OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [gas/] [doc/] [c-s390.texi] - Blame information for rev 252

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
@c Copyright 2009
2
@c Free Software Foundation, Inc.
3
@c This is part of the GAS manual.
4
@c For copying conditions, see the file as.texinfo.
5
@ifset GENERIC
6
@page
7
@node S/390-Dependent
8
@chapter IBM S/390 Dependent Features
9
@end ifset
10
@ifclear GENERIC
11
@node Machine Dependencies
12
@chapter IBM S/390 Dependent Features
13
@end ifclear
14
 
15
@cindex s390 support
16
 
17
The s390 version of @code{@value{AS}} supports two architectures modes
18
and seven chip levels. The architecture modes are the Enterprise System
19
Architecture (ESA) and the newer z/Architecture mode. The chip levels
20
are g5, g6, z900, z990, z9-109, z9-ec and z10.
21
 
22
@menu
23
* s390 Options::                Command-line Options.
24
* s390 Characters::             Special Characters.
25
* s390 Syntax::                 Assembler Instruction syntax.
26
* s390 Directives::             Assembler Directives.
27
* s390 Floating Point::         Floating Point.
28
@end menu
29
 
30
@node s390 Options
31
@section Options
32
@cindex options for s390
33
@cindex s390 options
34
 
35
The following table lists all available s390 specific options:
36
 
37
@table @code
38
@cindex @samp{-m31} option, s390
39
@cindex @samp{-m64} option, s390
40
@item -m31 | -m64
41
Select 31- or 64-bit ABI implying a word size of 32- or 64-bit.
42
 
43
These options are only available with the ELF object file format, and
44
require that the necessary BFD support has been included (on a 31-bit
45
platform you must add --enable-64-bit-bfd on the call to the configure
46
script to enable 64-bit usage and use s390x as target platform).
47
 
48
@cindex @samp{-mesa} option, s390
49
@cindex @samp{-mzarch} option, s390
50
@item -mesa | -mzarch
51
Select the architecture mode, either the Enterprise System Architecture
52
(esa) mode or the z/Architecture mode (zarch).
53
 
54
The 64-bit instructions are only available with the z/Architecture mode.
55
The combination of @samp{-m64} and @samp{-mesa} results in a warning
56
message.
57
 
58
@cindex @samp{-march=} option, s390
59
@item -march=@var{CPU}
60
This option specifies the target processor. The following processor names
61
are recognized:
62
@code{g5},
63
@code{g6},
64
@code{z900},
65
@code{z990},
66
@code{z9-109},
67
@code{z9-ec} and
68
@code{z10}.
69
Assembling an instruction that is not supported on the target processor
70
results in an error message. Do not specify @code{g5} or @code{g6}
71
with @samp{-mzarch}.
72
 
73
@cindex @samp{-mregnames} option, s390
74
@item -mregnames
75
Allow symbolic names for registers.
76
 
77
@cindex @samp{-mno-regnames} option, s390
78
@item -mno-regnames
79
Do not allow symbolic names for registers.
80
 
81
@cindex @samp{-mwarn-areg-zero} option, s390
82
@item -mwarn-areg-zero
83
Warn whenever the operand for a base or index register has been specified
84
but evaluates to zero. This can indicate the misuse of general purpose
85
register 0 as an address register.
86
 
87
@end table
88
 
89
@node s390 Characters
90
@section Special Characters
91
@cindex line comment character, s390
92
@cindex s390 line comment character
93
 
94
@samp{#} is the line comment character.
95
 
96
@node s390 Syntax
97
@section Instruction syntax
98
@cindex instruction syntax, s390
99
@cindex s390 instruction syntax
100
 
101
The assembler syntax closely follows the syntax outlined in
102
Enterprise Systems Architecture/390 Principles of Operation (SA22-7201)
103
and the z/Architecture Principles of Operation (SA22-7832).
104
 
105
Each instruction has two major parts, the instruction mnemonic
106
and the instruction operands. The instruction format varies.
107
 
108
@menu
109
* s390 Register::               Register Naming
110
* s390 Mnemonics::              Instruction Mnemonics
111
* s390 Operands::               Instruction Operands
112
* s390 Formats::                Instruction Formats
113
* s390 Aliases::                Instruction Aliases
114
* s390 Operand Modifier::       Instruction Operand Modifier
115
* s390 Instruction Marker::     Instruction Marker
116
* s390 Literal Pool Entries::   Literal Pool Entries
117
@end menu
118
 
119
@node s390 Register
120
@subsection Register naming
121
@cindex register naming, s390
122
@cindex s390 register naming
123
 
