OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 424

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@ifset GENERIC
7
@page
8
@node i386-Dependent
9
@chapter 80386 Dependent Features
10
@end ifset
11
@ifclear GENERIC
12
@node Machine Dependencies
13
@chapter 80386 Dependent Features
14
@end ifclear
15
 
16
@cindex i386 support
17
@cindex i80306 support
18
@cindex x86-64 support
19
 
20
The i386 version @code{@value{AS}} supports both the original Intel 386
21
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22
extending the Intel architecture to 64-bits.
23
 
24
@menu
25
* i386-Options::                Options
26
* i386-Syntax::                 AT&T Syntax versus Intel Syntax
27
* i386-Mnemonics::              Instruction Naming
28
* i386-Regs::                   Register Naming
29
* i386-Prefixes::               Instruction Prefixes
30
* i386-Memory::                 Memory References
31
* i386-Jumps::                  Handling of Jump Instructions
32
* i386-Float::                  Floating Point
33
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
34
* i386-16bit::                  Writing 16-bit Code
35
* i386-Arch::                   Specifying an x86 CPU architecture
36
* i386-Bugs::                   AT&T Syntax bugs
37
* i386-Notes::                  Notes
38
@end menu
39
 
40
@node i386-Options
41
@section Options
42
 
43
@cindex options for i386
44
@cindex options for x86-64
45
@cindex i386 options
46
@cindex x86-64 options
47
 
48
The i386 version of @code{@value{AS}} has a few machine
49
dependent options:
50
 
51
@table @code
52
@cindex @samp{--32} option, i386
53
@cindex @samp{--32} option, x86-64
54
@cindex @samp{--64} option, i386
55
@cindex @samp{--64} option, x86-64
56
@item --32 | --64
57
Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58
implies Intel i386 architecture, while 64-bit implies AMD x86-64
59
architecture.
60
 
61
These options are only available with the ELF object file format, and
62
require that the necessary BFD support has been included (on a 32-bit
63
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64
usage and use x86-64 as target platform).
65
 
66
@item -n
67
By default, x86 GAS replaces multiple nop instructions used for
68
alignment within code sections with multi-byte nop instructions such
69
as leal 0(%esi,1),%esi.  This switch disables the optimization.
70
 
71
@cindex @samp{--divide} option, i386
72
@item --divide
73
On SVR4-derived platforms, the character @samp{/} is treated as a comment
74
character, which means that it cannot be used in expressions.  The
75
@samp{--divide} option turns @samp{/} into a normal character.  This does
76
not disable @samp{/} at the beginning of a line starting a comment, or
77
affect using @samp{#} for starting a comment.
78
 
79
@cindex @samp{-march=} option, i386
80
@cindex @samp{-march=} option, x86-64
81
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
82
This option specifies the target processor.  The assembler will
83
issue an error message if an attempt is made to assemble an instruction
84
which will not execute on the target processor.  The following
85
processor names are recognized:
86
@code{i8086},
87
@code{i186},
88
@code{i286},
89
@code{i386},
90
@code{i486},
91
@code{i586},
92
@code{i686},
93
@code{pentium},
94
@code{pentiumpro},
95
@code{pentiumii},
96
@code{pentiumiii},
97
@code{pentium4},
98
@code{prescott},
99
@code{nocona},
100
@code{core},
101
@code{core2},
102
@code{k6},
103
@code{k6_2},
104
@code{athlon},
105
@code{opteron},
106
@code{k8},
107
@code{amdfam10},
108
@code{generic32} and
109
@code{generic64}.
110
 
111
In addition to the basic instruction set, the assembler can be told to
112
accept various extension mnemonics.  For example,
113
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
114
@var{vmx}.  The following extensions are currently supported:
115
@code{mmx},
116
@code{sse},
117
@code{sse2},
118
@code{sse3},
119
@code{ssse3},
120
@code{sse4.1},
121
@code{sse4.2},
122
@code{sse4},
123
@code{avx},
124
@code{vmx},
125
@code{smx},
126
@code{xsave},
127
@code{aes},
128
@code{pclmul},
129
@code{fma},
130
@code{movbe},
131
@code{ept},
132
@code{3dnow},
133
@code{3dnowa},
134
@code{sse4a},
135
@code{sse5},
136
@code{svme},
137
@code{abm} and
138
@code{padlock}.
139
 
