
&& bfd_get_section_by_name (abfd, ".dynamic") != NULL
|
9735 |
|
|
&& bfd_get_section_by_name (abfd, ".mdebug") != NULL)
|
9736 |
|
|
{
|
9737 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
9738 |
|
|
if (m->p_type == PT_MIPS_RTPROC)
|
9739 |
|
|
break;
|
9740 |
|
|
if (m == NULL)
|
9741 |
|
|
{
|
9742 |
|
|
amt = sizeof *m;
|
9743 |
|
|
m = bfd_zalloc (abfd, amt);
|
9744 |
|
|
if (m == NULL)
|
9745 |
|
|
return FALSE;
|
9746 |
|
|
|
9747 |
|
|
m->p_type = PT_MIPS_RTPROC;
|
9748 |
|
|
|
9749 |
|
|
s = bfd_get_section_by_name (abfd, ".rtproc");
|
9750 |
|
|
if (s == NULL)
|
9751 |
|
|
{
|
9752 |
|
|
m->count = 0;
|
9753 |
|
|
m->p_flags = 0;
|
9754 |
|
|
m->p_flags_valid = 1;
|
9755 |
|
|
}
|
9756 |
|
|
else
|
9757 |
|
|
{
|
9758 |
|
|
m->count = 1;
|
9759 |
|
|
m->sections[0] = s;
|
9760 |
|
|
}
|
9761 |
|
|
|
9762 |
|
|
/* We want to put it after the DYNAMIC segment. */
|
9763 |
|
|
pm = &elf_tdata (abfd)->segment_map;
|
9764 |
|
|
while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
|
9765 |
|
|
pm = &(*pm)->next;
|
9766 |
|
|
if (*pm != NULL)
|
9767 |
|
|
pm = &(*pm)->next;
|
9768 |
|
|
|
9769 |
|
|
m->next = *pm;
|
9770 |
|
|
*pm = m;
|
9771 |
|
|
}
|
9772 |
|
|
}
|
9773 |
|
|
}
|
9774 |
|
|
/* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
|
9775 |
|
|
.dynstr, .dynsym, and .hash sections, and everything in
|
9776 |
|
|
between. */
|
9777 |
|
|
for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
|
9778 |
|
|
pm = &(*pm)->next)
|
9779 |
|
|
if ((*pm)->p_type == PT_DYNAMIC)
|
9780 |
|
|
break;
|
9781 |
|
|
m = *pm;
|
9782 |
|
|
if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
|
9783 |
|
|
{
|
9784 |
|
|
/* For a normal mips executable the permissions for the PT_DYNAMIC
|
9785 |
|
|
segment are read, write and execute. We do that here since
|
9786 |
|
|
the code in elf.c sets only the read permission. This matters
|
9787 |
|
|
sometimes for the dynamic linker. */
|
9788 |
|
|
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
|
9789 |
|
|
{
|
9790 |
|
|
m->p_flags = PF_R | PF_W | PF_X;
|
9791 |
|
|
m->p_flags_valid = 1;
|
9792 |
|
|
}
|
9793 |
|
|
}
|
9794 |
|
|
/* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
|
9795 |
|
|
glibc's dynamic linker has traditionally derived the number of
|
9796 |
|
|
tags from the p_filesz field, and sometimes allocates stack
|
9797 |
|
|
arrays of that size. An overly-big PT_DYNAMIC segment can
|
9798 |
|
|
be actively harmful in such cases. Making PT_DYNAMIC contain
|
9799 |
|
|
other sections can also make life hard for the prelinker,
|
9800 |
|
|
which might move one of the other sections to a different
|
9801 |
|
|
PT_LOAD segment. */
|
9802 |
|
|
if (SGI_COMPAT (abfd)
|
9803 |
|
|
&& m != NULL
|
9804 |
|
|
&& m->count == 1
|
9805 |
|
|
&& strcmp (m->sections[0]->name, ".dynamic") == 0)
|
9806 |
|
|
{
|
9807 |
|
|
static const char *sec_names[] =
|
9808 |
|
|
{
|
9809 |
|
|
".dynamic", ".dynstr", ".dynsym", ".hash"
|
9810 |
|
|
};
|
9811 |
|
|
bfd_vma low, high;
|
9812 |
|
|
unsigned int i, c;
|
9813 |
|
|
struct elf_segment_map *n;
|
9814 |
|
|
|
9815 |
|
|
low = ~(bfd_vma) 0;
|
9816 |
|
|
high = 0;
|
9817 |
|
|
for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
|
9818 |
|
|
{
|
9819 |
|
|
s = bfd_get_section_by_name (abfd, sec_names[i]);
|
9820 |
|
|
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
9821 |
|
|
{
|
9822 |
|
|
bfd_size_type sz;
|
9823 |
|
|
|
9824 |
|
|
if (low > s->vma)
|
9825 |
|
|
low = s->vma;
|
9826 |
|
|
sz = s->size;
|
9827 |
|
|
if (high < s->vma + sz)
|
9828 |
|
|
high = s->vma + sz;
|
9829 |
|
|
}
|
9830 |
|
|
}
|
9831 |
|
|
|
9832 |
|
|
c = 0;
|
9833 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
9834 |
|
|
if ((s->flags & SEC_LOAD) != 0
|
9835 |
|
|
&& s->vma >= low
|
9836 |
|
|
&& s->vma + s->size <= high)
|
9837 |
|
|
++c;
|
9838 |
|
|
|
9839 |
|
|
amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
|
9840 |
|
|
n = bfd_zalloc (abfd, amt);
|
9841 |
|
|
if (n == NULL)
|
9842 |
|
|
return FALSE;
|
9843 |
|
|
*n = *m;
|
9844 |
|
|
n->count = c;
|
9845 |
|
|
|
9846 |
|
|
i = 0;
|
9847 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
9848 |
|
|
{
|
9849 |
|
|
if ((s->flags & SEC_LOAD) != 0
|
9850 |
|
|
&& s->vma >= low
|
9851 |
|
|
&& s->vma + s->size <= high)
|
9852 |
|
|
{
|
9853 |
|
|
n->sections[i] = s;
|
9854 |
|
|
++i;
|
9855 |
|
|
}
|
9856 |
|
|
}
|
9857 |
|
|
|
9858 |
|
|
*pm = n;
|
9859 |
|
|
}
|
9860 |
|
|
}
|
9861 |
|
|
|
9862 |
|
|
/* Allocate a spare program header in dynamic objects so that tools
|
9863 |
|
|
like the prelinker can add an extra PT_LOAD entry.
|
9864 |
|
|
|
9865 |
|
|
If the prelinker needs to make room for a new PT_LOAD entry, its
|
9866 |
|
|
standard procedure is to move the first (read-only) sections into
|
9867 |
|
|
the new (writable) segment. However, the MIPS ABI requires
|
9868 |
|
|
.dynamic to be in a read-only segment, and the section will often
|
9869 |
|
|
start within sizeof (ElfNN_Phdr) bytes of the last program header.
|
9870 |
|
|
|
9871 |
|
|
Although the prelinker could in principle move .dynamic to a
|
9872 |
|
|
writable segment, it seems better to allocate a spare program
|
9873 |
|
|
header instead, and avoid the need to move any sections.
|
9874 |
|
|
There is a long tradition of allocating spare dynamic tags,
|
9875 |
|
|
so allocating a spare program header seems like a natural
|
9876 |
|
|
extension.
|
9877 |
|
|
|
9878 |
|
|
If INFO is NULL, we may be copying an already prelinked binary
|
9879 |
|
|
with objcopy or strip, so do not add this header. */
|
9880 |
|
|
if (info != NULL
|
9881 |
|
|
&& !SGI_COMPAT (abfd)
|
9882 |
|
|
&& bfd_get_section_by_name (abfd, ".dynamic"))
|
9883 |
|
|
{
|
9884 |
|
|
for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
|
9885 |
|
|
if ((*pm)->p_type == PT_NULL)
|
9886 |
|
|
break;
|
9887 |
|
|
if (*pm == NULL)
|
9888 |
|
|
{
|
9889 |
|
|
m = bfd_zalloc (abfd, sizeof (*m));
|
9890 |
|
|
if (m == NULL)
|
9891 |
|
|
return FALSE;
|
9892 |
|
|
|
9893 |
|
|
m->p_type = PT_NULL;
|
9894 |
|
|
*pm = m;
|
9895 |
|
|
}
|
9896 |
|
|
}
|
9897 |
|
|
|
9898 |
|
|
return TRUE;
|
9899 |
|
|
}
|
9900 |
|
|
|
9901 |
|
|
/* Return the section that should be marked against GC for a given
|
9902 |
|
|
relocation. */
|
9903 |
|
|
|
9904 |
|
|
asection *
|
9905 |
|
|
_bfd_mips_elf_gc_mark_hook (asection *sec,
|
9906 |
|
|
struct bfd_link_info *info,
|
9907 |
|
|
Elf_Internal_Rela *rel,
|
9908 |
|
|
struct elf_link_hash_entry *h,
|
9909 |
|
|
Elf_Internal_Sym *sym)
|
9910 |
|
|
{
|
9911 |
|
|
/* ??? Do mips16 stub sections need to be handled special? */
|
9912 |
|
|
|
9913 |
|
|
if (h != NULL)
|
9914 |
|
|
switch (ELF_R_TYPE (sec->owner, rel->r_info))
|
9915 |
|
|
{
|
9916 |
|
|
case R_MIPS_GNU_VTINHERIT:
|
9917 |
|
|
case R_MIPS_GNU_VTENTRY:
|
9918 |
|
|
return NULL;
|
9919 |
|
|
}
|
9920 |
|
|
|
9921 |
|
|
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
9922 |
|
|
}
|
9923 |
|
|
|
9924 |
|
|
/* Update the got entry reference counts for the section being removed. */
|
9925 |
|
|
|
9926 |
|
|
bfd_boolean
|
9927 |
|
|
_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
|
9928 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
9929 |
|
|
asection *sec ATTRIBUTE_UNUSED,
|
9930 |
|
|
const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
|
9931 |
|
|
{
|
9932 |
|
|
#if 0
|
9933 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
9934 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
9935 |
|
|
bfd_signed_vma *local_got_refcounts;
|
9936 |
|
|
const Elf_Internal_Rela *rel, *relend;
|
9937 |
|
|
unsigned long r_symndx;
|
9938 |
|
|
struct elf_link_hash_entry *h;
|
9939 |
|
|
|
9940 |
|
|
if (info->relocatable)
|
9941 |
|
|
return TRUE;
|
9942 |
|
|
|
9943 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
9944 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
9945 |
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
9946 |
|
|
|
9947 |
|
|
relend = relocs + sec->reloc_count;
|
9948 |
|
|
for (rel = relocs; rel < relend; rel++)
|
9949 |
|
|
switch (ELF_R_TYPE (abfd, rel->r_info))
|
9950 |
|
|
{
|
9951 |
|
|
case R_MIPS_GOT16:
|
9952 |
|
|
case R_MIPS_CALL16:
|
9953 |
|
|
case R_MIPS_CALL_HI16:
|
9954 |
|
|
case R_MIPS_CALL_LO16:
|
9955 |
|
|
case R_MIPS_GOT_HI16:
|
9956 |
|
|
case R_MIPS_GOT_LO16:
|
9957 |
|
|
case R_MIPS_GOT_DISP:
|
9958 |
|
|
case R_MIPS_GOT_PAGE:
|
9959 |
|
|
case R_MIPS_GOT_OFST:
|
9960 |
|
|
/* ??? It would seem that the existing MIPS code does no sort
|
9961 |
|
|
of reference counting or whatnot on its GOT and PLT entries,
|
9962 |
|
|
so it is not possible to garbage collect them at this time. */
|
9963 |
|
|
break;
|
9964 |
|
|
|
9965 |
|
|
default:
|
9966 |
|
|
break;
|
9967 |
|
|
}
|
9968 |
|
|
#endif
|
9969 |
|
|
|
9970 |
|
|
return TRUE;
|
9971 |
|
|
}
|
9972 |
|
|
|
9973 |
|
|
/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
|
9974 |
|
|
hiding the old indirect symbol. Process additional relocation
|
9975 |
|
|
information. Also called for weakdefs, in which case we just let
|
9976 |
|
|
_bfd_elf_link_hash_copy_indirect copy the flags for us. */
|
9977 |
|
|
|
9978 |
|
|
void
|
9979 |
|
|
_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
|
9980 |
|
|
struct elf_link_hash_entry *dir,
|
9981 |
|
|
struct elf_link_hash_entry *ind)
|
9982 |
|
|
{
|
9983 |
|
|
struct mips_elf_link_hash_entry *dirmips, *indmips;
|
9984 |
|
|
|
9985 |
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
9986 |
|
|
|
9987 |
|
|
if (ind->root.type != bfd_link_hash_indirect)
|
9988 |
|
|
return;
|
9989 |
|
|
|
9990 |
|
|
dirmips = (struct mips_elf_link_hash_entry *) dir;
|
9991 |
|
|
indmips = (struct mips_elf_link_hash_entry *) ind;
|
9992 |
|
|
dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
|
9993 |
|
|
if (indmips->readonly_reloc)
|
9994 |
|
|
dirmips->readonly_reloc = TRUE;
|
9995 |
|
|
if (indmips->no_fn_stub)
|
9996 |
|
|
dirmips->no_fn_stub = TRUE;
|
9997 |
|
|
|
9998 |
|
|
if (dirmips->tls_type == 0)
|
9999 |
|
|
dirmips->tls_type = indmips->tls_type;
|
10000 |
|