124
The @code{@value{AS}} recognizes a number of predefined symbols for the
125
various processor registers. A register specification in one of the
126
instruction formats is an unsigned integer between 0 and 15. The specific
127
instruction and the position of the register in the instruction format
128
denotes the type of the register. The register symbols are prefixed with
129
@samp{%}:
130
 
131
@display
132
@multitable {%rN} {the 16 general purpose registers, 0 <= N <= 15}
133
@item %rN @tab the 16 general purpose registers, 0 <= N <= 15
134
@item %fN @tab the 16 floating point registers, 0 <= N <= 15
135
@item %aN @tab the 16 access registers, 0 <= N <= 15
136
@item %cN @tab the 16 control registers, 0 <= N <= 15
137
@item %lit @tab an alias for the general purpose register %r13
138
@item %sp @tab an alias for the general purpose register %r15
139
@end multitable
140
@end display
141
 
142
@node s390 Mnemonics
143
@subsection Instruction Mnemonics
144
@cindex instruction mnemonics, s390
145
@cindex s390 instruction mnemonics
146
 
147
All instructions documented in the Principles of Operation are supported
148
with the mnemonic and order of operands as described.
149
The instruction mnemonic identifies the instruction format
150
(@ref{s390 Formats}) and the specific operation code for the instruction.
151
For example, the @samp{lr} mnemonic denotes the instruction format @samp{RR}
152
with the operation code @samp{0x18}.
153
 
154
The definition of the various mnemonics follows a scheme, where the first
155
character usually hint at the type of the instruction:
156
 
157
@display
158
@multitable {sla, sll} {if r is the last character the instruction operates on registers}
159
@item a @tab add instruction, for example @samp{al} for add logical 32-bit
160
@item b @tab branch instruction, for example @samp{bc} for branch on condition
161
@item c @tab compare or convert instruction, for example @samp{cr} for compare
162
register 32-bit
163
@item d @tab divide instruction, for example @samp{dlr} devide logical register
164
64-bit to 32-bit
165
@item i @tab insert instruction, for example @samp{ic} insert character
166
@item l @tab load instruction, for example @samp{ltr} load and test register
167
@item mv @tab move instruction, for example @samp{mvc} move character
168
@item m @tab multiply instruction, for example @samp{mh} multiply halfword
169
@item n @tab and instruction, for example @samp{ni} and immediate
170
@item o @tab or instruction, for example @samp{oc} or character
171
@item sla, sll @tab shift left single instruction
172
@item sra, srl @tab shift right single instruction
173
@item st @tab store instruction, for example @samp{stm} store multiple
174
@item s @tab subtract instruction, for example @samp{slr} subtract
175
logical 32-bit
176
@item t @tab test or translate instruction, of example @samp{tm} test under mask
177
@item x @tab exclusive or instruction, for example @samp{xc} exclusive or
178
character
179
@end multitable
180
@end display
181
 
182
Certain characters at the end of the mnemonic may describe a property
183
of the instruction:
184
 
185
@display
186
@multitable {c} {if r is the last character the instruction operates on registers}
187
@item c @tab the instruction uses a 8-bit character operand
188
@item f @tab the instruction extends a 32-bit operand to 64 bit
189
@item g @tab the operands are treated as 64-bit values
190
@item h @tab the operand uses a 16-bit halfword operand
191
@item i @tab the instruction uses an immediate operand
192
@item l @tab the instruction uses unsigned, logical operands
193
@item m @tab the instruction uses a mask or operates on multiple values
194
@item r @tab if r is the last character, the instruction operates on registers
195
@item y @tab the instruction uses 20-bit displacements
196
@end multitable
197
@end display
198
 
199
There are many exceptions to the scheme outlined in the above lists, in
200
particular for the priviledged instructions. For non-priviledged
201
instruction it works quite well, for example the instruction @samp{clgfr}
202
c: compare instruction, l: unsigned operands, g: 64-bit operands,
203
f: 32- to 64-bit extension, r: register operands. The instruction compares
204
an 64-bit value in a register with the zero extended 32-bit value from
205
a second register.
206
For a complete list of all mnemonics see appendix B in the Principles
207
of Operation.
208
 
209
@node s390 Operands
210
@subsection Instruction Operands
211
@cindex instruction operands, s390
212
@cindex s390 instruction operands
213
 
214
Instruction operands can be grouped into three classes, operands located
215
in registers, immediate operands, and operands in storage.
216
 
217
A register operand can be located in general, floating-point, access,
218
or control register. The register is identified by a four-bit field.
219
The field containing the register operand is called the R field.
220
 
221
Immediate operands are contained within the instruction and can have
222
8, 16 or 32 bits. The field containing the immediate operand is called
223
the I field. Dependent on the instruction the I field is either signed
224
or unsigned.
225
 
