OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [bfd/] [syms.c] - Blame information for rev 299

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Generic symbol-table support for the BFD library.
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2007
4
   Free Software Foundation, Inc.
5
   Written by Cygnus Support.
6
 
7
   This file is part of BFD, the Binary File Descriptor library.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
   MA 02110-1301, USA.  */
23
 
24
/*
25
SECTION
26
        Symbols
27
 
28
        BFD tries to maintain as much symbol information as it can when
29
        it moves information from file to file. BFD passes information
30
        to applications though the <<asymbol>> structure. When the
31
        application requests the symbol table, BFD reads the table in
32
        the native form and translates parts of it into the internal
33
        format. To maintain more than the information passed to
34
        applications, some targets keep some information ``behind the
35
        scenes'' in a structure only the particular back end knows
36
        about. For example, the coff back end keeps the original
37
        symbol table structure as well as the canonical structure when
38
        a BFD is read in. On output, the coff back end can reconstruct
39
        the output symbol table so that no information is lost, even
40
        information unique to coff which BFD doesn't know or
41
        understand. If a coff symbol table were read, but were written
42
        through an a.out back end, all the coff specific information
43
        would be lost. The symbol table of a BFD
44
        is not necessarily read in until a canonicalize request is
45
        made. Then the BFD back end fills in a table provided by the
46
        application with pointers to the canonical information.  To
47
        output symbols, the application provides BFD with a table of
48
        pointers to pointers to <<asymbol>>s. This allows applications
49
        like the linker to output a symbol as it was read, since the ``behind
50
        the scenes'' information will be still available.
51
@menu
52
@* Reading Symbols::
53
@* Writing Symbols::
54
@* Mini Symbols::
55
@* typedef asymbol::
56
@* symbol handling functions::
57
@end menu
58
 
59
INODE
60
Reading Symbols, Writing Symbols, Symbols, Symbols
61
SUBSECTION
62
        Reading symbols
63
 
64
        There are two stages to reading a symbol table from a BFD:
65
        allocating storage, and the actual reading process. This is an
66
        excerpt from an application which reads the symbol table:
67
 
68
|         long storage_needed;
69
|         asymbol **symbol_table;
70
|         long number_of_symbols;
71
|         long i;
72
|
73
|         storage_needed = bfd_get_symtab_upper_bound (abfd);
74
|
75
|         if (storage_needed < 0)
76
|           FAIL
77
|
78
|         if (storage_needed == 0)
79
|           return;
80
|
81
|         symbol_table = xmalloc (storage_needed);
82
|           ...
83
|         number_of_symbols =
84
|            bfd_canonicalize_symtab (abfd, symbol_table);
85
|
86
|         if (number_of_symbols < 0)
87
|           FAIL
88
|
89
|         for (i = 0; i < number_of_symbols; i++)
90
|           process_symbol (symbol_table[i]);
91
 
92
        All storage for the symbols themselves is in an objalloc
93
        connected to the BFD; it is freed when the BFD is closed.
94
 
95
INODE
96
Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97
SUBSECTION
98
        Writing symbols
99
 
100
        Writing of a symbol table is automatic when a BFD open for
101
        writing is closed. The application attaches a vector of
102
        pointers to pointers to symbols to the BFD being written, and
103
        fills in the symbol count. The close and cleanup code reads
104
        through the table provided and performs all the necessary
105
        operations. The BFD output code must always be provided with an
106
        ``owned'' symbol: one which has come from another BFD, or one
107
        which has been created using <<bfd_make_empty_symbol>>.  Here is an
108
        example showing the creation of a symbol table with only one element:
109
 
110
|       #include "bfd.h"
111
|       int main (void)
112
|       {
113
|         bfd *abfd;
114
|         asymbol *ptrs[2];
115
|         asymbol *new;
116
|
117
|         abfd = bfd_openw ("foo","a.out-sunos-big");
118
|         bfd_set_format (abfd, bfd_object);
119
|         new = bfd_make_empty_symbol (abfd);
120
|         new->name = "dummy_symbol";
121
|         new->section = bfd_make_section_old_way (abfd, ".text");
122
|         new->flags = BSF_GLOBAL;
123
|         new->value = 0x12345;
124
|
125
|         ptrs[0] = new;
126
|         ptrs[1] = 0;
127
|
128
|         bfd_set_symtab (abfd, ptrs, 1);
129
|         bfd_close (abfd);
130
|         return 0;
131
|       }
132
|
133
|       ./makesym
134
|       nm foo
135
|       00012345 A dummy_symbol
136
 
137
        Many formats cannot represent arbitrary symbol information; for
138
        instance, the <<a.out>> object format does not allow an
139
        arbitrary number of sections. A symbol pointing to a section
140
        which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
141
        be described.
142
 
143
INODE
144
Mini Symbols, typedef asymbol, Writing Symbols, Symbols
145
SUBSECTION
146
        Mini Symbols
147
 
148
        Mini symbols provide read-only access to the symbol table.
149
        They use less memory space, but require more time to access.
150
        They can be useful for tools like nm or objdump, which may
151
        have to handle symbol tables of extremely large executables.
152
 
153
        The <<bfd_read_minisymbols>> function will read the symbols
154
        into memory in an internal form.  It will return a <<void *>>
155
        pointer to a block of memory, a symbol count, and the size of
156
        each symbol.  The pointer is allocated using <<malloc>>, and
157
        should be freed by the caller when it is no longer needed.
158
 
159
        The function <<bfd_minisymbol_to_symbol>> will take a pointer
160
        to a minisymbol, and a pointer to a structure returned by
161
        <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162
        The return value may or may not be the same as the value from
163
        <<bfd_make_empty_symbol>> which was passed in.
164
 
165
*/
166
 
167
/*
168
DOCDD
169
INODE
170
typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171
 