|
}
|
10001 |
|
|
|
10002 |
|
|
void
|
10003 |
|
|
_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
|
10004 |
|
|
struct elf_link_hash_entry *entry,
|
10005 |
|
|
bfd_boolean force_local)
|
10006 |
|
|
{
|
10007 |
|
|
bfd *dynobj;
|
10008 |
|
|
asection *got;
|
10009 |
|
|
struct mips_got_info *g;
|
10010 |
|
|
struct mips_elf_link_hash_entry *h;
|
10011 |
|
|
struct mips_elf_link_hash_table *htab;
|
10012 |
|
|
|
10013 |
|
|
h = (struct mips_elf_link_hash_entry *) entry;
|
10014 |
|
|
if (h->forced_local)
|
10015 |
|
|
return;
|
10016 |
|
|
h->forced_local = force_local;
|
10017 |
|
|
|
10018 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
10019 |
|
|
htab = mips_elf_hash_table (info);
|
10020 |
|
|
if (dynobj != NULL && force_local && h->root.type != STT_TLS
|
10021 |
|
|
&& (got = mips_elf_got_section (dynobj, TRUE)) != NULL
|
10022 |
|
|
&& (g = mips_elf_section_data (got)->u.got_info) != NULL)
|
10023 |
|
|
{
|
10024 |
|
|
if (g->next)
|
10025 |
|
|
{
|
10026 |
|
|
struct mips_got_entry e;
|
10027 |
|
|
struct mips_got_info *gg = g;
|
10028 |
|
|
|
10029 |
|
|
/* Since we're turning what used to be a global symbol into a
|
10030 |
|
|
local one, bump up the number of local entries of each GOT
|
10031 |
|
|
that had an entry for it. This will automatically decrease
|
10032 |
|
|
the number of global entries, since global_gotno is actually
|
10033 |
|
|
the upper limit of global entries. */
|
10034 |
|
|
e.abfd = dynobj;
|
10035 |
|
|
e.symndx = -1;
|
10036 |
|
|
e.d.h = h;
|
10037 |
|
|
e.tls_type = 0;
|
10038 |
|
|
|
10039 |
|
|
for (g = g->next; g != gg; g = g->next)
|
10040 |
|
|
if (htab_find (g->got_entries, &e))
|
10041 |
|
|
{
|
10042 |
|
|
BFD_ASSERT (g->global_gotno > 0);
|
10043 |
|
|
g->local_gotno++;
|
10044 |
|
|
g->global_gotno--;
|
10045 |
|
|
}
|
10046 |
|
|
|
10047 |
|
|
/* If this was a global symbol forced into the primary GOT, we
|
10048 |
|
|
no longer need an entry for it. We can't release the entry
|
10049 |
|
|
at this point, but we must at least stop counting it as one
|
10050 |
|
|
of the symbols that required a forced got entry. */
|
10051 |
|
|
if (h->root.got.offset == 2)
|
10052 |
|
|
{
|
10053 |
|
|
BFD_ASSERT (gg->assigned_gotno > 0);
|
10054 |
|
|
gg->assigned_gotno--;
|
10055 |
|
|
}
|
10056 |
|
|
}
|
10057 |
|
|
else if (h->root.got.offset == 1)
|
10058 |
|
|
{
|
10059 |
|
|
/* check_relocs didn't know that this symbol would be
|
10060 |
|
|
forced-local, so add an extra local got entry. */
|
10061 |
|
|
g->local_gotno++;
|
10062 |
|
|
if (htab->computed_got_sizes)
|
10063 |
|
|
{
|
10064 |
|
|
/* We'll have treated this symbol as global rather
|
10065 |
|
|
than local. */
|
10066 |
|
|
BFD_ASSERT (g->global_gotno > 0);
|
10067 |
|
|
g->global_gotno--;
|
10068 |
|
|
}
|
10069 |
|
|
}
|
10070 |
|
|
else if (htab->is_vxworks && h->root.needs_plt)
|
10071 |
|
|
{
|
10072 |
|
|
/* check_relocs didn't know that this symbol would be
|
10073 |
|
|
forced-local, so add an extra local got entry. */
|
10074 |
|
|
g->local_gotno++;
|
10075 |
|
|
if (htab->computed_got_sizes)
|
10076 |
|
|
/* The symbol is only used in call relocations, so we'll
|
10077 |
|
|
have assumed it only needs a .got.plt entry. Increase
|
10078 |
|
|
the size of .got accordingly. */
|
10079 |
|
|
got->size += MIPS_ELF_GOT_SIZE (dynobj);
|
10080 |
|
|
}
|
10081 |
|
|
}
|
10082 |
|
|
|
10083 |
|
|
_bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
|
10084 |
|
|
}
|
10085 |
|
|
|
10086 |
|
|
#define PDR_SIZE 32
|
10087 |
|
|
|
10088 |
|
|
bfd_boolean
|
10089 |
|
|
_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
|
10090 |
|
|
struct bfd_link_info *info)
|
10091 |
|
|
{
|
10092 |
|
|
asection *o;
|
10093 |
|
|
bfd_boolean ret = FALSE;
|
10094 |
|
|
unsigned char *tdata;
|
10095 |
|
|
size_t i, skip;
|
10096 |
|
|
|
10097 |
|
|
o = bfd_get_section_by_name (abfd, ".pdr");
|
10098 |
|
|
if (! o)
|
10099 |
|
|
return FALSE;
|
10100 |
|
|
if (o->size == 0)
|
10101 |
|
|
return FALSE;
|
10102 |
|
|
if (o->size % PDR_SIZE != 0)
|
10103 |
|
|
return FALSE;
|
10104 |
|
|
if (o->output_section != NULL
|
10105 |
|
|
&& bfd_is_abs_section (o->output_section))
|
10106 |
|
|
return FALSE;
|
10107 |
|
|
|
10108 |
|
|
tdata = bfd_zmalloc (o->size / PDR_SIZE);
|
10109 |
|
|
if (! tdata)
|
10110 |
|
|
return FALSE;
|
10111 |
|
|
|
10112 |
|
|
cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
10113 |
|
|
info->keep_memory);
|
10114 |
|
|
if (!cookie->rels)
|
10115 |
|
|
{
|
10116 |
|
|
free (tdata);
|
10117 |
|
|
return FALSE;
|
10118 |
|
|
}
|
10119 |
|
|
|
10120 |
|
|
cookie->rel = cookie->rels;
|
10121 |
|
|
cookie->relend = cookie->rels + o->reloc_count;
|
10122 |
|
|
|
10123 |
|
|
for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
|
10124 |
|
|
{
|
10125 |
|
|
if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
|
10126 |
|
|
{
|
10127 |
|
|
tdata[i] = 1;
|
10128 |
|
|
skip ++;
|
10129 |
|
|
}
|
10130 |
|
|
}
|
10131 |
|
|
|
10132 |
|
|
if (skip != 0)
|
10133 |
|
|
{
|
10134 |
|
|
mips_elf_section_data (o)->u.tdata = tdata;
|
10135 |
|
|
o->size -= skip * PDR_SIZE;
|
10136 |
|
|
ret = TRUE;
|
10137 |
|
|
}
|
10138 |
|
|
else
|
10139 |
|
|
free (tdata);
|
10140 |
|
|
|
10141 |
|
|
if (! info->keep_memory)
|
10142 |
|
|
free (cookie->rels);
|
10143 |
|
|
|
10144 |
|
|
return ret;
|
10145 |
|
|
}
|
10146 |
|
|
|
10147 |
|
|
bfd_boolean
|
10148 |
|
|
_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
|
10149 |
|
|
{
|
10150 |
|
|
if (strcmp (sec->name, ".pdr") == 0)
|
10151 |
|
|
return TRUE;
|
10152 |
|
|
return FALSE;
|
10153 |
|
|
}
|
10154 |
|
|
|
10155 |
|
|
bfd_boolean
|
10156 |
|
|
_bfd_mips_elf_write_section (bfd *output_bfd,
|
10157 |
|
|
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
|
10158 |
|
|
asection *sec, bfd_byte *contents)
|
10159 |
|
|
{
|
10160 |
|
|
bfd_byte *to, *from, *end;
|
10161 |
|
|
int i;
|
10162 |
|
|
|
10163 |
|
|
if (strcmp (sec->name, ".pdr") != 0)
|
10164 |
|
|
return FALSE;
|
10165 |
|
|
|
10166 |
|
|
if (mips_elf_section_data (sec)->u.tdata == NULL)
|
10167 |
|
|
return FALSE;
|
10168 |
|
|
|
10169 |
|
|
to = contents;
|
10170 |
|
|
end = contents + sec->size;
|
10171 |
|
|
for (from = contents, i = 0;
|
10172 |
|
|
from < end;
|
10173 |
|
|
from += PDR_SIZE, i++)
|
10174 |
|
|
{
|
10175 |
|
|
if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
|
10176 |
|
|
continue;
|
10177 |
|
|
if (to != from)
|
10178 |
|
|
memcpy (to, from, PDR_SIZE);
|
10179 |
|
|
to += PDR_SIZE;
|
10180 |
|
|
}
|
10181 |
|
|
bfd_set_section_contents (output_bfd, sec->output_section, contents,
|
10182 |
|
|
sec->output_offset, sec->size);
|
10183 |
|
|
return TRUE;
|
10184 |
|
|
}
|
10185 |
|
|
|
10186 |
|
|
/* MIPS ELF uses a special find_nearest_line routine in order the
|
10187 |
|
|
handle the ECOFF debugging information. */
|
10188 |
|
|
|
10189 |
|
|
struct mips_elf_find_line
|
10190 |
|
|
{
|
10191 |
|
|
struct ecoff_debug_info d;
|
10192 |
|
|
struct ecoff_find_line i;
|
10193 |
|
|
};
|
10194 |
|
|
|
10195 |
|
|
bfd_boolean
|
10196 |
|
|
_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
|
10197 |
|
|
asymbol **symbols, bfd_vma offset,
|
10198 |
|
|
const char **filename_ptr,
|
10199 |
|
|
const char **functionname_ptr,
|
10200 |
|
|
unsigned int *line_ptr)
|
10201 |
|
|
{
|
10202 |
|
|
asection *msec;
|
10203 |
|
|
|
10204 |
|
|
if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
|
10205 |
|
|
filename_ptr, functionname_ptr,
|
10206 |
|
|
line_ptr))
|
10207 |
|
|
return TRUE;
|
10208 |
|
|
|
10209 |
|
|
if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
|
10210 |
|
|
filename_ptr, functionname_ptr,
|
10211 |
|
|
line_ptr, ABI_64_P (abfd) ? 8 : 0,
|
10212 |
|
|
&elf_tdata (abfd)->dwarf2_find_line_info))
|
10213 |
|
|
return TRUE;
|
10214 |
|
|
|
10215 |
|
|
msec = bfd_get_section_by_name (abfd, ".mdebug");
|
10216 |
|
|
if (msec != NULL)
|
10217 |
|
|
{
|
10218 |
|
|
flagword origflags;
|
10219 |
|
|
struct mips_elf_find_line *fi;
|
10220 |
|
|
const struct ecoff_debug_swap * const swap =
|
10221 |
|
|
get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
|
10222 |
|
|
|
10223 |
|
|
/* If we are called during a link, mips_elf_final_link may have
|
10224 |
|
|
cleared the SEC_HAS_CONTENTS field. We force it back on here
|
10225 |
|
|
if appropriate (which it normally will be). */
|
10226 |
|
|
origflags = msec->flags;
|
10227 |
|
|
if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
|
10228 |
|
|
msec->flags |= SEC_HAS_CONTENTS;
|
10229 |
|
|
|
10230 |
|
|
fi = elf_tdata (abfd)->find_line_info;
|
10231 |
|
|
if (fi == NULL)
|
10232 |
|
|
{
|
10233 |
|
|
bfd_size_type external_fdr_size;
|
10234 |
|
|
char *fraw_src;
|
10235 |
|
|
char *fraw_end;
|
10236 |
|
|
struct fdr *fdr_ptr;
|
10237 |
|
|
bfd_size_type amt = sizeof (struct mips_elf_find_line);
|
10238 |
|
|
|
10239 |
|
|
fi = bfd_zalloc (abfd, amt);
|
10240 |
|
|
if (fi == NULL)
|
10241 |
|
|
{
|
10242 |
|
|
msec->flags = origflags;
|
10243 |
|
|
return FALSE;
|
10244 |
|
|
}
|
10245 |
|
|
|
10246 |
|
|
if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
|
10247 |
|
|
{
|
10248 |
|
|
msec->flags = origflags;
|
10249 |
|
|
return FALSE;
|
10250 |
|
|
}
|
10251 |
|
|
|
10252 |
|
|
/* Swap in the FDR information. */
|
10253 |
|
|
amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
|
10254 |
|
|
fi->d.fdr = bfd_alloc (abfd, amt);
|
10255 |
|
|
if (fi->d.fdr == NULL)
|
10256 |
|
|
{
|
10257 |
|
|
msec->flags = origflags;
|
10258 |
|
|
return FALSE;
|
10259 |
|
|
}
|
10260 |
|
|
external_fdr_size = swap->external_fdr_size;
|
10261 |
|
|
fdr_ptr = fi->d.fdr;
|
10262 |
|
|
fraw_src = (char *) fi->d.external_fdr;
|
10263 |
|
|
fraw_end = (fraw_src
|
10264 |
|
|
+ fi->d.symbolic_header.ifdMax * external_fdr_size);
|
10265 |
|
|
for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
|
10266 |
|
|
(*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
|
10267 |
|
|
|
10268 |
|
|
elf_tdata (abfd)->find_line_info = fi;
|
10269 |
|
|
|
10270 |
|
|
/* Note that we don't bother to ever free this information.