226
A storage operand consists of an address and a length. The address of a
227
storage operands can be specified in any of these ways:
228
 
229
@itemize
230
@item The content of a single general R
231
@item The sum of the content of a general register called the base
232
register B plus the content of a displacement field D
233
@item The sum of the contents of two general registers called the
234
index register X and the base register B plus the content of a
235
displacement field
236
@item The sum of the current instruction address and a 32-bit signed
237
immediate field multiplied by two.
238
@end itemize
239
 
240
The length of a storage operand can be:
241
 
242
@itemize
243
@item Implied by the instruction
244
@item Specified by a bitmask
245
@item Specified by a four-bit or eight-bit length field L
246
@item Specified by the content of a general register
247
@end itemize
248
 
249
The notation for storage operand addresses formed from multiple fields is
250
as follows:
251
 
252
@table @code
253
@item Dn(Bn)
254
the address for operand number n is formed from the content of general
255
register Bn called the base register and the displacement field Dn.
256
@item Dn(Xn,Bn)
257
the address for operand number n is formed from the content of general
258
register Xn called the index register, general register Bn called the
259
base register and the displacement field Dn.
260
@item Dn(Ln,Bn)
261
the address for operand number n is formed from the content of general
262
regiser Bn called the base register and the displacement field Dn.
263
The length of the operand n is specified by the field Ln.
264
@end table
265
 
266
The base registers Bn and the index registers Xn of a storage operand can
267
be skipped. If Bn and Xn are skipped, a zero will be stored to the operand
268
field. The notation changes as follows:
269
 
270
@display
271
@multitable @columnfractions 0.30 0.30
272
@headitem full notation @tab short notation
273
@item Dn(0,Bn) @tab Dn(Bn)
274
@item Dn(0,0) @tab Dn
275
@item Dn(0) @tab Dn
276
@item Dn(Ln,0) @tab Dn(Ln)
277
@end multitable
278
@end display
279
 
280
 
281
@node s390 Formats
282
@subsection Instruction Formats
283
@cindex instruction formats, s390
284
@cindex s390 instruction formats
285
 
286
The Principles of Operation manuals lists 26 instruction formats where
287
some of the formats have multiple variants. For the @samp{.insn}
288
pseudo directive the assembler recognizes some of the formats.
289
Typically, the most general variant of the instruction format is used
290
by the @samp{.insn} directive.
291
 
292
The following table lists the abbreviations used in the table of
293
instruction formats:
294
 
295
@display
296
@multitable {OpCode / OpCd} {Displacement lower 12 bits for operand x.}
297
@item OpCode / OpCd @tab Part of the op code.
298
@item Bx @tab Base register number for operand x.
299
@item Dx @tab Displacement for operand x.
300
@item DLx @tab Displacement lower 12 bits for operand x.
301
@item DHx @tab Displacement higher 8-bits for operand x.
302
@item Rx @tab Register number for operand x.
303
@item Xx @tab Index register number for operand x.
304
@item Ix @tab Signed immediate for operand x.
305
@item Ux @tab Unsigned immediate for operand x.
306
@end multitable
307
@end display
308
 
309
An instruction is two, four, or six bytes in length and must be aligned
310
on a 2 byte boundary. The first two bits of the instruction specify the
311
length of the instruction, 00 indicates a two byte instruction, 01 and 10
312
indicates a four byte instruction, and 11 indicates a six byte instruction.
313
 
314
The following table lists the s390 instruction formats that are available
315
with the @samp{.insn} pseudo directive:
316
 
317
@table @code
318
@item E format
319
@verbatim
320
+-------------+
321
|    OpCode   |
322
+-------------+
323
 
324
@end verbatim
325
 
326
@item RI format: <insn> R1,I2
327
@verbatim
328
+--------+----+----+------------------+
329
| OpCode | R1 |OpCd|        I2        |
330
+--------+----+----+------------------+
331
 
332
@end verbatim
333
 
334
@item RIE format: <insn> R1,R3,I2
335
@verbatim
336
+--------+----+----+------------------+--------+--------+
337
| OpCode | R1 | R3 |        I2        |////////| OpCode |
338
+--------+----+----+------------------+--------+--------+
339
 
340
@end verbatim
341
 
342
@item RIL format: <insn> R1,I2
343
@verbatim
344
+--------+----+----+------------------------------------+
345
| OpCode | R1 |OpCd|                  I2                |
346
+--------+----+----+------------------------------------+
347
 
348
@end verbatim
349
 
350
@item RILU format: <insn> R1,U2
351
@verbatim
352
+--------+----+----+------------------------------------+
353
| OpCode | R1 |OpCd|                  U2                |
354
+--------+----+----+------------------------------------+
355
 
