OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [bfd/] [elf32-arm.c] - Blame information for rev 277

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
/* 32-bit ELF support for ARM
2
   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3
   2008, 2009, 2010  Free Software Foundation, Inc.
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include <limits.h>
24
 
25
#include "bfd.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "elf-bfd.h"
29
#include "elf-vxworks.h"
30
#include "elf/arm.h"
31
 
32
/* Return the relocation section associated with NAME.  HTAB is the
33
   bfd's elf32_arm_link_hash_entry.  */
34
#define RELOC_SECTION(HTAB, NAME) \
35
  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
 
37
/* Return size of a relocation entry.  HTAB is the bfd's
38
   elf32_arm_link_hash_entry.  */
39
#define RELOC_SIZE(HTAB) \
40
  ((HTAB)->use_rel \
41
   ? sizeof (Elf32_External_Rel) \
42
   : sizeof (Elf32_External_Rela))
43
 
44
/* Return function to swap relocations in.  HTAB is the bfd's
45
   elf32_arm_link_hash_entry.  */
46
#define SWAP_RELOC_IN(HTAB) \
47
  ((HTAB)->use_rel \
48
   ? bfd_elf32_swap_reloc_in \
49
   : bfd_elf32_swap_reloca_in)
50
 
51
/* Return function to swap relocations out.  HTAB is the bfd's
52
   elf32_arm_link_hash_entry.  */
53
#define SWAP_RELOC_OUT(HTAB) \
54
  ((HTAB)->use_rel \
55
   ? bfd_elf32_swap_reloc_out \
56
   : bfd_elf32_swap_reloca_out)
57
 
58
#define elf_info_to_howto               0
59
#define elf_info_to_howto_rel           elf32_arm_info_to_howto
60
 
61
#define ARM_ELF_ABI_VERSION             0
62
#define ARM_ELF_OS_ABI_VERSION          ELFOSABI_ARM
63
 
64
static struct elf_backend_data elf32_arm_vxworks_bed;
65
 
66
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
67
                                            struct bfd_link_info *link_info,
68
                                            asection *sec,
69
                                            bfd_byte *contents);
70
 
71
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72
   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73
   in that slot.  */
74
 
75
static reloc_howto_type elf32_arm_howto_table_1[] =
76
{
77
  /* No relocation.  */
78
  HOWTO (R_ARM_NONE,            /* type */
79
         0,                      /* rightshift */
80
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
81
         0,                      /* bitsize */
82
         FALSE,                 /* pc_relative */
83
         0,                      /* bitpos */
84
         complain_overflow_dont,/* complain_on_overflow */
85
         bfd_elf_generic_reloc, /* special_function */
86
         "R_ARM_NONE",          /* name */
87
         FALSE,                 /* partial_inplace */
88
         0,                      /* src_mask */
89
         0,                      /* dst_mask */
90
         FALSE),                /* pcrel_offset */
91
 
92
  HOWTO (R_ARM_PC24,            /* type */
93
         2,                     /* rightshift */
94
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
95
         24,                    /* bitsize */
96
         TRUE,                  /* pc_relative */
97
         0,                      /* bitpos */
98
         complain_overflow_signed,/* complain_on_overflow */
99
         bfd_elf_generic_reloc, /* special_function */
100
         "R_ARM_PC24",          /* name */
101
         FALSE,                 /* partial_inplace */
102
         0x00ffffff,            /* src_mask */
103
         0x00ffffff,            /* dst_mask */
104
         TRUE),                 /* pcrel_offset */
105
 
106
  /* 32 bit absolute */
107
  HOWTO (R_ARM_ABS32,           /* type */
108
         0,                      /* rightshift */
109
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
110
         32,                    /* bitsize */
111
         FALSE,                 /* pc_relative */
112
         0,                      /* bitpos */
113
         complain_overflow_bitfield,/* complain_on_overflow */
114
         bfd_elf_generic_reloc, /* special_function */
115
         "R_ARM_ABS32",         /* name */
116
         FALSE,                 /* partial_inplace */
117
         0xffffffff,            /* src_mask */
118
         0xffffffff,            /* dst_mask */
119
         FALSE),                /* pcrel_offset */
120
 
121
  /* standard 32bit pc-relative reloc */
122
  HOWTO (R_ARM_REL32,           /* type */
123
         0,                      /* rightshift */
124
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
125
         32,                    /* bitsize */
126
         TRUE,                  /* pc_relative */
127
         0,                      /* bitpos */
128
         complain_overflow_bitfield,/* complain_on_overflow */
129
         bfd_elf_generic_reloc, /* special_function */
130
         "R_ARM_REL32",         /* name */
131
         FALSE,                 /* partial_inplace */
132
         0xffffffff,            /* src_mask */
133
         0xffffffff,            /* dst_mask */
134
         TRUE),                 /* pcrel_offset */
135
 
136
  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
137
  HOWTO (R_ARM_LDR_PC_G0,       /* type */
138
         0,                      /* rightshift */
139
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
140
         32,                    /* bitsize */
141
         TRUE,                  /* pc_relative */
142
         0,                      /* bitpos */
143
         complain_overflow_dont,/* complain_on_overflow */
144
         bfd_elf_generic_reloc, /* special_function */
145
         "R_ARM_LDR_PC_G0",     /* name */
146
         FALSE,                 /* partial_inplace */
147
         0xffffffff,            /* src_mask */
148
         0xffffffff,            /* dst_mask */
149
         TRUE),                 /* pcrel_offset */
150
 
151
   /* 16 bit absolute */
152
  HOWTO (R_ARM_ABS16,           /* type */
153
         0,                      /* rightshift */
154
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
155
         16,                    /* bitsize */
156
         FALSE,                 /* pc_relative */
157
         0,                      /* bitpos */
158
         complain_overflow_bitfield,/* complain_on_overflow */
159
         bfd_elf_generic_reloc, /* special_function */
160
         "R_ARM_ABS16",         /* name */
161
         FALSE,                 /* partial_inplace */
162
         0x0000ffff,            /* src_mask */
163
         0x0000ffff,            /* dst_mask */
164
         FALSE),                /* pcrel_offset */
165
 
166
  /* 12 bit absolute */
167
  HOWTO (R_ARM_ABS12,           /* type */
168
         0,                      /* rightshift */
169
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
170
         12,                    /* bitsize */
171
         FALSE,                 /* pc_relative */
172
         0,                      /* bitpos */
173
         complain_overflow_bitfield,/* complain_on_overflow */
174
         bfd_elf_generic_reloc, /* special_function */
175
         "R_ARM_ABS12",         /* name */
176
         FALSE,                 /* partial_inplace */
177
         0x00000fff,            /* src_mask */
178
         0x00000fff,            /* dst_mask */
179
         FALSE),                /* pcrel_offset */
180
 
181
  HOWTO (R_ARM_THM_ABS5,        /* type */
182
         6,                     /* rightshift */
183
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
184
         5,                     /* bitsize */
185
         FALSE,                 /* pc_relative */
186
         0,                      /* bitpos */
187
         complain_overflow_bitfield,/* complain_on_overflow */
188
         bfd_elf_generic_reloc, /* special_function */
189
         "R_ARM_THM_ABS5",      /* name */
190
         FALSE,                 /* partial_inplace */
191
         0x000007e0,            /* src_mask */
192
         0x000007e0,            /* dst_mask */
193
         FALSE),                /* pcrel_offset */
194
 
195
  /* 8 bit absolute */
196
  HOWTO (R_ARM_ABS8,            /* type */
197
         0,                      /* rightshift */
198
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
199
         8,                     /* bitsize */
200
         FALSE,                 /* pc_relative */
201
         0,                      /* bitpos */
202
         complain_overflow_bitfield,/* complain_on_overflow */
203
         bfd_elf_generic_reloc, /* special_function */
204
         "R_ARM_ABS8",          /* name */
205
         FALSE,                 /* partial_inplace */
206
         0x000000ff,            /* src_mask */
207
         0x000000ff,            /* dst_mask */
208
         FALSE),                /* pcrel_offset */
209
 
210
  HOWTO (R_ARM_SBREL32,         /* type */
211
         0,                      /* rightshift */
212
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
213
         32,                    /* bitsize */
214
         FALSE,                 /* pc_relative */
215
         0,                      /* bitpos */
216
         complain_overflow_dont,/* complain_on_overflow */
217
         bfd_elf_generic_reloc, /* special_function */
218
         "R_ARM_SBREL32",       /* name */
219
         FALSE,                 /* partial_inplace */
220
         0xffffffff,            /* src_mask */
221
         0xffffffff,            /* dst_mask */
222
         FALSE),                /* pcrel_offset */
223
 
224
  HOWTO (R_ARM_THM_CALL,        /* type */
225
         1,                     /* rightshift */
226
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
227
         24,                    /* bitsize */
228
         TRUE,                  /* pc_relative */
229
         0,                      /* bitpos */
230
         complain_overflow_signed,/* complain_on_overflow */
231
         bfd_elf_generic_reloc, /* special_function */
232
         "R_ARM_THM_CALL",      /* name */
233
         FALSE,                 /* partial_inplace */
234
         0x07ff07ff,            /* src_mask */
235
         0x07ff07ff,            /* dst_mask */
236
         TRUE),                 /* pcrel_offset */
237
 
238
  HOWTO (R_ARM_THM_PC8,         /* type */
239
         1,                     /* rightshift */
240
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
241
         8,                     /* bitsize */
242
         TRUE,                  /* pc_relative */
243
         0,                      /* bitpos */
244
         complain_overflow_signed,/* complain_on_overflow */
245
         bfd_elf_generic_reloc, /* special_function */
246
         "R_ARM_THM_PC8",       /* name */
247
         FALSE,                 /* partial_inplace */
248
         0x000000ff,            /* src_mask */
249
         0x000000ff,            /* dst_mask */
250
         TRUE),                 /* pcrel_offset */
251
 
252
  HOWTO (R_ARM_BREL_ADJ,        /* type */
253
         1,                     /* rightshift */
254
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
255
         32,                    /* bitsize */
256
         FALSE,                 /* pc_relative */
257
         0,                      /* bitpos */
258
         complain_overflow_signed,/* complain_on_overflow */
259
         bfd_elf_generic_reloc, /* special_function */
260
         "R_ARM_BREL_ADJ",      /* name */
261
         FALSE,                 /* partial_inplace */
262
         0xffffffff,            /* src_mask */
263
         0xffffffff,            /* dst_mask */
264
         FALSE),                /* pcrel_offset */
265
 
266
  HOWTO (R_ARM_SWI24,           /* type */
267
         0,                      /* rightshift */
268
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
269
         0,                      /* bitsize */
270
         FALSE,                 /* pc_relative */
271
         0,                      /* bitpos */
272
         complain_overflow_signed,/* complain_on_overflow */
273
         bfd_elf_generic_reloc, /* special_function */
274
         "R_ARM_SWI24",         /* name */
275
         FALSE,                 /* partial_inplace */
276
         0x00000000,            /* src_mask */
277
         0x00000000,            /* dst_mask */
278
         FALSE),                /* pcrel_offset */
279
 
280
  HOWTO (R_ARM_THM_SWI8,        /* type */
281
         0,                      /* rightshift */
282
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
283
         0,                      /* bitsize */
284
         FALSE,                 /* pc_relative */
285
         0,                      /* bitpos */
286
         complain_overflow_signed,/* complain_on_overflow */
287
         bfd_elf_generic_reloc, /* special_function */
288
         "R_ARM_SWI8",          /* name */
289
         FALSE,                 /* partial_inplace */
290
         0x00000000,            /* src_mask */
291
         0x00000000,            /* dst_mask */
292
         FALSE),                /* pcrel_offset */
293
 
294
  /* BLX instruction for the ARM.  */
295
  HOWTO (R_ARM_XPC25,           /* type */
296
         2,                     /* rightshift */
297
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
298
         25,                    /* bitsize */
299
         TRUE,                  /* pc_relative */
300
         0,                      /* bitpos */
301
         complain_overflow_signed,/* complain_on_overflow */
302
         bfd_elf_generic_reloc, /* special_function */
303
         "R_ARM_XPC25",         /* name */
304
         FALSE,                 /* partial_inplace */
305
         0x00ffffff,            /* src_mask */
306
         0x00ffffff,            /* dst_mask */
307
         TRUE),                 /* pcrel_offset */
308
 
309
  /* BLX instruction for the Thumb.  */
310
  HOWTO (R_ARM_THM_XPC22,       /* type */
311
         2,                     /* rightshift */
312
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
313
         22,                    /* bitsize */
314
         TRUE,                  /* pc_relative */
315
         0,                      /* bitpos */
316
         complain_overflow_signed,/* complain_on_overflow */
317
         bfd_elf_generic_reloc, /* special_function */
318
         "R_ARM_THM_XPC22",     /* name */
319
         FALSE,                 /* partial_inplace */
320
         0x07ff07ff,            /* src_mask */
321
         0x07ff07ff,            /* dst_mask */
322
         TRUE),                 /* pcrel_offset */
323
 
324
  /* Dynamic TLS relocations.  */
325
 
326
  HOWTO (R_ARM_TLS_DTPMOD32,    /* type */
327
         0,                     /* rightshift */
328
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
329
         32,                    /* bitsize */
330
         FALSE,                 /* pc_relative */
331
         0,                     /* bitpos */
332
         complain_overflow_bitfield,/* complain_on_overflow */
333
         bfd_elf_generic_reloc, /* special_function */
334
         "R_ARM_TLS_DTPMOD32",  /* name */
335
         TRUE,                  /* partial_inplace */
336
         0xffffffff,            /* src_mask */
337
         0xffffffff,            /* dst_mask */
338
         FALSE),                /* pcrel_offset */
339
 
340
  HOWTO (R_ARM_TLS_DTPOFF32,    /* type */
341
         0,                     /* rightshift */
342
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
343
         32,                    /* bitsize */
344
         FALSE,                 /* pc_relative */
345
         0,                     /* bitpos */
346
         complain_overflow_bitfield,/* complain_on_overflow */
347
         bfd_elf_generic_reloc, /* special_function */
348
         "R_ARM_TLS_DTPOFF32",  /* name */
349
         TRUE,                  /* partial_inplace */
350
         0xffffffff,            /* src_mask */
351
         0xffffffff,            /* dst_mask */
352
         FALSE),                /* pcrel_offset */
353
 
354
  HOWTO (R_ARM_TLS_TPOFF32,     /* type */
355
         0,                     /* rightshift */
356
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
357
         32,                    /* bitsize */
358
         FALSE,                 /* pc_relative */
359
         0,                     /* bitpos */
360
         complain_overflow_bitfield,/* complain_on_overflow */
361
         bfd_elf_generic_reloc, /* special_function */
362
         "R_ARM_TLS_TPOFF32",   /* name */
363
         TRUE,                  /* partial_inplace */
364
         0xffffffff,            /* src_mask */
365
         0xffffffff,            /* dst_mask */
366
         FALSE),                /* pcrel_offset */
367
 
368
  /* Relocs used in ARM Linux */
369
 
370
  HOWTO (R_ARM_COPY,            /* type */
371
         0,                     /* rightshift */
372
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
373
         32,                    /* bitsize */
374
         FALSE,                 /* pc_relative */
375
         0,                     /* bitpos */
376
         complain_overflow_bitfield,/* complain_on_overflow */
377
         bfd_elf_generic_reloc, /* special_function */
378
         "R_ARM_COPY",          /* name */
379
         TRUE,                  /* partial_inplace */
380
         0xffffffff,            /* src_mask */
381
         0xffffffff,            /* dst_mask */
382
         FALSE),                /* pcrel_offset */
383
 
384
  HOWTO (R_ARM_GLOB_DAT,        /* type */
385
         0,                     /* rightshift */
386
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
387
         32,                    /* bitsize */
388
         FALSE,                 /* pc_relative */
389
         0,                     /* bitpos */
390
         complain_overflow_bitfield,/* complain_on_overflow */
391
         bfd_elf_generic_reloc, /* special_function */
392
         "R_ARM_GLOB_DAT",      /* name */
393
         TRUE,                  /* partial_inplace */
394
         0xffffffff,            /* src_mask */
395
         0xffffffff,            /* dst_mask */
396
         FALSE),                /* pcrel_offset */
397
 
398
  HOWTO (R_ARM_JUMP_SLOT,       /* type */
399
         0,                     /* rightshift */
400
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
401
         32,                    /* bitsize */
402
         FALSE,                 /* pc_relative */
403
         0,                     /* bitpos */
404
         complain_overflow_bitfield,/* complain_on_overflow */
405
         bfd_elf_generic_reloc, /* special_function */
406
         "R_ARM_JUMP_SLOT",     /* name */
407
         TRUE,                  /* partial_inplace */
408
         0xffffffff,            /* src_mask */
409
         0xffffffff,            /* dst_mask */
410
         FALSE),                /* pcrel_offset */
411
 
412
  HOWTO (R_ARM_RELATIVE,        /* type */
413
         0,                     /* rightshift */
414
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
415
         32,                    /* bitsize */
416
         FALSE,                 /* pc_relative */
417
         0,                     /* bitpos */
418
         complain_overflow_bitfield,/* complain_on_overflow */
419
         bfd_elf_generic_reloc, /* special_function */
420
         "R_ARM_RELATIVE",      /* name */
421
         TRUE,                  /* partial_inplace */
422
         0xffffffff,            /* src_mask */
423
         0xffffffff,            /* dst_mask */
424
         FALSE),                /* pcrel_offset */
425
 
426
  HOWTO (R_ARM_GOTOFF32,        /* type */
427
         0,                     /* rightshift */
428
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
429
         32,                    /* bitsize */
430
         FALSE,                 /* pc_relative */
431
         0,                     /* bitpos */
432
         complain_overflow_bitfield,/* complain_on_overflow */
433
         bfd_elf_generic_reloc, /* special_function */
434
         "R_ARM_GOTOFF32",      /* name */
435
         TRUE,                  /* partial_inplace */
436
         0xffffffff,            /* src_mask */
437
         0xffffffff,            /* dst_mask */
438
         FALSE),                /* pcrel_offset */
439
 
440
  HOWTO (R_ARM_GOTPC,           /* type */
441
         0,                     /* rightshift */
442
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
443
         32,                    /* bitsize */
444
         TRUE,                  /* pc_relative */
445
         0,                     /* bitpos */
446
         complain_overflow_bitfield,/* complain_on_overflow */
447
         bfd_elf_generic_reloc, /* special_function */
448
         "R_ARM_GOTPC",         /* name */
449
         TRUE,                  /* partial_inplace */
450
         0xffffffff,            /* src_mask */
451
         0xffffffff,            /* dst_mask */
452
         TRUE),                 /* pcrel_offset */
453
 
454
  HOWTO (R_ARM_GOT32,           /* type */
455
         0,                     /* rightshift */
456
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
457
         32,                    /* bitsize */
458
         FALSE,                 /* pc_relative */
459
         0,                     /* bitpos */
460
         complain_overflow_bitfield,/* complain_on_overflow */
461
         bfd_elf_generic_reloc, /* special_function */
462
         "R_ARM_GOT32",         /* name */
463
         TRUE,                  /* partial_inplace */
464
         0xffffffff,            /* src_mask */
465
         0xffffffff,            /* dst_mask */
466
         FALSE),                /* pcrel_offset */
467
 
468
  HOWTO (R_ARM_PLT32,           /* type */
469
         2,                     /* rightshift */
470
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
471
         24,                    /* bitsize */
472
         TRUE,                  /* pc_relative */
473
         0,                     /* bitpos */
474
         complain_overflow_bitfield,/* complain_on_overflow */
475
         bfd_elf_generic_reloc, /* special_function */
476
         "R_ARM_PLT32",         /* name */
477
         FALSE,                 /* partial_inplace */
478
         0x00ffffff,            /* src_mask */
479
         0x00ffffff,            /* dst_mask */
480
         TRUE),                 /* pcrel_offset */
481
 
482
  HOWTO (R_ARM_CALL,            /* type */
483
         2,                     /* rightshift */
484
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
485
         24,                    /* bitsize */
486
         TRUE,                  /* pc_relative */
487
         0,                      /* bitpos */
488
         complain_overflow_signed,/* complain_on_overflow */
489
         bfd_elf_generic_reloc, /* special_function */
490
         "R_ARM_CALL",          /* name */
491
         FALSE,                 /* partial_inplace */
492
         0x00ffffff,            /* src_mask */
493
         0x00ffffff,            /* dst_mask */
494
         TRUE),                 /* pcrel_offset */
495
 
496
  HOWTO (R_ARM_JUMP24,          /* type */
497
         2,                     /* rightshift */
498
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
499
         24,                    /* bitsize */
500
         TRUE,                  /* pc_relative */
501
         0,                      /* bitpos */
502
         complain_overflow_signed,/* complain_on_overflow */
503
         bfd_elf_generic_reloc, /* special_function */
504
         "R_ARM_JUMP24",        /* name */
505
         FALSE,                 /* partial_inplace */
506
         0x00ffffff,            /* src_mask */
507
         0x00ffffff,            /* dst_mask */
508
         TRUE),                 /* pcrel_offset */
509
 
510
  HOWTO (R_ARM_THM_JUMP24,      /* type */
511
         1,                     /* rightshift */
512
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
513
         24,                    /* bitsize */
514
         TRUE,                  /* pc_relative */
515
         0,                      /* bitpos */
516
         complain_overflow_signed,/* complain_on_overflow */
517
         bfd_elf_generic_reloc, /* special_function */
518
         "R_ARM_THM_JUMP24",    /* name */
519
         FALSE,                 /* partial_inplace */
520
         0x07ff2fff,            /* src_mask */
521
         0x07ff2fff,            /* dst_mask */
522
         TRUE),                 /* pcrel_offset */
523
 
524
  HOWTO (R_ARM_BASE_ABS,        /* type */
525
         0,                      /* rightshift */
526
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
527
         32,                    /* bitsize */
528
         FALSE,                 /* pc_relative */
529
         0,                      /* bitpos */
530
         complain_overflow_dont,/* complain_on_overflow */
531
         bfd_elf_generic_reloc, /* special_function */
532
         "R_ARM_BASE_ABS",      /* name */
533
         FALSE,                 /* partial_inplace */
534
         0xffffffff,            /* src_mask */
535
         0xffffffff,            /* dst_mask */
536
         FALSE),                /* pcrel_offset */
537
 
538
  HOWTO (R_ARM_ALU_PCREL7_0,    /* type */
539
         0,                      /* rightshift */
540
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
541
         12,                    /* bitsize */
542
         TRUE,                  /* pc_relative */
543
         0,                      /* bitpos */
544
         complain_overflow_dont,/* complain_on_overflow */
545
         bfd_elf_generic_reloc, /* special_function */
546
         "R_ARM_ALU_PCREL_7_0", /* name */
547
         FALSE,                 /* partial_inplace */
548
         0x00000fff,            /* src_mask */
549
         0x00000fff,            /* dst_mask */
550
         TRUE),                 /* pcrel_offset */
551
 
552
  HOWTO (R_ARM_ALU_PCREL15_8,   /* type */
553
         0,                      /* rightshift */
554
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
555
         12,                    /* bitsize */
556
         TRUE,                  /* pc_relative */
557
         8,                     /* bitpos */
558
         complain_overflow_dont,/* complain_on_overflow */
559
         bfd_elf_generic_reloc, /* special_function */
560
         "R_ARM_ALU_PCREL_15_8",/* name */
561
         FALSE,                 /* partial_inplace */
562
         0x00000fff,            /* src_mask */
563
         0x00000fff,            /* dst_mask */
564
         TRUE),                 /* pcrel_offset */
565
 
566
  HOWTO (R_ARM_ALU_PCREL23_15,  /* type */
567
         0,                      /* rightshift */
568
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
569
         12,                    /* bitsize */
570
         TRUE,                  /* pc_relative */
571
         16,                    /* bitpos */
572
         complain_overflow_dont,/* complain_on_overflow */
573
         bfd_elf_generic_reloc, /* special_function */
574
         "R_ARM_ALU_PCREL_23_15",/* name */
575
         FALSE,                 /* partial_inplace */
576
         0x00000fff,            /* src_mask */
577
         0x00000fff,            /* dst_mask */
578
         TRUE),                 /* pcrel_offset */
579
 
580
  HOWTO (R_ARM_LDR_SBREL_11_0,  /* type */
581
         0,                      /* rightshift */
582
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
583
         12,                    /* bitsize */
584
         FALSE,                 /* pc_relative */
585
         0,                      /* bitpos */
586
         complain_overflow_dont,/* complain_on_overflow */
587
         bfd_elf_generic_reloc, /* special_function */
588
         "R_ARM_LDR_SBREL_11_0",/* name */
589
         FALSE,                 /* partial_inplace */
590
         0x00000fff,            /* src_mask */
591
         0x00000fff,            /* dst_mask */
592
         FALSE),                /* pcrel_offset */
593
 
594
  HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
595
         0,                      /* rightshift */
596
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
597
         8,                     /* bitsize */
598
         FALSE,                 /* pc_relative */
599
         12,                    /* bitpos */
600
         complain_overflow_dont,/* complain_on_overflow */
601
         bfd_elf_generic_reloc, /* special_function */
602
         "R_ARM_ALU_SBREL_19_12",/* name */
603
         FALSE,                 /* partial_inplace */
604
         0x000ff000,            /* src_mask */
605
         0x000ff000,            /* dst_mask */
606
         FALSE),                /* pcrel_offset */
607
 
608
  HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
609
         0,                      /* rightshift */
610
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
611
         8,                     /* bitsize */
612
         FALSE,                 /* pc_relative */
613
         20,                    /* bitpos */
614
         complain_overflow_dont,/* complain_on_overflow */
615
         bfd_elf_generic_reloc, /* special_function */
616
         "R_ARM_ALU_SBREL_27_20",/* name */
617
         FALSE,                 /* partial_inplace */
618
         0x0ff00000,            /* src_mask */
619
         0x0ff00000,            /* dst_mask */
620
         FALSE),                /* pcrel_offset */
621
 
622
  HOWTO (R_ARM_TARGET1,         /* type */
623
         0,                      /* rightshift */
624
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
625
         32,                    /* bitsize */
626
         FALSE,                 /* pc_relative */
627
         0,                      /* bitpos */
628
         complain_overflow_dont,/* complain_on_overflow */
629
         bfd_elf_generic_reloc, /* special_function */
630
         "R_ARM_TARGET1",       /* name */
631
         FALSE,                 /* partial_inplace */
632
         0xffffffff,            /* src_mask */
633
         0xffffffff,            /* dst_mask */
634
         FALSE),                /* pcrel_offset */
635
 
636
  HOWTO (R_ARM_ROSEGREL32,      /* type */
637
         0,                      /* rightshift */
638
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
639
         32,                    /* bitsize */
640
         FALSE,                 /* pc_relative */
641
         0,                      /* bitpos */
642
         complain_overflow_dont,/* complain_on_overflow */
643
         bfd_elf_generic_reloc, /* special_function */
644
         "R_ARM_ROSEGREL32",    /* name */
645
         FALSE,                 /* partial_inplace */
646
         0xffffffff,            /* src_mask */
647
         0xffffffff,            /* dst_mask */
648
         FALSE),                /* pcrel_offset */
649
 
650
  HOWTO (R_ARM_V4BX,            /* type */
651
         0,                      /* rightshift */
652
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
653
         32,                    /* bitsize */
654
         FALSE,                 /* pc_relative */
655
         0,                      /* bitpos */
656
         complain_overflow_dont,/* complain_on_overflow */
657
         bfd_elf_generic_reloc, /* special_function */
658
         "R_ARM_V4BX",          /* name */
659
         FALSE,                 /* partial_inplace */
660
         0xffffffff,            /* src_mask */
661
         0xffffffff,            /* dst_mask */
662
         FALSE),                /* pcrel_offset */
663
 
664
  HOWTO (R_ARM_TARGET2,         /* type */
665
         0,                      /* rightshift */
666
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
667
         32,                    /* bitsize */
668
         FALSE,                 /* pc_relative */
669
         0,                      /* bitpos */
670
         complain_overflow_signed,/* complain_on_overflow */
671
         bfd_elf_generic_reloc, /* special_function */
672
         "R_ARM_TARGET2",       /* name */
673
         FALSE,                 /* partial_inplace */
674
         0xffffffff,            /* src_mask */
675
         0xffffffff,            /* dst_mask */
676
         TRUE),                 /* pcrel_offset */
677
 
678
  HOWTO (R_ARM_PREL31,          /* type */
679
         0,                      /* rightshift */
680
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
681
         31,                    /* bitsize */
682
         TRUE,                  /* pc_relative */
683
         0,                      /* bitpos */
684
         complain_overflow_signed,/* complain_on_overflow */
685
         bfd_elf_generic_reloc, /* special_function */
686
         "R_ARM_PREL31",        /* name */
687
         FALSE,                 /* partial_inplace */
688
         0x7fffffff,            /* src_mask */
689
         0x7fffffff,            /* dst_mask */
690
         TRUE),                 /* pcrel_offset */
691
 
692
  HOWTO (R_ARM_MOVW_ABS_NC,     /* type */
693
         0,                      /* rightshift */
694
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
695
         16,                    /* bitsize */
696
         FALSE,                 /* pc_relative */
697
         0,                      /* bitpos */
698
         complain_overflow_dont,/* complain_on_overflow */
699
         bfd_elf_generic_reloc, /* special_function */
700
         "R_ARM_MOVW_ABS_NC",   /* name */
701
         FALSE,                 /* partial_inplace */
702
         0x000f0fff,            /* src_mask */
703
         0x000f0fff,            /* dst_mask */
704
         FALSE),                /* pcrel_offset */
705
 
706
  HOWTO (R_ARM_MOVT_ABS,        /* type */
707
         0,                      /* rightshift */
708
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
709
         16,                    /* bitsize */
710
         FALSE,                 /* pc_relative */
711
         0,                      /* bitpos */
712
         complain_overflow_bitfield,/* complain_on_overflow */
713
         bfd_elf_generic_reloc, /* special_function */
714
         "R_ARM_MOVT_ABS",      /* name */
715
         FALSE,                 /* partial_inplace */
716
         0x000f0fff,            /* src_mask */
717
         0x000f0fff,            /* dst_mask */
718
         FALSE),                /* pcrel_offset */
719
 
720
  HOWTO (R_ARM_MOVW_PREL_NC,    /* type */
721
         0,                      /* rightshift */
722
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
723
         16,                    /* bitsize */
724
         TRUE,                  /* pc_relative */
725
         0,                      /* bitpos */
726
         complain_overflow_dont,/* complain_on_overflow */
727
         bfd_elf_generic_reloc, /* special_function */
728
         "R_ARM_MOVW_PREL_NC",  /* name */
729
         FALSE,                 /* partial_inplace */
730
         0x000f0fff,            /* src_mask */
731
         0x000f0fff,            /* dst_mask */
732
         TRUE),                 /* pcrel_offset */
733
 
734
  HOWTO (R_ARM_MOVT_PREL,       /* type */
735
         0,                      /* rightshift */
736
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
737
         16,                    /* bitsize */
738
         TRUE,                  /* pc_relative */
739
         0,                      /* bitpos */
740
         complain_overflow_bitfield,/* complain_on_overflow */
741
         bfd_elf_generic_reloc, /* special_function */
742
         "R_ARM_MOVT_PREL",     /* name */
743
         FALSE,                 /* partial_inplace */
744
         0x000f0fff,            /* src_mask */
745
         0x000f0fff,            /* dst_mask */
746
         TRUE),                 /* pcrel_offset */
747
 
748
  HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
749
         0,                      /* rightshift */
750
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
751
         16,                    /* bitsize */
752
         FALSE,                 /* pc_relative */
753
         0,                      /* bitpos */
754
         complain_overflow_dont,/* complain_on_overflow */
755
         bfd_elf_generic_reloc, /* special_function */
756
         "R_ARM_THM_MOVW_ABS_NC",/* name */
757
         FALSE,                 /* partial_inplace */
758
         0x040f70ff,            /* src_mask */
759
         0x040f70ff,            /* dst_mask */
760
         FALSE),                /* pcrel_offset */
761
 
762
  HOWTO (R_ARM_THM_MOVT_ABS,    /* type */
763
         0,                      /* rightshift */
764
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
765
         16,                    /* bitsize */
766
         FALSE,                 /* pc_relative */
767
         0,                      /* bitpos */
768
         complain_overflow_bitfield,/* complain_on_overflow */
769
         bfd_elf_generic_reloc, /* special_function */
770
         "R_ARM_THM_MOVT_ABS",  /* name */
771
         FALSE,                 /* partial_inplace */
772
         0x040f70ff,            /* src_mask */
773
         0x040f70ff,            /* dst_mask */
774
         FALSE),                /* pcrel_offset */
775
 
776
  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
777
         0,                      /* rightshift */
778
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
779
         16,                    /* bitsize */
780
         TRUE,                  /* pc_relative */
781
         0,                      /* bitpos */
782
         complain_overflow_dont,/* complain_on_overflow */
783
         bfd_elf_generic_reloc, /* special_function */
784
         "R_ARM_THM_MOVW_PREL_NC",/* name */
785
         FALSE,                 /* partial_inplace */
786
         0x040f70ff,            /* src_mask */
787
         0x040f70ff,            /* dst_mask */
788
         TRUE),                 /* pcrel_offset */
789
 
790
  HOWTO (R_ARM_THM_MOVT_PREL,   /* type */
791
         0,                      /* rightshift */
792
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
793
         16,                    /* bitsize */
794
         TRUE,                  /* pc_relative */
795
         0,                      /* bitpos */
796
         complain_overflow_bitfield,/* complain_on_overflow */
797
         bfd_elf_generic_reloc, /* special_function */
798
         "R_ARM_THM_MOVT_PREL", /* name */
799
         FALSE,                 /* partial_inplace */
800
         0x040f70ff,            /* src_mask */
801
         0x040f70ff,            /* dst_mask */
802
         TRUE),                 /* pcrel_offset */
803
 
804
  HOWTO (R_ARM_THM_JUMP19,      /* type */
805
         1,                     /* rightshift */
806
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
807
         19,                    /* bitsize */
808
         TRUE,                  /* pc_relative */
809
         0,                      /* bitpos */
810
         complain_overflow_signed,/* complain_on_overflow */
811
         bfd_elf_generic_reloc, /* special_function */
812
         "R_ARM_THM_JUMP19",    /* name */
813
         FALSE,                 /* partial_inplace */
814
         0x043f2fff,            /* src_mask */
815
         0x043f2fff,            /* dst_mask */
816
         TRUE),                 /* pcrel_offset */
817
 
818
  HOWTO (R_ARM_THM_JUMP6,       /* type */
819
         1,                     /* rightshift */
820
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
821
         6,                     /* bitsize */
822
         TRUE,                  /* pc_relative */
823
         0,                      /* bitpos */
824
         complain_overflow_unsigned,/* complain_on_overflow */
825
         bfd_elf_generic_reloc, /* special_function */
826
         "R_ARM_THM_JUMP6",     /* name */
827
         FALSE,                 /* partial_inplace */
828
         0x02f8,                /* src_mask */
829
         0x02f8,                /* dst_mask */
830
         TRUE),                 /* pcrel_offset */
831
 
832
  /* These are declared as 13-bit signed relocations because we can
833
     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
834
     versa.  */
835
  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
836
         0,                      /* rightshift */
837
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
838
         13,                    /* bitsize */
839
         TRUE,                  /* pc_relative */
840
         0,                      /* bitpos */
841
         complain_overflow_dont,/* complain_on_overflow */
842
         bfd_elf_generic_reloc, /* special_function */
843
         "R_ARM_THM_ALU_PREL_11_0",/* name */
844
         FALSE,                 /* partial_inplace */
845
         0xffffffff,            /* src_mask */
846
         0xffffffff,            /* dst_mask */
847
         TRUE),                 /* pcrel_offset */
848
 
849
  HOWTO (R_ARM_THM_PC12,        /* type */
850
         0,                      /* rightshift */
851
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
852
         13,                    /* bitsize */
853
         TRUE,                  /* pc_relative */
854
         0,                      /* bitpos */
855
         complain_overflow_dont,/* complain_on_overflow */
856
         bfd_elf_generic_reloc, /* special_function */
857
         "R_ARM_THM_PC12",      /* name */
858
         FALSE,                 /* partial_inplace */
859
         0xffffffff,            /* src_mask */
860
         0xffffffff,            /* dst_mask */
861
         TRUE),                 /* pcrel_offset */
862
 
863
  HOWTO (R_ARM_ABS32_NOI,       /* type */
864
         0,                      /* rightshift */
865
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
866
         32,                    /* bitsize */
867
         FALSE,                 /* pc_relative */
868
         0,                      /* bitpos */
869
         complain_overflow_dont,/* complain_on_overflow */
870
         bfd_elf_generic_reloc, /* special_function */
871
         "R_ARM_ABS32_NOI",     /* name */
872
         FALSE,                 /* partial_inplace */
873
         0xffffffff,            /* src_mask */
874
         0xffffffff,            /* dst_mask */
875
         FALSE),                /* pcrel_offset */
876
 
877
  HOWTO (R_ARM_REL32_NOI,       /* type */
878
         0,                      /* rightshift */
879
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
880
         32,                    /* bitsize */
881
         TRUE,                  /* pc_relative */
882
         0,                      /* bitpos */
883
         complain_overflow_dont,/* complain_on_overflow */
884
         bfd_elf_generic_reloc, /* special_function */
885
         "R_ARM_REL32_NOI",     /* name */
886
         FALSE,                 /* partial_inplace */
887
         0xffffffff,            /* src_mask */
888
         0xffffffff,            /* dst_mask */
889
         FALSE),                /* pcrel_offset */
890
 
891
  /* Group relocations.  */
892
 
893
  HOWTO (R_ARM_ALU_PC_G0_NC,    /* type */
894
         0,                      /* rightshift */
895
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
896
         32,                    /* bitsize */
897
         TRUE,                  /* pc_relative */
898
         0,                      /* bitpos */
899
         complain_overflow_dont,/* complain_on_overflow */
900
         bfd_elf_generic_reloc, /* special_function */
901
         "R_ARM_ALU_PC_G0_NC",  /* name */
902
         FALSE,                 /* partial_inplace */
903
         0xffffffff,            /* src_mask */
904
         0xffffffff,            /* dst_mask */
905
         TRUE),                 /* pcrel_offset */
906
 
907
  HOWTO (R_ARM_ALU_PC_G0,       /* type */
908
         0,                      /* rightshift */
909
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
910
         32,                    /* bitsize */
911
         TRUE,                  /* pc_relative */
912
         0,                      /* bitpos */
913
         complain_overflow_dont,/* complain_on_overflow */
914
         bfd_elf_generic_reloc, /* special_function */
915
         "R_ARM_ALU_PC_G0",     /* name */
916
         FALSE,                 /* partial_inplace */
917
         0xffffffff,            /* src_mask */
918
         0xffffffff,            /* dst_mask */
919
         TRUE),                 /* pcrel_offset */
920
 
921
  HOWTO (R_ARM_ALU_PC_G1_NC,    /* type */
922
         0,                      /* rightshift */
923
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
924
         32,                    /* bitsize */
925
         TRUE,                  /* pc_relative */
926
         0,                      /* bitpos */
927
         complain_overflow_dont,/* complain_on_overflow */
928
         bfd_elf_generic_reloc, /* special_function */
929
         "R_ARM_ALU_PC_G1_NC",  /* name */
930
         FALSE,                 /* partial_inplace */
931
         0xffffffff,            /* src_mask */
932
         0xffffffff,            /* dst_mask */
933
         TRUE),                 /* pcrel_offset */
934
 
935
  HOWTO (R_ARM_ALU_PC_G1,       /* type */
936
         0,                      /* rightshift */
937
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
938
         32,                    /* bitsize */
939
         TRUE,                  /* pc_relative */
940
         0,                      /* bitpos */
941
         complain_overflow_dont,/* complain_on_overflow */
942
         bfd_elf_generic_reloc, /* special_function */
943
         "R_ARM_ALU_PC_G1",     /* name */
944
         FALSE,                 /* partial_inplace */
945
         0xffffffff,            /* src_mask */
946
         0xffffffff,            /* dst_mask */
947
         TRUE),                 /* pcrel_offset */
948
 
949
  HOWTO (R_ARM_ALU_PC_G2,       /* type */
950
         0,                      /* rightshift */
951
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
952
         32,                    /* bitsize */
953
         TRUE,                  /* pc_relative */
954
         0,                      /* bitpos */
955
         complain_overflow_dont,/* complain_on_overflow */
956
         bfd_elf_generic_reloc, /* special_function */
957
         "R_ARM_ALU_PC_G2",     /* name */
958
         FALSE,                 /* partial_inplace */
959
         0xffffffff,            /* src_mask */
960
         0xffffffff,            /* dst_mask */
961
         TRUE),                 /* pcrel_offset */
962
 
963
  HOWTO (R_ARM_LDR_PC_G1,       /* type */
964
         0,                      /* rightshift */
965
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
966
         32,                    /* bitsize */
967
         TRUE,                  /* pc_relative */
968
         0,                      /* bitpos */
969
         complain_overflow_dont,/* complain_on_overflow */
970
         bfd_elf_generic_reloc, /* special_function */
971
         "R_ARM_LDR_PC_G1",     /* name */
972
         FALSE,                 /* partial_inplace */
973
         0xffffffff,            /* src_mask */
974
         0xffffffff,            /* dst_mask */
975
         TRUE),                 /* pcrel_offset */
976
 
977
  HOWTO (R_ARM_LDR_PC_G2,       /* type */
978
         0,                      /* rightshift */
979
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
980
         32,                    /* bitsize */
981
         TRUE,                  /* pc_relative */
982
         0,                      /* bitpos */
983
         complain_overflow_dont,/* complain_on_overflow */
984
         bfd_elf_generic_reloc, /* special_function */
985
         "R_ARM_LDR_PC_G2",     /* name */
986
         FALSE,                 /* partial_inplace */
987
         0xffffffff,            /* src_mask */
988
         0xffffffff,            /* dst_mask */
989
         TRUE),                 /* pcrel_offset */
990
 
991
  HOWTO (R_ARM_LDRS_PC_G0,      /* type */
992
         0,                      /* rightshift */
993
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
994
         32,                    /* bitsize */
995
         TRUE,                  /* pc_relative */
996
         0,                      /* bitpos */
997
         complain_overflow_dont,/* complain_on_overflow */
998
         bfd_elf_generic_reloc, /* special_function */
999
         "R_ARM_LDRS_PC_G0",    /* name */
1000
         FALSE,                 /* partial_inplace */
1001
         0xffffffff,            /* src_mask */
1002
         0xffffffff,            /* dst_mask */
1003
         TRUE),                 /* pcrel_offset */
1004
 
1005
  HOWTO (R_ARM_LDRS_PC_G1,      /* type */
1006
         0,                      /* rightshift */
1007
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1008
         32,                    /* bitsize */
1009
         TRUE,                  /* pc_relative */
1010
         0,                      /* bitpos */
1011
         complain_overflow_dont,/* complain_on_overflow */
1012
         bfd_elf_generic_reloc, /* special_function */
1013
         "R_ARM_LDRS_PC_G1",    /* name */
1014
         FALSE,                 /* partial_inplace */
1015
         0xffffffff,            /* src_mask */
1016
         0xffffffff,            /* dst_mask */
1017
         TRUE),                 /* pcrel_offset */
1018
 
1019
  HOWTO (R_ARM_LDRS_PC_G2,      /* type */
1020
         0,                      /* rightshift */
1021
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1022
         32,                    /* bitsize */
1023
         TRUE,                  /* pc_relative */
1024
         0,                      /* bitpos */
1025
         complain_overflow_dont,/* complain_on_overflow */
1026
         bfd_elf_generic_reloc, /* special_function */
1027
         "R_ARM_LDRS_PC_G2",    /* name */
1028
         FALSE,                 /* partial_inplace */
1029
         0xffffffff,            /* src_mask */
1030
         0xffffffff,            /* dst_mask */
1031
         TRUE),                 /* pcrel_offset */
1032
 
1033
  HOWTO (R_ARM_LDC_PC_G0,       /* type */
1034
         0,                      /* rightshift */
1035
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1036
         32,                    /* bitsize */
1037
         TRUE,                  /* pc_relative */
1038
         0,                      /* bitpos */
1039
         complain_overflow_dont,/* complain_on_overflow */
1040
         bfd_elf_generic_reloc, /* special_function */
1041
         "R_ARM_LDC_PC_G0",     /* name */
1042
         FALSE,                 /* partial_inplace */
1043
         0xffffffff,            /* src_mask */
1044
         0xffffffff,            /* dst_mask */
1045
         TRUE),                 /* pcrel_offset */
1046
 
1047
  HOWTO (R_ARM_LDC_PC_G1,       /* type */
1048
         0,                      /* rightshift */
1049
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1050
         32,                    /* bitsize */
1051
         TRUE,                  /* pc_relative */
1052
         0,                      /* bitpos */
1053
         complain_overflow_dont,/* complain_on_overflow */
1054
         bfd_elf_generic_reloc, /* special_function */
1055
         "R_ARM_LDC_PC_G1",     /* name */
1056
         FALSE,                 /* partial_inplace */
1057
         0xffffffff,            /* src_mask */
1058
         0xffffffff,            /* dst_mask */
1059
         TRUE),                 /* pcrel_offset */
1060
 
1061
  HOWTO (R_ARM_LDC_PC_G2,       /* type */
1062
         0,                      /* rightshift */
1063
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1064
         32,                    /* bitsize */
1065
         TRUE,                  /* pc_relative */
1066
         0,                      /* bitpos */
1067
         complain_overflow_dont,/* complain_on_overflow */
1068
         bfd_elf_generic_reloc, /* special_function */
1069
         "R_ARM_LDC_PC_G2",     /* name */
1070
         FALSE,                 /* partial_inplace */
1071
         0xffffffff,            /* src_mask */
1072
         0xffffffff,            /* dst_mask */
1073
         TRUE),                 /* pcrel_offset */
1074
 
1075
  HOWTO (R_ARM_ALU_SB_G0_NC,    /* type */
1076
         0,                      /* rightshift */
1077
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1078
         32,                    /* bitsize */
1079
         TRUE,                  /* pc_relative */
1080
         0,                      /* bitpos */
1081
         complain_overflow_dont,/* complain_on_overflow */
1082
         bfd_elf_generic_reloc, /* special_function */
1083
         "R_ARM_ALU_SB_G0_NC",  /* name */
1084
         FALSE,                 /* partial_inplace */
1085
         0xffffffff,            /* src_mask */
1086
         0xffffffff,            /* dst_mask */
1087
         TRUE),                 /* pcrel_offset */
1088
 
1089
  HOWTO (R_ARM_ALU_SB_G0,       /* type */
1090
         0,                      /* rightshift */
1091
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1092
         32,                    /* bitsize */
1093
         TRUE,                  /* pc_relative */
1094
         0,                      /* bitpos */
1095
         complain_overflow_dont,/* complain_on_overflow */
1096
         bfd_elf_generic_reloc, /* special_function */
1097
         "R_ARM_ALU_SB_G0",     /* name */
1098
         FALSE,                 /* partial_inplace */
1099
         0xffffffff,            /* src_mask */
1100
         0xffffffff,            /* dst_mask */
1101
         TRUE),                 /* pcrel_offset */
1102
 
1103
  HOWTO (R_ARM_ALU_SB_G1_NC,    /* type */
1104
         0,                      /* rightshift */
1105
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1106
         32,                    /* bitsize */
1107
         TRUE,                  /* pc_relative */
1108
         0,                      /* bitpos */
1109
         complain_overflow_dont,/* complain_on_overflow */
1110
         bfd_elf_generic_reloc, /* special_function */
1111
         "R_ARM_ALU_SB_G1_NC",  /* name */
1112
         FALSE,                 /* partial_inplace */
1113
         0xffffffff,            /* src_mask */
1114
         0xffffffff,            /* dst_mask */
1115
         TRUE),                 /* pcrel_offset */
1116
 
1117
  HOWTO (R_ARM_ALU_SB_G1,       /* type */
1118
         0,                      /* rightshift */
1119
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1120
         32,                    /* bitsize */
1121
         TRUE,                  /* pc_relative */
1122
         0,                      /* bitpos */
1123
         complain_overflow_dont,/* complain_on_overflow */
1124
         bfd_elf_generic_reloc, /* special_function */
1125
         "R_ARM_ALU_SB_G1",     /* name */
1126
         FALSE,                 /* partial_inplace */
1127
         0xffffffff,            /* src_mask */
1128
         0xffffffff,            /* dst_mask */
1129
         TRUE),                 /* pcrel_offset */
1130
 
1131
  HOWTO (R_ARM_ALU_SB_G2,       /* type */
1132
         0,                      /* rightshift */
1133
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1134
         32,                    /* bitsize */
1135
         TRUE,                  /* pc_relative */
1136
         0,                      /* bitpos */
1137
         complain_overflow_dont,/* complain_on_overflow */
1138
         bfd_elf_generic_reloc, /* special_function */
1139
         "R_ARM_ALU_SB_G2",     /* name */
1140
         FALSE,                 /* partial_inplace */
1141
         0xffffffff,            /* src_mask */
1142
         0xffffffff,            /* dst_mask */
1143
         TRUE),                 /* pcrel_offset */
1144
 
1145
  HOWTO (R_ARM_LDR_SB_G0,       /* type */
1146
         0,                      /* rightshift */
1147
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1148
         32,                    /* bitsize */
1149
         TRUE,                  /* pc_relative */
1150
         0,                      /* bitpos */
1151
         complain_overflow_dont,/* complain_on_overflow */
1152
         bfd_elf_generic_reloc, /* special_function */
1153
         "R_ARM_LDR_SB_G0",     /* name */
1154
         FALSE,                 /* partial_inplace */
1155
         0xffffffff,            /* src_mask */
1156
         0xffffffff,            /* dst_mask */
1157
         TRUE),                 /* pcrel_offset */
1158
 
1159
  HOWTO (R_ARM_LDR_SB_G1,       /* type */
1160
         0,                      /* rightshift */
1161
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1162
         32,                    /* bitsize */
1163
         TRUE,                  /* pc_relative */
1164
         0,                      /* bitpos */
1165
         complain_overflow_dont,/* complain_on_overflow */
1166
         bfd_elf_generic_reloc, /* special_function */
1167
         "R_ARM_LDR_SB_G1",     /* name */
1168
         FALSE,                 /* partial_inplace */
1169
         0xffffffff,            /* src_mask */
1170
         0xffffffff,            /* dst_mask */
1171
         TRUE),                 /* pcrel_offset */
1172
 
1173
  HOWTO (R_ARM_LDR_SB_G2,       /* type */
1174
         0,                      /* rightshift */
1175
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1176
         32,                    /* bitsize */
1177
         TRUE,                  /* pc_relative */
1178
         0,                      /* bitpos */
1179
         complain_overflow_dont,/* complain_on_overflow */
1180
         bfd_elf_generic_reloc, /* special_function */
1181
         "R_ARM_LDR_SB_G2",     /* name */
1182
         FALSE,                 /* partial_inplace */
1183
         0xffffffff,            /* src_mask */
1184
         0xffffffff,            /* dst_mask */
1185
         TRUE),                 /* pcrel_offset */
1186
 
1187
  HOWTO (R_ARM_LDRS_SB_G0,      /* type */
1188
         0,                      /* rightshift */
1189
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1190
         32,                    /* bitsize */
1191
         TRUE,                  /* pc_relative */
1192
         0,                      /* bitpos */
1193
         complain_overflow_dont,/* complain_on_overflow */
1194
         bfd_elf_generic_reloc, /* special_function */
1195
         "R_ARM_LDRS_SB_G0",    /* name */
1196
         FALSE,                 /* partial_inplace */
1197
         0xffffffff,            /* src_mask */
1198
         0xffffffff,            /* dst_mask */
1199
         TRUE),                 /* pcrel_offset */
1200
 
1201
  HOWTO (R_ARM_LDRS_SB_G1,      /* type */
1202
         0,                      /* rightshift */
1203
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1204
         32,                    /* bitsize */
1205
         TRUE,                  /* pc_relative */
1206
         0,                      /* bitpos */
1207
         complain_overflow_dont,/* complain_on_overflow */
1208
         bfd_elf_generic_reloc, /* special_function */
1209
         "R_ARM_LDRS_SB_G1",    /* name */
1210
         FALSE,                 /* partial_inplace */
1211
         0xffffffff,            /* src_mask */
1212
         0xffffffff,            /* dst_mask */
1213
         TRUE),                 /* pcrel_offset */
1214
 
1215
  HOWTO (R_ARM_LDRS_SB_G2,      /* type */
1216
         0,                      /* rightshift */
1217
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1218
         32,                    /* bitsize */
1219
         TRUE,                  /* pc_relative */
1220
         0,                      /* bitpos */
1221
         complain_overflow_dont,/* complain_on_overflow */
1222
         bfd_elf_generic_reloc, /* special_function */
1223
         "R_ARM_LDRS_SB_G2",    /* name */
1224
         FALSE,                 /* partial_inplace */
1225
         0xffffffff,            /* src_mask */
1226
         0xffffffff,            /* dst_mask */
1227
         TRUE),                 /* pcrel_offset */
1228
 
1229
  HOWTO (R_ARM_LDC_SB_G0,       /* type */
1230
         0,                      /* rightshift */
1231
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1232
         32,                    /* bitsize */
1233
         TRUE,                  /* pc_relative */
1234
         0,                      /* bitpos */
1235
         complain_overflow_dont,/* complain_on_overflow */
1236
         bfd_elf_generic_reloc, /* special_function */
1237
         "R_ARM_LDC_SB_G0",     /* name */
1238
         FALSE,                 /* partial_inplace */
1239
         0xffffffff,            /* src_mask */
1240
         0xffffffff,            /* dst_mask */
1241
         TRUE),                 /* pcrel_offset */
1242
 
1243
  HOWTO (R_ARM_LDC_SB_G1,       /* type */
1244
         0,                      /* rightshift */
1245
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1246
         32,                    /* bitsize */
1247
         TRUE,                  /* pc_relative */
1248
         0,                      /* bitpos */
1249
         complain_overflow_dont,/* complain_on_overflow */
1250
         bfd_elf_generic_reloc, /* special_function */
1251
         "R_ARM_LDC_SB_G1",     /* name */
1252
         FALSE,                 /* partial_inplace */
1253
         0xffffffff,            /* src_mask */
1254
         0xffffffff,            /* dst_mask */
1255
         TRUE),                 /* pcrel_offset */
1256
 
1257
  HOWTO (R_ARM_LDC_SB_G2,       /* type */
1258
         0,                      /* rightshift */
1259
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1260
         32,                    /* bitsize */
1261
         TRUE,                  /* pc_relative */
1262
         0,                      /* bitpos */
1263
         complain_overflow_dont,/* complain_on_overflow */
1264
         bfd_elf_generic_reloc, /* special_function */
1265
         "R_ARM_LDC_SB_G2",     /* name */
1266
         FALSE,                 /* partial_inplace */
1267
         0xffffffff,            /* src_mask */
1268
         0xffffffff,            /* dst_mask */
1269
         TRUE),                 /* pcrel_offset */
1270
 
1271
  /* End of group relocations.  */
1272
 
1273
  HOWTO (R_ARM_MOVW_BREL_NC,    /* type */
1274
         0,                      /* rightshift */
1275
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1276
         16,                    /* bitsize */
1277
         FALSE,                 /* pc_relative */
1278
         0,                      /* bitpos */
1279
         complain_overflow_dont,/* complain_on_overflow */
1280
         bfd_elf_generic_reloc, /* special_function */
1281
         "R_ARM_MOVW_BREL_NC",  /* name */
1282
         FALSE,                 /* partial_inplace */
1283
         0x0000ffff,            /* src_mask */
1284
         0x0000ffff,            /* dst_mask */
1285
         FALSE),                /* pcrel_offset */
1286
 
1287
  HOWTO (R_ARM_MOVT_BREL,       /* type */
1288
         0,                      /* rightshift */
1289
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1290
         16,                    /* bitsize */
1291
         FALSE,                 /* pc_relative */
1292
         0,                      /* bitpos */
1293
         complain_overflow_bitfield,/* complain_on_overflow */
1294
         bfd_elf_generic_reloc, /* special_function */
1295
         "R_ARM_MOVT_BREL",     /* name */
1296
         FALSE,                 /* partial_inplace */
1297
         0x0000ffff,            /* src_mask */
1298
         0x0000ffff,            /* dst_mask */
1299
         FALSE),                /* pcrel_offset */
1300
 
1301
  HOWTO (R_ARM_MOVW_BREL,       /* type */
1302
         0,                      /* rightshift */
1303
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1304
         16,                    /* bitsize */
1305
         FALSE,                 /* pc_relative */
1306
         0,                      /* bitpos */
1307
         complain_overflow_dont,/* complain_on_overflow */
1308
         bfd_elf_generic_reloc, /* special_function */
1309
         "R_ARM_MOVW_BREL",     /* name */
1310
         FALSE,                 /* partial_inplace */
1311
         0x0000ffff,            /* src_mask */
1312
         0x0000ffff,            /* dst_mask */
1313
         FALSE),                /* pcrel_offset */
1314
 
1315
  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1316
         0,                      /* rightshift */
1317
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1318
         16,                    /* bitsize */
1319
         FALSE,                 /* pc_relative */
1320
         0,                      /* bitpos */
1321
         complain_overflow_dont,/* complain_on_overflow */
1322
         bfd_elf_generic_reloc, /* special_function */
1323
         "R_ARM_THM_MOVW_BREL_NC",/* name */
1324
         FALSE,                 /* partial_inplace */
1325
         0x040f70ff,            /* src_mask */
1326
         0x040f70ff,            /* dst_mask */
1327
         FALSE),                /* pcrel_offset */
1328
 
1329
  HOWTO (R_ARM_THM_MOVT_BREL,   /* type */
1330
         0,                      /* rightshift */
1331
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1332
         16,                    /* bitsize */
1333
         FALSE,                 /* pc_relative */
1334
         0,                      /* bitpos */
1335
         complain_overflow_bitfield,/* complain_on_overflow */
1336
         bfd_elf_generic_reloc, /* special_function */
1337
         "R_ARM_THM_MOVT_BREL", /* name */
1338
         FALSE,                 /* partial_inplace */
1339
         0x040f70ff,            /* src_mask */
1340
         0x040f70ff,            /* dst_mask */
1341
         FALSE),                /* pcrel_offset */
1342
 
1343
  HOWTO (R_ARM_THM_MOVW_BREL,   /* type */
1344
         0,                      /* rightshift */
1345
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1346
         16,                    /* bitsize */
1347
         FALSE,                 /* pc_relative */
1348
         0,                      /* bitpos */
1349
         complain_overflow_dont,/* complain_on_overflow */
1350
         bfd_elf_generic_reloc, /* special_function */
1351
         "R_ARM_THM_MOVW_BREL", /* name */
1352
         FALSE,                 /* partial_inplace */
1353
         0x040f70ff,            /* src_mask */
1354
         0x040f70ff,            /* dst_mask */
1355
         FALSE),                /* pcrel_offset */
1356
 
1357
  EMPTY_HOWTO (90),   /* Unallocated.  */
1358
  EMPTY_HOWTO (91),
1359
  EMPTY_HOWTO (92),
1360
  EMPTY_HOWTO (93),
1361
 
1362
  HOWTO (R_ARM_PLT32_ABS,       /* type */
1363
         0,                      /* rightshift */
1364
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1365
         32,                    /* bitsize */
1366
         FALSE,                 /* pc_relative */
1367
         0,                      /* bitpos */
1368
         complain_overflow_dont,/* complain_on_overflow */
1369
         bfd_elf_generic_reloc, /* special_function */
1370
         "R_ARM_PLT32_ABS",     /* name */
1371
         FALSE,                 /* partial_inplace */
1372
         0xffffffff,            /* src_mask */
1373
         0xffffffff,            /* dst_mask */
1374
         FALSE),                /* pcrel_offset */
1375
 
1376
  HOWTO (R_ARM_GOT_ABS,         /* type */
1377
         0,                      /* rightshift */
1378
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1379
         32,                    /* bitsize */
1380
         FALSE,                 /* pc_relative */
1381
         0,                      /* bitpos */
1382
         complain_overflow_dont,/* complain_on_overflow */
1383
         bfd_elf_generic_reloc, /* special_function */
1384
         "R_ARM_GOT_ABS",       /* name */
1385
         FALSE,                 /* partial_inplace */
1386
         0xffffffff,            /* src_mask */
1387
         0xffffffff,            /* dst_mask */
1388
         FALSE),                        /* pcrel_offset */
1389
 
1390
  HOWTO (R_ARM_GOT_PREL,        /* type */
1391
         0,                      /* rightshift */
1392
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1393
         32,                    /* bitsize */
1394
         TRUE,                  /* pc_relative */
1395
         0,                      /* bitpos */
1396
         complain_overflow_dont,        /* complain_on_overflow */
1397
         bfd_elf_generic_reloc, /* special_function */
1398
         "R_ARM_GOT_PREL",      /* name */
1399
         FALSE,                 /* partial_inplace */
1400
         0xffffffff,            /* src_mask */
1401
         0xffffffff,            /* dst_mask */
1402
         TRUE),                 /* pcrel_offset */
1403
 
1404
  HOWTO (R_ARM_GOT_BREL12,      /* type */
1405
         0,                      /* rightshift */
1406
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1407
         12,                    /* bitsize */
1408
         FALSE,                 /* pc_relative */
1409
         0,                      /* bitpos */
1410
         complain_overflow_bitfield,/* complain_on_overflow */
1411
         bfd_elf_generic_reloc, /* special_function */
1412
         "R_ARM_GOT_BREL12",    /* name */
1413
         FALSE,                 /* partial_inplace */
1414
         0x00000fff,            /* src_mask */
1415
         0x00000fff,            /* dst_mask */
1416
         FALSE),                /* pcrel_offset */
1417
 
1418
  HOWTO (R_ARM_GOTOFF12,        /* type */
1419
         0,                      /* rightshift */
1420
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1421
         12,                    /* bitsize */
1422
         FALSE,                 /* pc_relative */
1423
         0,                      /* bitpos */
1424
         complain_overflow_bitfield,/* complain_on_overflow */
1425
         bfd_elf_generic_reloc, /* special_function */
1426
         "R_ARM_GOTOFF12",      /* name */
1427
         FALSE,                 /* partial_inplace */
1428
         0x00000fff,            /* src_mask */
1429
         0x00000fff,            /* dst_mask */
1430
         FALSE),                /* pcrel_offset */
1431
 