|
10271 |
|
|
find_nearest_line is either called all the time, as in
|
10272 |
|
|
objdump -l, so the information should be saved, or it is
|
10273 |
|
|
rarely called, as in ld error messages, so the memory
|
10274 |
|
|
wasted is unimportant. Still, it would probably be a
|
10275 |
|
|
good idea for free_cached_info to throw it away. */
|
10276 |
|
|
}
|
10277 |
|
|
|
10278 |
|
|
if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
|
10279 |
|
|
&fi->i, filename_ptr, functionname_ptr,
|
10280 |
|
|
line_ptr))
|
10281 |
|
|
{
|
10282 |
|
|
msec->flags = origflags;
|
10283 |
|
|
return TRUE;
|
10284 |
|
|
}
|
10285 |
|
|
|
10286 |
|
|
msec->flags = origflags;
|
10287 |
|
|
}
|
10288 |
|
|
|
10289 |
|
|
/* Fall back on the generic ELF find_nearest_line routine. */
|
10290 |
|
|
|
10291 |
|
|
return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
|
10292 |
|
|
filename_ptr, functionname_ptr,
|
10293 |
|
|
line_ptr);
|
10294 |
|
|
}
|
10295 |
|
|
|
10296 |
|
|
bfd_boolean
|
10297 |
|
|
_bfd_mips_elf_find_inliner_info (bfd *abfd,
|
10298 |
|
|
const char **filename_ptr,
|
10299 |
|
|
const char **functionname_ptr,
|
10300 |
|
|
unsigned int *line_ptr)
|
10301 |
|
|
{
|
10302 |
|
|
bfd_boolean found;
|
10303 |
|
|
found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
|
10304 |
|
|
functionname_ptr, line_ptr,
|
10305 |
|
|
& elf_tdata (abfd)->dwarf2_find_line_info);
|
10306 |
|
|
return found;
|
10307 |
|
|
}
|
10308 |
|
|
|
10309 |
|
|
|
10310 |
|
|
/* When are writing out the .options or .MIPS.options section,
|
10311 |
|
|
remember the bytes we are writing out, so that we can install the
|
10312 |
|
|
GP value in the section_processing routine. */
|
10313 |
|
|
|
10314 |
|
|
bfd_boolean
|
10315 |
|
|
_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
|
10316 |
|
|
const void *location,
|
10317 |
|
|
file_ptr offset, bfd_size_type count)
|
10318 |
|
|
{
|
10319 |
|
|
if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
|
10320 |
|
|
{
|
10321 |
|
|
bfd_byte *c;
|
10322 |
|
|
|
10323 |
|
|
if (elf_section_data (section) == NULL)
|
10324 |
|
|
{
|
10325 |
|
|
bfd_size_type amt = sizeof (struct bfd_elf_section_data);
|
10326 |
|
|
section->used_by_bfd = bfd_zalloc (abfd, amt);
|
10327 |
|
|
if (elf_section_data (section) == NULL)
|
10328 |
|
|
return FALSE;
|
10329 |
|
|
}
|
10330 |
|
|
c = mips_elf_section_data (section)->u.tdata;
|
10331 |
|
|
if (c == NULL)
|
10332 |
|
|
{
|
10333 |
|
|
c = bfd_zalloc (abfd, section->size);
|
10334 |
|
|
if (c == NULL)
|
10335 |
|
|
return FALSE;
|
10336 |
|
|
mips_elf_section_data (section)->u.tdata = c;
|
10337 |
|
|
}
|
10338 |
|
|
|
10339 |
|
|
memcpy (c + offset, location, count);
|
10340 |
|
|
}
|
10341 |
|
|
|
10342 |
|
|
return _bfd_elf_set_section_contents (abfd, section, location, offset,
|
10343 |
|
|
count);
|
10344 |
|
|
}
|
10345 |
|
|
|
10346 |
|
|
/* This is almost identical to bfd_generic_get_... except that some
|
10347 |
|
|
MIPS relocations need to be handled specially. Sigh. */
|
10348 |
|
|
|
10349 |
|
|
bfd_byte *
|
10350 |
|
|
_bfd_elf_mips_get_relocated_section_contents
|
10351 |
|
|
(bfd *abfd,
|
10352 |
|
|
struct bfd_link_info *link_info,
|
10353 |
|
|
struct bfd_link_order *link_order,
|
10354 |
|
|
bfd_byte *data,
|
10355 |
|
|
bfd_boolean relocatable,
|
10356 |
|
|
asymbol **symbols)
|
10357 |
|
|
{
|
10358 |
|
|
/* Get enough memory to hold the stuff */
|
10359 |
|
|
bfd *input_bfd = link_order->u.indirect.section->owner;
|
10360 |
|
|
asection *input_section = link_order->u.indirect.section;
|
10361 |
|
|
bfd_size_type sz;
|
10362 |
|
|
|
10363 |
|
|
long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
|
10364 |
|
|
arelent **reloc_vector = NULL;
|
10365 |
|
|
long reloc_count;
|
10366 |
|
|
|
10367 |
|
|
if (reloc_size < 0)
|
10368 |
|
|
goto error_return;
|
10369 |
|
|
|
10370 |
|
|
reloc_vector = bfd_malloc (reloc_size);
|
10371 |
|
|
if (reloc_vector == NULL && reloc_size != 0)
|
10372 |
|
|
goto error_return;
|
10373 |
|
|
|
10374 |
|
|
/* read in the section */
|
10375 |
|
|
sz = input_section->rawsize ? input_section->rawsize : input_section->size;
|
10376 |
|
|
if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
|
10377 |
|
|
goto error_return;
|
10378 |
|
|
|
10379 |
|
|
reloc_count = bfd_canonicalize_reloc (input_bfd,
|
10380 |
|
|
input_section,
|
10381 |
|
|
reloc_vector,
|
10382 |
|
|
symbols);
|
10383 |
|
|
if (reloc_count < 0)
|
10384 |
|
|
goto error_return;
|
10385 |
|
|
|
10386 |
|
|
if (reloc_count > 0)
|
10387 |
|
|
{
|
10388 |
|
|
arelent **parent;
|
10389 |
|
|
/* for mips */
|
10390 |
|
|
int gp_found;
|
10391 |
|
|
bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
|
10392 |
|
|
|
10393 |
|
|
{
|
10394 |
|
|
struct bfd_hash_entry *h;
|
10395 |
|
|
struct bfd_link_hash_entry *lh;
|
10396 |
|
|
/* Skip all this stuff if we aren't mixing formats. */
|
10397 |
|
|
if (abfd && input_bfd
|
10398 |
|
|
&& abfd->xvec == input_bfd->xvec)
|
10399 |
|
|
lh = 0;
|
10400 |
|
|
else
|
10401 |
|
|
{
|
10402 |
|
|
h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
|
10403 |
|
|
lh = (struct bfd_link_hash_entry *) h;
|
10404 |
|
|
}
|
10405 |
|
|
lookup:
|
10406 |
|
|
if (lh)
|
10407 |
|
|
{
|
10408 |
|
|
switch (lh->type)
|
10409 |
|
|
{
|
10410 |
|
|
case bfd_link_hash_undefined:
|
10411 |
|
|
case bfd_link_hash_undefweak:
|
10412 |
|
|
case bfd_link_hash_common:
|
10413 |
|
|
gp_found = 0;
|
10414 |
|
|
break;
|
10415 |
|
|
case bfd_link_hash_defined:
|
10416 |
|
|
case bfd_link_hash_defweak:
|
10417 |
|
|
gp_found = 1;
|
10418 |
|
|
gp = lh->u.def.value;
|
10419 |
|
|
break;
|
10420 |
|
|
case bfd_link_hash_indirect:
|
10421 |
|
|
case bfd_link_hash_warning:
|
10422 |
|
|
lh = lh->u.i.link;
|
10423 |
|
|
/* @@FIXME ignoring warning for now */
|
10424 |
|
|
goto lookup;
|
10425 |
|
|
case bfd_link_hash_new:
|
10426 |
|
|
default:
|
10427 |
|
|
abort ();
|
10428 |
|
|
}
|
10429 |
|
|
}
|
10430 |
|
|
else
|
10431 |
|
|
gp_found = 0;
|
10432 |
|
|
}
|
10433 |
|
|
/* end mips */
|
10434 |
|
|
for (parent = reloc_vector; *parent != NULL; parent++)
|
10435 |
|
|
{
|
10436 |
|
|
char *error_message = NULL;
|
10437 |
|
|
bfd_reloc_status_type r;
|
10438 |
|
|
|
10439 |
|
|
/* Specific to MIPS: Deal with relocation types that require
|
10440 |
|
|
knowing the gp of the output bfd. */
|
10441 |
|
|
asymbol *sym = *(*parent)->sym_ptr_ptr;
|
10442 |
|
|
|
10443 |
|
|
/* If we've managed to find the gp and have a special
|
10444 |
|
|
function for the relocation then go ahead, else default
|
10445 |
|
|
to the generic handling. */
|
10446 |
|
|
if (gp_found
|
10447 |
|
|
&& (*parent)->howto->special_function
|
10448 |
|
|
== _bfd_mips_elf32_gprel16_reloc)
|
10449 |
|
|
r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
|
10450 |
|
|
input_section, relocatable,
|
10451 |
|
|
data, gp);
|
10452 |
|
|
else
|
10453 |
|
|
r = bfd_perform_relocation (input_bfd, *parent, data,
|
10454 |
|
|
input_section,
|
10455 |
|
|
relocatable ? abfd : NULL,
|
10456 |
|
|
&error_message);
|
10457 |
|
|
|
10458 |
|
|
if (relocatable)
|
10459 |
|
|
{
|
10460 |
|
|
asection *os = input_section->output_section;
|
10461 |
|
|
|
10462 |
|
|
/* A partial link, so keep the relocs */
|
10463 |
|
|
os->orelocation[os->reloc_count] = *parent;
|
10464 |
|
|
os->reloc_count++;
|
10465 |
|
|
}
|
10466 |
|
|
|
10467 |
|
|
if (r != bfd_reloc_ok)
|
10468 |
|
|
{
|
10469 |
|
|
switch (r)
|
10470 |
|
|
{
|
10471 |
|
|
case bfd_reloc_undefined:
|
10472 |
|
|
if (!((*link_info->callbacks->undefined_symbol)
|
10473 |
|
|
(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
|
10474 |
|
|
input_bfd, input_section, (*parent)->address, TRUE)))
|
10475 |
|
|
goto error_return;
|
10476 |
|
|
break;
|
10477 |
|
|
case bfd_reloc_dangerous:
|
10478 |
|
|
BFD_ASSERT (error_message != NULL);
|
10479 |
|
|
if (!((*link_info->callbacks->reloc_dangerous)
|
10480 |
|
|
(link_info, error_message, input_bfd, input_section,
|
10481 |
|
|
(*parent)->address)))
|
10482 |
|
|
goto error_return;
|
10483 |
|
|
break;
|
10484 |
|
|
case bfd_reloc_overflow:
|
10485 |
|
|
if (!((*link_info->callbacks->reloc_overflow)
|
10486 |
|
|
(link_info, NULL,
|
10487 |
|
|
bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
|
10488 |
|
|
(*parent)->howto->name, (*parent)->addend,
|
10489 |
|
|
input_bfd, input_section, (*parent)->address)))
|
10490 |
|
|
goto error_return;
|
10491 |
|
|
break;
|
10492 |
|
|
case bfd_reloc_outofrange:
|
10493 |
|
|
default:
|
10494 |
|
|
abort ();
|
10495 |
|
|
break;
|
10496 |
|
|
}
|
10497 |
|
|
|
10498 |
|
|
}
|
10499 |
|
|
}
|
10500 |
|
|
}
|
10501 |
|
|
if (reloc_vector != NULL)
|
10502 |
|
|
free (reloc_vector);
|
10503 |
|
|
return data;
|
10504 |
|
|
|
10505 |
|
|
error_return:
|
10506 |
|
|
if (reloc_vector != NULL)
|
10507 |
|
|
free (reloc_vector);
|
10508 |
|
|
return NULL;
|
10509 |
|
|
}
|
10510 |
|
|
|
10511 |
|
|
/* Create a MIPS ELF linker hash table. */
|
10512 |
|
|
|
10513 |
|
|
struct bfd_link_hash_table *
|
10514 |
|
|
_bfd_mips_elf_link_hash_table_create (bfd *abfd)
|
10515 |
|
|
{
|
10516 |
|
|
struct mips_elf_link_hash_table *ret;
|
10517 |
|
|
bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
|
10518 |
|
|
|
10519 |
|
|
ret = bfd_malloc (amt);
|
10520 |
|
|
if (ret == NULL)
|
10521 |
|
|
return NULL;
|
10522 |
|
|
|
10523 |
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
10524 |
|
|
mips_elf_link_hash_newfunc,
|
10525 |
|
|
sizeof (struct mips_elf_link_hash_entry)))
|
10526 |
|
|
{
|
10527 |
|
|
free (ret);
|
10528 |
|
|
return NULL;
|
10529 |
|
|
}
|
10530 |
|
|
|
10531 |
|
|
#if 0
|
10532 |
|
|
/* We no longer use this. */
|
10533 |
|
|
for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
|
10534 |
|
|
ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
|
10535 |
|
|
#endif
|
10536 |
|
|
ret->procedure_count = 0;
|
10537 |
|
|
ret->compact_rel_size = 0;
|
10538 |
|
|
ret->use_rld_obj_head = FALSE;
|
10539 |
|
|
ret->rld_value = 0;
|
10540 |
|
|
ret->mips16_stubs_seen = FALSE;
|
10541 |
|
|
ret->computed_got_sizes = FALSE;
|
10542 |
|
|
ret->is_vxworks = FALSE;
|
10543 |
|
|
ret->small_data_overflow_reported = FALSE;
|
10544 |
|
|
ret->srelbss = NULL;
|
10545 |
|
|
ret->sdynbss = NULL;
|
10546 |
|
|
ret->srelplt = NULL;
|
10547 |
|
|
ret->srelplt2 = NULL;
|
10548 |
|
|
ret->sgotplt = NULL;
|
10549 |
|
|
ret->splt = NULL;
|
10550 |
|
|
ret->plt_header_size = 0;
|
10551 |
|
|
ret->plt_entry_size = 0;
|
10552 |
|
|
ret->function_stub_size = 0;
|
10553 |
|
|
|
10554 |
|
|
return &ret->root.root;
|
10555 |
|
|
}
|
10556 |
|
|
|
10557 |
|
|
/* Likewise, but indicate that the target is VxWorks. */
|
10558 |
|
|
|
10559 |
|
|
struct bfd_link_hash_table *
|
10560 |
|
|
_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
|
10561 |
|
|
{
|
10562 |
|
|
struct bfd_link_hash_table *ret;
|
10563 |
|
|
|
10564 |
|
|
ret = _bfd_mips_elf_link_hash_table_create (abfd);
|
10565 |
|
|
if (ret)
|
10566 |
|
|
{
|
10567 |
|
|
struct mips_elf_link_hash_table *htab;
|
10568 |
|
|
|
10569 |
|
|
htab = (struct mips_elf_link_hash_table *) ret;
|
10570 |
|
|
htab->is_vxworks = 1;
|
10571 |
|
|
}
|
10572 |
|
|
return ret;
|
10573 |
|
|
}
|
10574 |
|
|
|
10575 |
|
|
/* We need to use a special link routine to handle the .reginfo and
|
10576 |
|
|
the .mdebug sections. We need to merge all instances of these
|
10577 |
|
|
sections together, not write them all out sequentially. */
|
10578 |
|
|
|
10579 |
|
|
bfd_boolean
|
10580 |
|
|
_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
|
10581 |
|
|
{
|
10582 |
|
|
asection *o;
|
10583 |
|
|
struct bfd_link_order *p;
|
10584 |
|
|
asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
|
10585 |
|
|
asection *rtproc_sec;
|
10586 |
|
|
Elf32_RegInfo reginfo;
|
10587 |
|
|
struct ecoff_debug_info debug;
|
10588 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
10589 |
|
|
const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
|
10590 |
|
|
HDRR *symhdr = &debug.symbolic_header;
|
10591 |
|
|
void *mdebug_handle = NULL;
|
10592 |
|
|
asection *s;
|
10593 |
|
|
EXTR esym;
|
10594 |
|
|
unsigned int i;
|
10595 |
|
|
bfd_size_type amt;
|
10596 |
|
|
struct mips_elf_link_hash_table *htab;
|
10597 |
|
|
|
10598 |
|
|
static const char * const secname[] =
|
10599 |
|
|
{
|
10600 |
|
|
".text", ".init", ".fini", ".data",
|
10601 |
|
|
".rodata", ".sdata", ".sbss", ".bss"
|
10602 |
|
|
};
|
10603 |
|
|
static const int sc[] =
|
10604 |
|
|
{
|
10605 |
|
|
scText, scInit, scFini, scData,
|
10606 |
|
|
scRData, scSData, scSBss, scBss
|
10607 |
|
|
};
|
10608 |
|
|
|
10609 |
|
|
/* We'd carefully arranged the dynamic symbol indices, and then the
|
10610 |
|
|
generic size_dynamic_sections renumbered them out from under us.
