OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.18.50/] [libiberty/] [hashtab.c] - Blame information for rev 438

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* An expandable hash tables datatype.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3
   Free Software Foundation, Inc.
4
   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
 
6
This file is part of the libiberty library.
7
Libiberty is free software; you can redistribute it and/or
8
modify it under the terms of the GNU Library General Public
9
License as published by the Free Software Foundation; either
10
version 2 of the License, or (at your option) any later version.
11
 
12
Libiberty is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
Library General Public License for more details.
16
 
17
You should have received a copy of the GNU Library General Public
18
License along with libiberty; see the file COPYING.LIB.  If
19
not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20
Boston, MA 02110-1301, USA.  */
21
 
22
/* This package implements basic hash table functionality.  It is possible
23
   to search for an entry, create an entry and destroy an entry.
24
 
25
   Elements in the table are generic pointers.
26
 
27
   The size of the table is not fixed; if the occupancy of the table
28
   grows too high the hash table will be expanded.
29
 
30
   The abstract data implementation is based on generalized Algorithm D
31
   from Knuth's book "The art of computer programming".  Hash table is
32
   expanded by creation of new hash table and transferring elements from
33
   the old table to the new table. */
34
 
35
#ifdef HAVE_CONFIG_H
36
#include "config.h"
37
#endif
38
 
39
#include <sys/types.h>
40
 
41
#ifdef HAVE_STDLIB_H
42
#include <stdlib.h>
43
#endif
44
#ifdef HAVE_STRING_H
45
#include <string.h>
46
#endif
47
#ifdef HAVE_MALLOC_H
48
#include <malloc.h>
49
#endif
50
#ifdef HAVE_LIMITS_H
51
#include <limits.h>
52
#endif
53
#ifdef HAVE_STDINT_H
54
#include <stdint.h>
55
#endif
56
 
57
#include <stdio.h>
58
 
59
#include "libiberty.h"
60
#include "ansidecl.h"
61
#include "hashtab.h"
62
 
63
#ifndef CHAR_BIT
64
#define CHAR_BIT 8
65
#endif
66
 
67
static unsigned int higher_prime_index (unsigned long);
68
static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69
static hashval_t htab_mod (hashval_t, htab_t);
70
static hashval_t htab_mod_m2 (hashval_t, htab_t);
71
static hashval_t hash_pointer (const void *);
72
static int eq_pointer (const void *, const void *);
73
static int htab_expand (htab_t);
74
static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
75
 
76
/* At some point, we could make these be NULL, and modify the
77
   hash-table routines to handle NULL specially; that would avoid
78
   function-call overhead for the common case of hashing pointers.  */
79
htab_hash htab_hash_pointer = hash_pointer;
80
htab_eq htab_eq_pointer = eq_pointer;
81
 
82
/* Table of primes and multiplicative inverses.
83
 
84
   Note that these are not minimally reduced inverses.  Unlike when generating
85
   code to divide by a constant, we want to be able to use the same algorithm
86
   all the time.  All of these inverses (are implied to) have bit 32 set.
87
 
88
   For the record, here's the function that computed the table; it's a
89
   vastly simplified version of the function of the same name from gcc.  */
90
 
91
#if 0
92
unsigned int
93
ceil_log2 (unsigned int x)
94
{
95
  int i;
96
  for (i = 31; i >= 0 ; --i)
97
    if (x > (1u << i))
98
      return i+1;
99
  abort ();
100
}
101
 
102
unsigned int
103
choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104
{
105
  unsigned long long mhigh;
106
  double nx;
107
  int lgup, post_shift;
108
  int pow, pow2;
109
  int n = 32, precision = 32;
110
 
111
  lgup = ceil_log2 (d);
112
  pow = n + lgup;
113
  pow2 = n + lgup - precision;
114
 
115
  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116
  mhigh = nx / d;
117
 
118
  *shiftp = lgup - 1;
119
  *mlp = mhigh;
120
  return mhigh >> 32;
121
}
122
#endif
123
 
124
struct prime_ent
125
{
126
  hashval_t prime;
127
  hashval_t inv;
128
  hashval_t inv_m2;     /* inverse of prime-2 */
129
  hashval_t shift;
130
};
131
 