1432
  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1433
 
1434
  /* GNU extension to record C++ vtable member usage */
1435
  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1436
         0,                     /* rightshift */
1437
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1438
         0,                     /* bitsize */
1439
         FALSE,                 /* pc_relative */
1440
         0,                     /* bitpos */
1441
         complain_overflow_dont, /* complain_on_overflow */
1442
         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1443
         "R_ARM_GNU_VTENTRY",   /* name */
1444
         FALSE,                 /* partial_inplace */
1445
         0,                     /* src_mask */
1446
         0,                     /* dst_mask */
1447
         FALSE),                /* pcrel_offset */
1448
 
1449
  /* GNU extension to record C++ vtable hierarchy */
1450
  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1451
         0,                     /* rightshift */
1452
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1453
         0,                     /* bitsize */
1454
         FALSE,                 /* pc_relative */
1455
         0,                     /* bitpos */
1456
         complain_overflow_dont, /* complain_on_overflow */
1457
         NULL,                  /* special_function */
1458
         "R_ARM_GNU_VTINHERIT", /* name */
1459
         FALSE,                 /* partial_inplace */
1460
         0,                     /* src_mask */
1461
         0,                     /* dst_mask */
1462
         FALSE),                /* pcrel_offset */
1463
 
1464
  HOWTO (R_ARM_THM_JUMP11,      /* type */
1465
         1,                     /* rightshift */
1466
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1467
         11,                    /* bitsize */
1468
         TRUE,                  /* pc_relative */
1469
         0,                      /* bitpos */
1470
         complain_overflow_signed,      /* complain_on_overflow */
1471
         bfd_elf_generic_reloc, /* special_function */
1472
         "R_ARM_THM_JUMP11",    /* name */
1473
         FALSE,                 /* partial_inplace */
1474
         0x000007ff,            /* src_mask */
1475
         0x000007ff,            /* dst_mask */
1476
         TRUE),                 /* pcrel_offset */
1477
 
1478
  HOWTO (R_ARM_THM_JUMP8,       /* type */
1479
         1,                     /* rightshift */
1480
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1481
         8,                     /* bitsize */
1482
         TRUE,                  /* pc_relative */
1483
         0,                      /* bitpos */
1484
         complain_overflow_signed,      /* complain_on_overflow */
1485
         bfd_elf_generic_reloc, /* special_function */
1486
         "R_ARM_THM_JUMP8",     /* name */
1487
         FALSE,                 /* partial_inplace */
1488
         0x000000ff,            /* src_mask */
1489
         0x000000ff,            /* dst_mask */
1490
         TRUE),                 /* pcrel_offset */
1491
 
1492
  /* TLS relocations */
1493
  HOWTO (R_ARM_TLS_GD32,        /* type */
1494
         0,                     /* rightshift */
1495
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1496
         32,                    /* bitsize */
1497
         FALSE,                 /* pc_relative */
1498
         0,                     /* bitpos */
1499
         complain_overflow_bitfield,/* complain_on_overflow */
1500
         NULL,                  /* special_function */
1501
         "R_ARM_TLS_GD32",      /* name */
1502
         TRUE,                  /* partial_inplace */
1503
         0xffffffff,            /* src_mask */
1504
         0xffffffff,            /* dst_mask */
1505
         FALSE),                /* pcrel_offset */
1506
 
1507
  HOWTO (R_ARM_TLS_LDM32,       /* type */
1508
         0,                     /* rightshift */
1509
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1510
         32,                    /* bitsize */
1511
         FALSE,                 /* pc_relative */
1512
         0,                     /* bitpos */
1513
         complain_overflow_bitfield,/* complain_on_overflow */
1514
         bfd_elf_generic_reloc, /* special_function */
1515
         "R_ARM_TLS_LDM32",     /* name */
1516
         TRUE,                  /* partial_inplace */
1517
         0xffffffff,            /* src_mask */
1518
         0xffffffff,            /* dst_mask */
1519
         FALSE),                /* pcrel_offset */
1520
 
1521
  HOWTO (R_ARM_TLS_LDO32,       /* type */
1522
         0,                     /* rightshift */
1523
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1524
         32,                    /* bitsize */
1525
         FALSE,                 /* pc_relative */
1526
         0,                     /* bitpos */
1527
         complain_overflow_bitfield,/* complain_on_overflow */
1528
         bfd_elf_generic_reloc, /* special_function */
1529
         "R_ARM_TLS_LDO32",     /* name */
1530
         TRUE,                  /* partial_inplace */
1531
         0xffffffff,            /* src_mask */
1532
         0xffffffff,            /* dst_mask */
1533
         FALSE),                /* pcrel_offset */
1534
 
1535
  HOWTO (R_ARM_TLS_IE32,        /* type */
1536
         0,                     /* rightshift */
1537
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1538
         32,                    /* bitsize */
1539
         FALSE,                  /* pc_relative */
1540
         0,                     /* bitpos */
1541
         complain_overflow_bitfield,/* complain_on_overflow */
1542
         NULL,                  /* special_function */
1543
         "R_ARM_TLS_IE32",      /* name */
1544
         TRUE,                  /* partial_inplace */
1545
         0xffffffff,            /* src_mask */
1546
         0xffffffff,            /* dst_mask */
1547
         FALSE),                /* pcrel_offset */
1548
 
1549
  HOWTO (R_ARM_TLS_LE32,        /* type */
1550
         0,                     /* rightshift */
1551
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1552
         32,                    /* bitsize */
1553
         FALSE,                 /* pc_relative */
1554
         0,                     /* bitpos */
1555
         complain_overflow_bitfield,/* complain_on_overflow */
1556
         bfd_elf_generic_reloc, /* special_function */
1557
         "R_ARM_TLS_LE32",      /* name */
1558
         TRUE,                  /* partial_inplace */
1559
         0xffffffff,            /* src_mask */
1560
         0xffffffff,            /* dst_mask */
1561
         FALSE),                /* pcrel_offset */
1562
 
1563
  HOWTO (R_ARM_TLS_LDO12,       /* type */
1564
         0,                      /* rightshift */
1565
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1566
         12,                    /* bitsize */
1567
         FALSE,                 /* pc_relative */
1568
         0,                      /* bitpos */
1569
         complain_overflow_bitfield,/* complain_on_overflow */
1570
         bfd_elf_generic_reloc, /* special_function */
1571
         "R_ARM_TLS_LDO12",     /* name */
1572
         FALSE,                 /* partial_inplace */
1573
         0x00000fff,            /* src_mask */
1574
         0x00000fff,            /* dst_mask */
1575
         FALSE),                /* pcrel_offset */
1576
 
1577
  HOWTO (R_ARM_TLS_LE12,        /* type */
1578
         0,                      /* rightshift */
1579
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1580
         12,                    /* bitsize */
1581
         FALSE,                 /* pc_relative */
1582
         0,                      /* bitpos */
1583
         complain_overflow_bitfield,/* complain_on_overflow */
1584
         bfd_elf_generic_reloc, /* special_function */
1585
         "R_ARM_TLS_LE12",      /* name */
1586
         FALSE,                 /* partial_inplace */
1587
         0x00000fff,            /* src_mask */
1588
         0x00000fff,            /* dst_mask */
1589
         FALSE),                /* pcrel_offset */
1590
 
1591
  HOWTO (R_ARM_TLS_IE12GP,      /* type */
1592
         0,                      /* rightshift */
1593
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1594
         12,                    /* bitsize */
1595
         FALSE,                 /* pc_relative */
1596
         0,                      /* bitpos */
1597
         complain_overflow_bitfield,/* complain_on_overflow */
1598
         bfd_elf_generic_reloc, /* special_function */
1599
         "R_ARM_TLS_IE12GP",    /* name */
1600
         FALSE,                 /* partial_inplace */
1601
         0x00000fff,            /* src_mask */
1602
         0x00000fff,            /* dst_mask */
1603
         FALSE),                /* pcrel_offset */
1604
};
1605
 
1606
/* 112-127 private relocations
1607
   128 R_ARM_ME_TOO, obsolete
1608
   129-255 unallocated in AAELF.
1609
 
1610
   249-255 extended, currently unused, relocations:  */
1611
 
1612
static reloc_howto_type elf32_arm_howto_table_2[4] =
1613
{
1614
  HOWTO (R_ARM_RREL32,          /* type */
1615
         0,                      /* rightshift */
1616
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1617
         0,                      /* bitsize */
1618
         FALSE,                 /* pc_relative */
1619
         0,                      /* bitpos */
1620
         complain_overflow_dont,/* complain_on_overflow */
1621
         bfd_elf_generic_reloc, /* special_function */
1622
         "R_ARM_RREL32",        /* name */
1623
         FALSE,                 /* partial_inplace */
1624
         0,                      /* src_mask */
1625
         0,                      /* dst_mask */
1626
         FALSE),                /* pcrel_offset */
1627
 
1628
  HOWTO (R_ARM_RABS32,          /* type */
1629
         0,                      /* rightshift */
1630
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1631
         0,                      /* bitsize */
1632
         FALSE,                 /* pc_relative */
1633
         0,                      /* bitpos */
1634
         complain_overflow_dont,/* complain_on_overflow */
1635
         bfd_elf_generic_reloc, /* special_function */
1636
         "R_ARM_RABS32",        /* name */
1637
         FALSE,                 /* partial_inplace */
1638
         0,                      /* src_mask */
1639
         0,                      /* dst_mask */
1640
         FALSE),                /* pcrel_offset */
1641
 
1642
  HOWTO (R_ARM_RPC24,           /* type */
1643
         0,                      /* rightshift */
1644
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1645
         0,                      /* bitsize */
1646
         FALSE,                 /* pc_relative */
1647
         0,                      /* bitpos */
1648
         complain_overflow_dont,/* complain_on_overflow */
1649
         bfd_elf_generic_reloc, /* special_function */
1650
         "R_ARM_RPC24",         /* name */
1651
         FALSE,                 /* partial_inplace */
1652
         0,                      /* src_mask */
1653
         0,                      /* dst_mask */
1654
         FALSE),                /* pcrel_offset */
1655
 
1656
  HOWTO (R_ARM_RBASE,           /* type */
1657
         0,                      /* rightshift */
1658
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1659
         0,                      /* bitsize */
1660
         FALSE,                 /* pc_relative */
1661
         0,                      /* bitpos */
1662
         complain_overflow_dont,/* complain_on_overflow */
1663
         bfd_elf_generic_reloc, /* special_function */
1664
         "R_ARM_RBASE",         /* name */
1665
         FALSE,                 /* partial_inplace */
1666
         0,                      /* src_mask */
1667
         0,                      /* dst_mask */
1668
         FALSE)                 /* pcrel_offset */
1669
};
1670
 
1671
static reloc_howto_type *
1672
elf32_arm_howto_from_type (unsigned int r_type)
1673
{
1674
  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1675
    return &elf32_arm_howto_table_1[r_type];
1676
 
1677
  if (r_type >= R_ARM_RREL32
1678
      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1679
    return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1680
 
1681
  return NULL;
1682
}
1683
 
1684
static void
1685
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1686
                         Elf_Internal_Rela * elf_reloc)
1687
{
1688
  unsigned int r_type;
1689
 
1690
  r_type = ELF32_R_TYPE (elf_reloc->r_info);
1691
  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1692
}
1693
 
1694
struct elf32_arm_reloc_map
1695
  {
1696
    bfd_reloc_code_real_type  bfd_reloc_val;
1697
    unsigned char             elf_reloc_val;
1698
  };
1699
 
1700
/* All entries in this list must also be present in elf32_arm_howto_table.  */
1701
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1702
  {
1703
    {BFD_RELOC_NONE,                 R_ARM_NONE},
1704
    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1705
    {BFD_RELOC_ARM_PCREL_CALL,       R_ARM_CALL},
1706
    {BFD_RELOC_ARM_PCREL_JUMP,       R_ARM_JUMP24},
1707
    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1708
    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1709
    {BFD_RELOC_32,                   R_ARM_ABS32},
1710
    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1711
    {BFD_RELOC_8,                    R_ARM_ABS8},
1712
    {BFD_RELOC_16,                   R_ARM_ABS16},
1713
    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1714
    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1715
    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1716
    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1717
    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1718
    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1719
    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1720
    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1721
    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1722
    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1723
    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1724
    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1725
    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1726
    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1727
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1728
    {BFD_RELOC_ARM_TARGET1,          R_ARM_TARGET1},
1729
    {BFD_RELOC_ARM_ROSEGREL32,       R_ARM_ROSEGREL32},
1730
    {BFD_RELOC_ARM_SBREL32,          R_ARM_SBREL32},
1731
    {BFD_RELOC_ARM_PREL31,           R_ARM_PREL31},
1732
    {BFD_RELOC_ARM_TARGET2,          R_ARM_TARGET2},
1733
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1734
    {BFD_RELOC_ARM_TLS_GD32,         R_ARM_TLS_GD32},
1735
    {BFD_RELOC_ARM_TLS_LDO32,        R_ARM_TLS_LDO32},
1736
    {BFD_RELOC_ARM_TLS_LDM32,        R_ARM_TLS_LDM32},
1737
    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1738
    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1739
    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1740
    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1741
    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1742
    {BFD_RELOC_VTABLE_INHERIT,       R_ARM_GNU_VTINHERIT},
1743
    {BFD_RELOC_VTABLE_ENTRY,         R_ARM_GNU_VTENTRY},
1744
    {BFD_RELOC_ARM_MOVW,             R_ARM_MOVW_ABS_NC},
1745
    {BFD_RELOC_ARM_MOVT,             R_ARM_MOVT_ABS},
1746
    {BFD_RELOC_ARM_MOVW_PCREL,       R_ARM_MOVW_PREL_NC},
1747
    {BFD_RELOC_ARM_MOVT_PCREL,       R_ARM_MOVT_PREL},
1748
    {BFD_RELOC_ARM_THUMB_MOVW,       R_ARM_THM_MOVW_ABS_NC},
1749
    {BFD_RELOC_ARM_THUMB_MOVT,       R_ARM_THM_MOVT_ABS},
1750
    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1751
    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1752
    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1753
    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1754
    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1755
    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1756
    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1757
    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1758
    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1759
    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1760
    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1761
    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1762
    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1763
    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1764
    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1765
    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1766
    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1767
    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1768
    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1769
    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1770
    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1771
    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1772
    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1773
    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1774
    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1775
    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1776
    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1777
    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1778
    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1779
    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1780
    {BFD_RELOC_ARM_V4BX,             R_ARM_V4BX}
1781
  };
1782
 
1783
static reloc_howto_type *
1784
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1785
                             bfd_reloc_code_real_type code)
1786
{
1787
  unsigned int i;
1788
 
1789
  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1790
    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1791
      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1792
 
1793
  return NULL;
1794
}
1795
 
1796
static reloc_howto_type *
1797
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1798
                             const char *r_name)
1799
{
1800
  unsigned int i;
1801
 
1802
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1803
    if (elf32_arm_howto_table_1[i].name != NULL
1804
        && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1805
      return &elf32_arm_howto_table_1[i];
1806
 
1807
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1808
    if (elf32_arm_howto_table_2[i].name != NULL
1809
        && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1810
      return &elf32_arm_howto_table_2[i];
1811
 
1812
  return NULL;
1813
}
1814
 
1815
/* Support for core dump NOTE sections.  */
1816
 
1817
static bfd_boolean
1818
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1819
{
1820
  int offset;
1821
  size_t size;
1822
 
1823
  switch (note->descsz)
1824
    {
1825
      default:
1826
        return FALSE;
1827
 
1828
      case 148:         /* Linux/ARM 32-bit.  */
1829
        /* pr_cursig */
1830
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1831
 
1832
        /* pr_pid */
1833
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1834
 
1835
        /* pr_reg */
1836
        offset = 72;
1837
        size = 72;
1838
 
1839
        break;
1840
    }
1841
 
1842
  /* Make a ".reg/999" section.  */
1843
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1844
                                          size, note->descpos + offset);
1845
}
1846
 
1847
static bfd_boolean
1848
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1849
{
1850
  switch (note->descsz)
1851
    {
1852
      default:
1853
        return FALSE;
1854
 
1855
      case 124:         /* Linux/ARM elf_prpsinfo.  */
1856
        elf_tdata (abfd)->core_program
1857
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1858
        elf_tdata (abfd)->core_command
1859
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1860
    }
1861
 
1862
  /* Note that for some reason, a spurious space is tacked
1863
     onto the end of the args in some (at least one anyway)
1864
     implementations, so strip it off if it exists.  */
1865
  {
1866
    char *command = elf_tdata (abfd)->core_command;
1867
    int n = strlen (command);
1868
 
1869
    if (0 < n && command[n - 1] == ' ')
1870
      command[n - 1] = '\0';
1871
  }
1872
 
1873
  return TRUE;
1874
}
1875
 
1876
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
1877
#define TARGET_LITTLE_NAME              "elf32-littlearm"
1878
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
1879
#define TARGET_BIG_NAME                 "elf32-bigarm"
1880
 
1881
#define elf_backend_grok_prstatus       elf32_arm_nabi_grok_prstatus
1882
#define elf_backend_grok_psinfo         elf32_arm_nabi_grok_psinfo
1883
 
1884
typedef unsigned long int insn32;
1885
typedef unsigned short int insn16;
1886
 
1887
/* In lieu of proper flags, assume all EABIv4 or later objects are
1888
   interworkable.  */
1889
#define INTERWORK_FLAG(abfd)  \
1890
  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891
  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892
  || ((abfd)->flags & BFD_LINKER_CREATED))
1893
 
1894
/* The linker script knows the section names for placement.
1895
   The entry_names are used to do simple name mangling on the stubs.
1896
   Given a function name, and its type, the stub can be found. The
1897
   name can be changed. The only requirement is the %s be present.  */
1898
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
1900
 
1901
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
1903
 
1904
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905
#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
1906
 
1907
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908
#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
1909
 
1910
#define STUB_ENTRY_NAME   "__%s_veneer"
1911
 
1912
/* The name of the dynamic interpreter.  This is put in the .interp
1913
   section.  */
1914
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
1915
 
1916
#ifdef FOUR_WORD_PLT
1917
 
1918
/* The first entry in a procedure linkage table looks like
1919
   this.  It is set up so that any shared library function that is
1920
   called before the relocation has been set up calls the dynamic
1921
   linker first.  */
1922
static const bfd_vma elf32_arm_plt0_entry [] =
1923
  {
1924
    0xe52de004,         /* str   lr, [sp, #-4]! */
1925
    0xe59fe010,         /* ldr   lr, [pc, #16]  */
1926
    0xe08fe00e,         /* add   lr, pc, lr     */
1927
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
1928
  };
1929
 
1930
/* Subsequent entries in a procedure linkage table look like
1931
   this.  */
1932
static const bfd_vma elf32_arm_plt_entry [] =
1933
  {
1934
    0xe28fc600,         /* add   ip, pc, #NN    */
1935
    0xe28cca00,         /* add   ip, ip, #NN    */
1936
    0xe5bcf000,         /* ldr   pc, [ip, #NN]! */
1937
    0x00000000,         /* unused               */
1938
  };
1939
 
1940
#else
1941
 
1942
/* The first entry in a procedure linkage table looks like
1943
   this.  It is set up so that any shared library function that is
1944
   called before the relocation has been set up calls the dynamic
1945
   linker first.  */
1946
static const bfd_vma elf32_arm_plt0_entry [] =
1947
  {
1948
    0xe52de004,         /* str   lr, [sp, #-4]! */
1949
    0xe59fe004,         /* ldr   lr, [pc, #4]   */
1950
    0xe08fe00e,         /* add   lr, pc, lr     */
1951
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
1952
    0x00000000,         /* &GOT[0] - .          */
1953
  };
1954
 
1955
/* Subsequent entries in a procedure linkage table look like
1956
   this.  */
1957
static const bfd_vma elf32_arm_plt_entry [] =
1958
  {
1959
    0xe28fc600,         /* add   ip, pc, #0xNN00000 */
1960
    0xe28cca00,         /* add   ip, ip, #0xNN000   */
1961
    0xe5bcf000,         /* ldr   pc, [ip, #0xNNN]!  */
1962
  };
1963
 
1964
#endif
1965
 
1966
/* The format of the first entry in the procedure linkage table
1967
   for a VxWorks executable.  */
1968
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1969
  {
1970
    0xe52dc008,         /* str    ip,[sp,#-8]!                  */
1971
    0xe59fc000,         /* ldr    ip,[pc]                       */
1972
    0xe59cf008,         /* ldr    pc,[ip,#8]                    */
1973
    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_         */
1974
  };
1975
 
1976
/* The format of subsequent entries in a VxWorks executable.  */
1977
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1978
  {
1979
    0xe59fc000,         /* ldr    ip,[pc]                       */
1980
    0xe59cf000,         /* ldr    pc,[ip]                       */
1981
    0x00000000,         /* .long  @got                          */
1982
    0xe59fc000,         /* ldr    ip,[pc]                       */
1983
    0xea000000,         /* b      _PLT                          */
1984
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
1985
  };
1986
 
1987
/* The format of entries in a VxWorks shared library.  */
1988
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1989
  {
1990
    0xe59fc000,         /* ldr    ip,[pc]                       */
1991
    0xe79cf009,         /* ldr    pc,[ip,r9]                    */
1992
    0x00000000,         /* .long  @got                          */
1993
    0xe59fc000,         /* ldr    ip,[pc]                       */
1994
    0xe599f008,         /* ldr    pc,[r9,#8]                    */
1995
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
1996
  };
1997
 
1998
/* An initial stub used if the PLT entry is referenced from Thumb code.  */
1999
#define PLT_THUMB_STUB_SIZE 4
2000
static const bfd_vma elf32_arm_plt_thumb_stub [] =
2001
  {
2002
    0x4778,             /* bx pc */
2003
    0x46c0              /* nop   */
2004
  };
2005
 
2006
/* The entries in a PLT when using a DLL-based target with multiple
2007
   address spaces.  */
2008
static const bfd_vma elf32_arm_symbian_plt_entry [] =
2009
  {
2010
    0xe51ff004,         /* ldr   pc, [pc, #-4] */
2011
    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2012
  };
2013
 
2014
#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2015
#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2016
#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2017
#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2018
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2020
 
2021
enum stub_insn_type
2022
  {
2023
    THUMB16_TYPE = 1,
2024
    THUMB32_TYPE,
2025
    ARM_TYPE,
2026
    DATA_TYPE
2027
  };
2028
 
2029
#define THUMB16_INSN(X)         {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030
/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2031
   is inserted in arm_build_one_stub().  */
2032
#define THUMB16_BCOND_INSN(X)   {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2033
#define THUMB32_INSN(X)         {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2034
#define THUMB32_B_INSN(X, Z)    {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2035
#define ARM_INSN(X)             {(X), ARM_TYPE, R_ARM_NONE, 0}
2036
#define ARM_REL_INSN(X, Z)      {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2037
#define DATA_WORD(X,Y,Z)        {(X), DATA_TYPE, (Y), (Z)}
2038
 
2039
typedef struct
2040
{
2041
  bfd_vma data;
2042
  enum stub_insn_type type;
2043
  unsigned int r_type;
2044
  int reloc_addend;
2045
}  insn_sequence;
2046
 
2047
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2048
   to reach the stub if necessary.  */
2049
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2050
  {
2051
    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
2052
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2053
  };
2054
 
2055
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2056
   available.  */
2057
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2058
  {
2059
    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
2060
    ARM_INSN(0xe12fff1c),            /* bx    ip */
2061
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2062
  };
2063
 
2064
/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2065
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2066
  {
2067
    THUMB16_INSN(0xb401),             /* push {r0} */
2068
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2069
    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
2070
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2071
    THUMB16_INSN(0x4760),             /* bx   ip */
2072
    THUMB16_INSN(0xbf00),             /* nop */
2073
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2074
  };
2075
 
2076
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2077
   allowed.  */
2078
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2079
  {
2080
    THUMB16_INSN(0x4778),             /* bx   pc */
2081
    THUMB16_INSN(0x46c0),             /* nop */
2082
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2083
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2084
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2085
  };
2086
 
2087
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2088
   available.  */
2089
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2090
  {
2091
    THUMB16_INSN(0x4778),             /* bx   pc */
2092
    THUMB16_INSN(0x46c0),             /* nop   */
2093
    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
2094
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2095
  };
2096
 
2097
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2098
   one, when the destination is close enough.  */
2099
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2100
  {
2101
    THUMB16_INSN(0x4778),             /* bx   pc */
2102
    THUMB16_INSN(0x46c0),             /* nop   */
2103
    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
2104
  };
2105
 
2106
/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2107
   blx to reach the stub if necessary.  */
2108
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2109
  {
2110
    ARM_INSN(0xe59fc000),             /* ldr   r12, [pc] */
2111
    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
2112
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2113
  };
2114
 
2115
/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2116
   blx to reach the stub if necessary.  We can not add into pc;
2117
   it is not guaranteed to mode switch (different in ARMv6 and
2118
   ARMv7).  */
2119
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2120
  {
2121
    ARM_INSN(0xe59fc004),             /* ldr   r12, [pc, #4] */
2122
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2123
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2124
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2125
  };
2126
 
2127
/* V4T ARM -> ARM long branch stub, PIC.  */
2128
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2129
  {
2130
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2131
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2132
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2133
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2134
  };
2135
 
2136
/* V4T Thumb -> ARM long branch stub, PIC.  */
2137
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2138
  {
2139
    THUMB16_INSN(0x4778),             /* bx   pc */
2140
    THUMB16_INSN(0x46c0),             /* nop  */
2141
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2142
    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
2143
    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2144
  };
2145
 
2146
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2147
   architectures.  */
2148
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2149
  {
2150
    THUMB16_INSN(0xb401),             /* push {r0} */
2151
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2152
    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
2153
    THUMB16_INSN(0x4484),             /* add  ip, r0 */
2154
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2155
    THUMB16_INSN(0x4760),             /* bx   ip */
2156
    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2157
  };
2158
 
2159
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2160
   allowed.  */
2161
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2162
  {
2163
    THUMB16_INSN(0x4778),             /* bx   pc */
2164
    THUMB16_INSN(0x46c0),             /* nop */
2165
    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
2166
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2167
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2168
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2169
  };
2170
 
2171
/* Cortex-A8 erratum-workaround stubs.  */
2172
 
2173
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2174
   can't use a conditional branch to reach this stub).  */
2175
 
2176
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2177
  {
2178
    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
2179
    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2180
    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2181
  };
2182
 
2183
/* Stub used for b.w and bl.w instructions.  */
2184
 
2185
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2186
  {
2187
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2188
  };
2189
 
2190
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2191
  {
2192
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2193
  };
2194
 
2195
/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2196
   instruction (which switches to ARM mode) to point to this stub.  Jump to the
2197
   real destination using an ARM-mode branch.  */
2198
 
2199
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2200
  {
2201
    ARM_REL_INSN(0xea000000, -8)        /* b original_branch_dest.  */
2202
  };
2203
 
2204
/* Section name for stubs is the associated section name plus this
2205
   string.  */
2206
#define STUB_SUFFIX ".stub"
2207
 
2208
/* One entry per long/short branch stub defined above.  */
2209
#define DEF_STUBS \
2210
  DEF_STUB(long_branch_any_any) \
2211
  DEF_STUB(long_branch_v4t_arm_thumb) \
2212
  DEF_STUB(long_branch_thumb_only) \
2213
  DEF_STUB(long_branch_v4t_thumb_thumb) \
2214
  DEF_STUB(long_branch_v4t_thumb_arm) \
2215
  DEF_STUB(short_branch_v4t_thumb_arm) \
2216
  DEF_STUB(long_branch_any_arm_pic) \
2217
  DEF_STUB(long_branch_any_thumb_pic) \
2218
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2219
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2220
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2221
  DEF_STUB(long_branch_thumb_only_pic) \
2222
  DEF_STUB(a8_veneer_b_cond) \
2223
  DEF_STUB(a8_veneer_b) \
2224
  DEF_STUB(a8_veneer_bl) \
2225
  DEF_STUB(a8_veneer_blx)
2226
 
2227
#define DEF_STUB(x) arm_stub_##x,
2228
enum elf32_arm_stub_type {
2229
  arm_stub_none,
2230
  DEF_STUBS
2231
  /* Note the first a8_veneer type */
2232
  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2233
};
2234
#undef DEF_STUB
2235
 
2236
typedef struct
2237
{
2238
  const insn_sequence* template_sequence;
2239
  int template_size;
2240
} stub_def;
2241
 
2242
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2243
static const stub_def stub_definitions[] = {
2244
  {NULL, 0},
2245
  DEF_STUBS
2246
};
2247
 
2248
struct elf32_arm_stub_hash_entry
2249
{
2250
  /* Base hash table entry structure.  */
2251
  struct bfd_hash_entry root;
2252
 
2253
  /* The stub section.  */
2254
  asection *stub_sec;
2255
 
2256
  /* Offset within stub_sec of the beginning of this stub.  */
2257
  bfd_vma stub_offset;
2258
 
2259
  /* Given the symbol's value and its section we can determine its final
2260
     value when building the stubs (so the stub knows where to jump).  */
2261
  bfd_vma target_value;
2262
  asection *target_section;
2263
 
2264
  /* Offset to apply to relocation referencing target_value.  */
2265
  bfd_vma target_addend;
2266
 
2267
  /* The instruction which caused this stub to be generated (only valid for
2268
     Cortex-A8 erratum workaround stubs at present).  */
2269
  unsigned long orig_insn;
2270
 
2271
  /* The stub type.  */
2272
  enum elf32_arm_stub_type stub_type;
2273
  /* Its encoding size in bytes.  */
2274
  int stub_size;
2275
  /* Its template.  */
2276
  const insn_sequence *stub_template;
2277
  /* The size of the template (number of entries).  */
2278
  int stub_template_size;
2279
 
2280
  /* The symbol table entry, if any, that this was derived from.  */
2281
  struct elf32_arm_link_hash_entry *h;
2282
 
2283
  /* Destination symbol type (STT_ARM_TFUNC, ...) */
2284
  unsigned char st_type;
2285
 
2286
  /* Where this stub is being called from, or, in the case of combined
2287
     stub sections, the first input section in the group.  */
2288
  asection *id_sec;
2289
 
2290
  /* The name for the local symbol at the start of this stub.  The
2291
     stub name in the hash table has to be unique; this does not, so
2292
     it can be friendlier.  */
2293
  char *output_name;
2294
};
2295
 
2296
/* Used to build a map of a section.  This is required for mixed-endian
2297
   code/data.  */
2298
 
2299
typedef struct elf32_elf_section_map
2300
{
2301
  bfd_vma vma;
2302
  char type;
2303
}
2304
elf32_arm_section_map;
2305
 
2306
/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2307
 
2308
typedef enum
2309
{
2310
  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2311
  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2312
  VFP11_ERRATUM_ARM_VENEER,
2313
  VFP11_ERRATUM_THUMB_VENEER
2314
}
2315
elf32_vfp11_erratum_type;
2316
 
2317
typedef struct elf32_vfp11_erratum_list
2318
{
2319
  struct elf32_vfp11_erratum_list *next;
2320
  bfd_vma vma;
2321
  union
2322
  {
2323
    struct
2324
    {
2325
      struct elf32_vfp11_erratum_list *veneer;
2326
      unsigned int vfp_insn;
2327
    } b;
2328
    struct
2329
    {
2330
      struct elf32_vfp11_erratum_list *branch;
2331
      unsigned int id;
2332
    } v;
2333
  } u;
2334
  elf32_vfp11_erratum_type type;
2335
}
2336
elf32_vfp11_erratum_list;
2337
 
2338
typedef enum
2339
{
2340
  DELETE_EXIDX_ENTRY,
2341
  INSERT_EXIDX_CANTUNWIND_AT_END
2342
}
2343
arm_unwind_edit_type;
2344
 
2345
/* A (sorted) list of edits to apply to an unwind table.  */
2346
typedef struct arm_unwind_table_edit
2347
{
2348
  arm_unwind_edit_type type;
2349
  /* Note: we sometimes want to insert an unwind entry corresponding to a
2350
     section different from the one we're currently writing out, so record the
2351
     (text) section this edit relates to here.  */
2352
  asection *linked_section;
2353
  unsigned int index;
2354
  struct arm_unwind_table_edit *next;
2355
}
2356
arm_unwind_table_edit;
2357
 
2358
typedef struct _arm_elf_section_data
2359
{
2360
  /* Information about mapping symbols.  */
2361
  struct bfd_elf_section_data elf;
2362
  unsigned int mapcount;
2363
  unsigned int mapsize;
2364
  elf32_arm_section_map *map;
2365
  /* Information about CPU errata.  */
2366
  unsigned int erratumcount;
2367
  elf32_vfp11_erratum_list *erratumlist;
2368
  /* Information about unwind tables.  */
2369
  union
2370
  {
2371
    /* Unwind info attached to a text section.  */
2372
    struct
2373
    {
2374
      asection *arm_exidx_sec;
2375
    } text;
2376
 
2377
    /* Unwind info attached to an .ARM.exidx section.  */
2378
    struct
2379
    {
2380
      arm_unwind_table_edit *unwind_edit_list;
2381
      arm_unwind_table_edit *unwind_edit_tail;
2382
    } exidx;
2383
  } u;
2384
}
2385
_arm_elf_section_data;
2386
 
2387
#define elf32_arm_section_data(sec) \
2388
  ((_arm_elf_section_data *) elf_section_data (sec))
2389
 
2390
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2391
   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2392
   so may be created multiple times: we use an array of these entries whilst
2393
   relaxing which we can refresh easily, then create stubs for each potentially
2394
   erratum-triggering instruction once we've settled on a solution.  */
2395
 
2396
struct a8_erratum_fix {
2397
  bfd *input_bfd;
2398
  asection *section;
2399
  bfd_vma offset;
2400
  bfd_vma addend;
2401
  unsigned long orig_insn;
2402
  char *stub_name;
2403
  enum elf32_arm_stub_type stub_type;
2404
};
2405
 
2406
/* A table of relocs applied to branches which might trigger Cortex-A8
2407
   erratum.  */
2408
 
2409
struct a8_erratum_reloc {
2410
  bfd_vma from;
2411
  bfd_vma destination;
2412
  unsigned int r_type;
2413
  unsigned char st_type;
2414
  const char *sym_name;
2415
  bfd_boolean non_a8_stub;
2416
};
2417
 
2418
/* The size of the thread control block.  */
2419
#define TCB_SIZE        8
2420
 
2421
struct elf_arm_obj_tdata
2422
{
2423
  struct elf_obj_tdata root;
2424
 
2425
  /* tls_type for each local got entry.  */
2426
  char *local_got_tls_type;
2427
 
2428
  /* Zero to warn when linking objects with incompatible enum sizes.  */
2429
  int no_enum_size_warning;
2430
 
2431
  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2432
  int no_wchar_size_warning;
2433
};
2434
 
2435
#define elf_arm_tdata(bfd) \
2436
  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2437
 
2438
#define elf32_arm_local_got_tls_type(bfd) \
2439
  (elf_arm_tdata (bfd)->local_got_tls_type)
2440
 
2441
#define is_arm_elf(bfd) \
2442
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2443
   && elf_tdata (bfd) != NULL \
2444
   && elf_object_id (bfd) == ARM_ELF_TDATA)
2445
 
2446
static bfd_boolean
2447
elf32_arm_mkobject (bfd *abfd)
2448
{
2449
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2450
                                  ARM_ELF_TDATA);
2451
}
2452
 
2453
/* The ARM linker needs to keep track of the number of relocs that it
2454
   decides to copy in check_relocs for each symbol.  This is so that
2455
   it can discard PC relative relocs if it doesn't need them when
2456
   linking with -Bsymbolic.  We store the information in a field
2457
   extending the regular ELF linker hash table.  */
2458
 
2459
/* This structure keeps track of the number of relocs we have copied
2460
   for a given symbol.  */
2461
struct elf32_arm_relocs_copied
2462
  {
2463
    /* Next section.  */
2464
    struct elf32_arm_relocs_copied * next;
2465
    /* A section in dynobj.  */
2466
    asection * section;
2467
    /* Number of relocs copied in this section.  */
2468
    bfd_size_type count;
2469
    /* Number of PC-relative relocs copied in this section.  */
2470
    bfd_size_type pc_count;
2471
  };
2472
 
2473
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2474
 
2475
/* Arm ELF linker hash entry.  */
2476
struct elf32_arm_link_hash_entry
2477
  {
2478
    struct elf_link_hash_entry root;
2479
 
2480
    /* Number of PC relative relocs copied for this symbol.  */
2481
    struct elf32_arm_relocs_copied * relocs_copied;
2482
 
2483
    /* We reference count Thumb references to a PLT entry separately,
2484
       so that we can emit the Thumb trampoline only if needed.  */
2485
    bfd_signed_vma plt_thumb_refcount;
2486
 
2487
    /* Some references from Thumb code may be eliminated by BL->BLX
2488
       conversion, so record them separately.  */
2489
    bfd_signed_vma plt_maybe_thumb_refcount;
2490
 
2491
    /* Since PLT entries have variable size if the Thumb prologue is
2492
       used, we need to record the index into .got.plt instead of
2493
       recomputing it from the PLT offset.  */
2494
    bfd_signed_vma plt_got_offset;
2495
 
2496
#define GOT_UNKNOWN     0
2497
#define GOT_NORMAL      1
2498
#define GOT_TLS_GD      2
2499
#define GOT_TLS_IE      4
2500
    unsigned char tls_type;
2501
 
2502
    /* The symbol marking the real symbol location for exported thumb
2503
       symbols with Arm stubs.  */
2504
    struct elf_link_hash_entry *export_glue;
2505
 
2506
   /* A pointer to the most recently used stub hash entry against this
2507
     symbol.  */
2508
    struct elf32_arm_stub_hash_entry *stub_cache;
2509
  };
2510
 
2511
/* Traverse an arm ELF linker hash table.  */
2512
#define elf32_arm_link_hash_traverse(table, func, info)                 \
2513
  (elf_link_hash_traverse                                               \
2514
   (&(table)->root,                                                     \
2515
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
2516
    (info)))
2517
 
2518
/* Get the ARM elf linker hash table from a link_info structure.  */
2519
#define elf32_arm_hash_table(info) \
2520
  ((struct elf32_arm_link_hash_table *) ((info)->hash))
2521
 
2522
#define arm_stub_hash_lookup(table, string, create, copy) \
2523
  ((struct elf32_arm_stub_hash_entry *) \
2524
   bfd_hash_lookup ((table), (string), (create), (copy)))
2525
 
2526
/* ARM ELF linker hash table.  */
2527
struct elf32_arm_link_hash_table
2528
{
2529
  /* The main hash table.  */
2530
  struct elf_link_hash_table root;
2531
 
2532
  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2533
  bfd_size_type thumb_glue_size;
2534
 
2535
  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2536
  bfd_size_type arm_glue_size;
2537
 
2538
  /* The size in bytes of section containing the ARMv4 BX veneers.  */
2539
  bfd_size_type bx_glue_size;
2540
 
2541
  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2542
     veneer has been populated.  */
2543
  bfd_vma bx_glue_offset[15];
2544
 
2545
  /* The size in bytes of the section containing glue for VFP11 erratum
2546
     veneers.  */
2547
  bfd_size_type vfp11_erratum_glue_size;
2548
 
2549
  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2550
     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2551
     elf32_arm_write_section().  */
2552
  struct a8_erratum_fix *a8_erratum_fixes;
2553
  unsigned int num_a8_erratum_fixes;
2554
 
2555
  /* An arbitrary input BFD chosen to hold the glue sections.  */
2556
  bfd * bfd_of_glue_owner;
2557
 
2558
  /* Nonzero to output a BE8 image.  */
2559
  int byteswap_code;
2560
 
2561
  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2562
     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2563
  int target1_is_rel;
2564
 
2565
  /* The relocation to use for R_ARM_TARGET2 relocations.  */
2566
  int target2_reloc;
2567
 
2568
  /* 0 = Ignore R_ARM_V4BX.
2569
     1 = Convert BX to MOV PC.
2570
     2 = Generate v4 interworing stubs.  */
2571
  int fix_v4bx;
2572
 
2573
  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2574
  int fix_cortex_a8;
2575
 
2576
  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2577
  int use_blx;
2578
 
2579
  /* What sort of code sequences we should look for which may trigger the
2580
     VFP11 denorm erratum.  */
2581
  bfd_arm_vfp11_fix vfp11_fix;
2582
 
2583
  /* Global counter for the number of fixes we have emitted.  */
2584
  int num_vfp11_fixes;
2585
 
2586
  /* Nonzero to force PIC branch veneers.  */
2587
  int pic_veneer;
2588
 
2589
  /* The number of bytes in the initial entry in the PLT.  */
2590
  bfd_size_type plt_header_size;
2591
 
2592
  /* The number of bytes in the subsequent PLT etries.  */
2593
  bfd_size_type plt_entry_size;
2594
 
2595
  /* True if the target system is VxWorks.  */
2596
  int vxworks_p;
2597
 
2598
  /* True if the target system is Symbian OS.  */
2599
  int symbian_p;
2600
 
2601
  /* True if the target uses REL relocations.  */
2602
  int use_rel;
2603
 
2604
  /* Short-cuts to get to dynamic linker sections.  */
2605
  asection *sgot;
2606
  asection *sgotplt;
2607
  asection *srelgot;
2608
  asection *splt;
2609
  asection *srelplt;
2610
  asection *sdynbss;
2611
  asection *srelbss;
2612
 
2613
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2614
  asection *srelplt2;
2615
 
2616
  /* Data for R_ARM_TLS_LDM32 relocations.  */
2617
  union
2618
  {
2619
    bfd_signed_vma refcount;
2620
    bfd_vma offset;
2621
  } tls_ldm_got;
2622
 
2623
  /* Small local sym cache.  */
2624
  struct sym_cache sym_cache;
2625
 
2626
  /* For convenience in allocate_dynrelocs.  */
2627
  bfd * obfd;
2628
 
2629
  /* The stub hash table.  */
2630
  struct bfd_hash_table stub_hash_table;
2631
 
2632
  /* Linker stub bfd.  */
2633
  bfd *stub_bfd;
2634
 
2635
  /* Linker call-backs.  */
2636
  asection * (*add_stub_section) (const char *, asection *);
2637
  void (*layout_sections_again) (void);
2638
 
2639
  /* Array to keep track of which stub sections have been created, and
2640
     information on stub grouping.  */
2641
  struct map_stub
2642
  {
2643
    /* This is the section to which stubs in the group will be
2644
       attached.  */
2645
    asection *link_sec;
2646
    /* The stub section.  */
2647
    asection *stub_sec;
2648
  } *stub_group;
2649
 
2650
  /* Assorted information used by elf32_arm_size_stubs.  */
2651
  unsigned int bfd_count;
2652
  int top_index;
2653
  asection **input_list;
2654
};
2655
 
2656
/* Create an entry in an ARM ELF linker hash table.  */
2657
 
2658
static struct bfd_hash_entry *
2659
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2660
                             struct bfd_hash_table * table,
2661
                             const char * string)
2662
{
2663
  struct elf32_arm_link_hash_entry * ret =
2664
    (struct elf32_arm_link_hash_entry *) entry;
2665
 
2666
  /* Allocate the structure if it has not already been allocated by a
2667
     subclass.  */
2668
  if (ret == NULL)
2669
    ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2670
  if (ret == NULL)
2671
    return (struct bfd_hash_entry *) ret;
2672
 
2673
  /* Call the allocation method of the superclass.  */
2674
  ret = ((struct elf32_arm_link_hash_entry *)
2675
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2676
                                     table, string));
2677
  if (ret != NULL)
2678
    {
2679
      ret->relocs_copied = NULL;
2680
      ret->tls_type = GOT_UNKNOWN;
2681
      ret->plt_thumb_refcount = 0;
2682
      ret->plt_maybe_thumb_refcount = 0;
2683
      ret->plt_got_offset = -1;
2684
      ret->export_glue = NULL;
2685
 
2686
      ret->stub_cache = NULL;
2687
    }
2688
 
2689
  return (struct bfd_hash_entry *) ret;
2690
}
2691
 
2692
/* Initialize an entry in the stub hash table.  */
2693
 
2694
static struct bfd_hash_entry *
2695
stub_hash_newfunc (struct bfd_hash_entry *entry,
2696
                   struct bfd_hash_table *table,
2697
                   const char *string)
2698
{
2699
  /* Allocate the structure if it has not already been allocated by a
2700
     subclass.  */
2701
  if (entry == NULL)
2702
    {
2703
      entry = bfd_hash_allocate (table,
2704
                                 sizeof (struct elf32_arm_stub_hash_entry));
2705
      if (entry == NULL)
2706
        return entry;
2707
    }
2708
 
2709
  /* Call the allocation method of the superclass.  */
2710
  entry = bfd_hash_newfunc (entry, table, string);
2711
  if (entry != NULL)
2712
    {
2713
      struct elf32_arm_stub_hash_entry *eh;
2714
 
2715
      /* Initialize the local fields.  */
2716
      eh = (struct elf32_arm_stub_hash_entry *) entry;
2717
      eh->stub_sec = NULL;
2718
      eh->stub_offset = 0;
2719
      eh->target_value = 0;
2720
      eh->target_section = NULL;
2721
      eh->target_addend = 0;
2722
      eh->orig_insn = 0;
2723
      eh->stub_type = arm_stub_none;
2724
      eh->stub_size = 0;
2725
      eh->stub_template = NULL;
2726
      eh->stub_template_size = 0;
2727
      eh->h = NULL;
2728
      eh->id_sec = NULL;
2729
      eh->output_name = NULL;
2730
    }
2731
 
2732
  return entry;
2733
}
2734
 
2735
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2736
   shortcuts to them in our hash table.  */
2737
 
2738
static bfd_boolean
2739
create_got_section (bfd *dynobj, struct bfd_link_info *info)
2740
{
2741
  struct elf32_arm_link_hash_table *htab;
2742
 
2743
  htab = elf32_arm_hash_table (info);
2744
  /* BPABI objects never have a GOT, or associated sections.  */
2745
  if (htab->symbian_p)
2746
    return TRUE;
2747
 
2748
  if (! _bfd_elf_create_got_section (dynobj, info))
2749
    return FALSE;
2750
 
2751
  htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2752
  htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2753
  if (!htab->sgot || !htab->sgotplt)
2754
    abort ();
2755
 
2756
  htab->srelgot = bfd_get_section_by_name (dynobj,
2757
                                           RELOC_SECTION (htab, ".got"));
2758
  if (htab->srelgot == NULL)
2759
    return FALSE;
2760
  return TRUE;
2761
}
2762
 
2763
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2764
   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2765
   hash table.  */
2766
 
2767
static bfd_boolean
2768
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2769
{
2770
  struct elf32_arm_link_hash_table *htab;
2771
 
2772
  htab = elf32_arm_hash_table (info);
2773
  if (!htab->sgot && !create_got_section (dynobj, info))
2774
    return FALSE;
2775
 
2776
  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2777
    return FALSE;
2778
 
2779
  htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2780
  htab->srelplt = bfd_get_section_by_name (dynobj,
2781
                                           RELOC_SECTION (htab, ".plt"));
2782
  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2783
  if (!info->shared)
2784
    htab->srelbss = bfd_get_section_by_name (dynobj,
2785
                                             RELOC_SECTION (htab, ".bss"));
2786
 
2787
  if (htab->vxworks_p)
2788
    {
2789
      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2790
        return FALSE;
2791
 
2792
      if (info->shared)
2793
        {
2794
          htab->plt_header_size = 0;
2795
          htab->plt_entry_size
2796
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2797
        }
2798
      else
2799
        {
2800
          htab->plt_header_size
2801
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2802
          htab->plt_entry_size
2803
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2804
        }
2805
    }
2806
 
2807
  if (!htab->splt
2808
      || !htab->srelplt
2809
      || !htab->sdynbss
2810
      || (!info->shared && !htab->srelbss))
2811
    abort ();
2812
 
2813
  return TRUE;
2814
}
2815
 
2816
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
2817
 
2818
static void
2819
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2820
                                struct elf_link_hash_entry *dir,
2821
                                struct elf_link_hash_entry *ind)
2822
{
2823
  struct elf32_arm_link_hash_entry *edir, *eind;
2824
 
2825
  edir = (struct elf32_arm_link_hash_entry *) dir;
2826
  eind = (struct elf32_arm_link_hash_entry *) ind;
2827
 
2828
  if (eind->relocs_copied != NULL)
2829
    {
2830
      if (edir->relocs_copied != NULL)
2831
        {
2832
          struct elf32_arm_relocs_copied **pp;
2833
          struct elf32_arm_relocs_copied *p;
2834
 
2835
          /* Add reloc counts against the indirect sym to the direct sym
2836
             list.  Merge any entries against the same section.  */
2837
          for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2838
            {
2839
              struct elf32_arm_relocs_copied *q;
2840
 
2841
              for (q = edir->relocs_copied; q != NULL; q = q->next)
2842
                if (q->section == p->section)
2843
                  {
2844
                    q->pc_count += p->pc_count;
2845
                    q->count += p->count;
2846
                    *pp = p->next;
2847
                    break;
2848
                  }
2849
              if (q == NULL)
2850
                pp = &p->next;
2851
            }
2852
          *pp = edir->relocs_copied;
2853
        }
2854
 
2855
      edir->relocs_copied = eind->relocs_copied;
2856
      eind->relocs_copied = NULL;
2857
    }
2858
 
2859
  if (ind->root.type == bfd_link_hash_indirect)
2860
    {
2861
      /* Copy over PLT info.  */
2862
      edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2863
      eind->plt_thumb_refcount = 0;
2864
      edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2865
      eind->plt_maybe_thumb_refcount = 0;
2866
 
2867
      if (dir->got.refcount <= 0)
2868
        {
2869
          edir->tls_type = eind->tls_type;
2870
          eind->tls_type = GOT_UNKNOWN;
2871
        }
2872
    }
2873
 
2874
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2875
}
2876
 
2877
/* Create an ARM elf linker hash table.  */
2878
 
2879
static struct bfd_link_hash_table *
2880
elf32_arm_link_hash_table_create (bfd *abfd)
2881
{
2882
  struct elf32_arm_link_hash_table *ret;
2883
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2884
 
2885
  ret = bfd_malloc (amt);
2886
  if (ret == NULL)
2887
    return NULL;
2888
 
2889
  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2890
                                      elf32_arm_link_hash_newfunc,
2891
                                      sizeof (struct elf32_arm_link_hash_entry)))
2892
    {
2893
      free (ret);
2894
      return NULL;
2895
    }
2896
 
2897
  ret->sgot = NULL;
2898
  ret->sgotplt = NULL;
2899
  ret->srelgot = NULL;
2900
  ret->splt = NULL;
2901
  ret->srelplt = NULL;
2902
  ret->sdynbss = NULL;
2903
  ret->srelbss = NULL;
2904
  ret->srelplt2 = NULL;
2905
  ret->thumb_glue_size = 0;
2906
  ret->arm_glue_size = 0;
2907
  ret->bx_glue_size = 0;
2908
  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2909
  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2910
  ret->vfp11_erratum_glue_size = 0;
2911
  ret->num_vfp11_fixes = 0;
2912
  ret->fix_cortex_a8 = 0;
2913
  ret->bfd_of_glue_owner = NULL;
2914
  ret->byteswap_code = 0;
2915
  ret->target1_is_rel = 0;
2916
  ret->target2_reloc = R_ARM_NONE;
2917
#ifdef FOUR_WORD_PLT
2918
  ret->plt_header_size = 16;
2919
  ret->plt_entry_size = 16;
2920
#else
2921
  ret->plt_header_size = 20;
2922
  ret->plt_entry_size = 12;
2923
#endif
2924
  ret->fix_v4bx = 0;
2925
  ret->use_blx = 0;
2926
  ret->vxworks_p = 0;
2927
  ret->symbian_p = 0;
2928
  ret->use_rel = 1;
2929
  ret->sym_cache.abfd = NULL;
2930
  ret->obfd = abfd;
2931
  ret->tls_ldm_got.refcount = 0;
2932
  ret->stub_bfd = NULL;
2933
  ret->add_stub_section = NULL;
2934
  ret->layout_sections_again = NULL;
2935
  ret->stub_group = NULL;
2936
  ret->bfd_count = 0;
2937
  ret->top_index = 0;
2938
  ret->input_list = NULL;
2939
 
2940
  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2941
                            sizeof (struct elf32_arm_stub_hash_entry)))
2942
    {
2943
      free (ret);
2944
      return NULL;
2945
    }
2946
 
2947
  return &ret->root.root;
2948
}
2949
 
2950
/* Free the derived linker hash table.  */
2951
 
2952
static void
2953
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2954
{
2955
  struct elf32_arm_link_hash_table *ret
2956
    = (struct elf32_arm_link_hash_table *) hash;
2957
 
2958
  bfd_hash_table_free (&ret->stub_hash_table);
2959
  _bfd_generic_link_hash_table_free (hash);
2960
}
2961
 
2962
/* Determine if we're dealing with a Thumb only architecture.  */
2963
 
2964
static bfd_boolean
2965
using_thumb_only (struct elf32_arm_link_hash_table *globals)
2966
{
2967
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2968
                                       Tag_CPU_arch);
2969
  int profile;
2970
 
2971
  if (arch != TAG_CPU_ARCH_V7)
2972
    return FALSE;
2973
 
2974
  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2975
                                      Tag_CPU_arch_profile);
2976
 
2977
  return profile == 'M';
2978
}
2979
 
2980
/* Determine if we're dealing with a Thumb-2 object.  */
2981
 
2982
static bfd_boolean
2983
using_thumb2 (struct elf32_arm_link_hash_table *globals)
2984
{
2985
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2986
                                       Tag_CPU_arch);
2987
  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2988
}
2989
 
2990
/* Determine what kind of NOPs are available.  */
2991
 
2992
static bfd_boolean
2993
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
2994
{
2995
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2996
                                             Tag_CPU_arch);
2997
  return arch == TAG_CPU_ARCH_V6T2
2998
         || arch == TAG_CPU_ARCH_V6K
2999
         || arch == TAG_CPU_ARCH_V7;
3000
}
3001
 
3002
static bfd_boolean
3003
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3004
{
3005
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3006
                                             Tag_CPU_arch);
3007
  return arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7;
3008
}
3009
 
3010
static bfd_boolean
3011
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3012
{
3013
  switch (stub_type)
3014
    {
3015
    case arm_stub_long_branch_thumb_only:
3016
    case arm_stub_long_branch_v4t_thumb_arm:
3017
    case arm_stub_short_branch_v4t_thumb_arm:
3018
    case arm_stub_long_branch_v4t_thumb_arm_pic:
3019
    case arm_stub_long_branch_thumb_only_pic:
3020
      return TRUE;
3021
    case arm_stub_none:
3022
      BFD_FAIL ();
3023
      return FALSE;
3024
      break;
3025
    default:
3026
      return FALSE;
3027
    }
3028
}
3029
 
3030
/* Determine the type of stub needed, if any, for a call.  */
3031
 
3032
static enum elf32_arm_stub_type
3033
arm_type_of_stub (struct bfd_link_info *info,
3034
                  asection *input_sec,
3035
                  const Elf_Internal_Rela *rel,
3036
                  unsigned char st_type,
3037
                  struct elf32_arm_link_hash_entry *hash,
3038
                  bfd_vma destination,
3039
                  asection *sym_sec,
3040
                  bfd *input_bfd,
3041
                  const char *name)
3042
{
3043
  bfd_vma location;
3044
  bfd_signed_vma branch_offset;
3045
  unsigned int r_type;
3046
  struct elf32_arm_link_hash_table * globals;
3047
  int thumb2;
3048
  int thumb_only;
3049
  enum elf32_arm_stub_type stub_type = arm_stub_none;
3050
  int use_plt = 0;
3051
 
3052
  /* We don't know the actual type of destination in case it is of
3053
     type STT_SECTION: give up.  */
3054
  if (st_type == STT_SECTION)
3055
    return stub_type;
3056
 
3057
  globals = elf32_arm_hash_table (info);
3058
 
3059
  thumb_only = using_thumb_only (globals);
3060
 
3061
  thumb2 = using_thumb2 (globals);
3062
 
3063
  /* Determine where the call point is.  */
3064
  location = (input_sec->output_offset
3065
              + input_sec->output_section->vma
3066
              + rel->r_offset);
3067
 
3068
  branch_offset = (bfd_signed_vma)(destination - location);
3069
 
3070
  r_type = ELF32_R_TYPE (rel->r_info);
3071
 
3072
  /* Keep a simpler condition, for the sake of clarity.  */
3073
  if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
3074
    {
3075
      use_plt = 1;
3076
      /* Note when dealing with PLT entries: the main PLT stub is in
3077
         ARM mode, so if the branch is in Thumb mode, another
3078
         Thumb->ARM stub will be inserted later just before the ARM
3079
         PLT stub. We don't take this extra distance into account
3080
         here, because if a long branch stub is needed, we'll add a
3081
         Thumb->Arm one and branch directly to the ARM PLT entry
3082
         because it avoids spreading offset corrections in several
3083
         places.  */
3084
    }
3085
 
3086
  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3087
    {
3088
      /* Handle cases where:
3089
         - this call goes too far (different Thumb/Thumb2 max
3090
           distance)
3091
         - it's a Thumb->Arm call and blx is not available, or it's a
3092
           Thumb->Arm branch (not bl). A stub is needed in this case,
3093
           but only if this call is not through a PLT entry. Indeed,
3094
           PLT stubs handle mode switching already.
3095
      */
3096
      if ((!thumb2
3097
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3098
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3099
          || (thumb2
3100
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3101
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3102
          || ((st_type != STT_ARM_TFUNC)
3103
              && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3104
                  || (r_type == R_ARM_THM_JUMP24))
3105
              && !use_plt))
3106
        {
3107
          if (st_type == STT_ARM_TFUNC)
3108
            {
3109
              /* Thumb to thumb.  */
3110
              if (!thumb_only)
3111
                {
3112
                  stub_type = (info->shared | globals->pic_veneer)
3113
                    /* PIC stubs.  */
3114
                    ? ((globals->use_blx
3115
                        && (r_type ==R_ARM_THM_CALL))
3116
                       /* V5T and above. Stub starts with ARM code, so
3117
                          we must be able to switch mode before
3118
                          reaching it, which is only possible for 'bl'
3119
                          (ie R_ARM_THM_CALL relocation).  */
3120
                       ? arm_stub_long_branch_any_thumb_pic
3121
                       /* On V4T, use Thumb code only.  */
3122
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3123
 
3124
                    /* non-PIC stubs.  */
3125
                    : ((globals->use_blx
3126
                        && (r_type ==R_ARM_THM_CALL))
3127
                       /* V5T and above.  */
3128
                       ? arm_stub_long_branch_any_any
3129
                       /* V4T.  */
3130
                       : arm_stub_long_branch_v4t_thumb_thumb);
3131
                }
3132
              else
3133
                {
3134
                  stub_type = (info->shared | globals->pic_veneer)
3135
                    /* PIC stub.  */
3136
                    ? arm_stub_long_branch_thumb_only_pic
3137
                    /* non-PIC stub.  */
3138
                    : arm_stub_long_branch_thumb_only;
3139
                }
3140
            }
3141
          else
3142
            {
3143
              /* Thumb to arm.  */
3144
              if (sym_sec != NULL
3145
                  && sym_sec->owner != NULL
3146
                  && !INTERWORK_FLAG (sym_sec->owner))
3147
                {
3148
                  (*_bfd_error_handler)
3149
                    (_("%B(%s): warning: interworking not enabled.\n"
3150
                       "  first occurrence: %B: Thumb call to ARM"),
3151
                     sym_sec->owner, input_bfd, name);
3152
                }
3153
 
3154
              stub_type = (info->shared | globals->pic_veneer)
3155
                /* PIC stubs.  */
3156
                ? ((globals->use_blx
3157
                    && (r_type ==R_ARM_THM_CALL))
3158
                   /* V5T and above.  */
3159
                   ? arm_stub_long_branch_any_arm_pic
3160
                   /* V4T PIC stub.  */
3161
                   : arm_stub_long_branch_v4t_thumb_arm_pic)
3162
 
3163
                /* non-PIC stubs.  */
3164
                : ((globals->use_blx
3165
                    && (r_type ==R_ARM_THM_CALL))
3166
                   /* V5T and above.  */
3167
                   ? arm_stub_long_branch_any_any
3168
                   /* V4T.  */
3169
                   : arm_stub_long_branch_v4t_thumb_arm);
3170
 
3171
              /* Handle v4t short branches.  */
3172
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3173
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3174
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3175
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
3176
            }
3177
        }
3178
    }
3179
  else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
3180
    {
3181
      if (st_type == STT_ARM_TFUNC)
3182
        {
3183
          /* Arm to thumb.  */
3184
 
3185
          if (sym_sec != NULL
3186
              && sym_sec->owner != NULL
3187
              && !INTERWORK_FLAG (sym_sec->owner))
3188
            {
3189
              (*_bfd_error_handler)
3190
                (_("%B(%s): warning: interworking not enabled.\n"
3191
                   "  first occurrence: %B: ARM call to Thumb"),
3192
                 sym_sec->owner, input_bfd, name);
3193
            }
3194
 
3195
          /* We have an extra 2-bytes reach because of
3196
             the mode change (bit 24 (H) of BLX encoding).  */
3197
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3198
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3199
              || ((r_type == R_ARM_CALL) && !globals->use_blx)
3200
              || (r_type == R_ARM_JUMP24)
3201
              || (r_type == R_ARM_PLT32))
3202
            {
3203
              stub_type = (info->shared | globals->pic_veneer)
3204
                /* PIC stubs.  */
3205
                ? ((globals->use_blx)
3206
                   /* V5T and above.  */
3207
                   ? arm_stub_long_branch_any_thumb_pic
3208
                   /* V4T stub.  */
3209
                   : arm_stub_long_branch_v4t_arm_thumb_pic)
3210
 
3211
                /* non-PIC stubs.  */
3212
                : ((globals->use_blx)
3213
                   /* V5T and above.  */
3214
                   ? arm_stub_long_branch_any_any
3215
                   /* V4T.  */
3216
                   : arm_stub_long_branch_v4t_arm_thumb);
3217
            }
3218
        }
3219
      else
3220
        {
3221
          /* Arm to arm.  */
3222
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3223
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3224
            {
3225
              stub_type = (info->shared | globals->pic_veneer)
3226
                /* PIC stubs.  */
3227
                ? arm_stub_long_branch_any_arm_pic
3228
                /* non-PIC stubs.  */
3229
                : arm_stub_long_branch_any_any;
3230
            }
3231
        }
3232
    }
3233
 