|
10611 |
|
|
Rather than trying somehow to prevent the renumbering, just do
|
10612 |
|
|
the sort again. */
|
10613 |
|
|
htab = mips_elf_hash_table (info);
|
10614 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
10615 |
|
|
{
|
10616 |
|
|
bfd *dynobj;
|
10617 |
|
|
asection *got;
|
10618 |
|
|
struct mips_got_info *g;
|
10619 |
|
|
bfd_size_type dynsecsymcount;
|
10620 |
|
|
|
10621 |
|
|
/* When we resort, we must tell mips_elf_sort_hash_table what
|
10622 |
|
|
the lowest index it may use is. That's the number of section
|
10623 |
|
|
symbols we're going to add. The generic ELF linker only
|
10624 |
|
|
adds these symbols when building a shared object. Note that
|
10625 |
|
|
we count the sections after (possibly) removing the .options
|
10626 |
|
|
section above. */
|
10627 |
|
|
|
10628 |
|
|
dynsecsymcount = count_section_dynsyms (abfd, info);
|
10629 |
|
|
if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
|
10630 |
|
|
return FALSE;
|
10631 |
|
|
|
10632 |
|
|
/* Make sure we didn't grow the global .got region. */
|
10633 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
10634 |
|
|
got = mips_elf_got_section (dynobj, FALSE);
|
10635 |
|
|
g = mips_elf_section_data (got)->u.got_info;
|
10636 |
|
|
|
10637 |
|
|
if (g->global_gotsym != NULL)
|
10638 |
|
|
BFD_ASSERT ((elf_hash_table (info)->dynsymcount
|
10639 |
|
|
- g->global_gotsym->dynindx)
|
10640 |
|
|
<= g->global_gotno);
|
10641 |
|
|
}
|
10642 |
|
|
|
10643 |
|
|
/* Get a value for the GP register. */
|
10644 |
|
|
if (elf_gp (abfd) == 0)
|
10645 |
|
|
{
|
10646 |
|
|
struct bfd_link_hash_entry *h;
|
10647 |
|
|
|
10648 |
|
|
h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
|
10649 |
|
|
if (h != NULL && h->type == bfd_link_hash_defined)
|
10650 |
|
|
elf_gp (abfd) = (h->u.def.value
|
10651 |
|
|
+ h->u.def.section->output_section->vma
|
10652 |
|
|
+ h->u.def.section->output_offset);
|
10653 |
|
|
else if (htab->is_vxworks
|
10654 |
|
|
&& (h = bfd_link_hash_lookup (info->hash,
|
10655 |
|
|
"_GLOBAL_OFFSET_TABLE_",
|
10656 |
|
|
FALSE, FALSE, TRUE))
|
10657 |
|
|
&& h->type == bfd_link_hash_defined)
|
10658 |
|
|
elf_gp (abfd) = (h->u.def.section->output_section->vma
|
10659 |
|
|
+ h->u.def.section->output_offset
|
10660 |
|
|
+ h->u.def.value);
|
10661 |
|
|
else if (info->relocatable)
|
10662 |
|
|
{
|
10663 |
|
|
bfd_vma lo = MINUS_ONE;
|
10664 |
|
|
|
10665 |
|
|
/* Find the GP-relative section with the lowest offset. */
|
10666 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10667 |
|
|
if (o->vma < lo
|
10668 |
|
|
&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
|
10669 |
|
|
lo = o->vma;
|
10670 |
|
|
|
10671 |
|
|
/* And calculate GP relative to that. */
|
10672 |
|
|
elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
|
10673 |
|
|
}
|
10674 |
|
|
else
|
10675 |
|
|
{
|
10676 |
|
|
/* If the relocate_section function needs to do a reloc
|
10677 |
|
|
involving the GP value, it should make a reloc_dangerous
|
10678 |
|
|
callback to warn that GP is not defined. */
|
10679 |
|
|
}
|
10680 |
|
|
}
|
10681 |
|
|
|
10682 |
|
|
/* Go through the sections and collect the .reginfo and .mdebug
|
10683 |
|
|
information. */
|
10684 |
|
|
reginfo_sec = NULL;
|
10685 |
|
|
mdebug_sec = NULL;
|
10686 |
|
|
gptab_data_sec = NULL;
|
10687 |
|
|
gptab_bss_sec = NULL;
|
10688 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10689 |
|
|
{
|
10690 |
|
|
if (strcmp (o->name, ".reginfo") == 0)
|
10691 |
|
|
{
|
10692 |
|
|
memset (®info, 0, sizeof reginfo);
|
10693 |
|
|
|
10694 |
|
|
/* We have found the .reginfo section in the output file.
|
10695 |
|
|
Look through all the link_orders comprising it and merge
|
10696 |
|
|
the information together. */
|
10697 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10698 |
|
|
{
|
10699 |
|
|
asection *input_section;
|
10700 |
|
|
bfd *input_bfd;
|
10701 |
|
|
Elf32_External_RegInfo ext;
|
10702 |
|
|
Elf32_RegInfo sub;
|
10703 |
|
|
|
10704 |
|
|
if (p->type != bfd_indirect_link_order)
|
10705 |
|
|
{
|
10706 |
|
|
if (p->type == bfd_data_link_order)
|
10707 |
|
|
continue;
|
10708 |
|
|
abort ();
|
10709 |
|
|
}
|
10710 |
|
|
|
10711 |
|
|
input_section = p->u.indirect.section;
|
10712 |
|
|
input_bfd = input_section->owner;
|
10713 |
|
|
|
10714 |
|
|
if (! bfd_get_section_contents (input_bfd, input_section,
|
10715 |
|
|
&ext, 0, sizeof ext))
|
10716 |
|
|
return FALSE;
|
10717 |
|
|
|
10718 |
|
|
bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
|
10719 |
|
|
|
10720 |
|
|
reginfo.ri_gprmask |= sub.ri_gprmask;
|
10721 |
|
|
reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
|
10722 |
|
|
reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
|
10723 |
|
|
reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
|
10724 |
|
|
reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
|
10725 |
|
|
|
10726 |
|
|
/* ri_gp_value is set by the function
|
10727 |
|
|
mips_elf32_section_processing when the section is
|
10728 |
|
|
finally written out. */
|
10729 |
|
|
|
10730 |
|
|
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
10731 |
|
|
elf_link_input_bfd ignores this section. */
|
10732 |
|
|
input_section->flags &= ~SEC_HAS_CONTENTS;
|
10733 |
|
|
}
|
10734 |
|
|
|
10735 |
|
|
/* Size has been set in _bfd_mips_elf_always_size_sections. */
|
10736 |
|
|
BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
|
10737 |
|
|
|
10738 |
|
|
/* Skip this section later on (I don't think this currently
|
10739 |
|
|
matters, but someday it might). */
|
10740 |
|
|
o->map_head.link_order = NULL;
|
10741 |
|
|
|
10742 |
|
|
reginfo_sec = o;
|
10743 |
|
|
}
|
10744 |
|
|
|
10745 |
|
|
if (strcmp (o->name, ".mdebug") == 0)
|
10746 |
|
|
{
|
10747 |
|
|
struct extsym_info einfo;
|
10748 |
|
|
bfd_vma last;
|
10749 |
|
|
|
10750 |
|
|
/* We have found the .mdebug section in the output file.
|
10751 |
|
|
Look through all the link_orders comprising it and merge
|
10752 |
|
|
the information together. */
|
10753 |
|
|
symhdr->magic = swap->sym_magic;
|
10754 |
|
|
/* FIXME: What should the version stamp be? */
|
10755 |
|
|
symhdr->vstamp = 0;
|
10756 |
|
|
symhdr->ilineMax = 0;
|
10757 |
|
|
symhdr->cbLine = 0;
|
10758 |
|
|
symhdr->idnMax = 0;
|
10759 |
|
|
symhdr->ipdMax = 0;
|
10760 |
|
|
symhdr->isymMax = 0;
|
10761 |
|
|
symhdr->ioptMax = 0;
|
10762 |
|
|
symhdr->iauxMax = 0;
|
10763 |
|
|
symhdr->issMax = 0;
|
10764 |
|
|
symhdr->issExtMax = 0;
|
10765 |
|
|
symhdr->ifdMax = 0;
|
10766 |
|
|
symhdr->crfd = 0;
|
10767 |
|
|
symhdr->iextMax = 0;
|
10768 |
|
|
|
10769 |
|
|
/* We accumulate the debugging information itself in the
|
10770 |
|
|
debug_info structure. */
|
10771 |
|
|
debug.line = NULL;
|
10772 |
|
|
debug.external_dnr = NULL;
|
10773 |
|
|
debug.external_pdr = NULL;
|
10774 |
|
|
debug.external_sym = NULL;
|
10775 |
|
|
debug.external_opt = NULL;
|
10776 |
|
|
debug.external_aux = NULL;
|
10777 |
|
|
debug.ss = NULL;
|
10778 |
|
|
debug.ssext = debug.ssext_end = NULL;
|
10779 |
|
|
debug.external_fdr = NULL;
|
10780 |
|
|
debug.external_rfd = NULL;
|
10781 |
|
|
debug.external_ext = debug.external_ext_end = NULL;
|
10782 |
|
|
|
10783 |
|
|
mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
|
10784 |
|
|
if (mdebug_handle == NULL)
|
10785 |
|
|
return FALSE;
|
10786 |
|
|
|
10787 |
|
|
esym.jmptbl = 0;
|
10788 |
|
|
esym.cobol_main = 0;
|
10789 |
|
|
esym.weakext = 0;
|
10790 |
|
|
esym.reserved = 0;
|
10791 |
|
|
esym.ifd = ifdNil;
|
10792 |
|
|
esym.asym.iss = issNil;
|
10793 |
|
|
esym.asym.st = stLocal;
|
10794 |
|
|
esym.asym.reserved = 0;
|
10795 |
|
|
esym.asym.index = indexNil;
|
10796 |
|
|
last = 0;
|
10797 |
|
|
for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
|
10798 |
|
|
{
|
10799 |
|
|
esym.asym.sc = sc[i];
|
10800 |
|
|
s = bfd_get_section_by_name (abfd, secname[i]);
|
10801 |
|
|
if (s != NULL)
|
10802 |
|
|
{
|
10803 |
|
|
esym.asym.value = s->vma;
|
10804 |
|
|
last = s->vma + s->size;
|
10805 |
|
|
}
|
10806 |
|
|
else
|
10807 |
|
|
esym.asym.value = last;
|
10808 |
|
|
if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
|
10809 |
|
|
secname[i], &esym))
|
10810 |
|
|
return FALSE;
|
10811 |
|
|
}
|
10812 |
|
|
|
10813 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10814 |
|
|
{
|
10815 |
|
|
asection *input_section;
|
10816 |
|
|
bfd *input_bfd;
|
10817 |
|
|
const struct ecoff_debug_swap *input_swap;
|
10818 |
|
|
struct ecoff_debug_info input_debug;
|
10819 |
|
|
char *eraw_src;
|
10820 |
|
|
char *eraw_end;
|
10821 |
|
|
|
10822 |
|
|
if (p->type != bfd_indirect_link_order)
|
10823 |
|
|
{
|
10824 |
|
|
if (p->type == bfd_data_link_order)
|
10825 |
|
|
continue;
|
10826 |
|
|
abort ();
|
10827 |
|
|
}
|
10828 |
|
|
|
10829 |
|
|
input_section = p->u.indirect.section;
|
10830 |
|
|
input_bfd = input_section->owner;
|
10831 |
|
|
|
10832 |
|
|
if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
|
10833 |
|
|
|| (get_elf_backend_data (input_bfd)
|
10834 |
|
|
->elf_backend_ecoff_debug_swap) == NULL)
|
10835 |
|
|
{
|
10836 |
|
|
/* I don't know what a non MIPS ELF bfd would be
|
10837 |
|
|
doing with a .mdebug section, but I don't really
|
10838 |
|
|
want to deal with it. */
|
10839 |
|
|
continue;
|
10840 |
|
|
}
|
10841 |
|
|
|
10842 |
|
|
input_swap = (get_elf_backend_data (input_bfd)
|
10843 |
|
|
->elf_backend_ecoff_debug_swap);
|
10844 |
|
|
|
10845 |
|
|
BFD_ASSERT (p->size == input_section->size);
|
10846 |
|
|
|
10847 |
|
|
/* The ECOFF linking code expects that we have already
|
10848 |
|
|
read in the debugging information and set up an
|
10849 |
|
|
ecoff_debug_info structure, so we do that now. */
|
10850 |
|
|
if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
|
10851 |
|
|
&input_debug))
|
10852 |
|
|
return FALSE;
|
10853 |
|
|
|
10854 |
|
|
if (! (bfd_ecoff_debug_accumulate
|
10855 |
|
|
(mdebug_handle, abfd, &debug, swap, input_bfd,
|
10856 |
|
|
&input_debug, input_swap, info)))
|
10857 |
|
|
return FALSE;
|
10858 |
|
|
|
10859 |
|
|
/* Loop through the external symbols. For each one with
|
10860 |
|
|
interesting information, try to find the symbol in
|
10861 |
|
|
the linker global hash table and save the information
|
10862 |
|
|
for the output external symbols. */
|
10863 |
|
|
eraw_src = input_debug.external_ext;
|
10864 |
|
|
eraw_end = (eraw_src
|
10865 |
|
|
+ (input_debug.symbolic_header.iextMax
|
10866 |
|
|
* input_swap->external_ext_size));
