1 |
205 |
julius |
#ifndef TEST_GEN_C
|
2 |
|
|
#define TEST_GEN_C 1
|
3 |
|
|
|
4 |
|
|
/* Copyright (C) 2000, 2003, 2005, 2007 Free Software Foundation
|
5 |
|
|
Contributed by Alexandre Oliva <aoliva@cygnus.com>
|
6 |
|
|
|
7 |
|
|
This file is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful, but
|
13 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
20 |
|
|
|
21 |
|
|
/* This is a source file with infra-structure to test generators for
|
22 |
|
|
assemblers and disassemblers.
|
23 |
|
|
|
24 |
|
|
The strategy to generate testcases is as follows. We'll output to
|
25 |
|
|
two streams: one will get the assembly source, and the other will
|
26 |
|
|
get regexps that match the expected binary patterns.
|
27 |
|
|
|
28 |
|
|
To generate each instruction, the functions of a func[] are called,
|
29 |
|
|
each with the corresponding func_arg. Each function should set
|
30 |
|
|
members of insn_data, to decide what it's going to output to the
|
31 |
|
|
assembly source, the corresponding output for the disassembler
|
32 |
|
|
tester, and the bits to be set in the instruction word. The
|
33 |
|
|
strings to be output must have been allocated with strdup() or
|
34 |
|
|
malloc(), so that they can be freed. A function may also modify
|
35 |
|
|
insn_size. More details in test-gen.c
|
36 |
|
|
|
37 |
|
|
Because this would have generated too many tests, we have chosen to
|
38 |
|
|
define ``random'' sequences of numbers/registers, and simply
|
39 |
|
|
generate each instruction a couple of times, which should get us
|
40 |
|
|
enough coverage.
|
41 |
|
|
|
42 |
|
|
In general, test generators should be compiled/run as follows:
|
43 |
|
|
|
44 |
|
|
% gcc test.c -o test
|
45 |
|
|
% ./test > test.s 2 > test.d
|
46 |
|
|
|
47 |
|
|
Please note that this file contains a couple of GCC-isms, such as
|
48 |
|
|
macro varargs (also available in C99, but with a difference syntax)
|
49 |
|
|
and labeled elements in initializers (so that insn definitions are
|
50 |
|
|
simpler and safer).
|
51 |
|
|
|
52 |
|
|
It is assumed that the test generator #includes this file after
|
53 |
|
|
defining any of the preprocessor macros documented below. The test
|
54 |
|
|
generator is supposed to define instructions, at least one group of
|
55 |
|
|
instructions, optionally, a sequence of groups.
|
56 |
|
|
|
57 |
|
|
It should also define a main() function that outputs the initial
|
58 |
|
|
lines of the assembler input and of the test control file, that
|
59 |
|
|
also contains the disassembler output. The main() funcion may
|
60 |
|
|
optionally set skip_list too, before calling output_groups() or
|
61 |
|
|
output_insns(). */
|
62 |
|
|
|
63 |
|
|
/* Define to 1 to avoid repeating instructions and to use a simpler
|
64 |
|
|
register/constant generation mechanism. This makes it much easier
|
65 |
|
|
to verify that the generated bit patterns are correct. */
|
66 |
|
|
#ifndef SIMPLIFY_OUTPUT
|
67 |
|
|
#define SIMPLIFY_OUTPUT 0
|
68 |
|
|
#endif
|
69 |
|
|
|
70 |
|
|
/* Define to 0 to avoid generating disassembler tests. */
|
71 |
|
|
#ifndef DISASSEMBLER_TEST
|
72 |
|
|
#define DISASSEMBLER_TEST 1
|
73 |
|
|
#endif
|
74 |
|
|
|
75 |
|
|
/* Define to the number of times to repeat the generation of each
|
76 |
|
|
insn. It's best to use prime numbers, to improve randomization. */
|
77 |
|
|
#ifndef INSN_REPEAT
|
78 |
|
|
#define INSN_REPEAT 5
|
79 |
|
|
#endif
|
80 |
|
|
|
81 |
|
|
/* Define in order to get randomization_counter printed, as a comment,
|
82 |
|
|
in the disassembler output, after each insn is emitted. */
|
83 |
|
|
#ifndef OUTPUT_RANDOMIZATION_COUNTER
|
84 |
|
|
#define OUTPUT_RANDOMIZATION_COUNTER 0
|
85 |
|
|
#endif
|
86 |
|
|
|
87 |
|
|
/* Other configuration macros are DEFINED_WORD and DEFINED_FUNC_ARG,
|
88 |
|
|
see below. */
|