140
When the @code{.arch} directive is used with @option{-march}, the
141
@code{.arch} directive will take precedent.
142
 
143
@cindex @samp{-mtune=} option, i386
144
@cindex @samp{-mtune=} option, x86-64
145
@item -mtune=@var{CPU}
146
This option specifies a processor to optimize for. When used in
147
conjunction with the @option{-march} option, only instructions
148
of the processor specified by the @option{-march} option will be
149
generated.
150
 
151
Valid @var{CPU} values are identical to the processor list of
152
@option{-march=@var{CPU}}.
153
 
154
@cindex @samp{-msse2avx} option, i386
155
@cindex @samp{-msse2avx} option, x86-64
156
@item -msse2avx
157
This option specifies that the assembler should encode SSE instructions
158
with VEX prefix.
159
 
160
@cindex @samp{-msse-check=} option, i386
161
@cindex @samp{-msse-check=} option, x86-64
162
@item -msse-check=@var{none}
163
@item -msse-check=@var{warning}
164
@item -msse-check=@var{error}
165
These options control if the assembler should check SSE intructions.
166
@option{-msse-check=@var{none}} will make the assembler not to check SSE
167
instructions,  which is the default.  @option{-msse-check=@var{warning}}
168
will make the assembler issue a warning for any SSE intruction.
169
@option{-msse-check=@var{error}} will make the assembler issue an error
170
for any SSE intruction.
171
 
172
@cindex @samp{-mmnemonic=} option, i386
173
@cindex @samp{-mmnemonic=} option, x86-64
174
@item -mmnemonic=@var{att}
175
@item -mmnemonic=@var{intel}
176
This option specifies instruction mnemonic for matching instructions.
177
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
178
take precedent.
179
 
180
@cindex @samp{-msyntax=} option, i386
181
@cindex @samp{-msyntax=} option, x86-64
182
@item -msyntax=@var{att}
183
@item -msyntax=@var{intel}
184
This option specifies instruction syntax when processing instructions.
185
The @code{.att_syntax} and @code{.intel_syntax} directives will
186
take precedent.
187
 
188
@cindex @samp{-mnaked-reg} option, i386
189
@cindex @samp{-mnaked-reg} option, x86-64
190
@item -mnaked-reg
191
This opetion specifies that registers don't require a @samp{%} prefix.
192
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
193
 
194
@end table
195
 
196
@node i386-Syntax
197
@section AT&T Syntax versus Intel Syntax
198
 
199
@cindex i386 intel_syntax pseudo op
200
@cindex intel_syntax pseudo op, i386
201
@cindex i386 att_syntax pseudo op
202
@cindex att_syntax pseudo op, i386
203
@cindex i386 syntax compatibility
204
@cindex syntax compatibility, i386
205
@cindex x86-64 intel_syntax pseudo op
206
@cindex intel_syntax pseudo op, x86-64
207
@cindex x86-64 att_syntax pseudo op
208
@cindex att_syntax pseudo op, x86-64
209
@cindex x86-64 syntax compatibility
210
@cindex syntax compatibility, x86-64
211
 
212
@code{@value{AS}} now supports assembly using Intel assembler syntax.
213
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
214
back to the usual AT&T mode for compatibility with the output of
215
@code{@value{GCC}}.  Either of these directives may have an optional
216
argument, @code{prefix}, or @code{noprefix} specifying whether registers
217
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
218
different from Intel syntax.  We mention these differences because
219
almost all 80386 documents use Intel syntax.  Notable differences
220
between the two syntaxes are:
221
 
222
@cindex immediate operands, i386
223
@cindex i386 immediate operands
224
@cindex register operands, i386
225
@cindex i386 register operands
226
@cindex jump/call operands, i386
227
@cindex i386 jump/call operands
228
@cindex operand delimiters, i386
229
 
230
@cindex immediate operands, x86-64
231
@cindex x86-64 immediate operands
232
@cindex register operands, x86-64
233
@cindex x86-64 register operands
234
@cindex jump/call operands, x86-64
235
@cindex x86-64 jump/call operands
236
@cindex operand delimiters, x86-64
237
@itemize @bullet
238
@item
239
AT&T immediate operands are preceded by @samp{$}; Intel immediate
240
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
241
AT&T register operands are preceded by @samp{%}; Intel register operands
242
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
243
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
244
 