|
10867 |
|
|
for (;
|
10868 |
|
|
eraw_src < eraw_end;
|
10869 |
|
|
eraw_src += input_swap->external_ext_size)
|
10870 |
|
|
{
|
10871 |
|
|
EXTR ext;
|
10872 |
|
|
const char *name;
|
10873 |
|
|
struct mips_elf_link_hash_entry *h;
|
10874 |
|
|
|
10875 |
|
|
(*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
|
10876 |
|
|
if (ext.asym.sc == scNil
|
10877 |
|
|
|| ext.asym.sc == scUndefined
|
10878 |
|
|
|| ext.asym.sc == scSUndefined)
|
10879 |
|
|
continue;
|
10880 |
|
|
|
10881 |
|
|
name = input_debug.ssext + ext.asym.iss;
|
10882 |
|
|
h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
|
10883 |
|
|
name, FALSE, FALSE, TRUE);
|
10884 |
|
|
if (h == NULL || h->esym.ifd != -2)
|
10885 |
|
|
continue;
|
10886 |
|
|
|
10887 |
|
|
if (ext.ifd != -1)
|
10888 |
|
|
{
|
10889 |
|
|
BFD_ASSERT (ext.ifd
|
10890 |
|
|
< input_debug.symbolic_header.ifdMax);
|
10891 |
|
|
ext.ifd = input_debug.ifdmap[ext.ifd];
|
10892 |
|
|
}
|
10893 |
|
|
|
10894 |
|
|
h->esym = ext;
|
10895 |
|
|
}
|
10896 |
|
|
|
10897 |
|
|
/* Free up the information we just read. */
|
10898 |
|
|
free (input_debug.line);
|
10899 |
|
|
free (input_debug.external_dnr);
|
10900 |
|
|
free (input_debug.external_pdr);
|
10901 |
|
|
free (input_debug.external_sym);
|
10902 |
|
|
free (input_debug.external_opt);
|
10903 |
|
|
free (input_debug.external_aux);
|
10904 |
|
|
free (input_debug.ss);
|
10905 |
|
|
free (input_debug.ssext);
|
10906 |
|
|
free (input_debug.external_fdr);
|
10907 |
|
|
free (input_debug.external_rfd);
|
10908 |
|
|
free (input_debug.external_ext);
|
10909 |
|
|
|
10910 |
|
|
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
10911 |
|
|
elf_link_input_bfd ignores this section. */
|
10912 |
|
|
input_section->flags &= ~SEC_HAS_CONTENTS;
|
10913 |
|
|
}
|
10914 |
|
|
|
10915 |
|
|
if (SGI_COMPAT (abfd) && info->shared)
|
10916 |
|
|
{
|
10917 |
|
|
/* Create .rtproc section. */
|
10918 |
|
|
rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
|
10919 |
|
|
if (rtproc_sec == NULL)
|
10920 |
|
|
{
|
10921 |
|
|
flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
10922 |
|
|
| SEC_LINKER_CREATED | SEC_READONLY);
|
10923 |
|
|
|
10924 |
|
|
rtproc_sec = bfd_make_section_with_flags (abfd,
|
10925 |
|
|
".rtproc",
|
10926 |
|
|
flags);
|
10927 |
|
|
if (rtproc_sec == NULL
|
10928 |
|
|
|| ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
|
10929 |
|
|
return FALSE;
|
10930 |
|
|
}
|
10931 |
|
|
|
10932 |
|
|
if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
|
10933 |
|
|
info, rtproc_sec,
|
10934 |
|
|
&debug))
|
10935 |
|
|
return FALSE;
|
10936 |
|
|
}
|
10937 |
|
|
|
10938 |
|
|
/* Build the external symbol information. */
|
10939 |
|
|
einfo.abfd = abfd;
|
10940 |
|
|
einfo.info = info;
|
10941 |
|
|
einfo.debug = &debug;
|
10942 |
|
|
einfo.swap = swap;
|
10943 |
|
|
einfo.failed = FALSE;
|
10944 |
|
|
mips_elf_link_hash_traverse (mips_elf_hash_table (info),
|
10945 |
|
|
mips_elf_output_extsym, &einfo);
|
10946 |
|
|
if (einfo.failed)
|
10947 |
|
|
return FALSE;
|
10948 |
|
|
|
10949 |
|
|
/* Set the size of the .mdebug section. */
|
10950 |
|
|
o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
|
10951 |
|
|
|
10952 |
|
|
/* Skip this section later on (I don't think this currently
|
10953 |
|
|
matters, but someday it might). */
|
10954 |
|
|
o->map_head.link_order = NULL;
|
10955 |
|
|
|
10956 |
|
|
mdebug_sec = o;
|
10957 |
|
|
}
|
10958 |
|
|
|
10959 |
|
|
if (CONST_STRNEQ (o->name, ".gptab."))
|
10960 |
|
|
{
|
10961 |
|
|
const char *subname;
|
10962 |
|
|
unsigned int c;
|
10963 |
|
|
Elf32_gptab *tab;
|
10964 |
|
|
Elf32_External_gptab *ext_tab;
|
10965 |
|
|
unsigned int j;
|
10966 |
|
|
|
10967 |
|
|
/* The .gptab.sdata and .gptab.sbss sections hold
|
10968 |
|
|
information describing how the small data area would
|
10969 |
|
|
change depending upon the -G switch. These sections
|
10970 |
|
|
not used in executables files. */
|
10971 |
|
|
if (! info->relocatable)
|
10972 |
|
|
{
|
10973 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10974 |
|
|
{
|
10975 |
|
|
asection *input_section;
|
10976 |
|
|
|
10977 |
|
|
if (p->type != bfd_indirect_link_order)
|
10978 |
|
|
{
|
10979 |
|
|
if (p->type == bfd_data_link_order)
|
10980 |
|
|
continue;
|
10981 |
|
|
abort ();
|
10982 |
|
|
}
|
10983 |
|
|
|
10984 |
|
|
input_section = p->u.indirect.section;
|
10985 |
|
|
|
10986 |
|
|
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
10987 |
|
|
elf_link_input_bfd ignores this section. */
|
10988 |
|
|
input_section->flags &= ~SEC_HAS_CONTENTS;
|
10989 |
|
|
}
|
10990 |
|
|
|
10991 |
|
|
/* Skip this section later on (I don't think this
|
10992 |
|
|
currently matters, but someday it might). */
|
10993 |
|
|
o->map_head.link_order = NULL;
|
10994 |
|
|
|
10995 |
|
|
/* Really remove the section. */
|
10996 |
|
|
bfd_section_list_remove (abfd, o);
|
10997 |
|
|
--abfd->section_count;
|
10998 |
|
|
|
10999 |
|
|
continue;
|
11000 |
|
|
}
|
11001 |
|
|
|
11002 |
|
|
/* There is one gptab for initialized data, and one for
|
11003 |
|
|
uninitialized data. */
|
11004 |
|
|
if (strcmp (o->name, ".gptab.sdata") == 0)
|
11005 |
|
|
gptab_data_sec = o;
|
11006 |
|
|
else if (strcmp (o->name, ".gptab.sbss") == 0)
|
11007 |
|
|
gptab_bss_sec = o;
|
11008 |
|
|
else
|
11009 |
|
|
{
|
11010 |
|
|
(*_bfd_error_handler)
|
11011 |
|
|
(_("%s: illegal section name `%s'"),
|
11012 |
|
|
bfd_get_filename (abfd), o->name);
|
11013 |
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
11014 |
|
|
return FALSE;
|
11015 |
|
|
}
|
11016 |
|
|
|
11017 |
|
|
/* The linker script always combines .gptab.data and
|
11018 |
|
|
.gptab.sdata into .gptab.sdata, and likewise for
|
11019 |
|
|
.gptab.bss and .gptab.sbss. It is possible that there is
|
11020 |
|
|
no .sdata or .sbss section in the output file, in which
|
11021 |
|
|
case we must change the name of the output section. */
|
11022 |
|
|
subname = o->name + sizeof ".gptab" - 1;
|
11023 |
|
|
if (bfd_get_section_by_name (abfd, subname) == NULL)
|
11024 |
|
|
{
|
11025 |
|
|
if (o == gptab_data_sec)
|
11026 |
|
|
o->name = ".gptab.data";
|
11027 |
|
|
else
|
11028 |
|
|
o->name = ".gptab.bss";
|
11029 |
|
|
subname = o->name + sizeof ".gptab" - 1;
|
11030 |
|
|
BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
|
11031 |
|
|
}
|
11032 |
|
|
|
11033 |
|
|
/* Set up the first entry. */
|
11034 |
|
|
c = 1;
|
11035 |
|
|
amt = c * sizeof (Elf32_gptab);
|
11036 |
|
|
tab = bfd_malloc (amt);
|
11037 |
|
|
if (tab == NULL)
|
11038 |
|
|
return FALSE;
|
11039 |
|
|
tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
|
11040 |
|
|
tab[0].gt_header.gt_unused = 0;
|
11041 |
|
|
|
11042 |
|
|
/* Combine the input sections. */
|
11043 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
11044 |
|
|
{
|
11045 |
|
|
asection *input_section;
|
11046 |
|
|
bfd *input_bfd;
|
11047 |
|
|
bfd_size_type size;
|
11048 |
|
|
unsigned long last;
|
11049 |
|
|
bfd_size_type gpentry;
|
11050 |
|
|
|
11051 |
|
|
if (p->type != bfd_indirect_link_order)
|
11052 |
|
|
{
|
11053 |
|
|
if (p->type == bfd_data_link_order)
|
11054 |
|
|
continue;
|
11055 |
|
|
abort ();
|
11056 |
|
|
}
|
11057 |
|
|
|
11058 |
|
|
input_section = p->u.indirect.section;
|
11059 |
|
|
input_bfd = input_section->owner;
|
11060 |
|
|
|
11061 |
|
|
/* Combine the gptab entries for this input section one
|
11062 |
|
|
by one. We know that the input gptab entries are
|
11063 |
|
|
sorted by ascending -G value. */
|
11064 |
|
|
size = input_section->size;
|
11065 |
|
|
last = 0;
|
11066 |
|
|
for (gpentry = sizeof (Elf32_External_gptab);
|
11067 |
|
|
gpentry < size;
|
11068 |
|
|
gpentry += sizeof (Elf32_External_gptab))
|
11069 |
|
|
{
|
11070 |
|
|
Elf32_External_gptab ext_gptab;
|
11071 |
|
|
Elf32_gptab int_gptab;
|
11072 |
|
|
unsigned long val;
|
11073 |
|
|
unsigned long add;
|
11074 |
|
|
bfd_boolean exact;
|
11075 |
|
|
unsigned int look;
|
11076 |
|
|
|
11077 |
|
|
if (! (bfd_get_section_contents
|
11078 |
|
|
(input_bfd, input_section, &ext_gptab, gpentry,
|
11079 |
|
|
sizeof (Elf32_External_gptab))))
|
11080 |
|
|
{
|
11081 |
|
|
free (tab);
|
11082 |
|
|
return FALSE;
|
11083 |
|
|
}
|
11084 |
|
|
|
11085 |
|
|
bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
|
11086 |
|
|
&int_gptab);
|
11087 |
|
|
val = int_gptab.gt_entry.gt_g_value;
|
11088 |
|
|
add = int_gptab.gt_entry.gt_bytes - last;
|
11089 |
|
|
|
11090 |
|
|
exact = FALSE;
|
11091 |
|
|
for (look = 1; look < c; look++)
|
11092 |
|
|
{
|
11093 |
|
|
if (tab[look].gt_entry.gt_g_value >= val)
|
11094 |
|
|
tab[look].gt_entry.gt_bytes += add;
|
11095 |
|
|
|
11096 |
|
|
if (tab[look].gt_entry.gt_g_value == val)
|
11097 |
|
|
exact = TRUE;
|
11098 |
|
|
}
|
11099 |
|
|
|
11100 |
|
|
if (! exact)
|
11101 |
|
|
{
|
11102 |
|
|
Elf32_gptab *new_tab;
|
11103 |
|
|
unsigned int max;
|
11104 |
|
|
|
11105 |
|
|
/* We need a new table entry. */
|
11106 |
|
|
amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
|
11107 |
|
|
new_tab = bfd_realloc (tab, amt);
|
11108 |
|
|
if (new_tab == NULL)
|
11109 |
|
|
{
|
11110 |
|
|
free (tab);
|
11111 |
|
|
return FALSE;
|
11112 |
|
|
}
|
11113 |
|
|
tab = new_tab;
|
11114 |
|
|
tab[c].gt_entry.gt_g_value = val;
|
11115 |
|
|
tab[c].gt_entry.gt_bytes = add;
|
11116 |
|
|
|
11117 |
|
|
/* Merge in the size for the next smallest -G
|
11118 |
|
|
value, since that will be implied by this new
|
11119 |
|
|
value. */
|
11120 |
|
|
max = 0;
|
11121 |
|
|
for (look = 1; look < c; look++)
|
11122 |
|
|
{
|
11123 |
|
|
if (tab[look].gt_entry.gt_g_value < val
|
11124 |
|
|
&& (max == 0
|
11125 |
|
|
|| (tab[look].gt_entry.gt_g_value
|
11126 |
|
|
> tab[max].gt_entry.gt_g_value)))
|
11127 |
|
|
max = look;
|
11128 |
|
|
}
|
11129 |
|
|
if (max != 0)
|
11130 |
|
|
tab[c].gt_entry.gt_bytes +=
|
11131 |
|
|
tab[max].gt_entry.gt_bytes;
|
11132 |
|
|
|
11133 |
|
|
++c;
|
11134 |
|
|
}
|
11135 |
|
|
|
11136 |
|
|
last = int_gptab.gt_entry.gt_bytes;
|
11137 |
|
|
}
|
11138 |
|
|
|
11139 |
|
|
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
11140 |
|
|
elf_link_input_bfd ignores this section. */
|
11141 |
|
|
input_section->flags &= ~SEC_HAS_CONTENTS;
|
11142 |
|
|
}
|
11143 |
|
|
|
11144 |
|
|
/* The table must be sorted by -G value. */
|
11145 |
|
|
if (c > 2)
|
11146 |
|
|
qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
|
11147 |
|
|
|
11148 |
|
|
/* Swap out the table. */