89 |
|
|
|
90 |
|
|
#include <stdio.h>
|
91 |
|
|
#include <string.h>
|
92 |
|
|
#include <stdlib.h>
|
93 |
|
|
|
94 |
|
|
/* It is expected that the main program defines the type `word' before
|
95 |
|
|
includeing this. */
|
96 |
|
|
#ifndef DEFINED_WORD
|
97 |
|
|
typedef unsigned long long word;
|
98 |
|
|
#endif
|
99 |
|
|
|
100 |
|
|
/* This struct is used as the output area for each function. It
|
101 |
|
|
should store in as_in a pointer to the string to be output to the
|
102 |
|
|
assembler; in dis_out, the string to be expected in return from the
|
103 |
|
|
disassembler, and in bits the bits of the instruction word that are
|
104 |
|
|
enabled by the assembly fragment. */
|
105 |
|
|
typedef struct
|
106 |
|
|
{
|
107 |
|
|
char * as_in;
|
108 |
|
|
char * dis_out;
|
109 |
|
|
word bits;
|
110 |
|
|
} insn_data;
|
111 |
|
|
|
112 |
|
|
#ifndef DEFINED_FUNC_ARG
|
113 |
|
|
/* This is the struct that feeds information to each function. You're
|
114 |
|
|
free to extend it, by `typedef'ing it before including this file,
|
115 |
|
|
and defining DEFINED_FUNC_ARG. You may even reorder the fields,
|
116 |
|
|
but do not remove any of the existing fields. */
|
117 |
|
|
typedef struct
|
118 |
|
|
{
|
119 |
|
|
int i1;
|
120 |
|
|
int i2;
|
121 |
|
|
int i3;
|
122 |
|
|
void * p1;
|
123 |
|
|
void * p2;
|
124 |
|
|
word w;
|
125 |
|
|
} func_arg;
|
126 |
|
|
#endif
|
127 |
|
|
|
128 |
|
|
/* This is the struct whose arrays define insns. Each func in the
|
129 |
|
|
array will be called, in sequence, being given a pointer to the
|
130 |
|
|
associated arg and a pointer to a zero-initialized output area,
|
131 |
|
|
that it may fill in. */
|
132 |
|
|
typedef struct
|
133 |
|
|
{
|
134 |
|
|
int (* func) (func_arg *, insn_data *);
|
135 |
|
|
func_arg arg;
|
136 |
|
|
} func;
|
137 |
|
|
|
138 |
|
|
/* Use this to group insns under a name. */
|
139 |
|
|
typedef struct
|
140 |
|
|
{
|
141 |
|
|
const char * name;
|
142 |
|
|
func ** insns;
|
143 |
|
|
} group_t;
|
144 |
|
|
|
145 |
|
|
/* This is the size of each instruction. Use `insn_size_bits' instead
|
146 |
|
|
of `insn_bits' in an insn defition to modify it. */
|
147 |
|
|
int insn_size = 4;
|
148 |
|
|
|
149 |
|
|
/* The offset of the next insn, as expected in the disassembler
|
150 |
|
|
output. */
|
151 |
|
|
int current_offset = 0;
|
152 |
|
|
|
153 |
|
|
/* The offset and name of the last label to be emitted. */
|
154 |
|
|
int last_label_offset = 0;
|
155 |
|
|
const char * last_label_name = 0;
|
156 |
|
|
|
157 |
|
|
/* This variable may be initialized in main() to `argv+1', if
|
158 |
|
|
`argc>1', so that tests are emitted only for instructions that
|
159 |
|
|
match exactly one of the given command-line arguments. If it is
|
160 |
|
|
NULL, tests for all instructions are emitted. It must be a
|
161 |
|
|
NULL-terminated array of pointers to strings (just like
|
162 |
|
|
`argv+1'). */
|
163 |
|
|
char ** skip_list = 0;
|
164 |
|
|
|
165 |
|
|
/* This is a counter used to walk the various arrays of ``random''
|
166 |
|
|
operand generation. In simplified output mode, it is zeroed after
|
167 |
|
|
each insn, otherwise it just keeps growing. */
|
168 |
|
|
unsigned randomization_counter = 0;
|
169 |
|
|
|
170 |
|
|
/* Use `define_insn' to create an array of funcs to define an insn,
|
171 |
|
|
then `insn' to refer to that insn when defining an insn group. */
|
172 |
|
|
#define define_insn(insname, funcs...) \
|
173 |
|
|
func i_ ## insname[] = { funcs, { 0 } }
|
174 |
|
|
#define insn(insname) (i_ ## insname)
|
175 |
|
|
|
176 |
|
|
/* Use these to output a comma followed by an optional space, a single
|
177 |
|
|
space, a plus sign, left and right square brackets and parentheses,
|
178 |
|
|
all of them properly quoted. */
|
179 |
|
|
#define comma literal_q (", ", ", ?")