356
@end verbatim
357
 
358
@item RIS format: <insn> R1,I2,M3,D4(B4)
359
@verbatim
360
+--------+----+----+----+-------------+--------+--------+
361
| OpCode | R1 | M3 | B4 |     D4      |   I2   | Opcode |
362
+--------+----+----+----+-------------+--------+--------+
363
 
364
@end verbatim
365
 
366
@item RR format: <insn> R1,R2
367
@verbatim
368
+--------+----+----+
369
| OpCode | R1 | R2 |
370
+--------+----+----+
371
 
372
@end verbatim
373
 
374
@item RRE format: <insn> R1,R2
375
@verbatim
376
+------------------+--------+----+----+
377
|      OpCode      |////////| R1 | R2 |
378
+------------------+--------+----+----+
379
 
380
@end verbatim
381
 
382
@item RRF format: <insn> R1,R2,R3,M4
383
@verbatim
384
+------------------+----+----+----+----+
385
|      OpCode      | R3 | M4 | R1 | R2 |
386
+------------------+----+----+----+----+
387
 
388
@end verbatim
389
 
390
@item RRS format: <insn> R1,R2,M3,D4(B4)
391
@verbatim
392
+--------+----+----+----+-------------+----+----+--------+
393
| OpCode | R1 | R3 | B4 |     D4      | M3 |////| OpCode |
394
+--------+----+----+----+-------------+----+----+--------+
395
 
396
@end verbatim
397
 
398
@item RS format: <insn> R1,R3,D2(B2)
399
@verbatim
400
+--------+----+----+----+-------------+
401
| OpCode | R1 | R3 | B2 |     D2      |
402
+--------+----+----+----+-------------+
403
 
404
@end verbatim
405
 
406
@item RSE format: <insn> R1,R3,D2(B2)
407
@verbatim
408
+--------+----+----+----+-------------+--------+--------+
409
| OpCode | R1 | R3 | B2 |     D2      |////////| OpCode |
410
+--------+----+----+----+-------------+--------+--------+
411
 
412
@end verbatim
413
 
414
@item RSI format: <insn> R1,R3,I2
415
@verbatim
416
+--------+----+----+------------------------------------+
417
| OpCode | R1 | R3 |                  I2                |
418
+--------+----+----+------------------------------------+
419
 
420
@end verbatim
421
 
422
@item RSY format: <insn> R1,R3,D2(B2)
423
@verbatim
424
+--------+----+----+----+-------------+--------+--------+
425
| OpCode | R1 | R3 | B2 |    DL2      |  DH2   | OpCode |
426
+--------+----+----+----+-------------+--------+--------+
427
 
428
@end verbatim
429
 
430
@item RX format: <insn> R1,D2(X2,B2)
431
@verbatim
432
+--------+----+----+----+-------------+
433
| OpCode | R1 | X2 | B2 |     D2      |
434
+--------+----+----+----+-------------+
435
 
436
@end verbatim
437
 
438
@item RXE format: <insn> R1,D2(X2,B2)
439
@verbatim
440
+--------+----+----+----+-------------+--------+--------+
441
| OpCode | R1 | X2 | B2 |     D2      |////////| OpCode |
442
+--------+----+----+----+-------------+--------+--------+
443
 
444
@end verbatim
445
 
446
@item RXF format: <insn> R1,R3,D2(X2,B2)
447
@verbatim
448
+--------+----+----+----+-------------+----+---+--------+
449
| OpCode | R3 | X2 | B2 |     D2      | R1 |///| OpCode |
450
+--------+----+----+----+-------------+----+---+--------+
451
 
452
@end verbatim
453
 
454
@item RXY format: <insn> R1,D2(X2,B2)
455
@verbatim
456
+--------+----+----+----+-------------+--------+--------+
457
| OpCode | R1 | X2 | B2 |     DL2     |   DH2  | OpCode |
458
+--------+----+----+----+-------------+--------+--------+
459
 
460
@end verbatim
461
 
462
@item S format: <insn> D2(B2)
463
@verbatim
464
+------------------+----+-------------+
465
|      OpCode      | B2 |     D2      |
466
+------------------+----+-------------+
467
 
468
@end verbatim
469
 
470
@item SI format: <insn> D1(B1),I2
471
@verbatim
472
+--------+---------+----+-------------+
473
| OpCode |   I2    | B1 |     D1      |
474
+--------+---------+----+-------------+
475
 