172
*/
173
/*
174
SUBSECTION
175
        typedef asymbol
176
 
177
        An <<asymbol>> has the form:
178
 
179
*/
180
 
181
/*
182
CODE_FRAGMENT
183
 
184
.
185
.typedef struct bfd_symbol
186
.{
187
.  {* A pointer to the BFD which owns the symbol. This information
188
.     is necessary so that a back end can work out what additional
189
.     information (invisible to the application writer) is carried
190
.     with the symbol.
191
.
192
.     This field is *almost* redundant, since you can use section->owner
193
.     instead, except that some symbols point to the global sections
194
.     bfd_{abs,com,und}_section.  This could be fixed by making
195
.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
196
.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
197
.
198
.  {* The text of the symbol. The name is left alone, and not copied; the
199
.     application may not alter it.  *}
200
.  const char *name;
201
.
202
.  {* The value of the symbol.  This really should be a union of a
203
.     numeric value with a pointer, since some flags indicate that
204
.     a pointer to another symbol is stored here.  *}
205
.  symvalue value;
206
.
207
.  {* Attributes of a symbol.  *}
208
.#define BSF_NO_FLAGS    0x00
209
.
210
.  {* The symbol has local scope; <<static>> in <<C>>. The value
211
.     is the offset into the section of the data.  *}
212
.#define BSF_LOCAL      0x01
213
.
214
.  {* The symbol has global scope; initialized data in <<C>>. The
215
.     value is the offset into the section of the data.  *}
216
.#define BSF_GLOBAL     0x02
217
.
218
.  {* The symbol has global scope and is exported. The value is
219
.     the offset into the section of the data.  *}
220
.#define BSF_EXPORT     BSF_GLOBAL {* No real difference.  *}
221
.
222
.  {* A normal C symbol would be one of:
223
.     <<BSF_LOCAL>>, <<BSF_FORT_COMM>>,  <<BSF_UNDEFINED>> or
224
.     <<BSF_GLOBAL>>.  *}
225
.
226
.  {* The symbol is a debugging record. The value has an arbitrary
227
.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
228
.#define BSF_DEBUGGING  0x08
229
.
230
.  {* The symbol denotes a function entry point.  Used in ELF,
231
.     perhaps others someday.  *}
232
.#define BSF_FUNCTION    0x10
233
.
234
.  {* Used by the linker.  *}
235
.#define BSF_KEEP        0x20
236
.#define BSF_KEEP_G      0x40
237
.
238
.  {* A weak global symbol, overridable without warnings by
239
.     a regular global symbol of the same name.  *}
240
.#define BSF_WEAK        0x80
241
.
242
.  {* This symbol was created to point to a section, e.g. ELF's
243
.     STT_SECTION symbols.  *}
244
.#define BSF_SECTION_SYM 0x100
245
.
246
.  {* The symbol used to be a common symbol, but now it is
247
.     allocated.  *}
248
.#define BSF_OLD_COMMON  0x200
249
.
250
.  {* The default value for common data.  *}
251
.#define BFD_FORT_COMM_DEFAULT_VALUE 0
252
.
253
.  {* In some files the type of a symbol sometimes alters its
254
.     location in an output file - ie in coff a <<ISFCN>> symbol
255
.     which is also <<C_EXT>> symbol appears where it was
256
.     declared and not at the end of a section.  This bit is set
257
.     by the target BFD part to convey this information.  *}
258
.#define BSF_NOT_AT_END    0x400
259
.
260
.  {* Signal that the symbol is the label of constructor section.  *}
261
.#define BSF_CONSTRUCTOR   0x800
262
.
263
.  {* Signal that the symbol is a warning symbol.  The name is a
264
.     warning.  The name of the next symbol is the one to warn about;
265
.     if a reference is made to a symbol with the same name as the next
266
.     symbol, a warning is issued by the linker.  *}
267
.#define BSF_WARNING       0x1000
268
.
269
.  {* Signal that the symbol is indirect.  This symbol is an indirect
270
.     pointer to the symbol with the same name as the next symbol.  *}
271
.#define BSF_INDIRECT      0x2000
272
.
273
.  {* BSF_FILE marks symbols that contain a file name.  This is used
274
.     for ELF STT_FILE symbols.  *}
275
.#define BSF_FILE          0x4000
276
.
277
.  {* Symbol is from dynamic linking information.  *}
278
.#define BSF_DYNAMIC       0x8000
279
.
280
.  {* The symbol denotes a data object.  Used in ELF, and perhaps
281
.     others someday.  *}
282
.#define BSF_OBJECT        0x10000
283
.
284
.  {* This symbol is a debugging symbol.  The value is the offset
285
.     into the section of the data.  BSF_DEBUGGING should be set
286
.     as well.  *}
287
.#define BSF_DEBUGGING_RELOC 0x20000
288
.
289
.  {* This symbol is thread local.  Used in ELF.  *}
290
.#define BSF_THREAD_LOCAL  0x40000
291
.
292
.  {* This symbol represents a complex relocation expression,
293
.     with the expression tree serialized in the symbol name.  *}
294
.#define BSF_RELC 0x80000
295
.
296
.  {* This symbol represents a signed complex relocation expression,
297
.     with the expression tree serialized in the symbol name.  *}
298
.#define BSF_SRELC 0x100000
299
.
300
.  flagword flags;
301
.
302
.  {* A pointer to the section to which this symbol is
303
.     relative.  This will always be non NULL, there are special
304
.     sections for undefined and absolute symbols.  *}
305
.  struct bfd_section *section;
306
.
307
.  {* Back end special data.  *}
308
.  union
309
.    {
310
.      void *p;
311
.      bfd_vma i;
312
.    }
313
.  udata;
314
.}
315
.asymbol;
316
.
317
*/
318
 