3234
  return stub_type;
3235
}
3236
 
3237
/* Build a name for an entry in the stub hash table.  */
3238
 
3239
static char *
3240
elf32_arm_stub_name (const asection *input_section,
3241
                     const asection *sym_sec,
3242
                     const struct elf32_arm_link_hash_entry *hash,
3243
                     const Elf_Internal_Rela *rel)
3244
{
3245
  char *stub_name;
3246
  bfd_size_type len;
3247
 
3248
  if (hash)
3249
    {
3250
      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3251
      stub_name = bfd_malloc (len);
3252
      if (stub_name != NULL)
3253
        sprintf (stub_name, "%08x_%s+%x",
3254
                 input_section->id & 0xffffffff,
3255
                 hash->root.root.root.string,
3256
                 (int) rel->r_addend & 0xffffffff);
3257
    }
3258
  else
3259
    {
3260
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3261
      stub_name = bfd_malloc (len);
3262
      if (stub_name != NULL)
3263
        sprintf (stub_name, "%08x_%x:%x+%x",
3264
                 input_section->id & 0xffffffff,
3265
                 sym_sec->id & 0xffffffff,
3266
                 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3267
                 (int) rel->r_addend & 0xffffffff);
3268
    }
3269
 
3270
  return stub_name;
3271
}
3272
 
3273
/* Look up an entry in the stub hash.  Stub entries are cached because
3274
   creating the stub name takes a bit of time.  */
3275
 
3276
static struct elf32_arm_stub_hash_entry *
3277
elf32_arm_get_stub_entry (const asection *input_section,
3278
                          const asection *sym_sec,
3279
                          struct elf_link_hash_entry *hash,
3280
                          const Elf_Internal_Rela *rel,
3281
                          struct elf32_arm_link_hash_table *htab)
3282
{
3283
  struct elf32_arm_stub_hash_entry *stub_entry;
3284
  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3285
  const asection *id_sec;
3286
 
3287
  if ((input_section->flags & SEC_CODE) == 0)
3288
    return NULL;
3289
 
3290
  /* If this input section is part of a group of sections sharing one
3291
     stub section, then use the id of the first section in the group.
3292
     Stub names need to include a section id, as there may well be
3293
     more than one stub used to reach say, printf, and we need to
3294
     distinguish between them.  */
3295
  id_sec = htab->stub_group[input_section->id].link_sec;
3296
 
3297
  if (h != NULL && h->stub_cache != NULL
3298
      && h->stub_cache->h == h
3299
      && h->stub_cache->id_sec == id_sec)
3300
    {
3301
      stub_entry = h->stub_cache;
3302
    }
3303
  else
3304
    {
3305
      char *stub_name;
3306
 
3307
      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3308
      if (stub_name == NULL)
3309
        return NULL;
3310
 
3311
      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3312
                                        stub_name, FALSE, FALSE);
3313
      if (h != NULL)
3314
        h->stub_cache = stub_entry;
3315
 
3316
      free (stub_name);
3317
    }
3318
 
3319
  return stub_entry;
3320
}
3321
 
3322
/* Find or create a stub section.  Returns a pointer to the stub section, and
3323
   the section to which the stub section will be attached (in *LINK_SEC_P).
3324
   LINK_SEC_P may be NULL.  */
3325
 
3326
static asection *
3327
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3328
                                   struct elf32_arm_link_hash_table *htab)
3329
{
3330
  asection *link_sec;
3331
  asection *stub_sec;
3332
 
3333
  link_sec = htab->stub_group[section->id].link_sec;
3334
  stub_sec = htab->stub_group[section->id].stub_sec;
3335
  if (stub_sec == NULL)
3336
    {
3337
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
3338
      if (stub_sec == NULL)
3339
        {
3340
          size_t namelen;
3341
          bfd_size_type len;
3342
          char *s_name;
3343
 
3344
          namelen = strlen (link_sec->name);
3345
          len = namelen + sizeof (STUB_SUFFIX);
3346
          s_name = bfd_alloc (htab->stub_bfd, len);
3347
          if (s_name == NULL)
3348
            return NULL;
3349
 
3350
          memcpy (s_name, link_sec->name, namelen);
3351
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3352
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3353
          if (stub_sec == NULL)
3354
            return NULL;
3355
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
3356
        }
3357
      htab->stub_group[section->id].stub_sec = stub_sec;
3358
    }
3359
 
3360
  if (link_sec_p)
3361
    *link_sec_p = link_sec;
3362
 
3363
  return stub_sec;
3364
}
3365
 
3366
/* Add a new stub entry to the stub hash.  Not all fields of the new
3367
   stub entry are initialised.  */
3368
 
3369
static struct elf32_arm_stub_hash_entry *
3370
elf32_arm_add_stub (const char *stub_name,
3371
                    asection *section,
3372
                    struct elf32_arm_link_hash_table *htab)
3373
{
3374
  asection *link_sec;
3375
  asection *stub_sec;
3376
  struct elf32_arm_stub_hash_entry *stub_entry;
3377
 
3378
  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3379
  if (stub_sec == NULL)
3380
    return NULL;
3381
 
3382
  /* Enter this entry into the linker stub hash table.  */
3383
  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3384
                                     TRUE, FALSE);
3385
  if (stub_entry == NULL)
3386
    {
3387
      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3388
                             section->owner,
3389
                             stub_name);
3390
      return NULL;
3391
    }
3392
 
3393
  stub_entry->stub_sec = stub_sec;
3394
  stub_entry->stub_offset = 0;
3395
  stub_entry->id_sec = link_sec;
3396
 
3397
  return stub_entry;
3398
}
3399
 
3400
/* Store an Arm insn into an output section not processed by
3401
   elf32_arm_write_section.  */
3402
 
3403
static void
3404
put_arm_insn (struct elf32_arm_link_hash_table * htab,
3405
              bfd * output_bfd, bfd_vma val, void * ptr)
3406
{
3407
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3408
    bfd_putl32 (val, ptr);
3409
  else
3410
    bfd_putb32 (val, ptr);
3411
}
3412
 
3413
/* Store a 16-bit Thumb insn into an output section not processed by
3414
   elf32_arm_write_section.  */
3415
 
3416
static void
3417
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3418
                bfd * output_bfd, bfd_vma val, void * ptr)
3419
{
3420
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3421
    bfd_putl16 (val, ptr);
3422
  else
3423
    bfd_putb16 (val, ptr);
3424
}
3425
 
3426
static bfd_reloc_status_type elf32_arm_final_link_relocate
3427
  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3428
   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3429
   const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3430
 
3431
static bfd_boolean
3432
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3433
                    void * in_arg)
3434
{
3435
#define MAXRELOCS 2
3436
  struct elf32_arm_stub_hash_entry *stub_entry;
3437
  struct bfd_link_info *info;
3438
  struct elf32_arm_link_hash_table *htab;
3439
  asection *stub_sec;
3440
  bfd *stub_bfd;
3441
  bfd_vma stub_addr;
3442
  bfd_byte *loc;
3443
  bfd_vma sym_value;
3444
  int template_size;
3445
  int size;
3446
  const insn_sequence *template_sequence;
3447
  int i;
3448
  struct elf32_arm_link_hash_table * globals;
3449
  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3450
  int stub_reloc_offset[MAXRELOCS] = {0, 0};
3451
  int nrelocs = 0;
3452
 
3453
  /* Massage our args to the form they really have.  */
3454
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3455
  info = (struct bfd_link_info *) in_arg;
3456
 
3457
  globals = elf32_arm_hash_table (info);
3458
 
3459
  htab = elf32_arm_hash_table (info);
3460
  stub_sec = stub_entry->stub_sec;
3461
 
3462
  if ((htab->fix_cortex_a8 < 0)
3463
      != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3464
    /* We have to do the a8 fixes last, as they are less aligned than
3465
       the other veneers.  */
3466
    return TRUE;
3467
 
3468
  /* Make a note of the offset within the stubs for this entry.  */
3469
  stub_entry->stub_offset = stub_sec->size;
3470
  loc = stub_sec->contents + stub_entry->stub_offset;
3471
 
3472
  stub_bfd = stub_sec->owner;
3473
 
3474
  /* This is the address of the start of the stub.  */
3475
  stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3476
    + stub_entry->stub_offset;
3477
 
3478
  /* This is the address of the stub destination.  */
3479
  sym_value = (stub_entry->target_value
3480
               + stub_entry->target_section->output_offset
3481
               + stub_entry->target_section->output_section->vma);
3482
 
3483
  template_sequence = stub_entry->stub_template;
3484
  template_size = stub_entry->stub_template_size;
3485
 
3486
  size = 0;
3487
  for (i = 0; i < template_size; i++)
3488
    {
3489
      switch (template_sequence[i].type)
3490
        {
3491
        case THUMB16_TYPE:
3492
          {
3493
            bfd_vma data = (bfd_vma) template_sequence[i].data;
3494
            if (template_sequence[i].reloc_addend != 0)
3495
              {
3496
                /* We've borrowed the reloc_addend field to mean we should
3497
                   insert a condition code into this (Thumb-1 branch)
3498
                   instruction.  See THUMB16_BCOND_INSN.  */
3499
                BFD_ASSERT ((data & 0xff00) == 0xd000);
3500
                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3501
              }
3502
            put_thumb_insn (globals, stub_bfd, data, loc + size);
3503
            size += 2;
3504
          }
3505
          break;
3506
 
3507
        case THUMB32_TYPE:
3508
          put_thumb_insn (globals, stub_bfd,
3509
                          (template_sequence[i].data >> 16) & 0xffff,
3510
                          loc + size);
3511
          put_thumb_insn (globals, stub_bfd, template_sequence[i].data & 0xffff,
3512
                          loc + size + 2);
3513
          if (template_sequence[i].r_type != R_ARM_NONE)
3514
            {
3515
              stub_reloc_idx[nrelocs] = i;
3516
              stub_reloc_offset[nrelocs++] = size;
3517
            }
3518
          size += 4;
3519
          break;
3520
 
3521
        case ARM_TYPE:
3522
          put_arm_insn (globals, stub_bfd, template_sequence[i].data,
3523
                        loc + size);
3524
          /* Handle cases where the target is encoded within the
3525
             instruction.  */
3526
          if (template_sequence[i].r_type == R_ARM_JUMP24)
3527
            {
3528
              stub_reloc_idx[nrelocs] = i;
3529
              stub_reloc_offset[nrelocs++] = size;
3530
            }
3531
          size += 4;
3532
          break;
3533
 
3534
        case DATA_TYPE:
3535
          bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
3536
          stub_reloc_idx[nrelocs] = i;
3537
          stub_reloc_offset[nrelocs++] = size;
3538
          size += 4;
3539
          break;
3540
 
3541
        default:
3542
          BFD_FAIL ();
3543
          return FALSE;
3544
        }
3545
    }
3546
 
3547
  stub_sec->size += size;
3548
 
3549
  /* Stub size has already been computed in arm_size_one_stub. Check
3550
     consistency.  */
3551
  BFD_ASSERT (size == stub_entry->stub_size);
3552
 
3553
  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
3554
  if (stub_entry->st_type == STT_ARM_TFUNC)
3555
    sym_value |= 1;
3556
 
3557
  /* Assume there is at least one and at most MAXRELOCS entries to relocate
3558
     in each stub.  */
3559
  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3560
 
3561
  for (i = 0; i < nrelocs; i++)
3562
    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3563
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3564
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3565
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3566
      {
3567
        Elf_Internal_Rela rel;
3568
        bfd_boolean unresolved_reloc;
3569
        char *error_message;
3570
        int sym_flags
3571
          = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3572
            ? STT_ARM_TFUNC : 0;
3573
        bfd_vma points_to = sym_value + stub_entry->target_addend;
3574
 
3575
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3576
        rel.r_info = ELF32_R_INFO (0,
3577
                                   template_sequence[stub_reloc_idx[i]].r_type);
3578
        rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
3579
 
3580
        if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3581
          /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3582
             template should refer back to the instruction after the original
3583
             branch.  */
3584
          points_to = sym_value;
3585
 
3586
        /* There may be unintended consequences if this is not true.  */
3587
        BFD_ASSERT (stub_entry->h == NULL);
3588
 
3589
        /* Note: _bfd_final_link_relocate doesn't handle these relocations
3590
           properly.  We should probably use this function unconditionally,
3591
           rather than only for certain relocations listed in the enclosing
3592
           conditional, for the sake of consistency.  */
3593
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3594
            (template_sequence[stub_reloc_idx[i]].r_type),
3595
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3596
          points_to, info, stub_entry->target_section, "", sym_flags,
3597
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3598
          &error_message);
3599
      }
3600
    else
3601
      {
3602
        _bfd_final_link_relocate (elf32_arm_howto_from_type
3603
            (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, stub_sec,
3604
          stub_sec->contents, stub_entry->stub_offset + stub_reloc_offset[i],
3605
          sym_value + stub_entry->target_addend,
3606
          template_sequence[stub_reloc_idx[i]].reloc_addend);
3607
      }
3608
 
3609
  return TRUE;
3610
#undef MAXRELOCS
3611
}
3612
 
3613
/* Calculate the template, template size and instruction size for a stub.
3614
   Return value is the instruction size.  */
3615
 
3616
static unsigned int
3617
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3618
                             const insn_sequence **stub_template,
3619
                             int *stub_template_size)
3620
{
3621
  const insn_sequence *template_sequence = NULL;
3622
  int template_size = 0, i;
3623
  unsigned int size;
3624
 
3625
  template_sequence = stub_definitions[stub_type].template_sequence;
3626
  template_size = stub_definitions[stub_type].template_size;
3627
 
3628
  size = 0;
3629
  for (i = 0; i < template_size; i++)
3630
    {
3631
      switch (template_sequence[i].type)
3632
        {
3633
        case THUMB16_TYPE:
3634
          size += 2;
3635
          break;
3636
 
3637
        case ARM_TYPE:
3638
        case THUMB32_TYPE:
3639
        case DATA_TYPE:
3640
          size += 4;
3641
          break;
3642
 
3643
        default:
3644
          BFD_FAIL ();
3645
          return FALSE;
3646
        }
3647
    }
3648
 
3649
  if (stub_template)
3650
    *stub_template = template_sequence;
3651
 
3652
  if (stub_template_size)
3653
    *stub_template_size = template_size;
3654
 
3655
  return size;
3656
}
3657
 
3658
/* As above, but don't actually build the stub.  Just bump offset so
3659
   we know stub section sizes.  */
3660
 
3661
static bfd_boolean
3662
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3663
                   void * in_arg)
3664
{
3665
  struct elf32_arm_stub_hash_entry *stub_entry;
3666
  struct elf32_arm_link_hash_table *htab;
3667
  const insn_sequence *template_sequence;
3668
  int template_size, size;
3669
 
3670
  /* Massage our args to the form they really have.  */
3671
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3672
  htab = (struct elf32_arm_link_hash_table *) in_arg;
3673
 
3674
  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3675
             && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3676
 
3677
  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
3678
                                      &template_size);
3679
 
3680
  stub_entry->stub_size = size;
3681
  stub_entry->stub_template = template_sequence;
3682
  stub_entry->stub_template_size = template_size;
3683
 
3684
  size = (size + 7) & ~7;
3685
  stub_entry->stub_sec->size += size;
3686
 
3687
  return TRUE;
3688
}
3689
 
3690
/* External entry points for sizing and building linker stubs.  */
3691
 
3692
/* Set up various things so that we can make a list of input sections
3693
   for each output section included in the link.  Returns -1 on error,
3694
 
3695
 
3696
int
3697
elf32_arm_setup_section_lists (bfd *output_bfd,
3698
                               struct bfd_link_info *info)
3699
{
3700
  bfd *input_bfd;
3701
  unsigned int bfd_count;
3702
  int top_id, top_index;
3703
  asection *section;
3704
  asection **input_list, **list;
3705
  bfd_size_type amt;
3706
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3707
 
3708
  if (! is_elf_hash_table (htab))
3709
    return 0;
3710
 
3711
  /* Count the number of input BFDs and find the top input section id.  */
3712
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3713
       input_bfd != NULL;
3714
       input_bfd = input_bfd->link_next)
3715
    {
3716
      bfd_count += 1;
3717
      for (section = input_bfd->sections;
3718
           section != NULL;
3719
           section = section->next)
3720
        {
3721
          if (top_id < section->id)
3722
            top_id = section->id;
3723
        }
3724
    }
3725
  htab->bfd_count = bfd_count;
3726
 
3727
  amt = sizeof (struct map_stub) * (top_id + 1);
3728
  htab->stub_group = bfd_zmalloc (amt);
3729
  if (htab->stub_group == NULL)
3730
    return -1;
3731
 
3732
  /* We can't use output_bfd->section_count here to find the top output
3733
     section index as some sections may have been removed, and
3734
     _bfd_strip_section_from_output doesn't renumber the indices.  */
3735
  for (section = output_bfd->sections, top_index = 0;
3736
       section != NULL;
3737
       section = section->next)
3738
    {
3739
      if (top_index < section->index)
3740
        top_index = section->index;
3741
    }
3742
 
3743
  htab->top_index = top_index;
3744
  amt = sizeof (asection *) * (top_index + 1);
3745
  input_list = bfd_malloc (amt);
3746
  htab->input_list = input_list;
3747
  if (input_list == NULL)
3748
    return -1;
3749
 
3750
  /* For sections we aren't interested in, mark their entries with a
3751
     value we can check later.  */
3752
  list = input_list + top_index;
3753
  do
3754
    *list = bfd_abs_section_ptr;
3755
  while (list-- != input_list);
3756
 
3757
  for (section = output_bfd->sections;
3758
       section != NULL;
3759
       section = section->next)
3760
    {
3761
      if ((section->flags & SEC_CODE) != 0)
3762
        input_list[section->index] = NULL;
3763
    }
3764
 
3765
  return 1;
3766
}
3767
 
3768
/* The linker repeatedly calls this function for each input section,
3769
   in the order that input sections are linked into output sections.
3770
   Build lists of input sections to determine groupings between which
3771
   we may insert linker stubs.  */
3772
 
3773
void
3774
elf32_arm_next_input_section (struct bfd_link_info *info,
3775
                              asection *isec)
3776
{
3777
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3778
 
3779
  if (isec->output_section->index <= htab->top_index)
3780
    {
3781
      asection **list = htab->input_list + isec->output_section->index;
3782
 
3783
      if (*list != bfd_abs_section_ptr)
3784
        {
3785
          /* Steal the link_sec pointer for our list.  */
3786
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3787
          /* This happens to make the list in reverse order,
3788
             which we reverse later.  */
3789
          PREV_SEC (isec) = *list;
3790
          *list = isec;
3791
        }
3792
    }
3793
}
3794
 
3795
/* See whether we can group stub sections together.  Grouping stub
3796
   sections may result in fewer stubs.  More importantly, we need to
3797
   put all .init* and .fini* stubs at the end of the .init or
3798
   .fini output sections respectively, because glibc splits the
3799
   _init and _fini functions into multiple parts.  Putting a stub in
3800
   the middle of a function is not a good idea.  */
3801
 
3802
static void
3803
group_sections (struct elf32_arm_link_hash_table *htab,
3804
                bfd_size_type stub_group_size,
3805
                bfd_boolean stubs_always_after_branch)
3806
{
3807
  asection **list = htab->input_list;
3808
 
3809
  do
3810
    {
3811
      asection *tail = *list;
3812
      asection *head;
3813
 
3814
      if (tail == bfd_abs_section_ptr)
3815
        continue;
3816
 
3817
      /* Reverse the list: we must avoid placing stubs at the
3818
         beginning of the section because the beginning of the text
3819
         section may be required for an interrupt vector in bare metal
3820
         code.  */
3821
#define NEXT_SEC PREV_SEC
3822
      head = NULL;
3823
      while (tail != NULL)
3824
        {
3825
          /* Pop from tail.  */
3826
          asection *item = tail;
3827
          tail = PREV_SEC (item);
3828
 
3829
          /* Push on head.  */
3830
          NEXT_SEC (item) = head;
3831
          head = item;
3832
        }
3833
 
3834
      while (head != NULL)
3835
        {
3836
          asection *curr;
3837
          asection *next;
3838
          bfd_vma stub_group_start = head->output_offset;
3839
          bfd_vma end_of_next;
3840
 
3841
          curr = head;
3842
          while (NEXT_SEC (curr) != NULL)
3843
            {
3844
              next = NEXT_SEC (curr);
3845
              end_of_next = next->output_offset + next->size;
3846
              if (end_of_next - stub_group_start >= stub_group_size)
3847
                /* End of NEXT is too far from start, so stop.  */
3848
                break;
3849
              /* Add NEXT to the group.  */
3850
              curr = next;
3851
            }
3852
 
3853
          /* OK, the size from the start to the start of CURR is less
3854
             than stub_group_size and thus can be handled by one stub
3855
             section.  (Or the head section is itself larger than
3856
             stub_group_size, in which case we may be toast.)
3857
             We should really be keeping track of the total size of
3858
             stubs added here, as stubs contribute to the final output
3859
             section size.  */
3860
          do
3861
            {
3862
              next = NEXT_SEC (head);
3863
              /* Set up this stub group.  */
3864
              htab->stub_group[head->id].link_sec = curr;
3865
            }
3866
          while (head != curr && (head = next) != NULL);
3867
 
3868
          /* But wait, there's more!  Input sections up to stub_group_size
3869
             bytes after the stub section can be handled by it too.  */
3870
          if (!stubs_always_after_branch)
3871
            {
3872
              stub_group_start = curr->output_offset + curr->size;
3873
 
3874
              while (next != NULL)
3875
                {
3876
                  end_of_next = next->output_offset + next->size;
3877
                  if (end_of_next - stub_group_start >= stub_group_size)
3878
                    /* End of NEXT is too far from stubs, so stop.  */
3879
                    break;
3880
                  /* Add NEXT to the stub group.  */
3881
                  head = next;
3882
                  next = NEXT_SEC (head);
3883
                  htab->stub_group[head->id].link_sec = curr;
3884
                }
3885
            }
3886
          head = next;
3887
        }
3888
    }
3889
  while (list++ != htab->input_list + htab->top_index);
3890
 
3891
  free (htab->input_list);
3892
#undef PREV_SEC
3893
#undef NEXT_SEC
3894
}
3895
 
3896
/* Comparison function for sorting/searching relocations relating to Cortex-A8
3897
   erratum fix.  */
3898
 
3899
static int
3900
a8_reloc_compare (const void *a, const void *b)
3901
{
3902
  const struct a8_erratum_reloc *ra = a, *rb = b;
3903
 
3904
  if (ra->from < rb->from)
3905
    return -1;
3906
  else if (ra->from > rb->from)
3907
    return 1;
3908
  else
3909
    return 0;
3910
}
3911
 
3912
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3913
                                                    const char *, char **);
3914
 
3915
/* Helper function to scan code for sequences which might trigger the Cortex-A8
3916
   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
3917
   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
3918
   otherwise.  */
3919
 
3920
static bfd_boolean
3921
cortex_a8_erratum_scan (bfd *input_bfd,
3922
                        struct bfd_link_info *info,
3923
                        struct a8_erratum_fix **a8_fixes_p,
3924
                        unsigned int *num_a8_fixes_p,
3925
                        unsigned int *a8_fix_table_size_p,
3926
                        struct a8_erratum_reloc *a8_relocs,
3927
                        unsigned int num_a8_relocs,
3928
                        unsigned prev_num_a8_fixes,
3929
                        bfd_boolean *stub_changed_p)
3930
{
3931
  asection *section;
3932
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3933
  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3934
  unsigned int num_a8_fixes = *num_a8_fixes_p;
3935
  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3936
 
3937
  for (section = input_bfd->sections;
3938
       section != NULL;
3939
       section = section->next)
3940
    {
3941
      bfd_byte *contents = NULL;
3942
      struct _arm_elf_section_data *sec_data;
3943
      unsigned int span;
3944
      bfd_vma base_vma;
3945
 
3946
      if (elf_section_type (section) != SHT_PROGBITS
3947
          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3948
          || (section->flags & SEC_EXCLUDE) != 0
3949
          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3950
          || (section->output_section == bfd_abs_section_ptr))
3951
        continue;
3952
 
3953
      base_vma = section->output_section->vma + section->output_offset;
3954
 
3955
      if (elf_section_data (section)->this_hdr.contents != NULL)
3956
        contents = elf_section_data (section)->this_hdr.contents;
3957
      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3958
        return TRUE;
3959
 
3960
      sec_data = elf32_arm_section_data (section);
3961
 
3962
      for (span = 0; span < sec_data->mapcount; span++)
3963
        {
3964
          unsigned int span_start = sec_data->map[span].vma;
3965
          unsigned int span_end = (span == sec_data->mapcount - 1)
3966
            ? section->size : sec_data->map[span + 1].vma;
3967
          unsigned int i;
3968
          char span_type = sec_data->map[span].type;
3969
          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
3970
 
3971
          if (span_type != 't')
3972
            continue;
3973
 
3974
          /* Span is entirely within a single 4KB region: skip scanning.  */
3975
          if (((base_vma + span_start) & ~0xfff)
3976
              == ((base_vma + span_end) & ~0xfff))
3977
            continue;
3978
 
3979
          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3980
 
3981
               * The opcode is BLX.W, BL.W, B.W, Bcc.W
3982
               * The branch target is in the same 4KB region as the
3983
                 first half of the branch.
3984
               * The instruction before the branch is a 32-bit
3985
                 length non-branch instruction.  */
3986
          for (i = span_start; i < span_end;)
3987
            {
3988
              unsigned int insn = bfd_getl16 (&contents[i]);
3989
              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
3990
              bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
3991
 
3992
              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
3993
                insn_32bit = TRUE;
3994
 
3995
              if (insn_32bit)
3996
                {
3997
                  /* Load the rest of the insn (in manual-friendly order).  */
3998
                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
3999
 
4000
                  /* Encoding T4: B<c>.W.  */
4001
                  is_b = (insn & 0xf800d000) == 0xf0009000;
4002
                  /* Encoding T1: BL<c>.W.  */
4003
                  is_bl = (insn & 0xf800d000) == 0xf000d000;
4004
                  /* Encoding T2: BLX<c>.W.  */
4005
                  is_blx = (insn & 0xf800d000) == 0xf000c000;
4006
                  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4007
                  is_bcc = (insn & 0xf800d000) == 0xf0008000
4008
                           && (insn & 0x07f00000) != 0x03800000;
4009
                }
4010
 
4011
              is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4012
 
4013
              if (((base_vma + i) & 0xfff) == 0xffe
4014
                  && insn_32bit
4015
                  && is_32bit_branch
4016
                  && last_was_32bit
4017
                  && ! last_was_branch)
4018
                {
4019
                  bfd_signed_vma offset;
4020
                  bfd_boolean force_target_arm = FALSE;
4021
                  bfd_boolean force_target_thumb = FALSE;
4022
                  bfd_vma target;
4023
                  enum elf32_arm_stub_type stub_type = arm_stub_none;
4024
                  struct a8_erratum_reloc key, *found;
4025
 
4026
                  key.from = base_vma + i;
4027
                  found = bsearch (&key, a8_relocs, num_a8_relocs,
4028
                                   sizeof (struct a8_erratum_reloc),
4029
                                   &a8_reloc_compare);
4030
 
4031
                  if (found)
4032
                    {
4033
                      char *error_message = NULL;
4034
                      struct elf_link_hash_entry *entry;
4035
 
4036
                      /* We don't care about the error returned from this
4037
                         function, only if there is glue or not.  */
4038
                      entry = find_thumb_glue (info, found->sym_name,
4039
                                               &error_message);
4040
 
4041
                      if (entry)
4042
                        found->non_a8_stub = TRUE;
4043
 
4044
                      if (found->r_type == R_ARM_THM_CALL
4045
                          && found->st_type != STT_ARM_TFUNC)
4046
                        force_target_arm = TRUE;
4047
                      else if (found->r_type == R_ARM_THM_CALL
4048
                               && found->st_type == STT_ARM_TFUNC)
4049
                        force_target_thumb = TRUE;
4050
                    }
4051
 
4052
                  /* Check if we have an offending branch instruction.  */
4053
 
4054
                  if (found && found->non_a8_stub)
4055
                    /* We've already made a stub for this instruction, e.g.
4056
                       it's a long branch or a Thumb->ARM stub.  Assume that
4057
                       stub will suffice to work around the A8 erratum (see
4058
                       setting of always_after_branch above).  */
4059
                    ;
4060
                  else if (is_bcc)
4061
                    {
4062
                      offset = (insn & 0x7ff) << 1;
4063
                      offset |= (insn & 0x3f0000) >> 4;
4064
                      offset |= (insn & 0x2000) ? 0x40000 : 0;
4065
                      offset |= (insn & 0x800) ? 0x80000 : 0;
4066
                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
4067
                      if (offset & 0x100000)
4068
                        offset |= ~ ((bfd_signed_vma) 0xfffff);
4069
                      stub_type = arm_stub_a8_veneer_b_cond;
4070
                    }
4071
                  else if (is_b || is_bl || is_blx)
4072
                    {
4073
                      int s = (insn & 0x4000000) != 0;
4074
                      int j1 = (insn & 0x2000) != 0;
4075
                      int j2 = (insn & 0x800) != 0;
4076
                      int i1 = !(j1 ^ s);
4077
                      int i2 = !(j2 ^ s);
4078
 
4079
                      offset = (insn & 0x7ff) << 1;
4080
                      offset |= (insn & 0x3ff0000) >> 4;
4081
                      offset |= i2 << 22;
4082
                      offset |= i1 << 23;
4083
                      offset |= s << 24;
4084
                      if (offset & 0x1000000)
4085
                        offset |= ~ ((bfd_signed_vma) 0xffffff);
4086
 
4087
                      if (is_blx)
4088
                        offset &= ~ ((bfd_signed_vma) 3);
4089
 
4090
                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
4091
                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4092
                    }
4093
 
4094
                  if (stub_type != arm_stub_none)
4095
                    {
4096
                      bfd_vma pc_for_insn = base_vma + i + 4;
4097
 
4098
                      /* The original instruction is a BL, but the target is
4099
                         an ARM instruction.  If we were not making a stub,
4100
                         the BL would have been converted to a BLX.  Use the
4101
                         BLX stub instead in that case.  */
4102
                      if (htab->use_blx && force_target_arm
4103
                          && stub_type == arm_stub_a8_veneer_bl)
4104
                        {
4105
                          stub_type = arm_stub_a8_veneer_blx;
4106
                          is_blx = TRUE;
4107
                          is_bl = FALSE;
4108
                        }
4109
                      /* Conversely, if the original instruction was
4110
                         BLX but the target is Thumb mode, use the BL
4111
                         stub.  */
4112
                      else if (force_target_thumb
4113
                               && stub_type == arm_stub_a8_veneer_blx)
4114
                        {
4115
                          stub_type = arm_stub_a8_veneer_bl;
4116
                          is_blx = FALSE;
4117
                          is_bl = TRUE;
4118
                        }
4119
 
4120
                      if (is_blx)
4121
                        pc_for_insn &= ~ ((bfd_vma) 3);
4122
 
4123
                      /* If we found a relocation, use the proper destination,
4124
                         not the offset in the (unrelocated) instruction.
4125
                         Note this is always done if we switched the stub type
4126
                         above.  */
4127
                      if (found)
4128
                        offset =
4129
                          (bfd_signed_vma) (found->destination - pc_for_insn);
4130
 
4131
                      target = pc_for_insn + offset;
4132
 
4133
                      /* The BLX stub is ARM-mode code.  Adjust the offset to
4134
                         take the different PC value (+8 instead of +4) into
4135
                         account.  */
4136
                      if (stub_type == arm_stub_a8_veneer_blx)
4137
                        offset += 4;
4138
 
4139
                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4140
                        {
4141
                          char *stub_name = NULL;
4142
 
4143
                          if (num_a8_fixes == a8_fix_table_size)
4144
                            {
4145
                              a8_fix_table_size *= 2;
4146
                              a8_fixes = bfd_realloc (a8_fixes,
4147
                                sizeof (struct a8_erratum_fix)
4148
                                * a8_fix_table_size);
4149
                            }
4150
 
4151
                          if (num_a8_fixes < prev_num_a8_fixes)
4152
                            {
4153
                              /* If we're doing a subsequent scan,
4154
                                 check if we've found the same fix as
4155
                                 before, and try and reuse the stub
4156
                                 name.  */
4157
                              stub_name = a8_fixes[num_a8_fixes].stub_name;
4158
                              if ((a8_fixes[num_a8_fixes].section != section)
4159
                                  || (a8_fixes[num_a8_fixes].offset != i))
4160
                                {
4161
                                  free (stub_name);
4162
                                  stub_name = NULL;
4163
                                  *stub_changed_p = TRUE;
4164
                                }
4165
                            }
4166
 
4167
                          if (!stub_name)
4168
                            {
4169
                              stub_name = bfd_malloc (8 + 1 + 8 + 1);
4170
                              if (stub_name != NULL)
4171
                                sprintf (stub_name, "%x:%x", section->id, i);
4172
                            }
4173
 
4174
                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4175
                          a8_fixes[num_a8_fixes].section = section;
4176
                          a8_fixes[num_a8_fixes].offset = i;
4177
                          a8_fixes[num_a8_fixes].addend = offset;
4178
                          a8_fixes[num_a8_fixes].orig_insn = insn;
4179
                          a8_fixes[num_a8_fixes].stub_name = stub_name;
4180
                          a8_fixes[num_a8_fixes].stub_type = stub_type;
4181
 
4182
                          num_a8_fixes++;
4183
                        }
4184
                    }
4185
                }
4186
 
4187
              i += insn_32bit ? 4 : 2;
4188
              last_was_32bit = insn_32bit;
4189
              last_was_branch = is_32bit_branch;
4190
            }
4191
        }
4192
 
4193
      if (elf_section_data (section)->this_hdr.contents == NULL)
4194
        free (contents);
4195
    }
4196
 
4197
  *a8_fixes_p = a8_fixes;
4198
  *num_a8_fixes_p = num_a8_fixes;
4199
  *a8_fix_table_size_p = a8_fix_table_size;
4200
 
4201
  return FALSE;
4202
}
4203
 
4204
/* Determine and set the size of the stub section for a final link.
4205
 
4206
   The basic idea here is to examine all the relocations looking for
4207
   PC-relative calls to a target that is unreachable with a "bl"
4208
   instruction.  */
4209
 
4210
bfd_boolean
4211
elf32_arm_size_stubs (bfd *output_bfd,
4212
                      bfd *stub_bfd,
4213
                      struct bfd_link_info *info,
4214
                      bfd_signed_vma group_size,
4215
                      asection * (*add_stub_section) (const char *, asection *),
4216
                      void (*layout_sections_again) (void))
4217
{
4218
  bfd_size_type stub_group_size;
4219
  bfd_boolean stubs_always_after_branch;
4220
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4221
  struct a8_erratum_fix *a8_fixes = NULL;
4222
  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4223
  struct a8_erratum_reloc *a8_relocs = NULL;
4224
  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4225
 
4226
  if (htab->fix_cortex_a8)
4227
    {
4228
      a8_fixes = bfd_zmalloc (sizeof (struct a8_erratum_fix)
4229
                              * a8_fix_table_size);
4230
      a8_relocs = bfd_zmalloc (sizeof (struct a8_erratum_reloc)
4231
                               * a8_reloc_table_size);
4232
    }
4233
 
4234
  /* Propagate mach to stub bfd, because it may not have been
4235
     finalized when we created stub_bfd.  */
4236
  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4237
                     bfd_get_mach (output_bfd));
4238
 
4239
  /* Stash our params away.  */
4240
  htab->stub_bfd = stub_bfd;
4241
  htab->add_stub_section = add_stub_section;
4242
  htab->layout_sections_again = layout_sections_again;
4243
  stubs_always_after_branch = group_size < 0;
4244
 
4245
  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4246
     as the first half of a 32-bit branch straddling two 4K pages.  This is a
4247
     crude way of enforcing that.  */
4248
  if (htab->fix_cortex_a8)
4249
    stubs_always_after_branch = 1;
4250
 
4251
  if (group_size < 0)
4252
    stub_group_size = -group_size;
4253
  else
4254
    stub_group_size = group_size;
4255
 
4256
  if (stub_group_size == 1)
4257
    {
4258
      /* Default values.  */
4259
      /* Thumb branch range is +-4MB has to be used as the default
4260
         maximum size (a given section can contain both ARM and Thumb
4261
         code, so the worst case has to be taken into account).
4262
 
4263
         This value is 24K less than that, which allows for 2025
4264
         12-byte stubs.  If we exceed that, then we will fail to link.
4265
         The user will have to relink with an explicit group size
4266
         option.  */
4267
      stub_group_size = 4170000;
4268
    }
4269
 
4270
  group_sections (htab, stub_group_size, stubs_always_after_branch);
4271
 
4272
  /* If we're applying the cortex A8 fix, we need to determine the
4273
     program header size now, because we cannot change it later --
4274
     that could alter section placements.  Notice the A8 erratum fix
4275
     ends up requiring the section addresses to remain unchanged
4276
     modulo the page size.  That's something we cannot represent
4277
     inside BFD, and we don't want to force the section alignment to
4278
     be the page size.  */
4279
  if (htab->fix_cortex_a8)
4280
    (*htab->layout_sections_again) ();
4281
 
4282
  while (1)
4283
    {
4284
      bfd *input_bfd;
4285
      unsigned int bfd_indx;
4286
      asection *stub_sec;
4287
      bfd_boolean stub_changed = FALSE;
4288
      unsigned prev_num_a8_fixes = num_a8_fixes;
4289
 
4290
      num_a8_fixes = 0;
4291
      for (input_bfd = info->input_bfds, bfd_indx = 0;
4292
           input_bfd != NULL;
4293
           input_bfd = input_bfd->link_next, bfd_indx++)
4294
        {
4295
          Elf_Internal_Shdr *symtab_hdr;
4296
          asection *section;
4297
          Elf_Internal_Sym *local_syms = NULL;
4298
 
4299
          num_a8_relocs = 0;
4300
 
4301
          /* We'll need the symbol table in a second.  */
4302
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4303
          if (symtab_hdr->sh_info == 0)
4304
            continue;
4305
 
4306
          /* Walk over each section attached to the input bfd.  */
4307
          for (section = input_bfd->sections;
4308
               section != NULL;
4309
               section = section->next)
4310
            {
4311
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4312
 
4313
              /* If there aren't any relocs, then there's nothing more
4314
                 to do.  */
4315
              if ((section->flags & SEC_RELOC) == 0
4316
                  || section->reloc_count == 0
4317
                  || (section->flags & SEC_CODE) == 0)
4318
                continue;
4319
 
4320
              /* If this section is a link-once section that will be
4321
                 discarded, then don't create any stubs.  */
4322
              if (section->output_section == NULL
4323
                  || section->output_section->owner != output_bfd)
4324
                continue;
4325
 
4326
              /* Get the relocs.  */
4327
              internal_relocs
4328
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4329
                                             NULL, info->keep_memory);
4330
              if (internal_relocs == NULL)
4331
                goto error_ret_free_local;
4332
 
4333
              /* Now examine each relocation.  */
4334
              irela = internal_relocs;
4335
              irelaend = irela + section->reloc_count;
4336
              for (; irela < irelaend; irela++)
4337
                {
4338
                  unsigned int r_type, r_indx;
4339
                  enum elf32_arm_stub_type stub_type;
4340
                  struct elf32_arm_stub_hash_entry *stub_entry;
4341
                  asection *sym_sec;
4342
                  bfd_vma sym_value;
4343
                  bfd_vma destination;
4344
                  struct elf32_arm_link_hash_entry *hash;
4345
                  const char *sym_name;
4346
                  char *stub_name;
4347
                  const asection *id_sec;
4348
                  unsigned char st_type;
4349
                  bfd_boolean created_stub = FALSE;
4350
 
4351
                  r_type = ELF32_R_TYPE (irela->r_info);
4352
                  r_indx = ELF32_R_SYM (irela->r_info);
4353
 
4354
                  if (r_type >= (unsigned int) R_ARM_max)
4355
                    {
4356
                      bfd_set_error (bfd_error_bad_value);
4357
                    error_ret_free_internal:
4358
                      if (elf_section_data (section)->relocs == NULL)
4359
                        free (internal_relocs);
4360
                      goto error_ret_free_local;
4361
                    }
4362
 
4363
                  /* Only look for stubs on branch instructions.  */
4364
                  if ((r_type != (unsigned int) R_ARM_CALL)
4365
                      && (r_type != (unsigned int) R_ARM_THM_CALL)
4366
                      && (r_type != (unsigned int) R_ARM_JUMP24)
4367
                      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4368
                      && (r_type != (unsigned int) R_ARM_THM_XPC22)
4369
                      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4370
                      && (r_type != (unsigned int) R_ARM_PLT32))
4371
                    continue;
4372
 
4373
                  /* Now determine the call target, its name, value,
4374
                     section.  */
4375
                  sym_sec = NULL;
4376
                  sym_value = 0;
4377
                  destination = 0;
4378
                  hash = NULL;
4379
                  sym_name = NULL;
4380
                  if (r_indx < symtab_hdr->sh_info)
4381
                    {
4382
                      /* It's a local symbol.  */
4383
                      Elf_Internal_Sym *sym;
4384
                      Elf_Internal_Shdr *hdr;
4385
 
4386
                      if (local_syms == NULL)
4387
                        {
4388
                          local_syms
4389
                            = (Elf_Internal_Sym *) symtab_hdr->contents;
4390
                          if (local_syms == NULL)
4391
                            local_syms
4392
                              = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4393
                                                      symtab_hdr->sh_info, 0,
4394
                                                      NULL, NULL, NULL);
4395
                          if (local_syms == NULL)
4396
                            goto error_ret_free_internal;
4397
                        }
4398
 
4399
                      sym = local_syms + r_indx;
4400
                      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4401
                      sym_sec = hdr->bfd_section;
4402
                      if (!sym_sec)
4403
                        /* This is an undefined symbol.  It can never
4404
                           be resolved. */
4405
                        continue;
4406
 
4407
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4408
                        sym_value = sym->st_value;
4409
                      destination = (sym_value + irela->r_addend
4410
                                     + sym_sec->output_offset
4411
                                     + sym_sec->output_section->vma);
4412
                      st_type = ELF_ST_TYPE (sym->st_info);
4413
                      sym_name
4414
                        = bfd_elf_string_from_elf_section (input_bfd,
4415
                                                           symtab_hdr->sh_link,
4416
                                                           sym->st_name);
4417
                    }
4418
                  else
4419
                    {
4420
                      /* It's an external symbol.  */
4421
                      int e_indx;
4422
 
4423
                      e_indx = r_indx - symtab_hdr->sh_info;
4424
                      hash = ((struct elf32_arm_link_hash_entry *)
4425
                              elf_sym_hashes (input_bfd)[e_indx]);
4426
 
4427
                      while (hash->root.root.type == bfd_link_hash_indirect
4428
                             || hash->root.root.type == bfd_link_hash_warning)
4429
                        hash = ((struct elf32_arm_link_hash_entry *)
4430
                                hash->root.root.u.i.link);
4431
 
4432
                      if (hash->root.root.type == bfd_link_hash_defined
4433
                          || hash->root.root.type == bfd_link_hash_defweak)
4434
                        {
4435
                          sym_sec = hash->root.root.u.def.section;
4436
                          sym_value = hash->root.root.u.def.value;
4437
 
4438
                          struct elf32_arm_link_hash_table *globals =
4439
                                                  elf32_arm_hash_table (info);
4440
 
4441
                          /* For a destination in a shared library,
4442
                             use the PLT stub as target address to
4443
                             decide whether a branch stub is
4444
                             needed.  */
4445
                          if (globals->splt != NULL && hash != NULL
4446
                              && hash->root.plt.offset != (bfd_vma) -1)
4447
                            {
4448
                              sym_sec = globals->splt;
4449
                              sym_value = hash->root.plt.offset;
4450
                              if (sym_sec->output_section != NULL)
4451
                                destination = (sym_value
4452
                                               + sym_sec->output_offset
4453
                                               + sym_sec->output_section->vma);
4454
                            }
4455
                          else if (sym_sec->output_section != NULL)
4456
                            destination = (sym_value + irela->r_addend
4457
                                           + sym_sec->output_offset
4458
                                           + sym_sec->output_section->vma);
4459
                        }
4460
                      else if ((hash->root.root.type == bfd_link_hash_undefined)
4461
                               || (hash->root.root.type == bfd_link_hash_undefweak))
4462
                        {
4463
                          /* For a shared library, use the PLT stub as
4464
                             target address to decide whether a long
4465
                             branch stub is needed.
4466
                             For absolute code, they cannot be handled.  */
4467
                          struct elf32_arm_link_hash_table *globals =
4468
                            elf32_arm_hash_table (info);
4469
 
4470
                          if (globals->splt != NULL && hash != NULL
4471
                              && hash->root.plt.offset != (bfd_vma) -1)
4472
                            {
4473
                              sym_sec = globals->splt;
4474
                              sym_value = hash->root.plt.offset;
4475
                              if (sym_sec->output_section != NULL)
4476
                                destination = (sym_value
4477
                                               + sym_sec->output_offset
4478
                                               + sym_sec->output_section->vma);
4479
                            }
4480
                          else
4481
                            continue;
4482
                        }
4483
                      else
4484
                        {
4485
                          bfd_set_error (bfd_error_bad_value);
4486
                          goto error_ret_free_internal;
4487
                        }
4488
                      st_type = ELF_ST_TYPE (hash->root.type);
4489
                      sym_name = hash->root.root.root.string;
4490
                    }
4491
 
4492
                  do
4493
                    {
4494
                      /* Determine what (if any) linker stub is needed.  */
4495
                      stub_type = arm_type_of_stub (info, section, irela,
4496
                                                    st_type, hash,
4497
                                                    destination, sym_sec,
4498
                                                    input_bfd, sym_name);
4499
                      if (stub_type == arm_stub_none)
4500
                        break;
4501
 
4502
                      /* Support for grouping stub sections.  */
4503
                      id_sec = htab->stub_group[section->id].link_sec;
4504
 
4505
                      /* Get the name of this stub.  */
4506
                      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4507
                                                       irela);
4508
                      if (!stub_name)
4509
                        goto error_ret_free_internal;
4510
 
4511
                      /* We've either created a stub for this reloc already,
4512
                         or we are about to.  */
4513
                      created_stub = TRUE;
4514
 
4515
                      stub_entry = arm_stub_hash_lookup
4516
                                     (&htab->stub_hash_table, stub_name,
4517
                                      FALSE, FALSE);
4518
                      if (stub_entry != NULL)
4519
                        {
4520
                          /* The proper stub has already been created.  */
4521
                          free (stub_name);
4522
                          stub_entry->target_value = sym_value;
4523
                          break;
4524
                        }
4525
 
4526
                      stub_entry = elf32_arm_add_stub (stub_name, section,
4527
                                                       htab);
4528
                      if (stub_entry == NULL)
4529
                        {
4530
                          free (stub_name);
4531
                          goto error_ret_free_internal;
4532
                        }
4533
 
4534
                      stub_entry->target_value = sym_value;
4535
                      stub_entry->target_section = sym_sec;
4536
                      stub_entry->stub_type = stub_type;
4537
                      stub_entry->h = hash;
4538
                      stub_entry->st_type = st_type;
4539
 
4540
                      if (sym_name == NULL)
4541
                        sym_name = "unnamed";
4542
                      stub_entry->output_name
4543
                        = bfd_alloc (htab->stub_bfd,
4544
                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4545
                                     + strlen (sym_name));
4546
                      if (stub_entry->output_name == NULL)
4547
                        {
4548
                          free (stub_name);
4549
                          goto error_ret_free_internal;
4550
                        }
4551
 
4552
                      /* For historical reasons, use the existing names for
4553
                         ARM-to-Thumb and Thumb-to-ARM stubs.  */
4554
                      if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4555
                            || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4556
                           && st_type != STT_ARM_TFUNC)
4557
                        sprintf (stub_entry->output_name,
4558
                                 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4559
                      else if ( ((r_type == (unsigned int) R_ARM_CALL)
4560
                                 || (r_type == (unsigned int) R_ARM_JUMP24))
4561
                               && st_type == STT_ARM_TFUNC)
4562
                        sprintf (stub_entry->output_name,
4563
                                 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4564
                      else
4565
                        sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4566
                                 sym_name);
4567
 
4568
                      stub_changed = TRUE;
4569
                    }
4570
                  while (0);
4571
 
4572
                  /* Look for relocations which might trigger Cortex-A8
4573
                     erratum.  */
4574
                  if (htab->fix_cortex_a8
4575
                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
4576
                          || r_type == (unsigned int) R_ARM_THM_JUMP19
4577
                          || r_type == (unsigned int) R_ARM_THM_CALL
4578
                          || r_type == (unsigned int) R_ARM_THM_XPC22))
4579
                    {
4580
                      bfd_vma from = section->output_section->vma
4581
                                     + section->output_offset
4582
                                     + irela->r_offset;
4583
 
4584
                      if ((from & 0xfff) == 0xffe)
4585
                        {
4586
                          /* Found a candidate.  Note we haven't checked the
4587
                             destination is within 4K here: if we do so (and
4588
                             don't create an entry in a8_relocs) we can't tell
4589
                             that a branch should have been relocated when
4590
                             scanning later.  */
4591
                          if (num_a8_relocs == a8_reloc_table_size)
4592
                            {
4593
                              a8_reloc_table_size *= 2;
4594
                              a8_relocs = bfd_realloc (a8_relocs,
4595
                                sizeof (struct a8_erratum_reloc)
4596
                                * a8_reloc_table_size);
4597
                            }
4598
 
4599
                          a8_relocs[num_a8_relocs].from = from;
4600
                          a8_relocs[num_a8_relocs].destination = destination;
4601
                          a8_relocs[num_a8_relocs].r_type = r_type;
4602
                          a8_relocs[num_a8_relocs].st_type = st_type;
4603
                          a8_relocs[num_a8_relocs].sym_name = sym_name;
4604
                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4605
 
4606
                          num_a8_relocs++;
4607
                        }
4608
                    }
4609
                }
4610
 
4611
              /* We're done with the internal relocs, free them.  */
4612
              if (elf_section_data (section)->relocs == NULL)
4613
                free (internal_relocs);
4614
            }
4615
 
4616
          if (htab->fix_cortex_a8)
4617
            {
4618
              /* Sort relocs which might apply to Cortex-A8 erratum.  */
4619
              qsort (a8_relocs, num_a8_relocs,
4620
                     sizeof (struct a8_erratum_reloc),
4621
                     &a8_reloc_compare);
4622
 
4623
              /* Scan for branches which might trigger Cortex-A8 erratum.  */
4624
              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4625
                                          &num_a8_fixes, &a8_fix_table_size,
4626
                                          a8_relocs, num_a8_relocs,
4627
                                          prev_num_a8_fixes, &stub_changed)
4628
                  != 0)
4629
                goto error_ret_free_local;
4630
            }
4631
        }
4632
 
4633
      if (prev_num_a8_fixes != num_a8_fixes)
4634
        stub_changed = TRUE;
4635
 
4636
      if (!stub_changed)
4637
        break;
4638
 
4639
      /* OK, we've added some stubs.  Find out the new size of the
4640
         stub sections.  */
4641
      for (stub_sec = htab->stub_bfd->sections;
4642
           stub_sec != NULL;
4643
           stub_sec = stub_sec->next)
4644
        {
4645
          /* Ignore non-stub sections.  */
4646
          if (!strstr (stub_sec->name, STUB_SUFFIX))
4647
            continue;
4648
 
4649
          stub_sec->size = 0;
4650
        }
4651
 
4652
      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4653
 
4654
      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
4655
      if (htab->fix_cortex_a8)
4656
        for (i = 0; i < num_a8_fixes; i++)
4657
          {
4658
            stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4659
                         a8_fixes[i].section, htab);
4660
 
4661
            if (stub_sec == NULL)
4662
              goto error_ret_free_local;
4663
 
4664
            stub_sec->size
4665
              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4666
                                              NULL);
4667
          }
4668
 
4669
 
4670
      /* Ask the linker to do its stuff.  */
4671
      (*htab->layout_sections_again) ();
4672
    }
4673
 
4674
  /* Add stubs for Cortex-A8 erratum fixes now.  */
4675
  if (htab->fix_cortex_a8)
4676
    {
4677
      for (i = 0; i < num_a8_fixes; i++)
4678
        {
4679
          struct elf32_arm_stub_hash_entry *stub_entry;
4680
          char *stub_name = a8_fixes[i].stub_name;
4681
          asection *section = a8_fixes[i].section;
4682
          unsigned int section_id = a8_fixes[i].section->id;
4683
          asection *link_sec = htab->stub_group[section_id].link_sec;
4684
          asection *stub_sec = htab->stub_group[section_id].stub_sec;
4685
          const insn_sequence *template_sequence;
4686
          int template_size, size = 0;
4687
 
4688
          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4689
                                             TRUE, FALSE);
4690
          if (stub_entry == NULL)
4691
            {
4692
              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4693
                                     section->owner,
4694
                                     stub_name);
4695
              return FALSE;
4696
            }
4697
 
4698
          stub_entry->stub_sec = stub_sec;
4699
          stub_entry->stub_offset = 0;
4700
          stub_entry->id_sec = link_sec;
4701
          stub_entry->stub_type = a8_fixes[i].stub_type;
4702
          stub_entry->target_section = a8_fixes[i].section;
4703
          stub_entry->target_value = a8_fixes[i].offset;
4704
          stub_entry->target_addend = a8_fixes[i].addend;
4705
          stub_entry->orig_insn = a8_fixes[i].orig_insn;
4706
          stub_entry->st_type = STT_ARM_TFUNC;
4707
 
4708
          size = find_stub_size_and_template (a8_fixes[i].stub_type,
4709
                                              &template_sequence,
4710
                                              &template_size);
4711
 
4712
          stub_entry->stub_size = size;
4713
          stub_entry->stub_template = template_sequence;
4714
          stub_entry->stub_template_size = template_size;
4715
        }
4716
 
4717
      /* Stash the Cortex-A8 erratum fix array for use later in
4718
         elf32_arm_write_section().  */
4719
      htab->a8_erratum_fixes = a8_fixes;
4720
      htab->num_a8_erratum_fixes = num_a8_fixes;
4721
    }
4722
  else
4723
    {
4724
      htab->a8_erratum_fixes = NULL;
4725
      htab->num_a8_erratum_fixes = 0;
4726
    }
4727
  return TRUE;
4728
 
4729
 error_ret_free_local:
4730
  return FALSE;
4731
}
4732
 
4733
/* Build all the stubs associated with the current output file.  The
4734
   stubs are kept in a hash table attached to the main linker hash
4735
   table.  We also set up the .plt entries for statically linked PIC
4736
   functions here.  This function is called via arm_elf_finish in the
4737
   linker.  */
4738
 
4739
bfd_boolean
4740
elf32_arm_build_stubs (struct bfd_link_info *info)
4741
{
4742
  asection *stub_sec;
4743
  struct bfd_hash_table *table;
4744
  struct elf32_arm_link_hash_table *htab;
4745
 
4746
  htab = elf32_arm_hash_table (info);
4747
 
4748
  for (stub_sec = htab->stub_bfd->sections;
4749
       stub_sec != NULL;
4750
       stub_sec = stub_sec->next)
4751
    {
4752
      bfd_size_type size;
4753
 
4754
      /* Ignore non-stub sections.  */
4755
      if (!strstr (stub_sec->name, STUB_SUFFIX))
4756
        continue;
4757
 
4758
      /* Allocate memory to hold the linker stubs.  */
4759
      size = stub_sec->size;
4760
      stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4761
      if (stub_sec->contents == NULL && size != 0)
4762
        return FALSE;
4763
      stub_sec->size = 0;
4764
    }
4765
 
4766
  /* Build the stubs as directed by the stub hash table.  */
4767
  table = &htab->stub_hash_table;
4768
  bfd_hash_traverse (table, arm_build_one_stub, info);
4769
  if (htab->fix_cortex_a8)
4770
    {
4771
      /* Place the cortex a8 stubs last.  */
4772
      htab->fix_cortex_a8 = -1;
4773
      bfd_hash_traverse (table, arm_build_one_stub, info);
4774
    }
4775
 
4776
  return TRUE;
4777
}
4778
 
4779
/* Locate the Thumb encoded calling stub for NAME.  */
4780
 
4781
static struct elf_link_hash_entry *
4782
find_thumb_glue (struct bfd_link_info *link_info,
4783
                 const char *name,
4784
                 char **error_message)
4785
{
4786
  char *tmp_name;
4787
  struct elf_link_hash_entry *hash;
4788
  struct elf32_arm_link_hash_table *hash_table;
4789
 
4790
  /* We need a pointer to the armelf specific hash table.  */
4791
  hash_table = elf32_arm_hash_table (link_info);
4792
 
4793
  tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4794
                         + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4795
 
4796
  BFD_ASSERT (tmp_name);
4797
 
4798
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4799
 
4800
  hash = elf_link_hash_lookup
4801
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4802
 
4803
  if (hash == NULL
4804
      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4805
                   tmp_name, name) == -1)
4806
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4807
 
4808
  free (tmp_name);
4809
 
4810
  return hash;
4811
}
4812
 
4813
/* Locate the ARM encoded calling stub for NAME.  */
4814
 
4815
static struct elf_link_hash_entry *
4816
find_arm_glue (struct bfd_link_info *link_info,
4817
               const char *name,
4818
               char **error_message)
4819
{
4820
  char *tmp_name;
4821
  struct elf_link_hash_entry *myh;
4822
  struct elf32_arm_link_hash_table *hash_table;
4823
 
4824
  /* We need a pointer to the elfarm specific hash table.  */
4825
  hash_table = elf32_arm_hash_table (link_info);
4826
 
4827
  tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4828
                         + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4829
 
4830
  BFD_ASSERT (tmp_name);
4831
 
4832
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4833
 
4834
  myh = elf_link_hash_lookup
4835
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4836
 
4837
  if (myh == NULL
4838
      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4839
                   tmp_name, name) == -1)
4840
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4841
 
4842
  free (tmp_name);
4843
 
4844
  return myh;
4845
}
4846
 
4847
/* ARM->Thumb glue (static images):
4848
 
4849
   .arm
4850
   __func_from_arm:
4851
   ldr r12, __func_addr
4852
   bx  r12
4853
   __func_addr:
4854
   .word func    @ behave as if you saw a ARM_32 reloc.
4855
 
4856
   (v5t static images)
4857
   .arm
4858
   __func_from_arm:
4859
   ldr pc, __func_addr
4860
   __func_addr:
4861
   .word func    @ behave as if you saw a ARM_32 reloc.
4862
 
4863
   (relocatable images)
4864
   .arm
4865
   __func_from_arm:
4866
   ldr r12, __func_offset
4867
   add r12, r12, pc
4868
   bx  r12
4869
   __func_offset:
4870
   .word func - .   */
4871
 
4872
#define ARM2THUMB_STATIC_GLUE_SIZE 12
4873
static const insn32 a2t1_ldr_insn = 0xe59fc000;
4874
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4875
static const insn32 a2t3_func_addr_insn = 0x00000001;
4876
 
4877
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4878
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4879
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4880
 
4881
#define ARM2THUMB_PIC_GLUE_SIZE 16
4882
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4883
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4884
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4885
 
4886
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
4887
 
4888
     .thumb                             .thumb
4889
     .align 2                           .align 2
4890
 __func_from_thumb:                 __func_from_thumb:
4891
     bx pc                              push {r6, lr}
4892
     nop                                ldr  r6, __func_addr
4893
     .arm                               mov  lr, pc
4894
     b func                             bx   r6
4895
                                        .arm
4896
                                    ;; back_to_thumb
4897
                                        ldmia r13! {r6, lr}
4898
                                        bx    lr
4899
                                    __func_addr:
4900
                                        .word        func  */
4901
 
4902
#define THUMB2ARM_GLUE_SIZE 8
4903
static const insn16 t2a1_bx_pc_insn = 0x4778;
4904
static const insn16 t2a2_noop_insn = 0x46c0;
4905
static const insn32 t2a3_b_insn = 0xea000000;
4906
 
4907
#define VFP11_ERRATUM_VENEER_SIZE 8
4908
 
4909
#define ARM_BX_VENEER_SIZE 12
4910
static const insn32 armbx1_tst_insn = 0xe3100001;
4911
static const insn32 armbx2_moveq_insn = 0x01a0f000;
4912
static const insn32 armbx3_bx_insn = 0xe12fff10;
4913
 
4914
#ifndef ELFARM_NABI_C_INCLUDED
4915
static void
4916
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4917
{
4918
  asection * s;
4919
  bfd_byte * contents;
4920
 
4921
  if (size == 0)
4922
    {
4923
      /* Do not include empty glue sections in the output.  */
4924
      if (abfd != NULL)
4925
        {
4926
          s = bfd_get_section_by_name (abfd, name);
4927
          if (s != NULL)
4928
            s->flags |= SEC_EXCLUDE;
4929
        }
4930
      return;
4931
    }
4932
 
4933
  BFD_ASSERT (abfd != NULL);
4934
 
4935
  s = bfd_get_section_by_name (abfd, name);
4936
  BFD_ASSERT (s != NULL);
4937
 
4938
  contents = bfd_alloc (abfd, size);
4939
 
4940
  BFD_ASSERT (s->size == size);
4941
  s->contents = contents;
4942
}
4943
 
4944
bfd_boolean
4945
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4946
{
4947
  struct elf32_arm_link_hash_table * globals;
4948
 
4949
  globals = elf32_arm_hash_table (info);
4950
  BFD_ASSERT (globals != NULL);
4951
 
4952
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4953
                                   globals->arm_glue_size,
4954
                                   ARM2THUMB_GLUE_SECTION_NAME);
4955
 
4956
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4957
                                   globals->thumb_glue_size,
4958
                                   THUMB2ARM_GLUE_SECTION_NAME);
4959
 
4960
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4961
                                   globals->vfp11_erratum_glue_size,
4962
                                   VFP11_ERRATUM_VENEER_SECTION_NAME);
4963
 
4964
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4965
                                   globals->bx_glue_size,
4966
                                   ARM_BX_GLUE_SECTION_NAME);
4967
 
4968
  return TRUE;
4969
}
4970
 
4971
/* Allocate space and symbols for calling a Thumb function from Arm mode.
4972
   returns the symbol identifying the stub.  */
4973
 
4974
static struct elf_link_hash_entry *
4975
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4976
                          struct elf_link_hash_entry * h)
4977
{
4978
  const char * name = h->root.root.string;
4979
  asection * s;
4980
  char * tmp_name;
4981
  struct elf_link_hash_entry * myh;
4982
  struct bfd_link_hash_entry * bh;
4983
  struct elf32_arm_link_hash_table * globals;
4984
  bfd_vma val;
4985
  bfd_size_type size;
4986
 
