OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 407

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@ifset GENERIC
7
@page
8
@node i386-Dependent
9
@chapter 80386 Dependent Features
10
@end ifset
11
@ifclear GENERIC
12
@node Machine Dependencies
13
@chapter 80386 Dependent Features
14
@end ifclear
15
 
16
@cindex i386 support
17
@cindex i80386 support
18
@cindex x86-64 support
19
 
20
The i386 version @code{@value{AS}} supports both the original Intel 386
21
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22
extending the Intel architecture to 64-bits.
23
 
24
@menu
25
* i386-Options::                Options
26
* i386-Directives::             X86 specific directives
27
* i386-Syntax::                 AT&T Syntax versus Intel Syntax
28
* i386-Mnemonics::              Instruction Naming
29
* i386-Regs::                   Register Naming
30
* i386-Prefixes::               Instruction Prefixes
31
* i386-Memory::                 Memory References
32
* i386-Jumps::                  Handling of Jump Instructions
33
* i386-Float::                  Floating Point
34
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35
* i386-16bit::                  Writing 16-bit Code
36
* i386-Arch::                   Specifying an x86 CPU architecture
37
* i386-Bugs::                   AT&T Syntax bugs
38
* i386-Notes::                  Notes
39
@end menu
40
 
41
@node i386-Options
42
@section Options
43
 
44
@cindex options for i386
45
@cindex options for x86-64
46
@cindex i386 options
47
@cindex x86-64 options
48
 
49
The i386 version of @code{@value{AS}} has a few machine
50
dependent options:
51
 
52
@table @code
53
@cindex @samp{--32} option, i386
54
@cindex @samp{--32} option, x86-64
55
@cindex @samp{--64} option, i386
56
@cindex @samp{--64} option, x86-64
57
@item --32 | --64
58
Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59
implies Intel i386 architecture, while 64-bit implies AMD x86-64
60
architecture.
61
 
62
These options are only available with the ELF object file format, and
63
require that the necessary BFD support has been included (on a 32-bit
64
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65
usage and use x86-64 as target platform).
66
 
67
@item -n
68
By default, x86 GAS replaces multiple nop instructions used for
69
alignment within code sections with multi-byte nop instructions such
70
as leal 0(%esi,1),%esi.  This switch disables the optimization.
71
 
72
@cindex @samp{--divide} option, i386
73
@item --divide
74
On SVR4-derived platforms, the character @samp{/} is treated as a comment
75
character, which means that it cannot be used in expressions.  The
76
@samp{--divide} option turns @samp{/} into a normal character.  This does
77
not disable @samp{/} at the beginning of a line starting a comment, or
78
affect using @samp{#} for starting a comment.
79
 
80
@cindex @samp{-march=} option, i386
81
@cindex @samp{-march=} option, x86-64
82
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83
This option specifies the target processor.  The assembler will
84
issue an error message if an attempt is made to assemble an instruction
85
which will not execute on the target processor.  The following
86
processor names are recognized:
87
@code{i8086},
88
@code{i186},
89
@code{i286},
90
@code{i386},
91
@code{i486},
92
@code{i586},
93
@code{i686},
94
@code{pentium},
95
@code{pentiumpro},
96
@code{pentiumii},
97
@code{pentiumiii},
98
@code{pentium4},
99
@code{prescott},
100
@code{nocona},
101
@code{core},
102
@code{core2},
103
@code{corei7},
104
@code{l1om},
105
@code{k6},
106
@code{k6_2},
107
@code{athlon},
108
@code{opteron},
109
@code{k8},
110
@code{amdfam10},
111
@code{generic32} and
112
@code{generic64}.
113
 