319
#include "sysdep.h"
320
#include "bfd.h"
321
#include "libbfd.h"
322
#include "safe-ctype.h"
323
#include "bfdlink.h"
324
#include "aout/stab_gnu.h"
325
 
326
/*
327
DOCDD
328
INODE
329
symbol handling functions,  , typedef asymbol, Symbols
330
SUBSECTION
331
        Symbol handling functions
332
*/
333
 
334
/*
335
FUNCTION
336
        bfd_get_symtab_upper_bound
337
 
338
DESCRIPTION
339
        Return the number of bytes required to store a vector of pointers
340
        to <<asymbols>> for all the symbols in the BFD @var{abfd},
341
        including a terminal NULL pointer. If there are no symbols in
342
        the BFD, then return 0.  If an error occurs, return -1.
343
 
344
.#define bfd_get_symtab_upper_bound(abfd) \
345
.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
346
.
347
*/
348
 
349
/*
350
FUNCTION
351
        bfd_is_local_label
352
 
353
SYNOPSIS
354
        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
355
 
356
DESCRIPTION
357
        Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
358
        a compiler generated local label, else return FALSE.
359
*/
360
 
361
bfd_boolean
362
bfd_is_local_label (bfd *abfd, asymbol *sym)
363
{
364
  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
365
     starts with '.' is local.  This would accidentally catch section names
366
     if we didn't reject them here.  */
367
  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
368
    return FALSE;
369
  if (sym->name == NULL)
370
    return FALSE;
371
  return bfd_is_local_label_name (abfd, sym->name);
372
}
373
 
374
/*
375
FUNCTION
376
        bfd_is_local_label_name
377
 
378
SYNOPSIS
379
        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
380
 
381
DESCRIPTION
382
        Return TRUE if a symbol with the name @var{name} in the BFD
383
        @var{abfd} is a compiler generated local label, else return
384
        FALSE.  This just checks whether the name has the form of a
385
        local label.
386
 
387
.#define bfd_is_local_label_name(abfd, name) \
388
.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
389
.
390
*/
391
 
392
/*
393
FUNCTION
394
        bfd_is_target_special_symbol
395
 
396
SYNOPSIS
397
        bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
398
 
399
DESCRIPTION
400
        Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
401
        special to the particular target represented by the BFD.  Such symbols
402
        should normally not be mentioned to the user.
403
 
404
.#define bfd_is_target_special_symbol(abfd, sym) \
405
.  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
406
.
407
*/
408
 
409
/*
410
FUNCTION
411
        bfd_canonicalize_symtab
412
 
413
DESCRIPTION
414
        Read the symbols from the BFD @var{abfd}, and fills in
415
        the vector @var{location} with pointers to the symbols and
416
        a trailing NULL.
417
        Return the actual number of symbol pointers, not
418
        including the NULL.
419
 
420
.#define bfd_canonicalize_symtab(abfd, location) \
421
.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
422
.
423
*/
424
 
425
/*
426
FUNCTION
427
        bfd_set_symtab
428
 
429
SYNOPSIS
430
        bfd_boolean bfd_set_symtab
431
          (bfd *abfd, asymbol **location, unsigned int count);
432
 
433
DESCRIPTION
434
        Arrange that when the output BFD @var{abfd} is closed,
435
        the table @var{location} of @var{count} pointers to symbols
436
        will be written.
437
*/
438
 
439
bfd_boolean
440
bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
441
{
442
  if (abfd->format != bfd_object || bfd_read_p (abfd))
443
    {
444
      bfd_set_error (bfd_error_invalid_operation);
445
      return FALSE;
446
    }
447
 
448
  bfd_get_outsymbols (abfd) = location;
449
  bfd_get_symcount (abfd) = symcount;
450
  return TRUE;
451
}
452
 
453
/*
454
FUNCTION
455
        bfd_print_symbol_vandf
456
 
457
SYNOPSIS
458
        void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
459
 
460
DESCRIPTION
461
        Print the value and flags of the @var{symbol} supplied to the
462
        stream @var{file}.
463
*/
464
void
465
bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
466
{
467
  FILE *file = arg;
468
 
469
  flagword type = symbol->flags;
470
 
471
  if (symbol->section != NULL)
472
    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
473
  else
474
    bfd_fprintf_vma (abfd, file, symbol->value);
475
 
476
  /* This presumes that a symbol can not be both BSF_DEBUGGING and
477
     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
478
     BSF_OBJECT.  */
479
  fprintf (file, " %c%c%c%c%c%c%c",
480
           ((type & BSF_LOCAL)
481
            ? (type & BSF_GLOBAL) ? '!' : 'l'
482
            : (type & BSF_GLOBAL) ? 'g' : ' '),
483
           (type & BSF_WEAK) ? 'w' : ' ',
484
           (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
485
           (type & BSF_WARNING) ? 'W' : ' ',
486
           (type & BSF_INDIRECT) ? 'I' : ' ',
487
           (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
488
           ((type & BSF_FUNCTION)
489
            ? 'F'
490
            : ((type & BSF_FILE)
491
               ? 'f'
492
               : ((type & BSF_OBJECT) ? 'O' : ' '))));
493
}
494
 
495
/*
496
FUNCTION
497
        bfd_make_empty_symbol
498
 
499
DESCRIPTION
500
        Create a new <<asymbol>> structure for the BFD @var{abfd}
501
        and return a pointer to it.
502
 
503
        This routine is necessary because each back end has private
504
        information surrounding the <<asymbol>>. Building your own
505
        <<asymbol>> and pointing to it will not create the private
506
        information, and will cause problems later on.
507
 
508
.#define bfd_make_empty_symbol(abfd) \
509
.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
510
.
511
*/
512
 