|
180 |
|
|
#define space literal (" ")
|
181 |
|
|
#define tab literal ("\t")
|
182 |
|
|
#define plus literal_q ("+", "\\+")
|
183 |
|
|
#define lsqbkt literal_q ("[", "\\[")
|
184 |
|
|
#define rsqbkt literal_q ("]", "\\]")
|
185 |
|
|
#define lparen literal_q ("(", "\\(")
|
186 |
|
|
#define rparen literal_q (")", "\\)")
|
187 |
|
|
|
188 |
|
|
/* Use this as a placeholder when you define a macro that expects an
|
189 |
|
|
argument, but you don't have anything to output there. */
|
190 |
|
|
int
|
191 |
|
|
nothing (func_arg *arg, insn_data *data)
|
192 |
|
|
#define nothing { nothing }
|
193 |
|
|
{
|
194 |
|
|
return 0;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/* This is to be used in the argument list of define_insn, causing a
|
198 |
|
|
string to be copied into both the assembly and the expected
|
199 |
|
|
disassembler output. It is assumed not to modify the binary
|
200 |
|
|
encoding of the insn. */
|
201 |
|
|
int
|
202 |
|
|
literal (func_arg *arg, insn_data *data)
|
203 |
|
|
#define literal(s) { literal, { p1: (s) } }
|
204 |
|
|
{
|
205 |
|
|
data->as_in = data->dis_out = strdup ((char *) arg->p1);
|
206 |
|
|
return 0;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
/* The characters `[', `]', `\\' and `^' must be quoted in the
|
210 |
|
|
disassembler-output matcher. If a literal string contains any of
|
211 |
|
|
these characters, use literal_q instead of literal, and specify the
|
212 |
|
|
unquoted version (for as input) as the first argument, and the
|
213 |
|
|
quoted version (for expected disassembler output) as the second
|
214 |
|
|
one. */
|
215 |
|
|
int
|
216 |
|
|
literal_q (func_arg *arg, insn_data *data)
|
217 |
|
|
#define literal_q(s,q) { literal_q, { p1: (s), p2: (q) } }
|
218 |
|
|
{
|
219 |
|
|
data->as_in = strdup ((char *) arg->p1);
|
220 |
|
|
data->dis_out = strdup ((char *) arg->p2);
|
221 |
|
|
return 0;
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
/* Given an insn name, check whether it should be skipped or not,
|
225 |
|
|
depending on skip_list. Return non-zero if the insn is to be
|
226 |
|
|
skipped. */
|
227 |
|
|
int
|
228 |
|
|
skip_insn (char *name)
|
229 |
|
|
{
|
230 |
|
|
char **test;
|
231 |
|
|
|
232 |
|
|
if (! skip_list)
|
233 |
|
|
return 0;
|
234 |
|
|
|
235 |
|
|
for (test = skip_list; * test; ++ test)
|
236 |
|
|
if (strcmp (name, * test) == 0)
|
237 |
|
|
return 0;
|
238 |
|
|
|
239 |
|
|
return 1;
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
/* Use this to emit the actual insn name, with its opcode, in
|
243 |
|
|
architectures with fixed-length instructions. */
|
244 |
|
|
int
|
245 |
|
|
insn_bits (func_arg *arg, insn_data *data)
|
246 |
|
|
#define insn_bits(name,bits) \
|
247 |
|
|
{ insn_bits, { p1: # name, w: bits } }
|
248 |
|
|
{
|
249 |
|
|
if (skip_insn ((char *) arg->p1))
|
250 |
|
|
return 1;
|
251 |
|
|
data->as_in = data->dis_out = strdup ((char *) arg->p1);
|
252 |
|
|
data->bits = arg->w;
|
253 |
|
|
return 0;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
/* Use this to emit the insn name and its opcode in architectures