|
11149 |
|
|
amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
|
11150 |
|
|
ext_tab = bfd_alloc (abfd, amt);
|
11151 |
|
|
if (ext_tab == NULL)
|
11152 |
|
|
{
|
11153 |
|
|
free (tab);
|
11154 |
|
|
return FALSE;
|
11155 |
|
|
}
|
11156 |
|
|
|
11157 |
|
|
for (j = 0; j < c; j++)
|
11158 |
|
|
bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
|
11159 |
|
|
free (tab);
|
11160 |
|
|
|
11161 |
|
|
o->size = c * sizeof (Elf32_External_gptab);
|
11162 |
|
|
o->contents = (bfd_byte *) ext_tab;
|
11163 |
|
|
|
11164 |
|
|
/* Skip this section later on (I don't think this currently
|
11165 |
|
|
matters, but someday it might). */
|
11166 |
|
|
o->map_head.link_order = NULL;
|
11167 |
|
|
}
|
11168 |
|
|
}
|
11169 |
|
|
|
11170 |
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
11171 |
|
|
if (!bfd_elf_final_link (abfd, info))
|
11172 |
|
|
return FALSE;
|
11173 |
|
|
|
11174 |
|
|
/* Now write out the computed sections. */
|
11175 |
|
|
|
11176 |
|
|
if (reginfo_sec != NULL)
|
11177 |
|
|
{
|
11178 |
|
|
Elf32_External_RegInfo ext;
|
11179 |
|
|
|
11180 |
|
|
bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
|
11181 |
|
|
if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
|
11182 |
|
|
return FALSE;
|
11183 |
|
|
}
|
11184 |
|
|
|
11185 |
|
|
if (mdebug_sec != NULL)
|
11186 |
|
|
{
|
11187 |
|
|
BFD_ASSERT (abfd->output_has_begun);
|
11188 |
|
|
if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
|
11189 |
|
|
swap, info,
|
11190 |
|
|
mdebug_sec->filepos))
|
11191 |
|
|
return FALSE;
|
11192 |
|
|
|
11193 |
|
|
bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
|
11194 |
|
|
}
|
11195 |
|
|
|
11196 |
|
|
if (gptab_data_sec != NULL)
|
11197 |
|
|
{
|
11198 |
|
|
if (! bfd_set_section_contents (abfd, gptab_data_sec,
|
11199 |
|
|
gptab_data_sec->contents,
|
11200 |
|
|
0, gptab_data_sec->size))
|
11201 |
|
|
return FALSE;
|
11202 |
|
|
}
|
11203 |
|
|
|
11204 |
|
|
if (gptab_bss_sec != NULL)
|
11205 |
|
|
{
|
11206 |
|
|
if (! bfd_set_section_contents (abfd, gptab_bss_sec,
|
11207 |
|
|
gptab_bss_sec->contents,
|
11208 |
|
|
0, gptab_bss_sec->size))
|
11209 |
|
|
return FALSE;
|
11210 |
|
|
}
|
11211 |
|
|
|
11212 |
|
|
if (SGI_COMPAT (abfd))
|
11213 |
|
|
{
|
11214 |
|
|
rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
|
11215 |
|
|
if (rtproc_sec != NULL)
|
11216 |
|
|
{
|
11217 |
|
|
if (! bfd_set_section_contents (abfd, rtproc_sec,
|
11218 |
|
|
rtproc_sec->contents,
|
11219 |
|
|
0, rtproc_sec->size))
|
11220 |
|
|
return FALSE;
|
11221 |
|
|
}
|
11222 |
|
|
}
|
11223 |
|
|
|
11224 |
|
|
return TRUE;
|
11225 |
|
|
}
|
11226 |
|
|
|
11227 |
|
|
/* Structure for saying that BFD machine EXTENSION extends BASE. */
|
11228 |
|
|
|
11229 |
|
|
struct mips_mach_extension {
|
11230 |
|
|
unsigned long extension, base;
|
11231 |
|
|
};
|
11232 |
|
|
|
11233 |
|
|
|
11234 |
|
|
/* An array describing how BFD machines relate to one another. The entries
|
11235 |
|
|
are ordered topologically with MIPS I extensions listed last. */
|
11236 |
|
|
|
11237 |
|
|
static const struct mips_mach_extension mips_mach_extensions[] = {
|
11238 |
|
|
/* MIPS64r2 extensions. */
|
11239 |
|
|
{ bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
|
11240 |
|
|
|
11241 |
|
|
/* MIPS64 extensions. */
|
11242 |
|
|
{ bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
|
11243 |
|
|
{ bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
|
11244 |
|
|
|
11245 |
|
|
/* MIPS V extensions. */
|
11246 |
|
|
{ bfd_mach_mipsisa64, bfd_mach_mips5 },
|
11247 |
|
|
|
11248 |
|
|
/* R10000 extensions. */
|
11249 |
|
|
{ bfd_mach_mips12000, bfd_mach_mips10000 },
|
11250 |
|
|
|
11251 |
|
|
/* R5000 extensions. Note: the vr5500 ISA is an extension of the core
|
11252 |
|
|
vr5400 ISA, but doesn't include the multimedia stuff. It seems
|
11253 |
|
|
better to allow vr5400 and vr5500 code to be merged anyway, since
|
11254 |
|
|
many libraries will just use the core ISA. Perhaps we could add
|
11255 |
|
|
some sort of ASE flag if this ever proves a problem. */
|
11256 |
|
|
{ bfd_mach_mips5500, bfd_mach_mips5400 },
|
11257 |
|
|
{ bfd_mach_mips5400, bfd_mach_mips5000 },
|
11258 |
|
|
|
11259 |
|
|
/* MIPS IV extensions. */
|
11260 |
|
|
{ bfd_mach_mips5, bfd_mach_mips8000 },
|
11261 |
|
|
{ bfd_mach_mips10000, bfd_mach_mips8000 },
|
11262 |
|
|
{ bfd_mach_mips5000, bfd_mach_mips8000 },
|
11263 |
|
|
{ bfd_mach_mips7000, bfd_mach_mips8000 },
|
11264 |
|
|
{ bfd_mach_mips9000, bfd_mach_mips8000 },
|
11265 |
|
|
|
11266 |
|
|
/* VR4100 extensions. */
|
11267 |
|
|
{ bfd_mach_mips4120, bfd_mach_mips4100 },
|
11268 |
|
|
{ bfd_mach_mips4111, bfd_mach_mips4100 },
|
11269 |
|
|
|
11270 |
|
|
/* MIPS III extensions. */
|
11271 |
|
|
{ bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
|
11272 |
|
|
{ bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
|
11273 |
|
|
{ bfd_mach_mips8000, bfd_mach_mips4000 },
|
11274 |
|
|
{ bfd_mach_mips4650, bfd_mach_mips4000 },
|
11275 |
|
|
{ bfd_mach_mips4600, bfd_mach_mips4000 },
|
11276 |
|
|
{ bfd_mach_mips4400, bfd_mach_mips4000 },
|
11277 |
|
|
{ bfd_mach_mips4300, bfd_mach_mips4000 },
|
11278 |
|
|
{ bfd_mach_mips4100, bfd_mach_mips4000 },
|
11279 |
|
|
{ bfd_mach_mips4010, bfd_mach_mips4000 },
|
11280 |
|
|
|
11281 |
|
|
/* MIPS32 extensions. */
|
11282 |
|
|
{ bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
|
11283 |
|
|
|
11284 |
|
|
/* MIPS II extensions. */
|
11285 |
|
|
{ bfd_mach_mips4000, bfd_mach_mips6000 },
|
11286 |
|
|
{ bfd_mach_mipsisa32, bfd_mach_mips6000 },
|
11287 |
|
|
|
11288 |
|
|
/* MIPS I extensions. */
|
11289 |
|
|
{ bfd_mach_mips6000, bfd_mach_mips3000 },
|
11290 |
|
|
{ bfd_mach_mips3900, bfd_mach_mips3000 }
|
11291 |
|
|
};
|
11292 |
|
|
|
11293 |
|
|
|
11294 |
|
|
/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
|
11295 |
|
|
|
11296 |
|
|
static bfd_boolean
|
11297 |
|
|
mips_mach_extends_p (unsigned long base, unsigned long extension)
|
11298 |
|
|
{
|
11299 |
|
|
size_t i;
|
11300 |
|
|
|
11301 |
|
|
if (extension == base)
|
11302 |
|
|
return TRUE;
|
11303 |
|
|
|
11304 |
|
|
if (base == bfd_mach_mipsisa32
|
11305 |
|
|
&& mips_mach_extends_p (bfd_mach_mipsisa64, extension))
|
11306 |
|
|
return TRUE;
|
11307 |
|
|
|
11308 |
|
|
if (base == bfd_mach_mipsisa32r2
|
11309 |
|
|
&& mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
|
11310 |
|
|
return TRUE;
|
11311 |
|
|
|
11312 |
|
|
for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
|
11313 |
|
|
if (extension == mips_mach_extensions[i].extension)
|
11314 |
|
|
{
|
11315 |
|
|
extension = mips_mach_extensions[i].base;
|
11316 |
|
|
if (extension == base)
|
11317 |
|
|
return TRUE;
|
11318 |
|
|
}
|
11319 |
|
|
|
11320 |
|
|
return FALSE;
|
11321 |
|
|
}
|
11322 |
|
|
|
11323 |
|
|
|
11324 |
|
|
/* Return true if the given ELF header flags describe a 32-bit binary. */
|
11325 |
|
|
|
11326 |
|
|
static bfd_boolean
|
11327 |
|
|
mips_32bit_flags_p (flagword flags)
|
11328 |
|
|
{
|
11329 |
|
|
return ((flags & EF_MIPS_32BITMODE) != 0
|
11330 |
|
|
|| (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
|
11331 |
|
|
|| (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
|
11332 |
|
|
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
|
11333 |
|
|
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
|
11334 |
|
|
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
|
11335 |
|
|
|| (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
|
11336 |
|
|
}
|
11337 |
|
|
|
11338 |
|
|
|
11339 |
|
|
/* Merge object attributes from IBFD into OBFD. Raise an error if
|
11340 |
|
|
there are conflicting attributes. */
|
11341 |
|
|
static bfd_boolean
|
11342 |
|
|
mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
|
11343 |
|
|
{
|
11344 |
|
|
obj_attribute *in_attr;
|
11345 |
|
|
obj_attribute *out_attr;
|
11346 |
|
|
|
11347 |
|
|
if (!elf_known_obj_attributes_proc (obfd)[0].i)
|
11348 |
|
|
{
|
11349 |
|
|
/* This is the first object. Copy the attributes. */
|
11350 |
|
|
_bfd_elf_copy_obj_attributes (ibfd, obfd);
|
11351 |
|
|
|
11352 |
|
|
/* Use the Tag_null value to indicate the attributes have been
|
11353 |
|
|
initialized. */
|
11354 |
|
|
elf_known_obj_attributes_proc (obfd)[0].i = 1;
|
11355 |
|
|
|
11356 |
|
|
return TRUE;
|
11357 |
|
|
}
|
11358 |
|
|
|
11359 |
|
|
/* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
|
11360 |
|
|
non-conflicting ones. */
|
11361 |
|
|
in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
|
11362 |
|
|
out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
|
11363 |
|
|
if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
|
11364 |
|
|
{
|
11365 |
|
|
out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
|
11366 |
|
|
if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
|
11367 |
|
|
out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
|
11368 |
|
|
else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
|
11369 |
|
|
;
|
11370 |
|
|
else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
|
11371 |
|
|
_bfd_error_handler
|
11372 |
|
|
(_("Warning: %B uses unknown floating point ABI %d"), ibfd,
|
11373 |
|
|
in_attr[Tag_GNU_MIPS_ABI_FP].i);
|
11374 |
|
|
else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
|
11375 |
|
|
_bfd_error_handler
|
11376 |
|
|
(_("Warning: %B uses unknown floating point ABI %d"), obfd,
|
11377 |
|
|
out_attr[Tag_GNU_MIPS_ABI_FP].i);
|
11378 |
|
|
else
|
11379 |
|
|
switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
|
11380 |
|
|
{
|
11381 |
|
|
case 1:
|
11382 |
|
|
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
11383 |
|
|
{
|
11384 |
|
|
case 2:
|
11385 |
|
|
_bfd_error_handler
|
11386 |
|
|
(_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
|
11387 |
|
|
obfd, ibfd);
|
11388 |
|
|
break;
|
11389 |
|
|
|
11390 |
|
|
case 3:
|
11391 |
|
|
_bfd_error_handler
|
11392 |
|
|
(_("Warning: %B uses hard float, %B uses soft float"),
|
11393 |
|
|
obfd, ibfd);
|
11394 |
|
|
break;
|
11395 |
|
|
|
11396 |
|
|
case 4:
|
11397 |
|
|
_bfd_error_handler
|
11398 |
|
|
(_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
|
11399 |
|
|
obfd, ibfd);
|
11400 |
|
|
break;
|
11401 |
|
|
|
11402 |
|
|
default:
|
11403 |
|
|
abort ();
|
11404 |
|
|
}
|
11405 |
|
|
break;
|
11406 |
|
|
|
11407 |
|
|
case 2:
|
11408 |
|
|
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
11409 |
|
|
{
|
11410 |
|
|
case 1:
|
11411 |
|
|