513
/*
514
FUNCTION
515
        _bfd_generic_make_empty_symbol
516
 
517
SYNOPSIS
518
        asymbol *_bfd_generic_make_empty_symbol (bfd *);
519
 
520
DESCRIPTION
521
        Create a new <<asymbol>> structure for the BFD @var{abfd}
522
        and return a pointer to it.  Used by core file routines,
523
        binary back-end and anywhere else where no private info
524
        is needed.
525
*/
526
 
527
asymbol *
528
_bfd_generic_make_empty_symbol (bfd *abfd)
529
{
530
  bfd_size_type amt = sizeof (asymbol);
531
  asymbol *new = bfd_zalloc (abfd, amt);
532
  if (new)
533
    new->the_bfd = abfd;
534
  return new;
535
}
536
 
537
/*
538
FUNCTION
539
        bfd_make_debug_symbol
540
 
541
DESCRIPTION
542
        Create a new <<asymbol>> structure for the BFD @var{abfd},
543
        to be used as a debugging symbol.  Further details of its use have
544
        yet to be worked out.
545
 
546
.#define bfd_make_debug_symbol(abfd,ptr,size) \
547
.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
548
.
549
*/
550
 
551
struct section_to_type
552
{
553
  const char *section;
554
  char type;
555
};
556
 
557
/* Map section names to POSIX/BSD single-character symbol types.
558
   This table is probably incomplete.  It is sorted for convenience of
559
   adding entries.  Since it is so short, a linear search is used.  */
560
static const struct section_to_type stt[] =
561
{
562
  {".bss", 'b'},
563
  {"code", 't'},                /* MRI .text */
564
  {".data", 'd'},
565
  {"*DEBUG*", 'N'},
566
  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
567
  {".drectve", 'i'},            /* MSVC's .drective section */
568
  {".edata", 'e'},              /* MSVC's .edata (export) section */
569
  {".fini", 't'},               /* ELF fini section */
570
  {".idata", 'i'},              /* MSVC's .idata (import) section */
571
  {".init", 't'},               /* ELF init section */
572
  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
573
  {".rdata", 'r'},              /* Read only data.  */
574
  {".rodata", 'r'},             /* Read only data.  */
575
  {".sbss", 's'},               /* Small BSS (uninitialized data).  */
576
  {".scommon", 'c'},            /* Small common.  */
577
  {".sdata", 'g'},              /* Small initialized data.  */
578
  {".text", 't'},
579
  {"vars", 'd'},                /* MRI .data */
580
  {"zerovars", 'b'},            /* MRI .bss */
581
  {0, 0}
582
};
583
 
584
/* Return the single-character symbol type corresponding to
585
   section S, or '?' for an unknown COFF section.
586
 
587
   Check for any leading string which matches, so .text5 returns
588
   't' as well as .text */
589
 
590
static char
591
coff_section_type (const char *s)
592
{
593
  const struct section_to_type *t;
594
 
595
  for (t = &stt[0]; t->section; t++)
596
    if (!strncmp (s, t->section, strlen (t->section)))
597
      return t->type;
598
 
599
  return '?';
600
}
601
 
602
/* Return the single-character symbol type corresponding to section
603
   SECTION, or '?' for an unknown section.  This uses section flags to
604
   identify sections.
605
 
606
   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
607
   we could perhaps obsolete coff_section_type.  */
608
 
609
static char
610
decode_section_type (const struct bfd_section *section)
611
{
612
  if (section->flags & SEC_CODE)
613
    return 't';
614
  if (section->flags & SEC_DATA)
615
    {
616
      if (section->flags & SEC_READONLY)
617
        return 'r';
618
      else if (section->flags & SEC_SMALL_DATA)
619
        return 'g';
620
      else
621
        return 'd';
622
    }
623
  if ((section->flags & SEC_HAS_CONTENTS) == 0)
624
    {
625
      if (section->flags & SEC_SMALL_DATA)
626
        return 's';
627
      else
628
        return 'b';
629
    }
630
  if (section->flags & SEC_DEBUGGING)
631
    return 'N';
632
  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
633
    return 'n';
634
 
635
  return '?';
636
}
637
 
638
/*
639
FUNCTION
640
        bfd_decode_symclass
641
 
642
DESCRIPTION
643
        Return a character corresponding to the symbol
644
        class of @var{symbol}, or '?' for an unknown class.
645
 
646
SYNOPSIS
647
        int bfd_decode_symclass (asymbol *symbol);
648
*/
649
int
650
bfd_decode_symclass (asymbol *symbol)
651
{
652
  char c;
653
 
654
  if (symbol->section && bfd_is_com_section (symbol->section))
655
    return 'C';
656
  if (bfd_is_und_section (symbol->section))
657
    {
658
      if (symbol->flags & BSF_WEAK)
659
        {
660
          /* If weak, determine if it's specifically an object
661
             or non-object weak.  */
662
          if (symbol->flags & BSF_OBJECT)
663
            return 'v';
664
          else
665
            return 'w';
666
        }
667
      else
668
        return 'U';
669
    }
670
  if (bfd_is_ind_section (symbol->section))
671
    return 'I';
672
  if (symbol->flags & BSF_WEAK)
673
    {
674
      /* If weak, determine if it's specifically an object
675
         or non-object weak.  */
676
      if (symbol->flags & BSF_OBJECT)
677
        return 'V';
678
      else
679
        return 'W';
680
    }
681
  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
682
    return '?';
683
 
684
  if (bfd_is_abs_section (symbol->section))
685
    c = 'a';
686
  else if (symbol->section)
687
    {
688
      c = coff_section_type (symbol->section->name);
689
      if (c == '?')
690
        c = decode_section_type (symbol->section);
691
    }
692
  else
693
    return '?';
694
  if (symbol->flags & BSF_GLOBAL)
695
    c = TOUPPER (c);
696
  return c;
697
 