114
In addition to the basic instruction set, the assembler can be told to
115
accept various extension mnemonics.  For example,
116
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
117
@var{vmx}.  The following extensions are currently supported:
118
@code{8087},
119
@code{287},
120
@code{387},
121
@code{no87},
122
@code{mmx},
123
@code{nommx},
124
@code{sse},
125
@code{sse2},
126
@code{sse3},
127
@code{ssse3},
128
@code{sse4.1},
129
@code{sse4.2},
130
@code{sse4},
131
@code{nosse},
132
@code{avx},
133
@code{noavx},
134
@code{vmx},
135
@code{smx},
136
@code{xsave},
137
@code{aes},
138
@code{pclmul},
139
@code{fma},
140
@code{movbe},
141
@code{ept},
142
@code{clflush},
143
@code{syscall},
144
@code{rdtscp},
145
@code{3dnow},
146
@code{3dnowa},
147
@code{sse4a},
148
@code{sse5},
149
@code{svme},
150
@code{abm} and
151
@code{padlock}.
152
Note that rather than extending a basic instruction set, the extension
153
mnemonics starting with @code{no} revoke the respective functionality.
154
 
155
When the @code{.arch} directive is used with @option{-march}, the
156
@code{.arch} directive will take precedent.
157
 
158
@cindex @samp{-mtune=} option, i386
159
@cindex @samp{-mtune=} option, x86-64
160
@item -mtune=@var{CPU}
161
This option specifies a processor to optimize for. When used in
162
conjunction with the @option{-march} option, only instructions
163
of the processor specified by the @option{-march} option will be
164
generated.
165
 
166
Valid @var{CPU} values are identical to the processor list of
167
@option{-march=@var{CPU}}.
168
 
169
@cindex @samp{-msse2avx} option, i386
170
@cindex @samp{-msse2avx} option, x86-64
171
@item -msse2avx
172
This option specifies that the assembler should encode SSE instructions
173
with VEX prefix.
174
 
175
@cindex @samp{-msse-check=} option, i386
176
@cindex @samp{-msse-check=} option, x86-64
177
@item -msse-check=@var{none}
178
@item -msse-check=@var{warning}
179
@item -msse-check=@var{error}
180
These options control if the assembler should check SSE intructions.
181
@option{-msse-check=@var{none}} will make the assembler not to check SSE
182
instructions,  which is the default.  @option{-msse-check=@var{warning}}
183
will make the assembler issue a warning for any SSE intruction.
184
@option{-msse-check=@var{error}} will make the assembler issue an error
185
for any SSE intruction.
186
 
187
@cindex @samp{-mmnemonic=} option, i386
188
@cindex @samp{-mmnemonic=} option, x86-64
189
@item -mmnemonic=@var{att}
190
@item -mmnemonic=@var{intel}
191
This option specifies instruction mnemonic for matching instructions.
192
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
193
take precedent.
194
 
195
@cindex @samp{-msyntax=} option, i386
196
@cindex @samp{-msyntax=} option, x86-64
197
@item -msyntax=@var{att}
198
@item -msyntax=@var{intel}
199
This option specifies instruction syntax when processing instructions.
200
The @code{.att_syntax} and @code{.intel_syntax} directives will
201
take precedent.
202
 
203
@cindex @samp{-mnaked-reg} option, i386
204
@cindex @samp{-mnaked-reg} option, x86-64
205
@item -mnaked-reg
206
This opetion specifies that registers don't require a @samp{%} prefix.
207
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
208
 
209
@end table
210
 
211
@node i386-Directives
212
@section x86 specific Directives
213
 
214
@cindex machine directives, x86
215
@cindex x86 machine directives
216
@table @code
217
 
218
@cindex @code{lcomm} directive, COFF
219
@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
220
Reserve @var{length} (an absolute expression) bytes for a local common
221
denoted by @var{symbol}.  The section and value of @var{symbol} are
222
those of the new local common.  The addresses are allocated in the bss
223
section, so that at run-time the bytes start off zeroed.  Since
224
@var{symbol} is not declared global, it is normally not visible to
225
@code{@value{LD}}.  The optional third parameter, @var{alignment},
226
specifies the desired alignment of the symbol in the bss section.
227
 