245
@cindex i386 source, destination operands
246
@cindex source, destination operands; i386
247
@cindex x86-64 source, destination operands
248
@cindex source, destination operands; x86-64
249
@item
250
AT&T and Intel syntax use the opposite order for source and destination
251
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
252
@samp{source, dest} convention is maintained for compatibility with
253
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
254
instructions with 2 immediate operands, such as the @samp{enter}
255
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
256
 
257
@cindex mnemonic suffixes, i386
258
@cindex sizes operands, i386
259
@cindex i386 size suffixes
260
@cindex mnemonic suffixes, x86-64
261
@cindex sizes operands, x86-64
262
@cindex x86-64 size suffixes
263
@item
264
In AT&T syntax the size of memory operands is determined from the last
265
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
266
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
267
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
268
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
269
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
270
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
271
syntax.
272
 
273
@cindex return instructions, i386
274
@cindex i386 jump, call, return
275
@cindex return instructions, x86-64
276
@cindex x86-64 jump, call, return
277
@item
278
Immediate form long jumps and calls are
279
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
280
Intel syntax is
281
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
282
instruction
283
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
284
@samp{ret far @var{stack-adjust}}.
285
 
286
@cindex sections, i386
287
@cindex i386 sections
288
@cindex sections, x86-64
289
@cindex x86-64 sections
290
@item
291
The AT&T assembler does not provide support for multiple section
292
programs.  Unix style systems expect all programs to be single sections.
293
@end itemize
294
 
295
@node i386-Mnemonics
296
@section Instruction Naming
297
 
298
@cindex i386 instruction naming
299
@cindex instruction naming, i386
300
@cindex x86-64 instruction naming
301
@cindex instruction naming, x86-64
302
 
303
Instruction mnemonics are suffixed with one character modifiers which
304
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
305
and @samp{q} specify byte, word, long and quadruple word operands.  If
306
no suffix is specified by an instruction then @code{@value{AS}} tries to
307
fill in the missing suffix based on the destination register operand
308
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
309
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
310
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
311
assembler which assumes that a missing mnemonic suffix implies long
312
operand size.  (This incompatibility does not affect compiler output
313
since compilers always explicitly specify the mnemonic suffix.)
314
 
315
Almost all instructions have the same names in AT&T and Intel format.
316
There are a few exceptions.  The sign extend and zero extend
317
instructions need two sizes to specify them.  They need a size to
318
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
319
is accomplished by using two instruction mnemonic suffixes in AT&T
320
syntax.  Base names for sign extend and zero extend are
321
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
322
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
323
are tacked on to this base name, the @emph{from} suffix before the
324
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
325
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
326
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
327
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
328
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
329
quadruple word).
330
 
331
@cindex conversion instructions, i386
332
@cindex i386 conversion instructions
333
@cindex conversion instructions, x86-64
334
@cindex x86-64 conversion instructions
335
The Intel-syntax conversion instructions
336
 
337
@itemize @bullet
338
@item
339
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
340
 
341
@item
342
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
343
 
344
@item
345
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
346
 
347
@item
348
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
349
 
350
@item
351
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
352
(x86-64 only),
353
 
354
@item
355
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
356
@samp{%rdx:%rax} (x86-64 only),
357
@end itemize
358
 
359
@noindent
360
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
361
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
362
instructions.
363
 
364
@cindex jump instructions, i386
365
@cindex call instructions, i386
366
@cindex jump instructions, x86-64
367
@cindex call instructions, x86-64
368
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
369
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
370
convention.
371
 
372
@section AT&T Mnemonic versus Intel Mnemonic
373
 
374
@cindex i386 mnemonic compatibility
375
@cindex mnemonic compatibility, i386
376
 
377
@code{@value{AS}} supports assembly using Intel mnemonic.
378
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
379
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
380
syntax for compatibility with the output of @code{@value{GCC}}.
381
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
382
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
383
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
384
assembler with different mnemonics from those in Intel IA32 specification.
385
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
386
 
387
@node i386-Regs
388
@section Register Naming
389
 
390
@cindex i386 registers
391
@cindex registers, i386
392
@cindex x86-64 registers
393
@cindex registers, x86-64
394
Register operands are always prefixed with @samp{%}.  The 80386 registers
395
consist of
396
 