132
static struct prime_ent const prime_tab[] = {
133
  {          7, 0x24924925, 0x9999999b, 2 },
134
  {         13, 0x3b13b13c, 0x745d1747, 3 },
135
  {         31, 0x08421085, 0x1a7b9612, 4 },
136
  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
137
  {        127, 0x02040811, 0x0624dd30, 6 },
138
  {        251, 0x05197f7e, 0x073260a5, 7 },
139
  {        509, 0x01824366, 0x02864fc8, 8 },
140
  {       1021, 0x00c0906d, 0x014191f7, 9 },
141
  {       2039, 0x0121456f, 0x0161e69e, 10 },
142
  {       4093, 0x00300902, 0x00501908, 11 },
143
  {       8191, 0x00080041, 0x00180241, 12 },
144
  {      16381, 0x000c0091, 0x00140191, 13 },
145
  {      32749, 0x002605a5, 0x002a06e6, 14 },
146
  {      65521, 0x000f00e2, 0x00110122, 15 },
147
  {     131071, 0x00008001, 0x00018003, 16 },
148
  {     262139, 0x00014002, 0x0001c004, 17 },
149
  {     524287, 0x00002001, 0x00006001, 18 },
150
  {    1048573, 0x00003001, 0x00005001, 19 },
151
  {    2097143, 0x00004801, 0x00005801, 20 },
152
  {    4194301, 0x00000c01, 0x00001401, 21 },
153
  {    8388593, 0x00001e01, 0x00002201, 22 },
154
  {   16777213, 0x00000301, 0x00000501, 23 },
155
  {   33554393, 0x00001381, 0x00001481, 24 },
156
  {   67108859, 0x00000141, 0x000001c1, 25 },
157
  {  134217689, 0x000004e1, 0x00000521, 26 },
158
  {  268435399, 0x00000391, 0x000003b1, 27 },
159
  {  536870909, 0x00000019, 0x00000029, 28 },
160
  { 1073741789, 0x0000008d, 0x00000095, 29 },
161
  { 2147483647, 0x00000003, 0x00000007, 30 },
162
  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
163
  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164
};
165
 
166
/* The following function returns an index into the above table of the
167
   nearest prime number which is greater than N, and near a power of two. */
168
 
169
static unsigned int
170
higher_prime_index (unsigned long n)
171
{
172
  unsigned int low = 0;
173
  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
174
 
175
  while (low != high)
176
    {
177
      unsigned int mid = low + (high - low) / 2;
178
      if (n > prime_tab[mid].prime)
179
        low = mid + 1;
180
      else
181
        high = mid;
182
    }
183
 
184
  /* If we've run out of primes, abort.  */
185
  if (n > prime_tab[low].prime)
186
    {
187
      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188
      abort ();
189
    }
190
 
191
  return low;
192
}
193
 
194
/* Returns a hash code for P.  */
195
 
196
static hashval_t
197
hash_pointer (const PTR p)
198
{
199
  return (hashval_t) ((long)p >> 3);
200
}
201
 
202
/* Returns non-zero if P1 and P2 are equal.  */
203
 
204
static int
205
eq_pointer (const PTR p1, const PTR p2)
206
{
207
  return p1 == p2;
208
}
209
 
210
 
211
/* The parens around the function names in the next two definitions
212
   are essential in order to prevent macro expansions of the name.
213
   The bodies, however, are expanded as expected, so they are not
214
   recursive definitions.  */
215
 
216
/* Return the current size of given hash table.  */
217
 
218
#define htab_size(htab)  ((htab)->size)
219
 
220
size_t
221
(htab_size) (htab_t htab)
222
{
223
  return htab_size (htab);
224
}
225
 
226
/* Return the current number of elements in given hash table. */
227
 
228
#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
229
 
230
size_t
231
(htab_elements) (htab_t htab)
232
{
233
  return htab_elements (htab);
234
}
235
 
236
/* Return X % Y.  */
237
 
238
static inline hashval_t
239
htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
240
{
241
  /* The multiplicative inverses computed above are for 32-bit types, and
242
     requires that we be able to compute a highpart multiply.  */
243
#ifdef UNSIGNED_64BIT_TYPE
244
  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245
  if (sizeof (hashval_t) * CHAR_BIT <= 32)
246
    {
247
      hashval_t t1, t2, t3, t4, q, r;
248
 
249
      t1 = ((ull)x * inv) >> 32;
250
      t2 = x - t1;
251
      t3 = t2 >> 1;
252
      t4 = t1 + t3;
253
      q  = t4 >> shift;
254
      r  = x - (q * y);
255
 