228
This directive is only available for COFF based x86 targets.
229
 
230
@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
231
@c .largecomm
232
 
233
@end table
234
 
235
@node i386-Syntax
236
@section AT&T Syntax versus Intel Syntax
237
 
238
@cindex i386 intel_syntax pseudo op
239
@cindex intel_syntax pseudo op, i386
240
@cindex i386 att_syntax pseudo op
241
@cindex att_syntax pseudo op, i386
242
@cindex i386 syntax compatibility
243
@cindex syntax compatibility, i386
244
@cindex x86-64 intel_syntax pseudo op
245
@cindex intel_syntax pseudo op, x86-64
246
@cindex x86-64 att_syntax pseudo op
247
@cindex att_syntax pseudo op, x86-64
248
@cindex x86-64 syntax compatibility
249
@cindex syntax compatibility, x86-64
250
 
251
@code{@value{AS}} now supports assembly using Intel assembler syntax.
252
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
253
back to the usual AT&T mode for compatibility with the output of
254
@code{@value{GCC}}.  Either of these directives may have an optional
255
argument, @code{prefix}, or @code{noprefix} specifying whether registers
256
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
257
different from Intel syntax.  We mention these differences because
258
almost all 80386 documents use Intel syntax.  Notable differences
259
between the two syntaxes are:
260
 
261
@cindex immediate operands, i386
262
@cindex i386 immediate operands
263
@cindex register operands, i386
264
@cindex i386 register operands
265
@cindex jump/call operands, i386
266
@cindex i386 jump/call operands
267
@cindex operand delimiters, i386
268
 
269
@cindex immediate operands, x86-64
270
@cindex x86-64 immediate operands
271
@cindex register operands, x86-64
272
@cindex x86-64 register operands
273
@cindex jump/call operands, x86-64
274
@cindex x86-64 jump/call operands
275
@cindex operand delimiters, x86-64
276
@itemize @bullet
277
@item
278
AT&T immediate operands are preceded by @samp{$}; Intel immediate
279
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
280
AT&T register operands are preceded by @samp{%}; Intel register operands
281
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
282
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
283
 
284
@cindex i386 source, destination operands
285
@cindex source, destination operands; i386
286
@cindex x86-64 source, destination operands
287
@cindex source, destination operands; x86-64
288
@item
289
AT&T and Intel syntax use the opposite order for source and destination
290
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
291
@samp{source, dest} convention is maintained for compatibility with
292
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
293
instructions with 2 immediate operands, such as the @samp{enter}
294
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
295
 
296
@cindex mnemonic suffixes, i386
297
@cindex sizes operands, i386
298
@cindex i386 size suffixes
299
@cindex mnemonic suffixes, x86-64
300
@cindex sizes operands, x86-64
301
@cindex x86-64 size suffixes
302
@item
303
In AT&T syntax the size of memory operands is determined from the last
304
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
305
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
306
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
307
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
308
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
309
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
310
syntax.
311
 
312
@cindex return instructions, i386
313
@cindex i386 jump, call, return
314
@cindex return instructions, x86-64
315
@cindex x86-64 jump, call, return
316
@item
317
Immediate form long jumps and calls are
318
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
319
Intel syntax is
320
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
321
instruction
322
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
323
@samp{ret far @var{stack-adjust}}.
324
 
325
@cindex sections, i386
326
@cindex i386 sections
327
@cindex sections, x86-64
328
@cindex x86-64 sections
329
@item
330
The AT&T assembler does not provide support for multiple section
331
programs.  Unix style systems expect all programs to be single sections.
332
@end itemize
333
 
334
@node i386-Mnemonics
335
@section Instruction Naming
336
 
337
@cindex i386 instruction naming
338
@cindex instruction naming, i386
339
@cindex x86-64 instruction naming
340
@cindex instruction naming, x86-64
341
 