4987
  globals = elf32_arm_hash_table (link_info);
4988
 
4989
  BFD_ASSERT (globals != NULL);
4990
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4991
 
4992
  s = bfd_get_section_by_name
4993
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4994
 
4995
  BFD_ASSERT (s != NULL);
4996
 
4997
  tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4998
 
4999
  BFD_ASSERT (tmp_name);
5000
 
5001
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5002
 
5003
  myh = elf_link_hash_lookup
5004
    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5005
 
5006
  if (myh != NULL)
5007
    {
5008
      /* We've already seen this guy.  */
5009
      free (tmp_name);
5010
      return myh;
5011
    }
5012
 
5013
  /* The only trick here is using hash_table->arm_glue_size as the value.
5014
     Even though the section isn't allocated yet, this is where we will be
5015
     putting it.  The +1 on the value marks that the stub has not been
5016
     output yet - not that it is a Thumb function.  */
5017
  bh = NULL;
5018
  val = globals->arm_glue_size + 1;
5019
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5020
                                    tmp_name, BSF_GLOBAL, s, val,
5021
                                    NULL, TRUE, FALSE, &bh);
5022
 
5023
  myh = (struct elf_link_hash_entry *) bh;
5024
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5025
  myh->forced_local = 1;
5026
 
5027
  free (tmp_name);
5028
 
5029
  if (link_info->shared || globals->root.is_relocatable_executable
5030
      || globals->pic_veneer)
5031
    size = ARM2THUMB_PIC_GLUE_SIZE;
5032
  else if (globals->use_blx)
5033
    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5034
  else
5035
    size = ARM2THUMB_STATIC_GLUE_SIZE;
5036
 
5037
  s->size += size;
5038
  globals->arm_glue_size += size;
5039
 
5040
  return myh;
5041
}
5042
 
5043
/* Allocate space for ARMv4 BX veneers.  */
5044
 
5045
static void
5046
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5047
{
5048
  asection * s;
5049
  struct elf32_arm_link_hash_table *globals;
5050
  char *tmp_name;
5051
  struct elf_link_hash_entry *myh;
5052
  struct bfd_link_hash_entry *bh;
5053
  bfd_vma val;
5054
 
5055
  /* BX PC does not need a veneer.  */
5056
  if (reg == 15)
5057
    return;
5058
 
5059
  globals = elf32_arm_hash_table (link_info);
5060
 
5061
  BFD_ASSERT (globals != NULL);
5062
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5063
 
5064
  /* Check if this veneer has already been allocated.  */
5065
  if (globals->bx_glue_offset[reg])
5066
    return;
5067
 
5068
  s = bfd_get_section_by_name
5069
    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5070
 
5071
  BFD_ASSERT (s != NULL);
5072
 
5073
  /* Add symbol for veneer.  */
5074
  tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5075
 
5076
  BFD_ASSERT (tmp_name);
5077
 
5078
  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5079
 
5080
  myh = elf_link_hash_lookup
5081
    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5082
 
5083
  BFD_ASSERT (myh == NULL);
5084
 
5085
  bh = NULL;
5086
  val = globals->bx_glue_size;
5087
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5088
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5089
                                    NULL, TRUE, FALSE, &bh);
5090
 
5091
  myh = (struct elf_link_hash_entry *) bh;
5092
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5093
  myh->forced_local = 1;
5094
 
5095
  s->size += ARM_BX_VENEER_SIZE;
5096
  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5097
  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5098
}
5099
 
5100
 
5101
/* Add an entry to the code/data map for section SEC.  */
5102
 
5103
static void
5104
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5105
{
5106
  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5107
  unsigned int newidx;
5108
 
5109
  if (sec_data->map == NULL)
5110
    {
5111
      sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
5112
      sec_data->mapcount = 0;
5113
      sec_data->mapsize = 1;
5114
    }
5115
 
5116
  newidx = sec_data->mapcount++;
5117
 
5118
  if (sec_data->mapcount > sec_data->mapsize)
5119
    {
5120
      sec_data->mapsize *= 2;
5121
      sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5122
                                           * sizeof (elf32_arm_section_map));
5123
    }
5124
 
5125
  if (sec_data->map)
5126
    {
5127
      sec_data->map[newidx].vma = vma;
5128
      sec_data->map[newidx].type = type;
5129
    }
5130
}
5131
 
5132
 
5133
/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5134
   veneers are handled for now.  */
5135
 
5136
static bfd_vma
5137
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5138
                             elf32_vfp11_erratum_list *branch,
5139
                             bfd *branch_bfd,
5140
                             asection *branch_sec,
5141
                             unsigned int offset)
5142
{
5143
  asection *s;
5144
  struct elf32_arm_link_hash_table *hash_table;
5145
  char *tmp_name;
5146
  struct elf_link_hash_entry *myh;
5147
  struct bfd_link_hash_entry *bh;
5148
  bfd_vma val;
5149
  struct _arm_elf_section_data *sec_data;
5150
  int errcount;
5151
  elf32_vfp11_erratum_list *newerr;
5152
 
5153
  hash_table = elf32_arm_hash_table (link_info);
5154
 
5155
  BFD_ASSERT (hash_table != NULL);
5156
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5157
 
5158
  s = bfd_get_section_by_name
5159
    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5160
 
5161
  sec_data = elf32_arm_section_data (s);
5162
 
5163
  BFD_ASSERT (s != NULL);
5164
 
5165
  tmp_name = bfd_malloc ((bfd_size_type) strlen
5166
                         (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5167
 
5168
  BFD_ASSERT (tmp_name);
5169
 
5170
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5171
           hash_table->num_vfp11_fixes);
5172
 
5173
  myh = elf_link_hash_lookup
5174
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5175
 
5176
  BFD_ASSERT (myh == NULL);
5177
 
5178
  bh = NULL;
5179
  val = hash_table->vfp11_erratum_glue_size;
5180
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5181
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5182
                                    NULL, TRUE, FALSE, &bh);
5183
 
5184
  myh = (struct elf_link_hash_entry *) bh;
5185
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5186
  myh->forced_local = 1;
5187
 
5188
  /* Link veneer back to calling location.  */
5189
  errcount = ++(sec_data->erratumcount);
5190
  newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5191
 
5192
  newerr->type = VFP11_ERRATUM_ARM_VENEER;
5193
  newerr->vma = -1;
5194
  newerr->u.v.branch = branch;
5195
  newerr->u.v.id = hash_table->num_vfp11_fixes;
5196
  branch->u.b.veneer = newerr;
5197
 
5198
  newerr->next = sec_data->erratumlist;
5199
  sec_data->erratumlist = newerr;
5200
 
5201
  /* A symbol for the return from the veneer.  */
5202
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5203
           hash_table->num_vfp11_fixes);
5204
 
5205
  myh = elf_link_hash_lookup
5206
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5207
 
5208
  if (myh != NULL)
5209
    abort ();
5210
 
5211
  bh = NULL;
5212
  val = offset + 4;
5213
  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5214
                                    branch_sec, val, NULL, TRUE, FALSE, &bh);
5215
 
5216
  myh = (struct elf_link_hash_entry *) bh;
5217
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5218
  myh->forced_local = 1;
5219
 
5220
  free (tmp_name);
5221
 
5222
  /* Generate a mapping symbol for the veneer section, and explicitly add an
5223
     entry for that symbol to the code/data map for the section.  */
5224
  if (hash_table->vfp11_erratum_glue_size == 0)
5225
    {
5226
      bh = NULL;
5227
      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5228
         ever requires this erratum fix.  */
5229
      _bfd_generic_link_add_one_symbol (link_info,
5230
                                        hash_table->bfd_of_glue_owner, "$a",
5231
                                        BSF_LOCAL, s, 0, NULL,
5232
                                        TRUE, FALSE, &bh);
5233
 
5234
      myh = (struct elf_link_hash_entry *) bh;
5235
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5236
      myh->forced_local = 1;
5237
 
5238
      /* The elf32_arm_init_maps function only cares about symbols from input
5239
         BFDs.  We must make a note of this generated mapping symbol
5240
         ourselves so that code byteswapping works properly in
5241
         elf32_arm_write_section.  */
5242
      elf32_arm_section_map_add (s, 'a', 0);
5243
    }
5244
 
5245
  s->size += VFP11_ERRATUM_VENEER_SIZE;
5246
  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5247
  hash_table->num_vfp11_fixes++;
5248
 
5249
  /* The offset of the veneer.  */
5250
  return val;
5251
}
5252
 
5253
#define ARM_GLUE_SECTION_FLAGS \
5254
  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5255
   | SEC_READONLY | SEC_LINKER_CREATED)
5256
 
5257
/* Create a fake section for use by the ARM backend of the linker.  */
5258
 
5259
static bfd_boolean
5260
arm_make_glue_section (bfd * abfd, const char * name)
5261
{
5262
  asection * sec;
5263
 
5264
  sec = bfd_get_section_by_name (abfd, name);
5265
  if (sec != NULL)
5266
    /* Already made.  */
5267
    return TRUE;
5268
 
5269
  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5270
 
5271
  if (sec == NULL
5272
      || !bfd_set_section_alignment (abfd, sec, 2))
5273
    return FALSE;
5274
 
5275
  /* Set the gc mark to prevent the section from being removed by garbage
5276
     collection, despite the fact that no relocs refer to this section.  */
5277
  sec->gc_mark = 1;
5278
 
5279
  return TRUE;
5280
}
5281
 
5282
/* Add the glue sections to ABFD.  This function is called from the
5283
   linker scripts in ld/emultempl/{armelf}.em.  */
5284
 
5285
bfd_boolean
5286
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5287
                                        struct bfd_link_info *info)
5288
{
5289
  /* If we are only performing a partial
5290
     link do not bother adding the glue.  */
5291
  if (info->relocatable)
5292
    return TRUE;
5293
 
5294
  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5295
    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5296
    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5297
    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5298
}
5299
 
5300
/* Select a BFD to be used to hold the sections used by the glue code.
5301
   This function is called from the linker scripts in ld/emultempl/
5302
   {armelf/pe}.em.  */
5303
 
5304
bfd_boolean
5305
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5306
{
5307
  struct elf32_arm_link_hash_table *globals;
5308
 
5309
  /* If we are only performing a partial link
5310
     do not bother getting a bfd to hold the glue.  */
5311
  if (info->relocatable)
5312
    return TRUE;
5313
 
5314
  /* Make sure we don't attach the glue sections to a dynamic object.  */
5315
  BFD_ASSERT (!(abfd->flags & DYNAMIC));
5316
 
5317
  globals = elf32_arm_hash_table (info);
5318
 
5319
  BFD_ASSERT (globals != NULL);
5320
 
5321
  if (globals->bfd_of_glue_owner != NULL)
5322
    return TRUE;
5323
 
5324
  /* Save the bfd for later use.  */
5325
  globals->bfd_of_glue_owner = abfd;
5326
 
5327
  return TRUE;
5328
}
5329
 
5330
static void
5331
check_use_blx (struct elf32_arm_link_hash_table *globals)
5332
{
5333
  if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5334
                                Tag_CPU_arch) > 2)
5335
    globals->use_blx = 1;
5336
}
5337
 
5338
bfd_boolean
5339
bfd_elf32_arm_process_before_allocation (bfd *abfd,
5340
                                         struct bfd_link_info *link_info)
5341
{
5342
  Elf_Internal_Shdr *symtab_hdr;
5343
  Elf_Internal_Rela *internal_relocs = NULL;
5344
  Elf_Internal_Rela *irel, *irelend;
5345
  bfd_byte *contents = NULL;
5346
 
5347
  asection *sec;
5348
  struct elf32_arm_link_hash_table *globals;
5349
 
5350
  /* If we are only performing a partial link do not bother
5351
     to construct any glue.  */
5352
  if (link_info->relocatable)
5353
    return TRUE;
5354
 
5355
  /* Here we have a bfd that is to be included on the link.  We have a
5356
     hook to do reloc rummaging, before section sizes are nailed down.  */
5357
  globals = elf32_arm_hash_table (link_info);
5358
 
5359
  BFD_ASSERT (globals != NULL);
5360
 
5361
  check_use_blx (globals);
5362
 
5363
  if (globals->byteswap_code && !bfd_big_endian (abfd))
5364
    {
5365
      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5366
                          abfd);
5367
      return FALSE;
5368
    }
5369
 
5370
  /* PR 5398: If we have not decided to include any loadable sections in
5371
     the output then we will not have a glue owner bfd.  This is OK, it
5372
     just means that there is nothing else for us to do here.  */
5373
  if (globals->bfd_of_glue_owner == NULL)
5374
    return TRUE;
5375
 
5376
  /* Rummage around all the relocs and map the glue vectors.  */
5377
  sec = abfd->sections;
5378
 
5379
  if (sec == NULL)
5380
    return TRUE;
5381
 
5382
  for (; sec != NULL; sec = sec->next)
5383
    {
5384
      if (sec->reloc_count == 0)
5385
        continue;
5386
 
5387
      if ((sec->flags & SEC_EXCLUDE) != 0)
5388
        continue;
5389
 
5390
      symtab_hdr = & elf_symtab_hdr (abfd);
5391
 
5392
      /* Load the relocs.  */
5393
      internal_relocs
5394
        = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5395
 
5396
      if (internal_relocs == NULL)
5397
        goto error_return;
5398
 
5399
      irelend = internal_relocs + sec->reloc_count;
5400
      for (irel = internal_relocs; irel < irelend; irel++)
5401
        {
5402
          long r_type;
5403
          unsigned long r_index;
5404
 
5405
          struct elf_link_hash_entry *h;
5406
 
5407
          r_type = ELF32_R_TYPE (irel->r_info);
5408
          r_index = ELF32_R_SYM (irel->r_info);
5409
 
5410
          /* These are the only relocation types we care about.  */
5411
          if (   r_type != R_ARM_PC24
5412
              && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5413
            continue;
5414
 
5415
          /* Get the section contents if we haven't done so already.  */
5416
          if (contents == NULL)
5417
            {
5418
              /* Get cached copy if it exists.  */
5419
              if (elf_section_data (sec)->this_hdr.contents != NULL)
5420
                contents = elf_section_data (sec)->this_hdr.contents;
5421
              else
5422
                {
5423
                  /* Go get them off disk.  */
5424
                  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5425
                    goto error_return;
5426
                }
5427
            }
5428
 
5429
          if (r_type == R_ARM_V4BX)
5430
            {
5431
              int reg;
5432
 
5433
              reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5434
              record_arm_bx_glue (link_info, reg);
5435
              continue;
5436
            }
5437
 
5438
          /* If the relocation is not against a symbol it cannot concern us.  */
5439
          h = NULL;
5440
 
5441
          /* We don't care about local symbols.  */
5442
          if (r_index < symtab_hdr->sh_info)
5443
            continue;
5444
 
5445
          /* This is an external symbol.  */
5446
          r_index -= symtab_hdr->sh_info;
5447
          h = (struct elf_link_hash_entry *)
5448
            elf_sym_hashes (abfd)[r_index];
5449
 
5450
          /* If the relocation is against a static symbol it must be within
5451
             the current section and so cannot be a cross ARM/Thumb relocation.  */
5452
          if (h == NULL)
5453
            continue;
5454
 
5455
          /* If the call will go through a PLT entry then we do not need
5456
             glue.  */
5457
          if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5458
            continue;
5459
 
5460
          switch (r_type)
5461
            {
5462
            case R_ARM_PC24:
5463
              /* This one is a call from arm code.  We need to look up
5464
                 the target of the call.  If it is a thumb target, we
5465
                 insert glue.  */
5466
              if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5467
                record_arm_to_thumb_glue (link_info, h);
5468
              break;
5469
 
5470
            default:
5471
              abort ();
5472
            }
5473
        }
5474
 
5475
      if (contents != NULL
5476
          && elf_section_data (sec)->this_hdr.contents != contents)
5477
        free (contents);
5478
      contents = NULL;
5479
 
5480
      if (internal_relocs != NULL
5481
          && elf_section_data (sec)->relocs != internal_relocs)
5482
        free (internal_relocs);
5483
      internal_relocs = NULL;
5484
    }
5485
 
5486
  return TRUE;
5487
 
5488
error_return:
5489
  if (contents != NULL
5490
      && elf_section_data (sec)->this_hdr.contents != contents)
5491
    free (contents);
5492
  if (internal_relocs != NULL
5493
      && elf_section_data (sec)->relocs != internal_relocs)
5494
    free (internal_relocs);
5495
 
5496
  return FALSE;
5497
}
5498
#endif
5499
 
5500
 
5501
/* Initialise maps of ARM/Thumb/data for input BFDs.  */
5502
 
5503
void
5504
bfd_elf32_arm_init_maps (bfd *abfd)
5505
{
5506
  Elf_Internal_Sym *isymbuf;
5507
  Elf_Internal_Shdr *hdr;
5508
  unsigned int i, localsyms;
5509
 
5510
  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
5511
  if (! is_arm_elf (abfd))
5512
    return;
5513
 
5514
  if ((abfd->flags & DYNAMIC) != 0)
5515
    return;
5516
 
5517
  hdr = & elf_symtab_hdr (abfd);
5518
  localsyms = hdr->sh_info;
5519
 
5520
  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5521
     should contain the number of local symbols, which should come before any
5522
     global symbols.  Mapping symbols are always local.  */
5523
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5524
                                  NULL);
5525
 
5526
  /* No internal symbols read?  Skip this BFD.  */
5527
  if (isymbuf == NULL)
5528
    return;
5529
 
5530
  for (i = 0; i < localsyms; i++)
5531
    {
5532
      Elf_Internal_Sym *isym = &isymbuf[i];
5533
      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5534
      const char *name;
5535
 
5536
      if (sec != NULL
5537
          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5538
        {
5539
          name = bfd_elf_string_from_elf_section (abfd,
5540
            hdr->sh_link, isym->st_name);
5541
 
5542
          if (bfd_is_arm_special_symbol_name (name,
5543
                                              BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5544
            elf32_arm_section_map_add (sec, name[1], isym->st_value);
5545
        }
5546
    }
5547
}
5548
 
5549
 
5550
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5551
   say what they wanted.  */
5552
 
5553
void
5554
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5555
{
5556
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5557
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5558
 
5559
  if (globals->fix_cortex_a8 == -1)
5560
    {
5561
      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
5562
      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5563
          && (out_attr[Tag_CPU_arch_profile].i == 'A'
5564
              || out_attr[Tag_CPU_arch_profile].i == 0))
5565
        globals->fix_cortex_a8 = 1;
5566
      else
5567
        globals->fix_cortex_a8 = 0;
5568
    }
5569
}
5570
 
5571
 
5572
void
5573
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5574
{
5575
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5576
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5577
 
5578
  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
5579
  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5580
    {
5581
      switch (globals->vfp11_fix)
5582
        {
5583
        case BFD_ARM_VFP11_FIX_DEFAULT:
5584
        case BFD_ARM_VFP11_FIX_NONE:
5585
          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5586
          break;
5587
 
5588
        default:
5589
          /* Give a warning, but do as the user requests anyway.  */
5590
          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5591
            "workaround is not necessary for target architecture"), obfd);
5592
        }
5593
    }
5594
  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5595
    /* For earlier architectures, we might need the workaround, but do not
5596
       enable it by default.  If users is running with broken hardware, they
5597
       must enable the erratum fix explicitly.  */
5598
    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5599
}
5600
 
5601
 
5602
enum bfd_arm_vfp11_pipe
5603
{
5604
  VFP11_FMAC,
5605
  VFP11_LS,
5606
  VFP11_DS,
5607
  VFP11_BAD
5608
};
5609
 
5610
/* Return a VFP register number.  This is encoded as RX:X for single-precision
5611
   registers, or X:RX for double-precision registers, where RX is the group of
5612
   four bits in the instruction encoding and X is the single extension bit.
5613
   RX and X fields are specified using their lowest (starting) bit.  The return
5614
   value is:
5615
 
5616
     0...31: single-precision registers s0...s31
5617
     32...63: double-precision registers d0...d31.
5618
 
5619
   Although X should be zero for VFP11 (encoding d0...d15 only), we might
5620
   encounter VFP3 instructions, so we allow the full range for DP registers.  */
5621
 
5622
static unsigned int
5623
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5624
                     unsigned int x)
5625
{
5626
  if (is_double)
5627
    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5628
  else
5629
    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5630
}
5631
 
5632
/* Set bits in *WMASK according to a register number REG as encoded by
5633
   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
5634
 
5635
static void
5636
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5637
{
5638
  if (reg < 32)
5639
    *wmask |= 1 << reg;
5640
  else if (reg < 48)
5641
    *wmask |= 3 << ((reg - 32) * 2);
5642
}
5643
 
5644
/* Return TRUE if WMASK overwrites anything in REGS.  */
5645
 
5646
static bfd_boolean
5647
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5648
{
5649
  int i;
5650
 
5651
  for (i = 0; i < numregs; i++)
5652
    {
5653
      unsigned int reg = regs[i];
5654
 
5655
      if (reg < 32 && (wmask & (1 << reg)) != 0)
5656
        return TRUE;
5657
 
5658
      reg -= 32;
5659
 
5660
      if (reg >= 16)
5661
        continue;
5662
 
5663
      if ((wmask & (3 << (reg * 2))) != 0)
5664
        return TRUE;
5665
    }
5666
 
5667
  return FALSE;
5668
}
5669
 
5670
/* In this function, we're interested in two things: finding input registers
5671
   for VFP data-processing instructions, and finding the set of registers which
5672
   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
5673
   hold the written set, so FLDM etc. are easy to deal with (we're only
5674
   interested in 32 SP registers or 16 dp registers, due to the VFP version
5675
   implemented by the chip in question).  DP registers are marked by setting
5676
   both SP registers in the write mask).  */
5677
 
5678
static enum bfd_arm_vfp11_pipe
5679
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5680
                           int *numregs)
5681
{
5682
  enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
5683
  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5684
 
5685
  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
5686
    {
5687
      unsigned int pqrs;
5688
      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5689
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5690
 
5691
      pqrs = ((insn & 0x00800000) >> 20)
5692
           | ((insn & 0x00300000) >> 19)
5693
           | ((insn & 0x00000040) >> 6);
5694
 
5695
      switch (pqrs)
5696
        {
5697
        case 0: /* fmac[sd].  */
5698
        case 1: /* fnmac[sd].  */
5699
        case 2: /* fmsc[sd].  */
5700
        case 3: /* fnmsc[sd].  */
5701
          pipe = VFP11_FMAC;
5702
          bfd_arm_vfp11_write_mask (destmask, fd);
5703
          regs[0] = fd;
5704
          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
5705
          regs[2] = fm;
5706
          *numregs = 3;
5707
          break;
5708
 
5709
        case 4: /* fmul[sd].  */
5710
        case 5: /* fnmul[sd].  */
5711
        case 6: /* fadd[sd].  */
5712
        case 7: /* fsub[sd].  */
5713
          pipe = VFP11_FMAC;
5714
          goto vfp_binop;
5715
 
5716
        case 8: /* fdiv[sd].  */
5717
          pipe = VFP11_DS;
5718
          vfp_binop:
5719
          bfd_arm_vfp11_write_mask (destmask, fd);
5720
          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
5721
          regs[1] = fm;
5722
          *numregs = 2;
5723
          break;
5724
 
5725
        case 15: /* extended opcode.  */
5726
          {
5727
            unsigned int extn = ((insn >> 15) & 0x1e)
5728
                              | ((insn >> 7) & 1);
5729
 
5730
            switch (extn)
5731
              {
5732
              case 0: /* fcpy[sd].  */
5733
              case 1: /* fabs[sd].  */
5734
              case 2: /* fneg[sd].  */
5735
              case 8: /* fcmp[sd].  */
5736
              case 9: /* fcmpe[sd].  */
5737
              case 10: /* fcmpz[sd].  */
5738
              case 11: /* fcmpez[sd].  */
5739
              case 16: /* fuito[sd].  */
5740
              case 17: /* fsito[sd].  */
5741
              case 24: /* ftoui[sd].  */
5742
              case 25: /* ftouiz[sd].  */
5743
              case 26: /* ftosi[sd].  */
5744
              case 27: /* ftosiz[sd].  */
5745
                /* These instructions will not bounce due to underflow.  */
5746
                *numregs = 0;
5747
                pipe = VFP11_FMAC;
5748
                break;
5749
 
5750
              case 3: /* fsqrt[sd].  */
5751
                /* fsqrt cannot underflow, but it can (perhaps) overwrite
5752
                   registers to cause the erratum in previous instructions.  */
5753
                bfd_arm_vfp11_write_mask (destmask, fd);
5754
                pipe = VFP11_DS;
5755
                break;
5756
 
5757
              case 15: /* fcvt{ds,sd}.  */
5758
                {
5759
                  int rnum = 0;
5760
 
5761
                  bfd_arm_vfp11_write_mask (destmask, fd);
5762
 
5763
                  /* Only FCVTSD can underflow.  */
5764
                  if ((insn & 0x100) != 0)
5765
                    regs[rnum++] = fm;
5766
 
5767
                  *numregs = rnum;
5768
 
5769
                  pipe = VFP11_FMAC;
5770
                }
5771
                break;
5772
 
5773
              default:
5774
                return VFP11_BAD;
5775
              }
5776
          }
5777
          break;
5778
 
5779
        default:
5780
          return VFP11_BAD;
5781
        }
5782
    }
5783
  /* Two-register transfer.  */
5784
  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5785
    {
5786
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5787
 
5788
      if ((insn & 0x100000) == 0)
5789
        {
5790
          if (is_double)
5791
            bfd_arm_vfp11_write_mask (destmask, fm);
5792
          else
5793
            {
5794
              bfd_arm_vfp11_write_mask (destmask, fm);
5795
              bfd_arm_vfp11_write_mask (destmask, fm + 1);
5796
            }
5797
        }
5798
 
5799
      pipe = VFP11_LS;
5800
    }
5801
  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
5802
    {
5803
      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5804
      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5805
 
5806
      switch (puw)
5807
        {
5808
        case 0: /* Two-reg transfer.  We should catch these above.  */
5809
          abort ();
5810
 
5811
        case 2: /* fldm[sdx].  */
5812
        case 3:
5813
        case 5:
5814
          {
5815
            unsigned int i, offset = insn & 0xff;
5816
 
5817
            if (is_double)
5818
              offset >>= 1;
5819
 
5820
            for (i = fd; i < fd + offset; i++)
5821
              bfd_arm_vfp11_write_mask (destmask, i);
5822
          }
5823
          break;
5824
 
5825
        case 4: /* fld[sd].  */
5826
        case 6:
5827
          bfd_arm_vfp11_write_mask (destmask, fd);
5828
          break;
5829
 
5830
        default:
5831
          return VFP11_BAD;
5832
        }
5833
 
5834
      pipe = VFP11_LS;
5835
    }
5836
  /* Single-register transfer. Note L==0.  */
5837
  else if ((insn & 0x0f100e10) == 0x0e000a10)
5838
    {
5839
      unsigned int opcode = (insn >> 21) & 7;
5840
      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5841
 
5842
      switch (opcode)
5843
        {
5844
        case 0: /* fmsr/fmdlr.  */
5845
        case 1: /* fmdhr.  */
5846
          /* Mark fmdhr and fmdlr as writing to the whole of the DP
5847
             destination register.  I don't know if this is exactly right,
5848
             but it is the conservative choice.  */
5849
          bfd_arm_vfp11_write_mask (destmask, fn);
5850
          break;
5851
 
5852
        case 7: /* fmxr.  */
5853
          break;
5854
        }
5855
 
5856
      pipe = VFP11_LS;
5857
    }
5858
 
5859
  return pipe;
5860
}
5861
 
5862
 
5863
static int elf32_arm_compare_mapping (const void * a, const void * b);
5864
 
5865
 
5866
/* Look for potentially-troublesome code sequences which might trigger the
5867
   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
5868
   (available from ARM) for details of the erratum.  A short version is
5869
   described in ld.texinfo.  */
5870
 
5871
bfd_boolean
5872
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5873
{
5874
  asection *sec;
5875
  bfd_byte *contents = NULL;
5876
  int state = 0;
5877
  int regs[3], numregs = 0;
5878
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5879
  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5880
 
5881
  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5882
     The states transition as follows:
5883
 
5884
 
5885
           A VFP FMAC-pipeline instruction has been seen. Fill
5886
           regs[0]..regs[numregs-1] with its input operands. Remember this
5887
           instruction in 'first_fmac'.
5888
 
5889
       1 -> 2
5890
           Any instruction, except for a VFP instruction which overwrites
5891
           regs[*].
5892
 
5893
       1 -> 3 [ -> 0 ]  or
5894
       2 -> 3 [ -> 0 ]
5895
           A VFP instruction has been seen which overwrites any of regs[*].
5896
           We must make a veneer!  Reset state to 0 before examining next
5897
           instruction.
5898
 
5899
       2 -> 0
5900
           If we fail to match anything in state 2, reset to state 0 and reset
5901
           the instruction pointer to the instruction after 'first_fmac'.
5902
 
5903
     If the VFP11 vector mode is in use, there must be at least two unrelated
5904
     instructions between anti-dependent VFP11 instructions to properly avoid
5905
     triggering the erratum, hence the use of the extra state 1.  */
5906
 
5907
  /* If we are only performing a partial link do not bother
5908
     to construct any glue.  */
5909
  if (link_info->relocatable)
5910
    return TRUE;
5911
 
5912
  /* Skip if this bfd does not correspond to an ELF image.  */
5913
  if (! is_arm_elf (abfd))
5914
    return TRUE;
5915
 
5916
  /* We should have chosen a fix type by the time we get here.  */
5917
  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5918
 
5919
  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5920
    return TRUE;
5921
 
5922
  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
5923
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5924
    return TRUE;
5925
 
5926
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
5927
    {
5928
      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5929
      struct _arm_elf_section_data *sec_data;
5930
 
5931
      /* If we don't have executable progbits, we're not interested in this
5932
         section.  Also skip if section is to be excluded.  */
5933
      if (elf_section_type (sec) != SHT_PROGBITS
5934
          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5935
          || (sec->flags & SEC_EXCLUDE) != 0
5936
          || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5937
          || sec->output_section == bfd_abs_section_ptr
5938
          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5939
        continue;
5940
 
5941
      sec_data = elf32_arm_section_data (sec);
5942
 
5943
      if (sec_data->mapcount == 0)
5944
        continue;
5945
 
5946
      if (elf_section_data (sec)->this_hdr.contents != NULL)
5947
        contents = elf_section_data (sec)->this_hdr.contents;
5948
      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5949
        goto error_return;
5950
 
5951
      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5952
             elf32_arm_compare_mapping);
5953
 
5954
      for (span = 0; span < sec_data->mapcount; span++)
5955
        {
5956
          unsigned int span_start = sec_data->map[span].vma;
5957
          unsigned int span_end = (span == sec_data->mapcount - 1)
5958
                                  ? sec->size : sec_data->map[span + 1].vma;
5959
          char span_type = sec_data->map[span].type;
5960
 
5961
          /* FIXME: Only ARM mode is supported at present.  We may need to
5962
             support Thumb-2 mode also at some point.  */
5963
          if (span_type != 'a')
5964
            continue;
5965
 
5966
          for (i = span_start; i < span_end;)
5967
            {
5968
              unsigned int next_i = i + 4;
5969
              unsigned int insn = bfd_big_endian (abfd)
5970
                ? (contents[i] << 24)
5971
                  | (contents[i + 1] << 16)
5972
                  | (contents[i + 2] << 8)
5973
                  | contents[i + 3]
5974
                : (contents[i + 3] << 24)
5975
                  | (contents[i + 2] << 16)
5976
                  | (contents[i + 1] << 8)
5977
                  | contents[i];
5978
              unsigned int writemask = 0;
5979
              enum bfd_arm_vfp11_pipe pipe;
5980
 
5981
              switch (state)
5982
                {
5983
                case 0:
5984
                  pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5985
                                                    &numregs);
5986
                  /* I'm assuming the VFP11 erratum can trigger with denorm
5987
                     operands on either the FMAC or the DS pipeline. This might
5988
                     lead to slightly overenthusiastic veneer insertion.  */
5989
                  if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5990
                    {
5991
                      state = use_vector ? 1 : 2;
5992
                      first_fmac = i;
5993
                      veneer_of_insn = insn;
5994
                    }
5995
                  break;
5996
 
5997
                case 1:
5998
                  {
5999
                    int other_regs[3], other_numregs;
6000
                    pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6001
                                                      other_regs,
6002
                                                      &other_numregs);
6003
                    if (pipe != VFP11_BAD
6004
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6005
                                                         numregs))
6006
                      state = 3;
6007
                    else
6008
                      state = 2;
6009
                  }
6010
                  break;
6011
 
6012
                case 2:
6013
                  {
6014
                    int other_regs[3], other_numregs;
6015
                    pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6016
                                                      other_regs,
6017
                                                      &other_numregs);
6018
                    if (pipe != VFP11_BAD
6019
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6020
                                                         numregs))
6021
                      state = 3;
6022
                    else
6023
                      {
6024
                        state = 0;
6025
                        next_i = first_fmac + 4;
6026
                      }
6027
                  }
6028
                  break;
6029
 
6030
                case 3:
6031
                  abort ();  /* Should be unreachable.  */
6032
                }
6033
 
6034
              if (state == 3)
6035
                {
6036
                  elf32_vfp11_erratum_list *newerr
6037
                    = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6038
                  int errcount;
6039
 
6040
                  errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6041
 
6042
                  newerr->u.b.vfp_insn = veneer_of_insn;
6043
 
6044
                  switch (span_type)
6045
                    {
6046
                    case 'a':
6047
                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6048
                      break;
6049
 
6050
                    default:
6051
                      abort ();
6052
                    }
6053
 
6054
                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6055
                                               first_fmac);
6056
 
6057
                  newerr->vma = -1;
6058
 
6059
                  newerr->next = sec_data->erratumlist;
6060
                  sec_data->erratumlist = newerr;
6061
 
6062
                  state = 0;
6063
                }
6064
 
6065
              i = next_i;
6066
            }
6067
        }
6068
 
6069
      if (contents != NULL
6070
          && elf_section_data (sec)->this_hdr.contents != contents)
6071
        free (contents);
6072
      contents = NULL;
6073
    }
6074
 
6075
  return TRUE;
6076
 
6077
error_return:
6078
  if (contents != NULL
6079
      && elf_section_data (sec)->this_hdr.contents != contents)
6080
    free (contents);
6081
 
6082
  return FALSE;
6083
}
6084
 
6085
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6086
   after sections have been laid out, using specially-named symbols.  */
6087
 
6088
void
6089
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6090
                                          struct bfd_link_info *link_info)
6091
{
6092
  asection *sec;
6093
  struct elf32_arm_link_hash_table *globals;
6094
  char *tmp_name;
6095
 
6096
  if (link_info->relocatable)
6097
    return;
6098
 
6099
  /* Skip if this bfd does not correspond to an ELF image.  */
6100
  if (! is_arm_elf (abfd))
6101
    return;
6102
 
6103
  globals = elf32_arm_hash_table (link_info);
6104
 
6105
  tmp_name = bfd_malloc ((bfd_size_type) strlen
6106
                           (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6107
 
6108
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6109
    {
6110
      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6111
      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6112
 
6113
      for (; errnode != NULL; errnode = errnode->next)
6114
        {
6115
          struct elf_link_hash_entry *myh;
6116
          bfd_vma vma;
6117
 
6118
          switch (errnode->type)
6119
            {
6120
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6121
            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6122
              /* Find veneer symbol.  */
6123
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6124
                       errnode->u.b.veneer->u.v.id);
6125
 
6126
              myh = elf_link_hash_lookup
6127
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6128
 
6129
              if (myh == NULL)
6130
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6131
                                         "`%s'"), abfd, tmp_name);
6132
 
6133
              vma = myh->root.u.def.section->output_section->vma
6134
                    + myh->root.u.def.section->output_offset
6135
                    + myh->root.u.def.value;
6136
 
6137
              errnode->u.b.veneer->vma = vma;
6138
              break;
6139
 
6140
            case VFP11_ERRATUM_ARM_VENEER:
6141
            case VFP11_ERRATUM_THUMB_VENEER:
6142
              /* Find return location.  */
6143
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6144
                       errnode->u.v.id);
6145
 
6146
              myh = elf_link_hash_lookup
6147
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6148
 
6149
              if (myh == NULL)
6150
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6151
                                         "`%s'"), abfd, tmp_name);
6152
 
6153
              vma = myh->root.u.def.section->output_section->vma
6154
                    + myh->root.u.def.section->output_offset
6155
                    + myh->root.u.def.value;
6156
 
6157
              errnode->u.v.branch->vma = vma;
6158
              break;
6159
 
6160
            default:
6161
              abort ();
6162
            }
6163
        }
6164
    }
6165
 
6166
  free (tmp_name);
6167
}
6168
 
6169
 
6170
/* Set target relocation values needed during linking.  */
6171
 
6172
void
6173
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6174
                                 struct bfd_link_info *link_info,
6175
                                 int target1_is_rel,
6176
                                 char * target2_type,
6177
                                 int fix_v4bx,
6178
                                 int use_blx,
6179
                                 bfd_arm_vfp11_fix vfp11_fix,
6180
                                 int no_enum_warn, int no_wchar_warn,
6181
                                 int pic_veneer, int fix_cortex_a8)
6182
{
6183
  struct elf32_arm_link_hash_table *globals;
6184
 
6185
  globals = elf32_arm_hash_table (link_info);
6186
 
6187
  globals->target1_is_rel = target1_is_rel;
6188
  if (strcmp (target2_type, "rel") == 0)
6189
    globals->target2_reloc = R_ARM_REL32;
6190
  else if (strcmp (target2_type, "abs") == 0)
6191
    globals->target2_reloc = R_ARM_ABS32;
6192
  else if (strcmp (target2_type, "got-rel") == 0)
6193
    globals->target2_reloc = R_ARM_GOT_PREL;
6194
  else
6195
    {
6196
      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6197
                          target2_type);
6198
    }
6199
  globals->fix_v4bx = fix_v4bx;
6200
  globals->use_blx |= use_blx;
6201
  globals->vfp11_fix = vfp11_fix;
6202
  globals->pic_veneer = pic_veneer;
6203
  globals->fix_cortex_a8 = fix_cortex_a8;
6204
 
6205
  BFD_ASSERT (is_arm_elf (output_bfd));
6206
  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6207
  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6208
}
6209
 
6210
/* Replace the target offset of a Thumb bl or b.w instruction.  */
6211
 
6212
static void
6213
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6214
{
6215
  bfd_vma upper;
6216
  bfd_vma lower;
6217
  int reloc_sign;
6218
 
6219
  BFD_ASSERT ((offset & 1) == 0);
6220
 
6221
  upper = bfd_get_16 (abfd, insn);
6222
  lower = bfd_get_16 (abfd, insn + 2);
6223
  reloc_sign = (offset < 0) ? 1 : 0;
6224
  upper = (upper & ~(bfd_vma) 0x7ff)
6225
          | ((offset >> 12) & 0x3ff)
6226
          | (reloc_sign << 10);
6227
  lower = (lower & ~(bfd_vma) 0x2fff)
6228
          | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6229
          | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6230
          | ((offset >> 1) & 0x7ff);
6231
  bfd_put_16 (abfd, upper, insn);
6232
  bfd_put_16 (abfd, lower, insn + 2);
6233
}
6234
 
6235
/* Thumb code calling an ARM function.  */
6236
 
6237
static int
6238
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6239
                         const char *           name,
6240
                         bfd *                  input_bfd,
6241
                         bfd *                  output_bfd,
6242
                         asection *             input_section,
6243
                         bfd_byte *             hit_data,
6244
                         asection *             sym_sec,
6245
                         bfd_vma                offset,
6246
                         bfd_signed_vma         addend,
6247
                         bfd_vma                val,
6248
                         char **error_message)
6249
{
6250
  asection * s = 0;
6251
  bfd_vma my_offset;
6252
  long int ret_offset;
6253
  struct elf_link_hash_entry * myh;
6254
  struct elf32_arm_link_hash_table * globals;
6255
 
6256
  myh = find_thumb_glue (info, name, error_message);
6257
  if (myh == NULL)
6258
    return FALSE;
6259
 
6260
  globals = elf32_arm_hash_table (info);
6261
 
6262
  BFD_ASSERT (globals != NULL);
6263
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6264
 
6265
  my_offset = myh->root.u.def.value;
6266
 
6267
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6268
                               THUMB2ARM_GLUE_SECTION_NAME);
6269
 
6270
  BFD_ASSERT (s != NULL);
6271
  BFD_ASSERT (s->contents != NULL);
6272
  BFD_ASSERT (s->output_section != NULL);
6273
 
6274
  if ((my_offset & 0x01) == 0x01)
6275
    {
6276
      if (sym_sec != NULL
6277
          && sym_sec->owner != NULL
6278
          && !INTERWORK_FLAG (sym_sec->owner))
6279
        {
6280
          (*_bfd_error_handler)
6281
            (_("%B(%s): warning: interworking not enabled.\n"
6282
               "  first occurrence: %B: thumb call to arm"),
6283
             sym_sec->owner, input_bfd, name);
6284
 
6285
          return FALSE;
6286
        }
6287
 
6288
      --my_offset;
6289
      myh->root.u.def.value = my_offset;
6290
 
6291
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6292
                      s->contents + my_offset);
6293
 
6294
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6295
                      s->contents + my_offset + 2);
6296
 
6297
      ret_offset =
6298
        /* Address of destination of the stub.  */
6299
        ((bfd_signed_vma) val)
6300
        - ((bfd_signed_vma)
6301
           /* Offset from the start of the current section
6302
              to the start of the stubs.  */
6303
           (s->output_offset
6304
            /* Offset of the start of this stub from the start of the stubs.  */
6305
            + my_offset
6306
            /* Address of the start of the current section.  */
6307
            + s->output_section->vma)
6308
           /* The branch instruction is 4 bytes into the stub.  */
6309
           + 4
6310
           /* ARM branches work from the pc of the instruction + 8.  */
6311
           + 8);
6312
 
6313
      put_arm_insn (globals, output_bfd,
6314
                    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6315
                    s->contents + my_offset + 4);
6316
    }
6317
 
6318
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6319
 
6320
  /* Now go back and fix up the original BL insn to point to here.  */
6321
  ret_offset =
6322
    /* Address of where the stub is located.  */
6323
    (s->output_section->vma + s->output_offset + my_offset)
6324
     /* Address of where the BL is located.  */
6325
    - (input_section->output_section->vma + input_section->output_offset
6326
       + offset)
6327
    /* Addend in the relocation.  */
6328
    - addend
6329
    /* Biassing for PC-relative addressing.  */
6330
    - 8;
6331
 
6332
  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6333
 
6334
  return TRUE;
6335
}
6336
 
6337
/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
6338
 
6339
static struct elf_link_hash_entry *
6340
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6341
                             const char *           name,
6342
                             bfd *                  input_bfd,
6343
                             bfd *                  output_bfd,
6344
                             asection *             sym_sec,
6345
                             bfd_vma                val,
6346
                             asection *             s,
6347
                             char **                error_message)
6348
{
6349
  bfd_vma my_offset;
6350
  long int ret_offset;
6351
  struct elf_link_hash_entry * myh;
6352
  struct elf32_arm_link_hash_table * globals;
6353
 
6354
  myh = find_arm_glue (info, name, error_message);
6355
  if (myh == NULL)
6356
    return NULL;
6357
 
6358
  globals = elf32_arm_hash_table (info);
6359
 
6360
  BFD_ASSERT (globals != NULL);
6361
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6362
 
6363
  my_offset = myh->root.u.def.value;
6364
 
6365
  if ((my_offset & 0x01) == 0x01)
6366
    {
6367
      if (sym_sec != NULL
6368
          && sym_sec->owner != NULL
6369
          && !INTERWORK_FLAG (sym_sec->owner))
6370
        {
6371
          (*_bfd_error_handler)
6372
            (_("%B(%s): warning: interworking not enabled.\n"
6373
               "  first occurrence: %B: arm call to thumb"),
6374
             sym_sec->owner, input_bfd, name);
6375
        }
6376
 
6377
      --my_offset;
6378
      myh->root.u.def.value = my_offset;
6379
 
6380
      if (info->shared || globals->root.is_relocatable_executable
6381
          || globals->pic_veneer)
6382
        {
6383
          /* For relocatable objects we can't use absolute addresses,
6384
             so construct the address from a relative offset.  */
6385
          /* TODO: If the offset is small it's probably worth
6386
             constructing the address with adds.  */
6387
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6388
                        s->contents + my_offset);
6389
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6390
                        s->contents + my_offset + 4);
6391
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6392
                        s->contents + my_offset + 8);
6393
          /* Adjust the offset by 4 for the position of the add,
6394
             and 8 for the pipeline offset.  */
6395
          ret_offset = (val - (s->output_offset
6396
                               + s->output_section->vma
6397
                               + my_offset + 12))
6398
                       | 1;
6399
          bfd_put_32 (output_bfd, ret_offset,
6400
                      s->contents + my_offset + 12);
6401
        }
6402
      else if (globals->use_blx)
6403
        {
6404
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6405
                        s->contents + my_offset);
6406
 
6407
          /* It's a thumb address.  Add the low order bit.  */
6408
          bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6409
                      s->contents + my_offset + 4);
6410
        }
6411
      else
6412
        {
6413
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6414
                        s->contents + my_offset);
6415
 
6416
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6417
                        s->contents + my_offset + 4);
6418
 
6419
          /* It's a thumb address.  Add the low order bit.  */
6420
          bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6421
                      s->contents + my_offset + 8);
6422
 
6423
          my_offset += 12;
6424
        }
6425
    }
6426
 
6427
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
6428
 
6429
  return myh;
6430
}
6431
 
6432
/* Arm code calling a Thumb function.  */
6433
 
6434
static int
6435
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6436
                         const char *           name,
6437
                         bfd *                  input_bfd,
6438
                         bfd *                  output_bfd,
6439
                         asection *             input_section,
6440
                         bfd_byte *             hit_data,
6441
                         asection *             sym_sec,
6442
                         bfd_vma                offset,
6443
                         bfd_signed_vma         addend,
6444
                         bfd_vma                val,
6445
                         char **error_message)
6446
{
6447
  unsigned long int tmp;
6448
  bfd_vma my_offset;
6449
  asection * s;
6450
  long int ret_offset;
6451
  struct elf_link_hash_entry * myh;
6452
  struct elf32_arm_link_hash_table * globals;
6453
 
6454
  globals = elf32_arm_hash_table (info);
6455
 
6456
  BFD_ASSERT (globals != NULL);
6457
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6458
 
6459
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6460
                               ARM2THUMB_GLUE_SECTION_NAME);
6461
  BFD_ASSERT (s != NULL);
6462
  BFD_ASSERT (s->contents != NULL);
6463
  BFD_ASSERT (s->output_section != NULL);
6464
 
6465
  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6466
                                     sym_sec, val, s, error_message);
6467
  if (!myh)
6468
    return FALSE;
6469
 
6470
  my_offset = myh->root.u.def.value;
6471
  tmp = bfd_get_32 (input_bfd, hit_data);
6472
  tmp = tmp & 0xFF000000;
6473
 
6474
  /* Somehow these are both 4 too far, so subtract 8.  */
6475
  ret_offset = (s->output_offset
6476
                + my_offset
6477
                + s->output_section->vma
6478
                - (input_section->output_offset
6479
                   + input_section->output_section->vma
6480
                   + offset + addend)
6481
                - 8);
6482
 
6483
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6484
 
6485
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6486
 
6487
  return TRUE;
6488
}
6489
 
6490
/* Populate Arm stub for an exported Thumb function.  */
6491
 
6492
static bfd_boolean
6493
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6494
{
6495
  struct bfd_link_info * info = (struct bfd_link_info *) inf;
6496
  asection * s;
6497
  struct elf_link_hash_entry * myh;
6498
  struct elf32_arm_link_hash_entry *eh;
6499
  struct elf32_arm_link_hash_table * globals;
6500
  asection *sec;
6501
  bfd_vma val;
6502
  char *error_message;
6503
 
6504
  eh = elf32_arm_hash_entry (h);
6505
  /* Allocate stubs for exported Thumb functions on v4t.  */
6506
  if (eh->export_glue == NULL)
6507
    return TRUE;
6508
 
6509
  globals = elf32_arm_hash_table (info);
6510
 
6511
  BFD_ASSERT (globals != NULL);
6512
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6513
 
6514
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6515
                               ARM2THUMB_GLUE_SECTION_NAME);
6516
  BFD_ASSERT (s != NULL);
6517
  BFD_ASSERT (s->contents != NULL);
6518
  BFD_ASSERT (s->output_section != NULL);
6519
 
6520
  sec = eh->export_glue->root.u.def.section;
6521
 
6522
  BFD_ASSERT (sec->output_section != NULL);
6523
 
6524
  val = eh->export_glue->root.u.def.value + sec->output_offset
6525
        + sec->output_section->vma;
6526
 
6527
  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6528
                                     h->root.u.def.section->owner,
6529
                                     globals->obfd, sec, val, s,
6530
                                     &error_message);
6531
  BFD_ASSERT (myh);
6532
  return TRUE;
6533
}
6534
 
6535
/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
6536
 
6537
static bfd_vma
6538
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6539
{
6540
  bfd_byte *p;
6541
  bfd_vma glue_addr;
6542
  asection *s;
6543
  struct elf32_arm_link_hash_table *globals;
6544
 
6545
  globals = elf32_arm_hash_table (info);
6546
 
6547
  BFD_ASSERT (globals != NULL);
6548
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6549
 
6550
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6551
                               ARM_BX_GLUE_SECTION_NAME);
6552
  BFD_ASSERT (s != NULL);
6553
  BFD_ASSERT (s->contents != NULL);
6554
  BFD_ASSERT (s->output_section != NULL);
6555
 
6556
  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6557
 
6558
  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6559
 
6560
  if ((globals->bx_glue_offset[reg] & 1) == 0)
6561
    {
6562
      p = s->contents + glue_addr;
6563
      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6564
      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6565
      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6566
      globals->bx_glue_offset[reg] |= 1;
6567
    }
6568
 
6569
  return glue_addr + s->output_section->vma + s->output_offset;
6570
}
6571
 
6572
/* Generate Arm stubs for exported Thumb symbols.  */
6573
static void
6574
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6575
                                  struct bfd_link_info *link_info)
6576
{
6577
  struct elf32_arm_link_hash_table * globals;
6578
 
6579
  if (link_info == NULL)
6580
    /* Ignore this if we are not called by the ELF backend linker.  */
6581
    return;
6582
 
6583
  globals = elf32_arm_hash_table (link_info);
6584
  /* If blx is available then exported Thumb symbols are OK and there is
6585
     nothing to do.  */
6586
  if (globals->use_blx)
6587
    return;
6588
 
6589
  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6590
                          link_info);
6591
}
6592
 
6593
/* Some relocations map to different relocations depending on the
6594
   target.  Return the real relocation.  */
6595
 
6596
static int
6597
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6598
                     int r_type)
6599
{
6600
  switch (r_type)
6601
    {
6602
    case R_ARM_TARGET1:
6603
      if (globals->target1_is_rel)
6604
        return R_ARM_REL32;
6605
      else
6606
        return R_ARM_ABS32;
6607
 
6608
    case R_ARM_TARGET2:
6609
      return globals->target2_reloc;
6610
 
6611
    default:
6612
      return r_type;
6613
    }
6614
}
6615
 
6616
/* Return the base VMA address which should be subtracted from real addresses
6617
   when resolving @dtpoff relocation.
6618
   This is PT_TLS segment p_vaddr.  */
6619
 
6620
static bfd_vma
6621
dtpoff_base (struct bfd_link_info *info)
6622
{
6623
  /* If tls_sec is NULL, we should have signalled an error already.  */
6624
  if (elf_hash_table (info)->tls_sec == NULL)
6625
    return 0;
6626
  return elf_hash_table (info)->tls_sec->vma;
6627
}
6628
 
6629
/* Return the relocation value for @tpoff relocation
6630
   if STT_TLS virtual address is ADDRESS.  */
6631
 
6632
static bfd_vma
6633
tpoff (struct bfd_link_info *info, bfd_vma address)
6634
{
6635
  struct elf_link_hash_table *htab = elf_hash_table (info);
6636
  bfd_vma base;
6637
 
6638
  /* If tls_sec is NULL, we should have signalled an error already.  */
6639
  if (htab->tls_sec == NULL)
6640
    return 0;
6641
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6642
  return address - htab->tls_sec->vma + base;
6643
}
6644
 
6645
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6646
   VALUE is the relocation value.  */
6647
 
6648
static bfd_reloc_status_type
6649
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6650
{
6651
  if (value > 0xfff)
6652
    return bfd_reloc_overflow;
6653
 
6654
  value |= bfd_get_32 (abfd, data) & 0xfffff000;
6655
  bfd_put_32 (abfd, value, data);
6656
  return bfd_reloc_ok;
6657
}
6658
 
6659
/* For a given value of n, calculate the value of G_n as required to
6660
   deal with group relocations.  We return it in the form of an
6661
   encoded constant-and-rotation, together with the final residual.  If n is
6662
   specified as less than zero, then final_residual is filled with the
6663
   input value and no further action is performed.  */
6664
 
6665
static bfd_vma
6666
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6667
{
6668
  int current_n;
6669
  bfd_vma g_n;
6670
  bfd_vma encoded_g_n = 0;
6671
  bfd_vma residual = value; /* Also known as Y_n.  */
6672
 
6673
  for (current_n = 0; current_n <= n; current_n++)
6674
    {
6675
      int shift;
6676
 
6677
      /* Calculate which part of the value to mask.  */
6678
      if (residual == 0)
6679
        shift = 0;
6680
      else
6681
        {
6682
          int msb;
6683
 
6684
          /* Determine the most significant bit in the residual and
6685
             align the resulting value to a 2-bit boundary.  */
6686
          for (msb = 30; msb >= 0; msb -= 2)
6687
            if (residual & (3 << msb))
6688
              break;
6689
 
6690
          /* The desired shift is now (msb - 6), or zero, whichever
6691
             is the greater.  */
6692
          shift = msb - 6;
6693
          if (shift < 0)
6694
            shift = 0;
6695
        }
6696
 
6697
      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
6698
      g_n = residual & (0xff << shift);
6699
      encoded_g_n = (g_n >> shift)
6700
                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6701
 
6702
      /* Calculate the residual for the next time around.  */
6703
      residual &= ~g_n;
6704
    }
6705
 
6706
  *final_residual = residual;
6707
 
6708
  return encoded_g_n;
6709
}
6710
 
6711
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
6712
   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
6713
 
6714
static int
6715
identify_add_or_sub (bfd_vma insn)
6716
{
6717
  int opcode = insn & 0x1e00000;
6718
 
6719
  if (opcode == 1 << 23) /* ADD */
6720
    return 1;
6721
 
6722
  if (opcode == 1 << 22) /* SUB */
6723
    return -1;
6724
 
6725
  return 0;
6726
}
6727
 
6728
/* Perform a relocation as part of a final link.  */
6729
 
6730
static bfd_reloc_status_type
6731
elf32_arm_final_link_relocate (reloc_howto_type *           howto,
6732
                               bfd *                        input_bfd,
6733
                               bfd *                        output_bfd,
6734
                               asection *                   input_section,
6735
                               bfd_byte *                   contents,
6736
                               Elf_Internal_Rela *          rel,
6737
                               bfd_vma                      value,
6738
                               struct bfd_link_info *       info,
6739
                               asection *                   sym_sec,
6740
                               const char *                 sym_name,
6741
                               int                          sym_flags,
6742
                               struct elf_link_hash_entry * h,
6743
                               bfd_boolean *                unresolved_reloc_p,
6744
                               char **                      error_message)
6745
{
6746
  unsigned long                 r_type = howto->type;
6747
  unsigned long                 r_symndx;
6748
  bfd_byte *                    hit_data = contents + rel->r_offset;
6749
  bfd *                         dynobj = NULL;
6750
  Elf_Internal_Shdr *           symtab_hdr;
6751
  struct elf_link_hash_entry ** sym_hashes;
6752
  bfd_vma *                     local_got_offsets;
6753
  asection *                    sgot = NULL;
6754
  asection *                    splt = NULL;
6755
  asection *                    sreloc = NULL;
6756
  bfd_vma                       addend;
6757
  bfd_signed_vma                signed_addend;
6758
  struct elf32_arm_link_hash_table * globals;
6759
 
6760
  globals = elf32_arm_hash_table (info);
6761
 
6762
  BFD_ASSERT (is_arm_elf (input_bfd));
6763
 
6764
  /* Some relocation types map to different relocations depending on the
6765
     target.  We pick the right one here.  */
6766
  r_type = arm_real_reloc_type (globals, r_type);
6767
  if (r_type != howto->type)
6768
    howto = elf32_arm_howto_from_type (r_type);
6769
 
6770
  /* If the start address has been set, then set the EF_ARM_HASENTRY
6771
     flag.  Setting this more than once is redundant, but the cost is
6772
     not too high, and it keeps the code simple.
6773
 
6774
     The test is done  here, rather than somewhere else, because the
6775
     start address is only set just before the final link commences.
6776
 
6777
     Note - if the user deliberately sets a start address of 0, the
6778
     flag will not be set.  */
6779
  if (bfd_get_start_address (output_bfd) != 0)
6780
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6781
 
6782
  dynobj = elf_hash_table (info)->dynobj;
6783
  if (dynobj)
6784
    {
6785
      sgot = bfd_get_section_by_name (dynobj, ".got");
6786
      splt = bfd_get_section_by_name (dynobj, ".plt");
6787
    }
6788
  symtab_hdr = & elf_symtab_hdr (input_bfd);
6789
  sym_hashes = elf_sym_hashes (input_bfd);
6790
  local_got_offsets = elf_local_got_offsets (input_bfd);
6791
  r_symndx = ELF32_R_SYM (rel->r_info);
6792
 
6793
  if (globals->use_rel)
6794
    {
6795
      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6796
 
6797
      if (addend & ((howto->src_mask + 1) >> 1))
6798
        {
6799
          signed_addend = -1;
6800
          signed_addend &= ~ howto->src_mask;
6801
          signed_addend |= addend;
6802
        }
6803
      else
6804
        signed_addend = addend;
6805
    }
6806
  else
6807
    addend = signed_addend = rel->r_addend;
6808
 
6809
  switch (r_type)
6810
    {
6811
    case R_ARM_NONE:
6812
      /* We don't need to find a value for this symbol.  It's just a
6813
         marker.  */
6814
      *unresolved_reloc_p = FALSE;
6815
      return bfd_reloc_ok;
6816
 
6817
    case R_ARM_ABS12:
6818
      if (!globals->vxworks_p)
6819
        return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6820
 
6821
    case R_ARM_PC24:
6822
    case R_ARM_ABS32:
6823
    case R_ARM_ABS32_NOI:
6824
    case R_ARM_REL32:
6825
    case R_ARM_REL32_NOI:
6826
    case R_ARM_CALL:
6827
    case R_ARM_JUMP24:
6828
    case R_ARM_XPC25:
6829
    case R_ARM_PREL31:
6830
    case R_ARM_PLT32:
6831
      /* Handle relocations which should use the PLT entry.  ABS32/REL32
6832
         will use the symbol's value, which may point to a PLT entry, but we
6833
         don't need to handle that here.  If we created a PLT entry, all
6834
         branches in this object should go to it, except if the PLT is too
6835
         far away, in which case a long branch stub should be inserted.  */
6836
      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6837
           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6838
           && r_type != R_ARM_CALL
6839
           && r_type != R_ARM_JUMP24
6840
           && r_type != R_ARM_PLT32)
6841
          && h != NULL
6842
          && splt != NULL
6843
          && h->plt.offset != (bfd_vma) -1)
6844
        {
6845
          /* If we've created a .plt section, and assigned a PLT entry to
6846
             this function, it should not be known to bind locally.  If
6847
             it were, we would have cleared the PLT entry.  */
6848
          BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6849
 
6850
          value = (splt->output_section->vma
6851
                   + splt->output_offset
6852
                   + h->plt.offset);
6853
          *unresolved_reloc_p = FALSE;
6854
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
6855
                                           contents, rel->r_offset, value,
6856
                                           rel->r_addend);
6857
        }
6858
 
6859
      /* When generating a shared object or relocatable executable, these
6860
         relocations are copied into the output file to be resolved at
6861
         run time.  */
6862
      if ((info->shared || globals->root.is_relocatable_executable)
6863
          && (input_section->flags & SEC_ALLOC)
6864
          && !(elf32_arm_hash_table (info)->vxworks_p
6865
               && strcmp (input_section->output_section->name,
6866
                          ".tls_vars") == 0)
6867
          && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6868
              || !SYMBOL_CALLS_LOCAL (info, h))
6869
          && (h == NULL
6870
              || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6871
              || h->root.type != bfd_link_hash_undefweak)
6872
          && r_type != R_ARM_PC24
6873
          && r_type != R_ARM_CALL
6874
          && r_type != R_ARM_JUMP24
6875
          && r_type != R_ARM_PREL31
6876
          && r_type != R_ARM_PLT32)
6877
        {
6878
          Elf_Internal_Rela outrel;
6879
          bfd_byte *loc;
6880
          bfd_boolean skip, relocate;
6881
 
6882
          *unresolved_reloc_p = FALSE;
6883
 
6884
          if (sreloc == NULL)
6885
            {
6886
              sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6887
                                                           ! globals->use_rel);
6888
 
6889
              if (sreloc == NULL)
6890
                return bfd_reloc_notsupported;
6891
            }
6892
 
6893
          skip = FALSE;
6894
          relocate = FALSE;
6895
 
6896
          outrel.r_addend = addend;
6897
          outrel.r_offset =
6898
            _bfd_elf_section_offset (output_bfd, info, input_section,
6899
                                     rel->r_offset);
6900
          if (outrel.r_offset == (bfd_vma) -1)
6901
            skip = TRUE;
6902
          else if (outrel.r_offset == (bfd_vma) -2)
6903
            skip = TRUE, relocate = TRUE;
6904
          outrel.r_offset += (input_section->output_section->vma
6905
                              + input_section->output_offset);
6906
 
6907
          if (skip)
6908
            memset (&outrel, 0, sizeof outrel);
6909
          else if (h != NULL
6910
                   && h->dynindx != -1
6911
                   && (!info->shared
6912
                       || !info->symbolic
6913
                       || !h->def_regular))
6914
            outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6915
          else
6916
            {
6917
              int symbol;
6918
 
6919
              /* This symbol is local, or marked to become local.  */
6920
              if (sym_flags == STT_ARM_TFUNC)
6921
                value |= 1;
6922
              if (globals->symbian_p)
6923
                {
6924
                  asection *osec;
6925
 