698
  /* We don't have to handle these cases just yet, but we will soon:
699
     N_SETV: 'v';
700
     N_SETA: 'l';
701
     N_SETT: 'x';
702
     N_SETD: 'z';
703
     N_SETB: 's';
704
     N_INDR: 'i';
705
     */
706
}
707
 
708
/*
709
FUNCTION
710
        bfd_is_undefined_symclass
711
 
712
DESCRIPTION
713
        Returns non-zero if the class symbol returned by
714
        bfd_decode_symclass represents an undefined symbol.
715
        Returns zero otherwise.
716
 
717
SYNOPSIS
718
        bfd_boolean bfd_is_undefined_symclass (int symclass);
719
*/
720
 
721
bfd_boolean
722
bfd_is_undefined_symclass (int symclass)
723
{
724
  return symclass == 'U' || symclass == 'w' || symclass == 'v';
725
}
726
 
727
/*
728
FUNCTION
729
        bfd_symbol_info
730
 
731
DESCRIPTION
732
        Fill in the basic info about symbol that nm needs.
733
        Additional info may be added by the back-ends after
734
        calling this function.
735
 
736
SYNOPSIS
737
        void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
738
*/
739
 
740
void
741
bfd_symbol_info (asymbol *symbol, symbol_info *ret)
742
{
743
  ret->type = bfd_decode_symclass (symbol);
744
 
745
  if (bfd_is_undefined_symclass (ret->type))
746
    ret->value = 0;
747
  else
748
    ret->value = symbol->value + symbol->section->vma;
749
 
750
  ret->name = symbol->name;
751
}
752
 
753
/*
754
FUNCTION
755
        bfd_copy_private_symbol_data
756
 
757
SYNOPSIS
758
        bfd_boolean bfd_copy_private_symbol_data
759
          (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
760
 
761
DESCRIPTION
762
        Copy private symbol information from @var{isym} in the BFD
763
        @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
764
        Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
765
        returns are:
766
 
767
        o <<bfd_error_no_memory>> -
768
        Not enough memory exists to create private data for @var{osec}.
769
 
770
.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
771
.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
772
.            (ibfd, isymbol, obfd, osymbol))
773
.
774
*/
775
 
776
/* The generic version of the function which returns mini symbols.
777
   This is used when the backend does not provide a more efficient
778
   version.  It just uses BFD asymbol structures as mini symbols.  */
779
 
780
long
781
_bfd_generic_read_minisymbols (bfd *abfd,
782
                               bfd_boolean dynamic,
783
                               void **minisymsp,
784
                               unsigned int *sizep)
785
{
786
  long storage;
787
  asymbol **syms = NULL;
788
  long symcount;
789
 
790
  if (dynamic)
791
    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
792
  else
793
    storage = bfd_get_symtab_upper_bound (abfd);
794
  if (storage < 0)
795
    goto error_return;
796
  if (storage == 0)
797
    return 0;
798
 
799
  syms = bfd_malloc (storage);
800
  if (syms == NULL)
801
    goto error_return;
802
 
803
  if (dynamic)
804
    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
805
  else
806
    symcount = bfd_canonicalize_symtab (abfd, syms);
807
  if (symcount < 0)
808
    goto error_return;
809
 
810
  *minisymsp = syms;
811
  *sizep = sizeof (asymbol *);
812
  return symcount;
813
 
814
 error_return:
815
  bfd_set_error (bfd_error_no_symbols);
816
  if (syms != NULL)
817
    free (syms);
818
  return -1;
819
}
820
 
821
/* The generic version of the function which converts a minisymbol to
822
   an asymbol.  We don't worry about the sym argument we are passed;
823
   we just return the asymbol the minisymbol points to.  */
824
 
825
asymbol *
826
_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
827
                                   bfd_boolean dynamic ATTRIBUTE_UNUSED,
828
                                   const void *minisym,
829
                                   asymbol *sym ATTRIBUTE_UNUSED)
830
{
831
  return *(asymbol **) minisym;
832
}
833
 
834
/* Look through stabs debugging information in .stab and .stabstr
835
   sections to find the source file and line closest to a desired
836
   location.  This is used by COFF and ELF targets.  It sets *pfound
837
   to TRUE if it finds some information.  The *pinfo field is used to
838
   pass cached information in and out of this routine; this first time
839
   the routine is called for a BFD, *pinfo should be NULL.  The value
840
   placed in *pinfo should be saved with the BFD, and passed back each
841
   time this function is called.  */
842
 
843
/* We use a cache by default.  */
844
 
845
#define ENABLE_CACHING
846
 
847
/* We keep an array of indexentry structures to record where in the
848
   stabs section we should look to find line number information for a
849
   particular address.  */
850
 
851
struct indexentry
852
{
853
  bfd_vma val;
854
  bfd_byte *stab;
855
  bfd_byte *str;
856
  char *directory_name;
857
  char *file_name;
858
  char *function_name;
859
};
860
 
861
/* Compare two indexentry structures.  This is called via qsort.  */
862
 
863
static int
864
cmpindexentry (const void *a, const void *b)
865
{
866
  const struct indexentry *contestantA = a;
867
  const struct indexentry *contestantB = b;
868
 
869
  if (contestantA->val < contestantB->val)
870
    return -1;
871
  else if (contestantA->val > contestantB->val)
872
    return 1;
873
  else
874
    return 0;
875
}
876
 
877
/* A pointer to this structure is stored in *pinfo.  */
878
 
879
struct stab_find_info
880
{
881
  /* The .stab section.  */
882
  asection *stabsec;
883
  /* The .stabstr section.  */
884
  asection *strsec;
885
  /* The contents of the .stab section.  */
886
  bfd_byte *stabs;
887
  /* The contents of the .stabstr section.  */
888
  bfd_byte *strs;
889
 