342
Instruction mnemonics are suffixed with one character modifiers which
343
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
344
and @samp{q} specify byte, word, long and quadruple word operands.  If
345
no suffix is specified by an instruction then @code{@value{AS}} tries to
346
fill in the missing suffix based on the destination register operand
347
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
348
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
349
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
350
assembler which assumes that a missing mnemonic suffix implies long
351
operand size.  (This incompatibility does not affect compiler output
352
since compilers always explicitly specify the mnemonic suffix.)
353
 
354
Almost all instructions have the same names in AT&T and Intel format.
355
There are a few exceptions.  The sign extend and zero extend
356
instructions need two sizes to specify them.  They need a size to
357
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
358
is accomplished by using two instruction mnemonic suffixes in AT&T
359
syntax.  Base names for sign extend and zero extend are
360
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
361
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
362
are tacked on to this base name, the @emph{from} suffix before the
363
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
364
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
365
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
366
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
367
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
368
quadruple word).
369
 
370
@cindex encoding options, i386
371
@cindex encoding options, x86-64
372
 
373
Different encoding options can be specified via optional mnemonic
374
suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
375
moving from one register to another.
376
 
377
@cindex conversion instructions, i386
378
@cindex i386 conversion instructions
379
@cindex conversion instructions, x86-64
380
@cindex x86-64 conversion instructions
381
The Intel-syntax conversion instructions
382
 
383
@itemize @bullet
384
@item
385
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
386
 
387
@item
388
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
389
 
390
@item
391
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
392
 
393
@item
394
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
395
 
396
@item
397
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
398
(x86-64 only),
399
 
400
@item
401
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
402
@samp{%rdx:%rax} (x86-64 only),
403
@end itemize
404
 
405
@noindent
406
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
407
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
408
instructions.
409
 
410
@cindex jump instructions, i386
411
@cindex call instructions, i386
412
@cindex jump instructions, x86-64
413
@cindex call instructions, x86-64
414
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
415
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
416
convention.
417
 
418
@section AT&T Mnemonic versus Intel Mnemonic
419
 
420
@cindex i386 mnemonic compatibility
421
@cindex mnemonic compatibility, i386
422
 
423
@code{@value{AS}} supports assembly using Intel mnemonic.
424
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
425
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
426
syntax for compatibility with the output of @code{@value{GCC}}.
427
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
428
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
429
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
430
assembler with different mnemonics from those in Intel IA32 specification.
431
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
432
 
433
@node i386-Regs
434
@section Register Naming
435
 
436
@cindex i386 registers
437
@cindex registers, i386
438
@cindex x86-64 registers
439
@cindex registers, x86-64
440
Register operands are always prefixed with @samp{%}.  The 80386 registers
441
consist of
442
 
443
@itemize @bullet
444
@item
445
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
446
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
447
frame pointer), and @samp{%esp} (the stack pointer).
448
 
449
@item
450
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
451
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
452
 
453
@item
454
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
455
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
456
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
457
@samp{%cx}, and @samp{%dx})
458
 
459
@item
460
the 6 section registers @samp{%cs} (code section), @samp{%ds}
461
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
462
and @samp{%gs}.
463
 
464
@item
465
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
466
@samp{%cr3}.
467
 
468
@item
469
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
470
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
471
 
472
@item
473
the 2 test registers @samp{%tr6} and @samp{%tr7}.
474
 
475
@item
476
the 8 floating point register stack @samp{%st} or equivalently
477
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
478
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
479
These registers are overloaded by 8 MMX registers @samp{%mm0},
480
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
481
@samp{%mm6} and @samp{%mm7}.
482
 
483
@item
484
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
485
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
486
@end itemize
487
 
488
The AMD x86-64 architecture extends the register set by:
489
 
490
@itemize @bullet
491
@item
492
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
493
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
494
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
495
pointer)
496
 
497
@item
498
the 8 extended registers @samp{%r8}--@samp{%r15}.
499
 
500
@item
501
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
502
 
503
@item
504
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
505
 
506
@item
507
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
508
 
509
@item
510
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
511
 
512
@item
513
the 8 debug registers: @samp{%db8}--@samp{%db15}.
514
 
515
@item
516
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
517
@end itemize
518
 