|
257 |
|
|
without a variable instruction length. */
|
258 |
|
|
int
|
259 |
|
|
insn_size_bits (func_arg *arg, insn_data *data)
|
260 |
|
|
#define insn_size_bits(name,size,bits) \
|
261 |
|
|
{ insn_size_bits, { p1: # name, i1: size, w: bits } }
|
262 |
|
|
{
|
263 |
|
|
if (skip_insn ((char *) arg->p1))
|
264 |
|
|
return 1;
|
265 |
|
|
data->as_in = data->dis_out = strdup ((char *) arg->p1);
|
266 |
|
|
data->bits = arg->w;
|
267 |
|
|
insn_size = arg->i1;
|
268 |
|
|
return 0;
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
/* Use this to advance the random generator by one, in case it is
|
272 |
|
|
generating repetitive patterns. It is usually good to arrange that
|
273 |
|
|
each insn consumes a prime number of ``random'' numbers, or, at
|
274 |
|
|
least, that it does not consume an exact power of two ``random''
|
275 |
|
|
numbers. */
|
276 |
|
|
int
|
277 |
|
|
tick_random (func_arg *arg, insn_data *data)
|
278 |
|
|
#define tick_random { tick_random }
|
279 |
|
|
{
|
280 |
|
|
++ randomization_counter;
|
281 |
|
|
return 0;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/* Select the next ``random'' number from the array V of size S, and
|
285 |
|
|
advance the counter. */
|
286 |
|
|
#define get_bits_from_size(V,S) \
|
287 |
|
|
((V)[randomization_counter ++ % (S)])
|
288 |
|
|
|
289 |
|
|
/* Utility macros. `_get_bits_var', used in some macros below, assume
|
290 |
|
|
the names of the arrays used to define the ``random'' orders start
|
291 |
|
|
with `random_order_'. */
|
292 |
|
|
#define _get_bits_var(N) (random_order_ ## N)
|
293 |
|
|
#define _get_bits_size(V) (sizeof (V) / sizeof * (V))
|
294 |
|
|
|
295 |
|
|
/* Use this within a `func_arg' to select one of the arrays below (or
|
296 |
|
|
any other array that starts with random_order_N. */
|
297 |
|
|
#define mk_get_bits(N) \
|
298 |
|
|
p2: _get_bits_var (N), i3: _get_bits_size (_get_bits_var (N))
|
299 |
|
|
|
300 |
|
|
/* Simplified versions of get_bits_from_size for when you have access
|
301 |
|
|
to the array, so that its size can be implicitly calculated. */
|
302 |
|
|
#define get_bits_from(V) get_bits_from_size ((V),_get_bits_size ((V)))
|
303 |
|
|
#define get_bits(N) get_bits_from (_get_bits_var (N))
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
/* Use `2u' to generate 2-bit unsigned values. Good for selecting
|
307 |
|
|
registers randomly from a set of 4 registers. */
|
308 |
|
|
unsigned random_order_2u[] =
|
309 |
|
|
{
|
310 |
|
|
/* This sequence was generated by hand so that no digit appers more
|
311 |
|
|
than once in any horizontal or vertical line. */
|
312 |
|
|
0, 1, 3, 2,
|
313 |
|
|
2, 0, 1, 3,
|
314 |
|
|
1, 3, 2, 0,
|
315 |
|
|
3, 2, 0, 1
|
316 |
|
|
};
|
317 |
|
|
|
318 |
|
|
/* Use `3u' to generate 3-bit unsigned values. Good for selecting
|
319 |
|
|
registers randomly from a set of 8 registers. */
|
320 |
|
|
unsigned random_order_3u[] =
|
321 |
|
|
{
|
322 |
|
|
/* This sequence was generated by:
|
323 |
|
|
f(k) = 3k mod 8
|
324 |
|
|
except that the middle pairs were swapped. */
|
325 |
|
|