397
@itemize @bullet
398
@item
399
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
400
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
401
frame pointer), and @samp{%esp} (the stack pointer).
402
 
403
@item
404
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
405
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
406
 
407
@item
408
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
409
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
410
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
411
@samp{%cx}, and @samp{%dx})
412
 
413
@item
414
the 6 section registers @samp{%cs} (code section), @samp{%ds}
415
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
416
and @samp{%gs}.
417
 
418
@item
419
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
420
@samp{%cr3}.
421
 
422
@item
423
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
424
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
425
 
426
@item
427
the 2 test registers @samp{%tr6} and @samp{%tr7}.
428
 
429
@item
430
the 8 floating point register stack @samp{%st} or equivalently
431
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
432
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
433
These registers are overloaded by 8 MMX registers @samp{%mm0},
434
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
435
@samp{%mm6} and @samp{%mm7}.
436
 
437
@item
438
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
439
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
440
@end itemize
441
 
442
The AMD x86-64 architecture extends the register set by:
443
 
444
@itemize @bullet
445
@item
446
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
447
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
448
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
449
pointer)
450
 
451
@item
452
the 8 extended registers @samp{%r8}--@samp{%r15}.
453
 
454
@item
455
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
456
 
457
@item
458
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
459
 
460
@item
461
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
462
 
463
@item
464
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
465
 
466
@item
467
the 8 debug registers: @samp{%db8}--@samp{%db15}.
468
 
469
@item
470
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
471
@end itemize
472
 
473
@node i386-Prefixes
474
@section Instruction Prefixes
475
 
476
@cindex i386 instruction prefixes
477
@cindex instruction prefixes, i386
478
@cindex prefixes, i386
479
Instruction prefixes are used to modify the following instruction.  They
480
are used to repeat string instructions, to provide section overrides, to
481
perform bus lock operations, and to change operand and address sizes.
482
(Most instructions that normally operate on 32-bit operands will use
483
16-bit operands if the instruction has an ``operand size'' prefix.)
484
Instruction prefixes are best written on the same line as the instruction
485
they act upon. For example, the @samp{scas} (scan string) instruction is
486
repeated with:
487
 
488
@smallexample
489
        repne scas %es:(%edi),%al
490
@end smallexample
491
 
492
You may also place prefixes on the lines immediately preceding the
493
instruction, but this circumvents checks that @code{@value{AS}} does
494
with prefixes, and will not work with all prefixes.
495
 
496
Here is a list of instruction prefixes:
497
 
498
@cindex section override prefixes, i386
499
@itemize @bullet
500
@item
501
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
502
@samp{fs}, @samp{gs}.  These are automatically added by specifying
503
using the @var{section}:@var{memory-operand} form for memory references.
504
 
505
@cindex size prefixes, i386
506
@item
507
Operand/Address size prefixes @samp{data16} and @samp{addr16}
508
change 32-bit operands/addresses into 16-bit operands/addresses,
509
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
510
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
511
@emph{must} appear on the same line of code as the instruction they
512
modify. For example, in a 16-bit @code{.code16} section, you might
513
write:
514
 
515
@smallexample
516
        addr32 jmpl *(%ebx)
517
@end smallexample
518
 
519
@cindex bus lock prefixes, i386
520
@cindex inhibiting interrupts, i386
521
@item
522
The bus lock prefix @samp{lock} inhibits interrupts during execution of
523
the instruction it precedes.  (This is only valid with certain
524
instructions; see a 80386 manual for details).
525
 
526
@cindex coprocessor wait, i386
527
@item
528
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
529
complete the current instruction.  This should never be needed for the
530
80386/80387 combination.
531
 
532
@cindex repeat prefixes, i386
533
@item
534
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
535
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
536
times if the current address size is 16-bits).
537
@cindex REX prefixes, i386
538
@item
539
The @samp{rex} family of prefixes is used by x86-64 to encode
540
extensions to i386 instruction set.  The @samp{rex} prefix has four
541
bits --- an operand size overwrite (@code{64}) used to change operand size
542
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
543
register set.
544
 