519
@node i386-Prefixes
520
@section Instruction Prefixes
521
 
522
@cindex i386 instruction prefixes
523
@cindex instruction prefixes, i386
524
@cindex prefixes, i386
525
Instruction prefixes are used to modify the following instruction.  They
526
are used to repeat string instructions, to provide section overrides, to
527
perform bus lock operations, and to change operand and address sizes.
528
(Most instructions that normally operate on 32-bit operands will use
529
16-bit operands if the instruction has an ``operand size'' prefix.)
530
Instruction prefixes are best written on the same line as the instruction
531
they act upon. For example, the @samp{scas} (scan string) instruction is
532
repeated with:
533
 
534
@smallexample
535
        repne scas %es:(%edi),%al
536
@end smallexample
537
 
538
You may also place prefixes on the lines immediately preceding the
539
instruction, but this circumvents checks that @code{@value{AS}} does
540
with prefixes, and will not work with all prefixes.
541
 
542
Here is a list of instruction prefixes:
543
 
544
@cindex section override prefixes, i386
545
@itemize @bullet
546
@item
547
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
548
@samp{fs}, @samp{gs}.  These are automatically added by specifying
549
using the @var{section}:@var{memory-operand} form for memory references.
550
 
551
@cindex size prefixes, i386
552
@item
553
Operand/Address size prefixes @samp{data16} and @samp{addr16}
554
change 32-bit operands/addresses into 16-bit operands/addresses,
555
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
556
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
557
@emph{must} appear on the same line of code as the instruction they
558
modify. For example, in a 16-bit @code{.code16} section, you might
559
write:
560
 
561
@smallexample
562
        addr32 jmpl *(%ebx)
563
@end smallexample
564
 
565
@cindex bus lock prefixes, i386
566
@cindex inhibiting interrupts, i386
567
@item
568
The bus lock prefix @samp{lock} inhibits interrupts during execution of
569
the instruction it precedes.  (This is only valid with certain
570
instructions; see a 80386 manual for details).
571
 
572
@cindex coprocessor wait, i386
573
@item
574
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
575
complete the current instruction.  This should never be needed for the
576
80386/80387 combination.
577
 
578
@cindex repeat prefixes, i386
579
@item
580
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
581
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
582
times if the current address size is 16-bits).
583
@cindex REX prefixes, i386
584
@item
585
The @samp{rex} family of prefixes is used by x86-64 to encode
586
extensions to i386 instruction set.  The @samp{rex} prefix has four
587
bits --- an operand size overwrite (@code{64}) used to change operand size
588
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
589
register set.
590
 
591
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
592
instruction emits @samp{rex} prefix with all the bits set.  By omitting
593
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
594
prefixes as well.  Normally, there is no need to write the prefixes
595
explicitly, since gas will automatically generate them based on the
596
instruction operands.
597
@end itemize
598
 
599
@node i386-Memory
600
@section Memory References
601
 
602
@cindex i386 memory references
603
@cindex memory references, i386
604
@cindex x86-64 memory references
605
@cindex memory references, x86-64
606
An Intel syntax indirect memory reference of the form
607
 
608
@smallexample
609
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
610
@end smallexample
611
 
612
@noindent
613
is translated into the AT&T syntax
614
 
615
@smallexample
616
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
617
@end smallexample
618
 
619
@noindent
620
where @var{base} and @var{index} are the optional 32-bit base and
621
index registers, @var{disp} is the optional displacement, and
622
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
623
to calculate the address of the operand.  If no @var{scale} is
624
specified, @var{scale} is taken to be 1.  @var{section} specifies the
625
optional section register for the memory operand, and may override the
626
default section register (see a 80386 manual for section register
627
defaults). Note that section overrides in AT&T syntax @emph{must}
628
be preceded by a @samp{%}.  If you specify a section override which
629
coincides with the default section register, @code{@value{AS}} does @emph{not}
630
output any section register override prefixes to assemble the given
631
instruction.  Thus, section overrides can be specified to emphasize which
632
section register is used for a given memory operand.
633
 