256
      return r;
257
    }
258
#endif
259
 
260
  /* Otherwise just use the native division routines.  */
261
  return x % y;
262
}
263
 
264
/* Compute the primary hash for HASH given HTAB's current size.  */
265
 
266
static inline hashval_t
267
htab_mod (hashval_t hash, htab_t htab)
268
{
269
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270
  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
271
}
272
 
273
/* Compute the secondary hash for HASH given HTAB's current size.  */
274
 
275
static inline hashval_t
276
htab_mod_m2 (hashval_t hash, htab_t htab)
277
{
278
  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279
  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
280
}
281
 
282
/* This function creates table with length slightly longer than given
283
   source length.  Created hash table is initiated as empty (all the
284
   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
285
   created hash table, or NULL if memory allocation fails.  */
286
 
287
htab_t
288
htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289
                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
290
{
291
  htab_t result;
292
  unsigned int size_prime_index;
293
 
294
  size_prime_index = higher_prime_index (size);
295
  size = prime_tab[size_prime_index].prime;
296
 
297
  result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
298
  if (result == NULL)
299
    return NULL;
300
  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
301
  if (result->entries == NULL)
302
    {
303
      if (free_f != NULL)
304
        (*free_f) (result);
305
      return NULL;
306
    }
307
  result->size = size;
308
  result->size_prime_index = size_prime_index;
309
  result->hash_f = hash_f;
310
  result->eq_f = eq_f;
311
  result->del_f = del_f;
312
  result->alloc_f = alloc_f;
313
  result->free_f = free_f;
314
  return result;
315
}
316
 
317
/* As above, but use the variants of alloc_f and free_f which accept
318
   an extra argument.  */
319
 
320
htab_t
321
htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322
                      htab_del del_f, void *alloc_arg,
323
                      htab_alloc_with_arg alloc_f,
324
                      htab_free_with_arg free_f)
325
{
326
  htab_t result;
327
  unsigned int size_prime_index;
328
 
329
  size_prime_index = higher_prime_index (size);
330
  size = prime_tab[size_prime_index].prime;
331
 
332
  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333
  if (result == NULL)
334
    return NULL;
335
  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336
  if (result->entries == NULL)
337
    {
338
      if (free_f != NULL)
339
        (*free_f) (alloc_arg, result);
340
      return NULL;
341
    }
342
  result->size = size;
343
  result->size_prime_index = size_prime_index;
344
  result->hash_f = hash_f;
345
  result->eq_f = eq_f;
346
  result->del_f = del_f;
347
  result->alloc_arg = alloc_arg;
348
  result->alloc_with_arg_f = alloc_f;
349
  result->free_with_arg_f = free_f;
350
  return result;
351
}
352
 
353
/* Update the function pointers and allocation parameter in the htab_t.  */
354
 
355
void
356
htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357
                       htab_del del_f, PTR alloc_arg,
358
                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
359
{
360
  htab->hash_f = hash_f;
361
  htab->eq_f = eq_f;
362
  htab->del_f = del_f;
363
  htab->alloc_arg = alloc_arg;
364
  htab->alloc_with_arg_f = alloc_f;
365
  htab->free_with_arg_f = free_f;
366
}
367
 
368
/* These functions exist solely for backward compatibility.  */
369
 
370
#undef htab_create
371
htab_t
372
htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
373
{
374
  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375
}
376
 
377
htab_t
378
htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
379
{
380
  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381
}
382
 
383
/* This function frees all memory allocated for given hash table.
384
   Naturally the hash table must already exist. */
385
 
386
void
387
htab_delete (htab_t htab)
388
{
389
  size_t size = htab_size (htab);
390
  PTR *entries = htab->entries;
391
  int i;
392
 
393
  if (htab->del_f)
394
    for (i = size - 1; i >= 0; i--)
395
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
396
        (*htab->del_f) (entries[i]);
397
 
398
  if (htab->free_f != NULL)
399
    {
400
      (*htab->free_f) (entries);
401
      (*htab->free_f) (htab);
402
    }
403
  else if (htab->free_with_arg_f != NULL)
404
    {
405
      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
406
      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407
    }
408
}
409
 
410
/* This function clears all entries in the given hash table.  */
411
 
412
void
413
htab_empty (htab_t htab)
414
{
415
  size_t size = htab_size (htab);
416
  PTR *entries = htab->entries;
417
  int i;
418
 