6926
                  /* On Symbian OS, the data segment and text segement
6927
                     can be relocated independently.  Therefore, we
6928
                     must indicate the segment to which this
6929
                     relocation is relative.  The BPABI allows us to
6930
                     use any symbol in the right segment; we just use
6931
                     the section symbol as it is convenient.  (We
6932
                     cannot use the symbol given by "h" directly as it
6933
                     will not appear in the dynamic symbol table.)
6934
 
6935
                     Note that the dynamic linker ignores the section
6936
                     symbol value, so we don't subtract osec->vma
6937
                     from the emitted reloc addend.  */
6938
                  if (sym_sec)
6939
                    osec = sym_sec->output_section;
6940
                  else
6941
                    osec = input_section->output_section;
6942
                  symbol = elf_section_data (osec)->dynindx;
6943
                  if (symbol == 0)
6944
                    {
6945
                      struct elf_link_hash_table *htab = elf_hash_table (info);
6946
 
6947
                      if ((osec->flags & SEC_READONLY) == 0
6948
                          && htab->data_index_section != NULL)
6949
                        osec = htab->data_index_section;
6950
                      else
6951
                        osec = htab->text_index_section;
6952
                      symbol = elf_section_data (osec)->dynindx;
6953
                    }
6954
                  BFD_ASSERT (symbol != 0);
6955
                }
6956
              else
6957
                /* On SVR4-ish systems, the dynamic loader cannot
6958
                   relocate the text and data segments independently,
6959
                   so the symbol does not matter.  */
6960
                symbol = 0;
6961
              outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6962
              if (globals->use_rel)
6963
                relocate = TRUE;
6964
              else
6965
                outrel.r_addend += value;
6966
            }
6967
 
6968
          loc = sreloc->contents;
6969
          loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6970
          SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6971
 
6972
          /* If this reloc is against an external symbol, we do not want to
6973
             fiddle with the addend.  Otherwise, we need to include the symbol
6974
             value so that it becomes an addend for the dynamic reloc.  */
6975
          if (! relocate)
6976
            return bfd_reloc_ok;
6977
 
6978
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
6979
                                           contents, rel->r_offset, value,
6980
                                           (bfd_vma) 0);
6981
        }
6982
      else switch (r_type)
6983
        {
6984
        case R_ARM_ABS12:
6985
          return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6986
 
6987
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
6988
        case R_ARM_CALL:
6989
        case R_ARM_JUMP24:
6990
        case R_ARM_PC24:          /* Arm B/BL instruction.  */
6991
        case R_ARM_PLT32:
6992
          {
6993
          bfd_signed_vma branch_offset;
6994
          struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6995
 
6996
          if (r_type == R_ARM_XPC25)
6997
            {
6998
              /* Check for Arm calling Arm function.  */
6999
              /* FIXME: Should we translate the instruction into a BL
7000
                 instruction instead ?  */
7001
              if (sym_flags != STT_ARM_TFUNC)
7002
                (*_bfd_error_handler)
7003
                  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7004
                   input_bfd,
7005
                   h ? h->root.root.string : "(local)");
7006
            }
7007
          else if (r_type == R_ARM_PC24)
7008
            {
7009
              /* Check for Arm calling Thumb function.  */
7010
              if (sym_flags == STT_ARM_TFUNC)
7011
                {
7012
                  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7013
                                               output_bfd, input_section,
7014
                                               hit_data, sym_sec, rel->r_offset,
7015
                                               signed_addend, value,
7016
                                               error_message))
7017
                    return bfd_reloc_ok;
7018
                  else
7019
                    return bfd_reloc_dangerous;
7020
                }
7021
            }
7022
 
7023
          /* Check if a stub has to be inserted because the
7024
             destination is too far or we are changing mode.  */
7025
          if (   r_type == R_ARM_CALL
7026
              || r_type == R_ARM_JUMP24
7027
              || r_type == R_ARM_PLT32)
7028
            {
7029
              bfd_vma from;
7030
 
7031
              /* If the call goes through a PLT entry, make sure to
7032
                 check distance to the right destination address.  */
7033
              if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7034
                {
7035
                  value = (splt->output_section->vma
7036
                           + splt->output_offset
7037
                           + h->plt.offset);
7038
                  *unresolved_reloc_p = FALSE;
7039
                  /* The PLT entry is in ARM mode, regardless of the
7040
                     target function.  */
7041
                  sym_flags = STT_FUNC;
7042
                }
7043
 
7044
              from = (input_section->output_section->vma
7045
                      + input_section->output_offset
7046
                      + rel->r_offset);
7047
              branch_offset = (bfd_signed_vma)(value - from);
7048
 
7049
              if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
7050
                  || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
7051
                  || ((sym_flags == STT_ARM_TFUNC)
7052
                      && (((r_type == R_ARM_CALL) && !globals->use_blx)
7053
                          || (r_type == R_ARM_JUMP24)
7054
                          || (r_type == R_ARM_PLT32) ))
7055
                  )
7056
                {
7057
                  /* The target is out of reach, so redirect the
7058
                     branch to the local stub for this function.  */
7059
 
7060
                  stub_entry = elf32_arm_get_stub_entry (input_section,
7061
                                                         sym_sec, h,
7062
                                                         rel, globals);
7063
                  if (stub_entry != NULL)
7064
                    value = (stub_entry->stub_offset
7065
                             + stub_entry->stub_sec->output_offset
7066
                             + stub_entry->stub_sec->output_section->vma);
7067
                }
7068
            }
7069
 
7070
          /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7071
             where:
7072
              S is the address of the symbol in the relocation.
7073
              P is address of the instruction being relocated.
7074
              A is the addend (extracted from the instruction) in bytes.
7075
 
7076
             S is held in 'value'.
7077
             P is the base address of the section containing the
7078
               instruction plus the offset of the reloc into that
7079
               section, ie:
7080
                 (input_section->output_section->vma +
7081
                  input_section->output_offset +
7082
                  rel->r_offset).
7083
             A is the addend, converted into bytes, ie:
7084
                 (signed_addend * 4)
7085
 
7086
             Note: None of these operations have knowledge of the pipeline
7087
             size of the processor, thus it is up to the assembler to
7088
             encode this information into the addend.  */
7089
          value -= (input_section->output_section->vma
7090
                    + input_section->output_offset);
7091
          value -= rel->r_offset;
7092
          if (globals->use_rel)
7093
            value += (signed_addend << howto->size);
7094
          else
7095
            /* RELA addends do not have to be adjusted by howto->size.  */
7096
            value += signed_addend;
7097
 
7098
          signed_addend = value;
7099
          signed_addend >>= howto->rightshift;
7100
 
7101
          /* A branch to an undefined weak symbol is turned into a jump to
7102
             the next instruction unless a PLT entry will be created.
7103
             Do the same for local undefined symbols.
7104
             The jump to the next instruction is optimized as a NOP depending
7105
             on the architecture.  */
7106
          if (h ? (h->root.type == bfd_link_hash_undefweak
7107
                   && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7108
              : bfd_is_und_section (sym_sec))
7109
            {
7110
              value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7111
 
7112
              if (arch_has_arm_nop (globals))
7113
                value |= 0x0320f000;
7114
              else
7115
                value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
7116
            }
7117
          else
7118
            {
7119
              /* Perform a signed range check.  */
7120
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
7121
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7122
                return bfd_reloc_overflow;
7123
 
7124
              addend = (value & 2);
7125
 
7126
              value = (signed_addend & howto->dst_mask)
7127
                | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7128
 
7129
              if (r_type == R_ARM_CALL)
7130
                {
7131
                  /* Set the H bit in the BLX instruction.  */
7132
                  if (sym_flags == STT_ARM_TFUNC)
7133
                    {
7134
                      if (addend)
7135
                        value |= (1 << 24);
7136
                      else
7137
                        value &= ~(bfd_vma)(1 << 24);
7138
                    }
7139
 
7140
                  /* Select the correct instruction (BL or BLX).  */
7141
                  /* Only if we are not handling a BL to a stub. In this
7142
                     case, mode switching is performed by the stub.  */
7143
                  if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7144
                    value |= (1 << 28);
7145
                  else
7146
                    {
7147
                      value &= ~(bfd_vma)(1 << 28);
7148
                      value |= (1 << 24);
7149
                    }
7150
                }
7151
            }
7152
          }
7153
          break;
7154
 
7155
        case R_ARM_ABS32:
7156
          value += addend;
7157
          if (sym_flags == STT_ARM_TFUNC)
7158
            value |= 1;
7159
          break;
7160
 
7161
        case R_ARM_ABS32_NOI:
7162
          value += addend;
7163
          break;
7164
 
7165
        case R_ARM_REL32:
7166
          value += addend;
7167
          if (sym_flags == STT_ARM_TFUNC)
7168
            value |= 1;
7169
          value -= (input_section->output_section->vma
7170
                    + input_section->output_offset + rel->r_offset);
7171
          break;
7172
 
7173
        case R_ARM_REL32_NOI:
7174
          value += addend;
7175
          value -= (input_section->output_section->vma
7176
                    + input_section->output_offset + rel->r_offset);
7177
          break;
7178
 
7179
        case R_ARM_PREL31:
7180
          value -= (input_section->output_section->vma
7181
                    + input_section->output_offset + rel->r_offset);
7182
          value += signed_addend;
7183
          if (! h || h->root.type != bfd_link_hash_undefweak)
7184
            {
7185
              /* Check for overflow.  */
7186
              if ((value ^ (value >> 1)) & (1 << 30))
7187
                return bfd_reloc_overflow;
7188
            }
7189
          value &= 0x7fffffff;
7190
          value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7191
          if (sym_flags == STT_ARM_TFUNC)
7192
            value |= 1;
7193
          break;
7194
        }
7195
 
7196
      bfd_put_32 (input_bfd, value, hit_data);
7197
      return bfd_reloc_ok;
7198
 
7199
    case R_ARM_ABS8:
7200
      value += addend;
7201
      if ((long) value > 0x7f || (long) value < -0x80)
7202
        return bfd_reloc_overflow;
7203
 
7204
      bfd_put_8 (input_bfd, value, hit_data);
7205
      return bfd_reloc_ok;
7206
 
7207
    case R_ARM_ABS16:
7208
      value += addend;
7209
 
7210
      if ((long) value > 0x7fff || (long) value < -0x8000)
7211
        return bfd_reloc_overflow;
7212
 
7213
      bfd_put_16 (input_bfd, value, hit_data);
7214
      return bfd_reloc_ok;
7215
 
7216
    case R_ARM_THM_ABS5:
7217
      /* Support ldr and str instructions for the thumb.  */
7218
      if (globals->use_rel)
7219
        {
7220
          /* Need to refetch addend.  */
7221
          addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7222
          /* ??? Need to determine shift amount from operand size.  */
7223
          addend >>= howto->rightshift;
7224
        }
7225
      value += addend;
7226
 
7227
      /* ??? Isn't value unsigned?  */
7228
      if ((long) value > 0x1f || (long) value < -0x10)
7229
        return bfd_reloc_overflow;
7230
 
7231
      /* ??? Value needs to be properly shifted into place first.  */
7232
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7233
      bfd_put_16 (input_bfd, value, hit_data);
7234
      return bfd_reloc_ok;
7235
 
7236
    case R_ARM_THM_ALU_PREL_11_0:
7237
      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
7238
      {
7239
        bfd_vma insn;
7240
        bfd_signed_vma relocation;
7241
 
7242
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7243
             | bfd_get_16 (input_bfd, hit_data + 2);
7244
 
7245
        if (globals->use_rel)
7246
          {
7247
            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7248
                          | ((insn & (1 << 26)) >> 15);
7249
            if (insn & 0xf00000)
7250
              signed_addend = -signed_addend;
7251
          }
7252
 
7253
        relocation = value + signed_addend;
7254
        relocation -= (input_section->output_section->vma
7255
                       + input_section->output_offset
7256
                       + rel->r_offset);
7257
 
7258
        value = abs (relocation);
7259
 
7260
        if (value >= 0x1000)
7261
          return bfd_reloc_overflow;
7262
 
7263
        insn = (insn & 0xfb0f8f00) | (value & 0xff)
7264
             | ((value & 0x700) << 4)
7265
             | ((value & 0x800) << 15);
7266
        if (relocation < 0)
7267
          insn |= 0xa00000;
7268
 
7269
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
7270
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7271
 
7272
        return bfd_reloc_ok;
7273
      }
7274
 
7275
    case R_ARM_THM_PC8:
7276
      /* PR 10073:  This reloc is not generated by the GNU toolchain,
7277
         but it is supported for compatibility with third party libraries
7278
         generated by other compilers, specifically the ARM/IAR.  */
7279
      {
7280
        bfd_vma insn;
7281
        bfd_signed_vma relocation;
7282
 
7283
        insn = bfd_get_16 (input_bfd, hit_data);
7284
 
7285
        if (globals->use_rel)
7286
          addend = (insn & 0x00ff) << 2;
7287
 
7288
        relocation = value + addend;
7289
        relocation -= (input_section->output_section->vma
7290
                       + input_section->output_offset
7291
                       + rel->r_offset);
7292
 
7293
        value = abs (relocation);
7294
 
7295
        /* We do not check for overflow of this reloc.  Although strictly
7296
           speaking this is incorrect, it appears to be necessary in order
7297
           to work with IAR generated relocs.  Since GCC and GAS do not
7298
           generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7299
           a problem for them.  */
7300
        value &= 0x3fc;
7301
 
7302
        insn = (insn & 0xff00) | (value >> 2);
7303
 
7304
        bfd_put_16 (input_bfd, insn, hit_data);
7305
 
7306
        return bfd_reloc_ok;
7307
      }
7308
 
7309
    case R_ARM_THM_PC12:
7310
      /* Corresponds to: ldr.w reg, [pc, #offset].  */
7311
      {
7312
        bfd_vma insn;
7313
        bfd_signed_vma relocation;
7314
 
7315
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7316
             | bfd_get_16 (input_bfd, hit_data + 2);
7317
 
7318
        if (globals->use_rel)
7319
          {
7320
            signed_addend = insn & 0xfff;
7321
            if (!(insn & (1 << 23)))
7322
              signed_addend = -signed_addend;
7323
          }
7324
 
7325
        relocation = value + signed_addend;
7326
        relocation -= (input_section->output_section->vma
7327
                       + input_section->output_offset
7328
                       + rel->r_offset);
7329
 
7330
        value = abs (relocation);
7331
 
7332
        if (value >= 0x1000)
7333
          return bfd_reloc_overflow;
7334
 
7335
        insn = (insn & 0xff7ff000) | value;
7336
        if (relocation >= 0)
7337
          insn |= (1 << 23);
7338
 
7339
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
7340
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7341
 
7342
        return bfd_reloc_ok;
7343
      }
7344
 
7345
    case R_ARM_THM_XPC22:
7346
    case R_ARM_THM_CALL:
7347
    case R_ARM_THM_JUMP24:
7348
      /* Thumb BL (branch long instruction).  */
7349
      {
7350
        bfd_vma relocation;
7351
        bfd_vma reloc_sign;
7352
        bfd_boolean overflow = FALSE;
7353
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7354
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7355
        bfd_signed_vma reloc_signed_max;
7356
        bfd_signed_vma reloc_signed_min;
7357
        bfd_vma check;
7358
        bfd_signed_vma signed_check;
7359
        int bitsize;
7360
        const int thumb2 = using_thumb2 (globals);
7361
 
7362
        /* A branch to an undefined weak symbol is turned into a jump to
7363
           the next instruction unless a PLT entry will be created.
7364
           The jump to the next instruction is optimized as a NOP.W for
7365
           Thumb-2 enabled architectures.  */
7366
        if (h && h->root.type == bfd_link_hash_undefweak
7367
            && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7368
          {
7369
            if (arch_has_thumb2_nop (globals))
7370
              {
7371
                bfd_put_16 (input_bfd, 0xf3af, hit_data);
7372
                bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7373
              }
7374
            else
7375
              {
7376
                bfd_put_16 (input_bfd, 0xe000, hit_data);
7377
                bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7378
              }
7379
            return bfd_reloc_ok;
7380
          }
7381
 
7382
        /* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
7383
           with Thumb-1) involving the J1 and J2 bits.  */
7384
        if (globals->use_rel)
7385
          {
7386
            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7387
            bfd_vma upper = upper_insn & 0x3ff;
7388
            bfd_vma lower = lower_insn & 0x7ff;
7389
            bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7390
            bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7391
            bfd_vma i1 = j1 ^ s ? 0 : 1;
7392
            bfd_vma i2 = j2 ^ s ? 0 : 1;
7393
 
7394
            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7395
            /* Sign extend.  */
7396
            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7397
 
7398
            signed_addend = addend;
7399
          }
7400
 
7401
        if (r_type == R_ARM_THM_XPC22)
7402
          {
7403
            /* Check for Thumb to Thumb call.  */
7404
            /* FIXME: Should we translate the instruction into a BL
7405
               instruction instead ?  */
7406
            if (sym_flags == STT_ARM_TFUNC)
7407
              (*_bfd_error_handler)
7408
                (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7409
                 input_bfd,
7410
                 h ? h->root.root.string : "(local)");
7411
          }
7412
        else
7413
          {
7414
            /* If it is not a call to Thumb, assume call to Arm.
7415
               If it is a call relative to a section name, then it is not a
7416
               function call at all, but rather a long jump.  Calls through
7417
               the PLT do not require stubs.  */
7418
            if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7419
                && (h == NULL || splt == NULL
7420
                    || h->plt.offset == (bfd_vma) -1))
7421
              {
7422
                if (globals->use_blx && r_type == R_ARM_THM_CALL)
7423
                  {
7424
                    /* Convert BL to BLX.  */
7425
                    lower_insn = (lower_insn & ~0x1000) | 0x0800;
7426
                  }
7427
                else if ((   r_type != R_ARM_THM_CALL)
7428
                         && (r_type != R_ARM_THM_JUMP24))
7429
                  {
7430
                    if (elf32_thumb_to_arm_stub
7431
                        (info, sym_name, input_bfd, output_bfd, input_section,
7432
                         hit_data, sym_sec, rel->r_offset, signed_addend, value,
7433
                         error_message))
7434
                      return bfd_reloc_ok;
7435
                    else
7436
                      return bfd_reloc_dangerous;
7437
                  }
7438
              }
7439
            else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7440
                     && r_type == R_ARM_THM_CALL)
7441
              {
7442
                /* Make sure this is a BL.  */
7443
                lower_insn |= 0x1800;
7444
              }
7445
          }
7446
 
7447
        /* Handle calls via the PLT.  */
7448
        if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7449
          {
7450
            value = (splt->output_section->vma
7451
                     + splt->output_offset
7452
                     + h->plt.offset);
7453
            if (globals->use_blx && r_type == R_ARM_THM_CALL)
7454
              {
7455
                /* If the Thumb BLX instruction is available, convert the
7456
                   BL to a BLX instruction to call the ARM-mode PLT entry.  */
7457
                lower_insn = (lower_insn & ~0x1000) | 0x0800;
7458
                sym_flags = STT_FUNC;
7459
              }
7460
            else
7461
              {
7462
                /* Target the Thumb stub before the ARM PLT entry.  */
7463
                value -= PLT_THUMB_STUB_SIZE;
7464
                sym_flags = STT_ARM_TFUNC;
7465
              }
7466
            *unresolved_reloc_p = FALSE;
7467
          }
7468
 
7469
        if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7470
          {
7471
            /* Check if a stub has to be inserted because the destination
7472
               is too far.  */
7473
            bfd_vma from;
7474
            bfd_signed_vma branch_offset;
7475
            struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7476
 
7477
            from = (input_section->output_section->vma
7478
                    + input_section->output_offset
7479
                    + rel->r_offset);
7480
            branch_offset = (bfd_signed_vma)(value - from);
7481
 
7482
            if ((!thumb2
7483
                 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
7484
                     || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
7485
                ||
7486
                (thumb2
7487
                 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
7488
                     || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
7489
                || ((sym_flags != STT_ARM_TFUNC)
7490
                    && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
7491
                        || r_type == R_ARM_THM_JUMP24)))
7492
              {
7493
                /* The target is out of reach or we are changing modes, so
7494
                   redirect the branch to the local stub for this
7495
                   function.  */
7496
                stub_entry = elf32_arm_get_stub_entry (input_section,
7497
                                                       sym_sec, h,
7498
                                                       rel, globals);
7499
                if (stub_entry != NULL)
7500
                  value = (stub_entry->stub_offset
7501
                           + stub_entry->stub_sec->output_offset
7502
                           + stub_entry->stub_sec->output_section->vma);
7503
 
7504
                /* If this call becomes a call to Arm, force BLX.  */
7505
                if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7506
                  {
7507
                    if ((stub_entry
7508
                         && !arm_stub_is_thumb (stub_entry->stub_type))
7509
                        || (sym_flags != STT_ARM_TFUNC))
7510
                      lower_insn = (lower_insn & ~0x1000) | 0x0800;
7511
                  }
7512
              }
7513
          }
7514
 
7515
        relocation = value + signed_addend;
7516
 
7517
        relocation -= (input_section->output_section->vma
7518
                       + input_section->output_offset
7519
                       + rel->r_offset);
7520
 
7521
        check = relocation >> howto->rightshift;
7522
 
7523
        /* If this is a signed value, the rightshift just dropped
7524
           leading 1 bits (assuming twos complement).  */
7525
        if ((bfd_signed_vma) relocation >= 0)
7526
          signed_check = check;
7527
        else
7528
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7529
 
7530
        /* Calculate the permissable maximum and minimum values for
7531
           this relocation according to whether we're relocating for
7532
           Thumb-2 or not.  */
7533
        bitsize = howto->bitsize;
7534
        if (!thumb2)
7535
          bitsize -= 2;
7536
        reloc_signed_max = (1 << (bitsize - 1)) - 1;
7537
        reloc_signed_min = ~reloc_signed_max;
7538
 
7539
        /* Assumes two's complement.  */
7540
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7541
          overflow = TRUE;
7542
 
7543
        if ((lower_insn & 0x5000) == 0x4000)
7544
          /* For a BLX instruction, make sure that the relocation is rounded up
7545
             to a word boundary.  This follows the semantics of the instruction
7546
             which specifies that bit 1 of the target address will come from bit
7547
             1 of the base address.  */
7548
          relocation = (relocation + 2) & ~ 3;
7549
 
7550
        /* Put RELOCATION back into the insn.  Assumes two's complement.
7551
           We use the Thumb-2 encoding, which is safe even if dealing with
7552
           a Thumb-1 instruction by virtue of our overflow check above.  */
7553
        reloc_sign = (signed_check < 0) ? 1 : 0;
7554
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7555
                     | ((relocation >> 12) & 0x3ff)
7556
                     | (reloc_sign << 10);
7557
        lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7558
                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7559
                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7560
                     | ((relocation >> 1) & 0x7ff);
7561
 
7562
        /* Put the relocated value back in the object file:  */
7563
        bfd_put_16 (input_bfd, upper_insn, hit_data);
7564
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7565
 
7566
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7567
      }
7568
      break;
7569
 
7570
    case R_ARM_THM_JUMP19:
7571
      /* Thumb32 conditional branch instruction.  */
7572
      {
7573
        bfd_vma relocation;
7574
        bfd_boolean overflow = FALSE;
7575
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7576
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7577
        bfd_signed_vma reloc_signed_max = 0xffffe;
7578
        bfd_signed_vma reloc_signed_min = -0x100000;
7579
        bfd_signed_vma signed_check;
7580
 
7581
        /* Need to refetch the addend, reconstruct the top three bits,
7582
           and squish the two 11 bit pieces together.  */
7583
        if (globals->use_rel)
7584
          {
7585
            bfd_vma S     = (upper_insn & 0x0400) >> 10;
7586
            bfd_vma upper = (upper_insn & 0x003f);
7587
            bfd_vma J1    = (lower_insn & 0x2000) >> 13;
7588
            bfd_vma J2    = (lower_insn & 0x0800) >> 11;
7589
            bfd_vma lower = (lower_insn & 0x07ff);
7590
 
7591
            upper |= J1 << 6;
7592
            upper |= J2 << 7;
7593
            upper |= (!S) << 8;
7594
            upper -= 0x0100; /* Sign extend.  */
7595
 
7596
            addend = (upper << 12) | (lower << 1);
7597
            signed_addend = addend;
7598
          }
7599
 
7600
        /* Handle calls via the PLT.  */
7601
        if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7602
          {
7603
            value = (splt->output_section->vma
7604
                     + splt->output_offset
7605
                     + h->plt.offset);
7606
            /* Target the Thumb stub before the ARM PLT entry.  */
7607
            value -= PLT_THUMB_STUB_SIZE;
7608
            *unresolved_reloc_p = FALSE;
7609
          }
7610
 
7611
        /* ??? Should handle interworking?  GCC might someday try to
7612
           use this for tail calls.  */
7613
 
7614
        relocation = value + signed_addend;
7615
        relocation -= (input_section->output_section->vma
7616
                       + input_section->output_offset
7617
                       + rel->r_offset);
7618
        signed_check = (bfd_signed_vma) relocation;
7619
 
7620
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7621
          overflow = TRUE;
7622
 
7623
        /* Put RELOCATION back into the insn.  */
7624
        {
7625
          bfd_vma S  = (relocation & 0x00100000) >> 20;
7626
          bfd_vma J2 = (relocation & 0x00080000) >> 19;
7627
          bfd_vma J1 = (relocation & 0x00040000) >> 18;
7628
          bfd_vma hi = (relocation & 0x0003f000) >> 12;
7629
          bfd_vma lo = (relocation & 0x00000ffe) >>  1;
7630
 
7631
          upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7632
          lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7633
        }
7634
 
7635
        /* Put the relocated value back in the object file:  */
7636
        bfd_put_16 (input_bfd, upper_insn, hit_data);
7637
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7638
 
7639
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7640
      }
7641
 
7642
    case R_ARM_THM_JUMP11:
7643
    case R_ARM_THM_JUMP8:
7644
    case R_ARM_THM_JUMP6:
7645
      /* Thumb B (branch) instruction).  */
7646
      {
7647
        bfd_signed_vma relocation;
7648
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7649
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7650
        bfd_signed_vma signed_check;
7651
 
7652
        /* CZB cannot jump backward.  */
7653
        if (r_type == R_ARM_THM_JUMP6)
7654
          reloc_signed_min = 0;
7655
 
7656
        if (globals->use_rel)
7657
          {
7658
            /* Need to refetch addend.  */
7659
            addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7660
            if (addend & ((howto->src_mask + 1) >> 1))
7661
              {
7662
                signed_addend = -1;
7663
                signed_addend &= ~ howto->src_mask;
7664
                signed_addend |= addend;
7665
              }
7666
            else
7667
              signed_addend = addend;
7668
            /* The value in the insn has been right shifted.  We need to
7669
               undo this, so that we can perform the address calculation
7670
               in terms of bytes.  */
7671
            signed_addend <<= howto->rightshift;
7672
          }
7673
        relocation = value + signed_addend;
7674
 
7675
        relocation -= (input_section->output_section->vma
7676
                       + input_section->output_offset
7677
                       + rel->r_offset);
7678
 
7679
        relocation >>= howto->rightshift;
7680
        signed_check = relocation;
7681
 
7682
        if (r_type == R_ARM_THM_JUMP6)
7683
          relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7684
        else
7685
          relocation &= howto->dst_mask;
7686
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7687
 
7688
        bfd_put_16 (input_bfd, relocation, hit_data);
7689
 
7690
        /* Assumes two's complement.  */
7691
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7692
          return bfd_reloc_overflow;
7693
 
7694
        return bfd_reloc_ok;
7695
      }
7696
 
7697
    case R_ARM_ALU_PCREL7_0:
7698
    case R_ARM_ALU_PCREL15_8:
7699
    case R_ARM_ALU_PCREL23_15:
7700
      {
7701
        bfd_vma insn;
7702
        bfd_vma relocation;
7703
 
7704
        insn = bfd_get_32 (input_bfd, hit_data);
7705
        if (globals->use_rel)
7706
          {
7707
            /* Extract the addend.  */
7708
            addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7709
            signed_addend = addend;
7710
          }
7711
        relocation = value + signed_addend;
7712
 
7713
        relocation -= (input_section->output_section->vma
7714
                       + input_section->output_offset
7715
                       + rel->r_offset);
7716
        insn = (insn & ~0xfff)
7717
               | ((howto->bitpos << 7) & 0xf00)
7718
               | ((relocation >> howto->bitpos) & 0xff);
7719
        bfd_put_32 (input_bfd, value, hit_data);
7720
      }
7721
      return bfd_reloc_ok;
7722
 
7723
    case R_ARM_GNU_VTINHERIT:
7724
    case R_ARM_GNU_VTENTRY:
7725
      return bfd_reloc_ok;
7726
 
7727
    case R_ARM_GOTOFF32:
7728
      /* Relocation is relative to the start of the
7729
         global offset table.  */
7730
 
7731
      BFD_ASSERT (sgot != NULL);
7732
      if (sgot == NULL)
7733
        return bfd_reloc_notsupported;
7734
 
7735
      /* If we are addressing a Thumb function, we need to adjust the
7736
         address by one, so that attempts to call the function pointer will
7737
         correctly interpret it as Thumb code.  */
7738
      if (sym_flags == STT_ARM_TFUNC)
7739
        value += 1;
7740
 
7741
      /* Note that sgot->output_offset is not involved in this
7742
         calculation.  We always want the start of .got.  If we
7743
         define _GLOBAL_OFFSET_TABLE in a different way, as is
7744
         permitted by the ABI, we might have to change this
7745
         calculation.  */
7746
      value -= sgot->output_section->vma;
7747
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7748
                                       contents, rel->r_offset, value,
7749
                                       rel->r_addend);
7750
 
7751
    case R_ARM_GOTPC:
7752
      /* Use global offset table as symbol value.  */
7753
      BFD_ASSERT (sgot != NULL);
7754
 
7755
      if (sgot == NULL)
7756
        return bfd_reloc_notsupported;
7757
 
7758
      *unresolved_reloc_p = FALSE;
7759
      value = sgot->output_section->vma;
7760
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7761
                                       contents, rel->r_offset, value,
7762
                                       rel->r_addend);
7763
 
7764
    case R_ARM_GOT32:
7765
    case R_ARM_GOT_PREL:
7766
      /* Relocation is to the entry for this symbol in the
7767
         global offset table.  */
7768
      if (sgot == NULL)
7769
        return bfd_reloc_notsupported;
7770
 
7771
      if (h != NULL)
7772
        {
7773
          bfd_vma off;
7774
          bfd_boolean dyn;
7775
 
7776
          off = h->got.offset;
7777
          BFD_ASSERT (off != (bfd_vma) -1);
7778
          dyn = globals->root.dynamic_sections_created;
7779
 
7780
          if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7781
              || (info->shared
7782
                  && SYMBOL_REFERENCES_LOCAL (info, h))
7783
              || (ELF_ST_VISIBILITY (h->other)
7784
                  && h->root.type == bfd_link_hash_undefweak))
7785
            {
7786
              /* This is actually a static link, or it is a -Bsymbolic link
7787
                 and the symbol is defined locally.  We must initialize this
7788
                 entry in the global offset table.  Since the offset must
7789
                 always be a multiple of 4, we use the least significant bit
7790
                 to record whether we have initialized it already.
7791
 
7792
                 When doing a dynamic link, we create a .rel(a).got relocation
7793
                 entry to initialize the value.  This is done in the
7794
                 finish_dynamic_symbol routine.  */
7795
              if ((off & 1) != 0)
7796
                off &= ~1;
7797
              else
7798
                {
7799
                  /* If we are addressing a Thumb function, we need to
7800
                     adjust the address by one, so that attempts to
7801
                     call the function pointer will correctly
7802
                     interpret it as Thumb code.  */
7803
                  if (sym_flags == STT_ARM_TFUNC)
7804
                    value |= 1;
7805
 
7806
                  bfd_put_32 (output_bfd, value, sgot->contents + off);
7807
                  h->got.offset |= 1;
7808
                }
7809
            }
7810
          else
7811
            *unresolved_reloc_p = FALSE;
7812
 
7813
          value = sgot->output_offset + off;
7814
        }
7815
      else
7816
        {
7817
          bfd_vma off;
7818
 
7819
          BFD_ASSERT (local_got_offsets != NULL &&
7820
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
7821
 
7822
          off = local_got_offsets[r_symndx];
7823
 
7824
          /* The offset must always be a multiple of 4.  We use the
7825
             least significant bit to record whether we have already
7826
             generated the necessary reloc.  */
7827
          if ((off & 1) != 0)
7828
            off &= ~1;
7829
          else
7830
            {
7831
              /* If we are addressing a Thumb function, we need to
7832
                 adjust the address by one, so that attempts to
7833
                 call the function pointer will correctly
7834
                 interpret it as Thumb code.  */
7835
              if (sym_flags == STT_ARM_TFUNC)
7836
                value |= 1;
7837
 
7838
              if (globals->use_rel)
7839
                bfd_put_32 (output_bfd, value, sgot->contents + off);
7840
 
7841
              if (info->shared)
7842
                {
7843
                  asection * srelgot;
7844
                  Elf_Internal_Rela outrel;
7845
                  bfd_byte *loc;
7846
 
7847
                  srelgot = (bfd_get_section_by_name
7848
                             (dynobj, RELOC_SECTION (globals, ".got")));
7849
                  BFD_ASSERT (srelgot != NULL);
7850
 
7851
                  outrel.r_addend = addend + value;
7852
                  outrel.r_offset = (sgot->output_section->vma
7853
                                     + sgot->output_offset
7854
                                     + off);
7855
                  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7856
                  loc = srelgot->contents;
7857
                  loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7858
                  SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7859
                }
7860
 
7861
              local_got_offsets[r_symndx] |= 1;
7862
            }
7863
 
7864
          value = sgot->output_offset + off;
7865
        }
7866
      if (r_type != R_ARM_GOT32)
7867
        value += sgot->output_section->vma;
7868
 
7869
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7870
                                       contents, rel->r_offset, value,
7871
                                       rel->r_addend);
7872
 
7873
    case R_ARM_TLS_LDO32:
7874
      value = value - dtpoff_base (info);
7875
 
7876
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
7877
                                       contents, rel->r_offset, value,
7878
                                       rel->r_addend);
7879
 
7880
    case R_ARM_TLS_LDM32:
7881
      {
7882
        bfd_vma off;
7883
 
7884
        if (globals->sgot == NULL)
7885
          abort ();
7886
 
7887
        off = globals->tls_ldm_got.offset;
7888
 
7889
        if ((off & 1) != 0)
7890
          off &= ~1;
7891
        else
7892
          {
7893
            /* If we don't know the module number, create a relocation
7894
               for it.  */
7895
            if (info->shared)
7896
              {
7897
                Elf_Internal_Rela outrel;
7898
                bfd_byte *loc;
7899
 
7900
                if (globals->srelgot == NULL)
7901
                  abort ();
7902
 
7903
                outrel.r_addend = 0;
7904
                outrel.r_offset = (globals->sgot->output_section->vma
7905
                                   + globals->sgot->output_offset + off);
7906
                outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7907
 
7908
                if (globals->use_rel)
7909
                  bfd_put_32 (output_bfd, outrel.r_addend,
7910
                              globals->sgot->contents + off);
7911
 
7912
                loc = globals->srelgot->contents;
7913
                loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7914
                SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7915
              }
7916
            else
7917
              bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7918
 
7919
            globals->tls_ldm_got.offset |= 1;
7920
          }
7921
 
7922
        value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7923
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7924
 
7925
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
7926
                                         contents, rel->r_offset, value,
7927
                                         rel->r_addend);
7928
      }
7929
 
7930
    case R_ARM_TLS_GD32:
7931
    case R_ARM_TLS_IE32:
7932
      {
7933
        bfd_vma off;
7934
        int indx;
7935
        char tls_type;
7936
 
7937
        if (globals->sgot == NULL)
7938
          abort ();
7939
 
7940
        indx = 0;
7941
        if (h != NULL)
7942
          {
7943
            bfd_boolean dyn;
7944
            dyn = globals->root.dynamic_sections_created;
7945
            if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7946
                && (!info->shared
7947
                    || !SYMBOL_REFERENCES_LOCAL (info, h)))
7948
              {
7949
                *unresolved_reloc_p = FALSE;
7950
                indx = h->dynindx;
7951
              }
7952
            off = h->got.offset;
7953
            tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7954
          }
7955
        else
7956
          {
7957
            if (local_got_offsets == NULL)
7958
              abort ();
7959
            off = local_got_offsets[r_symndx];
7960
            tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7961
          }
7962
 
7963
        if (tls_type == GOT_UNKNOWN)
7964
          abort ();
7965
 
7966
        if ((off & 1) != 0)
7967
          off &= ~1;
7968
        else
7969
          {
7970
            bfd_boolean need_relocs = FALSE;
7971
            Elf_Internal_Rela outrel;
7972
            bfd_byte *loc = NULL;
7973
            int cur_off = off;
7974
 
7975
            /* The GOT entries have not been initialized yet.  Do it
7976
               now, and emit any relocations.  If both an IE GOT and a
7977
               GD GOT are necessary, we emit the GD first.  */
7978
 
7979
            if ((info->shared || indx != 0)
7980
                && (h == NULL
7981
                    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7982
                    || h->root.type != bfd_link_hash_undefweak))
7983
              {
7984
                need_relocs = TRUE;
7985
                if (globals->srelgot == NULL)
7986
                  abort ();
7987
                loc = globals->srelgot->contents;
7988
                loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7989
              }
7990
 
7991
            if (tls_type & GOT_TLS_GD)
7992
              {
7993
                if (need_relocs)
7994
                  {
7995
                    outrel.r_addend = 0;
7996
                    outrel.r_offset = (globals->sgot->output_section->vma
7997
                                       + globals->sgot->output_offset
7998
                                       + cur_off);
7999
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
8000
 
8001
                    if (globals->use_rel)
8002
                      bfd_put_32 (output_bfd, outrel.r_addend,
8003
                                  globals->sgot->contents + cur_off);
8004
 
8005
                    SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8006
                    globals->srelgot->reloc_count++;
8007
                    loc += RELOC_SIZE (globals);
8008
 
8009
                    if (indx == 0)
8010
                      bfd_put_32 (output_bfd, value - dtpoff_base (info),
8011
                                  globals->sgot->contents + cur_off + 4);
8012
                    else
8013
                      {
8014
                        outrel.r_addend = 0;
8015
                        outrel.r_info = ELF32_R_INFO (indx,
8016
                                                      R_ARM_TLS_DTPOFF32);
8017
                        outrel.r_offset += 4;
8018
 
8019
                        if (globals->use_rel)
8020
                          bfd_put_32 (output_bfd, outrel.r_addend,
8021
                                      globals->sgot->contents + cur_off + 4);
8022
 
8023
 
8024
                        SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8025
                        globals->srelgot->reloc_count++;
8026
                        loc += RELOC_SIZE (globals);
8027
                      }
8028
                  }
8029
                else
8030
                  {
8031
                    /* If we are not emitting relocations for a
8032
                       general dynamic reference, then we must be in a
8033
                       static link or an executable link with the
8034
                       symbol binding locally.  Mark it as belonging
8035
                       to module 1, the executable.  */
8036
                    bfd_put_32 (output_bfd, 1,
8037
                                globals->sgot->contents + cur_off);
8038
                    bfd_put_32 (output_bfd, value - dtpoff_base (info),
8039
                                globals->sgot->contents + cur_off + 4);
8040
                  }
8041
 
8042
                cur_off += 8;
8043
              }
8044
 
8045
            if (tls_type & GOT_TLS_IE)
8046
              {
8047
                if (need_relocs)
8048
                  {
8049
                    if (indx == 0)
8050
                      outrel.r_addend = value - dtpoff_base (info);
8051
                    else
8052
                      outrel.r_addend = 0;
8053
                    outrel.r_offset = (globals->sgot->output_section->vma
8054
                                       + globals->sgot->output_offset
8055
                                       + cur_off);
8056
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8057
 
8058
                    if (globals->use_rel)
8059
                      bfd_put_32 (output_bfd, outrel.r_addend,
8060
                                  globals->sgot->contents + cur_off);
8061
 
8062
                    SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8063
                    globals->srelgot->reloc_count++;
8064
                    loc += RELOC_SIZE (globals);
8065
                  }
8066
                else
8067
                  bfd_put_32 (output_bfd, tpoff (info, value),
8068
                              globals->sgot->contents + cur_off);
8069
                cur_off += 4;
8070
              }
8071
 
8072
            if (h != NULL)
8073
              h->got.offset |= 1;
8074
            else
8075
              local_got_offsets[r_symndx] |= 1;
8076
          }
8077
 
8078
        if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8079
          off += 8;
8080
        value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8081
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8082
 
8083
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
8084
                                         contents, rel->r_offset, value,
8085
                                         rel->r_addend);
8086
      }
8087
 
8088
    case R_ARM_TLS_LE32:
8089
      if (info->shared)
8090
        {
8091
          (*_bfd_error_handler)
8092
            (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8093
             input_bfd, input_section,
8094
             (long) rel->r_offset, howto->name);
8095
          return FALSE;
8096
        }
8097
      else
8098
        value = tpoff (info, value);
8099
 
8100
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8101
                                       contents, rel->r_offset, value,
8102
                                       rel->r_addend);
8103
 
8104
    case R_ARM_V4BX:
8105
      if (globals->fix_v4bx)
8106
        {
8107
          bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8108
 
8109
          /* Ensure that we have a BX instruction.  */
8110
          BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8111
 
8112
          if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8113
            {
8114
              /* Branch to veneer.  */
8115
              bfd_vma glue_addr;
8116
              glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8117
              glue_addr -= input_section->output_section->vma
8118
                           + input_section->output_offset
8119
                           + rel->r_offset + 8;
8120
              insn = (insn & 0xf0000000) | 0x0a000000
8121
                     | ((glue_addr >> 2) & 0x00ffffff);
8122
            }
8123
          else
8124
            {
8125
              /* Preserve Rm (lowest four bits) and the condition code
8126
                 (highest four bits). Other bits encode MOV PC,Rm.  */
8127
              insn = (insn & 0xf000000f) | 0x01a0f000;
8128
            }
8129
 
8130
          bfd_put_32 (input_bfd, insn, hit_data);
8131
        }
8132
      return bfd_reloc_ok;
8133
 
8134
    case R_ARM_MOVW_ABS_NC:
8135
    case R_ARM_MOVT_ABS:
8136
    case R_ARM_MOVW_PREL_NC:
8137
    case R_ARM_MOVT_PREL:
8138
    /* Until we properly support segment-base-relative addressing then
8139
       we assume the segment base to be zero, as for the group relocations.
8140
       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8141
       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
8142
    case R_ARM_MOVW_BREL_NC:
8143
    case R_ARM_MOVW_BREL:
8144
    case R_ARM_MOVT_BREL:
8145
      {
8146
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8147
 
8148
        if (globals->use_rel)
8149
          {
8150
            addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8151
            signed_addend = (addend ^ 0x8000) - 0x8000;
8152
          }
8153
 
8154
        value += signed_addend;
8155
 
8156
        if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8157
          value -= (input_section->output_section->vma
8158
                    + input_section->output_offset + rel->r_offset);
8159
 
8160
        if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8161
          return bfd_reloc_overflow;
8162
 
8163
        if (sym_flags == STT_ARM_TFUNC)
8164
          value |= 1;
8165
 
8166
        if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8167
            || r_type == R_ARM_MOVT_BREL)
8168
          value >>= 16;
8169
 
8170
        insn &= 0xfff0f000;
8171
        insn |= value & 0xfff;
8172
        insn |= (value & 0xf000) << 4;
8173
        bfd_put_32 (input_bfd, insn, hit_data);
8174
      }
8175
      return bfd_reloc_ok;
8176
 
8177
    case R_ARM_THM_MOVW_ABS_NC:
8178
    case R_ARM_THM_MOVT_ABS:
8179
    case R_ARM_THM_MOVW_PREL_NC:
8180
    case R_ARM_THM_MOVT_PREL:
8181
    /* Until we properly support segment-base-relative addressing then
8182
       we assume the segment base to be zero, as for the above relocations.
8183
       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8184
       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8185
       as R_ARM_THM_MOVT_ABS.  */
8186
    case R_ARM_THM_MOVW_BREL_NC:
8187
    case R_ARM_THM_MOVW_BREL:
8188
    case R_ARM_THM_MOVT_BREL:
8189
      {
8190
        bfd_vma insn;
8191
 
8192
        insn = bfd_get_16 (input_bfd, hit_data) << 16;
8193
        insn |= bfd_get_16 (input_bfd, hit_data + 2);
8194
 
8195
        if (globals->use_rel)
8196
          {
8197
            addend = ((insn >> 4)  & 0xf000)
8198
                   | ((insn >> 15) & 0x0800)
8199
                   | ((insn >> 4)  & 0x0700)
8200
                   | (insn         & 0x00ff);
8201
            signed_addend = (addend ^ 0x8000) - 0x8000;
8202
          }
8203
 
8204
        value += signed_addend;
8205
 
8206
        if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8207
          value -= (input_section->output_section->vma
8208
                    + input_section->output_offset + rel->r_offset);
8209
 
8210
        if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8211
          return bfd_reloc_overflow;
8212
 
8213
        if (sym_flags == STT_ARM_TFUNC)
8214
          value |= 1;
8215
 
8216
        if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8217
            || r_type == R_ARM_THM_MOVT_BREL)
8218
          value >>= 16;
8219
 
8220
        insn &= 0xfbf08f00;
8221
        insn |= (value & 0xf000) << 4;
8222
        insn |= (value & 0x0800) << 15;
8223
        insn |= (value & 0x0700) << 4;
8224
        insn |= (value & 0x00ff);
8225
 
8226
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
8227
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8228
      }
8229
      return bfd_reloc_ok;
8230
 
8231
    case R_ARM_ALU_PC_G0_NC:
8232
    case R_ARM_ALU_PC_G1_NC:
8233
    case R_ARM_ALU_PC_G0:
8234
    case R_ARM_ALU_PC_G1:
8235
    case R_ARM_ALU_PC_G2:
8236
    case R_ARM_ALU_SB_G0_NC:
8237
    case R_ARM_ALU_SB_G1_NC:
8238
    case R_ARM_ALU_SB_G0:
8239
    case R_ARM_ALU_SB_G1:
8240
    case R_ARM_ALU_SB_G2:
8241
      {
8242
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8243
        bfd_vma pc = input_section->output_section->vma
8244
                     + input_section->output_offset + rel->r_offset;
8245
        /* sb should be the origin of the *segment* containing the symbol.
8246
           It is not clear how to obtain this OS-dependent value, so we
8247
           make an arbitrary choice of zero.  */
8248
        bfd_vma sb = 0;
8249
        bfd_vma residual;
8250
        bfd_vma g_n;
8251
        bfd_signed_vma signed_value;
8252
        int group = 0;
8253
 
8254
        /* Determine which group of bits to select.  */
8255
        switch (r_type)
8256
          {
8257
          case R_ARM_ALU_PC_G0_NC:
8258
          case R_ARM_ALU_PC_G0:
8259
          case R_ARM_ALU_SB_G0_NC:
8260
          case R_ARM_ALU_SB_G0:
8261
            group = 0;
8262
            break;
8263
 
8264
          case R_ARM_ALU_PC_G1_NC:
8265
          case R_ARM_ALU_PC_G1:
8266
          case R_ARM_ALU_SB_G1_NC:
8267
          case R_ARM_ALU_SB_G1:
8268
            group = 1;
8269
            break;
8270
 
8271
          case R_ARM_ALU_PC_G2:
8272
          case R_ARM_ALU_SB_G2:
8273
            group = 2;
8274
            break;
8275
 
8276
          default:
8277
            abort ();
8278
          }
8279
 
8280
        /* If REL, extract the addend from the insn.  If RELA, it will
8281
           have already been fetched for us.  */
8282
        if (globals->use_rel)
8283
          {
8284
            int negative;
8285
            bfd_vma constant = insn & 0xff;
8286
            bfd_vma rotation = (insn & 0xf00) >> 8;
8287
 
8288
            if (rotation == 0)
8289
              signed_addend = constant;
8290
            else
8291
              {
8292
                /* Compensate for the fact that in the instruction, the
8293
                   rotation is stored in multiples of 2 bits.  */
8294
                rotation *= 2;
8295
 
8296
                /* Rotate "constant" right by "rotation" bits.  */
8297
                signed_addend = (constant >> rotation) |
8298
                                (constant << (8 * sizeof (bfd_vma) - rotation));
8299
              }
8300
 
8301
            /* Determine if the instruction is an ADD or a SUB.
8302
               (For REL, this determines the sign of the addend.)  */
8303
            negative = identify_add_or_sub (insn);
8304
            if (negative == 0)
8305
              {
8306
                (*_bfd_error_handler)
8307
                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8308
                  input_bfd, input_section,
8309
                  (long) rel->r_offset, howto->name);
8310
                return bfd_reloc_overflow;
8311
              }
8312
 
8313
            signed_addend *= negative;
8314
          }
8315
 
8316
        /* Compute the value (X) to go in the place.  */
8317
        if (r_type == R_ARM_ALU_PC_G0_NC
8318
            || r_type == R_ARM_ALU_PC_G1_NC
8319
            || r_type == R_ARM_ALU_PC_G0
8320
            || r_type == R_ARM_ALU_PC_G1
8321
            || r_type == R_ARM_ALU_PC_G2)
8322
          /* PC relative.  */
8323
          signed_value = value - pc + signed_addend;
8324
        else
8325
          /* Section base relative.  */
8326
          signed_value = value - sb + signed_addend;
8327
 
8328
        /* If the target symbol is a Thumb function, then set the
8329
           Thumb bit in the address.  */
8330
        if (sym_flags == STT_ARM_TFUNC)
8331
          signed_value |= 1;
8332
 
8333
        /* Calculate the value of the relevant G_n, in encoded
8334
           constant-with-rotation format.  */
8335
        g_n = calculate_group_reloc_mask (abs (signed_value), group,
8336
                                          &residual);
8337
 
8338
        /* Check for overflow if required.  */
8339
        if ((r_type == R_ARM_ALU_PC_G0
8340
             || r_type == R_ARM_ALU_PC_G1
8341
             || r_type == R_ARM_ALU_PC_G2
8342
             || r_type == R_ARM_ALU_SB_G0
8343
             || r_type == R_ARM_ALU_SB_G1
8344
             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8345
          {
8346
            (*_bfd_error_handler)
8347
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8348
              input_bfd, input_section,
8349
              (long) rel->r_offset, abs (signed_value), howto->name);
8350
            return bfd_reloc_overflow;
8351
          }
8352
 
8353
        /* Mask out the value and the ADD/SUB part of the opcode; take care
8354
           not to destroy the S bit.  */
8355
        insn &= 0xff1ff000;
8356
 
8357
        /* Set the opcode according to whether the value to go in the
8358
           place is negative.  */
8359
        if (signed_value < 0)
8360
          insn |= 1 << 22;
8361
        else
8362
          insn |= 1 << 23;
8363
 
8364
        /* Encode the offset.  */
8365
        insn |= g_n;
8366
 
8367
        bfd_put_32 (input_bfd, insn, hit_data);
8368
      }
8369
      return bfd_reloc_ok;
8370
 
8371
    case R_ARM_LDR_PC_G0:
8372
    case R_ARM_LDR_PC_G1:
8373
    case R_ARM_LDR_PC_G2:
8374
    case R_ARM_LDR_SB_G0:
8375
    case R_ARM_LDR_SB_G1:
8376
    case R_ARM_LDR_SB_G2:
8377
      {
8378
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8379
        bfd_vma pc = input_section->output_section->vma
8380
                     + input_section->output_offset + rel->r_offset;
8381
        bfd_vma sb = 0; /* See note above.  */
8382
        bfd_vma residual;
8383
        bfd_signed_vma signed_value;
8384
        int group = 0;
8385
 
8386
        /* Determine which groups of bits to calculate.  */
8387
        switch (r_type)
8388
          {
8389
          case R_ARM_LDR_PC_G0:
8390
          case R_ARM_LDR_SB_G0:
8391
            group = 0;
8392
            break;
8393
 
8394
          case R_ARM_LDR_PC_G1:
8395
          case R_ARM_LDR_SB_G1:
8396
            group = 1;
8397
            break;
8398
 
8399
          case R_ARM_LDR_PC_G2:
8400
          case R_ARM_LDR_SB_G2:
8401
            group = 2;
8402
            break;
8403
 
8404
          default:
8405
            abort ();
8406
          }
8407
 
8408
        /* If REL, extract the addend from the insn.  If RELA, it will
8409
           have already been fetched for us.  */
8410
        if (globals->use_rel)
8411
          {
8412
            int negative = (insn & (1 << 23)) ? 1 : -1;
8413
            signed_addend = negative * (insn & 0xfff);
8414
          }
8415
 
8416
        /* Compute the value (X) to go in the place.  */
8417
        if (r_type == R_ARM_LDR_PC_G0
8418
            || r_type == R_ARM_LDR_PC_G1
8419
            || r_type == R_ARM_LDR_PC_G2)
8420
          /* PC relative.  */
8421
          signed_value = value - pc + signed_addend;
8422
        else
8423
          /* Section base relative.  */
8424
          signed_value = value - sb + signed_addend;
8425
 
8426
        /* Calculate the value of the relevant G_{n-1} to obtain
8427
           the residual at that stage.  */
8428
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8429
 
8430
        /* Check for overflow.  */
8431
        if (residual >= 0x1000)
8432
          {
8433
            (*_bfd_error_handler)
8434
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8435
              input_bfd, input_section,
8436
              (long) rel->r_offset, abs (signed_value), howto->name);
8437
            return bfd_reloc_overflow;
8438
          }
8439
 
8440
        /* Mask out the value and U bit.  */
8441
        insn &= 0xff7ff000;
8442
 
8443
        /* Set the U bit if the value to go in the place is non-negative.  */
8444
        if (signed_value >= 0)
8445
          insn |= 1 << 23;
8446
 
8447
        /* Encode the offset.  */
8448
        insn |= residual;
8449
 
8450
        bfd_put_32 (input_bfd, insn, hit_data);
8451
      }
8452
      return bfd_reloc_ok;
8453
 
8454
    case R_ARM_LDRS_PC_G0:
8455
    case R_ARM_LDRS_PC_G1:
8456
    case R_ARM_LDRS_PC_G2:
8457
    case R_ARM_LDRS_SB_G0:
8458
    case R_ARM_LDRS_SB_G1:
8459
    case R_ARM_LDRS_SB_G2:
8460
      {
8461
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8462
        bfd_vma pc = input_section->output_section->vma
8463
                     + input_section->output_offset + rel->r_offset;
8464
        bfd_vma sb = 0; /* See note above.  */
8465
        bfd_vma residual;
8466
        bfd_signed_vma signed_value;
8467
        int group = 0;
8468
 
8469
        /* Determine which groups of bits to calculate.  */
8470
        switch (r_type)
8471
          {
8472
          case R_ARM_LDRS_PC_G0:
8473
          case R_ARM_LDRS_SB_G0:
8474
            group = 0;
8475
            break;
8476
 
8477
          case R_ARM_LDRS_PC_G1:
8478
          case R_ARM_LDRS_SB_G1:
8479
            group = 1;
8480
            break;
8481
 
8482
          case R_ARM_LDRS_PC_G2:
8483
          case R_ARM_LDRS_SB_G2:
8484
            group = 2;
8485
            break;
8486
 
8487
          default:
8488
            abort ();
8489
          }
8490
 
8491
        /* If REL, extract the addend from the insn.  If RELA, it will
8492
           have already been fetched for us.  */
8493
        if (globals->use_rel)
8494
          {
8495
            int negative = (insn & (1 << 23)) ? 1 : -1;
8496
            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8497
          }
8498
 
8499
        /* Compute the value (X) to go in the place.  */
8500
        if (r_type == R_ARM_LDRS_PC_G0
8501
            || r_type == R_ARM_LDRS_PC_G1
8502
            || r_type == R_ARM_LDRS_PC_G2)
8503
          /* PC relative.  */
8504
          signed_value = value - pc + signed_addend;
8505
        else
8506
          /* Section base relative.  */
8507
          signed_value = value - sb + signed_addend;
8508
 
8509
        /* Calculate the value of the relevant G_{n-1} to obtain
8510
           the residual at that stage.  */
8511
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8512
 
8513
        /* Check for overflow.  */
8514
        if (residual >= 0x100)
8515
          {
8516
            (*_bfd_error_handler)
8517
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8518
              input_bfd, input_section,
8519
              (long) rel->r_offset, abs (signed_value), howto->name);
8520
            return bfd_reloc_overflow;
8521
          }
8522
 
8523
        /* Mask out the value and U bit.  */
8524
        insn &= 0xff7ff0f0;
8525
 
8526
        /* Set the U bit if the value to go in the place is non-negative.  */
8527
        if (signed_value >= 0)
8528
          insn |= 1 << 23;
8529
 
8530
        /* Encode the offset.  */
8531
        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8532
 
8533
        bfd_put_32 (input_bfd, insn, hit_data);
8534
      }
8535
      return bfd_reloc_ok;
8536
 
8537
    case R_ARM_LDC_PC_G0:
8538
    case R_ARM_LDC_PC_G1:
8539
    case R_ARM_LDC_PC_G2:
8540
    case R_ARM_LDC_SB_G0:
8541
    case R_ARM_LDC_SB_G1:
8542
    case R_ARM_LDC_SB_G2:
8543
      {
8544
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8545
        bfd_vma pc = input_section->output_section->vma
8546
                     + input_section->output_offset + rel->r_offset;
8547
        bfd_vma sb = 0; /* See note above.  */
8548
        bfd_vma residual;
8549
        bfd_signed_vma signed_value;
8550
        int group = 0;
8551
 
8552
        /* Determine which groups of bits to calculate.  */
8553
        switch (r_type)
8554
          {
8555
          case R_ARM_LDC_PC_G0:
8556
          case R_ARM_LDC_SB_G0:
8557
            group = 0;
8558
            break;
8559
 
8560
          case R_ARM_LDC_PC_G1:
8561
          case R_ARM_LDC_SB_G1:
8562
            group = 1;
8563
            break;
8564
 
8565
          case R_ARM_LDC_PC_G2:
8566
          case R_ARM_LDC_SB_G2:
8567
            group = 2;
8568
            break;
8569
 
8570
          default:
8571
            abort ();
8572
          }
8573
 
8574
        /* If REL, extract the addend from the insn.  If RELA, it will
8575
           have already been fetched for us.  */
8576
        if (globals->use_rel)
8577
          {
8578
            int negative = (insn & (1 << 23)) ? 1 : -1;
8579
            signed_addend = negative * ((insn & 0xff) << 2);
8580
          }
8581
 
8582
        /* Compute the value (X) to go in the place.  */
8583
        if (r_type == R_ARM_LDC_PC_G0
8584
            || r_type == R_ARM_LDC_PC_G1
8585
            || r_type == R_ARM_LDC_PC_G2)
8586
          /* PC relative.  */
8587
          signed_value = value - pc + signed_addend;
8588
        else
8589
          /* Section base relative.  */
8590
          signed_value = value - sb + signed_addend;
8591
 
8592
        /* Calculate the value of the relevant G_{n-1} to obtain
8593
           the residual at that stage.  */
8594
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8595
 
8596
        /* Check for overflow.  (The absolute value to go in the place must be
8597
           divisible by four and, after having been divided by four, must
8598
           fit in eight bits.)  */
8599
        if ((residual & 0x3) != 0 || residual >= 0x400)
8600
          {
8601
            (*_bfd_error_handler)
8602
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8603
              input_bfd, input_section,
8604
              (long) rel->r_offset, abs (signed_value), howto->name);
8605
            return bfd_reloc_overflow;
8606
          }
8607
 
8608
        /* Mask out the value and U bit.  */
8609
        insn &= 0xff7fff00;
8610
 
8611
        /* Set the U bit if the value to go in the place is non-negative.  */
8612
        if (signed_value >= 0)
8613
          insn |= 1 << 23;
8614
 
8615
        /* Encode the offset.  */
8616
        insn |= residual >> 2;
8617
 
8618
        bfd_put_32 (input_bfd, insn, hit_data);
8619
      }
8620
      return bfd_reloc_ok;
8621
 
8622
    default:
8623
      return bfd_reloc_notsupported;
8624
    }
8625
}
8626
 
8627
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
8628
static void
8629
arm_add_to_rel (bfd *              abfd,
8630
                bfd_byte *         address,
8631
                reloc_howto_type * howto,
8632
                bfd_signed_vma     increment)
8633
{
8634
  bfd_signed_vma addend;
8635
 
8636
  if (howto->type == R_ARM_THM_CALL
8637
      || howto->type == R_ARM_THM_JUMP24)
8638
    {
8639
      int upper_insn, lower_insn;
8640
      int upper, lower;
8641
 
8642
      upper_insn = bfd_get_16 (abfd, address);
8643
      lower_insn = bfd_get_16 (abfd, address + 2);
8644
      upper = upper_insn & 0x7ff;
8645
      lower = lower_insn & 0x7ff;
8646
 
8647
      addend = (upper << 12) | (lower << 1);
8648
      addend += increment;
8649
      addend >>= 1;
8650
 
8651
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8652
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8653
 
8654
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8655
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8656
    }
8657
  else
8658
    {
8659
      bfd_vma        contents;
8660
 
8661
      contents = bfd_get_32 (abfd, address);
8662
 
8663
      /* Get the (signed) value from the instruction.  */
8664
      addend = contents & howto->src_mask;
8665
      if (addend & ((howto->src_mask + 1) >> 1))
8666
        {
8667
          bfd_signed_vma mask;
8668
 
8669
          mask = -1;
8670
          mask &= ~ howto->src_mask;
8671
          addend |= mask;
8672
        }
8673
 
8674
      /* Add in the increment, (which is a byte value).  */
8675
      switch (howto->type)
8676
        {
8677
        default:
8678
          addend += increment;
8679
          break;
8680
 
8681
        case R_ARM_PC24:
8682
        case R_ARM_PLT32:
8683
        case R_ARM_CALL:
8684
        case R_ARM_JUMP24:
8685
          addend <<= howto->size;
8686
          addend += increment;
8687
 
8688
          /* Should we check for overflow here ?  */
8689
 
8690
          /* Drop any undesired bits.  */
8691
          addend >>= howto->rightshift;
8692
          break;
8693
        }
8694
 