634
Here are some examples of Intel and AT&T style memory references:
635
 
636
@table @asis
637
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
638
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
639
missing, and the default section is used (@samp{%ss} for addressing with
640
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
641
 
642
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
643
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
644
@samp{foo}.  All other fields are missing.  The section register here
645
defaults to @samp{%ds}.
646
 
647
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
648
This uses the value pointed to by @samp{foo} as a memory operand.
649
Note that @var{base} and @var{index} are both missing, but there is only
650
@emph{one} @samp{,}.  This is a syntactic exception.
651
 
652
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
653
This selects the contents of the variable @samp{foo} with section
654
register @var{section} being @samp{%gs}.
655
@end table
656
 
657
Absolute (as opposed to PC relative) call and jump operands must be
658
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
659
always chooses PC relative addressing for jump/call labels.
660
 
661
Any instruction that has a memory operand, but no register operand,
662
@emph{must} specify its size (byte, word, long, or quadruple) with an
663
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
664
respectively).
665
 
666
The x86-64 architecture adds an RIP (instruction pointer relative)
667
addressing.  This addressing mode is specified by using @samp{rip} as a
668
base register.  Only constant offsets are valid. For example:
669
 
670
@table @asis
671
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
672
Points to the address 1234 bytes past the end of the current
673
instruction.
674
 
675
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
676
Points to the @code{symbol} in RIP relative way, this is shorter than
677
the default absolute addressing.
678
@end table
679
 
680
Other addressing modes remain unchanged in x86-64 architecture, except
681
registers used are 64-bit instead of 32-bit.
682
 
683
@node i386-Jumps
684
@section Handling of Jump Instructions
685
 
686
@cindex jump optimization, i386
687
@cindex i386 jump optimization
688
@cindex jump optimization, x86-64
689
@cindex x86-64 jump optimization
690
Jump instructions are always optimized to use the smallest possible
691
displacements.  This is accomplished by using byte (8-bit) displacement
692
jumps whenever the target is sufficiently close.  If a byte displacement
693
is insufficient a long displacement is used.  We do not support
694
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
695
instruction with the @samp{data16} instruction prefix), since the 80386
696
insists upon masking @samp{%eip} to 16 bits after the word displacement
697
is added. (See also @pxref{i386-Arch})
698
 
699
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
700
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
701
displacements, so that if you use these instructions (@code{@value{GCC}} does
702
not use them) you may get an error message (and incorrect code).  The AT&T
703
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
704
to
705
 
706
@smallexample
707
         jcxz cx_zero
708
         jmp cx_nonzero
709
cx_zero: jmp foo
710
cx_nonzero:
711
@end smallexample
712
 
713
@node i386-Float
714
@section Floating Point
715
 
716
@cindex i386 floating point
717
@cindex floating point, i386
718
@cindex x86-64 floating point
719
@cindex floating point, x86-64
720
All 80387 floating point types except packed BCD are supported.
721
(BCD support may be added without much difficulty).  These data
722
types are 16-, 32-, and 64- bit integers, and single (32-bit),
723
double (64-bit), and extended (80-bit) precision floating point.
724
Each supported type has an instruction mnemonic suffix and a constructor
725
associated with it.  Instruction mnemonic suffixes specify the operand's
726
data type.  Constructors build these data types into memory.
727
 
728
@cindex @code{float} directive, i386
729
@cindex @code{single} directive, i386
730
@cindex @code{double} directive, i386
731
@cindex @code{tfloat} directive, i386
732
@cindex @code{float} directive, x86-64
733
@cindex @code{single} directive, x86-64
734
@cindex @code{double} directive, x86-64
735
@cindex @code{tfloat} directive, x86-64
736
@itemize @bullet
737
@item
738
Floating point constructors are @samp{.float} or @samp{.single},
739
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
740
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
741
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
742
only supports this format via the @samp{fldt} (load 80-bit real to stack
743
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
744
 