419
  if (htab->del_f)
420
    for (i = size - 1; i >= 0; i--)
421
      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422
        (*htab->del_f) (entries[i]);
423
 
424
  /* Instead of clearing megabyte, downsize the table.  */
425
  if (size > 1024*1024 / sizeof (PTR))
426
    {
427
      int nindex = higher_prime_index (1024 / sizeof (PTR));
428
      int nsize = prime_tab[nindex].prime;
429
 
430
      if (htab->free_f != NULL)
431
        (*htab->free_f) (htab->entries);
432
      else if (htab->free_with_arg_f != NULL)
433
        (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
434
      if (htab->alloc_with_arg_f != NULL)
435
        htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
436
                                                           sizeof (PTR *));
437
      else
438
        htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
439
     htab->size = nsize;
440
     htab->size_prime_index = nindex;
441
    }
442
  else
443
    memset (entries, 0, size * sizeof (PTR));
444
  htab->n_deleted = 0;
445
  htab->n_elements = 0;
446
}
447
 
448
/* Similar to htab_find_slot, but without several unwanted side effects:
449
    - Does not call htab->eq_f when it finds an existing entry.
450
    - Does not change the count of elements/searches/collisions in the
451
      hash table.
452
   This function also assumes there are no deleted entries in the table.
453
   HASH is the hash value for the element to be inserted.  */
454
 
455
static PTR *
456
find_empty_slot_for_expand (htab_t htab, hashval_t hash)
457
{
458
  hashval_t index = htab_mod (hash, htab);
459
  size_t size = htab_size (htab);
460
  PTR *slot = htab->entries + index;
461
  hashval_t hash2;
462
 
463
  if (*slot == HTAB_EMPTY_ENTRY)
464
    return slot;
465
  else if (*slot == HTAB_DELETED_ENTRY)
466
    abort ();
467
 
468
  hash2 = htab_mod_m2 (hash, htab);
469
  for (;;)
470
    {
471
      index += hash2;
472
      if (index >= size)
473
        index -= size;
474
 
475
      slot = htab->entries + index;
476
      if (*slot == HTAB_EMPTY_ENTRY)
477
        return slot;
478
      else if (*slot == HTAB_DELETED_ENTRY)
479
        abort ();
480
    }
481
}
482
 
483
/* The following function changes size of memory allocated for the
484
   entries and repeatedly inserts the table elements.  The occupancy
485
   of the table after the call will be about 50%.  Naturally the hash
486
   table must already exist.  Remember also that the place of the
487
   table entries is changed.  If memory allocation failures are allowed,
488
   this function will return zero, indicating that the table could not be
489
   expanded.  If all goes well, it will return a non-zero value.  */
490
 
491
static int
492
htab_expand (htab_t htab)
493
{
494
  PTR *oentries;
495
  PTR *olimit;
496
  PTR *p;
497
  PTR *nentries;
498
  size_t nsize, osize, elts;
499
  unsigned int oindex, nindex;
500
 
501
  oentries = htab->entries;
502
  oindex = htab->size_prime_index;
503
  osize = htab->size;
504
  olimit = oentries + osize;
505
  elts = htab_elements (htab);
506
 
507
  /* Resize only when table after removal of unused elements is either
508
     too full or too empty.  */
509
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
510
    {
511
      nindex = higher_prime_index (elts * 2);
512
      nsize = prime_tab[nindex].prime;
513
    }
514
  else
515
    {
516
      nindex = oindex;
517
      nsize = osize;
518
    }
519
 
520
  if (htab->alloc_with_arg_f != NULL)
521
    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
522
                                                  sizeof (PTR *));
523
  else
524
    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
525
  if (nentries == NULL)
526
    return 0;
527
  htab->entries = nentries;
528
  htab->size = nsize;
529
  htab->size_prime_index = nindex;
530
  htab->n_elements -= htab->n_deleted;
531
  htab->n_deleted = 0;
532
 
533
  p = oentries;
534
  do
535
    {
536
      PTR x = *p;
537
 
538
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
539
        {
540
          PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
541
 
542
          *q = x;
543
        }
544
 
545
      p++;
546
    }
547
  while (p < olimit);
548
 
549
  if (htab->free_f != NULL)
550
    (*htab->free_f) (oentries);
551
  else if (htab->free_with_arg_f != NULL)
552
    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
553
  return 1;
554
}
555
 
556
/* This function searches for a hash table entry equal to the given
557
   element.  It cannot be used to insert or delete an element.  */
558
 