476
@end verbatim
477
 
478
@item SIY format: <insn> D1(B1),U2
479
@verbatim
480
+--------+---------+----+-------------+--------+--------+
481
| OpCode |   I2    | B1 |     DL1     |  DH1   | OpCode |
482
+--------+---------+----+-------------+--------+--------+
483
 
484
@end verbatim
485
 
486
@item SIL format: <insn> D1(B1),I2
487
@verbatim
488
+------------------+----+-------------+-----------------+
489
|      OpCode      | B1 |      D1     |       I2        |
490
+------------------+----+-------------+-----------------+
491
 
492
@end verbatim
493
 
494
@item SS format: <insn> D1(R1,B1),D2(B3),R3
495
@verbatim
496
+--------+----+----+----+-------------+----+------------+
497
| OpCode | R1 | R3 | B1 |     D1      | B2 |     D2     |
498
+--------+----+----+----+-------------+----+------------+
499
 
500
@end verbatim
501
 
502
@item SSE format: <insn> D1(B1),D2(B2)
503
@verbatim
504
+------------------+----+-------------+----+------------+
505
|      OpCode      | B1 |     D1      | B2 |     D2     |
506
+------------------+----+-------------+----+------------+
507
 
508
@end verbatim
509
 
510
@item SSF format: <insn> D1(B1),D2(B2),R3
511
@verbatim
512
+--------+----+----+----+-------------+----+------------+
513
| OpCode | R3 |OpCd| B1 |     D1      | B2 |     D2     |
514
+--------+----+----+----+-------------+----+------------+
515
 
516
@end verbatim
517
 
518
@end table
519
 
520
For the complete list of all instruction format variants see the
521
Principles of Operation manuals.
522
 
523
@node s390 Aliases
524
@subsection Instruction Aliases
525
@cindex instruction aliases, s390
526
@cindex s390 instruction aliases
527
 
528
A specific bit pattern can have multiple mnemonics, for example
529
the bit pattern @samp{0xa7000000} has the mnemonics @samp{tmh} and
530
@samp{tmlh}. In addition, there are a number of mnemonics recognized by
531
@code{@value{AS}} that are not present in the Principles of Operation.
532
These are the short forms of the branch instructions, where the condition
533
code mask operand is encoded in the mnemonic. This is relevant for the
534
branch instructions, the compare and branch instructions, and the
535
compare and trap instructions.
536
 
537
For the branch instructions there are 20 condition code strings that can
538
be used as part of the mnemonic in place of a mask operand in the instruction
539
format:
540
 
541
@display
542
@multitable @columnfractions .30 .30
543
@headitem instruction @tab short form
544
@item bcr   M1,R2  @tab  b<m>r  R2
545
@item bc    M1,D2(X2,B2) @tab  b<m>   D2(X2,B2)
546
@item brc   M1,I2 @tab j<m>   I2
547
@item brcl  M1,I2 @tab jg<m>  I2
548
@end multitable
549
@end display
550
 
551
In the mnemonic for a branch instruction the condition code string <m>
552
can be any of the following:
553
 
554
@display
555
@multitable {nle} {jump on not zero / if not zeros}
556
@item o @tab jump on overflow / if ones
557
@item h @tab jump on A high
558
@item p @tab jump on plus
559
@item nle @tab jump on not low or equal
560
@item l @tab jump on A low
561
@item m @tab jump on minus
562
@item nhe @tab jump on not high or equal
563
@item lh @tab jump on low or high
564
@item ne @tab jump on A not equal B
565
@item nz @tab jump on not zero / if not zeros
566
@item e @tab jump on A equal B
567
@item z @tab jump on zero / if zeroes
568
@item nlh @tab jump on not low or high
569
@item he @tab jump on high or equal
570
@item nl @tab jump on A not low
571
@item nm @tab jump on not minus / if not mixed
572
@item le @tab jump on low or equal
573
@item nh @tab jump on A not high
574
@item np @tab jump on not plus
575
@item no @tab jump on not overflow / if not ones
576
@end multitable
577
@end display
578
 
579
For the compare and branch, and compare and trap instructions there
580
are 12 condition code strings that can be used as part of the mnemonic in
581
place of a mask operand in the instruction format:
582
 