0, 6, 3, 1, 4, 2, 7, 5,
|
326 |
|
|
/* This sequence was generated by:
|
327 |
|
|
f(k) = 5k mod 8
|
328 |
|
|
except that the middle pairs were swapped. */
|
329 |
|
|
0, 2, 5, 7, 4, 6, 1, 3,
|
330 |
|
|
};
|
331 |
|
|
|
332 |
|
|
/* Use `4u' to generate 4-bit unsigned values. Good for selecting
|
333 |
|
|
registers randomly from a set of 16 registers. */
|
334 |
|
|
unsigned random_order_4u[] =
|
335 |
|
|
{
|
336 |
|
|
/* This sequence was generated by:
|
337 |
|
|
f(k) = 5k mod 16
|
338 |
|
|
except that the middle pairs were swapped. */
|
339 |
|
|
0, 5, 15, 10, 9, 4, 14, 3,
|
340 |
|
|
8, 13, 7, 2, 1, 12, 6, 11,
|
341 |
|
|
/* This sequence was generated by:
|
342 |
|
|
f(k) = 7k mod 16
|
343 |
|
|
except that the middle pairs were swapped. */
|
344 |
|
|
0, 7, 5, 14, 3, 12, 10, 1,
|
345 |
|
|
8, 15, 13, 6, 11, 4, 2, 9,
|
346 |
|
|
};
|
347 |
|
|
|
348 |
|
|
/* Use `5u' to generate 5-bit unsigned values. Good for selecting
|
349 |
|
|
registers randomly from a set of 32 registers. */
|
350 |
|
|
unsigned random_order_5u[] =
|
351 |
|
|
{
|
352 |
|
|
/* This sequence was generated by:
|
353 |
|
|
f(k) = (13k) mod 32
|
354 |
|
|
except that the middle pairs were swapped. */
|
355 |
|
|
0, 26, 13, 7, 20, 14, 1, 27,
|
356 |
|
|
8, 2, 21, 15, 28, 22, 9, 3,
|
357 |
|
|
16, 10, 29, 23, 4, 30, 17, 11,
|
358 |
|
|
24, 18, 5, 31, 12, 6, 25, 19
|
359 |
|
|
};
|
360 |
|
|
|
361 |
|
|
/* Use `7s' to generate 7-bit signed values. Good for selecting
|
362 |
|
|
``interesting'' constants from -64 to +63. */
|
363 |
|
|
int random_order_7s[] =
|
364 |
|
|
{
|
365 |
|
|
/* Sequence generated by hand, to explore limit values and a few
|
366 |
|
|
intermediate values selected by chance. Keep the number of
|
367 |
|
|
intermediate values low, to ensure that the limit values are
|
368 |
|
|
generated often enough. */
|
369 |
|
|
0, -1, -64, 63, -32, 32, 24, -20,
|
370 |
|
|
9, -27, -31, 33, 40, -2, -5, 1
|
371 |
|
|
};
|
372 |
|
|
|
373 |
|
|
/* Use `8s' to generate 8-bit signed values. Good for selecting
|
374 |
|
|
``interesting'' constants from -128 to +127. */
|
375 |
|
|
int random_order_8s[] =
|
376 |
|
|
{
|
377 |
|
|
/* Sequence generated by hand, to explore limit values and a few
|
378 |
|
|
intermediate values selected by chance. Keep the number of
|
379 |
|
|
intermediate values low, to ensure that the limit values are
|
380 |
|
|
generated often enough. */
|
381 |
|
|
0, -1, -128, 127, -32, 32, 24, -20,
|
382 |
|
|
73, -27, -95, 33, 104, -2, -69, 1
|
383 |
|
|
};
|
384 |
|
|
|
385 |
|
|
/* Use `9s' to generate 9-bit signed values. Good for selecting
|
386 |
|
|
``interesting'' constants from -256 to +255. */
|
387 |
|
|
int random_order_9s[] =
|
388 |
|
|
{
|
389 |
|
|
/* Sequence generated by hand, to explore limit values and a few
|
390 |
|
|
intermediate values selected by chance. Keep the number of
|
391 |
|
|
intermediate values low, to ensure that the limit values are
|
392 |
|
|
generated often enough. */
|
393 |
|
|
0, -1, -256, 255, -64, 64, 72, -40,
|
394 |
|
|
73, -137, -158, 37, 104, -240, -69, 1
|
395 |
|
|
};
|
396 |
|
|
|