8695
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8696
 
8697
      bfd_put_32 (abfd, contents, address);
8698
    }
8699
}
8700
 
8701
#define IS_ARM_TLS_RELOC(R_TYPE)        \
8702
  ((R_TYPE) == R_ARM_TLS_GD32           \
8703
   || (R_TYPE) == R_ARM_TLS_LDO32       \
8704
   || (R_TYPE) == R_ARM_TLS_LDM32       \
8705
   || (R_TYPE) == R_ARM_TLS_DTPOFF32    \
8706
   || (R_TYPE) == R_ARM_TLS_DTPMOD32    \
8707
   || (R_TYPE) == R_ARM_TLS_TPOFF32     \
8708
   || (R_TYPE) == R_ARM_TLS_LE32        \
8709
   || (R_TYPE) == R_ARM_TLS_IE32)
8710
 
8711
/* Relocate an ARM ELF section.  */
8712
 
8713
static bfd_boolean
8714
elf32_arm_relocate_section (bfd *                  output_bfd,
8715
                            struct bfd_link_info * info,
8716
                            bfd *                  input_bfd,
8717
                            asection *             input_section,
8718
                            bfd_byte *             contents,
8719
                            Elf_Internal_Rela *    relocs,
8720
                            Elf_Internal_Sym *     local_syms,
8721
                            asection **            local_sections)
8722
{
8723
  Elf_Internal_Shdr *symtab_hdr;
8724
  struct elf_link_hash_entry **sym_hashes;
8725
  Elf_Internal_Rela *rel;
8726
  Elf_Internal_Rela *relend;
8727
  const char *name;
8728
  struct elf32_arm_link_hash_table * globals;
8729
 
8730
  globals = elf32_arm_hash_table (info);
8731
 
8732
  symtab_hdr = & elf_symtab_hdr (input_bfd);
8733
  sym_hashes = elf_sym_hashes (input_bfd);
8734
 
8735
  rel = relocs;
8736
  relend = relocs + input_section->reloc_count;
8737
  for (; rel < relend; rel++)
8738
    {
8739
      int                          r_type;
8740
      reloc_howto_type *           howto;
8741
      unsigned long                r_symndx;
8742
      Elf_Internal_Sym *           sym;
8743
      asection *                   sec;
8744
      struct elf_link_hash_entry * h;
8745
      bfd_vma                      relocation;
8746
      bfd_reloc_status_type        r;
8747
      arelent                      bfd_reloc;
8748
      char                         sym_type;
8749
      bfd_boolean                  unresolved_reloc = FALSE;
8750
      char *error_message = NULL;
8751
 
8752
      r_symndx = ELF32_R_SYM (rel->r_info);
8753
      r_type   = ELF32_R_TYPE (rel->r_info);
8754
      r_type   = arm_real_reloc_type (globals, r_type);
8755
 
8756
      if (   r_type == R_ARM_GNU_VTENTRY
8757
          || r_type == R_ARM_GNU_VTINHERIT)
8758
        continue;
8759
 
8760
      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8761
      howto = bfd_reloc.howto;
8762
 
8763
      h = NULL;
8764
      sym = NULL;
8765
      sec = NULL;
8766
 
8767
      if (r_symndx < symtab_hdr->sh_info)
8768
        {
8769
          sym = local_syms + r_symndx;
8770
          sym_type = ELF32_ST_TYPE (sym->st_info);
8771
          sec = local_sections[r_symndx];
8772
 
8773
          /* An object file might have a reference to a local
8774
             undefined symbol.  This is a daft object file, but we
8775
             should at least do something about it.  V4BX & NONE
8776
             relocations do not use the symbol and are explicitly
8777
             allowed to use the undefined symbol, so allow those.  */
8778
          if (r_type != R_ARM_V4BX
8779
              && r_type != R_ARM_NONE
8780
              && bfd_is_und_section (sec)
8781
              && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8782
            {
8783
              if (!info->callbacks->undefined_symbol
8784
                  (info, bfd_elf_string_from_elf_section
8785
                   (input_bfd, symtab_hdr->sh_link, sym->st_name),
8786
                   input_bfd, input_section,
8787
                   rel->r_offset, TRUE))
8788
                return FALSE;
8789
            }
8790
 
8791
          if (globals->use_rel)
8792
            {
8793
              relocation = (sec->output_section->vma
8794
                            + sec->output_offset
8795
                            + sym->st_value);
8796
              if (!info->relocatable
8797
                  && (sec->flags & SEC_MERGE)
8798
                  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8799
                {
8800
                  asection *msec;
8801
                  bfd_vma addend, value;
8802
 
8803
                  switch (r_type)
8804
                    {
8805
                    case R_ARM_MOVW_ABS_NC:
8806
                    case R_ARM_MOVT_ABS:
8807
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8808
                      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8809
                      addend = (addend ^ 0x8000) - 0x8000;
8810
                      break;
8811
 
8812
                    case R_ARM_THM_MOVW_ABS_NC:
8813
                    case R_ARM_THM_MOVT_ABS:
8814
                      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8815
                              << 16;
8816
                      value |= bfd_get_16 (input_bfd,
8817
                                           contents + rel->r_offset + 2);
8818
                      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8819
                               | ((value & 0x04000000) >> 15);
8820
                      addend = (addend ^ 0x8000) - 0x8000;
8821
                      break;
8822
 
8823
                    default:
8824
                      if (howto->rightshift
8825
                          || (howto->src_mask & (howto->src_mask + 1)))
8826
                        {
8827
                          (*_bfd_error_handler)
8828
                            (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8829
                             input_bfd, input_section,
8830
                             (long) rel->r_offset, howto->name);
8831
                          return FALSE;
8832
                        }
8833
 
8834
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8835
 
8836
                      /* Get the (signed) value from the instruction.  */
8837
                      addend = value & howto->src_mask;
8838
                      if (addend & ((howto->src_mask + 1) >> 1))
8839
                        {
8840
                          bfd_signed_vma mask;
8841
 
8842
                          mask = -1;
8843
                          mask &= ~ howto->src_mask;
8844
                          addend |= mask;
8845
                        }
8846
                      break;
8847
                    }
8848
 
8849
                  msec = sec;
8850
                  addend =
8851
                    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8852
                    - relocation;
8853
                  addend += msec->output_section->vma + msec->output_offset;
8854
 
8855
                  /* Cases here must match those in the preceeding
8856
                     switch statement.  */
8857
                  switch (r_type)
8858
                    {
8859
                    case R_ARM_MOVW_ABS_NC:
8860
                    case R_ARM_MOVT_ABS:
8861
                      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8862
                              | (addend & 0xfff);
8863
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8864
                      break;
8865
 
8866
                    case R_ARM_THM_MOVW_ABS_NC:
8867
                    case R_ARM_THM_MOVT_ABS:
8868
                      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8869
                              | (addend & 0xff) | ((addend & 0x0800) << 15);
8870
                      bfd_put_16 (input_bfd, value >> 16,
8871
                                  contents + rel->r_offset);
8872
                      bfd_put_16 (input_bfd, value,
8873
                                  contents + rel->r_offset + 2);
8874
                      break;
8875
 
8876
                    default:
8877
                      value = (value & ~ howto->dst_mask)
8878
                              | (addend & howto->dst_mask);
8879
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8880
                      break;
8881
                    }
8882
                }
8883
            }
8884
          else
8885
            relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8886
        }
8887
      else
8888
        {
8889
          bfd_boolean warned;
8890
 
8891
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8892
                                   r_symndx, symtab_hdr, sym_hashes,
8893
                                   h, sec, relocation,
8894
                                   unresolved_reloc, warned);
8895
 
8896
          sym_type = h->type;
8897
        }
8898
 
8899
      if (sec != NULL && elf_discarded_section (sec))
8900
        {
8901
          /* For relocs against symbols from removed linkonce sections,
8902
             or sections discarded by a linker script, we just want the
8903
             section contents zeroed.  Avoid any special processing.  */
8904
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8905
          rel->r_info = 0;
8906
          rel->r_addend = 0;
8907
          continue;
8908
        }
8909
 
8910
      if (info->relocatable)
8911
        {
8912
          /* This is a relocatable link.  We don't have to change
8913
             anything, unless the reloc is against a section symbol,
8914
             in which case we have to adjust according to where the
8915
             section symbol winds up in the output section.  */
8916
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8917
            {
8918
              if (globals->use_rel)
8919
                arm_add_to_rel (input_bfd, contents + rel->r_offset,
8920
                                howto, (bfd_signed_vma) sec->output_offset);
8921
              else
8922
                rel->r_addend += sec->output_offset;
8923
            }
8924
          continue;
8925
        }
8926
 
8927
      if (h != NULL)
8928
        name = h->root.root.string;
8929
      else
8930
        {
8931
          name = (bfd_elf_string_from_elf_section
8932
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
8933
          if (name == NULL || *name == '\0')
8934
            name = bfd_section_name (input_bfd, sec);
8935
        }
8936
 
8937
      if (r_symndx != 0
8938
          && r_type != R_ARM_NONE
8939
          && (h == NULL
8940
              || h->root.type == bfd_link_hash_defined
8941
              || h->root.type == bfd_link_hash_defweak)
8942
          && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8943
        {
8944
          (*_bfd_error_handler)
8945
            ((sym_type == STT_TLS
8946
              ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8947
              : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8948
             input_bfd,
8949
             input_section,
8950
             (long) rel->r_offset,
8951
             howto->name,
8952
             name);
8953
        }
8954
 
8955
      r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8956
                                         input_section, contents, rel,
8957
                                         relocation, info, sec, name,
8958
                                         (h ? ELF_ST_TYPE (h->type) :
8959
                                          ELF_ST_TYPE (sym->st_info)), h,
8960
                                         &unresolved_reloc, &error_message);
8961
 
8962
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8963
         because such sections are not SEC_ALLOC and thus ld.so will
8964
         not process them.  */
8965
      if (unresolved_reloc
8966
          && !((input_section->flags & SEC_DEBUGGING) != 0
8967
               && h->def_dynamic))
8968
        {
8969
          (*_bfd_error_handler)
8970
            (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8971
             input_bfd,
8972
             input_section,
8973
             (long) rel->r_offset,
8974
             howto->name,
8975
             h->root.root.string);
8976
          return FALSE;
8977
        }
8978
 
8979
      if (r != bfd_reloc_ok)
8980
        {
8981
          switch (r)
8982
            {
8983
            case bfd_reloc_overflow:
8984
              /* If the overflowing reloc was to an undefined symbol,
8985
                 we have already printed one error message and there
8986
                 is no point complaining again.  */
8987
              if ((! h ||
8988
                   h->root.type != bfd_link_hash_undefined)
8989
                  && (!((*info->callbacks->reloc_overflow)
8990
                        (info, (h ? &h->root : NULL), name, howto->name,
8991
                         (bfd_vma) 0, input_bfd, input_section,
8992
                         rel->r_offset))))
8993
                  return FALSE;
8994
              break;
8995
 
8996
            case bfd_reloc_undefined:
8997
              if (!((*info->callbacks->undefined_symbol)
8998
                    (info, name, input_bfd, input_section,
8999
                     rel->r_offset, TRUE)))
9000
                return FALSE;
9001
              break;
9002
 
9003
            case bfd_reloc_outofrange:
9004
              error_message = _("out of range");
9005
              goto common_error;
9006
 
9007
            case bfd_reloc_notsupported:
9008
              error_message = _("unsupported relocation");
9009
              goto common_error;
9010
 
9011
            case bfd_reloc_dangerous:
9012
              /* error_message should already be set.  */
9013
              goto common_error;
9014
 
9015
            default:
9016
              error_message = _("unknown error");
9017
              /* Fall through.  */
9018
 
9019
            common_error:
9020
              BFD_ASSERT (error_message != NULL);
9021
              if (!((*info->callbacks->reloc_dangerous)
9022
                    (info, error_message, input_bfd, input_section,
9023
                     rel->r_offset)))
9024
                return FALSE;
9025
              break;
9026
            }
9027
        }
9028
    }
9029
 
9030
  return TRUE;
9031
}
9032
 
9033
/* Add a new unwind edit to the list described by HEAD, TAIL.  If INDEX is zero,
9034
   adds the edit to the start of the list.  (The list must be built in order of
9035
   ascending INDEX: the function's callers are primarily responsible for
9036
   maintaining that condition).  */
9037
 
9038
static void
9039
add_unwind_table_edit (arm_unwind_table_edit **head,
9040
                       arm_unwind_table_edit **tail,
9041
                       arm_unwind_edit_type type,
9042
                       asection *linked_section,
9043
                       unsigned int index)
9044
{
9045
  arm_unwind_table_edit *new_edit = xmalloc (sizeof (arm_unwind_table_edit));
9046
 
9047
  new_edit->type = type;
9048
  new_edit->linked_section = linked_section;
9049
  new_edit->index = index;
9050
 
9051
  if (index > 0)
9052
    {
9053
      new_edit->next = NULL;
9054
 
9055
      if (*tail)
9056
        (*tail)->next = new_edit;
9057
 
9058
      (*tail) = new_edit;
9059
 
9060
      if (!*head)
9061
        (*head) = new_edit;
9062
    }
9063
  else
9064
    {
9065
      new_edit->next = *head;
9066
 
9067
      if (!*tail)
9068
        *tail = new_edit;
9069
 
9070
      *head = new_edit;
9071
    }
9072
}
9073
 
9074
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9075
 
9076
/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
9077
static void
9078
adjust_exidx_size(asection *exidx_sec, int adjust)
9079
{
9080
  asection *out_sec;
9081
 
9082
  if (!exidx_sec->rawsize)
9083
    exidx_sec->rawsize = exidx_sec->size;
9084
 
9085
  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9086
  out_sec = exidx_sec->output_section;
9087
  /* Adjust size of output section.  */
9088
  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9089
}
9090
 
9091
/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
9092
static void
9093
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9094
{
9095
  struct _arm_elf_section_data *exidx_arm_data;
9096
 
9097
  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9098
  add_unwind_table_edit (
9099
    &exidx_arm_data->u.exidx.unwind_edit_list,
9100
    &exidx_arm_data->u.exidx.unwind_edit_tail,
9101
    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9102
 
9103
  adjust_exidx_size(exidx_sec, 8);
9104
}
9105
 
9106
/* Scan .ARM.exidx tables, and create a list describing edits which should be
9107
   made to those tables, such that:
9108
 
9109
     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9110
     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9111
        codes which have been inlined into the index).
9112
 
9113
   The edits are applied when the tables are written
9114
   (in elf32_arm_write_section).
9115
*/
9116
 
9117
bfd_boolean
9118
elf32_arm_fix_exidx_coverage (asection **text_section_order,
9119
                              unsigned int num_text_sections,
9120
                              struct bfd_link_info *info)
9121
{
9122
  bfd *inp;
9123
  unsigned int last_second_word = 0, i;
9124
  asection *last_exidx_sec = NULL;
9125
  asection *last_text_sec = NULL;
9126
  int last_unwind_type = -1;
9127
 
9128
  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9129
     text sections.  */
9130
  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9131
    {
9132
      asection *sec;
9133
 
9134
      for (sec = inp->sections; sec != NULL; sec = sec->next)
9135
        {
9136
          struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9137
          Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9138
 
9139
          if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9140
            continue;
9141
 
9142
          if (elf_sec->linked_to)
9143
            {
9144
              Elf_Internal_Shdr *linked_hdr
9145
                = &elf_section_data (elf_sec->linked_to)->this_hdr;
9146
              struct _arm_elf_section_data *linked_sec_arm_data
9147
                = get_arm_elf_section_data (linked_hdr->bfd_section);
9148
 
9149
              if (linked_sec_arm_data == NULL)
9150
                continue;
9151
 
9152
              /* Link this .ARM.exidx section back from the text section it
9153
                 describes.  */
9154
              linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9155
            }
9156
        }
9157
    }
9158
 
9159
  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
9160
     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9161
     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
9162
   */
9163
 
9164
  for (i = 0; i < num_text_sections; i++)
9165
    {
9166
      asection *sec = text_section_order[i];
9167
      asection *exidx_sec;
9168
      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9169
      struct _arm_elf_section_data *exidx_arm_data;
9170
      bfd_byte *contents = NULL;
9171
      int deleted_exidx_bytes = 0;
9172
      bfd_vma j;
9173
      arm_unwind_table_edit *unwind_edit_head = NULL;
9174
      arm_unwind_table_edit *unwind_edit_tail = NULL;
9175
      Elf_Internal_Shdr *hdr;
9176
      bfd *ibfd;
9177
 
9178
      if (arm_data == NULL)
9179
        continue;
9180
 
9181
      exidx_sec = arm_data->u.text.arm_exidx_sec;
9182
      if (exidx_sec == NULL)
9183
        {
9184
          /* Section has no unwind data.  */
9185
          if (last_unwind_type == 0 || !last_exidx_sec)
9186
            continue;
9187
 
9188
          /* Ignore zero sized sections.  */
9189
          if (sec->size == 0)
9190
            continue;
9191
 
9192
          insert_cantunwind_after(last_text_sec, last_exidx_sec);
9193
          last_unwind_type = 0;
9194
          continue;
9195
        }
9196
 
9197
      /* Skip /DISCARD/ sections.  */
9198
      if (bfd_is_abs_section (exidx_sec->output_section))
9199
        continue;
9200
 
9201
      hdr = &elf_section_data (exidx_sec)->this_hdr;
9202
      if (hdr->sh_type != SHT_ARM_EXIDX)
9203
        continue;
9204
 
9205
      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9206
      if (exidx_arm_data == NULL)
9207
        continue;
9208
 
9209
      ibfd = exidx_sec->owner;
9210
 
9211
      if (hdr->contents != NULL)
9212
        contents = hdr->contents;
9213
      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9214
        /* An error?  */
9215
        continue;
9216
 
9217
      for (j = 0; j < hdr->sh_size; j += 8)
9218
        {
9219
          unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9220
          int unwind_type;
9221
          int elide = 0;
9222
 
9223
          /* An EXIDX_CANTUNWIND entry.  */
9224
          if (second_word == 1)
9225
            {
9226
              if (last_unwind_type == 0)
9227
                elide = 1;
9228
              unwind_type = 0;
9229
            }
9230
          /* Inlined unwinding data.  Merge if equal to previous.  */
9231
          else if ((second_word & 0x80000000) != 0)
9232
            {
9233
              if (last_second_word == second_word && last_unwind_type == 1)
9234
                elide = 1;
9235
              unwind_type = 1;
9236
              last_second_word = second_word;
9237
            }
9238
          /* Normal table entry.  In theory we could merge these too,
9239
             but duplicate entries are likely to be much less common.  */
9240
          else
9241
            unwind_type = 2;
9242
 
9243
          if (elide)
9244
            {
9245
              add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9246
                                     DELETE_EXIDX_ENTRY, NULL, j / 8);
9247
 
9248
              deleted_exidx_bytes += 8;
9249
            }
9250
 
9251
          last_unwind_type = unwind_type;
9252
        }
9253
 
9254
      /* Free contents if we allocated it ourselves.  */
9255
      if (contents != hdr->contents)
9256
        free (contents);
9257
 
9258
      /* Record edits to be applied later (in elf32_arm_write_section).  */
9259
      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9260
      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9261
 
9262
      if (deleted_exidx_bytes > 0)
9263
        adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9264
 
9265
      last_exidx_sec = exidx_sec;
9266
      last_text_sec = sec;
9267
    }
9268
 
9269
  /* Add terminating CANTUNWIND entry.  */
9270
  if (last_exidx_sec && last_unwind_type != 0)
9271
    insert_cantunwind_after(last_text_sec, last_exidx_sec);
9272
 
9273
  return TRUE;
9274
}
9275
 
9276
static bfd_boolean
9277
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9278
                               bfd *ibfd, const char *name)
9279
{
9280
  asection *sec, *osec;
9281
 
9282
  sec = bfd_get_section_by_name (ibfd, name);
9283
  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9284
    return TRUE;
9285
 
9286
  osec = sec->output_section;
9287
  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9288
    return TRUE;
9289
 
9290
  if (! bfd_set_section_contents (obfd, osec, sec->contents,
9291
                                  sec->output_offset, sec->size))
9292
    return FALSE;
9293
 
9294
  return TRUE;
9295
}
9296
 
9297
static bfd_boolean
9298
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9299
{
9300
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9301
 
9302
  /* Invoke the regular ELF backend linker to do all the work.  */
9303
  if (!bfd_elf_final_link (abfd, info))
9304
    return FALSE;
9305
 
9306
  /* Write out any glue sections now that we have created all the
9307
     stubs.  */
9308
  if (globals->bfd_of_glue_owner != NULL)
9309
    {
9310
      if (! elf32_arm_output_glue_section (info, abfd,
9311
                                           globals->bfd_of_glue_owner,
9312
                                           ARM2THUMB_GLUE_SECTION_NAME))
9313
        return FALSE;
9314
 
9315
      if (! elf32_arm_output_glue_section (info, abfd,
9316
                                           globals->bfd_of_glue_owner,
9317
                                           THUMB2ARM_GLUE_SECTION_NAME))
9318
        return FALSE;
9319
 
9320
      if (! elf32_arm_output_glue_section (info, abfd,
9321
                                           globals->bfd_of_glue_owner,
9322
                                           VFP11_ERRATUM_VENEER_SECTION_NAME))
9323
        return FALSE;
9324
 
9325
      if (! elf32_arm_output_glue_section (info, abfd,
9326
                                           globals->bfd_of_glue_owner,
9327
                                           ARM_BX_GLUE_SECTION_NAME))
9328
        return FALSE;
9329
    }
9330
 
9331
  return TRUE;
9332
}
9333
 
9334
/* Set the right machine number.  */
9335
 
9336
static bfd_boolean
9337
elf32_arm_object_p (bfd *abfd)
9338
{
9339
  unsigned int mach;
9340
 
9341
  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9342
 
9343
  if (mach != bfd_mach_arm_unknown)
9344
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9345
 
9346
  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9347
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9348
 
9349
  else
9350
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9351
 
9352
  return TRUE;
9353
}
9354
 
9355
/* Function to keep ARM specific flags in the ELF header.  */
9356
 
9357
static bfd_boolean
9358
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9359
{
9360
  if (elf_flags_init (abfd)
9361
      && elf_elfheader (abfd)->e_flags != flags)
9362
    {
9363
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9364
        {
9365
          if (flags & EF_ARM_INTERWORK)
9366
            (*_bfd_error_handler)
9367
              (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9368
               abfd);
9369
          else
9370
            _bfd_error_handler
9371
              (_("Warning: Clearing the interworking flag of %B due to outside request"),
9372
               abfd);
9373
        }
9374
    }
9375
  else
9376
    {
9377
      elf_elfheader (abfd)->e_flags = flags;
9378
      elf_flags_init (abfd) = TRUE;
9379
    }
9380
 
9381
  return TRUE;
9382
}
9383
 
9384
/* Copy backend specific data from one object module to another.  */
9385
 
9386
static bfd_boolean
9387
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9388
{
9389
  flagword in_flags;
9390
  flagword out_flags;
9391
 
9392
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9393
    return TRUE;
9394
 
9395
  in_flags  = elf_elfheader (ibfd)->e_flags;
9396
  out_flags = elf_elfheader (obfd)->e_flags;
9397
 
9398
  if (elf_flags_init (obfd)
9399
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9400
      && in_flags != out_flags)
9401
    {
9402
      /* Cannot mix APCS26 and APCS32 code.  */
9403
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9404
        return FALSE;
9405
 
9406
      /* Cannot mix float APCS and non-float APCS code.  */
9407
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9408
        return FALSE;
9409
 
9410
      /* If the src and dest have different interworking flags
9411
         then turn off the interworking bit.  */
9412
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9413
        {
9414
          if (out_flags & EF_ARM_INTERWORK)
9415
            _bfd_error_handler
9416
              (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9417
               obfd, ibfd);
9418
 
9419
          in_flags &= ~EF_ARM_INTERWORK;
9420
        }
9421
 
9422
      /* Likewise for PIC, though don't warn for this case.  */
9423
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9424
        in_flags &= ~EF_ARM_PIC;
9425
    }
9426
 
9427
  elf_elfheader (obfd)->e_flags = in_flags;
9428
  elf_flags_init (obfd) = TRUE;
9429
 
9430
  /* Also copy the EI_OSABI field.  */
9431
  elf_elfheader (obfd)->e_ident[EI_OSABI] =
9432
    elf_elfheader (ibfd)->e_ident[EI_OSABI];
9433
 
9434
  /* Copy object attributes.  */
9435
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
9436
 
9437
  return TRUE;
9438
}
9439
 
9440
/* Values for Tag_ABI_PCS_R9_use.  */
9441
enum
9442
{
9443
  AEABI_R9_V6,
9444
  AEABI_R9_SB,
9445
  AEABI_R9_TLS,
9446
  AEABI_R9_unused
9447
};
9448
 
9449
/* Values for Tag_ABI_PCS_RW_data.  */
9450
enum
9451
{
9452
  AEABI_PCS_RW_data_absolute,
9453
  AEABI_PCS_RW_data_PCrel,
9454
  AEABI_PCS_RW_data_SBrel,
9455
  AEABI_PCS_RW_data_unused
9456
};
9457
 
9458
/* Values for Tag_ABI_enum_size.  */
9459
enum
9460
{
9461
  AEABI_enum_unused,
9462
  AEABI_enum_short,
9463
  AEABI_enum_wide,
9464
  AEABI_enum_forced_wide
9465
};
9466
 
9467
/* Determine whether an object attribute tag takes an integer, a
9468
   string or both.  */
9469
 
9470
static int
9471
elf32_arm_obj_attrs_arg_type (int tag)
9472
{
9473
  if (tag == Tag_compatibility)
9474
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9475
  else if (tag == Tag_nodefaults)
9476
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9477
  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9478
    return ATTR_TYPE_FLAG_STR_VAL;
9479
  else if (tag < 32)
9480
    return ATTR_TYPE_FLAG_INT_VAL;
9481
  else
9482
    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9483
}
9484
 
9485
/* The ABI defines that Tag_conformance should be emitted first, and that
9486
   Tag_nodefaults should be second (if either is defined).  This sets those
9487
   two positions, and bumps up the position of all the remaining tags to
9488
   compensate.  */
9489
static int
9490
elf32_arm_obj_attrs_order (int num)
9491
{
9492
  if (num == 4)
9493
    return Tag_conformance;
9494
  if (num == 5)
9495
    return Tag_nodefaults;
9496
  if ((num - 2) < Tag_nodefaults)
9497
    return num - 2;
9498
  if ((num - 1) < Tag_conformance)
9499
    return num - 1;
9500
  return num;
9501
}
9502
 
9503
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
9504
   Returns -1 if no architecture could be read.  */
9505
 
9506
static int
9507
get_secondary_compatible_arch (bfd *abfd)
9508
{
9509
  obj_attribute *attr =
9510
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9511
 
9512
  /* Note: the tag and its argument below are uleb128 values, though
9513
     currently-defined values fit in one byte for each.  */
9514
  if (attr->s
9515
      && attr->s[0] == Tag_CPU_arch
9516
      && (attr->s[1] & 128) != 128
9517
      && attr->s[2] == 0)
9518
   return attr->s[1];
9519
 
9520
  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
9521
  return -1;
9522
}
9523
 
9524
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9525
   The tag is removed if ARCH is -1.  */
9526
 
9527
static void
9528
set_secondary_compatible_arch (bfd *abfd, int arch)
9529
{
9530
  obj_attribute *attr =
9531
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9532
 
9533
  if (arch == -1)
9534
    {
9535
      attr->s = NULL;
9536
      return;
9537
    }
9538
 
9539
  /* Note: the tag and its argument below are uleb128 values, though
9540
     currently-defined values fit in one byte for each.  */
9541
  if (!attr->s)
9542
    attr->s = bfd_alloc (abfd, 3);
9543
  attr->s[0] = Tag_CPU_arch;
9544
  attr->s[1] = arch;
9545
  attr->s[2] = '\0';
9546
}
9547
 
9548
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9549
   into account.  */
9550
 
9551
static int
9552
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9553
                      int newtag, int secondary_compat)
9554
{
9555
#define T(X) TAG_CPU_ARCH_##X
9556
  int tagl, tagh, result;
9557
  const int v6t2[] =
9558
    {
9559
      T(V6T2),   /* PRE_V4.  */
9560
      T(V6T2),   /* V4.  */
9561
      T(V6T2),   /* V4T.  */
9562
      T(V6T2),   /* V5T.  */
9563
      T(V6T2),   /* V5TE.  */
9564
      T(V6T2),   /* V5TEJ.  */
9565
      T(V6T2),   /* V6.  */
9566
      T(V7),     /* V6KZ.  */
9567
      T(V6T2)    /* V6T2.  */
9568
    };
9569
  const int v6k[] =
9570
    {
9571
      T(V6K),    /* PRE_V4.  */
9572
      T(V6K),    /* V4.  */
9573
      T(V6K),    /* V4T.  */
9574
      T(V6K),    /* V5T.  */
9575
      T(V6K),    /* V5TE.  */
9576
      T(V6K),    /* V5TEJ.  */
9577
      T(V6K),    /* V6.  */
9578
      T(V6KZ),   /* V6KZ.  */
9579
      T(V7),     /* V6T2.  */
9580
      T(V6K)     /* V6K.  */
9581
    };
9582
  const int v7[] =
9583
    {
9584
      T(V7),     /* PRE_V4.  */
9585
      T(V7),     /* V4.  */
9586
      T(V7),     /* V4T.  */
9587
      T(V7),     /* V5T.  */
9588
      T(V7),     /* V5TE.  */
9589
      T(V7),     /* V5TEJ.  */
9590
      T(V7),     /* V6.  */
9591
      T(V7),     /* V6KZ.  */
9592
      T(V7),     /* V6T2.  */
9593
      T(V7),     /* V6K.  */
9594
      T(V7)      /* V7.  */
9595
    };
9596
  const int v6_m[] =
9597
    {
9598
      -1,        /* PRE_V4.  */
9599
      -1,        /* V4.  */
9600
      T(V6K),    /* V4T.  */
9601
      T(V6K),    /* V5T.  */
9602
      T(V6K),    /* V5TE.  */
9603
      T(V6K),    /* V5TEJ.  */
9604
      T(V6K),    /* V6.  */
9605
      T(V6KZ),   /* V6KZ.  */
9606
      T(V7),     /* V6T2.  */
9607
      T(V6K),    /* V6K.  */
9608
      T(V7),     /* V7.  */
9609
      T(V6_M)    /* V6_M.  */
9610
    };
9611
  const int v6s_m[] =
9612
    {
9613
      -1,        /* PRE_V4.  */
9614
      -1,        /* V4.  */
9615
      T(V6K),    /* V4T.  */
9616
      T(V6K),    /* V5T.  */
9617
      T(V6K),    /* V5TE.  */
9618
      T(V6K),    /* V5TEJ.  */
9619
      T(V6K),    /* V6.  */
9620
      T(V6KZ),   /* V6KZ.  */
9621
      T(V7),     /* V6T2.  */
9622
      T(V6K),    /* V6K.  */
9623
      T(V7),     /* V7.  */
9624
      T(V6S_M),  /* V6_M.  */
9625
      T(V6S_M)   /* V6S_M.  */
9626
    };
9627
  const int v4t_plus_v6_m[] =
9628
    {
9629
      -1,               /* PRE_V4.  */
9630
      -1,               /* V4.  */
9631
      T(V4T),           /* V4T.  */
9632
      T(V5T),           /* V5T.  */
9633
      T(V5TE),          /* V5TE.  */
9634
      T(V5TEJ),         /* V5TEJ.  */
9635
      T(V6),            /* V6.  */
9636
      T(V6KZ),          /* V6KZ.  */
9637
      T(V6T2),          /* V6T2.  */
9638
      T(V6K),           /* V6K.  */
9639
      T(V7),            /* V7.  */
9640
      T(V6_M),          /* V6_M.  */
9641
      T(V6S_M),         /* V6S_M.  */
9642
      T(V4T_PLUS_V6_M)  /* V4T plus V6_M.  */
9643
    };
9644
  const int *comb[] =
9645
    {
9646
      v6t2,
9647
      v6k,
9648
      v7,
9649
      v6_m,
9650
      v6s_m,
9651
      /* Pseudo-architecture.  */
9652
      v4t_plus_v6_m
9653
    };
9654
 
9655
  /* Check we've not got a higher architecture than we know about.  */
9656
 
9657
  if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
9658
    {
9659
      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9660
      return -1;
9661
    }
9662
 
9663
  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
9664
 
9665
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9666
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9667
    oldtag = T(V4T_PLUS_V6_M);
9668
 
9669
  /* And override the new tag if we have a Tag_also_compatible_with on the
9670
     input.  */
9671
 
9672
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9673
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9674
    newtag = T(V4T_PLUS_V6_M);
9675
 
9676
  tagl = (oldtag < newtag) ? oldtag : newtag;
9677
  result = tagh = (oldtag > newtag) ? oldtag : newtag;
9678
 
9679
  /* Architectures before V6KZ add features monotonically.  */
9680
  if (tagh <= TAG_CPU_ARCH_V6KZ)
9681
    return result;
9682
 
9683
  result = comb[tagh - T(V6T2)][tagl];
9684
 
9685
  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9686
     as the canonical version.  */
9687
  if (result == T(V4T_PLUS_V6_M))
9688
    {
9689
      result = T(V4T);
9690
      *secondary_compat_out = T(V6_M);
9691
    }
9692
  else
9693
    *secondary_compat_out = -1;
9694
 
9695
  if (result == -1)
9696
    {
9697
      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9698
                          ibfd, oldtag, newtag);
9699
      return -1;
9700
    }
9701
 
9702
  return result;
9703
#undef T
9704
}
9705
 
9706
/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
9707
   are conflicting attributes.  */
9708
 
9709
static bfd_boolean
9710
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9711
{
9712
  obj_attribute *in_attr;
9713
  obj_attribute *out_attr;
9714
  obj_attribute_list *in_list;
9715
  obj_attribute_list *out_list;
9716
  obj_attribute_list **out_listp;
9717
  /* Some tags have 0 = don't care, 1 = strong requirement,
9718
     2 = weak requirement.  */
9719
  static const int order_021[3] = {0, 2, 1};
9720
  /* For use with Tag_VFP_arch.  */
9721
  static const int order_01243[5] = {0, 1, 2, 4, 3};
9722
  int i;
9723
  bfd_boolean result = TRUE;
9724
 
9725
  /* Skip the linker stubs file.  This preserves previous behavior
9726
     of accepting unknown attributes in the first input file - but
9727
     is that a bug?  */
9728
  if (ibfd->flags & BFD_LINKER_CREATED)
9729
    return TRUE;
9730
 
9731
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
9732
    {
9733
      /* This is the first object.  Copy the attributes.  */
9734
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
9735
 
9736
      /* Use the Tag_null value to indicate the attributes have been
9737
         initialized.  */
9738
      elf_known_obj_attributes_proc (obfd)[0].i = 1;
9739
 
9740
      return TRUE;
9741
    }
9742
 
9743
  in_attr = elf_known_obj_attributes_proc (ibfd);
9744
  out_attr = elf_known_obj_attributes_proc (obfd);
9745
  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
9746
  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9747
    {
9748
      /* Ignore mismatches if the object doesn't use floating point.  */
9749
      if (out_attr[Tag_ABI_FP_number_model].i == 0)
9750
        out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9751
      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9752
        {
9753
          _bfd_error_handler
9754
            (_("error: %B uses VFP register arguments, %B does not"),
9755
             ibfd, obfd);
9756
          result = FALSE;
9757
        }
9758
    }
9759
 
9760
  for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9761
    {
9762
      /* Merge this attribute with existing attributes.  */
9763
      switch (i)
9764
        {
9765
        case Tag_CPU_raw_name:
9766
        case Tag_CPU_name:
9767
          /* These are merged after Tag_CPU_arch. */
9768
          break;
9769
 
9770
        case Tag_ABI_optimization_goals:
9771
        case Tag_ABI_FP_optimization_goals:
9772
          /* Use the first value seen.  */
9773
          break;
9774
 
9775
        case Tag_CPU_arch:
9776
          {
9777
            int secondary_compat = -1, secondary_compat_out = -1;
9778
            unsigned int saved_out_attr = out_attr[i].i;
9779
            static const char *name_table[] = {
9780
                /* These aren't real CPU names, but we can't guess
9781
                   that from the architecture version alone.  */
9782
                "Pre v4",
9783
                "ARM v4",
9784
                "ARM v4T",
9785
                "ARM v5T",
9786
                "ARM v5TE",
9787
                "ARM v5TEJ",
9788
                "ARM v6",
9789
                "ARM v6KZ",
9790
                "ARM v6T2",
9791
                "ARM v6K",
9792
                "ARM v7",
9793
                "ARM v6-M",
9794
                "ARM v6S-M"
9795
            };
9796
 
9797
            /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
9798
            secondary_compat = get_secondary_compatible_arch (ibfd);
9799
            secondary_compat_out = get_secondary_compatible_arch (obfd);
9800
            out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9801
                                                  &secondary_compat_out,
9802
                                                  in_attr[i].i,
9803
                                                  secondary_compat);
9804
            set_secondary_compatible_arch (obfd, secondary_compat_out);
9805
 
9806
            /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
9807
            if (out_attr[i].i == saved_out_attr)
9808
              ; /* Leave the names alone.  */
9809
            else if (out_attr[i].i == in_attr[i].i)
9810
              {
9811
                /* The output architecture has been changed to match the
9812
                   input architecture.  Use the input names.  */
9813
                out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9814
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9815
                  : NULL;
9816
                out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9817
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9818
                  : NULL;
9819
              }
9820
            else
9821
              {
9822
                out_attr[Tag_CPU_name].s = NULL;
9823
                out_attr[Tag_CPU_raw_name].s = NULL;
9824
              }
9825
 
9826
            /* If we still don't have a value for Tag_CPU_name,
9827
               make one up now.  Tag_CPU_raw_name remains blank.  */
9828
            if (out_attr[Tag_CPU_name].s == NULL
9829
                && out_attr[i].i < ARRAY_SIZE (name_table))
9830
              out_attr[Tag_CPU_name].s =
9831
                _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9832
          }
9833
          break;
9834
 
9835
        case Tag_ARM_ISA_use:
9836
        case Tag_THUMB_ISA_use:
9837
        case Tag_WMMX_arch:
9838
        case Tag_Advanced_SIMD_arch:
9839
          /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
9840
        case Tag_ABI_FP_rounding:
9841
        case Tag_ABI_FP_exceptions:
9842
        case Tag_ABI_FP_user_exceptions:
9843
        case Tag_ABI_FP_number_model:
9844
        case Tag_VFP_HP_extension:
9845
        case Tag_CPU_unaligned_access:
9846
        case Tag_T2EE_use:
9847
        case Tag_Virtualization_use:
9848
        case Tag_MPextension_use:
9849
          /* Use the largest value specified.  */
9850
          if (in_attr[i].i > out_attr[i].i)
9851
            out_attr[i].i = in_attr[i].i;
9852
          break;
9853
 
9854
        case Tag_ABI_align8_preserved:
9855
        case Tag_ABI_PCS_RO_data:
9856
          /* Use the smallest value specified.  */
9857
          if (in_attr[i].i < out_attr[i].i)
9858
            out_attr[i].i = in_attr[i].i;
9859
          break;
9860
 
9861
        case Tag_ABI_align8_needed:
9862
          if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9863
              && (in_attr[Tag_ABI_align8_preserved].i == 0
9864
                  || out_attr[Tag_ABI_align8_preserved].i == 0))
9865
            {
9866
              /* This error message should be enabled once all non-conformant
9867
                 binaries in the toolchain have had the attributes set
9868
                 properly.
9869
              _bfd_error_handler
9870
                (_("error: %B: 8-byte data alignment conflicts with %B"),
9871
                 obfd, ibfd);
9872
              result = FALSE; */
9873
            }
9874
          /* Fall through.  */
9875
        case Tag_ABI_FP_denormal:
9876
        case Tag_ABI_PCS_GOT_use:
9877
          /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9878
             value if greater than 2 (for future-proofing).  */
9879
          if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9880
              || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9881
                  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
9882
            out_attr[i].i = in_attr[i].i;
9883
          break;
9884
 
9885
 
9886
        case Tag_CPU_arch_profile:
9887
          if (out_attr[i].i != in_attr[i].i)
9888
            {
9889
              /* 0 will merge with anything.
9890
                 'A' and 'S' merge to 'A'.
9891
                 'R' and 'S' merge to 'R'.
9892
                 'M' and 'A|R|S' is an error.  */
9893
              if (out_attr[i].i == 0
9894
                  || (out_attr[i].i == 'S'
9895
                      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9896
                out_attr[i].i = in_attr[i].i;
9897
              else if (in_attr[i].i == 0
9898
                       || (in_attr[i].i == 'S'
9899
                           && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9900
                ; /* Do nothing. */
9901
              else
9902
                {
9903
                  _bfd_error_handler
9904
                    (_("error: %B: Conflicting architecture profiles %c/%c"),
9905
                     ibfd,
9906
                     in_attr[i].i ? in_attr[i].i : '0',
9907
                     out_attr[i].i ? out_attr[i].i : '0');
9908
                  result = FALSE;
9909
                }
9910
            }
9911
          break;
9912
        case Tag_VFP_arch:
9913
          /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9914
             largest value if greater than 4 (for future-proofing).  */
9915
          if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
9916
              || (in_attr[i].i <= 4 && out_attr[i].i <= 4
9917
                  && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
9918
            out_attr[i].i = in_attr[i].i;
9919
          break;
9920
        case Tag_PCS_config:
9921
          if (out_attr[i].i == 0)
9922
            out_attr[i].i = in_attr[i].i;
9923
          else if (in_attr[i].i != 0 && out_attr[i].i != 0)
9924
            {
9925
              /* It's sometimes ok to mix different configs, so this is only
9926
                 a warning.  */
9927
              _bfd_error_handler
9928
                (_("Warning: %B: Conflicting platform configuration"), ibfd);
9929
            }
9930
          break;
9931
        case Tag_ABI_PCS_R9_use:
9932
          if (in_attr[i].i != out_attr[i].i
9933
              && out_attr[i].i != AEABI_R9_unused
9934
              && in_attr[i].i != AEABI_R9_unused)
9935
            {
9936
              _bfd_error_handler
9937
                (_("error: %B: Conflicting use of R9"), ibfd);
9938
              result = FALSE;
9939
            }
9940
          if (out_attr[i].i == AEABI_R9_unused)
9941
            out_attr[i].i = in_attr[i].i;
9942
          break;
9943
        case Tag_ABI_PCS_RW_data:
9944
          if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
9945
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
9946
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
9947
            {
9948
              _bfd_error_handler
9949
                (_("error: %B: SB relative addressing conflicts with use of R9"),
9950
                 ibfd);
9951
              result = FALSE;
9952
            }
9953
          /* Use the smallest value specified.  */
9954
          if (in_attr[i].i < out_attr[i].i)
9955
            out_attr[i].i = in_attr[i].i;
9956
          break;
9957
        case Tag_ABI_PCS_wchar_t:
9958
          if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
9959
              && !elf_arm_tdata (obfd)->no_wchar_size_warning)
9960
            {
9961
              _bfd_error_handler
9962
                (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9963
                 ibfd, in_attr[i].i, out_attr[i].i);
9964
            }
9965
          else if (in_attr[i].i && !out_attr[i].i)
9966
            out_attr[i].i = in_attr[i].i;
9967
          break;
9968
        case Tag_ABI_enum_size:
9969
          if (in_attr[i].i != AEABI_enum_unused)
9970
            {
9971
              if (out_attr[i].i == AEABI_enum_unused
9972
                  || out_attr[i].i == AEABI_enum_forced_wide)
9973
                {
9974
                  /* The existing object is compatible with anything.
9975
                     Use whatever requirements the new object has.  */
9976
                  out_attr[i].i = in_attr[i].i;
9977
                }
9978
              else if (in_attr[i].i != AEABI_enum_forced_wide
9979
                       && out_attr[i].i != in_attr[i].i
9980
                       && !elf_arm_tdata (obfd)->no_enum_size_warning)
9981
                {
9982
                  static const char *aeabi_enum_names[] =
9983
                    { "", "variable-size", "32-bit", "" };
9984
                  const char *in_name =
9985
                    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9986
                    ? aeabi_enum_names[in_attr[i].i]
9987
                    : "<unknown>";
9988
                  const char *out_name =
9989
                    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9990
                    ? aeabi_enum_names[out_attr[i].i]
9991
                    : "<unknown>";
9992
                  _bfd_error_handler
9993
                    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
9994
                     ibfd, in_name, out_name);
9995
                }
9996
            }
9997
          break;
9998
        case Tag_ABI_VFP_args:
9999
          /* Aready done.  */
10000
          break;
10001
        case Tag_ABI_WMMX_args:
10002
          if (in_attr[i].i != out_attr[i].i)
10003
            {
10004
              _bfd_error_handler
10005
                (_("error: %B uses iWMMXt register arguments, %B does not"),
10006
                 ibfd, obfd);
10007
              result = FALSE;
10008
            }
10009
          break;
10010
        case Tag_compatibility:
10011
          /* Merged in target-independent code.  */
10012
          break;
10013
        case Tag_ABI_HardFP_use:
10014
          /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).  */
10015
          if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10016
              || (in_attr[i].i == 2 && out_attr[i].i == 1))
10017
            out_attr[i].i = 3;
10018
          else if (in_attr[i].i > out_attr[i].i)
10019
            out_attr[i].i = in_attr[i].i;
10020
          break;
10021
        case Tag_ABI_FP_16bit_format:
10022
          if (in_attr[i].i != 0 && out_attr[i].i != 0)
10023
            {
10024
              if (in_attr[i].i != out_attr[i].i)
10025
                {
10026
                  _bfd_error_handler
10027
                    (_("error: fp16 format mismatch between %B and %B"),
10028
                     ibfd, obfd);
10029
                  result = FALSE;
10030
                }
10031
            }
10032
          if (in_attr[i].i != 0)
10033
            out_attr[i].i = in_attr[i].i;
10034
          break;
10035
 
10036
        case Tag_nodefaults:
10037
          /* This tag is set if it exists, but the value is unused (and is
10038
             typically zero).  We don't actually need to do anything here -
10039
             the merge happens automatically when the type flags are merged
10040
             below.  */
10041
          break;
10042
        case Tag_also_compatible_with:
10043
          /* Already done in Tag_CPU_arch.  */
10044
          break;
10045
        case Tag_conformance:
10046
          /* Keep the attribute if it matches.  Throw it away otherwise.
10047
             No attribute means no claim to conform.  */
10048
          if (!in_attr[i].s || !out_attr[i].s
10049
              || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10050
            out_attr[i].s = NULL;
10051
          break;
10052
 
10053
        default:
10054
          {
10055
            bfd *err_bfd = NULL;
10056
 
10057
            /* The "known_obj_attributes" table does contain some undefined
10058
               attributes.  Ensure that there are unused.  */
10059
            if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10060
              err_bfd = obfd;
10061
            else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10062
              err_bfd = ibfd;
10063
 
10064
            if (err_bfd != NULL)
10065
              {
10066
                /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
10067
                if ((i & 127) < 64)
10068
                  {
10069
                    _bfd_error_handler
10070
                      (_("%B: Unknown mandatory EABI object attribute %d"),
10071
                       err_bfd, i);
10072
                    bfd_set_error (bfd_error_bad_value);
10073
                    result = FALSE;
10074
                  }
10075
                else
10076
                  {
10077
                    _bfd_error_handler
10078
                      (_("Warning: %B: Unknown EABI object attribute %d"),
10079
                       err_bfd, i);
10080
                  }
10081
              }
10082
 
10083
            /* Only pass on attributes that match in both inputs.  */
10084
            if (in_attr[i].i != out_attr[i].i
10085
                || in_attr[i].s != out_attr[i].s
10086
                || (in_attr[i].s != NULL && out_attr[i].s != NULL
10087
                    && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10088
              {
10089
                out_attr[i].i = 0;
10090
                out_attr[i].s = NULL;
10091
              }
10092
          }
10093
        }
10094
 
10095
      /* If out_attr was copied from in_attr then it won't have a type yet.  */
10096
      if (in_attr[i].type && !out_attr[i].type)
10097
        out_attr[i].type = in_attr[i].type;
10098
    }
10099
 
10100
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
10101
  _bfd_elf_merge_object_attributes (ibfd, obfd);
10102
 
10103
  /* Check for any attributes not known on ARM.  */
10104
  in_list = elf_other_obj_attributes_proc (ibfd);
10105
  out_listp = &elf_other_obj_attributes_proc (obfd);
10106
  out_list = *out_listp;
10107
 
10108
  for (; in_list || out_list; )
10109
    {
10110
      bfd *err_bfd = NULL;
10111
      int err_tag = 0;
10112
 
10113
      /* The tags for each list are in numerical order.  */
10114
      /* If the tags are equal, then merge.  */
10115
      if (out_list && (!in_list || in_list->tag > out_list->tag))
10116
        {
10117
          /* This attribute only exists in obfd.  We can't merge, and we don't
10118
             know what the tag means, so delete it.  */
10119
          err_bfd = obfd;
10120
          err_tag = out_list->tag;
10121
          *out_listp = out_list->next;
10122
          out_list = *out_listp;
10123
        }
10124
      else if (in_list && (!out_list || in_list->tag < out_list->tag))
10125
        {
10126
          /* This attribute only exists in ibfd. We can't merge, and we don't
10127
             know what the tag means, so ignore it.  */
10128
          err_bfd = ibfd;
10129
          err_tag = in_list->tag;
10130
          in_list = in_list->next;
10131
        }
10132
      else /* The tags are equal.  */
10133
        {
10134
          /* As present, all attributes in the list are unknown, and
10135
             therefore can't be merged meaningfully.  */
10136
          err_bfd = obfd;
10137
          err_tag = out_list->tag;
10138
 
10139
          /*  Only pass on attributes that match in both inputs.  */
10140
          if (in_list->attr.i != out_list->attr.i
10141
              || in_list->attr.s != out_list->attr.s
10142
              || (in_list->attr.s && out_list->attr.s
10143
                  && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10144
            {
10145
              /* No match.  Delete the attribute.  */
10146
              *out_listp = out_list->next;
10147
              out_list = *out_listp;
10148
            }
10149
          else
10150
            {
10151
              /* Matched.  Keep the attribute and move to the next.  */
10152
              out_list = out_list->next;
10153
              in_list = in_list->next;
10154
            }
10155
        }
10156
 
10157
      if (err_bfd)
10158
        {
10159
          /* Attribute numbers >=64 (mod 128) can be safely ignored.  */
10160
          if ((err_tag & 127) < 64)
10161
            {
10162
              _bfd_error_handler
10163
                (_("%B: Unknown mandatory EABI object attribute %d"),
10164
                 err_bfd, err_tag);
10165
              bfd_set_error (bfd_error_bad_value);
10166
              result = FALSE;
10167
            }
10168
          else
10169
            {
10170
              _bfd_error_handler
10171
                (_("Warning: %B: Unknown EABI object attribute %d"),
10172
                 err_bfd, err_tag);
10173
            }
10174
        }
10175
    }
10176
  return result;
10177
}
10178
 
10179
 
10180
/* Return TRUE if the two EABI versions are incompatible.  */
10181
 
10182
static bfd_boolean
10183
elf32_arm_versions_compatible (unsigned iver, unsigned over)
10184
{
10185
  /* v4 and v5 are the same spec before and after it was released,
10186
     so allow mixing them.  */
10187
  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10188
      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10189
    return TRUE;
10190
 
10191
  return (iver == over);
10192
}
10193
 
10194
/* Merge backend specific data from an object file to the output
10195
   object file when linking.  */
10196
 
10197
static bfd_boolean
10198
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
10199
{
10200
  flagword out_flags;
10201
  flagword in_flags;
10202
  bfd_boolean flags_compatible = TRUE;
10203
  asection *sec;
10204
 
10205
  /* Check if we have the same endianess.  */
10206
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10207
    return FALSE;
10208
 
10209
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10210
    return TRUE;
10211
 
10212
  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
10213
    return FALSE;
10214
 
10215
  /* The input BFD must have had its flags initialised.  */
10216
  /* The following seems bogus to me -- The flags are initialized in
10217
     the assembler but I don't think an elf_flags_init field is
10218
     written into the object.  */
10219
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
10220
 
10221
  in_flags  = elf_elfheader (ibfd)->e_flags;
10222
  out_flags = elf_elfheader (obfd)->e_flags;
10223
 
10224
  /* In theory there is no reason why we couldn't handle this.  However
10225
     in practice it isn't even close to working and there is no real
10226
     reason to want it.  */
10227
  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
10228
      && !(ibfd->flags & DYNAMIC)
10229
      && (in_flags & EF_ARM_BE8))
10230
    {
10231
      _bfd_error_handler (_("error: %B is already in final BE8 format"),
10232
                          ibfd);
10233
      return FALSE;
10234
    }
10235
 
10236
  if (!elf_flags_init (obfd))
10237
    {
10238
      /* If the input is the default architecture and had the default
10239
         flags then do not bother setting the flags for the output
10240
         architecture, instead allow future merges to do this.  If no
10241
         future merges ever set these flags then they will retain their
10242
         uninitialised values, which surprise surprise, correspond
10243
         to the default values.  */
10244
      if (bfd_get_arch_info (ibfd)->the_default
10245
          && elf_elfheader (ibfd)->e_flags == 0)
10246
        return TRUE;
10247
 
10248
      elf_flags_init (obfd) = TRUE;
10249
      elf_elfheader (obfd)->e_flags = in_flags;
10250
 
10251
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10252
          && bfd_get_arch_info (obfd)->the_default)
10253
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
10254
 
10255
      return TRUE;
10256
    }
10257
 
10258
  /* Determine what should happen if the input ARM architecture
10259
     does not match the output ARM architecture.  */
10260
  if (! bfd_arm_merge_machines (ibfd, obfd))
10261
    return FALSE;
10262
 
10263
  /* Identical flags must be compatible.  */
10264
  if (in_flags == out_flags)
10265
    return TRUE;
10266
 
10267
  /* Check to see if the input BFD actually contains any sections.  If
10268
     not, its flags may not have been initialised either, but it
10269
     cannot actually cause any incompatiblity.  Do not short-circuit
10270
     dynamic objects; their section list may be emptied by
10271
    elf_link_add_object_symbols.
10272
 
10273
    Also check to see if there are no code sections in the input.
10274
    In this case there is no need to check for code specific flags.
10275
    XXX - do we need to worry about floating-point format compatability
10276
    in data sections ?  */
10277
  if (!(ibfd->flags & DYNAMIC))
10278
    {
10279
      bfd_boolean null_input_bfd = TRUE;
10280
      bfd_boolean only_data_sections = TRUE;
10281
 
10282
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10283
        {
10284
          /* Ignore synthetic glue sections.  */
10285
          if (strcmp (sec->name, ".glue_7")
10286
              && strcmp (sec->name, ".glue_7t"))
10287
            {
10288
              if ((bfd_get_section_flags (ibfd, sec)
10289
                   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
10290
                  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
10291
                only_data_sections = FALSE;
10292
 
10293
              null_input_bfd = FALSE;
10294
              break;
10295
            }
10296
        }
10297
 
10298
      if (null_input_bfd || only_data_sections)
10299
        return TRUE;
10300
    }
10301
 
10302
  /* Complain about various flag mismatches.  */
10303
  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
10304
                                      EF_ARM_EABI_VERSION (out_flags)))
10305
    {
10306
      _bfd_error_handler
10307
        (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
10308
         ibfd, obfd,
10309
         (in_flags & EF_ARM_EABIMASK) >> 24,
10310
         (out_flags & EF_ARM_EABIMASK) >> 24);
10311
      return FALSE;
10312
    }
10313
 
10314
  /* Not sure what needs to be checked for EABI versions >= 1.  */
10315
  /* VxWorks libraries do not use these flags.  */
10316
  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
10317
      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
10318
      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
10319
    {
10320
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10321
        {
10322
          _bfd_error_handler
10323
            (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
10324
             ibfd, obfd,
10325
             in_flags & EF_ARM_APCS_26 ? 26 : 32,
10326
             out_flags & EF_ARM_APCS_26 ? 26 : 32);
10327
          flags_compatible = FALSE;
10328
        }
10329
 
10330
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10331
        {
10332
          if (in_flags & EF_ARM_APCS_FLOAT)
10333
            _bfd_error_handler
10334
              (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
10335
               ibfd, obfd);
10336
          else
10337
            _bfd_error_handler
10338
              (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
10339
               ibfd, obfd);
10340
 
10341
          flags_compatible = FALSE;
10342
        }
10343
 
10344
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
10345
        {
10346
          if (in_flags & EF_ARM_VFP_FLOAT)
10347
            _bfd_error_handler
10348
              (_("error: %B uses VFP instructions, whereas %B does not"),
10349
               ibfd, obfd);
10350
          else
10351
            _bfd_error_handler
10352
              (_("error: %B uses FPA instructions, whereas %B does not"),
10353
               ibfd, obfd);
10354
 
10355
          flags_compatible = FALSE;
10356
        }
10357
 
10358
      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
10359
        {
10360
          if (in_flags & EF_ARM_MAVERICK_FLOAT)
10361
            _bfd_error_handler
10362
              (_("error: %B uses Maverick instructions, whereas %B does not"),
10363
               ibfd, obfd);
10364
          else
10365
            _bfd_error_handler
10366
              (_("error: %B does not use Maverick instructions, whereas %B does"),
10367
               ibfd, obfd);
10368
 
10369
          flags_compatible = FALSE;
10370
        }
10371
 
10372
#ifdef EF_ARM_SOFT_FLOAT
10373
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
10374
        {
10375
          /* We can allow interworking between code that is VFP format
10376
             layout, and uses either soft float or integer regs for
10377
             passing floating point arguments and results.  We already
10378
             know that the APCS_FLOAT flags match; similarly for VFP
10379
             flags.  */
10380
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
10381
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
10382
            {
10383
              if (in_flags & EF_ARM_SOFT_FLOAT)
10384
                _bfd_error_handler
10385
                  (_("error: %B uses software FP, whereas %B uses hardware FP"),
10386
                   ibfd, obfd);
10387
              else
10388
                _bfd_error_handler
10389
                  (_("error: %B uses hardware FP, whereas %B uses software FP"),
10390
                   ibfd, obfd);
10391
 
10392
              flags_compatible = FALSE;
10393
            }
10394
        }
10395
#endif
10396
 
10397
      /* Interworking mismatch is only a warning.  */
10398
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10399
        {
10400
          if (in_flags & EF_ARM_INTERWORK)
10401
            {
10402
              _bfd_error_handler
10403
                (_("Warning: %B supports interworking, whereas %B does not"),
10404
                 ibfd, obfd);
10405
            }
10406
          else
10407
            {
10408
              _bfd_error_handler
10409
                (_("Warning: %B does not support interworking, whereas %B does"),
10410
                 ibfd, obfd);
10411
            }
10412
        }
10413
    }
10414
 
10415
  return flags_compatible;
10416
}
10417
 
10418
/* Display the flags field.  */
10419
 
10420
static bfd_boolean
10421
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10422
{
10423
  FILE * file = (FILE *) ptr;
10424
  unsigned long flags;
10425
 
10426
  BFD_ASSERT (abfd != NULL && ptr != NULL);
10427
 
10428
  /* Print normal ELF private data.  */
10429
  _bfd_elf_print_private_bfd_data (abfd, ptr);
10430
 
10431
  flags = elf_elfheader (abfd)->e_flags;
10432
  /* Ignore init flag - it may not be set, despite the flags field
10433
     containing valid data.  */
10434
 
10435
  /* xgettext:c-format */
10436
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10437
 
10438
  switch (EF_ARM_EABI_VERSION (flags))
10439
    {
10440
    case EF_ARM_EABI_UNKNOWN:
10441
      /* The following flag bits are GNU extensions and not part of the
10442
         official ARM ELF extended ABI.  Hence they are only decoded if
10443
         the EABI version is not set.  */
10444
      if (flags & EF_ARM_INTERWORK)
10445
        fprintf (file, _(" [interworking enabled]"));
10446
 
10447
      if (flags & EF_ARM_APCS_26)
10448
        fprintf (file, " [APCS-26]");
10449
      else
10450
        fprintf (file, " [APCS-32]");
10451
 
10452
      if (flags & EF_ARM_VFP_FLOAT)
10453
        fprintf (file, _(" [VFP float format]"));
10454
      else if (flags & EF_ARM_MAVERICK_FLOAT)
10455
        fprintf (file, _(" [Maverick float format]"));
10456
      else
10457
        fprintf (file, _(" [FPA float format]"));
10458
 
10459
      if (flags & EF_ARM_APCS_FLOAT)
10460
        fprintf (file, _(" [floats passed in float registers]"));
10461
 
10462
      if (flags & EF_ARM_PIC)
10463
        fprintf (file, _(" [position independent]"));
10464
 
10465
      if (flags & EF_ARM_NEW_ABI)
10466
        fprintf (file, _(" [new ABI]"));
10467
 
10468
      if (flags & EF_ARM_OLD_ABI)
10469
        fprintf (file, _(" [old ABI]"));
10470
 
10471
      if (flags & EF_ARM_SOFT_FLOAT)
10472
        fprintf (file, _(" [software FP]"));
10473
 
10474
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10475
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10476
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10477
                 | EF_ARM_MAVERICK_FLOAT);
10478
      break;
10479
 
10480
    case EF_ARM_EABI_VER1:
10481
      fprintf (file, _(" [Version1 EABI]"));
10482
 
10483
      if (flags & EF_ARM_SYMSARESORTED)
10484
        fprintf (file, _(" [sorted symbol table]"));
10485
      else
10486
        fprintf (file, _(" [unsorted symbol table]"));
10487
 
10488
      flags &= ~ EF_ARM_SYMSARESORTED;
10489
      break;
10490
 
10491
    case EF_ARM_EABI_VER2:
10492
      fprintf (file, _(" [Version2 EABI]"));
10493
 
10494
      if (flags & EF_ARM_SYMSARESORTED)
10495
        fprintf (file, _(" [sorted symbol table]"));
10496
      else
10497
        fprintf (file, _(" [unsorted symbol table]"));
10498
 
10499
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10500
        fprintf (file, _(" [dynamic symbols use segment index]"));
10501
 
10502
      if (flags & EF_ARM_MAPSYMSFIRST)
10503
        fprintf (file, _(" [mapping symbols precede others]"));
10504
 
10505
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10506
                 | EF_ARM_MAPSYMSFIRST);
10507
      break;
10508
 
10509
    case EF_ARM_EABI_VER3:
10510
      fprintf (file, _(" [Version3 EABI]"));
10511
      break;
10512
 
10513
    case EF_ARM_EABI_VER4:
10514
      fprintf (file, _(" [Version4 EABI]"));
10515
      goto eabi;
10516
 