890
  /* A table that indexes stabs by memory address.  */
891
  struct indexentry *indextable;
892
  /* The number of entries in indextable.  */
893
  int indextablesize;
894
 
895
#ifdef ENABLE_CACHING
896
  /* Cached values to restart quickly.  */
897
  struct indexentry *cached_indexentry;
898
  bfd_vma cached_offset;
899
  bfd_byte *cached_stab;
900
  char *cached_file_name;
901
#endif
902
 
903
  /* Saved ptr to malloc'ed filename.  */
904
  char *filename;
905
};
906
 
907
bfd_boolean
908
_bfd_stab_section_find_nearest_line (bfd *abfd,
909
                                     asymbol **symbols,
910
                                     asection *section,
911
                                     bfd_vma offset,
912
                                     bfd_boolean *pfound,
913
                                     const char **pfilename,
914
                                     const char **pfnname,
915
                                     unsigned int *pline,
916
                                     void **pinfo)
917
{
918
  struct stab_find_info *info;
919
  bfd_size_type stabsize, strsize;
920
  bfd_byte *stab, *str;
921
  bfd_byte *last_stab = NULL;
922
  bfd_size_type stroff;
923
  struct indexentry *indexentry;
924
  char *file_name;
925
  char *directory_name;
926
  int saw_fun;
927
  bfd_boolean saw_line, saw_func;
928
 
929
  *pfound = FALSE;
930
  *pfilename = bfd_get_filename (abfd);
931
  *pfnname = NULL;
932
  *pline = 0;
933
 
934
  /* Stabs entries use a 12 byte format:
935
       4 byte string table index
936
       1 byte stab type
937
       1 byte stab other field
938
       2 byte stab desc field
939
       4 byte stab value
940
     FIXME: This will have to change for a 64 bit object format.
941
 
942
     The stabs symbols are divided into compilation units.  For the
943
     first entry in each unit, the type of 0, the value is the length
944
     of the string table for this unit, and the desc field is the
945
     number of stabs symbols for this unit.  */
946
 
947
#define STRDXOFF (0)
948
#define TYPEOFF (4)
949
#define OTHEROFF (5)
950
#define DESCOFF (6)
951
#define VALOFF (8)
952
#define STABSIZE (12)
953
 
954
  info = *pinfo;
955
  if (info != NULL)
956
    {
957
      if (info->stabsec == NULL || info->strsec == NULL)
958
        {
959
          /* No stabs debugging information.  */
960
          return TRUE;
961
        }
962
 
963
      stabsize = (info->stabsec->rawsize
964
                  ? info->stabsec->rawsize
965
                  : info->stabsec->size);
966
      strsize = (info->strsec->rawsize
967
                 ? info->strsec->rawsize
968
                 : info->strsec->size);
969
    }
970
  else
971
    {
972
      long reloc_size, reloc_count;
973
      arelent **reloc_vector;
974
      int i;
975
      char *name;
976
      char *function_name;
977
      bfd_size_type amt = sizeof *info;
978
 
979
      info = bfd_zalloc (abfd, amt);
980
      if (info == NULL)
981
        return FALSE;
982
 
983
      /* FIXME: When using the linker --split-by-file or
984
         --split-by-reloc options, it is possible for the .stab and
985
         .stabstr sections to be split.  We should handle that.  */
986
 
987
      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
988
      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
989
 
990
      if (info->stabsec == NULL || info->strsec == NULL)
991
        {
992
          /* Try SOM section names.  */
993
          info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
994
          info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
995
 
996
          if (info->stabsec == NULL || info->strsec == NULL)
997
            {
998
              /* No stabs debugging information.  Set *pinfo so that we
999
                 can return quickly in the info != NULL case above.  */
1000
              *pinfo = info;
1001
              return TRUE;
1002
            }
1003
        }
1004
 
1005
      stabsize = (info->stabsec->rawsize
1006
                  ? info->stabsec->rawsize
1007
                  : info->stabsec->size);
1008
      strsize = (info->strsec->rawsize
1009
                 ? info->strsec->rawsize
1010
                 : info->strsec->size);
1011
 
1012
      info->stabs = bfd_alloc (abfd, stabsize);
1013
      info->strs = bfd_alloc (abfd, strsize);
1014
      if (info->stabs == NULL || info->strs == NULL)
1015
        return FALSE;
1016
 
1017
      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1018
                                      0, stabsize)
1019
          || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1020
                                         0, strsize))
1021
        return FALSE;
1022
 
1023
      /* If this is a relocatable object file, we have to relocate
1024
         the entries in .stab.  This should always be simple 32 bit
1025
         relocations against symbols defined in this object file, so
1026
         this should be no big deal.  */
1027
      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1028
      if (reloc_size < 0)
1029
        return FALSE;
1030
      reloc_vector = bfd_malloc (reloc_size);
1031
      if (reloc_vector == NULL && reloc_size != 0)
1032
        return FALSE;
1033
      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1034
                                            symbols);
1035
      if (reloc_count < 0)
1036
        {
1037
          if (reloc_vector != NULL)
1038
            free (reloc_vector);
1039
          return FALSE;
1040
        }
1041
      if (reloc_count > 0)
1042
        {
1043
          arelent **pr;
1044
 
1045
          for (pr = reloc_vector; *pr != NULL; pr++)
1046
            {
1047
              arelent *r;
1048
              unsigned long val;
1049
              asymbol *sym;
1050
 
1051
              r = *pr;
1052
              /* Ignore R_*_NONE relocs.  */
1053
              if (r->howto->dst_mask == 0)
1054
                continue;
1055
 