397 |
|
|
/* Use `16s' to generate 16-bit signed values. Good for selecting
|
398 |
|
|
``interesting'' constants from -32768 to +32767. */
|
399 |
|
|
int random_order_16s[] =
|
400 |
|
|
{
|
401 |
|
|
/* Sequence generated by hand, to explore limit values and a few
|
402 |
|
|
intermediate values selected by chance. Keep the number of
|
403 |
|
|
intermediate values low, to ensure that the limit values are
|
404 |
|
|
generated often enough. */
|
405 |
|
|
-32768,
|
406 |
|
|
32767,
|
407 |
|
|
(-1 << 15) | (64 << 8) | 32,
|
408 |
|
|
(64 << 8) | 32,
|
409 |
|
|
0x1234,
|
410 |
|
|
(-1 << 15) | 0x8765,
|
411 |
|
|
0x0180,
|
412 |
|
|
(-1 << 15) | 0x8001
|
413 |
|
|
};
|
414 |
|
|
|
415 |
|
|
/* Use `24s' to generate 24-bit signed values. Good for selecting
|
416 |
|
|
``interesting'' constants from -2^23 to 2^23-1. */
|
417 |
|
|
int random_order_24s[] =
|
418 |
|
|
{
|
419 |
|
|
/* Sequence generated by hand, to explore limit values and a few
|
420 |
|
|
intermediate values selected by chance. Keep the number of
|
421 |
|
|
intermediate values low, to ensure that the limit values are
|
422 |
|
|
generated often enough. */
|
423 |
|
|
-1 << 23,
|
424 |
|
|
1 << 23 -1,
|
425 |
|
|
(-1 << 23) | (((64 << 8) | 32) << 8) | 16,
|
426 |
|
|
(((64 << 8) | 32) << 8) | 16,
|
427 |
|
|
0x123456,
|
428 |
|
|
(-1 << 23) | 0x876543,
|
429 |
|
|
0x01ff80,
|
430 |
|
|
(-1 << 23) | 0x80ff01
|
431 |
|
|
};
|
432 |
|
|
|
433 |
|
|
/* Use `32s' to generate 32-bit signed values. Good for selecting
|
434 |
|
|
``interesting'' constants from -2^31 to 2^31-1. */
|
435 |
|
|
int random_order_32s[] =
|
436 |
|
|
{
|
437 |
|
|
/* Sequence generated by hand, to explore limit values and a few
|
438 |
|
|
intermediate values selected by chance. Keep the number of
|
439 |
|
|
intermediate values low, to ensure that the limit values are
|
440 |
|
|
generated often enough. */
|
441 |
|
|
-1 << 31,
|
442 |
|
|
1 << 31 - 1,
|
443 |
|
|
(-1 << 31) | (((((64 << 8) | 32) << 8) | 16) << 8) | 8,
|
444 |
|
|
(((((64 << 8) | 32) << 8) | 16) << 8) | 8,
|
445 |
|
|
0x12345678,
|
446 |
|
|
(-1 << 31) | 0x87654321,
|
447 |
|
|
0x01ffff80,
|
448 |
|
|
(-1 << 31) | 0x80ffff01
|
449 |
|
|
};
|
450 |
|
|
|
451 |
|
|
/* This function computes the number of digits needed to represent a
|
452 |
|
|
given number. */
|
453 |
|
|
unsigned long
|
454 |
|
|
ulen (unsigned long i, unsigned base)
|
455 |
|
|
{
|
456 |
|
|
int count = 0;
|
457 |
|
|
|
458 |
|
|
if (i == 0)
|
459 |
|
|
return 1;
|
460 |
|
|
for (; i > 0; ++ count)
|
461 |
|
|
i /= base;
|
462 |
|
|
return count;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* Use this to generate a signed constant of the given size, shifted
|
466 |
|
|
by the given amount, with the specified endianness. */
|
467 |
|
|
int
|
468 |
|
|
signed_constant (func_arg * arg, insn_data * data)
|
469 |
|
|
#define signed_constant(bits, shift, revert) \
|
470 |
|
|
{ signed_constant, { i1: shift, i2: bits * (revert ? -1 : 1), \
|
471 |
|
|
mk_get_bits (bits ## s) } }
|
472 |
|
|
{
|
473 |
|
|
long val = get_bits_from_size ((unsigned *) arg->p2, arg->i3);