545
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
546
instruction emits @samp{rex} prefix with all the bits set.  By omitting
547
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
548
prefixes as well.  Normally, there is no need to write the prefixes
549
explicitly, since gas will automatically generate them based on the
550
instruction operands.
551
@end itemize
552
 
553
@node i386-Memory
554
@section Memory References
555
 
556
@cindex i386 memory references
557
@cindex memory references, i386
558
@cindex x86-64 memory references
559
@cindex memory references, x86-64
560
An Intel syntax indirect memory reference of the form
561
 
562
@smallexample
563
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
564
@end smallexample
565
 
566
@noindent
567
is translated into the AT&T syntax
568
 
569
@smallexample
570
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
571
@end smallexample
572
 
573
@noindent
574
where @var{base} and @var{index} are the optional 32-bit base and
575
index registers, @var{disp} is the optional displacement, and
576
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
577
to calculate the address of the operand.  If no @var{scale} is
578
specified, @var{scale} is taken to be 1.  @var{section} specifies the
579
optional section register for the memory operand, and may override the
580
default section register (see a 80386 manual for section register
581
defaults). Note that section overrides in AT&T syntax @emph{must}
582
be preceded by a @samp{%}.  If you specify a section override which
583
coincides with the default section register, @code{@value{AS}} does @emph{not}
584
output any section register override prefixes to assemble the given
585
instruction.  Thus, section overrides can be specified to emphasize which
586
section register is used for a given memory operand.
587
 
588
Here are some examples of Intel and AT&T style memory references:
589
 
590
@table @asis
591
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
592
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
593
missing, and the default section is used (@samp{%ss} for addressing with
594
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
595
 
596
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
597
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
598
@samp{foo}.  All other fields are missing.  The section register here
599
defaults to @samp{%ds}.
600
 
601
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
602
This uses the value pointed to by @samp{foo} as a memory operand.
603
Note that @var{base} and @var{index} are both missing, but there is only
604
@emph{one} @samp{,}.  This is a syntactic exception.
605
 
606
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
607
This selects the contents of the variable @samp{foo} with section
608
register @var{section} being @samp{%gs}.
609
@end table
610
 
611
Absolute (as opposed to PC relative) call and jump operands must be
612
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
613
always chooses PC relative addressing for jump/call labels.
614
 
615
Any instruction that has a memory operand, but no register operand,
616
@emph{must} specify its size (byte, word, long, or quadruple) with an
617
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
618
respectively).
619
 
620
The x86-64 architecture adds an RIP (instruction pointer relative)
621
addressing.  This addressing mode is specified by using @samp{rip} as a
622
base register.  Only constant offsets are valid. For example:
623
 
624
@table @asis
625
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
626
Points to the address 1234 bytes past the end of the current
627
instruction.
628
 
629
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
630
Points to the @code{symbol} in RIP relative way, this is shorter than
631
the default absolute addressing.
632
@end table
633
 
634
Other addressing modes remain unchanged in x86-64 architecture, except
635
registers used are 64-bit instead of 32-bit.
636
 
637
@node i386-Jumps
638
@section Handling of Jump Instructions
639
 
640
@cindex jump optimization, i386
641
@cindex i386 jump optimization
642
@cindex jump optimization, x86-64
643
@cindex x86-64 jump optimization
644
Jump instructions are always optimized to use the smallest possible
645
displacements.  This is accomplished by using byte (8-bit) displacement
646
jumps whenever the target is sufficiently close.  If a byte displacement
647
is insufficient a long displacement is used.  We do not support
648
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
649
instruction with the @samp{data16} instruction prefix), since the 80386
650
insists upon masking @samp{%eip} to 16 bits after the word displacement
651
is added. (See also @pxref{i386-Arch})
652
 
653
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
654
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
655
displacements, so that if you use these instructions (@code{@value{GCC}} does
656
not use them) you may get an error message (and incorrect code).  The AT&T
657
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
658
to
659
 
660
@smallexample
661
         jcxz cx_zero
662
         jmp cx_nonzero
663
cx_zero: jmp foo
664
cx_nonzero:
665
@end smallexample
666
 