10517
    case EF_ARM_EABI_VER5:
10518
      fprintf (file, _(" [Version5 EABI]"));
10519
    eabi:
10520
      if (flags & EF_ARM_BE8)
10521
        fprintf (file, _(" [BE8]"));
10522
 
10523
      if (flags & EF_ARM_LE8)
10524
        fprintf (file, _(" [LE8]"));
10525
 
10526
      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10527
      break;
10528
 
10529
    default:
10530
      fprintf (file, _(" <EABI version unrecognised>"));
10531
      break;
10532
    }
10533
 
10534
  flags &= ~ EF_ARM_EABIMASK;
10535
 
10536
  if (flags & EF_ARM_RELEXEC)
10537
    fprintf (file, _(" [relocatable executable]"));
10538
 
10539
  if (flags & EF_ARM_HASENTRY)
10540
    fprintf (file, _(" [has entry point]"));
10541
 
10542
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10543
 
10544
  if (flags)
10545
    fprintf (file, _("<Unrecognised flag bits set>"));
10546
 
10547
  fputc ('\n', file);
10548
 
10549
  return TRUE;
10550
}
10551
 
10552
static int
10553
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10554
{
10555
  switch (ELF_ST_TYPE (elf_sym->st_info))
10556
    {
10557
    case STT_ARM_TFUNC:
10558
      return ELF_ST_TYPE (elf_sym->st_info);
10559
 
10560
    case STT_ARM_16BIT:
10561
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10562
         This allows us to distinguish between data used by Thumb instructions
10563
         and non-data (which is probably code) inside Thumb regions of an
10564
         executable.  */
10565
      if (type != STT_OBJECT && type != STT_TLS)
10566
        return ELF_ST_TYPE (elf_sym->st_info);
10567
      break;
10568
 
10569
    default:
10570
      break;
10571
    }
10572
 
10573
  return type;
10574
}
10575
 
10576
static asection *
10577
elf32_arm_gc_mark_hook (asection *sec,
10578
                        struct bfd_link_info *info,
10579
                        Elf_Internal_Rela *rel,
10580
                        struct elf_link_hash_entry *h,
10581
                        Elf_Internal_Sym *sym)
10582
{
10583
  if (h != NULL)
10584
    switch (ELF32_R_TYPE (rel->r_info))
10585
      {
10586
      case R_ARM_GNU_VTINHERIT:
10587
      case R_ARM_GNU_VTENTRY:
10588
        return NULL;
10589
      }
10590
 
10591
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10592
}
10593
 
10594
/* Update the got entry reference counts for the section being removed.  */
10595
 
10596
static bfd_boolean
10597
elf32_arm_gc_sweep_hook (bfd *                     abfd,
10598
                         struct bfd_link_info *    info,
10599
                         asection *                sec,
10600
                         const Elf_Internal_Rela * relocs)
10601
{
10602
  Elf_Internal_Shdr *symtab_hdr;
10603
  struct elf_link_hash_entry **sym_hashes;
10604
  bfd_signed_vma *local_got_refcounts;
10605
  const Elf_Internal_Rela *rel, *relend;
10606
  struct elf32_arm_link_hash_table * globals;
10607
 
10608
  if (info->relocatable)
10609
    return TRUE;
10610
 
10611
  globals = elf32_arm_hash_table (info);
10612
 
10613
  elf_section_data (sec)->local_dynrel = NULL;
10614
 
10615
  symtab_hdr = & elf_symtab_hdr (abfd);
10616
  sym_hashes = elf_sym_hashes (abfd);
10617
  local_got_refcounts = elf_local_got_refcounts (abfd);
10618
 
10619
  check_use_blx (globals);
10620
 
10621
  relend = relocs + sec->reloc_count;
10622
  for (rel = relocs; rel < relend; rel++)
10623
    {
10624
      unsigned long r_symndx;
10625
      struct elf_link_hash_entry *h = NULL;
10626
      int r_type;
10627
 
10628
      r_symndx = ELF32_R_SYM (rel->r_info);
10629
      if (r_symndx >= symtab_hdr->sh_info)
10630
        {
10631
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10632
          while (h->root.type == bfd_link_hash_indirect
10633
                 || h->root.type == bfd_link_hash_warning)
10634
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
10635
        }
10636
 
10637
      r_type = ELF32_R_TYPE (rel->r_info);
10638
      r_type = arm_real_reloc_type (globals, r_type);
10639
      switch (r_type)
10640
        {
10641
        case R_ARM_GOT32:
10642
        case R_ARM_GOT_PREL:
10643
        case R_ARM_TLS_GD32:
10644
        case R_ARM_TLS_IE32:
10645
          if (h != NULL)
10646
            {
10647
              if (h->got.refcount > 0)
10648
                h->got.refcount -= 1;
10649
            }
10650
          else if (local_got_refcounts != NULL)
10651
            {
10652
              if (local_got_refcounts[r_symndx] > 0)
10653
                local_got_refcounts[r_symndx] -= 1;
10654
            }
10655
          break;
10656
 
10657
        case R_ARM_TLS_LDM32:
10658
          elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
10659
          break;
10660
 
10661
        case R_ARM_ABS32:
10662
        case R_ARM_ABS32_NOI:
10663
        case R_ARM_REL32:
10664
        case R_ARM_REL32_NOI:
10665
        case R_ARM_PC24:
10666
        case R_ARM_PLT32:
10667
        case R_ARM_CALL:
10668
        case R_ARM_JUMP24:
10669
        case R_ARM_PREL31:
10670
        case R_ARM_THM_CALL:
10671
        case R_ARM_THM_JUMP24:
10672
        case R_ARM_THM_JUMP19:
10673
        case R_ARM_MOVW_ABS_NC:
10674
        case R_ARM_MOVT_ABS:
10675
        case R_ARM_MOVW_PREL_NC:
10676
        case R_ARM_MOVT_PREL:
10677
        case R_ARM_THM_MOVW_ABS_NC:
10678
        case R_ARM_THM_MOVT_ABS:
10679
        case R_ARM_THM_MOVW_PREL_NC:
10680
        case R_ARM_THM_MOVT_PREL:
10681
          /* Should the interworking branches be here also?  */
10682
 
10683
          if (h != NULL)
10684
            {
10685
              struct elf32_arm_link_hash_entry *eh;
10686
              struct elf32_arm_relocs_copied **pp;
10687
              struct elf32_arm_relocs_copied *p;
10688
 
10689
              eh = (struct elf32_arm_link_hash_entry *) h;
10690
 
10691
              if (h->plt.refcount > 0)
10692
                {
10693
                  h->plt.refcount -= 1;
10694
                  if (r_type == R_ARM_THM_CALL)
10695
                    eh->plt_maybe_thumb_refcount--;
10696
 
10697
                  if (r_type == R_ARM_THM_JUMP24
10698
                      || r_type == R_ARM_THM_JUMP19)
10699
                    eh->plt_thumb_refcount--;
10700
                }
10701
 
10702
              if (r_type == R_ARM_ABS32
10703
                  || r_type == R_ARM_REL32
10704
                  || r_type == R_ARM_ABS32_NOI
10705
                  || r_type == R_ARM_REL32_NOI)
10706
                {
10707
                  for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10708
                       pp = &p->next)
10709
                  if (p->section == sec)
10710
                    {
10711
                      p->count -= 1;
10712
                      if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10713
                          || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10714
                        p->pc_count -= 1;
10715
                      if (p->count == 0)
10716
                        *pp = p->next;
10717
                      break;
10718
                    }
10719
                }
10720
            }
10721
          break;
10722
 
10723
        default:
10724
          break;
10725
        }
10726
    }
10727
 
10728
  return TRUE;
10729
}
10730
 
10731
/* Look through the relocs for a section during the first phase.  */
10732
 
10733
static bfd_boolean
10734
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10735
                        asection *sec, const Elf_Internal_Rela *relocs)
10736
{
10737
  Elf_Internal_Shdr *symtab_hdr;
10738
  struct elf_link_hash_entry **sym_hashes;
10739
  const Elf_Internal_Rela *rel;
10740
  const Elf_Internal_Rela *rel_end;
10741
  bfd *dynobj;
10742
  asection *sreloc;
10743
  bfd_vma *local_got_offsets;
10744
  struct elf32_arm_link_hash_table *htab;
10745
  bfd_boolean needs_plt;
10746
  unsigned long nsyms;
10747
 
10748
  if (info->relocatable)
10749
    return TRUE;
10750
 
10751
  BFD_ASSERT (is_arm_elf (abfd));
10752
 
10753
  htab = elf32_arm_hash_table (info);
10754
  sreloc = NULL;
10755
 
10756
  /* Create dynamic sections for relocatable executables so that we can
10757
     copy relocations.  */
10758
  if (htab->root.is_relocatable_executable
10759
      && ! htab->root.dynamic_sections_created)
10760
    {
10761
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10762
        return FALSE;
10763
    }
10764
 
10765
  dynobj = elf_hash_table (info)->dynobj;
10766
  local_got_offsets = elf_local_got_offsets (abfd);
10767
 
10768
  symtab_hdr = & elf_symtab_hdr (abfd);
10769
  sym_hashes = elf_sym_hashes (abfd);
10770
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10771
 
10772
  rel_end = relocs + sec->reloc_count;
10773
  for (rel = relocs; rel < rel_end; rel++)
10774
    {
10775
      struct elf_link_hash_entry *h;
10776
      struct elf32_arm_link_hash_entry *eh;
10777
      unsigned long r_symndx;
10778
      int r_type;
10779
 
10780
      r_symndx = ELF32_R_SYM (rel->r_info);
10781
      r_type = ELF32_R_TYPE (rel->r_info);
10782
      r_type = arm_real_reloc_type (htab, r_type);
10783
 
10784
      if (r_symndx >= nsyms
10785
          /* PR 9934: It is possible to have relocations that do not
10786
             refer to symbols, thus it is also possible to have an
10787
             object file containing relocations but no symbol table.  */
10788
          && (r_symndx > 0 || nsyms > 0))
10789
        {
10790
          (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10791
                                   r_symndx);
10792
          return FALSE;
10793
        }
10794
 
10795
      if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10796
        h = NULL;
10797
      else
10798
        {
10799
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10800
          while (h->root.type == bfd_link_hash_indirect
10801
                 || h->root.type == bfd_link_hash_warning)
10802
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
10803
        }
10804
 
10805
      eh = (struct elf32_arm_link_hash_entry *) h;
10806
 
10807
      switch (r_type)
10808
        {
10809
          case R_ARM_GOT32:
10810
          case R_ARM_GOT_PREL:
10811
          case R_ARM_TLS_GD32:
10812
          case R_ARM_TLS_IE32:
10813
            /* This symbol requires a global offset table entry.  */
10814
            {
10815
              int tls_type, old_tls_type;
10816
 
10817
              switch (r_type)
10818
                {
10819
                case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10820
                case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10821
                default: tls_type = GOT_NORMAL; break;
10822
                }
10823
 
10824
              if (h != NULL)
10825
                {
10826
                  h->got.refcount++;
10827
                  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10828
                }
10829
              else
10830
                {
10831
                  bfd_signed_vma *local_got_refcounts;
10832
 
10833
                  /* This is a global offset table entry for a local symbol.  */
10834
                  local_got_refcounts = elf_local_got_refcounts (abfd);
10835
                  if (local_got_refcounts == NULL)
10836
                    {
10837
                      bfd_size_type size;
10838
 
10839
                      size = symtab_hdr->sh_info;
10840
                      size *= (sizeof (bfd_signed_vma) + sizeof (char));
10841
                      local_got_refcounts = bfd_zalloc (abfd, size);
10842
                      if (local_got_refcounts == NULL)
10843
                        return FALSE;
10844
                      elf_local_got_refcounts (abfd) = local_got_refcounts;
10845
                      elf32_arm_local_got_tls_type (abfd)
10846
                        = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10847
                    }
10848
                  local_got_refcounts[r_symndx] += 1;
10849
                  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10850
                }
10851
 
10852
              /* We will already have issued an error message if there is a
10853
                 TLS / non-TLS mismatch, based on the symbol type.  We don't
10854
                 support any linker relaxations.  So just combine any TLS
10855
                 types needed.  */
10856
              if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10857
                  && tls_type != GOT_NORMAL)
10858
                tls_type |= old_tls_type;
10859
 
10860
              if (old_tls_type != tls_type)
10861
                {
10862
                  if (h != NULL)
10863
                    elf32_arm_hash_entry (h)->tls_type = tls_type;
10864
                  else
10865
                    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10866
                }
10867
            }
10868
            /* Fall through.  */
10869
 
10870
          case R_ARM_TLS_LDM32:
10871
            if (r_type == R_ARM_TLS_LDM32)
10872
                htab->tls_ldm_got.refcount++;
10873
            /* Fall through.  */
10874
 
10875
          case R_ARM_GOTOFF32:
10876
          case R_ARM_GOTPC:
10877
            if (htab->sgot == NULL)
10878
              {
10879
                if (htab->root.dynobj == NULL)
10880
                  htab->root.dynobj = abfd;
10881
                if (!create_got_section (htab->root.dynobj, info))
10882
                  return FALSE;
10883
              }
10884
            break;
10885
 
10886
          case R_ARM_ABS12:
10887
            /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10888
               ldr __GOTT_INDEX__ offsets.  */
10889
            if (!htab->vxworks_p)
10890
              break;
10891
            /* Fall through.  */
10892
 
10893
          case R_ARM_PC24:
10894
          case R_ARM_PLT32:
10895
          case R_ARM_CALL:
10896
          case R_ARM_JUMP24:
10897
          case R_ARM_PREL31:
10898
          case R_ARM_THM_CALL:
10899
          case R_ARM_THM_JUMP24:
10900
          case R_ARM_THM_JUMP19:
10901
            needs_plt = 1;
10902
            goto normal_reloc;
10903
 
10904
          case R_ARM_MOVW_ABS_NC:
10905
          case R_ARM_MOVT_ABS:
10906
          case R_ARM_THM_MOVW_ABS_NC:
10907
          case R_ARM_THM_MOVT_ABS:
10908
            if (info->shared)
10909
              {
10910
                (*_bfd_error_handler)
10911
                  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10912
                   abfd, elf32_arm_howto_table_1[r_type].name,
10913
                   (h) ? h->root.root.string : "a local symbol");
10914
                bfd_set_error (bfd_error_bad_value);
10915
                return FALSE;
10916
              }
10917
 
10918
            /* Fall through.  */
10919
          case R_ARM_ABS32:
10920
          case R_ARM_ABS32_NOI:
10921
          case R_ARM_REL32:
10922
          case R_ARM_REL32_NOI:
10923
          case R_ARM_MOVW_PREL_NC:
10924
          case R_ARM_MOVT_PREL:
10925
          case R_ARM_THM_MOVW_PREL_NC:
10926
          case R_ARM_THM_MOVT_PREL:
10927
            needs_plt = 0;
10928
          normal_reloc:
10929
 
10930
            /* Should the interworking branches be listed here?  */
10931
            if (h != NULL)
10932
              {
10933
                /* If this reloc is in a read-only section, we might
10934
                   need a copy reloc.  We can't check reliably at this
10935
                   stage whether the section is read-only, as input
10936
                   sections have not yet been mapped to output sections.
10937
                   Tentatively set the flag for now, and correct in
10938
                   adjust_dynamic_symbol.  */
10939
                if (!info->shared)
10940
                  h->non_got_ref = 1;
10941
 
10942
                /* We may need a .plt entry if the function this reloc
10943
                   refers to is in a different object.  We can't tell for
10944
                   sure yet, because something later might force the
10945
                   symbol local.  */
10946
                if (needs_plt)
10947
                  h->needs_plt = 1;
10948
 
10949
                /* If we create a PLT entry, this relocation will reference
10950
                   it, even if it's an ABS32 relocation.  */
10951
                h->plt.refcount += 1;
10952
 
10953
                /* It's too early to use htab->use_blx here, so we have to
10954
                   record possible blx references separately from
10955
                   relocs that definitely need a thumb stub.  */
10956
 
10957
                if (r_type == R_ARM_THM_CALL)
10958
                  eh->plt_maybe_thumb_refcount += 1;
10959
 
10960
                if (r_type == R_ARM_THM_JUMP24
10961
                    || r_type == R_ARM_THM_JUMP19)
10962
                  eh->plt_thumb_refcount += 1;
10963
              }
10964
 
10965
            /* If we are creating a shared library or relocatable executable,
10966
               and this is a reloc against a global symbol, or a non PC
10967
               relative reloc against a local symbol, then we need to copy
10968
               the reloc into the shared library.  However, if we are linking
10969
               with -Bsymbolic, we do not need to copy a reloc against a
10970
               global symbol which is defined in an object we are
10971
               including in the link (i.e., DEF_REGULAR is set).  At
10972
               this point we have not seen all the input files, so it is
10973
               possible that DEF_REGULAR is not set now but will be set
10974
               later (it is never cleared).  We account for that
10975
               possibility below by storing information in the
10976
               relocs_copied field of the hash table entry.  */
10977
            if ((info->shared || htab->root.is_relocatable_executable)
10978
                && (sec->flags & SEC_ALLOC) != 0
10979
                && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
10980
                    || (h != NULL && ! h->needs_plt
10981
                        && (! info->symbolic || ! h->def_regular))))
10982
              {
10983
                struct elf32_arm_relocs_copied *p, **head;
10984
 
10985
                /* When creating a shared object, we must copy these
10986
                   reloc types into the output file.  We create a reloc
10987
                   section in dynobj and make room for this reloc.  */
10988
                if (sreloc == NULL)
10989
                  {
10990
                    sreloc = _bfd_elf_make_dynamic_reloc_section
10991
                      (sec, dynobj, 2, abfd, ! htab->use_rel);
10992
 
10993
                    if (sreloc == NULL)
10994
                      return FALSE;
10995
 
10996
                    /* BPABI objects never have dynamic relocations mapped.  */
10997
                    if (htab->symbian_p)
10998
                      {
10999
                        flagword flags;
11000
 
11001
                        flags = bfd_get_section_flags (dynobj, sreloc);
11002
                        flags &= ~(SEC_LOAD | SEC_ALLOC);
11003
                        bfd_set_section_flags (dynobj, sreloc, flags);
11004
                      }
11005
                  }
11006
 
11007
                /* If this is a global symbol, we count the number of
11008
                   relocations we need for this symbol.  */
11009
                if (h != NULL)
11010
                  {
11011
                    head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
11012
                  }
11013
                else
11014
                  {
11015
                    /* Track dynamic relocs needed for local syms too.
11016
                       We really need local syms available to do this
11017
                       easily.  Oh well.  */
11018
                    asection *s;
11019
                    void *vpp;
11020
                    Elf_Internal_Sym *isym;
11021
 
11022
                    isym = bfd_sym_from_r_symndx (&htab->sym_cache,
11023
                                                  abfd, r_symndx);
11024
                    if (isym == NULL)
11025
                      return FALSE;
11026
 
11027
                    s = bfd_section_from_elf_index (abfd, isym->st_shndx);
11028
                    if (s == NULL)
11029
                      s = sec;
11030
 
11031
                    vpp = &elf_section_data (s)->local_dynrel;
11032
                    head = (struct elf32_arm_relocs_copied **) vpp;
11033
                  }
11034
 
11035
                p = *head;
11036
                if (p == NULL || p->section != sec)
11037
                  {
11038
                    bfd_size_type amt = sizeof *p;
11039
 
11040
                    p = bfd_alloc (htab->root.dynobj, amt);
11041
                    if (p == NULL)
11042
                      return FALSE;
11043
                    p->next = *head;
11044
                    *head = p;
11045
                    p->section = sec;
11046
                    p->count = 0;
11047
                    p->pc_count = 0;
11048
                  }
11049
 
11050
                if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
11051
                  p->pc_count += 1;
11052
                p->count += 1;
11053
              }
11054
            break;
11055
 
11056
        /* This relocation describes the C++ object vtable hierarchy.
11057
           Reconstruct it for later use during GC.  */
11058
        case R_ARM_GNU_VTINHERIT:
11059
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
11060
            return FALSE;
11061
          break;
11062
 
11063
        /* This relocation describes which C++ vtable entries are actually
11064
           used.  Record for later use during GC.  */
11065
        case R_ARM_GNU_VTENTRY:
11066
          BFD_ASSERT (h != NULL);
11067
          if (h != NULL
11068
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
11069
            return FALSE;
11070
          break;
11071
        }
11072
    }
11073
 
11074
  return TRUE;
11075
}
11076
 
11077
/* Unwinding tables are not referenced directly.  This pass marks them as
11078
   required if the corresponding code section is marked.  */
11079
 
11080
static bfd_boolean
11081
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
11082
                                  elf_gc_mark_hook_fn gc_mark_hook)
11083
{
11084
  bfd *sub;
11085
  Elf_Internal_Shdr **elf_shdrp;
11086
  bfd_boolean again;
11087
 
11088
  /* Marking EH data may cause additional code sections to be marked,
11089
     requiring multiple passes.  */
11090
  again = TRUE;
11091
  while (again)
11092
    {
11093
      again = FALSE;
11094
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11095
        {
11096
          asection *o;
11097
 
11098
          if (! is_arm_elf (sub))
11099
            continue;
11100
 
11101
          elf_shdrp = elf_elfsections (sub);
11102
          for (o = sub->sections; o != NULL; o = o->next)
11103
            {
11104
              Elf_Internal_Shdr *hdr;
11105
 
11106
              hdr = &elf_section_data (o)->this_hdr;
11107
              if (hdr->sh_type == SHT_ARM_EXIDX
11108
                  && hdr->sh_link
11109
                  && hdr->sh_link < elf_numsections (sub)
11110
                  && !o->gc_mark
11111
                  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11112
                {
11113
                  again = TRUE;
11114
                  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11115
                    return FALSE;
11116
                }
11117
            }
11118
        }
11119
    }
11120
 
11121
  return TRUE;
11122
}
11123
 
11124
/* Treat mapping symbols as special target symbols.  */
11125
 
11126
static bfd_boolean
11127
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11128
{
11129
  return bfd_is_arm_special_symbol_name (sym->name,
11130
                                         BFD_ARM_SPECIAL_SYM_TYPE_ANY);
11131
}
11132
 
11133
/* This is a copy of elf_find_function() from elf.c except that
11134
   ARM mapping symbols are ignored when looking for function names
11135
   and STT_ARM_TFUNC is considered to a function type.  */
11136
 
11137
static bfd_boolean
11138
arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
11139
                       asection *    section,
11140
                       asymbol **    symbols,
11141
                       bfd_vma       offset,
11142
                       const char ** filename_ptr,
11143
                       const char ** functionname_ptr)
11144
{
11145
  const char * filename = NULL;
11146
  asymbol * func = NULL;
11147
  bfd_vma low_func = 0;
11148
  asymbol ** p;
11149
 
11150
  for (p = symbols; *p != NULL; p++)
11151
    {
11152
      elf_symbol_type *q;
11153
 
11154
      q = (elf_symbol_type *) *p;
11155
 
11156
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11157
        {
11158
        default:
11159
          break;
11160
        case STT_FILE:
11161
          filename = bfd_asymbol_name (&q->symbol);
11162
          break;
11163
        case STT_FUNC:
11164
        case STT_ARM_TFUNC:
11165
        case STT_NOTYPE:
11166
          /* Skip mapping symbols.  */
11167
          if ((q->symbol.flags & BSF_LOCAL)
11168
              && bfd_is_arm_special_symbol_name (q->symbol.name,
11169
                    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
11170
            continue;
11171
          /* Fall through.  */
11172
          if (bfd_get_section (&q->symbol) == section
11173
              && q->symbol.value >= low_func
11174
              && q->symbol.value <= offset)
11175
            {
11176
              func = (asymbol *) q;
11177
              low_func = q->symbol.value;
11178
            }
11179
          break;
11180
        }
11181
    }
11182
 
11183
  if (func == NULL)
11184
    return FALSE;
11185
 
11186
  if (filename_ptr)
11187
    *filename_ptr = filename;
11188
  if (functionname_ptr)
11189
    *functionname_ptr = bfd_asymbol_name (func);
11190
 
11191
  return TRUE;
11192
}
11193
 
11194
 
11195
/* Find the nearest line to a particular section and offset, for error
11196
   reporting.   This code is a duplicate of the code in elf.c, except
11197
   that it uses arm_elf_find_function.  */
11198
 
11199
static bfd_boolean
11200
elf32_arm_find_nearest_line (bfd *          abfd,
11201
                             asection *     section,
11202
                             asymbol **     symbols,
11203
                             bfd_vma        offset,
11204
                             const char **  filename_ptr,
11205
                             const char **  functionname_ptr,
11206
                             unsigned int * line_ptr)
11207
{
11208
  bfd_boolean found = FALSE;
11209
 
11210
  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
11211
 
11212
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11213
                                     filename_ptr, functionname_ptr,
11214
                                     line_ptr, 0,
11215
                                     & elf_tdata (abfd)->dwarf2_find_line_info))
11216
    {
11217
      if (!*functionname_ptr)
11218
        arm_elf_find_function (abfd, section, symbols, offset,
11219
                               *filename_ptr ? NULL : filename_ptr,
11220
                               functionname_ptr);
11221
 
11222
      return TRUE;
11223
    }
11224
 
11225
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11226
                                             & found, filename_ptr,
11227
                                             functionname_ptr, line_ptr,
11228
                                             & elf_tdata (abfd)->line_info))
11229
    return FALSE;
11230
 
11231
  if (found && (*functionname_ptr || *line_ptr))
11232
    return TRUE;
11233
 
11234
  if (symbols == NULL)
11235
    return FALSE;
11236
 
11237
  if (! arm_elf_find_function (abfd, section, symbols, offset,
11238
                               filename_ptr, functionname_ptr))
11239
    return FALSE;
11240
 
11241
  *line_ptr = 0;
11242
  return TRUE;
11243
}
11244
 
11245
static bfd_boolean
11246
elf32_arm_find_inliner_info (bfd *          abfd,
11247
                             const char **  filename_ptr,
11248
                             const char **  functionname_ptr,
11249
                             unsigned int * line_ptr)
11250
{
11251
  bfd_boolean found;
11252
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11253
                                         functionname_ptr, line_ptr,
11254
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
11255
  return found;
11256
}
11257
 
11258
/* Adjust a symbol defined by a dynamic object and referenced by a
11259
   regular object.  The current definition is in some section of the
11260
   dynamic object, but we're not including those sections.  We have to
11261
   change the definition to something the rest of the link can
11262
   understand.  */
11263
 
11264
static bfd_boolean
11265
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11266
                                 struct elf_link_hash_entry * h)
11267
{
11268
  bfd * dynobj;
11269
  asection * s;
11270
  struct elf32_arm_link_hash_entry * eh;
11271
  struct elf32_arm_link_hash_table *globals;
11272
 
11273
  globals = elf32_arm_hash_table (info);
11274
  dynobj = elf_hash_table (info)->dynobj;
11275
 
11276
  /* Make sure we know what is going on here.  */
11277
  BFD_ASSERT (dynobj != NULL
11278
              && (h->needs_plt
11279
                  || h->u.weakdef != NULL
11280
                  || (h->def_dynamic
11281
                      && h->ref_regular
11282
                      && !h->def_regular)));
11283
 
11284
  eh = (struct elf32_arm_link_hash_entry *) h;
11285
 
11286
  /* If this is a function, put it in the procedure linkage table.  We
11287
     will fill in the contents of the procedure linkage table later,
11288
     when we know the address of the .got section.  */
11289
  if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11290
      || h->needs_plt)
11291
    {
11292
      if (h->plt.refcount <= 0
11293
          || SYMBOL_CALLS_LOCAL (info, h)
11294
          || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11295
              && h->root.type == bfd_link_hash_undefweak))
11296
        {
11297
          /* This case can occur if we saw a PLT32 reloc in an input
11298
             file, but the symbol was never referred to by a dynamic
11299
             object, or if all references were garbage collected.  In
11300
             such a case, we don't actually need to build a procedure
11301
             linkage table, and we can just do a PC24 reloc instead.  */
11302
          h->plt.offset = (bfd_vma) -1;
11303
          eh->plt_thumb_refcount = 0;
11304
          eh->plt_maybe_thumb_refcount = 0;
11305
          h->needs_plt = 0;
11306
        }
11307
 
11308
      return TRUE;
11309
    }
11310
  else
11311
    {
11312
      /* It's possible that we incorrectly decided a .plt reloc was
11313
         needed for an R_ARM_PC24 or similar reloc to a non-function sym
11314
         in check_relocs.  We can't decide accurately between function
11315
         and non-function syms in check-relocs; Objects loaded later in
11316
         the link may change h->type.  So fix it now.  */
11317
      h->plt.offset = (bfd_vma) -1;
11318
      eh->plt_thumb_refcount = 0;
11319
      eh->plt_maybe_thumb_refcount = 0;
11320
    }
11321
 
11322
  /* If this is a weak symbol, and there is a real definition, the
11323
     processor independent code will have arranged for us to see the
11324
     real definition first, and we can just use the same value.  */
11325
  if (h->u.weakdef != NULL)
11326
    {
11327
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11328
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
11329
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
11330
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
11331
      return TRUE;
11332
    }
11333
 
11334
  /* If there are no non-GOT references, we do not need a copy
11335
     relocation.  */
11336
  if (!h->non_got_ref)
11337
    return TRUE;
11338
 
11339
  /* This is a reference to a symbol defined by a dynamic object which
11340
     is not a function.  */
11341
 
11342
  /* If we are creating a shared library, we must presume that the
11343
     only references to the symbol are via the global offset table.
11344
     For such cases we need not do anything here; the relocations will
11345
     be handled correctly by relocate_section.  Relocatable executables
11346
     can reference data in shared objects directly, so we don't need to
11347
     do anything here.  */
11348
  if (info->shared || globals->root.is_relocatable_executable)
11349
    return TRUE;
11350
 
11351
  if (h->size == 0)
11352
    {
11353
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11354
                             h->root.root.string);
11355
      return TRUE;
11356
    }
11357
 
11358
  /* We must allocate the symbol in our .dynbss section, which will
11359
     become part of the .bss section of the executable.  There will be
11360
     an entry for this symbol in the .dynsym section.  The dynamic
11361
     object will contain position independent code, so all references
11362
     from the dynamic object to this symbol will go through the global
11363
     offset table.  The dynamic linker will use the .dynsym entry to
11364
     determine the address it must put in the global offset table, so
11365
     both the dynamic object and the regular object will refer to the
11366
     same memory location for the variable.  */
11367
  s = bfd_get_section_by_name (dynobj, ".dynbss");
11368
  BFD_ASSERT (s != NULL);
11369
 
11370
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11371
     copy the initial value out of the dynamic object and into the
11372
     runtime process image.  We need to remember the offset into the
11373
     .rel(a).bss section we are going to use.  */
11374
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11375
    {
11376
      asection *srel;
11377
 
11378
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11379
      BFD_ASSERT (srel != NULL);
11380
      srel->size += RELOC_SIZE (globals);
11381
      h->needs_copy = 1;
11382
    }
11383
 
11384
  return _bfd_elf_adjust_dynamic_copy (h, s);
11385
}
11386
 
11387
/* Allocate space in .plt, .got and associated reloc sections for
11388
   dynamic relocs.  */
11389
 
11390
static bfd_boolean
11391
allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11392
{
11393
  struct bfd_link_info *info;
11394
  struct elf32_arm_link_hash_table *htab;
11395
  struct elf32_arm_link_hash_entry *eh;
11396
  struct elf32_arm_relocs_copied *p;
11397
  bfd_signed_vma thumb_refs;
11398
 
11399
  eh = (struct elf32_arm_link_hash_entry *) h;
11400
 
11401
  if (h->root.type == bfd_link_hash_indirect)
11402
    return TRUE;
11403
 
11404
  if (h->root.type == bfd_link_hash_warning)
11405
    /* When warning symbols are created, they **replace** the "real"
11406
       entry in the hash table, thus we never get to see the real
11407
       symbol in a hash traversal.  So look at it now.  */
11408
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11409
 
11410
  info = (struct bfd_link_info *) inf;
11411
  htab = elf32_arm_hash_table (info);
11412
 
11413
  if (htab->root.dynamic_sections_created
11414
      && h->plt.refcount > 0)
11415
    {
11416
      /* Make sure this symbol is output as a dynamic symbol.
11417
         Undefined weak syms won't yet be marked as dynamic.  */
11418
      if (h->dynindx == -1
11419
          && !h->forced_local)
11420
        {
11421
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
11422
            return FALSE;
11423
        }
11424
 
11425
      if (info->shared
11426
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11427
        {
11428
          asection *s = htab->splt;
11429
 
11430
          /* If this is the first .plt entry, make room for the special
11431
             first entry.  */
11432
          if (s->size == 0)
11433
            s->size += htab->plt_header_size;
11434
 
11435
          h->plt.offset = s->size;
11436
 
11437
          /* If we will insert a Thumb trampoline before this PLT, leave room
11438
             for it.  */
11439
          thumb_refs = eh->plt_thumb_refcount;
11440
          if (!htab->use_blx)
11441
            thumb_refs += eh->plt_maybe_thumb_refcount;
11442
 
11443
          if (thumb_refs > 0)
11444
            {
11445
              h->plt.offset += PLT_THUMB_STUB_SIZE;
11446
              s->size += PLT_THUMB_STUB_SIZE;
11447
            }
11448
 
11449
          /* If this symbol is not defined in a regular file, and we are
11450
             not generating a shared library, then set the symbol to this
11451
             location in the .plt.  This is required to make function
11452
             pointers compare as equal between the normal executable and
11453
             the shared library.  */
11454
          if (! info->shared
11455
              && !h->def_regular)
11456
            {
11457
              h->root.u.def.section = s;
11458
              h->root.u.def.value = h->plt.offset;
11459
 
11460
              /* Make sure the function is not marked as Thumb, in case
11461
                 it is the target of an ABS32 relocation, which will
11462
                 point to the PLT entry.  */
11463
              if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11464
                h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11465
            }
11466
 
11467
          /* Make room for this entry.  */
11468
          s->size += htab->plt_entry_size;
11469
 
11470
          if (!htab->symbian_p)
11471
            {
11472
              /* We also need to make an entry in the .got.plt section, which
11473
                 will be placed in the .got section by the linker script.  */
11474
              eh->plt_got_offset = htab->sgotplt->size;
11475
              htab->sgotplt->size += 4;
11476
            }
11477
 
11478
          /* We also need to make an entry in the .rel(a).plt section.  */
11479
          htab->srelplt->size += RELOC_SIZE (htab);
11480
 
11481
          /* VxWorks executables have a second set of relocations for
11482
             each PLT entry.  They go in a separate relocation section,
11483
             which is processed by the kernel loader.  */
11484
          if (htab->vxworks_p && !info->shared)
11485
            {
11486
              /* There is a relocation for the initial PLT entry:
11487
                 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
11488
              if (h->plt.offset == htab->plt_header_size)
11489
                htab->srelplt2->size += RELOC_SIZE (htab);
11490
 
11491
              /* There are two extra relocations for each subsequent
11492
                 PLT entry: an R_ARM_32 relocation for the GOT entry,
11493
                 and an R_ARM_32 relocation for the PLT entry.  */
11494
              htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11495
            }
11496
        }
11497
      else
11498
        {
11499
          h->plt.offset = (bfd_vma) -1;
11500
          h->needs_plt = 0;
11501
        }
11502
    }
11503
  else
11504
    {
11505
      h->plt.offset = (bfd_vma) -1;
11506
      h->needs_plt = 0;
11507
    }
11508
 
11509
  if (h->got.refcount > 0)
11510
    {
11511
      asection *s;
11512
      bfd_boolean dyn;
11513
      int tls_type = elf32_arm_hash_entry (h)->tls_type;
11514
      int indx;
11515
 
11516
      /* Make sure this symbol is output as a dynamic symbol.
11517
         Undefined weak syms won't yet be marked as dynamic.  */
11518
      if (h->dynindx == -1
11519
          && !h->forced_local)
11520
        {
11521
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
11522
            return FALSE;
11523
        }
11524
 
11525
      if (!htab->symbian_p)
11526
        {
11527
          s = htab->sgot;
11528
          h->got.offset = s->size;
11529
 
11530
          if (tls_type == GOT_UNKNOWN)
11531
            abort ();
11532
 
11533
          if (tls_type == GOT_NORMAL)
11534
            /* Non-TLS symbols need one GOT slot.  */
11535
            s->size += 4;
11536
          else
11537
            {
11538
              if (tls_type & GOT_TLS_GD)
11539
                /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  */
11540
                s->size += 8;
11541
              if (tls_type & GOT_TLS_IE)
11542
                /* R_ARM_TLS_IE32 needs one GOT slot.  */
11543
                s->size += 4;
11544
            }
11545
 
11546
          dyn = htab->root.dynamic_sections_created;
11547
 
11548
          indx = 0;
11549
          if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11550
              && (!info->shared
11551
                  || !SYMBOL_REFERENCES_LOCAL (info, h)))
11552
            indx = h->dynindx;
11553
 
11554
          if (tls_type != GOT_NORMAL
11555
              && (info->shared || indx != 0)
11556
              && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11557
                  || h->root.type != bfd_link_hash_undefweak))
11558
            {
11559
              if (tls_type & GOT_TLS_IE)
11560
                htab->srelgot->size += RELOC_SIZE (htab);
11561
 
11562
              if (tls_type & GOT_TLS_GD)
11563
                htab->srelgot->size += RELOC_SIZE (htab);
11564
 
11565
              if ((tls_type & GOT_TLS_GD) && indx != 0)
11566
                htab->srelgot->size += RELOC_SIZE (htab);
11567
            }
11568
          else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11569
                    || h->root.type != bfd_link_hash_undefweak)
11570
                   && (info->shared
11571
                   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11572
            htab->srelgot->size += RELOC_SIZE (htab);
11573
        }
11574
    }
11575
  else
11576
    h->got.offset = (bfd_vma) -1;
11577
 
11578
  /* Allocate stubs for exported Thumb functions on v4t.  */
11579
  if (!htab->use_blx && h->dynindx != -1
11580
      && h->def_regular
11581
      && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11582
      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11583
    {
11584
      struct elf_link_hash_entry * th;
11585
      struct bfd_link_hash_entry * bh;
11586
      struct elf_link_hash_entry * myh;
11587
      char name[1024];
11588
      asection *s;
11589
      bh = NULL;
11590
      /* Create a new symbol to regist the real location of the function.  */
11591
      s = h->root.u.def.section;
11592
      sprintf (name, "__real_%s", h->root.root.string);
11593
      _bfd_generic_link_add_one_symbol (info, s->owner,
11594
                                        name, BSF_GLOBAL, s,
11595
                                        h->root.u.def.value,
11596
                                        NULL, TRUE, FALSE, &bh);
11597
 
11598
      myh = (struct elf_link_hash_entry *) bh;
11599
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11600
      myh->forced_local = 1;
11601
      eh->export_glue = myh;
11602
      th = record_arm_to_thumb_glue (info, h);
11603
      /* Point the symbol at the stub.  */
11604
      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11605
      h->root.u.def.section = th->root.u.def.section;
11606
      h->root.u.def.value = th->root.u.def.value & ~1;
11607
    }
11608
 
11609
  if (eh->relocs_copied == NULL)
11610
    return TRUE;
11611
 
11612
  /* In the shared -Bsymbolic case, discard space allocated for
11613
     dynamic pc-relative relocs against symbols which turn out to be
11614
     defined in regular objects.  For the normal shared case, discard
11615
     space for pc-relative relocs that have become local due to symbol
11616
     visibility changes.  */
11617
 
11618
  if (info->shared || htab->root.is_relocatable_executable)
11619
    {
11620
      /* The only relocs that use pc_count are R_ARM_REL32 and
11621
         R_ARM_REL32_NOI, which will appear on something like
11622
         ".long foo - .".  We want calls to protected symbols to resolve
11623
         directly to the function rather than going via the plt.  If people
11624
         want function pointer comparisons to work as expected then they
11625
         should avoid writing assembly like ".long foo - .".  */
11626
      if (SYMBOL_CALLS_LOCAL (info, h))
11627
        {
11628
          struct elf32_arm_relocs_copied **pp;
11629
 
11630
          for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11631
            {
11632
              p->count -= p->pc_count;
11633
              p->pc_count = 0;
11634
              if (p->count == 0)
11635
                *pp = p->next;
11636
              else
11637
                pp = &p->next;
11638
            }
11639
        }
11640
 
11641
      if (elf32_arm_hash_table (info)->vxworks_p)
11642
        {
11643
          struct elf32_arm_relocs_copied **pp;
11644
 
11645
          for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11646
            {
11647
              if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11648
                *pp = p->next;
11649
              else
11650
                pp = &p->next;
11651
            }
11652
        }
11653
 
11654
      /* Also discard relocs on undefined weak syms with non-default
11655
         visibility.  */
11656
      if (eh->relocs_copied != NULL
11657
          && h->root.type == bfd_link_hash_undefweak)
11658
        {
11659
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11660
            eh->relocs_copied = NULL;
11661
 
11662
          /* Make sure undefined weak symbols are output as a dynamic
11663
             symbol in PIEs.  */
11664
          else if (h->dynindx == -1
11665
                   && !h->forced_local)
11666
            {
11667
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
11668
                return FALSE;
11669
            }
11670
        }
11671
 
11672
      else if (htab->root.is_relocatable_executable && h->dynindx == -1
11673
               && h->root.type == bfd_link_hash_new)
11674
        {
11675
          /* Output absolute symbols so that we can create relocations
11676
             against them.  For normal symbols we output a relocation
11677
             against the section that contains them.  */
11678
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
11679
            return FALSE;
11680
        }
11681
 
11682
    }
11683
  else
11684
    {
11685
      /* For the non-shared case, discard space for relocs against
11686
         symbols which turn out to need copy relocs or are not
11687
         dynamic.  */
11688
 
11689
      if (!h->non_got_ref
11690
          && ((h->def_dynamic
11691
               && !h->def_regular)
11692
              || (htab->root.dynamic_sections_created
11693
                  && (h->root.type == bfd_link_hash_undefweak
11694
                      || h->root.type == bfd_link_hash_undefined))))
11695
        {
11696
          /* Make sure this symbol is output as a dynamic symbol.
11697
             Undefined weak syms won't yet be marked as dynamic.  */
11698
          if (h->dynindx == -1
11699
              && !h->forced_local)
11700
            {
11701
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
11702
                return FALSE;
11703
            }
11704
 
11705
          /* If that succeeded, we know we'll be keeping all the
11706
             relocs.  */
11707
          if (h->dynindx != -1)
11708
            goto keep;
11709
        }
11710
 
11711
      eh->relocs_copied = NULL;
11712
 
11713
    keep: ;
11714
    }
11715
 
11716
  /* Finally, allocate space.  */
11717
  for (p = eh->relocs_copied; p != NULL; p = p->next)
11718
    {
11719
      asection *sreloc = elf_section_data (p->section)->sreloc;
11720
      sreloc->size += p->count * RELOC_SIZE (htab);
11721
    }
11722
 
11723
  return TRUE;
11724
}
11725
 
11726
/* Find any dynamic relocs that apply to read-only sections.  */
11727
 
11728
static bfd_boolean
11729
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11730
{
11731
  struct elf32_arm_link_hash_entry * eh;
11732
  struct elf32_arm_relocs_copied * p;
11733
 
11734
  if (h->root.type == bfd_link_hash_warning)
11735
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11736
 
11737
  eh = (struct elf32_arm_link_hash_entry *) h;
11738
  for (p = eh->relocs_copied; p != NULL; p = p->next)
11739
    {
11740
      asection *s = p->section;
11741
 
11742
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
11743
        {
11744
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
11745
 
11746
          info->flags |= DF_TEXTREL;
11747
 
11748
          /* Not an error, just cut short the traversal.  */
11749
          return FALSE;
11750
        }
11751
    }
11752
  return TRUE;
11753
}
11754
 
11755
void
11756
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11757
                                 int byteswap_code)
11758
{
11759
  struct elf32_arm_link_hash_table *globals;
11760
 
11761
  globals = elf32_arm_hash_table (info);
11762
  globals->byteswap_code = byteswap_code;
11763
}
11764
 
11765
/* Set the sizes of the dynamic sections.  */
11766
 
11767
static bfd_boolean
11768
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11769
                                 struct bfd_link_info * info)
11770
{
11771
  bfd * dynobj;
11772
  asection * s;
11773
  bfd_boolean plt;
11774
  bfd_boolean relocs;
11775
  bfd *ibfd;
11776
  struct elf32_arm_link_hash_table *htab;
11777
 
11778
  htab = elf32_arm_hash_table (info);
11779
  dynobj = elf_hash_table (info)->dynobj;
11780
  BFD_ASSERT (dynobj != NULL);
11781
  check_use_blx (htab);
11782
 
11783
  if (elf_hash_table (info)->dynamic_sections_created)
11784
    {
11785
      /* Set the contents of the .interp section to the interpreter.  */
11786
      if (info->executable)
11787
        {
11788
          s = bfd_get_section_by_name (dynobj, ".interp");
11789
          BFD_ASSERT (s != NULL);
11790
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11791
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11792
        }
11793
    }
11794
 
11795
  /* Set up .got offsets for local syms, and space for local dynamic
11796
     relocs.  */
11797
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11798
    {
11799
      bfd_signed_vma *local_got;
11800
      bfd_signed_vma *end_local_got;
11801
      char *local_tls_type;
11802
      bfd_size_type locsymcount;
11803
      Elf_Internal_Shdr *symtab_hdr;
11804
      asection *srel;
11805
      bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
11806
 
11807
      if (! is_arm_elf (ibfd))
11808
        continue;
11809
 
11810
      for (s = ibfd->sections; s != NULL; s = s->next)
11811
        {
11812
          struct elf32_arm_relocs_copied *p;
11813
 
11814
          for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11815
            {
11816
              if (!bfd_is_abs_section (p->section)
11817
                  && bfd_is_abs_section (p->section->output_section))
11818
                {
11819
                  /* Input section has been discarded, either because
11820
                     it is a copy of a linkonce section or due to
11821
                     linker script /DISCARD/, so we'll be discarding
11822
                     the relocs too.  */
11823
                }
11824
              else if (is_vxworks
11825
                       && strcmp (p->section->output_section->name,
11826
                                  ".tls_vars") == 0)
11827
                {
11828
                  /* Relocations in vxworks .tls_vars sections are
11829
                     handled specially by the loader.  */
11830
                }
11831
              else if (p->count != 0)
11832
                {
11833
                  srel = elf_section_data (p->section)->sreloc;
11834
                  srel->size += p->count * RELOC_SIZE (htab);
11835
                  if ((p->section->output_section->flags & SEC_READONLY) != 0)
11836
                    info->flags |= DF_TEXTREL;
11837
                }
11838
            }
11839
        }
11840
 
11841
      local_got = elf_local_got_refcounts (ibfd);
11842
      if (!local_got)
11843
        continue;
11844
 
11845
      symtab_hdr = & elf_symtab_hdr (ibfd);
11846
      locsymcount = symtab_hdr->sh_info;
11847
      end_local_got = local_got + locsymcount;
11848
      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11849
      s = htab->sgot;
11850
      srel = htab->srelgot;
11851
      for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11852
        {
11853
          if (*local_got > 0)
11854
            {
11855
              *local_got = s->size;
11856
              if (*local_tls_type & GOT_TLS_GD)
11857
                /* TLS_GD relocs need an 8-byte structure in the GOT.  */
11858
                s->size += 8;
11859
              if (*local_tls_type & GOT_TLS_IE)
11860
                s->size += 4;
11861
              if (*local_tls_type == GOT_NORMAL)
11862
                s->size += 4;
11863
 
11864
              if (info->shared || *local_tls_type == GOT_TLS_GD)
11865
                srel->size += RELOC_SIZE (htab);
11866
            }
11867
          else
11868
            *local_got = (bfd_vma) -1;
11869
        }
11870
    }
11871
 
11872
  if (htab->tls_ldm_got.refcount > 0)
11873
    {
11874
      /* Allocate two GOT entries and one dynamic relocation (if necessary)
11875
         for R_ARM_TLS_LDM32 relocations.  */
11876
      htab->tls_ldm_got.offset = htab->sgot->size;
11877
      htab->sgot->size += 8;
11878
      if (info->shared)
11879
        htab->srelgot->size += RELOC_SIZE (htab);
11880
    }
11881
  else
11882
    htab->tls_ldm_got.offset = -1;
11883
 
11884
  /* Allocate global sym .plt and .got entries, and space for global
11885
     sym dynamic relocs.  */
11886
  elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
11887
 
11888
  /* Here we rummage through the found bfds to collect glue information.  */
11889
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11890
    {
11891
      if (! is_arm_elf (ibfd))
11892
        continue;
11893
 
11894
      /* Initialise mapping tables for code/data.  */
11895
      bfd_elf32_arm_init_maps (ibfd);
11896
 
11897
      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11898
          || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11899
        /* xgettext:c-format */
11900
        _bfd_error_handler (_("Errors encountered processing file %s"),
11901
                            ibfd->filename);
11902
    }
11903
 
11904
  /* Allocate space for the glue sections now that we've sized them.  */
11905
  bfd_elf32_arm_allocate_interworking_sections (info);
11906
 
11907
  /* The check_relocs and adjust_dynamic_symbol entry points have
11908
     determined the sizes of the various dynamic sections.  Allocate
11909
     memory for them.  */
11910
  plt = FALSE;
11911
  relocs = FALSE;
11912
  for (s = dynobj->sections; s != NULL; s = s->next)
11913
    {
11914
      const char * name;
11915
 
11916
      if ((s->flags & SEC_LINKER_CREATED) == 0)
11917
        continue;
11918
 
11919
      /* It's OK to base decisions on the section name, because none
11920
         of the dynobj section names depend upon the input files.  */
11921
      name = bfd_get_section_name (dynobj, s);
11922
 
11923
      if (strcmp (name, ".plt") == 0)
11924
        {
11925
          /* Remember whether there is a PLT.  */
11926
          plt = s->size != 0;
11927
        }
11928
      else if (CONST_STRNEQ (name, ".rel"))
11929
        {
11930
          if (s->size != 0)
11931
            {
11932
              /* Remember whether there are any reloc sections other
11933
                 than .rel(a).plt and .rela.plt.unloaded.  */
11934
              if (s != htab->srelplt && s != htab->srelplt2)
11935
                relocs = TRUE;
11936
 
11937
              /* We use the reloc_count field as a counter if we need
11938
                 to copy relocs into the output file.  */
11939
              s->reloc_count = 0;
11940
            }
11941
        }
11942
      else if (! CONST_STRNEQ (name, ".got")
11943
               && strcmp (name, ".dynbss") != 0)
11944
        {
11945
          /* It's not one of our sections, so don't allocate space.  */
11946
          continue;
11947
        }
11948
 
11949
      if (s->size == 0)
11950
        {
11951
          /* If we don't need this section, strip it from the
11952
             output file.  This is mostly to handle .rel(a).bss and
11953
             .rel(a).plt.  We must create both sections in
11954
             create_dynamic_sections, because they must be created
11955
             before the linker maps input sections to output
11956
             sections.  The linker does that before
11957
             adjust_dynamic_symbol is called, and it is that
11958
             function which decides whether anything needs to go
11959
             into these sections.  */
11960
          s->flags |= SEC_EXCLUDE;
11961
          continue;
11962
        }
11963
 
11964
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
11965
        continue;
11966
 
11967
      /* Allocate memory for the section contents.  */
11968
      s->contents = bfd_zalloc (dynobj, s->size);
11969
      if (s->contents == NULL)
11970
        return FALSE;
11971
    }
11972
 
11973
  if (elf_hash_table (info)->dynamic_sections_created)
11974
    {
11975
      /* Add some entries to the .dynamic section.  We fill in the
11976
         values later, in elf32_arm_finish_dynamic_sections, but we
11977
         must add the entries now so that we get the correct size for
11978
         the .dynamic section.  The DT_DEBUG entry is filled in by the
11979
         dynamic linker and used by the debugger.  */
11980
#define add_dynamic_entry(TAG, VAL) \
11981
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11982
 
11983
     if (info->executable)
11984
        {
11985
          if (!add_dynamic_entry (DT_DEBUG, 0))
11986
            return FALSE;
11987
        }
11988
 
11989
      if (plt)
11990
        {
11991
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
11992
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
11993
              || !add_dynamic_entry (DT_PLTREL,
11994
                                     htab->use_rel ? DT_REL : DT_RELA)
11995
              || !add_dynamic_entry (DT_JMPREL, 0))
11996
            return FALSE;
11997
        }
11998
 
11999
      if (relocs)
12000
        {
12001
          if (htab->use_rel)
12002
            {
12003
              if (!add_dynamic_entry (DT_REL, 0)
12004
                  || !add_dynamic_entry (DT_RELSZ, 0)
12005
                  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
12006
                return FALSE;
12007
            }
12008
          else
12009
            {
12010
              if (!add_dynamic_entry (DT_RELA, 0)
12011
                  || !add_dynamic_entry (DT_RELASZ, 0)
12012
                  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
12013
                return FALSE;
12014
            }
12015
        }
12016
 
12017
      /* If any dynamic relocs apply to a read-only section,
12018
         then we need a DT_TEXTREL entry.  */
12019
      if ((info->flags & DF_TEXTREL) == 0)
12020
        elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
12021
                                info);
12022
 
12023
      if ((info->flags & DF_TEXTREL) != 0)
12024
        {
12025
          if (!add_dynamic_entry (DT_TEXTREL, 0))
12026
            return FALSE;
12027
        }
12028
      if (htab->vxworks_p
12029
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
12030
        return FALSE;
12031
    }
12032
#undef add_dynamic_entry
12033
 
12034
  return TRUE;
12035
}
12036
 
12037
/* Finish up dynamic symbol handling.  We set the contents of various
12038
   dynamic sections here.  */
12039
 
12040
static bfd_boolean
12041
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
12042
                                 struct bfd_link_info * info,
12043
                                 struct elf_link_hash_entry * h,
12044
                                 Elf_Internal_Sym * sym)
12045
{
12046
  bfd * dynobj;
12047
  struct elf32_arm_link_hash_table *htab;
12048
  struct elf32_arm_link_hash_entry *eh;
12049
 
12050
  dynobj = elf_hash_table (info)->dynobj;
12051
  htab = elf32_arm_hash_table (info);
12052
  eh = (struct elf32_arm_link_hash_entry *) h;
12053
 
12054
  if (h->plt.offset != (bfd_vma) -1)
12055
    {
12056
      asection * splt;
12057
      asection * srel;
12058
      bfd_byte *loc;
12059
      bfd_vma plt_index;
12060
      Elf_Internal_Rela rel;
12061
 
12062
      /* This symbol has an entry in the procedure linkage table.  Set
12063
         it up.  */
12064
 
12065
      BFD_ASSERT (h->dynindx != -1);
12066
 
12067
      splt = bfd_get_section_by_name (dynobj, ".plt");
12068
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
12069
      BFD_ASSERT (splt != NULL && srel != NULL);
12070
 
12071
      /* Fill in the entry in the procedure linkage table.  */
12072
      if (htab->symbian_p)
12073
        {
12074
          put_arm_insn (htab, output_bfd,
12075
                      elf32_arm_symbian_plt_entry[0],
12076
                      splt->contents + h->plt.offset);
12077
          bfd_put_32 (output_bfd,
12078
                      elf32_arm_symbian_plt_entry[1],
12079
                      splt->contents + h->plt.offset + 4);
12080
 
12081
          /* Fill in the entry in the .rel.plt section.  */
12082
          rel.r_offset = (splt->output_section->vma
12083
                          + splt->output_offset
12084
                          + h->plt.offset + 4);
12085
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12086
 
12087
          /* Get the index in the procedure linkage table which
12088
             corresponds to this symbol.  This is the index of this symbol
12089
             in all the symbols for which we are making plt entries.  The
12090
             first entry in the procedure linkage table is reserved.  */
12091
          plt_index = ((h->plt.offset - htab->plt_header_size)
12092
                       / htab->plt_entry_size);
12093
        }
12094
      else
12095
        {
12096
          bfd_vma got_offset, got_address, plt_address;
12097
          bfd_vma got_displacement;
12098
          asection * sgot;
12099
          bfd_byte * ptr;
12100
 
12101
          sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12102
          BFD_ASSERT (sgot != NULL);
12103
 
12104
          /* Get the offset into the .got.plt table of the entry that
12105
             corresponds to this function.  */
12106
          got_offset = eh->plt_got_offset;
12107
 
12108
          /* Get the index in the procedure linkage table which
12109
             corresponds to this symbol.  This is the index of this symbol
12110
             in all the symbols for which we are making plt entries.  The
12111
             first three entries in .got.plt are reserved; after that
12112
             symbols appear in the same order as in .plt.  */
12113
          plt_index = (got_offset - 12) / 4;
12114
 
12115
          /* Calculate the address of the GOT entry.  */
12116
          got_address = (sgot->output_section->vma
12117
                         + sgot->output_offset
12118
                         + got_offset);
12119
 
12120
          /* ...and the address of the PLT entry.  */
12121
          plt_address = (splt->output_section->vma
12122
                         + splt->output_offset
12123
                         + h->plt.offset);
12124
 
12125
          ptr = htab->splt->contents + h->plt.offset;
12126
          if (htab->vxworks_p && info->shared)
12127
            {
12128
              unsigned int i;
12129
              bfd_vma val;
12130
 
12131
              for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12132
                {
12133
                  val = elf32_arm_vxworks_shared_plt_entry[i];
12134
                  if (i == 2)
12135
                    val |= got_address - sgot->output_section->vma;
12136
                  if (i == 5)
12137
                    val |= plt_index * RELOC_SIZE (htab);
12138
                  if (i == 2 || i == 5)
12139
                    bfd_put_32 (output_bfd, val, ptr);
12140
                  else
12141
                    put_arm_insn (htab, output_bfd, val, ptr);
12142
                }
12143
            }
12144
          else if (htab->vxworks_p)
12145
            {
12146
              unsigned int i;
12147
              bfd_vma val;
12148
 
12149
              for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
12150
                {
12151
                  val = elf32_arm_vxworks_exec_plt_entry[i];
12152
                  if (i == 2)
12153
                    val |= got_address;
12154
                  if (i == 4)
12155
                    val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12156
                  if (i == 5)
12157
                    val |= plt_index * RELOC_SIZE (htab);
12158
                  if (i == 2 || i == 5)
12159
                    bfd_put_32 (output_bfd, val, ptr);
12160
                  else
12161
                    put_arm_insn (htab, output_bfd, val, ptr);
12162
                }
12163
 
12164
              loc = (htab->srelplt2->contents
12165
                     + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12166
 
12167
              /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12168
                 referencing the GOT for this PLT entry.  */
12169
              rel.r_offset = plt_address + 8;
12170
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12171
              rel.r_addend = got_offset;
12172
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12173
              loc += RELOC_SIZE (htab);
12174
 
12175
              /* Create the R_ARM_ABS32 relocation referencing the
12176
                 beginning of the PLT for this GOT entry.  */
12177
              rel.r_offset = got_address;
12178
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12179
              rel.r_addend = 0;
12180
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12181
            }
12182
          else
12183
            {
12184
              bfd_signed_vma thumb_refs;
12185
              /* Calculate the displacement between the PLT slot and the
12186
                 entry in the GOT.  The eight-byte offset accounts for the
12187
                 value produced by adding to pc in the first instruction
12188
                 of the PLT stub.  */
12189
              got_displacement = got_address - (plt_address + 8);
12190
 
12191
              BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12192
 
12193
              thumb_refs = eh->plt_thumb_refcount;
12194
              if (!htab->use_blx)
12195
                thumb_refs += eh->plt_maybe_thumb_refcount;
12196
 
12197
              if (thumb_refs > 0)
12198
                {
12199
                  put_thumb_insn (htab, output_bfd,
12200
                                  elf32_arm_plt_thumb_stub[0], ptr - 4);
12201
                  put_thumb_insn (htab, output_bfd,
12202
                                  elf32_arm_plt_thumb_stub[1], ptr - 2);
12203
                }
12204
 
12205
              put_arm_insn (htab, output_bfd,
12206
                            elf32_arm_plt_entry[0]
12207
                            | ((got_displacement & 0x0ff00000) >> 20),
12208
                            ptr + 0);
12209
              put_arm_insn (htab, output_bfd,
12210
                            elf32_arm_plt_entry[1]
12211
                            | ((got_displacement & 0x000ff000) >> 12),
12212
                            ptr+ 4);
12213
              put_arm_insn (htab, output_bfd,
12214
                            elf32_arm_plt_entry[2]
12215
                            | (got_displacement & 0x00000fff),
12216
                            ptr + 8);
12217
#ifdef FOUR_WORD_PLT
12218
              bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12219
#endif
12220
            }
12221
 
12222
          /* Fill in the entry in the global offset table.  */
12223
          bfd_put_32 (output_bfd,
12224
                      (splt->output_section->vma
12225
                       + splt->output_offset),
12226
                      sgot->contents + got_offset);
12227
 
12228
          /* Fill in the entry in the .rel(a).plt section.  */
12229
          rel.r_addend = 0;
12230
          rel.r_offset = got_address;
12231
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12232
        }
12233
 
12234
      loc = srel->contents + plt_index * RELOC_SIZE (htab);
12235
      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12236
 
12237
      if (!h->def_regular)
12238
        {
12239
          /* Mark the symbol as undefined, rather than as defined in
12240
             the .plt section.  Leave the value alone.  */
12241
          sym->st_shndx = SHN_UNDEF;
12242
          /* If the symbol is weak, we do need to clear the value.
12243
             Otherwise, the PLT entry would provide a definition for
12244
             the symbol even if the symbol wasn't defined anywhere,
12245
             and so the symbol would never be NULL.  */
12246
          if (!h->ref_regular_nonweak)
12247
            sym->st_value = 0;
12248
        }
12249
    }
12250
 
12251
  if (h->got.offset != (bfd_vma) -1
12252
      && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12253
      && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12254
    {
12255
      asection * sgot;
12256
      asection * srel;
12257
      Elf_Internal_Rela rel;
12258
      bfd_byte *loc;
12259
      bfd_vma offset;
12260
 
12261
      /* This symbol has an entry in the global offset table.  Set it
12262
         up.  */
12263
      sgot = bfd_get_section_by_name (dynobj, ".got");
12264
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12265
      BFD_ASSERT (sgot != NULL && srel != NULL);
12266
 
12267
      offset = (h->got.offset & ~(bfd_vma) 1);
12268
      rel.r_addend = 0;
12269
      rel.r_offset = (sgot->output_section->vma
12270
                      + sgot->output_offset
12271
                      + offset);
12272
 