559
PTR
560
htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
561
{
562
  hashval_t index, hash2;
563
  size_t size;
564
  PTR entry;
565
 
566
  htab->searches++;
567
  size = htab_size (htab);
568
  index = htab_mod (hash, htab);
569
 
570
  entry = htab->entries[index];
571
  if (entry == HTAB_EMPTY_ENTRY
572
      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
573
    return entry;
574
 
575
  hash2 = htab_mod_m2 (hash, htab);
576
  for (;;)
577
    {
578
      htab->collisions++;
579
      index += hash2;
580
      if (index >= size)
581
        index -= size;
582
 
583
      entry = htab->entries[index];
584
      if (entry == HTAB_EMPTY_ENTRY
585
          || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
586
        return entry;
587
    }
588
}
589
 
590
/* Like htab_find_slot_with_hash, but compute the hash value from the
591
   element.  */
592
 
593
PTR
594
htab_find (htab_t htab, const PTR element)
595
{
596
  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
597
}
598
 
599
/* This function searches for a hash table slot containing an entry
600
   equal to the given element.  To delete an entry, call this with
601
   insert=NO_INSERT, then call htab_clear_slot on the slot returned
602
   (possibly after doing some checks).  To insert an entry, call this
603
   with insert=INSERT, then write the value you want into the returned
604
   slot.  When inserting an entry, NULL may be returned if memory
605
   allocation fails.  */
606
 
607
PTR *
608
htab_find_slot_with_hash (htab_t htab, const PTR element,
609
                          hashval_t hash, enum insert_option insert)
610
{
611
  PTR *first_deleted_slot;
612
  hashval_t index, hash2;
613
  size_t size;
614
  PTR entry;
615
 
616
  size = htab_size (htab);
617
  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
618
    {
619
      if (htab_expand (htab) == 0)
620
        return NULL;
621
      size = htab_size (htab);
622
    }
623
 
624
  index = htab_mod (hash, htab);
625
 
626
  htab->searches++;
627
  first_deleted_slot = NULL;
628
 
629
  entry = htab->entries[index];
630
  if (entry == HTAB_EMPTY_ENTRY)
631
    goto empty_entry;
632
  else if (entry == HTAB_DELETED_ENTRY)
633
    first_deleted_slot = &htab->entries[index];
634
  else if ((*htab->eq_f) (entry, element))
635
    return &htab->entries[index];
636
 
637
  hash2 = htab_mod_m2 (hash, htab);
638
  for (;;)
639
    {
640
      htab->collisions++;
641
      index += hash2;
642
      if (index >= size)
643
        index -= size;
644
 
645
      entry = htab->entries[index];
646
      if (entry == HTAB_EMPTY_ENTRY)
647
        goto empty_entry;
648
      else if (entry == HTAB_DELETED_ENTRY)
649
        {
650
          if (!first_deleted_slot)
651
            first_deleted_slot = &htab->entries[index];
652
        }
653
      else if ((*htab->eq_f) (entry, element))
654
        return &htab->entries[index];
655
    }
656
 
657
 empty_entry:
658
  if (insert == NO_INSERT)
659
    return NULL;
660
 
661
  if (first_deleted_slot)
662
    {
663
      htab->n_deleted--;
664
      *first_deleted_slot = HTAB_EMPTY_ENTRY;
665
      return first_deleted_slot;
666
    }
667
 
668
  htab->n_elements++;
669
  return &htab->entries[index];
670
}
671
 
672
/* Like htab_find_slot_with_hash, but compute the hash value from the
673
   element.  */
674
 
675
PTR *
676
htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
677
{
678
  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
679
                                   insert);
680
}
681
 
682
/* This function deletes an element with the given value from hash
683
   table (the hash is computed from the element).  If there is no matching
684
   element in the hash table, this function does nothing.  */
685
 
686
void
687
htab_remove_elt (htab_t htab, PTR element)
688
{
689
  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
690
}
691
 
692
 
693
/* This function deletes an element with the given value from hash
694
   table.  If there is no matching element in the hash table, this
695
   function does nothing.  */
696
 
697
void
698
htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
699
{
700
  PTR *slot;
701
 
702
  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
703
  if (*slot == HTAB_EMPTY_ENTRY)
704
    return;
705
 