_bfd_error_handler
|
11412 |
|
|
(_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
|
11413 |
|
|
ibfd, obfd);
|
11414 |
|
|
break;
|
11415 |
|
|
|
11416 |
|
|
case 3:
|
11417 |
|
|
_bfd_error_handler
|
11418 |
|
|
(_("Warning: %B uses hard float, %B uses soft float"),
|
11419 |
|
|
obfd, ibfd);
|
11420 |
|
|
break;
|
11421 |
|
|
|
11422 |
|
|
case 4:
|
11423 |
|
|
_bfd_error_handler
|
11424 |
|
|
(_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
|
11425 |
|
|
obfd, ibfd);
|
11426 |
|
|
break;
|
11427 |
|
|
|
11428 |
|
|
default:
|
11429 |
|
|
abort ();
|
11430 |
|
|
}
|
11431 |
|
|
break;
|
11432 |
|
|
|
11433 |
|
|
case 3:
|
11434 |
|
|
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
11435 |
|
|
{
|
11436 |
|
|
case 1:
|
11437 |
|
|
case 2:
|
11438 |
|
|
case 4:
|
11439 |
|
|
_bfd_error_handler
|
11440 |
|
|
(_("Warning: %B uses hard float, %B uses soft float"),
|
11441 |
|
|
ibfd, obfd);
|
11442 |
|
|
break;
|
11443 |
|
|
|
11444 |
|
|
default:
|
11445 |
|
|
abort ();
|
11446 |
|
|
}
|
11447 |
|
|
break;
|
11448 |
|
|
|
11449 |
|
|
case 4:
|
11450 |
|
|
switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
|
11451 |
|
|
{
|
11452 |
|
|
case 1:
|
11453 |
|
|
_bfd_error_handler
|
11454 |
|
|
(_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
|
11455 |
|
|
ibfd, obfd);
|
11456 |
|
|
break;
|
11457 |
|
|
|
11458 |
|
|
case 2:
|
11459 |
|
|
_bfd_error_handler
|
11460 |
|
|
(_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
|
11461 |
|
|
ibfd, obfd);
|
11462 |
|
|
break;
|
11463 |
|
|
|
11464 |
|
|
case 3:
|
11465 |
|
|
_bfd_error_handler
|
11466 |
|
|
(_("Warning: %B uses hard float, %B uses soft float"),
|
11467 |
|
|
obfd, ibfd);
|
11468 |
|
|
break;
|
11469 |
|
|
|
11470 |
|
|
default:
|
11471 |
|
|
abort ();
|
11472 |
|
|
}
|
11473 |
|
|
break;
|
11474 |
|
|
|
11475 |
|
|
default:
|
11476 |
|
|
abort ();
|
11477 |
|
|
}
|
11478 |
|
|
}
|
11479 |
|
|
|
11480 |
|
|
/* Merge Tag_compatibility attributes and any common GNU ones. */
|
11481 |
|
|
_bfd_elf_merge_object_attributes (ibfd, obfd);
|
11482 |
|
|
|
11483 |
|
|
return TRUE;
|
11484 |
|
|
}
|
11485 |
|
|
|
11486 |
|
|
/* Merge backend specific data from an object file to the output
|
11487 |
|
|
object file when linking. */
|
11488 |
|
|
|
11489 |
|
|
bfd_boolean
|
11490 |
|
|
_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
|
11491 |
|
|
{
|
11492 |
|
|
flagword old_flags;
|
11493 |
|
|
flagword new_flags;
|
11494 |
|
|
bfd_boolean ok;
|
11495 |
|
|
bfd_boolean null_input_bfd = TRUE;
|
11496 |
|
|
asection *sec;
|
11497 |
|
|
|
11498 |
|
|
/* Check if we have the same endianess */
|
11499 |
|
|
if (! _bfd_generic_verify_endian_match (ibfd, obfd))
|
11500 |
|
|
{
|
11501 |
|
|
(*_bfd_error_handler)
|
11502 |
|
|
(_("%B: endianness incompatible with that of the selected emulation"),
|
11503 |
|
|
ibfd);
|
11504 |
|
|
return FALSE;
|
11505 |
|
|
}
|
11506 |
|
|
|
11507 |
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
11508 |
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
11509 |
|
|
return TRUE;
|
11510 |
|
|
|
11511 |
|
|
if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
|
11512 |
|
|
{
|
11513 |
|
|
(*_bfd_error_handler)
|
11514 |
|
|
(_("%B: ABI is incompatible with that of the selected emulation"),
|
11515 |
|
|
ibfd);
|
11516 |
|
|
return FALSE;
|
11517 |
|
|
}
|
11518 |
|
|
|
11519 |
|
|
if (!mips_elf_merge_obj_attributes (ibfd, obfd))
|
11520 |
|
|
return FALSE;
|
11521 |
|
|
|
11522 |
|
|
new_flags = elf_elfheader (ibfd)->e_flags;
|
11523 |
|
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
|
11524 |
|
|
old_flags = elf_elfheader (obfd)->e_flags;
|
11525 |
|
|
|
11526 |
|
|
if (! elf_flags_init (obfd))
|
11527 |
|
|
{
|
11528 |
|
|
elf_flags_init (obfd) = TRUE;
|
11529 |
|
|
elf_elfheader (obfd)->e_flags = new_flags;
|
11530 |
|
|
elf_elfheader (obfd)->e_ident[EI_CLASS]
|
11531 |
|
|
= elf_elfheader (ibfd)->e_ident[EI_CLASS];
|
11532 |
|
|
|
11533 |
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
11534 |
|
|
&& (bfd_get_arch_info (obfd)->the_default
|
11535 |
|
|
|| mips_mach_extends_p (bfd_get_mach (obfd),
|
11536 |
|
|
bfd_get_mach (ibfd))))
|
11537 |
|
|
{
|
11538 |
|
|
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
11539 |
|
|
bfd_get_mach (ibfd)))
|
11540 |
|
|
return FALSE;
|
11541 |
|
|
}
|
11542 |
|
|
|
11543 |
|
|
return TRUE;
|
11544 |
|
|
}
|
11545 |
|
|
|
11546 |
|
|
/* Check flag compatibility. */
|
11547 |
|
|
|
11548 |
|
|
new_flags &= ~EF_MIPS_NOREORDER;
|
11549 |
|
|
old_flags &= ~EF_MIPS_NOREORDER;
|
11550 |
|
|
|
11551 |
|
|
/* Some IRIX 6 BSD-compatibility objects have this bit set. It
|
11552 |
|
|
doesn't seem to matter. */
|
11553 |
|
|
new_flags &= ~EF_MIPS_XGOT;
|
11554 |
|
|
old_flags &= ~EF_MIPS_XGOT;
|
11555 |
|
|
|
11556 |
|
|
/* MIPSpro generates ucode info in n64 objects. Again, we should
|
11557 |
|
|
just be able to ignore this. */
|
11558 |
|
|
new_flags &= ~EF_MIPS_UCODE;
|
11559 |
|
|
old_flags &= ~EF_MIPS_UCODE;
|
11560 |
|
|
|
11561 |
|
|
/* Don't care about the PIC flags from dynamic objects; they are
|
11562 |
|
|
PIC by design. */
|
11563 |
|
|
if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
|
11564 |
|
|
&& (ibfd->flags & DYNAMIC) != 0)
|
11565 |
|
|
new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
|
11566 |
|
|
|
11567 |
|
|
if (new_flags == old_flags)
|
11568 |
|
|
return TRUE;
|
11569 |
|
|
|
11570 |
|
|
/* Check to see if the input BFD actually contains any sections.
|
11571 |
|
|
If not, its flags may not have been initialised either, but it cannot
|
11572 |
|
|
actually cause any incompatibility. */
|
11573 |
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
11574 |
|
|
{
|
11575 |
|
|
/* Ignore synthetic sections and empty .text, .data and .bss sections
|
11576 |
|
|
which are automatically generated by gas. */
|
11577 |
|
|
if (strcmp (sec->name, ".reginfo")
|
11578 |
|
|
&& strcmp (sec->name, ".mdebug")
|
11579 |
|
|
&& (sec->size != 0
|
11580 |
|
|
|| (strcmp (sec->name, ".text")
|
11581 |
|
|
&& strcmp (sec->name, ".data")
|
11582 |
|
|
&& strcmp (sec->name, ".bss"))))
|
11583 |
|
|
{
|
11584 |
|
|
null_input_bfd = FALSE;
|
11585 |
|
|
break;
|
11586 |
|
|
}
|
11587 |
|
|
}
|
11588 |
|
|
if (null_input_bfd)
|
11589 |
|
|
return TRUE;
|
11590 |
|
|
|
11591 |
|
|
ok = TRUE;
|
11592 |
|
|
|
11593 |
|
|
if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
|
11594 |
|
|
!= ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
|
11595 |
|
|
{
|
11596 |
|
|
(*_bfd_error_handler)
|
11597 |
|
|
(_("%B: warning: linking PIC files with non-PIC files"),
|
11598 |
|
|
ibfd);
|
11599 |
|
|
ok = TRUE;
|
11600 |
|
|
}
|
11601 |
|
|
|
11602 |
|
|
if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
|
11603 |
|
|
elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
|
11604 |
|
|
if (! (new_flags & EF_MIPS_PIC))
|
11605 |
|
|
elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
|
11606 |
|
|
|
11607 |
|
|
new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
|
11608 |
|
|
old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
|
11609 |
|
|
|
11610 |
|
|
/* Compare the ISAs. */
|
11611 |
|
|
if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
|
11612 |
|
|
{
|
11613 |
|
|
(*_bfd_error_handler)
|
11614 |
|
|
(_("%B: linking 32-bit code with 64-bit code"),
|
11615 |
|
|
ibfd);
|
11616 |
|
|
ok = FALSE;
|
11617 |
|
|
}
|
11618 |
|
|
else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
|
11619 |
|
|
{
|
11620 |
|
|
/* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
|
11621 |
|
|
if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
|
11622 |
|
|
{
|
11623 |
|
|
/* Copy the architecture info from IBFD to OBFD. Also copy
|
11624 |
|
|
the 32-bit flag (if set) so that we continue to recognise
|
11625 |
|
|
OBFD as a 32-bit binary. */
|
11626 |
|
|
bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
|
11627 |
|
|
elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
|
11628 |
|
|
elf_elfheader (obfd)->e_flags
|
11629 |
|
|
|= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
|
11630 |
|
|
|
11631 |
|
|
/* Copy across the ABI flags if OBFD doesn't use them
|
11632 |
|
|
and if that was what caused us to treat IBFD as 32-bit. */
|
11633 |
|
|
if ((old_flags & EF_MIPS_ABI) == 0
|
11634 |
|
|
&& mips_32bit_flags_p (new_flags)
|
11635 |
|
|
&& !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
|
11636 |
|
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
|
11637 |
|
|
}
|
11638 |
|
|
else
|
11639 |
|
|
{
|
11640 |
|
|
/* The ISAs aren't compatible. */
|
11641 |
|
|
(*_bfd_error_handler)
|
11642 |
|
|
(_("%B: linking %s module with previous %s modules"),
|
11643 |
|
|
ibfd,
|
11644 |
|
|
bfd_printable_name (ibfd),
|
11645 |
|
|
bfd_printable_name (obfd));
|
11646 |
|
|
ok = FALSE;
|
11647 |
|
|
}
|
11648 |
|
|
}
|
11649 |
|
|
|
11650 |
|
|
new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
|
11651 |
|
|
old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
|
11652 |
|
|
|
11653 |
|
|
/* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
|
11654 |
|
|
does set EI_CLASS differently from any 32-bit ABI. */
|
11655 |
|
|
if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
|
11656 |
|
|
|| (elf_elfheader (ibfd)->e_ident[EI_CLASS]
|
11657 |
|
|
!= elf_elfheader (obfd)->e_ident[EI_CLASS]))
|
11658 |
|
|
{
|
11659 |
|
|
/* Only error if both are set (to different values). */
|
11660 |
|
|
if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
|
11661 |
|
|
|| (elf_elfheader (ibfd)->e_ident[EI_CLASS]
|
11662 |
|
|
!= elf_elfheader (obfd)->e_ident[EI_CLASS]))
|
11663 |
|
|
{
|
11664 |
|
|
(*_bfd_error_handler)
|
11665 |
|
|
(_("%B: ABI mismatch: linking %s module with previous %s modules"),
|
11666 |
|
|
ibfd,
|
11667 |
|
|
elf_mips_abi_name (ibfd),
|
11668 |
|
|
elf_mips_abi_name (obfd));
|
11669 |
|
|
ok = FALSE;
|
11670 |
|
|
}
|
11671 |
|
|
new_flags &= ~EF_MIPS_ABI;
|
11672 |
|
|
old_flags &= ~EF_MIPS_ABI;
|
11673 |
|
|
}
|
11674 |
|
|
|
11675 |
|
|
/* For now, allow arbitrary mixing of ASEs (retain the union). */
|
11676 |
|
|
if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
|
11677 |
|
|
{
|
11678 |
|
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
|
11679 |
|
|
|
11680 |
|
|
new_flags &= ~ EF_MIPS_ARCH_ASE;
|
11681 |
|
|
old_flags &= ~ EF_MIPS_ARCH_ASE;
|
11682 |
|
|
}
|
11683 |
|
|
|
11684 |
|
|
/* Warn about any other mismatches */
|