12273
      /* If this is a static link, or it is a -Bsymbolic link and the
12274
         symbol is defined locally or was forced to be local because
12275
         of a version file, we just want to emit a RELATIVE reloc.
12276
         The entry in the global offset table will already have been
12277
         initialized in the relocate_section function.  */
12278
      if (info->shared
12279
          && SYMBOL_REFERENCES_LOCAL (info, h))
12280
        {
12281
          BFD_ASSERT ((h->got.offset & 1) != 0);
12282
          rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12283
          if (!htab->use_rel)
12284
            {
12285
              rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12286
              bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12287
            }
12288
        }
12289
      else
12290
        {
12291
          BFD_ASSERT ((h->got.offset & 1) == 0);
12292
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12293
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12294
        }
12295
 
12296
      loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12297
      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12298
    }
12299
 
12300
  if (h->needs_copy)
12301
    {
12302
      asection * s;
12303
      Elf_Internal_Rela rel;
12304
      bfd_byte *loc;
12305
 
12306
      /* This symbol needs a copy reloc.  Set it up.  */
12307
      BFD_ASSERT (h->dynindx != -1
12308
                  && (h->root.type == bfd_link_hash_defined
12309
                      || h->root.type == bfd_link_hash_defweak));
12310
 
12311
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
12312
                                   RELOC_SECTION (htab, ".bss"));
12313
      BFD_ASSERT (s != NULL);
12314
 
12315
      rel.r_addend = 0;
12316
      rel.r_offset = (h->root.u.def.value
12317
                      + h->root.u.def.section->output_section->vma
12318
                      + h->root.u.def.section->output_offset);
12319
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12320
      loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12321
      SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12322
    }
12323
 
12324
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
12325
     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12326
     to the ".got" section.  */
12327
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12328
      || (!htab->vxworks_p && h == htab->root.hgot))
12329
    sym->st_shndx = SHN_ABS;
12330
 
12331
  return TRUE;
12332
}
12333
 
12334
/* Finish up the dynamic sections.  */
12335
 
12336
static bfd_boolean
12337
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12338
{
12339
  bfd * dynobj;
12340
  asection * sgot;
12341
  asection * sdyn;
12342
 
12343
  dynobj = elf_hash_table (info)->dynobj;
12344
 
12345
  sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12346
  BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
12347
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12348
 
12349
  if (elf_hash_table (info)->dynamic_sections_created)
12350
    {
12351
      asection *splt;
12352
      Elf32_External_Dyn *dyncon, *dynconend;
12353
      struct elf32_arm_link_hash_table *htab;
12354
 
12355
      htab = elf32_arm_hash_table (info);
12356
      splt = bfd_get_section_by_name (dynobj, ".plt");
12357
      BFD_ASSERT (splt != NULL && sdyn != NULL);
12358
 
12359
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
12360
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12361
 
12362
      for (; dyncon < dynconend; dyncon++)
12363
        {
12364
          Elf_Internal_Dyn dyn;
12365
          const char * name;
12366
          asection * s;
12367
 
12368
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12369
 
12370
          switch (dyn.d_tag)
12371
            {
12372
              unsigned int type;
12373
 
12374
            default:
12375
              if (htab->vxworks_p
12376
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12377
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12378
              break;
12379
 
12380
            case DT_HASH:
12381
              name = ".hash";
12382
              goto get_vma_if_bpabi;
12383
            case DT_STRTAB:
12384
              name = ".dynstr";
12385
              goto get_vma_if_bpabi;
12386
            case DT_SYMTAB:
12387
              name = ".dynsym";
12388
              goto get_vma_if_bpabi;
12389
            case DT_VERSYM:
12390
              name = ".gnu.version";
12391
              goto get_vma_if_bpabi;
12392
            case DT_VERDEF:
12393
              name = ".gnu.version_d";
12394
              goto get_vma_if_bpabi;
12395
            case DT_VERNEED:
12396
              name = ".gnu.version_r";
12397
              goto get_vma_if_bpabi;
12398
 
12399
            case DT_PLTGOT:
12400
              name = ".got";
12401
              goto get_vma;
12402
            case DT_JMPREL:
12403
              name = RELOC_SECTION (htab, ".plt");
12404
            get_vma:
12405
              s = bfd_get_section_by_name (output_bfd, name);
12406
              BFD_ASSERT (s != NULL);
12407
              if (!htab->symbian_p)
12408
                dyn.d_un.d_ptr = s->vma;
12409
              else
12410
                /* In the BPABI, tags in the PT_DYNAMIC section point
12411
                   at the file offset, not the memory address, for the
12412
                   convenience of the post linker.  */
12413
                dyn.d_un.d_ptr = s->filepos;
12414
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12415
              break;
12416
 
12417
            get_vma_if_bpabi:
12418
              if (htab->symbian_p)
12419
                goto get_vma;
12420
              break;
12421
 
12422
            case DT_PLTRELSZ:
12423
              s = bfd_get_section_by_name (output_bfd,
12424
                                           RELOC_SECTION (htab, ".plt"));
12425
              BFD_ASSERT (s != NULL);
12426
              dyn.d_un.d_val = s->size;
12427
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12428
              break;
12429
 
12430
            case DT_RELSZ:
12431
            case DT_RELASZ:
12432
              if (!htab->symbian_p)
12433
                {
12434
                  /* My reading of the SVR4 ABI indicates that the
12435
                     procedure linkage table relocs (DT_JMPREL) should be
12436
                     included in the overall relocs (DT_REL).  This is
12437
                     what Solaris does.  However, UnixWare can not handle
12438
                     that case.  Therefore, we override the DT_RELSZ entry
12439
                     here to make it not include the JMPREL relocs.  Since
12440
                     the linker script arranges for .rel(a).plt to follow all
12441
                     other relocation sections, we don't have to worry
12442
                     about changing the DT_REL entry.  */
12443
                  s = bfd_get_section_by_name (output_bfd,
12444
                                               RELOC_SECTION (htab, ".plt"));
12445
                  if (s != NULL)
12446
                    dyn.d_un.d_val -= s->size;
12447
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12448
                  break;
12449
                }
12450
              /* Fall through.  */
12451
 
12452
            case DT_REL:
12453
            case DT_RELA:
12454
              /* In the BPABI, the DT_REL tag must point at the file
12455
                 offset, not the VMA, of the first relocation
12456
                 section.  So, we use code similar to that in
12457
                 elflink.c, but do not check for SHF_ALLOC on the
12458
                 relcoation section, since relocations sections are
12459
                 never allocated under the BPABI.  The comments above
12460
                 about Unixware notwithstanding, we include all of the
12461
                 relocations here.  */
12462
              if (htab->symbian_p)
12463
                {
12464
                  unsigned int i;
12465
                  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12466
                          ? SHT_REL : SHT_RELA);
12467
                  dyn.d_un.d_val = 0;
12468
                  for (i = 1; i < elf_numsections (output_bfd); i++)
12469
                    {
12470
                      Elf_Internal_Shdr *hdr
12471
                        = elf_elfsections (output_bfd)[i];
12472
                      if (hdr->sh_type == type)
12473
                        {
12474
                          if (dyn.d_tag == DT_RELSZ
12475
                              || dyn.d_tag == DT_RELASZ)
12476
                            dyn.d_un.d_val += hdr->sh_size;
12477
                          else if ((ufile_ptr) hdr->sh_offset
12478
                                   <= dyn.d_un.d_val - 1)
12479
                            dyn.d_un.d_val = hdr->sh_offset;
12480
                        }
12481
                    }
12482
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12483
                }
12484
              break;
12485
 
12486
              /* Set the bottom bit of DT_INIT/FINI if the
12487
                 corresponding function is Thumb.  */
12488
            case DT_INIT:
12489
              name = info->init_function;
12490
              goto get_sym;
12491
            case DT_FINI:
12492
              name = info->fini_function;
12493
            get_sym:
12494
              /* If it wasn't set by elf_bfd_final_link
12495
                 then there is nothing to adjust.  */
12496
              if (dyn.d_un.d_val != 0)
12497
                {
12498
                  struct elf_link_hash_entry * eh;
12499
 
12500
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
12501
                                             FALSE, FALSE, TRUE);
12502
                  if (eh != NULL
12503
                      && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12504
                    {
12505
                      dyn.d_un.d_val |= 1;
12506
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12507
                    }
12508
                }
12509
              break;
12510
            }
12511
        }
12512
 
12513
      /* Fill in the first entry in the procedure linkage table.  */
12514
      if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
12515
        {
12516
          const bfd_vma *plt0_entry;
12517
          bfd_vma got_address, plt_address, got_displacement;
12518
 
12519
          /* Calculate the addresses of the GOT and PLT.  */
12520
          got_address = sgot->output_section->vma + sgot->output_offset;
12521
          plt_address = splt->output_section->vma + splt->output_offset;
12522
 
12523
          if (htab->vxworks_p)
12524
            {
12525
              /* The VxWorks GOT is relocated by the dynamic linker.
12526
                 Therefore, we must emit relocations rather than simply
12527
                 computing the values now.  */
12528
              Elf_Internal_Rela rel;
12529
 
12530
              plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12531
              put_arm_insn (htab, output_bfd, plt0_entry[0],
12532
                            splt->contents + 0);
12533
              put_arm_insn (htab, output_bfd, plt0_entry[1],
12534
                            splt->contents + 4);
12535
              put_arm_insn (htab, output_bfd, plt0_entry[2],
12536
                            splt->contents + 8);
12537
              bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12538
 
12539
              /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
12540
              rel.r_offset = plt_address + 12;
12541
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12542
              rel.r_addend = 0;
12543
              SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12544
                                     htab->srelplt2->contents);
12545
            }
12546
          else
12547
            {
12548
              got_displacement = got_address - (plt_address + 16);
12549
 
12550
              plt0_entry = elf32_arm_plt0_entry;
12551
              put_arm_insn (htab, output_bfd, plt0_entry[0],
12552
                            splt->contents + 0);
12553
              put_arm_insn (htab, output_bfd, plt0_entry[1],
12554
                            splt->contents + 4);
12555
              put_arm_insn (htab, output_bfd, plt0_entry[2],
12556
                            splt->contents + 8);
12557
              put_arm_insn (htab, output_bfd, plt0_entry[3],
12558
                            splt->contents + 12);
12559
 
12560
#ifdef FOUR_WORD_PLT
12561
              /* The displacement value goes in the otherwise-unused
12562
                 last word of the second entry.  */
12563
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12564
#else
12565
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12566
#endif
12567
            }
12568
        }
12569
 
12570
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
12571
         really seem like the right value.  */
12572
      if (splt->output_section->owner == output_bfd)
12573
        elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12574
 
12575
      if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12576
        {
12577
          /* Correct the .rel(a).plt.unloaded relocations.  They will have
12578
             incorrect symbol indexes.  */
12579
          int num_plts;
12580
          unsigned char *p;
12581
 
12582
          num_plts = ((htab->splt->size - htab->plt_header_size)
12583
                      / htab->plt_entry_size);
12584
          p = htab->srelplt2->contents + RELOC_SIZE (htab);
12585
 
12586
          for (; num_plts; num_plts--)
12587
            {
12588
              Elf_Internal_Rela rel;
12589
 
12590
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12591
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12592
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12593
              p += RELOC_SIZE (htab);
12594
 
12595
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12596
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12597
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12598
              p += RELOC_SIZE (htab);
12599
            }
12600
        }
12601
    }
12602
 
12603
  /* Fill in the first three entries in the global offset table.  */
12604
  if (sgot)
12605
    {
12606
      if (sgot->size > 0)
12607
        {
12608
          if (sdyn == NULL)
12609
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12610
          else
12611
            bfd_put_32 (output_bfd,
12612
                        sdyn->output_section->vma + sdyn->output_offset,
12613
                        sgot->contents);
12614
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12615
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12616
        }
12617
 
12618
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12619
    }
12620
 
12621
  return TRUE;
12622
}
12623
 
12624
static void
12625
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12626
{
12627
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
12628
  struct elf32_arm_link_hash_table *globals;
12629
 
12630
  i_ehdrp = elf_elfheader (abfd);
12631
 
12632
  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12633
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12634
  else
12635
    i_ehdrp->e_ident[EI_OSABI] = 0;
12636
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12637
 
12638
  if (link_info)
12639
    {
12640
      globals = elf32_arm_hash_table (link_info);
12641
      if (globals->byteswap_code)
12642
        i_ehdrp->e_flags |= EF_ARM_BE8;
12643
    }
12644
}
12645
 
12646
static enum elf_reloc_type_class
12647
elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12648
{
12649
  switch ((int) ELF32_R_TYPE (rela->r_info))
12650
    {
12651
    case R_ARM_RELATIVE:
12652
      return reloc_class_relative;
12653
    case R_ARM_JUMP_SLOT:
12654
      return reloc_class_plt;
12655
    case R_ARM_COPY:
12656
      return reloc_class_copy;
12657
    default:
12658
      return reloc_class_normal;
12659
    }
12660
}
12661
 
12662
/* Set the right machine number for an Arm ELF file.  */
12663
 
12664
static bfd_boolean
12665
elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12666
{
12667
  if (hdr->sh_type == SHT_NOTE)
12668
    *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12669
 
12670
  return TRUE;
12671
}
12672
 
12673
static void
12674
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12675
{
12676
  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12677
}
12678
 
12679
/* Return TRUE if this is an unwinding table entry.  */
12680
 
12681
static bfd_boolean
12682
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12683
{
12684
  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12685
          || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12686
}
12687
 
12688
 
12689
/* Set the type and flags for an ARM section.  We do this by
12690
   the section name, which is a hack, but ought to work.  */
12691
 
12692
static bfd_boolean
12693
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12694
{
12695
  const char * name;
12696
 
12697
  name = bfd_get_section_name (abfd, sec);
12698
 
12699
  if (is_arm_elf_unwind_section_name (abfd, name))
12700
    {
12701
      hdr->sh_type = SHT_ARM_EXIDX;
12702
      hdr->sh_flags |= SHF_LINK_ORDER;
12703
    }
12704
  return TRUE;
12705
}
12706
 
12707
/* Handle an ARM specific section when reading an object file.  This is
12708
   called when bfd_section_from_shdr finds a section with an unknown
12709
   type.  */
12710
 
12711
static bfd_boolean
12712
elf32_arm_section_from_shdr (bfd *abfd,
12713
                             Elf_Internal_Shdr * hdr,
12714
                             const char *name,
12715
                             int shindex)
12716
{
12717
  /* There ought to be a place to keep ELF backend specific flags, but
12718
     at the moment there isn't one.  We just keep track of the
12719
     sections by their name, instead.  Fortunately, the ABI gives
12720
     names for all the ARM specific sections, so we will probably get
12721
     away with this.  */
12722
  switch (hdr->sh_type)
12723
    {
12724
    case SHT_ARM_EXIDX:
12725
    case SHT_ARM_PREEMPTMAP:
12726
    case SHT_ARM_ATTRIBUTES:
12727
      break;
12728
 
12729
    default:
12730
      return FALSE;
12731
    }
12732
 
12733
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12734
    return FALSE;
12735
 
12736
  return TRUE;
12737
}
12738
 
12739
/* A structure used to record a list of sections, independently
12740
   of the next and prev fields in the asection structure.  */
12741
typedef struct section_list
12742
{
12743
  asection * sec;
12744
  struct section_list * next;
12745
  struct section_list * prev;
12746
}
12747
section_list;
12748
 
12749
/* Unfortunately we need to keep a list of sections for which
12750
   an _arm_elf_section_data structure has been allocated.  This
12751
   is because it is possible for functions like elf32_arm_write_section
12752
   to be called on a section which has had an elf_data_structure
12753
   allocated for it (and so the used_by_bfd field is valid) but
12754
   for which the ARM extended version of this structure - the
12755
   _arm_elf_section_data structure - has not been allocated.  */
12756
static section_list * sections_with_arm_elf_section_data = NULL;
12757
 
12758
static void
12759
record_section_with_arm_elf_section_data (asection * sec)
12760
{
12761
  struct section_list * entry;
12762
 
12763
  entry = bfd_malloc (sizeof (* entry));
12764
  if (entry == NULL)
12765
    return;
12766
  entry->sec = sec;
12767
  entry->next = sections_with_arm_elf_section_data;
12768
  entry->prev = NULL;
12769
  if (entry->next != NULL)
12770
    entry->next->prev = entry;
12771
  sections_with_arm_elf_section_data = entry;
12772
}
12773
 
12774
static struct section_list *
12775
find_arm_elf_section_entry (asection * sec)
12776
{
12777
  struct section_list * entry;
12778
  static struct section_list * last_entry = NULL;
12779
 
12780
  /* This is a short cut for the typical case where the sections are added
12781
     to the sections_with_arm_elf_section_data list in forward order and
12782
     then looked up here in backwards order.  This makes a real difference
12783
     to the ld-srec/sec64k.exp linker test.  */
12784
  entry = sections_with_arm_elf_section_data;
12785
  if (last_entry != NULL)
12786
    {
12787
      if (last_entry->sec == sec)
12788
        entry = last_entry;
12789
      else if (last_entry->next != NULL
12790
               && last_entry->next->sec == sec)
12791
        entry = last_entry->next;
12792
    }
12793
 
12794
  for (; entry; entry = entry->next)
12795
    if (entry->sec == sec)
12796
      break;
12797
 
12798
  if (entry)
12799
    /* Record the entry prior to this one - it is the entry we are most
12800
       likely to want to locate next time.  Also this way if we have been
12801
       called from unrecord_section_with_arm_elf_section_data() we will not
12802
       be caching a pointer that is about to be freed.  */
12803
    last_entry = entry->prev;
12804
 
12805
  return entry;
12806
}
12807
 
12808
static _arm_elf_section_data *
12809
get_arm_elf_section_data (asection * sec)
12810
{
12811
  struct section_list * entry;
12812
 
12813
  entry = find_arm_elf_section_entry (sec);
12814
 
12815
  if (entry)
12816
    return elf32_arm_section_data (entry->sec);
12817
  else
12818
    return NULL;
12819
}
12820
 
12821
static void
12822
unrecord_section_with_arm_elf_section_data (asection * sec)
12823
{
12824
  struct section_list * entry;
12825
 
12826
  entry = find_arm_elf_section_entry (sec);
12827
 
12828
  if (entry)
12829
    {
12830
      if (entry->prev != NULL)
12831
        entry->prev->next = entry->next;
12832
      if (entry->next != NULL)
12833
        entry->next->prev = entry->prev;
12834
      if (entry == sections_with_arm_elf_section_data)
12835
        sections_with_arm_elf_section_data = entry->next;
12836
      free (entry);
12837
    }
12838
}
12839
 
12840
 
12841
typedef struct
12842
{
12843
  void *finfo;
12844
  struct bfd_link_info *info;
12845
  asection *sec;
12846
  int sec_shndx;
12847
  int (*func) (void *, const char *, Elf_Internal_Sym *,
12848
               asection *, struct elf_link_hash_entry *);
12849
} output_arch_syminfo;
12850
 
12851
enum map_symbol_type
12852
{
12853
  ARM_MAP_ARM,
12854
  ARM_MAP_THUMB,
12855
  ARM_MAP_DATA
12856
};
12857
 
12858
 
12859
/* Output a single mapping symbol.  */
12860
 
12861
static bfd_boolean
12862
elf32_arm_output_map_sym (output_arch_syminfo *osi,
12863
                          enum map_symbol_type type,
12864
                          bfd_vma offset)
12865
{
12866
  static const char *names[3] = {"$a", "$t", "$d"};
12867
  struct elf32_arm_link_hash_table *htab;
12868
  Elf_Internal_Sym sym;
12869
 
12870
  htab = elf32_arm_hash_table (osi->info);
12871
  sym.st_value = osi->sec->output_section->vma
12872
                 + osi->sec->output_offset
12873
                 + offset;
12874
  sym.st_size = 0;
12875
  sym.st_other = 0;
12876
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12877
  sym.st_shndx = osi->sec_shndx;
12878
  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12879
}
12880
 
12881
 
12882
/* Output mapping symbols for PLT entries associated with H.  */
12883
 
12884
static bfd_boolean
12885
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12886
{
12887
  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12888
  struct elf32_arm_link_hash_table *htab;
12889
  struct elf32_arm_link_hash_entry *eh;
12890
  bfd_vma addr;
12891
 
12892
  htab = elf32_arm_hash_table (osi->info);
12893
 
12894
  if (h->root.type == bfd_link_hash_indirect)
12895
    return TRUE;
12896
 
12897
  if (h->root.type == bfd_link_hash_warning)
12898
    /* When warning symbols are created, they **replace** the "real"
12899
       entry in the hash table, thus we never get to see the real
12900
       symbol in a hash traversal.  So look at it now.  */
12901
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12902
 
12903
  if (h->plt.offset == (bfd_vma) -1)
12904
    return TRUE;
12905
 
12906
  eh = (struct elf32_arm_link_hash_entry *) h;
12907
  addr = h->plt.offset;
12908
  if (htab->symbian_p)
12909
    {
12910
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12911
        return FALSE;
12912
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12913
        return FALSE;
12914
    }
12915
  else if (htab->vxworks_p)
12916
    {
12917
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12918
        return FALSE;
12919
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12920
        return FALSE;
12921
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12922
        return FALSE;
12923
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12924
        return FALSE;
12925
    }
12926
  else
12927
    {
12928
      bfd_signed_vma thumb_refs;
12929
 
12930
      thumb_refs = eh->plt_thumb_refcount;
12931
      if (!htab->use_blx)
12932
        thumb_refs += eh->plt_maybe_thumb_refcount;
12933
 
12934
      if (thumb_refs > 0)
12935
        {
12936
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12937
            return FALSE;
12938
        }
12939
#ifdef FOUR_WORD_PLT
12940
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12941
        return FALSE;
12942
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12943
        return FALSE;
12944
#else
12945
      /* A three-word PLT with no Thumb thunk contains only Arm code,
12946
         so only need to output a mapping symbol for the first PLT entry and
12947
         entries with thumb thunks.  */
12948
      if (thumb_refs > 0 || addr == 20)
12949
        {
12950
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12951
            return FALSE;
12952
        }
12953
#endif
12954
    }
12955
 
12956
  return TRUE;
12957
}
12958
 
12959
/* Output a single local symbol for a generated stub.  */
12960
 
12961
static bfd_boolean
12962
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12963
                           bfd_vma offset, bfd_vma size)
12964
{
12965
  struct elf32_arm_link_hash_table *htab;
12966
  Elf_Internal_Sym sym;
12967
 
12968
  htab = elf32_arm_hash_table (osi->info);
12969
  sym.st_value = osi->sec->output_section->vma
12970
                 + osi->sec->output_offset
12971
                 + offset;
12972
  sym.st_size = size;
12973
  sym.st_other = 0;
12974
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12975
  sym.st_shndx = osi->sec_shndx;
12976
  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
12977
}
12978
 
12979
static bfd_boolean
12980
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12981
                  void * in_arg)
12982
{
12983
  struct elf32_arm_stub_hash_entry *stub_entry;
12984
  struct bfd_link_info *info;
12985
  struct elf32_arm_link_hash_table *htab;
12986
  asection *stub_sec;
12987
  bfd_vma addr;
12988
  char *stub_name;
12989
  output_arch_syminfo *osi;
12990
  const insn_sequence *template_sequence;
12991
  enum stub_insn_type prev_type;
12992
  int size;
12993
  int i;
12994
  enum map_symbol_type sym_type;
12995
 
12996
  /* Massage our args to the form they really have.  */
12997
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
12998
  osi = (output_arch_syminfo *) in_arg;
12999
 
13000
  info = osi->info;
13001
 
13002
  htab = elf32_arm_hash_table (info);
13003
  stub_sec = stub_entry->stub_sec;
13004
 
13005
  /* Ensure this stub is attached to the current section being
13006
     processed.  */
13007
  if (stub_sec != osi->sec)
13008
    return TRUE;
13009
 
13010
  addr = (bfd_vma) stub_entry->stub_offset;
13011
  stub_name = stub_entry->output_name;
13012
 
13013
  template_sequence = stub_entry->stub_template;
13014
  switch (template_sequence[0].type)
13015
    {
13016
    case ARM_TYPE:
13017
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
13018
        return FALSE;
13019
      break;
13020
    case THUMB16_TYPE:
13021
    case THUMB32_TYPE:
13022
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
13023
                                      stub_entry->stub_size))
13024
        return FALSE;
13025
      break;
13026
    default:
13027
      BFD_FAIL ();
13028
      return 0;
13029
    }
13030
 
13031
  prev_type = DATA_TYPE;
13032
  size = 0;
13033
  for (i = 0; i < stub_entry->stub_template_size; i++)
13034
    {
13035
      switch (template_sequence[i].type)
13036
        {
13037
        case ARM_TYPE:
13038
          sym_type = ARM_MAP_ARM;
13039
          break;
13040
 
13041
        case THUMB16_TYPE:
13042
        case THUMB32_TYPE:
13043
          sym_type = ARM_MAP_THUMB;
13044
          break;
13045
 
13046
        case DATA_TYPE:
13047
          sym_type = ARM_MAP_DATA;
13048
          break;
13049
 
13050
        default:
13051
          BFD_FAIL ();
13052
          return FALSE;
13053
        }
13054
 
13055
      if (template_sequence[i].type != prev_type)
13056
        {
13057
          prev_type = template_sequence[i].type;
13058
          if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
13059
            return FALSE;
13060
        }
13061
 
13062
      switch (template_sequence[i].type)
13063
        {
13064
        case ARM_TYPE:
13065
        case THUMB32_TYPE:
13066
          size += 4;
13067
          break;
13068
 
13069
        case THUMB16_TYPE:
13070
          size += 2;
13071
          break;
13072
 
13073
        case DATA_TYPE:
13074
          size += 4;
13075
          break;
13076
 
13077
        default:
13078
          BFD_FAIL ();
13079
          return FALSE;
13080
        }
13081
    }
13082
 
13083
  return TRUE;
13084
}
13085
 
13086
/* Output mapping symbols for linker generated sections.  */
13087
 
13088
static bfd_boolean
13089
elf32_arm_output_arch_local_syms (bfd *output_bfd,
13090
                                  struct bfd_link_info *info,
13091
                                  void *finfo,
13092
                                  int (*func) (void *, const char *,
13093
                                               Elf_Internal_Sym *,
13094
                                               asection *,
13095
                                               struct elf_link_hash_entry *))
13096
{
13097
  output_arch_syminfo osi;
13098
  struct elf32_arm_link_hash_table *htab;
13099
  bfd_vma offset;
13100
  bfd_size_type size;
13101
 
13102
  htab = elf32_arm_hash_table (info);
13103
  check_use_blx (htab);
13104
 
13105
  osi.finfo = finfo;
13106
  osi.info = info;
13107
  osi.func = func;
13108
 
13109
  /* ARM->Thumb glue.  */
13110
  if (htab->arm_glue_size > 0)
13111
    {
13112
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13113
                                         ARM2THUMB_GLUE_SECTION_NAME);
13114
 
13115
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13116
          (output_bfd, osi.sec->output_section);
13117
      if (info->shared || htab->root.is_relocatable_executable
13118
          || htab->pic_veneer)
13119
        size = ARM2THUMB_PIC_GLUE_SIZE;
13120
      else if (htab->use_blx)
13121
        size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13122
      else
13123
        size = ARM2THUMB_STATIC_GLUE_SIZE;
13124
 
13125
      for (offset = 0; offset < htab->arm_glue_size; offset += size)
13126
        {
13127
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13128
          elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
13129
        }
13130
    }
13131
 
13132
  /* Thumb->ARM glue.  */
13133
  if (htab->thumb_glue_size > 0)
13134
    {
13135
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13136
                                         THUMB2ARM_GLUE_SECTION_NAME);
13137
 
13138
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13139
          (output_bfd, osi.sec->output_section);
13140
      size = THUMB2ARM_GLUE_SIZE;
13141
 
13142
      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13143
        {
13144
          elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13145
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
13146
        }
13147
    }
13148
 
13149
  /* ARMv4 BX veneers.  */
13150
  if (htab->bx_glue_size > 0)
13151
    {
13152
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13153
                                         ARM_BX_GLUE_SECTION_NAME);
13154
 
13155
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
13156
          (output_bfd, osi.sec->output_section);
13157
 
13158
      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
13159
    }
13160
 
13161
  /* Long calls stubs.  */
13162
  if (htab->stub_bfd && htab->stub_bfd->sections)
13163
    {
13164
      asection* stub_sec;
13165
 
13166
      for (stub_sec = htab->stub_bfd->sections;
13167
           stub_sec != NULL;
13168
           stub_sec = stub_sec->next)
13169
        {
13170
          /* Ignore non-stub sections.  */
13171
          if (!strstr (stub_sec->name, STUB_SUFFIX))
13172
            continue;
13173
 
13174
          osi.sec = stub_sec;
13175
 
13176
          osi.sec_shndx = _bfd_elf_section_from_bfd_section
13177
            (output_bfd, osi.sec->output_section);
13178
 
13179
          bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13180
        }
13181
    }
13182
 
13183
  /* Finally, output mapping symbols for the PLT.  */
13184
  if (!htab->splt || htab->splt->size == 0)
13185
    return TRUE;
13186
 
13187
  osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
13188
                                                     htab->splt->output_section);
13189
  osi.sec = htab->splt;
13190
  /* Output mapping symbols for the plt header.  SymbianOS does not have a
13191
     plt header.  */
13192
  if (htab->vxworks_p)
13193
    {
13194
      /* VxWorks shared libraries have no PLT header.  */
13195
      if (!info->shared)
13196
        {
13197
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13198
            return FALSE;
13199
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
13200
            return FALSE;
13201
        }
13202
    }
13203
  else if (!htab->symbian_p)
13204
    {
13205
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13206
        return FALSE;
13207
#ifndef FOUR_WORD_PLT
13208
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13209
        return FALSE;
13210
#endif
13211
    }
13212
 
13213
  elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13214
  return TRUE;
13215
}
13216
 
13217
/* Allocate target specific section data.  */
13218
 
13219
static bfd_boolean
13220
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13221
{
13222
  if (!sec->used_by_bfd)
13223
    {
13224
      _arm_elf_section_data *sdata;
13225
      bfd_size_type amt = sizeof (*sdata);
13226
 
13227
      sdata = bfd_zalloc (abfd, amt);
13228
      if (sdata == NULL)
13229
        return FALSE;
13230
      sec->used_by_bfd = sdata;
13231
    }
13232
 
13233
  record_section_with_arm_elf_section_data (sec);
13234
 
13235
  return _bfd_elf_new_section_hook (abfd, sec);
13236
}
13237
 
13238
 
13239
/* Used to order a list of mapping symbols by address.  */
13240
 
13241
static int
13242
elf32_arm_compare_mapping (const void * a, const void * b)
13243
{
13244
  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13245
  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13246
 
13247
  if (amap->vma > bmap->vma)
13248
    return 1;
13249
  else if (amap->vma < bmap->vma)
13250
    return -1;
13251
  else if (amap->type > bmap->type)
13252
    /* Ensure results do not depend on the host qsort for objects with
13253
       multiple mapping symbols at the same address by sorting on type
13254
       after vma.  */
13255
    return 1;
13256
  else if (amap->type < bmap->type)
13257
    return -1;
13258
  else
13259
    return 0;
13260
}
13261
 
13262
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
13263
 
13264
static unsigned long
13265
offset_prel31 (unsigned long addr, bfd_vma offset)
13266
{
13267
  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13268
}
13269
 
13270
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13271
   relocations.  */
13272
 
13273
static void
13274
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13275
{
13276
  unsigned long first_word = bfd_get_32 (output_bfd, from);
13277
  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13278
 
13279
  /* High bit of first word is supposed to be zero.  */
13280
  if ((first_word & 0x80000000ul) == 0)
13281
    first_word = offset_prel31 (first_word, offset);
13282
 
13283
  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13284
     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
13285
  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13286
    second_word = offset_prel31 (second_word, offset);
13287
 
13288
  bfd_put_32 (output_bfd, first_word, to);
13289
  bfd_put_32 (output_bfd, second_word, to + 4);
13290
}
13291
 
13292
/* Data for make_branch_to_a8_stub().  */
13293
 
13294
struct a8_branch_to_stub_data {
13295
  asection *writing_section;
13296
  bfd_byte *contents;
13297
};
13298
 
13299
 
13300
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
13301
   places for a particular section.  */
13302
 
13303
static bfd_boolean
13304
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13305
                       void *in_arg)
13306
{
13307
  struct elf32_arm_stub_hash_entry *stub_entry;
13308
  struct a8_branch_to_stub_data *data;
13309
  bfd_byte *contents;
13310
  unsigned long branch_insn;
13311
  bfd_vma veneered_insn_loc, veneer_entry_loc;
13312
  bfd_signed_vma branch_offset;
13313
  bfd *abfd;
13314
  unsigned int index;
13315
 
13316
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13317
  data = (struct a8_branch_to_stub_data *) in_arg;
13318
 
13319
  if (stub_entry->target_section != data->writing_section
13320
      || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13321
    return TRUE;
13322
 
13323
  contents = data->contents;
13324
 
13325
  veneered_insn_loc = stub_entry->target_section->output_section->vma
13326
                      + stub_entry->target_section->output_offset
13327
                      + stub_entry->target_value;
13328
 
13329
  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13330
                     + stub_entry->stub_sec->output_offset
13331
                     + stub_entry->stub_offset;
13332
 
13333
  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13334
    veneered_insn_loc &= ~3u;
13335
 
13336
  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13337
 
13338
  abfd = stub_entry->target_section->owner;
13339
  index = stub_entry->target_value;
13340
 
13341
  /* We attempt to avoid this condition by setting stubs_always_after_branch
13342
     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13343
     This check is just to be on the safe side...  */
13344
  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13345
    {
13346
      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13347
                               "allocated in unsafe location"), abfd);
13348
      return FALSE;
13349
    }
13350
 
13351
  switch (stub_entry->stub_type)
13352
    {
13353
    case arm_stub_a8_veneer_b:
13354
    case arm_stub_a8_veneer_b_cond:
13355
      branch_insn = 0xf0009000;
13356
      goto jump24;
13357
 
13358
    case arm_stub_a8_veneer_blx:
13359
      branch_insn = 0xf000e800;
13360
      goto jump24;
13361
 
13362
    case arm_stub_a8_veneer_bl:
13363
      {
13364
        unsigned int i1, j1, i2, j2, s;
13365
 
13366
        branch_insn = 0xf000d000;
13367
 
13368
      jump24:
13369
        if (branch_offset < -16777216 || branch_offset > 16777214)
13370
          {
13371
            /* There's not much we can do apart from complain if this
13372
               happens.  */
13373
            (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13374
                                     "of range (input file too large)"), abfd);
13375
            return FALSE;
13376
          }
13377
 
13378
        /* i1 = not(j1 eor s), so:
13379
           not i1 = j1 eor s
13380
           j1 = (not i1) eor s.  */
13381
 
13382
        branch_insn |= (branch_offset >> 1) & 0x7ff;
13383
        branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13384
        i2 = (branch_offset >> 22) & 1;
13385
        i1 = (branch_offset >> 23) & 1;
13386
        s = (branch_offset >> 24) & 1;
13387
        j1 = (!i1) ^ s;
13388
        j2 = (!i2) ^ s;
13389
        branch_insn |= j2 << 11;
13390
        branch_insn |= j1 << 13;
13391
        branch_insn |= s << 26;
13392
      }
13393
      break;
13394
 
13395
    default:
13396
      BFD_FAIL ();
13397
      return FALSE;
13398
    }
13399
 
13400
  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[index]);
13401
  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[index + 2]);
13402
 
13403
  return TRUE;
13404
}
13405
 
13406
/* Do code byteswapping.  Return FALSE afterwards so that the section is
13407
   written out as normal.  */
13408
 
13409
static bfd_boolean
13410
elf32_arm_write_section (bfd *output_bfd,
13411
                         struct bfd_link_info *link_info,
13412
                         asection *sec,
13413
                         bfd_byte *contents)
13414
{
13415
  unsigned int mapcount, errcount;
13416
  _arm_elf_section_data *arm_data;
13417
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13418
  elf32_arm_section_map *map;
13419
  elf32_vfp11_erratum_list *errnode;
13420
  bfd_vma ptr;
13421
  bfd_vma end;
13422
  bfd_vma offset = sec->output_section->vma + sec->output_offset;
13423
  bfd_byte tmp;
13424
  unsigned int i;
13425
 
13426
  /* If this section has not been allocated an _arm_elf_section_data
13427
     structure then we cannot record anything.  */
13428
  arm_data = get_arm_elf_section_data (sec);
13429
  if (arm_data == NULL)
13430
    return FALSE;
13431
 
13432
  mapcount = arm_data->mapcount;
13433
  map = arm_data->map;
13434
  errcount = arm_data->erratumcount;
13435
 
13436
  if (errcount != 0)
13437
    {
13438
      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13439
 
13440
      for (errnode = arm_data->erratumlist; errnode != 0;
13441
           errnode = errnode->next)
13442
        {
13443
          bfd_vma index = errnode->vma - offset;
13444
 
13445
          switch (errnode->type)
13446
            {
13447
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13448
              {
13449
                bfd_vma branch_to_veneer;
13450
                /* Original condition code of instruction, plus bit mask for
13451
                   ARM B instruction.  */
13452
                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13453
                                  | 0x0a000000;
13454
 
13455
                /* The instruction is before the label.  */
13456
                index -= 4;
13457
 
13458
                /* Above offset included in -4 below.  */
13459
                branch_to_veneer = errnode->u.b.veneer->vma
13460
                                   - errnode->vma - 4;
13461
 
13462
                if ((signed) branch_to_veneer < -(1 << 25)
13463
                    || (signed) branch_to_veneer >= (1 << 25))
13464
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13465
                                           "range"), output_bfd);
13466
 
13467
                insn |= (branch_to_veneer >> 2) & 0xffffff;
13468
                contents[endianflip ^ index] = insn & 0xff;
13469
                contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13470
                contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13471
                contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13472
              }
13473
              break;
13474
 
13475
            case VFP11_ERRATUM_ARM_VENEER:
13476
              {
13477
                bfd_vma branch_from_veneer;
13478
                unsigned int insn;
13479
 
13480
                /* Take size of veneer into account.  */
13481
                branch_from_veneer = errnode->u.v.branch->vma
13482
                                     - errnode->vma - 12;
13483
 
13484
                if ((signed) branch_from_veneer < -(1 << 25)
13485
                    || (signed) branch_from_veneer >= (1 << 25))
13486
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13487
                                           "range"), output_bfd);
13488
 
13489
                /* Original instruction.  */
13490
                insn = errnode->u.v.branch->u.b.vfp_insn;
13491
                contents[endianflip ^ index] = insn & 0xff;
13492
                contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13493
                contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13494
                contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13495
 
13496
                /* Branch back to insn after original insn.  */
13497
                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13498
                contents[endianflip ^ (index + 4)] = insn & 0xff;
13499
                contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
13500
                contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
13501
                contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
13502
              }
13503
              break;
13504
 
13505
            default:
13506
              abort ();
13507
            }
13508
        }
13509
    }
13510
 
13511
  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13512
    {
13513
      arm_unwind_table_edit *edit_node
13514
        = arm_data->u.exidx.unwind_edit_list;
13515
      /* Now, sec->size is the size of the section we will write.  The original
13516
         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13517
         markers) was sec->rawsize.  (This isn't the case if we perform no
13518
         edits, then rawsize will be zero and we should use size).  */
13519
      bfd_byte *edited_contents = bfd_malloc (sec->size);
13520
      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13521
      unsigned int in_index, out_index;
13522
      bfd_vma add_to_offsets = 0;
13523
 
13524
      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13525
        {
13526
          if (edit_node)
13527
            {
13528
              unsigned int edit_index = edit_node->index;
13529
 
13530
              if (in_index < edit_index && in_index * 8 < input_size)
13531
                {
13532
                  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13533
                                    contents + in_index * 8, add_to_offsets);
13534
                  out_index++;
13535
                  in_index++;
13536
                }
13537
              else if (in_index == edit_index
13538
                       || (in_index * 8 >= input_size
13539
                           && edit_index == UINT_MAX))
13540
                {
13541
                  switch (edit_node->type)
13542
                    {
13543
                    case DELETE_EXIDX_ENTRY:
13544
                      in_index++;
13545
                      add_to_offsets += 8;
13546
                      break;
13547
 
13548
                    case INSERT_EXIDX_CANTUNWIND_AT_END:
13549
                      {
13550
                        asection *text_sec = edit_node->linked_section;
13551
                        bfd_vma text_offset = text_sec->output_section->vma
13552
                                              + text_sec->output_offset
13553
                                              + text_sec->size;
13554
                        bfd_vma exidx_offset = offset + out_index * 8;
13555
                        unsigned long prel31_offset;
13556
 
13557
                        /* Note: this is meant to be equivalent to an
13558
                           R_ARM_PREL31 relocation.  These synthetic
13559
                           EXIDX_CANTUNWIND markers are not relocated by the
13560
                           usual BFD method.  */
13561
                        prel31_offset = (text_offset - exidx_offset)
13562
                                        & 0x7ffffffful;
13563
 
13564
                        /* First address we can't unwind.  */
13565
                        bfd_put_32 (output_bfd, prel31_offset,
13566
                                    &edited_contents[out_index * 8]);
13567
 
13568
                        /* Code for EXIDX_CANTUNWIND.  */
13569
                        bfd_put_32 (output_bfd, 0x1,
13570
                                    &edited_contents[out_index * 8 + 4]);
13571
 
13572
                        out_index++;
13573
                        add_to_offsets -= 8;
13574
                      }
13575
                      break;
13576
                    }
13577
 
13578
                  edit_node = edit_node->next;
13579
                }
13580
            }
13581
          else
13582
            {
13583
              /* No more edits, copy remaining entries verbatim.  */
13584
              copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13585
                                contents + in_index * 8, add_to_offsets);
13586
              out_index++;
13587
              in_index++;
13588
            }
13589
        }
13590
 
13591
      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13592
        bfd_set_section_contents (output_bfd, sec->output_section,
13593
                                  edited_contents,
13594
                                  (file_ptr) sec->output_offset, sec->size);
13595
 
13596
      return TRUE;
13597
    }
13598
 
13599
  /* Fix code to point to Cortex-A8 erratum stubs.  */
13600
  if (globals->fix_cortex_a8)
13601
    {
13602
      struct a8_branch_to_stub_data data;
13603
 
13604
      data.writing_section = sec;
13605
      data.contents = contents;
13606
 
13607
      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13608
                         &data);
13609
    }
13610
 
13611
  if (mapcount == 0)
13612
    return FALSE;
13613
 
13614
  if (globals->byteswap_code)
13615
    {
13616
      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13617
 
13618
      ptr = map[0].vma;
13619
      for (i = 0; i < mapcount; i++)
13620
        {
13621
          if (i == mapcount - 1)
13622
            end = sec->size;
13623
          else
13624
            end = map[i + 1].vma;
13625
 
13626
          switch (map[i].type)
13627
            {
13628
            case 'a':
13629
              /* Byte swap code words.  */
13630
              while (ptr + 3 < end)
13631
                {
13632
                  tmp = contents[ptr];
13633
                  contents[ptr] = contents[ptr + 3];
13634
                  contents[ptr + 3] = tmp;
13635
                  tmp = contents[ptr + 1];
13636
                  contents[ptr + 1] = contents[ptr + 2];
13637
                  contents[ptr + 2] = tmp;
13638
                  ptr += 4;
13639
                }
13640
              break;
13641
 
13642
            case 't':
13643
              /* Byte swap code halfwords.  */
13644
              while (ptr + 1 < end)
13645
                {
13646
                  tmp = contents[ptr];
13647
                  contents[ptr] = contents[ptr + 1];
13648
                  contents[ptr + 1] = tmp;
13649
                  ptr += 2;
13650
                }
13651
              break;
13652
 
13653
            case 'd':
13654
              /* Leave data alone.  */
13655
              break;
13656
            }
13657
          ptr = end;
13658
        }
13659
    }
13660
 
13661
  free (map);
13662
  arm_data->mapcount = 0;
13663
  arm_data->mapsize = 0;
13664
  arm_data->map = NULL;
13665
  unrecord_section_with_arm_elf_section_data (sec);
13666
 
13667
  return FALSE;
13668
}
13669
 
13670
static void
13671
unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
13672
                                        asection * sec,
13673
                                        void * ignore ATTRIBUTE_UNUSED)
13674
{
13675
  unrecord_section_with_arm_elf_section_data (sec);
13676
}
13677
 
13678
static bfd_boolean
13679
elf32_arm_close_and_cleanup (bfd * abfd)
13680
{
13681
  if (abfd->sections)
13682
    bfd_map_over_sections (abfd,
13683
                           unrecord_section_via_map_over_sections,
13684
                           NULL);
13685
 
13686
  return _bfd_elf_close_and_cleanup (abfd);
13687
}
13688
 
13689
static bfd_boolean
13690
elf32_arm_bfd_free_cached_info (bfd * abfd)
13691
{
13692
  if (abfd->sections)
13693
    bfd_map_over_sections (abfd,
13694
                           unrecord_section_via_map_over_sections,
13695
                           NULL);
13696
 
13697
  return _bfd_free_cached_info (abfd);
13698
}
13699
 
13700
/* Display STT_ARM_TFUNC symbols as functions.  */
13701
 
13702
static void
13703
elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13704
                             asymbol *asym)
13705
{
13706
  elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13707
 
13708
  if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13709
    elfsym->symbol.flags |= BSF_FUNCTION;
13710
}
13711
 
13712
 
13713
/* Mangle thumb function symbols as we read them in.  */
13714
 
13715
static bfd_boolean
13716
elf32_arm_swap_symbol_in (bfd * abfd,
13717
                          const void *psrc,
13718
                          const void *pshn,
13719
                          Elf_Internal_Sym *dst)
13720
{
13721
  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13722
    return FALSE;
13723
 
13724
  /* New EABI objects mark thumb function symbols by setting the low bit of
13725
     the address.  Turn these into STT_ARM_TFUNC.  */
13726
  if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13727
      && (dst->st_value & 1))
13728
    {
13729
      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13730
      dst->st_value &= ~(bfd_vma) 1;
13731
    }
13732
  return TRUE;
13733
}
13734
 
13735
 
13736
/* Mangle thumb function symbols as we write them out.  */
13737
 
13738
static void
13739
elf32_arm_swap_symbol_out (bfd *abfd,
13740
                           const Elf_Internal_Sym *src,
13741
                           void *cdst,
13742
                           void *shndx)
13743
{
13744
  Elf_Internal_Sym newsym;
13745
 
13746
  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13747
     of the address set, as per the new EABI.  We do this unconditionally
13748
     because objcopy does not set the elf header flags until after
13749
     it writes out the symbol table.  */
13750
  if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13751
    {
13752
      newsym = *src;
13753
      newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13754
      if (newsym.st_shndx != SHN_UNDEF)
13755
        {
13756
          /* Do this only for defined symbols. At link type, the static
13757
             linker will simulate the work of dynamic linker of resolving
13758
             symbols and will carry over the thumbness of found symbols to
13759
             the output symbol table. It's not clear how it happens, but
13760
             the thumbness of undefined symbols can well be different at
13761
             runtime, and writing '1' for them will be confusing for users
13762
             and possibly for dynamic linker itself.
13763
          */
13764
          newsym.st_value |= 1;
13765
        }
13766
 
13767
      src = &newsym;
13768
    }
13769
  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13770
}
13771
 
13772
/* Add the PT_ARM_EXIDX program header.  */
13773
 
13774
static bfd_boolean
13775
elf32_arm_modify_segment_map (bfd *abfd,
13776
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
13777
{
13778
  struct elf_segment_map *m;
13779
  asection *sec;
13780
 
13781
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13782
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13783
    {
13784
      /* If there is already a PT_ARM_EXIDX header, then we do not
13785
         want to add another one.  This situation arises when running
13786
         "strip"; the input binary already has the header.  */
13787
      m = elf_tdata (abfd)->segment_map;
13788
      while (m && m->p_type != PT_ARM_EXIDX)
13789
        m = m->next;
13790
      if (!m)
13791
        {
13792
          m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13793
          if (m == NULL)
13794
            return FALSE;
13795
          m->p_type = PT_ARM_EXIDX;
13796
          m->count = 1;
13797
          m->sections[0] = sec;
13798
 
13799
          m->next = elf_tdata (abfd)->segment_map;
13800
          elf_tdata (abfd)->segment_map = m;
13801
        }
13802
    }
13803
 
13804
  return TRUE;
13805
}
13806
 
13807
/* We may add a PT_ARM_EXIDX program header.  */
13808
 
13809
static int
13810
elf32_arm_additional_program_headers (bfd *abfd,
13811
                                      struct bfd_link_info *info ATTRIBUTE_UNUSED)
13812
{
13813
  asection *sec;
13814
 
13815
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13816
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13817
    return 1;
13818
  else
13819
    return 0;
13820
}
13821
 
13822
/* We have two function types: STT_FUNC and STT_ARM_TFUNC.  */
13823
 
13824
static bfd_boolean
13825
elf32_arm_is_function_type (unsigned int type)
13826
{
13827
  return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13828
}
13829
 
13830
/* We use this to override swap_symbol_in and swap_symbol_out.  */
13831
const struct elf_size_info elf32_arm_size_info =
13832
{
13833
  sizeof (Elf32_External_Ehdr),
13834
  sizeof (Elf32_External_Phdr),
13835
  sizeof (Elf32_External_Shdr),
13836
  sizeof (Elf32_External_Rel),
13837
  sizeof (Elf32_External_Rela),
13838
  sizeof (Elf32_External_Sym),
13839
  sizeof (Elf32_External_Dyn),
13840
  sizeof (Elf_External_Note),
13841
  4,
13842
  1,
13843
  32, 2,
13844
  ELFCLASS32, EV_CURRENT,
13845
  bfd_elf32_write_out_phdrs,
13846
  bfd_elf32_write_shdrs_and_ehdr,
13847
  bfd_elf32_checksum_contents,
13848
  bfd_elf32_write_relocs,
13849
  elf32_arm_swap_symbol_in,
13850
  elf32_arm_swap_symbol_out,
13851
  bfd_elf32_slurp_reloc_table,
13852
  bfd_elf32_slurp_symbol_table,
13853
  bfd_elf32_swap_dyn_in,
13854
  bfd_elf32_swap_dyn_out,
13855
  bfd_elf32_swap_reloc_in,
13856
  bfd_elf32_swap_reloc_out,
13857
  bfd_elf32_swap_reloca_in,
13858
  bfd_elf32_swap_reloca_out
13859
};
13860
 
13861
#define ELF_ARCH                        bfd_arch_arm
13862
#define ELF_MACHINE_CODE                EM_ARM
13863
#ifdef __QNXTARGET__
13864
#define ELF_MAXPAGESIZE                 0x1000
13865
#else
13866
#define ELF_MAXPAGESIZE                 0x8000
13867
#endif
13868
#define ELF_MINPAGESIZE                 0x1000
13869
#define ELF_COMMONPAGESIZE              0x1000
13870
 
13871
#define bfd_elf32_mkobject                      elf32_arm_mkobject
13872
 
13873
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
13874
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
13875
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
13876
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
13877
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
13878
#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
13879
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
13880
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13881
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
13882
#define bfd_elf32_find_inliner_info             elf32_arm_find_inliner_info
13883
#define bfd_elf32_new_section_hook              elf32_arm_new_section_hook
13884
#define bfd_elf32_bfd_is_target_special_symbol  elf32_arm_is_target_special_symbol
13885
#define bfd_elf32_close_and_cleanup             elf32_arm_close_and_cleanup
13886
#define bfd_elf32_bfd_free_cached_info          elf32_arm_bfd_free_cached_info
13887
#define bfd_elf32_bfd_final_link                elf32_arm_final_link
13888
 
13889
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
13890
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
13891
#define elf_backend_gc_mark_extra_sections      elf32_arm_gc_mark_extra_sections
13892
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
13893
#define elf_backend_check_relocs                elf32_arm_check_relocs
13894
#define elf_backend_relocate_section            elf32_arm_relocate_section
13895
#define elf_backend_write_section               elf32_arm_write_section
13896
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
13897
#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
13898
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
13899
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
13900
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
13901
#define elf_backend_init_index_section          _bfd_elf_init_2_index_sections
13902
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
13903
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
13904
#define elf_backend_object_p                    elf32_arm_object_p
13905
#define elf_backend_section_flags               elf32_arm_section_flags
13906
#define elf_backend_fake_sections               elf32_arm_fake_sections
13907
#define elf_backend_section_from_shdr           elf32_arm_section_from_shdr
13908
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
13909
#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
13910
#define elf_backend_symbol_processing           elf32_arm_symbol_processing
13911
#define elf_backend_size_info                   elf32_arm_size_info
13912
#define elf_backend_modify_segment_map          elf32_arm_modify_segment_map
13913
#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
13914
#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
13915
#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
13916
#define elf_backend_is_function_type            elf32_arm_is_function_type
13917
 
13918
#define elf_backend_can_refcount       1
13919
#define elf_backend_can_gc_sections    1
13920
#define elf_backend_plt_readonly       1
13921
#define elf_backend_want_got_plt       1
13922
#define elf_backend_want_plt_sym       0
13923
#define elf_backend_may_use_rel_p      1
13924
#define elf_backend_may_use_rela_p     0
13925
#define elf_backend_default_use_rela_p 0
13926
 
13927
#define elf_backend_got_header_size     12
13928
 
13929
#undef  elf_backend_obj_attrs_vendor
13930
#define elf_backend_obj_attrs_vendor            "aeabi"
13931
#undef  elf_backend_obj_attrs_section
13932
#define elf_backend_obj_attrs_section           ".ARM.attributes"
13933
#undef  elf_backend_obj_attrs_arg_type
13934
#define elf_backend_obj_attrs_arg_type          elf32_arm_obj_attrs_arg_type
13935
#undef  elf_backend_obj_attrs_section_type
13936
#define elf_backend_obj_attrs_section_type      SHT_ARM_ATTRIBUTES
13937
#define elf_backend_obj_attrs_order     elf32_arm_obj_attrs_order
13938
 
13939
#include "elf32-target.h"
13940
 
13941
/* VxWorks Targets.  */
13942
 
13943
#undef  TARGET_LITTLE_SYM
13944
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
13945
#undef  TARGET_LITTLE_NAME
13946
#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
13947
#undef  TARGET_BIG_SYM
13948
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
13949
#undef  TARGET_BIG_NAME
13950
#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
13951
 
13952
/* Like elf32_arm_link_hash_table_create -- but overrides
13953
   appropriately for VxWorks.  */
13954
 
13955
static struct bfd_link_hash_table *
13956
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13957
{
13958
  struct bfd_link_hash_table *ret;
13959
 
13960
  ret = elf32_arm_link_hash_table_create (abfd);
13961
  if (ret)
13962
    {
13963
      struct elf32_arm_link_hash_table *htab
13964
        = (struct elf32_arm_link_hash_table *) ret;
13965
      htab->use_rel = 0;
13966
      htab->vxworks_p = 1;
13967
    }
13968
  return ret;
13969
}
13970
 
13971
static void
13972
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13973
{
13974
  elf32_arm_final_write_processing (abfd, linker);
13975
  elf_vxworks_final_write_processing (abfd, linker);
13976
}
13977
 
13978
#undef  elf32_bed
13979
#define elf32_bed elf32_arm_vxworks_bed
13980
 
13981
#undef  bfd_elf32_bfd_link_hash_table_create
13982
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_vxworks_link_hash_table_create
13983
#undef  elf_backend_add_symbol_hook
13984
#define elf_backend_add_symbol_hook             elf_vxworks_add_symbol_hook
13985
#undef  elf_backend_final_write_processing
13986
#define elf_backend_final_write_processing      elf32_arm_vxworks_final_write_processing
13987
#undef  elf_backend_emit_relocs
13988
#define elf_backend_emit_relocs                 elf_vxworks_emit_relocs
13989
 
13990
#undef  elf_backend_may_use_rel_p
13991
#define elf_backend_may_use_rel_p       0
13992
#undef  elf_backend_may_use_rela_p
13993
#define elf_backend_may_use_rela_p      1
13994
#undef  elf_backend_default_use_rela_p
13995
#define elf_backend_default_use_rela_p  1
13996
#undef  elf_backend_want_plt_sym
13997
#define elf_backend_want_plt_sym        1
13998
#undef  ELF_MAXPAGESIZE
13999
#define ELF_MAXPAGESIZE                 0x1000
14000
 
14001
#include "elf32-target.h"
14002
 
14003
 
14004
/* Symbian OS Targets.  */
14005
 
14006
#undef  TARGET_LITTLE_SYM
14007
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
14008
#undef  TARGET_LITTLE_NAME
14009
#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
14010
#undef  TARGET_BIG_SYM
14011
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
14012
#undef  TARGET_BIG_NAME
14013
#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
14014
 
14015
/* Like elf32_arm_link_hash_table_create -- but overrides
14016
   appropriately for Symbian OS.  */
14017
 
14018
static struct bfd_link_hash_table *
14019
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14020
{
14021
  struct bfd_link_hash_table *ret;
14022
 
14023
  ret = elf32_arm_link_hash_table_create (abfd);
14024
  if (ret)
14025
    {
14026
      struct elf32_arm_link_hash_table *htab
14027
        = (struct elf32_arm_link_hash_table *)ret;
14028
      /* There is no PLT header for Symbian OS.  */
14029
      htab->plt_header_size = 0;
14030
      /* The PLT entries are each one instruction and one word.  */
14031
      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14032
      htab->symbian_p = 1;
14033
      /* Symbian uses armv5t or above, so use_blx is always true.  */
14034
      htab->use_blx = 1;
14035
      htab->root.is_relocatable_executable = 1;
14036
    }
14037
  return ret;
14038
}
14039
 
14040
static const struct bfd_elf_special_section
14041
elf32_arm_symbian_special_sections[] =
14042
{
14043
  /* In a BPABI executable, the dynamic linking sections do not go in
14044
     the loadable read-only segment.  The post-linker may wish to
14045
     refer to these sections, but they are not part of the final
14046
     program image.  */
14047
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
14048
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
14049
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
14050
  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
14051
  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
14052
  /* These sections do not need to be writable as the SymbianOS
14053
     postlinker will arrange things so that no dynamic relocation is
14054
     required.  */
14055
  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
14056
  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
14057
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14058
  { NULL,                             0, 0, 0,                 0 }
14059
};
14060
 
14061
static void
14062
elf32_arm_symbian_begin_write_processing (bfd *abfd,
14063
                                          struct bfd_link_info *link_info)
14064
{
14065
  /* BPABI objects are never loaded directly by an OS kernel; they are
14066
     processed by a postlinker first, into an OS-specific format.  If
14067
     the D_PAGED bit is set on the file, BFD will align segments on
14068
     page boundaries, so that an OS can directly map the file.  With
14069
     BPABI objects, that just results in wasted space.  In addition,
14070
     because we clear the D_PAGED bit, map_sections_to_segments will
14071
     recognize that the program headers should not be mapped into any
14072
     loadable segment.  */
14073
  abfd->flags &= ~D_PAGED;
14074
  elf32_arm_begin_write_processing (abfd, link_info);
14075
}
14076
 
14077
static bfd_boolean
14078
elf32_arm_symbian_modify_segment_map (bfd *abfd,
14079
                                      struct bfd_link_info *info)
14080
{
14081
  struct elf_segment_map *m;
14082
  asection *dynsec;
14083
 
14084
  /* BPABI shared libraries and executables should have a PT_DYNAMIC
14085
     segment.  However, because the .dynamic section is not marked
14086
     with SEC_LOAD, the generic ELF code will not create such a
14087
     segment.  */
14088
  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14089
  if (dynsec)
14090
    {
14091
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14092
        if (m->p_type == PT_DYNAMIC)
14093
          break;
14094
 
14095
      if (m == NULL)
14096
        {
14097
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14098
          m->next = elf_tdata (abfd)->segment_map;
14099
          elf_tdata (abfd)->segment_map = m;
14100
        }
14101
    }
14102
 
14103
  /* Also call the generic arm routine.  */
14104
  return elf32_arm_modify_segment_map (abfd, info);
14105
}
14106
 
14107
/* Return address for Ith PLT stub in section PLT, for relocation REL
14108
   or (bfd_vma) -1 if it should not be included.  */
14109
 
14110
static bfd_vma
14111
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14112
                               const arelent *rel ATTRIBUTE_UNUSED)
14113
{
14114
  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14115
}
14116
 
14117
 
14118
#undef  elf32_bed
14119
#define elf32_bed elf32_arm_symbian_bed
14120
 
14121
/* The dynamic sections are not allocated on SymbianOS; the postlinker
14122
   will process them and then discard them.  */
14123
#undef  ELF_DYNAMIC_SEC_FLAGS
14124
#define ELF_DYNAMIC_SEC_FLAGS \
14125
  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14126
 
14127
#undef elf_backend_add_symbol_hook
14128
#undef elf_backend_emit_relocs
14129
 
14130
#undef  bfd_elf32_bfd_link_hash_table_create
14131
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_symbian_link_hash_table_create
14132
#undef  elf_backend_special_sections
14133
#define elf_backend_special_sections            elf32_arm_symbian_special_sections
14134
#undef  elf_backend_begin_write_processing
14135
#define elf_backend_begin_write_processing      elf32_arm_symbian_begin_write_processing
14136
#undef  elf_backend_final_write_processing
14137
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
14138
 
14139
#undef  elf_backend_modify_segment_map
14140
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14141
 
14142
/* There is no .got section for BPABI objects, and hence no header.  */
14143
#undef  elf_backend_got_header_size
14144
#define elf_backend_got_header_size 0
14145
 
14146
/* Similarly, there is no .got.plt section.  */
14147
#undef  elf_backend_want_got_plt
14148
#define elf_backend_want_got_plt 0
14149
 
14150
#undef  elf_backend_plt_sym_val
14151
#define elf_backend_plt_sym_val         elf32_arm_symbian_plt_sym_val
14152
 
14153
#undef  elf_backend_may_use_rel_p
14154
#define elf_backend_may_use_rel_p       1
14155
#undef  elf_backend_may_use_rela_p
14156
#define elf_backend_may_use_rela_p      0
14157
#undef  elf_backend_default_use_rela_p
14158
#define elf_backend_default_use_rela_p  0
14159
#undef  elf_backend_want_plt_sym
14160
#define elf_backend_want_plt_sym        0
14161
#undef  ELF_MAXPAGESIZE
14162
#define ELF_MAXPAGESIZE                 0x8000
14163
 
14164
#include "elf32-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.