1056
              if (r->howto->rightshift != 0
1057
                  || r->howto->size != 2
1058
                  || r->howto->bitsize != 32
1059
                  || r->howto->pc_relative
1060
                  || r->howto->bitpos != 0
1061
                  || r->howto->dst_mask != 0xffffffff)
1062
                {
1063
                  (*_bfd_error_handler)
1064
                    (_("Unsupported .stab relocation"));
1065
                  bfd_set_error (bfd_error_invalid_operation);
1066
                  if (reloc_vector != NULL)
1067
                    free (reloc_vector);
1068
                  return FALSE;
1069
                }
1070
 
1071
              val = bfd_get_32 (abfd, info->stabs + r->address);
1072
              val &= r->howto->src_mask;
1073
              sym = *r->sym_ptr_ptr;
1074
              val += sym->value + sym->section->vma + r->addend;
1075
              bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1076
            }
1077
        }
1078
 
1079
      if (reloc_vector != NULL)
1080
        free (reloc_vector);
1081
 
1082
      /* First time through this function, build a table matching
1083
         function VM addresses to stabs, then sort based on starting
1084
         VM address.  Do this in two passes: once to count how many
1085
         table entries we'll need, and a second to actually build the
1086
         table.  */
1087
 
1088
      info->indextablesize = 0;
1089
      saw_fun = 1;
1090
      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1091
        {
1092
          if (stab[TYPEOFF] == (bfd_byte) N_SO)
1093
            {
1094
              /* N_SO with null name indicates EOF */
1095
              if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1096
                continue;
1097
 
1098
              /* if we did not see a function def, leave space for one.  */
1099
              if (saw_fun == 0)
1100
                ++info->indextablesize;
1101
 
1102
              saw_fun = 0;
1103
 
1104
              /* two N_SO's in a row is a filename and directory. Skip */
1105
              if (stab + STABSIZE < info->stabs + stabsize
1106
                  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1107
                {
1108
                  stab += STABSIZE;
1109
                }
1110
            }
1111
          else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1112
            {
1113
              saw_fun = 1;
1114
              ++info->indextablesize;
1115
            }
1116
        }
1117
 
1118
      if (saw_fun == 0)
1119
        ++info->indextablesize;
1120
 
1121
      if (info->indextablesize == 0)
1122
        return TRUE;
1123
      ++info->indextablesize;
1124
 
1125
      amt = info->indextablesize;
1126
      amt *= sizeof (struct indexentry);
1127
      info->indextable = bfd_alloc (abfd, amt);
1128
      if (info->indextable == NULL)
1129
        return FALSE;
1130
 
1131
      file_name = NULL;
1132
      directory_name = NULL;
1133
      saw_fun = 1;
1134
 
1135
      for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1136
           i < info->indextablesize && stab < info->stabs + stabsize;
1137
           stab += STABSIZE)
1138
        {
1139
          switch (stab[TYPEOFF])
1140
            {
1141
            case 0:
1142
              /* This is the first entry in a compilation unit.  */
1143
              if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1144
                break;
1145
              str += stroff;
1146
              stroff = bfd_get_32 (abfd, stab + VALOFF);
1147
              break;
1148
 
1149
            case N_SO:
1150
              /* The main file name.  */
1151
 
1152
              /* The following code creates a new indextable entry with
1153
                 a NULL function name if there were no N_FUNs in a file.
1154
                 Note that a N_SO without a file name is an EOF and
1155
                 there could be 2 N_SO following it with the new filename
1156
                 and directory.  */
1157
              if (saw_fun == 0)
1158
                {
1159
                  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1160
                  info->indextable[i].stab = last_stab;
1161
                  info->indextable[i].str = str;
1162
                  info->indextable[i].directory_name = directory_name;
1163
                  info->indextable[i].file_name = file_name;
1164
                  info->indextable[i].function_name = NULL;
1165
                  ++i;
1166
                }
1167
              saw_fun = 0;
1168
 
1169
              file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1170
              if (*file_name == '\0')
1171
                {
1172
                  directory_name = NULL;
1173
                  file_name = NULL;
1174
                  saw_fun = 1;
1175
                }
1176
              else
1177
                {
1178
                  last_stab = stab;
1179
                  if (stab + STABSIZE >= info->stabs + stabsize
1180
                      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1181
                    {
1182
                      directory_name = NULL;
1183
                    }
1184
                  else
1185
                    {
1186
                      /* Two consecutive N_SOs are a directory and a
1187
                         file name.  */
1188
                      stab += STABSIZE;
1189
                      directory_name = file_name;
1190
                      file_name = ((char *) str
1191
                                   + bfd_get_32 (abfd, stab + STRDXOFF));
1192
                    }
1193
                }
1194
              break;
1195
 
1196
            case N_SOL:
1197
              /* The name of an include file.  */
1198
              file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1199
              break;
1200
 
1201
            case N_FUN:
1202
              /* A function name.  */
1203
              saw_fun = 1;
1204
              name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1205
 
1206
              if (*name == '\0')
1207
                name = NULL;
1208
 
1209
              function_name = name;
1210
 
1211
              if (name == NULL)
1212
                continue;
1213
 
1214
              info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1215
              info->indextable[i].stab = stab;
1216
              info->indextable[i].str = str;
1217
              info->indextable[i].directory_name = directory_name;
1218
              info->indextable[i].file_name = file_name;
1219
              info->indextable[i].function_name = function_name;
1220
              ++i;
1221
              break;
1222
            }
1223
        }
1224
 
1225
      if (saw_fun == 0)
1226
        {
1227
          info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1228
          info->indextable[i].stab = last_stab;
1229
          info->indextable[i].str = str;
1230
          info->indextable[i].directory_name = directory_name;
1231
          info->indextable[i].file_name = file_name;
1232
          info->indextable[i].function_name = NULL;
1233
          ++i;
1234
        }
1235
 