583
@display
584
@multitable @columnfractions .40 .40
585
@headitem instruction @tab short form
586
@item crb    R1,R2,M3,D4(B4)  @tab  crb<m>    R1,R2,D4(B4)
587
@item cgrb   R1,R2,M3,D4(B4)  @tab  cgrb<m>   R1,R2,D4(B4)
588
@item crj    R1,R2,M3,I4  @tab  crj<m>    R1,R2,I4
589
@item cgrj   R1,R2,M3,I4  @tab  cgrj<m>   R1,R2,I4
590
@item cib    R1,I2,M3,D4(B4)  @tab  cib<m>    R1,I2,D4(B4)
591
@item cgib   R1,I2,M3,D4(B4)  @tab  cgib<m>   R1,I2,D4(B4)
592
@item cij    R1,I2,M3,I4  @tab  cij<m>    R1,I2,I4
593
@item cgij   R1,I2,M3,I4  @tab  cgij<m>   R1,I2,I4
594
@item crt    R1,R2,M3  @tab  crt<m>    R1,R2
595
@item cgrt   R1,R2,M3  @tab  cgrt<m>   R1,R2
596
@item cit    R1,I2,M3  @tab  cit<m>    R1,I2
597
@item cgit   R1,I2,M3  @tab  cgit<m>   R1,I2
598
@item clrb   R1,R2,M3,D4(B4)  @tab  clrb<m>   R1,R2,D4(B4)
599
@item clgrb  R1,R2,M3,D4(B4)  @tab  clgrb<m>  R1,R2,D4(B4)
600
@item clrj   R1,R2,M3,I4  @tab  clrj<m>   R1,R2,I4
601
@item clgrj  R1,R2,M3,I4  @tab  clgrj<m>  R1,R2,I4
602
@item clib   R1,I2,M3,D4(B4)  @tab  clib<m>   R1,I2,D4(B4)
603
@item clgib  R1,I2,M3,D4(B4)  @tab  clgib<m>  R1,I2,D4(B4)
604
@item clij   R1,I2,M3,I4  @tab  clij<m>   R1,I2,I4
605
@item clgij  R1,I2,M3,I4  @tab  clgij<m>  R1,I2,I4
606
@item clrt   R1,R2,M3  @tab  clrt<m>   R1,R2
607
@item clgrt  R1,R2,M3  @tab  clgrt<m>  R1,R2
608
@item clfit  R1,I2,M3  @tab  clfit<m>  R1,I2
609
@item clgit  R1,I2,M3  @tab  clgit<m>  R1,I2
610
@end multitable
611
@end display
612
 
613
In the mnemonic for a compare and branch and compare and trap instruction
614
the condition code string <m> can be any of the following:
615
 
616
@display
617
@multitable {nle} {jump on not zero / if not zeros}
618
@item h @tab jump on A high
619
@item nle @tab jump on not low or equal
620
@item l @tab jump on A low
621
@item nhe @tab jump on not high or equal
622
@item ne @tab jump on A not equal B
623
@item lh @tab jump on low or high
624
@item e @tab jump on A equal B
625
@item nlh @tab jump on not low or high
626
@item nl @tab jump on A not low
627
@item he @tab jump on high or equal
628
@item nh @tab jump on A not high
629
@item le @tab jump on low or equal
630
@end multitable
631
@end display
632
 
633
@node s390 Operand Modifier
634
@subsection Instruction Operand Modifier
635
@cindex instruction operand modifier, s390
636
@cindex s390 instruction operand modifier
637
 
638
If a symbol modifier is attached to a symbol in an expression for an
639
instruction operand field, the symbol term is replaced with a reference
640
to an object in the global offset table (GOT) or the procedure linkage
641
table (PLT). The following expressions are allowed:
642
@samp{symbol@@modifier + constant},
643
@samp{symbol@@modifier + label + constant}, and
644
@samp{symbol@@modifier - label + constant}.
645
The term @samp{symbol} is the symbol that will be entered into the GOT or
646
PLT, @samp{label} is a local label, and @samp{constant} is an arbitrary
647
expression that the assembler can evaluate to a constant value.
648
 
649
The term @samp{(symbol + constant1)@@modifier +/- label + constant2}
650
is also accepted but a warning message is printed and the term is
651
converted to @samp{symbol@@modifier +/- label + constant1 + constant2}.
652
 