667
@node i386-Float
668
@section Floating Point
669
 
670
@cindex i386 floating point
671
@cindex floating point, i386
672
@cindex x86-64 floating point
673
@cindex floating point, x86-64
674
All 80387 floating point types except packed BCD are supported.
675
(BCD support may be added without much difficulty).  These data
676
types are 16-, 32-, and 64- bit integers, and single (32-bit),
677
double (64-bit), and extended (80-bit) precision floating point.
678
Each supported type has an instruction mnemonic suffix and a constructor
679
associated with it.  Instruction mnemonic suffixes specify the operand's
680
data type.  Constructors build these data types into memory.
681
 
682
@cindex @code{float} directive, i386
683
@cindex @code{single} directive, i386
684
@cindex @code{double} directive, i386
685
@cindex @code{tfloat} directive, i386
686
@cindex @code{float} directive, x86-64
687
@cindex @code{single} directive, x86-64
688
@cindex @code{double} directive, x86-64
689
@cindex @code{tfloat} directive, x86-64
690
@itemize @bullet
691
@item
692
Floating point constructors are @samp{.float} or @samp{.single},
693
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
694
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
695
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
696
only supports this format via the @samp{fldt} (load 80-bit real to stack
697
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
698
 
699
@cindex @code{word} directive, i386
700
@cindex @code{long} directive, i386
701
@cindex @code{int} directive, i386
702
@cindex @code{quad} directive, i386
703
@cindex @code{word} directive, x86-64
704
@cindex @code{long} directive, x86-64
705
@cindex @code{int} directive, x86-64
706
@cindex @code{quad} directive, x86-64
707
@item
708
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
709
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
710
corresponding instruction mnemonic suffixes are @samp{s} (single),
711
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
712
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
713
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
714
stack) instructions.
715
@end itemize
716
 
717
Register to register operations should not use instruction mnemonic suffixes.
718
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
719
wrote @samp{fst %st, %st(1)}, since all register to register operations
720
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
721
which converts @samp{%st} from 80-bit to 64-bit floating point format,
722
then stores the result in the 4 byte location @samp{mem})
723
 
724
@node i386-SIMD
725
@section Intel's MMX and AMD's 3DNow! SIMD Operations
726
 
727
@cindex MMX, i386
728
@cindex 3DNow!, i386
729
@cindex SIMD, i386
730
@cindex MMX, x86-64
731
@cindex 3DNow!, x86-64
732
@cindex SIMD, x86-64
733
 
734
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
735
instructions for integer data), available on Intel's Pentium MMX
736
processors and Pentium II processors, AMD's K6 and K6-2 processors,
737
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
738
instruction set (SIMD instructions for 32-bit floating point data)
739
available on AMD's K6-2 processor and possibly others in the future.
740
 
741
Currently, @code{@value{AS}} does not support Intel's floating point
742
SIMD, Katmai (KNI).
743
 
744
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
745
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
746
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
747
floating point values.  The MMX registers cannot be used at the same time
748
as the floating point stack.
749
 
750
See Intel and AMD documentation, keeping in mind that the operand order in
751
instructions is reversed from the Intel syntax.
752
 
753
@node i386-16bit
754
@section Writing 16-bit Code
755
 
756
@cindex i386 16-bit code
757
@cindex 16-bit code, i386
758
@cindex real-mode code, i386
759
@cindex @code{code16gcc} directive, i386
760
@cindex @code{code16} directive, i386
761
@cindex @code{code32} directive, i386
762
@cindex @code{code64} directive, i386
763
@cindex @code{code64} directive, x86-64
764
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
765
or 64-bit x86-64 code depending on the default configuration,
766
it also supports writing code to run in real mode or in 16-bit protected
767
mode code segments.  To do this, put a @samp{.code16} or
768
@samp{.code16gcc} directive before the assembly language instructions to
769
be run in 16-bit mode.  You can switch @code{@value{AS}} back to writing
770
normal 32-bit code with the @samp{.code32} directive.
771
 
772
@samp{.code16gcc} provides experimental support for generating 16-bit
773
code from gcc, and differs from @samp{.code16} in that @samp{call},
774
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
775
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
776
default to 32-bit size.  This is so that the stack pointer is
777
manipulated in the same way over function calls, allowing access to
778
function parameters at the same stack offsets as in 32-bit mode.
779
@samp{.code16gcc} also automatically adds address size prefixes where
780
necessary to use the 32-bit addressing modes that gcc generates.
781
 