1236
      info->indextable[i].val = (bfd_vma) -1;
1237
      info->indextable[i].stab = info->stabs + stabsize;
1238
      info->indextable[i].str = str;
1239
      info->indextable[i].directory_name = NULL;
1240
      info->indextable[i].file_name = NULL;
1241
      info->indextable[i].function_name = NULL;
1242
      ++i;
1243
 
1244
      info->indextablesize = i;
1245
      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1246
             cmpindexentry);
1247
 
1248
      *pinfo = info;
1249
    }
1250
 
1251
  /* We are passed a section relative offset.  The offsets in the
1252
     stabs information are absolute.  */
1253
  offset += bfd_get_section_vma (abfd, section);
1254
 
1255
#ifdef ENABLE_CACHING
1256
  if (info->cached_indexentry != NULL
1257
      && offset >= info->cached_offset
1258
      && offset < (info->cached_indexentry + 1)->val)
1259
    {
1260
      stab = info->cached_stab;
1261
      indexentry = info->cached_indexentry;
1262
      file_name = info->cached_file_name;
1263
    }
1264
  else
1265
#endif
1266
    {
1267
      long low, high;
1268
      long mid = -1;
1269
 
1270
      /* Cache non-existent or invalid.  Do binary search on
1271
         indextable.  */
1272
      indexentry = NULL;
1273
 
1274
      low = 0;
1275
      high = info->indextablesize - 1;
1276
      while (low != high)
1277
        {
1278
          mid = (high + low) / 2;
1279
          if (offset >= info->indextable[mid].val
1280
              && offset < info->indextable[mid + 1].val)
1281
            {
1282
              indexentry = &info->indextable[mid];
1283
              break;
1284
            }
1285
 
1286
          if (info->indextable[mid].val > offset)
1287
            high = mid;
1288
          else
1289
            low = mid + 1;
1290
        }
1291
 
1292
      if (indexentry == NULL)
1293
        return TRUE;
1294
 
1295
      stab = indexentry->stab + STABSIZE;
1296
      file_name = indexentry->file_name;
1297
    }
1298
 
1299
  directory_name = indexentry->directory_name;
1300
  str = indexentry->str;
1301
 
1302
  saw_line = FALSE;
1303
  saw_func = FALSE;
1304
  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1305
    {
1306
      bfd_boolean done;
1307
      bfd_vma val;
1308
 
1309
      done = FALSE;
1310
 
1311
      switch (stab[TYPEOFF])
1312
        {
1313
        case N_SOL:
1314
          /* The name of an include file.  */
1315
          val = bfd_get_32 (abfd, stab + VALOFF);
1316
          if (val <= offset)
1317
            {
1318
              file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1319
              *pline = 0;
1320
            }
1321
          break;
1322
 
1323
        case N_SLINE:
1324
        case N_DSLINE:
1325
        case N_BSLINE:
1326
          /* A line number.  If the function was specified, then the value
1327
             is relative to the start of the function.  Otherwise, the
1328
             value is an absolute address.  */
1329
          val = ((indexentry->function_name ? indexentry->val : 0)
1330
                 + bfd_get_32 (abfd, stab + VALOFF));
1331
          /* If this line starts before our desired offset, or if it's
1332
             the first line we've been able to find, use it.  The
1333
             !saw_line check works around a bug in GCC 2.95.3, which emits
1334
             the first N_SLINE late.  */
1335
          if (!saw_line || val <= offset)
1336
            {
1337
              *pline = bfd_get_16 (abfd, stab + DESCOFF);
1338
 
1339
#ifdef ENABLE_CACHING
1340
              info->cached_stab = stab;
1341
              info->cached_offset = val;
1342
              info->cached_file_name = file_name;
1343
              info->cached_indexentry = indexentry;
1344
#endif
1345
            }
1346
          if (val > offset)
1347
            done = TRUE;
1348
          saw_line = TRUE;
1349
          break;
1350
 
1351
        case N_FUN:
1352
        case N_SO:
1353
          if (saw_func || saw_line)
1354
            done = TRUE;
1355
          saw_func = TRUE;
1356
          break;
1357
        }
1358
 
1359
      if (done)
1360
        break;
1361
    }
1362
 
1363
  *pfound = TRUE;
1364
 
1365
  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1366
      || directory_name == NULL)
1367
    *pfilename = file_name;
1368
  else
1369
    {
1370
      size_t dirlen;
1371
 
1372
      dirlen = strlen (directory_name);
1373
      if (info->filename == NULL
1374
          || strncmp (info->filename, directory_name, dirlen) != 0
1375
          || strcmp (info->filename + dirlen, file_name) != 0)
1376
        {
1377
          size_t len;
1378
 
1379
          if (info->filename != NULL)
1380
            free (info->filename);
1381
          len = strlen (file_name) + 1;
1382
          info->filename = bfd_malloc (dirlen + len);
1383
          if (info->filename == NULL)
1384
            return FALSE;
1385
          memcpy (info->filename, directory_name, dirlen);
1386
          memcpy (info->filename + dirlen, file_name, len);
1387
        }
1388
 
1389
      *pfilename = info->filename;
1390
    }
1391
 
1392
  if (indexentry->function_name != NULL)
1393
    {
1394
      char *s;
1395
 
1396
      /* This will typically be something like main:F(0,1), so we want
1397
         to clobber the colon.  It's OK to change the name, since the
1398
         string is in our own local storage anyhow.  */
1399
      s = strchr (indexentry->function_name, ':');
1400
      if (s != NULL)
1401
        *s = '\0';
1402
 
1403
      *pfnname = indexentry->function_name;
1404
    }
1405
 
1406
  return TRUE;
1407
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.