653
@table @code
654
@item @@got
655
@itemx @@got12
656
The @@got modifier can be used for displacement fields, 16-bit immediate
657
fields and 32-bit pc-relative immediate fields. The @@got12 modifier is
658
synonym to @@got. The symbol is added to the GOT. For displacement
659
fields and 16-bit immediate fields the symbol term is replaced with
660
the offset from the start of the GOT to the GOT slot for the symbol.
661
For a 32-bit pc-relative field the pc-relative offset to the GOT
662
slot from the current instruction address is used.
663
@item @@gotent
664
The @@gotent modifier can be used for 32-bit pc-relative immediate fields.
665
The symbol is added to the GOT and the symbol term is replaced with
666
the pc-relative offset from the current instruction to the GOT slot for the
667
symbol.
668
@item @@gotoff
669
The @@gotoff modifier can be used for 16-bit immediate fields. The symbol
670
term is replaced with the offset from the start of the GOT to the
671
address of the symbol.
672
@item @@gotplt
673
The @@gotplt modifier can be used for displacement fields, 16-bit immediate
674
fields, and 32-bit pc-relative immediate fields. A procedure linkage
675
table entry is generated for the symbol and a jump slot for the symbol
676
is added to the GOT. For displacement fields and 16-bit immediate
677
fields the symbol term is replaced with the offset from the start of the
678
GOT to the jump slot for the symbol. For a 32-bit pc-relative field
679
the pc-relative offset to the jump slot from the current instruction
680
address is used.
681
@item @@plt
682
The @@plt modifier can be used for 16-bit and 32-bit pc-relative immediate
683
fields. A procedure linkage table entry is generated for the symbol.
684
The symbol term is replaced with the relative offset from the current
685
instruction to the PLT entry for the symbol.
686
@item @@pltoff
687
The @@pltoff modifier can be used for 16-bit immediate fields. The symbol
688
term is replaced with the offset from the start of the PLT to the address
689
of the symbol.
690
@item @@gotntpoff
691
The @@gotntpoff modifier can be used for displacement fields. The symbol
692
is added to the static TLS block and the negated offset to the symbol
693
in the static TLS block is added to the GOT. The symbol term is replaced
694
with the offset to the GOT slot from the start of the GOT.
695
@item @@indntpoff
696
The @@indntpoff modifier can be used for 32-bit pc-relative immediate
697
fields. The symbol is added to the static TLS block and the negated offset
698
to the symbol in the static TLS block is added to the GOT. The symbol term
699
is replaced with the pc-relative offset to the GOT slot from the current
700
instruction address.
701
@end table
702
 
703
For more information about the thread local storage modifiers
704
@samp{gotntpoff} and @samp{indntpoff} see the ELF extension documentation
705
@samp{ELF Handling For Thread-Local Storage}.
706
 
707
@node s390 Instruction Marker
708
@subsection Instruction Marker
709
@cindex instruction marker, s390
710
@cindex s390 instruction marker
711
 
712
The thread local storage instruction markers are used by the linker to
713
perform code optimization.
714
 
715
@table @code
716
@item :tls_load
717
The :tls_load marker is used to flag the load instruction in the initial
718
exec TLS model that retrieves the offset from the thread pointer to a
719
thread local storage variable from the GOT.
720
@item :tls_gdcall
721
The :tls_gdcall marker is used to flag the branch-and-save instruction to
722
the __tls_get_offset function in the global dynamic TLS model.
723
@item :tls_ldcall
724
The :tls_ldcall marker is used to flag the branch-and-save instruction to
725
the __tls_get_offset function in the local dynamic TLS model.
726
@end table
727
 
728
For more information about the thread local storage instruction marker
729
and the linker optimizations see the ELF extension documentation
730
@samp{ELF Handling For Thread-Local Storage}.
731
 
732
@node s390 Literal Pool Entries
733
@subsection Literal Pool Entries
734
@cindex literal pool entries, s390
735
@cindex s390 literal pool entries
736
 
737
A literal pool is a collection of values. To access the values a pointer
738
to the literal pool is loaded to a register, the literal pool register.
739
Usually, register %r13 is used as the literal pool register
740
(@ref{s390 Register}). Literal pool entries are created by adding the
741
suffix :lit1, :lit2, :lit4, or :lit8 to the end of an expression for an
742
instruction operand. The expression is added to the literal pool and the
743
operand is replaced with the offset to the literal in the literal pool.
744
 
745
@table @code
746
@item :lit1
747
The literal pool entry is created as an 8-bit value. An operand modifier
748
must not be used for the original expression.
749
@item :lit2
750
The literal pool entry is created as a 16 bit value. The operand modifier
751
@@got may be used in the original expression. The term @samp{x@@got:lit2}
752
will put the got offset for the global symbol x to the literal pool as
753
16 bit value.
754
@item :lit4
755
The literal pool entry is created as a 32-bit value. The operand modifier
756
@@got and @@plt may be used in the original expression. The term
757
@samp{x@@got:lit4} will put the got offset for the global symbol x to the
758
literal pool as a 32-bit value. The term @samp{x@@plt:lit4} will put the
759
plt offset for the global symbol x to the literal pool as a 32-bit value.
760
@item :lit8
761
The literal pool entry is created as a 64-bit value. The operand modifier
762
@@got and @@plt may be used in the original expression. The term
763
@samp{x@@got:lit8} will put the got offset for the global symbol x to the
764
literal pool as a 64-bit value. The term @samp{x@@plt:lit8} will put the
765
plt offset for the global symbol x to the literal pool as a 64-bit value.
766
@end table
767
 