11685 |
|
|
if (new_flags != old_flags)
|
11686 |
|
|
{
|
11687 |
|
|
(*_bfd_error_handler)
|
11688 |
|
|
(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
|
11689 |
|
|
ibfd, (unsigned long) new_flags,
|
11690 |
|
|
(unsigned long) old_flags);
|
11691 |
|
|
ok = FALSE;
|
11692 |
|
|
}
|
11693 |
|
|
|
11694 |
|
|
if (! ok)
|
11695 |
|
|
{
|
11696 |
|
|
bfd_set_error (bfd_error_bad_value);
|
11697 |
|
|
return FALSE;
|
11698 |
|
|
}
|
11699 |
|
|
|
11700 |
|
|
return TRUE;
|
11701 |
|
|
}
|
11702 |
|
|
|
11703 |
|
|
/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
|
11704 |
|
|
|
11705 |
|
|
bfd_boolean
|
11706 |
|
|
_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
|
11707 |
|
|
{
|
11708 |
|
|
BFD_ASSERT (!elf_flags_init (abfd)
|
11709 |
|
|
|| elf_elfheader (abfd)->e_flags == flags);
|
11710 |
|
|
|
11711 |
|
|
elf_elfheader (abfd)->e_flags = flags;
|
11712 |
|
|
elf_flags_init (abfd) = TRUE;
|
11713 |
|
|
return TRUE;
|
11714 |
|
|
}
|
11715 |
|
|
|
11716 |
|
|
char *
|
11717 |
|
|
_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
|
11718 |
|
|
{
|
11719 |
|
|
switch (dtag)
|
11720 |
|
|
{
|
11721 |
|
|
default: return "";
|
11722 |
|
|
case DT_MIPS_RLD_VERSION:
|
11723 |
|
|
return "MIPS_RLD_VERSION";
|
11724 |
|
|
case DT_MIPS_TIME_STAMP:
|
11725 |
|
|
return "MIPS_TIME_STAMP";
|
11726 |
|
|
case DT_MIPS_ICHECKSUM:
|
11727 |
|
|
return "MIPS_ICHECKSUM";
|
11728 |
|
|
case DT_MIPS_IVERSION:
|
11729 |
|
|
return "MIPS_IVERSION";
|
11730 |
|
|
case DT_MIPS_FLAGS:
|
11731 |
|
|
return "MIPS_FLAGS";
|
11732 |
|
|
case DT_MIPS_BASE_ADDRESS:
|
11733 |
|
|
return "MIPS_BASE_ADDRESS";
|
11734 |
|
|
case DT_MIPS_MSYM:
|
11735 |
|
|
return "MIPS_MSYM";
|
11736 |
|
|
case DT_MIPS_CONFLICT:
|
11737 |
|
|
return "MIPS_CONFLICT";
|
11738 |
|
|
case DT_MIPS_LIBLIST:
|
11739 |
|
|
return "MIPS_LIBLIST";
|
11740 |
|
|
case DT_MIPS_LOCAL_GOTNO:
|
11741 |
|
|
return "MIPS_LOCAL_GOTNO";
|
11742 |
|
|
case DT_MIPS_CONFLICTNO:
|
11743 |
|
|
return "MIPS_CONFLICTNO";
|
11744 |
|
|
case DT_MIPS_LIBLISTNO:
|
11745 |
|
|
return "MIPS_LIBLISTNO";
|
11746 |
|
|
case DT_MIPS_SYMTABNO:
|
11747 |
|
|
return "MIPS_SYMTABNO";
|
11748 |
|
|
case DT_MIPS_UNREFEXTNO:
|
11749 |
|
|
return "MIPS_UNREFEXTNO";
|
11750 |
|
|
case DT_MIPS_GOTSYM:
|
11751 |
|
|
return "MIPS_GOTSYM";
|
11752 |
|
|
case DT_MIPS_HIPAGENO:
|
11753 |
|
|
return "MIPS_HIPAGENO";
|
11754 |
|
|
case DT_MIPS_RLD_MAP:
|
11755 |
|
|
return "MIPS_RLD_MAP";
|
11756 |
|
|
case DT_MIPS_DELTA_CLASS:
|
11757 |
|
|
return "MIPS_DELTA_CLASS";
|
11758 |
|
|
case DT_MIPS_DELTA_CLASS_NO:
|
11759 |
|
|
return "MIPS_DELTA_CLASS_NO";
|
11760 |
|
|
case DT_MIPS_DELTA_INSTANCE:
|
11761 |
|
|
return "MIPS_DELTA_INSTANCE";
|
11762 |
|
|
case DT_MIPS_DELTA_INSTANCE_NO:
|
11763 |
|
|
return "MIPS_DELTA_INSTANCE_NO";
|
11764 |
|
|
case DT_MIPS_DELTA_RELOC:
|
11765 |
|
|
return "MIPS_DELTA_RELOC";
|
11766 |
|
|
case DT_MIPS_DELTA_RELOC_NO:
|
11767 |
|
|
return "MIPS_DELTA_RELOC_NO";
|
11768 |
|
|
case DT_MIPS_DELTA_SYM:
|
11769 |
|
|
return "MIPS_DELTA_SYM";
|
11770 |
|
|
case DT_MIPS_DELTA_SYM_NO:
|
11771 |
|
|
return "MIPS_DELTA_SYM_NO";
|
11772 |
|
|
case DT_MIPS_DELTA_CLASSSYM:
|
11773 |
|
|
return "MIPS_DELTA_CLASSSYM";
|
11774 |
|
|
case DT_MIPS_DELTA_CLASSSYM_NO:
|
11775 |
|
|
return "MIPS_DELTA_CLASSSYM_NO";
|
11776 |
|
|
case DT_MIPS_CXX_FLAGS:
|
11777 |
|
|
return "MIPS_CXX_FLAGS";
|
11778 |
|
|
case DT_MIPS_PIXIE_INIT:
|
11779 |
|
|
return "MIPS_PIXIE_INIT";
|
11780 |
|
|
case DT_MIPS_SYMBOL_LIB:
|
11781 |
|
|
return "MIPS_SYMBOL_LIB";
|
11782 |
|
|
case DT_MIPS_LOCALPAGE_GOTIDX:
|
11783 |
|
|
return "MIPS_LOCALPAGE_GOTIDX";
|
11784 |
|
|
case DT_MIPS_LOCAL_GOTIDX:
|
11785 |
|
|
return "MIPS_LOCAL_GOTIDX";
|
11786 |
|
|
case DT_MIPS_HIDDEN_GOTIDX:
|
11787 |
|
|
return "MIPS_HIDDEN_GOTIDX";
|
11788 |
|
|
case DT_MIPS_PROTECTED_GOTIDX:
|
11789 |
|
|
return "MIPS_PROTECTED_GOT_IDX";
|
11790 |
|
|
case DT_MIPS_OPTIONS:
|
11791 |
|
|
return "MIPS_OPTIONS";
|
11792 |
|
|
case DT_MIPS_INTERFACE:
|
11793 |
|
|
return "MIPS_INTERFACE";
|
11794 |
|
|
case DT_MIPS_DYNSTR_ALIGN:
|
11795 |
|
|
return "DT_MIPS_DYNSTR_ALIGN";
|
11796 |
|
|
case DT_MIPS_INTERFACE_SIZE:
|
11797 |
|
|
return "DT_MIPS_INTERFACE_SIZE";
|
11798 |
|
|
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
|
11799 |
|
|
return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
|
11800 |
|
|
case DT_MIPS_PERF_SUFFIX:
|
11801 |
|
|
return "DT_MIPS_PERF_SUFFIX";
|
11802 |
|
|
case DT_MIPS_COMPACT_SIZE:
|
11803 |
|
|
return "DT_MIPS_COMPACT_SIZE";
|
11804 |
|
|
case DT_MIPS_GP_VALUE:
|
11805 |
|
|
return "DT_MIPS_GP_VALUE";
|
11806 |
|
|
case DT_MIPS_AUX_DYNAMIC:
|
11807 |
|
|
return "DT_MIPS_AUX_DYNAMIC";
|
11808 |
|
|
}
|
11809 |
|
|
}
|
11810 |
|
|
|
11811 |
|
|
bfd_boolean
|
11812 |
|
|
_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
|
11813 |
|
|
{
|
11814 |
|
|
FILE *file = ptr;
|
11815 |
|
|
|
11816 |
|
|
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
11817 |
|
|
|
11818 |
|
|
/* Print normal ELF private data. */
|
11819 |
|
|
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
11820 |
|
|
|
11821 |
|
|
/* xgettext:c-format */
|
11822 |
|
|
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
11823 |
|
|
|
11824 |
|
|
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
|
11825 |
|
|
fprintf (file, _(" [abi=O32]"));
|
11826 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
|
11827 |
|
|
fprintf (file, _(" [abi=O64]"));
|
11828 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
|
11829 |
|
|
fprintf (file, _(" [abi=EABI32]"));
|
11830 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
|
11831 |
|
|
fprintf (file, _(" [abi=EABI64]"));
|
11832 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
|
11833 |
|
|
fprintf (file, _(" [abi unknown]"));
|
11834 |
|
|
else if (ABI_N32_P (abfd))
|
11835 |
|
|
fprintf (file, _(" [abi=N32]"));
|
11836 |
|
|
else if (ABI_64_P (abfd))
|
11837 |
|
|
fprintf (file, _(" [abi=64]"));
|
11838 |
|
|
else
|
11839 |
|
|
fprintf (file, _(" [no abi set]"));
|
11840 |
|
|
|
11841 |
|
|
if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
|
11842 |
|
|
fprintf (file, " [mips1]");
|
11843 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
|
11844 |
|
|
fprintf (file, " [mips2]");
|
11845 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
|
11846 |
|
|
fprintf (file, " [mips3]");
|
11847 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
|
11848 |
|
|
fprintf (file, " [mips4]");
|
11849 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
|
11850 |
|
|
fprintf (file, " [mips5]");
|
11851 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
|
11852 |
|
|
fprintf (file, " [mips32]");
|
11853 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
|
11854 |
|
|
fprintf (file, " [mips64]");
|
11855 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
|
11856 |
|
|
fprintf (file, " [mips32r2]");
|
11857 |
|
|
else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
|
11858 |
|
|
fprintf (file, " [mips64r2]");
|
11859 |
|
|
else
|
11860 |
|
|
fprintf (file, _(" [unknown ISA]"));
|
11861 |
|
|
|
11862 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
|
11863 |
|
|
fprintf (file, " [mdmx]");
|
11864 |
|
|
|
11865 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
|
11866 |
|
|
fprintf (file, " [mips16]");
|
11867 |
|
|
|
11868 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
|
11869 |
|
|
fprintf (file, " [32bitmode]");
|
11870 |
|
|
else
|
11871 |
|
|
fprintf (file, _(" [not 32bitmode]"));
|
11872 |
|
|
|
11873 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
|
11874 |
|
|
fprintf (file, " [noreorder]");
|
11875 |
|
|
|
11876 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
|
11877 |
|
|
fprintf (file, " [PIC]");
|
11878 |
|
|
|
11879 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
|
11880 |
|
|
fprintf (file, " [CPIC]");
|
11881 |
|
|
|
11882 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
|
11883 |
|
|
fprintf (file, " [XGOT]");
|
11884 |
|
|
|
11885 |
|
|
if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
|
11886 |
|
|
fprintf (file, " [UCODE]");
|
11887 |
|
|
|
11888 |
|
|
fputc ('\n', file);
|
11889 |
|
|
|
11890 |
|
|
return TRUE;
|
11891 |
|
|
}
|
11892 |
|
|
|
11893 |
|
|
const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
|
11894 |
|
|
{
|
11895 |
|
|
{ STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
11896 |
|
|
{ STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
11897 |
|
|
{ STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
|
11898 |
|
|
{ STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
11899 |
|
|
{ STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
|
11900 |
|
|
{ STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
|
11901 |
|
|
{ NULL, 0, 0, 0, 0 }
|
11902 |
|
|
};
|
11903 |
|
|
|
11904 |
|
|
/* Merge non visibility st_other attributes. Ensure that the
|
11905 |
|
|
STO_OPTIONAL flag is copied into h->other, even if this is not a
|
11906 |
|
|
definiton of the symbol. */
|
11907 |
|
|
void
|
11908 |
|
|
_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
|
11909 |
|
|
const Elf_Internal_Sym *isym,
|
11910 |
|
|
bfd_boolean definition,
|
11911 |
|
|
bfd_boolean dynamic ATTRIBUTE_UNUSED)
|
11912 |
|
|
{
|
11913 |
|
|
if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
|
11914 |
|
|
{
|
11915 |
|
|
unsigned char other;
|
11916 |
|
|
|
11917 |
|
|
other = (definition ? isym->st_other : h->other);
|
11918 |
|
|
other &= ~ELF_ST_VISIBILITY (-1);
|
11919 |
|
|
h->other = other | ELF_ST_VISIBILITY (h->other);
|
11920 |
|
|
}
|
11921 |
|
|
|
11922 |
|
|
if (!definition
|
11923 |
|
|
&& ELF_MIPS_IS_OPTIONAL (isym->st_other))
|
11924 |
|
|
h->other |= STO_OPTIONAL;
|
11925 |
|
|
}
|
11926 |
|
|
|
11927 |
|
|
/* Decide whether an undefined symbol is special and can be ignored.
|
11928 |
|
|
This is the case for OPTIONAL symbols on IRIX. */
|
11929 |
|
|
bfd_boolean
|
11930 |
|
|
_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
|
11931 |
|
|
{
|
11932 |
|
|
return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
|
11933 |
|
|
}
|
11934 |
|
|
|
11935 |
|
|
bfd_boolean
|
11936 |
|
|
_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
|
11937 |
|
|
{
|
11938 |
|
|
return (sym->st_shndx == SHN_COMMON
|
11939 |
|
|
|| sym->st_shndx == SHN_MIPS_ACOMMON
|
11940 |
|
|
|| sym->st_shndx == SHN_MIPS_SCOMMON);
|
11941 |
|
|
}
|