706
  if (htab->del_f)
707
    (*htab->del_f) (*slot);
708
 
709
  *slot = HTAB_DELETED_ENTRY;
710
  htab->n_deleted++;
711
}
712
 
713
/* This function clears a specified slot in a hash table.  It is
714
   useful when you've already done the lookup and don't want to do it
715
   again.  */
716
 
717
void
718
htab_clear_slot (htab_t htab, PTR *slot)
719
{
720
  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
721
      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
722
    abort ();
723
 
724
  if (htab->del_f)
725
    (*htab->del_f) (*slot);
726
 
727
  *slot = HTAB_DELETED_ENTRY;
728
  htab->n_deleted++;
729
}
730
 
731
/* This function scans over the entire hash table calling
732
   CALLBACK for each live entry.  If CALLBACK returns false,
733
   the iteration stops.  INFO is passed as CALLBACK's second
734
   argument.  */
735
 
736
void
737
htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
738
{
739
  PTR *slot;
740
  PTR *limit;
741
 
742
  slot = htab->entries;
743
  limit = slot + htab_size (htab);
744
 
745
  do
746
    {
747
      PTR x = *slot;
748
 
749
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
750
        if (!(*callback) (slot, info))
751
          break;
752
    }
753
  while (++slot < limit);
754
}
755
 
756
/* Like htab_traverse_noresize, but does resize the table when it is
757
   too empty to improve effectivity of subsequent calls.  */
758
 
759
void
760
htab_traverse (htab_t htab, htab_trav callback, PTR info)
761
{
762
  if (htab_elements (htab) * 8 < htab_size (htab))
763
    htab_expand (htab);
764
 
765
  htab_traverse_noresize (htab, callback, info);
766
}
767
 
768
/* Return the fraction of fixed collisions during all work with given
769
   hash table. */
770
 
771
double
772
htab_collisions (htab_t htab)
773
{
774
  if (htab->searches == 0)
775
    return 0.0;
776
 
777
  return (double) htab->collisions / (double) htab->searches;
778
}
779
 
780
/* Hash P as a null-terminated string.
781
 
782
   Copied from gcc/hashtable.c.  Zack had the following to say with respect
783
   to applicability, though note that unlike hashtable.c, this hash table
784
   implementation re-hashes rather than chain buckets.
785
 
786
   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
787
   From: Zack Weinberg <zackw@panix.com>
788
   Date: Fri, 17 Aug 2001 02:15:56 -0400
789
 
790
   I got it by extracting all the identifiers from all the source code
791
   I had lying around in mid-1999, and testing many recurrences of
792
   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
793
   prime numbers or the appropriate identity.  This was the best one.
794
   I don't remember exactly what constituted "best", except I was
795
   looking at bucket-length distributions mostly.
796
 
797
   So it should be very good at hashing identifiers, but might not be
798
   as good at arbitrary strings.
799
 
800
   I'll add that it thoroughly trounces the hash functions recommended
801
   for this use at http://burtleburtle.net/bob/hash/index.html, both
802
   on speed and bucket distribution.  I haven't tried it against the
803
   function they just started using for Perl's hashes.  */
804
 
805
hashval_t
806
htab_hash_string (const PTR p)
807
{
808
  const unsigned char *str = (const unsigned char *) p;
809
  hashval_t r = 0;
810
  unsigned char c;
811
 
812
  while ((c = *str++) != 0)
813
    r = r * 67 + c - 113;
814
 
815
  return r;
816
}
817
 
818
/* DERIVED FROM:
819
--------------------------------------------------------------------
820
lookup2.c, by Bob Jenkins, December 1996, Public Domain.
821
hash(), hash2(), hash3, and mix() are externally useful functions.
822
Routines to test the hash are included if SELF_TEST is defined.
823
You can use this free for any purpose.  It has no warranty.
824
--------------------------------------------------------------------
825
*/
826
 