745
@cindex @code{word} directive, i386
746
@cindex @code{long} directive, i386
747
@cindex @code{int} directive, i386
748
@cindex @code{quad} directive, i386
749
@cindex @code{word} directive, x86-64
750
@cindex @code{long} directive, x86-64
751
@cindex @code{int} directive, x86-64
752
@cindex @code{quad} directive, x86-64
753
@item
754
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
755
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
756
corresponding instruction mnemonic suffixes are @samp{s} (single),
757
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
758
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
759
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
760
stack) instructions.
761
@end itemize
762
 
763
Register to register operations should not use instruction mnemonic suffixes.
764
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
765
wrote @samp{fst %st, %st(1)}, since all register to register operations
766
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
767
which converts @samp{%st} from 80-bit to 64-bit floating point format,
768
then stores the result in the 4 byte location @samp{mem})
769
 
770
@node i386-SIMD
771
@section Intel's MMX and AMD's 3DNow! SIMD Operations
772
 
773
@cindex MMX, i386
774
@cindex 3DNow!, i386
775
@cindex SIMD, i386
776
@cindex MMX, x86-64
777
@cindex 3DNow!, x86-64
778
@cindex SIMD, x86-64
779
 
780
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
781
instructions for integer data), available on Intel's Pentium MMX
782
processors and Pentium II processors, AMD's K6 and K6-2 processors,
783
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
784
instruction set (SIMD instructions for 32-bit floating point data)
785
available on AMD's K6-2 processor and possibly others in the future.
786
 
787
Currently, @code{@value{AS}} does not support Intel's floating point
788
SIMD, Katmai (KNI).
789
 
790
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
791
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
792
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
793
floating point values.  The MMX registers cannot be used at the same time
794
as the floating point stack.
795
 
796
See Intel and AMD documentation, keeping in mind that the operand order in
797
instructions is reversed from the Intel syntax.
798
 
799
@node i386-16bit
800
@section Writing 16-bit Code
801
 
802
@cindex i386 16-bit code
803
@cindex 16-bit code, i386
804
@cindex real-mode code, i386
805
@cindex @code{code16gcc} directive, i386
806
@cindex @code{code16} directive, i386
807
@cindex @code{code32} directive, i386
808
@cindex @code{code64} directive, i386
809
@cindex @code{code64} directive, x86-64
810
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
811
or 64-bit x86-64 code depending on the default configuration,
812
it also supports writing code to run in real mode or in 16-bit protected
813
mode code segments.  To do this, put a @samp{.code16} or
814
@samp{.code16gcc} directive before the assembly language instructions to
815
be run in 16-bit mode.  You can switch @code{@value{AS}} back to writing
816
normal 32-bit code with the @samp{.code32} directive.
817
 
818
@samp{.code16gcc} provides experimental support for generating 16-bit
819
code from gcc, and differs from @samp{.code16} in that @samp{call},
820
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
821
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
822
default to 32-bit size.  This is so that the stack pointer is
823
manipulated in the same way over function calls, allowing access to
824
function parameters at the same stack offsets as in 32-bit mode.
825
@samp{.code16gcc} also automatically adds address size prefixes where
826
necessary to use the 32-bit addressing modes that gcc generates.
827
 
828
The code which @code{@value{AS}} generates in 16-bit mode will not
829
necessarily run on a 16-bit pre-80386 processor.  To write code that
830
runs on such a processor, you must refrain from using @emph{any} 32-bit
831
constructs which require @code{@value{AS}} to output address or operand
832
size prefixes.
833
 