782
The code which @code{@value{AS}} generates in 16-bit mode will not
783
necessarily run on a 16-bit pre-80386 processor.  To write code that
784
runs on such a processor, you must refrain from using @emph{any} 32-bit
785
constructs which require @code{@value{AS}} to output address or operand
786
size prefixes.
787
 
788
Note that writing 16-bit code instructions by explicitly specifying a
789
prefix or an instruction mnemonic suffix within a 32-bit code section
790
generates different machine instructions than those generated for a
791
16-bit code segment.  In a 32-bit code section, the following code
792
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
793
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
794
 
795
@smallexample
796
        pushw $4
797
@end smallexample
798
 
799
The same code in a 16-bit code section would generate the machine
800
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
801
is correct since the processor default operand size is assumed to be 16
802
bits in a 16-bit code section.
803
 
804
@node i386-Bugs
805
@section AT&T Syntax bugs
806
 
807
The UnixWare assembler, and probably other AT&T derived ix86 Unix
808
assemblers, generate floating point instructions with reversed source
809
and destination registers in certain cases.  Unfortunately, gcc and
810
possibly many other programs use this reversed syntax, so we're stuck
811
with it.
812
 
813
For example
814
 
815
@smallexample
816
        fsub %st,%st(3)
817
@end smallexample
818
@noindent
819
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
820
than the expected @samp{%st(3) - %st}.  This happens with all the
821
non-commutative arithmetic floating point operations with two register
822
operands where the source register is @samp{%st} and the destination
823
register is @samp{%st(i)}.
824
 
825
@node i386-Arch
826
@section Specifying CPU Architecture
827
 
828
@cindex arch directive, i386
829
@cindex i386 arch directive
830
@cindex arch directive, x86-64
831
@cindex x86-64 arch directive
832
 
833
@code{@value{AS}} may be told to assemble for a particular CPU
834
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
835
directive enables a warning when gas detects an instruction that is not
836
supported on the CPU specified.  The choices for @var{cpu_type} are:
837
 
838
@multitable @columnfractions .20 .20 .20 .20
839
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
840
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
841
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
842
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
843
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
844
@item @samp{amdfam10}
845
@item @samp{generic32} @tab @samp{generic64}
846
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
847
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
848
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
849
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
850
@item @samp{.ept}
851
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
852
@item @samp{.svme} @tab @samp{.abm}
853
@item @samp{.padlock}
854
@end multitable
855
 
856
Apart from the warning, there are only two other effects on
857
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
858
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
859
will automatically use a two byte opcode sequence.  The larger three
860
byte opcode sequence is used on the 486 (and when no architecture is
861
specified) because it executes faster on the 486.  Note that you can
862
explicitly request the two byte opcode by writing @samp{sarl %eax}.
863
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
864
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
865
conditional jumps will be promoted when necessary to a two instruction
866
sequence consisting of a conditional jump of the opposite sense around
867
an unconditional jump to the target.
868
 
869
Following the CPU architecture (but not a sub-architecture, which are those
870
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
871
control automatic promotion of conditional jumps. @samp{jumps} is the
872
default, and enables jump promotion;  All external jumps will be of the long
873
variety, and file-local jumps will be promoted as necessary.
874
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
875
byte offset jumps, and warns about file-local conditional jumps that
876
@code{@value{AS}} promotes.
877
Unconditional jumps are treated as for @samp{jumps}.
878
 
879
For example
880
 
881
@smallexample
882
 .arch i8086,nojumps
883
@end smallexample
884
 
885
@node i386-Notes
886
@section Notes
887
 
888
@cindex i386 @code{mul}, @code{imul} instructions
889
@cindex @code{mul} instruction, i386
890
@cindex @code{imul} instruction, i386
891
@cindex @code{mul} instruction, x86-64
892
@cindex @code{imul} instruction, x86-64
893
There is some trickery concerning the @samp{mul} and @samp{imul}
894
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
895
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
896
for @samp{imul}) can be output only in the one operand form.  Thus,
897
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
898
the expanding multiply would clobber the @samp{%edx} register, and this
899
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
900
64-bit product in @samp{%edx:%eax}.
901
 
902
We have added a two operand form of @samp{imul} when the first operand
903
is an immediate mode expression and the second operand is a register.
904
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
905
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
906
$69, %eax, %eax}.
907
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.