827
/*
828
--------------------------------------------------------------------
829
mix -- mix 3 32-bit values reversibly.
830
For every delta with one or two bit set, and the deltas of all three
831
  high bits or all three low bits, whether the original value of a,b,c
832
  is almost all zero or is uniformly distributed,
833
* If mix() is run forward or backward, at least 32 bits in a,b,c
834
  have at least 1/4 probability of changing.
835
* If mix() is run forward, every bit of c will change between 1/3 and
836
  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
837
mix() was built out of 36 single-cycle latency instructions in a
838
  structure that could supported 2x parallelism, like so:
839
      a -= b;
840
      a -= c; x = (c>>13);
841
      b -= c; a ^= x;
842
      b -= a; x = (a<<8);
843
      c -= a; b ^= x;
844
      c -= b; x = (b>>13);
845
      ...
846
  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
847
  of that parallelism.  They've also turned some of those single-cycle
848
  latency instructions into multi-cycle latency instructions.  Still,
849
  this is the fastest good hash I could find.  There were about 2^^68
850
  to choose from.  I only looked at a billion or so.
851
--------------------------------------------------------------------
852
*/
853
/* same, but slower, works on systems that might have 8 byte hashval_t's */
854
#define mix(a,b,c) \
855
{ \
856
  a -= b; a -= c; a ^= (c>>13); \
857
  b -= c; b -= a; b ^= (a<< 8); \
858
  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
859
  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
860
  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
861
  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
862
  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
863
  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
864
  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
865
}
866
 
867
/*
868
--------------------------------------------------------------------
869
hash() -- hash a variable-length key into a 32-bit value
870
  k     : the key (the unaligned variable-length array of bytes)
871
  len   : the length of the key, counting by bytes
872
  level : can be any 4-byte value
873
Returns a 32-bit value.  Every bit of the key affects every bit of
874
the return value.  Every 1-bit and 2-bit delta achieves avalanche.
875
About 36+6len instructions.
876
 
877
The best hash table sizes are powers of 2.  There is no need to do
878
mod a prime (mod is sooo slow!).  If you need less than 32 bits,
879
use a bitmask.  For example, if you need only 10 bits, do
880
  h = (h & hashmask(10));
881
In which case, the hash table should have hashsize(10) elements.
882
 
883
If you are hashing n strings (ub1 **)k, do it like this:
884
  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
885
 
886
By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
887
code any way you wish, private, educational, or commercial.  It's free.
888
 
889
See http://burtleburtle.net/bob/hash/evahash.html
890
Use for hash table lookup, or anything where one collision in 2^32 is
891
acceptable.  Do NOT use for cryptographic purposes.
892
--------------------------------------------------------------------
893
*/
894
 
895
hashval_t
896
iterative_hash (const PTR k_in /* the key */,
897
                register size_t  length /* the length of the key */,
898
                register hashval_t initval /* the previous hash, or
899
                                              an arbitrary value */)
900
{
901
  register const unsigned char *k = (const unsigned char *)k_in;
902
  register hashval_t a,b,c,len;
903
 
904
  /* Set up the internal state */
905
  len = length;
906
  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
907
  c = initval;           /* the previous hash value */
908
 
909
  /*---------------------------------------- handle most of the key */
910
#ifndef WORDS_BIGENDIAN
911
  /* On a little-endian machine, if the data is 4-byte aligned we can hash
912
     by word for better speed.  This gives nondeterministic results on
913
     big-endian machines.  */
914
  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
915
    while (len >= 12)    /* aligned */
916
      {
917
        a += *(hashval_t *)(k+0);
918
        b += *(hashval_t *)(k+4);
919
        c += *(hashval_t *)(k+8);
920
        mix(a,b,c);
921
        k += 12; len -= 12;
922
      }
923
  else /* unaligned */
924
#endif
925
    while (len >= 12)
926
      {
927
        a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
928
        b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
929
        c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
930
        mix(a,b,c);
931
        k += 12; len -= 12;
932
      }
933
 
934
  /*------------------------------------- handle the last 11 bytes */
935
  c += length;
936
  switch(len)              /* all the case statements fall through */
937
    {
938
    case 11: c+=((hashval_t)k[10]<<24);
939
    case 10: c+=((hashval_t)k[9]<<16);
940
    case 9 : c+=((hashval_t)k[8]<<8);
941
      /* the first byte of c is reserved for the length */
942
    case 8 : b+=((hashval_t)k[7]<<24);
943
    case 7 : b+=((hashval_t)k[6]<<16);
944
    case 6 : b+=((hashval_t)k[5]<<8);
945
    case 5 : b+=k[4];
946
    case 4 : a+=((hashval_t)k[3]<<24);
947
    case 3 : a+=((hashval_t)k[2]<<16);
948
    case 2 : a+=((hashval_t)k[1]<<8);
949
    case 1 : a+=k[0];
950
      /* case 0: nothing left to add */
951
    }
952
  mix(a,b,c);
953
  /*-------------------------------------------- report the result */
954
  return c;
955
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.