834
Note that writing 16-bit code instructions by explicitly specifying a
835
prefix or an instruction mnemonic suffix within a 32-bit code section
836
generates different machine instructions than those generated for a
837
16-bit code segment.  In a 32-bit code section, the following code
838
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
839
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
840
 
841
@smallexample
842
        pushw $4
843
@end smallexample
844
 
845
The same code in a 16-bit code section would generate the machine
846
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
847
is correct since the processor default operand size is assumed to be 16
848
bits in a 16-bit code section.
849
 
850
@node i386-Bugs
851
@section AT&T Syntax bugs
852
 
853
The UnixWare assembler, and probably other AT&T derived ix86 Unix
854
assemblers, generate floating point instructions with reversed source
855
and destination registers in certain cases.  Unfortunately, gcc and
856
possibly many other programs use this reversed syntax, so we're stuck
857
with it.
858
 
859
For example
860
 
861
@smallexample
862
        fsub %st,%st(3)
863
@end smallexample
864
@noindent
865
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
866
than the expected @samp{%st(3) - %st}.  This happens with all the
867
non-commutative arithmetic floating point operations with two register
868
operands where the source register is @samp{%st} and the destination
869
register is @samp{%st(i)}.
870
 
871
@node i386-Arch
872
@section Specifying CPU Architecture
873
 
874
@cindex arch directive, i386
875
@cindex i386 arch directive
876
@cindex arch directive, x86-64
877
@cindex x86-64 arch directive
878
 
879
@code{@value{AS}} may be told to assemble for a particular CPU
880
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
881
directive enables a warning when gas detects an instruction that is not
882
supported on the CPU specified.  The choices for @var{cpu_type} are:
883
 
884
@multitable @columnfractions .20 .20 .20 .20
885
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
886
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
887
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
888
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
889
@item @samp{corei7} @tab @samp{l1om}
890
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
891
@item @samp{amdfam10}
892
@item @samp{generic32} @tab @samp{generic64}
893
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
894
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
895
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
896
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
897
@item @samp{.ept} @tab @samp{.clflush}
898
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
899
@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
900
@item @samp{.padlock}
901
@end multitable
902
 
903
Apart from the warning, there are only two other effects on
904
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
905
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
906
will automatically use a two byte opcode sequence.  The larger three
907
byte opcode sequence is used on the 486 (and when no architecture is
908
specified) because it executes faster on the 486.  Note that you can
909
explicitly request the two byte opcode by writing @samp{sarl %eax}.
910
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
911
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
912
conditional jumps will be promoted when necessary to a two instruction
913
sequence consisting of a conditional jump of the opposite sense around
914
an unconditional jump to the target.
915
 
916
Following the CPU architecture (but not a sub-architecture, which are those
917
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
918
control automatic promotion of conditional jumps. @samp{jumps} is the
919
default, and enables jump promotion;  All external jumps will be of the long
920
variety, and file-local jumps will be promoted as necessary.
921
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
922
byte offset jumps, and warns about file-local conditional jumps that
923
@code{@value{AS}} promotes.
924
Unconditional jumps are treated as for @samp{jumps}.
925
 
926
For example
927
 
928
@smallexample
929
 .arch i8086,nojumps
930
@end smallexample
931
 
932
@node i386-Notes
933
@section Notes
934
 
935
@cindex i386 @code{mul}, @code{imul} instructions
936
@cindex @code{mul} instruction, i386
937
@cindex @code{imul} instruction, i386
938
@cindex @code{mul} instruction, x86-64
939
@cindex @code{imul} instruction, x86-64
940
There is some trickery concerning the @samp{mul} and @samp{imul}
941
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
942
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
943
for @samp{imul}) can be output only in the one operand form.  Thus,
944
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
945
the expanding multiply would clobber the @samp{%edx} register, and this
946
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
947
64-bit product in @samp{%edx:%eax}.
948
 
949
We have added a two operand form of @samp{imul} when the first operand
950
is an immediate mode expression and the second operand is a register.
951
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
952
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
953
$69, %eax, %eax}.
954
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.