768
The assembler directive @samp{.ltorg} is used to emit all literal pool
769
entries to the current position.
770
 
771
@node s390 Directives
772
@section Assembler Directives
773
 
774
@code{@value{AS}} for s390 supports all of the standard ELF
775
assembler directives as outlined in the main part of this document.
776
Some directives have been extended and there are some additional
777
directives, which are only available for the s390 @code{@value{AS}}.
778
 
779
@table @code
780
@cindex @code{.insn} directive, s390
781
@item .insn
782
This directive permits the numeric representation of an instructions
783
and makes the assembler insert the operands according to one of the
784
instructions formats for @samp{.insn} (@ref{s390 Formats}).
785
For example, the instruction @samp{l %r1,24(%r15)} could be written as
786
@samp{.insn rx,0x58000000,%r1,24(%r15)}.
787
@cindex @code{.short} directive, s390
788
@cindex @code{.long} directive, s390
789
@cindex @code{.quad} directive, s390
790
@item .short
791
@itemx .long
792
@itemx .quad
793
This directive places one or more 16-bit (.short), 32-bit (.long), or
794
64-bit (.quad) values into the current section. If an ELF or TLS modifier
795
is used only the following expressions are allowed:
796
@samp{symbol@@modifier + constant},
797
@samp{symbol@@modifier + label + constant}, and
798
@samp{symbol@@modifier - label + constant}.
799
The following modifiers are available:
800
@table @code
801
@item @@got
802
@itemx @@got12
803
The @@got modifier can be used for .short, .long and .quad. The @@got12
804
modifier is synonym to @@got. The symbol is added to the GOT. The symbol
805
term is replaced with offset from the start of the GOT to the GOT slot for
806
the symbol.
807
@item @@gotoff
808
The @@gotoff modifier can be used for .short, .long and .quad. The symbol
809
term is replaced with the offset from the start of the GOT to the address
810
of the symbol.
811
@item @@gotplt
812
The @@gotplt modifier can be used for .long and .quad. A procedure linkage
813
table entry is generated for the symbol and a jump slot for the symbol
814
is added to the GOT. The symbol term is replaced with the offset from the
815
start of the GOT to the jump slot for the symbol.
816
@item @@plt
817
The @@plt modifier can be used for .long and .quad. A procedure linkage
818
table entry us generated for the symbol. The symbol term is replaced with
819
the address of the PLT entry for the symbol.
820
@item @@pltoff
821
The @@pltoff modifier can be used for .short, .long and .quad. The symbol
822
term is replaced with the offset from the start of the PLT to the address
823
of the symbol.
824
@item @@tlsgd
825
@itemx @@tlsldm
826
The @@tlsgd and @@tlsldm modifier can be used for .long and .quad. A
827
tls_index structure for the symbol is added to the GOT. The symbol term is
828
replaced with the offset from the start of the GOT to the tls_index structure.
829
@item @@gotntpoff
830
@itemx @@indntpoff
831
The @@gotntpoff and @@indntpoff modifier can be used for .long and .quad.
832
The symbol is added to the static TLS block and the negated offset to the
833
symbol in the static TLS block is added to the GOT. For @@gotntpoff the
834
symbol term is replaced with the offset from the start of the GOT to the
835
GOT slot, for @@indntpoff the symbol term is replaced with the address
836
of the GOT slot.
837
@item @@dtpoff
838
The @@dtpoff modifier can be used for .long and .quad. The symbol term
839
is replaced with the offset of the symbol relative to the start of the
840
TLS block it is contained in.
841
@item @@ntpoff
842
The @@ntpoff modifier can be used for .long and .quad. The symbol term
843
is replaced with the offset of the symbol relative to the TCB pointer.
844
@end table
845
 
846
For more information about the thread local storage modifiers see the
847
ELF extension documentation @samp{ELF Handling For Thread-Local Storage}.
848
 
849
@cindex @code{.ltorg} directive, s390
850
@item .ltorg
851
This directive causes the current contents of the literal pool to be
852
dumped to the current location (@ref{s390 Literal Pool Entries}).
853
@end table
854
 
855
@node s390 Floating Point
856
@section Floating Point
857
@cindex floating point, s390
858
@cindex s390 floating point
859
 
860
The assembler recognizes both the @sc{ieee} floating-point instruction and
861
the hexadecimal floating-point instructions. The floating-point constructors
862
@samp{.float}, @samp{.single}, and @samp{.double} always emit the
863
@sc{ieee} format. To assemble hexadecimal floating-point constants the
864
@samp{.long} and @samp{.quad} directives must be used.

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.