|
474 |
|
|
int len = (val >= 0 ? ulen (val, 10) : (1 + ulen (-val, 10)));
|
475 |
|
|
int nbits = (arg->i2 >= 0 ? arg->i2 : -arg->i2);
|
476 |
|
|
word bits = ((word) val) & (((((word) 1) << (nbits - 1)) << 1) - 1);
|
477 |
|
|
|
478 |
|
|
data->as_in = data->dis_out = malloc (len + 1);
|
479 |
|
|
sprintf (data->as_in, "%ld", val);
|
480 |
|
|
if (arg->i2 < 0)
|
481 |
|
|
{
|
482 |
|
|
word rbits = 0;
|
483 |
|
|
|
484 |
|
|
do
|
485 |
|
|
{
|
486 |
|
|
rbits <<= 8;
|
487 |
|
|
rbits |= bits & 0xff;
|
488 |
|
|
bits >>= 8;
|
489 |
|
|
nbits -= 8;
|
490 |
|
|
}
|
491 |
|
|
while (nbits > 0);
|
492 |
|
|
|
493 |
|
|
bits = rbits;
|
494 |
|
|
}
|
495 |
|
|
data->bits = bits << arg->i1;
|
496 |
|
|
|
497 |
|
|
return 0;
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
/* Use this to generate a unsigned constant of the given size, shifted
|
501 |
|
|
by the given amount, with the specified endianness. */
|
502 |
|
|
int
|
503 |
|
|
unsigned_constant (func_arg * arg, insn_data * data)
|
504 |
|
|
#define unsigned_constant(bits, shift, revert) \
|
505 |
|
|
{ unsigned_constant, { i1: shift, i2: bits * (revert ? -1 : 1), \
|
506 |
|
|
mk_get_bits (bits ## s) } }
|
507 |
|
|
{
|
508 |
|
|
int nbits = (arg->i2 >= 0 ? arg->i2 : -arg->i2);
|
509 |
|
|
unsigned long val =
|
510 |
|
|
get_bits_from_size ((unsigned *) arg->p2, arg->i3)
|
511 |
|
|
& (((((word) 1) << (nbits - 1)) << 1) - 1);
|
512 |
|
|
int len = ulen (val, 10);
|
513 |
|
|
word bits = val;
|
514 |
|
|
|
515 |
|
|
data->as_in = data->dis_out = malloc (len + 1);
|
516 |
|
|
sprintf (data->as_in, "%lu", val);
|
517 |
|
|
if (arg->i2 < 0)
|
518 |
|
|
{
|
519 |
|
|
word rbits = 0;
|
520 |
|
|
|
521 |
|
|
do
|
522 |
|
|
{
|
523 |
|
|
rbits <<= 8;
|
524 |
|
|
rbits |= bits & 0xff;
|
525 |
|
|
bits >>= 8;
|
526 |
|
|
nbits -= 8;
|
527 |
|
|
}
|
528 |
|
|
while (nbits > 0);
|
529 |
|
|
|
530 |
|
|
bits = rbits;
|
531 |
|
|
}
|
532 |
|
|
data->bits = bits << arg->i1;
|
533 |
|
|
|
534 |
|
|
return 0;
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/* Use this to generate an absolute address of the given size, shifted
|
538 |
|
|
by the given amount, with the specified endianness. */
|
539 |
|
|
int
|
540 |
|
|
absolute_address (func_arg *arg, insn_data *data)
|
541 |
|
|
#define absolute_address (bits, shift, revert) \
|
542 |
|
|
{ absolute_address, { i1: shift, i2: bits * (revert ? -1 : 1), \
|
543 |
|
|
mk_get_bits (bits ## s) } }
|
544 |
|
|
{
|
545 |
|
|
int nbits = (arg->i2 >= 0 ? arg->i2 : -arg->i2);
|
546 |
|
|
unsigned long val =
|
547 |
|
|
get_bits_from_size ((unsigned *) arg->p2, arg->i3)
|
548 |
|
|
& (((((word) 1) << (nbits - 1)) << 1) - 1);
|
549 |
|
|
word bits = val;
|
550 |
|
|
|
551 |
|
|
data->as_in = malloc (ulen (val, 10) + 1);
|
552 |
|
|
sprintf (data->as_in, "%lu", val);
|
553 |
|
|
data->dis_out = malloc (nbits / 4 + 11);
|
554 |
|
|
sprintf (data->dis_out, "0*%0*lx <[^>]*>", nbits / 4, val);
|
555 |
|
|
if (arg->i2 < 0)
|
556 |
|
|
{
|
557 |
|
|
word rbits = 0;
|
558 |
|
|
|
559 |
|
|
do
|
560 |
|
|
{
|
561 |
|
|
rbits <<= 8;
|
562 |
|
|
rbits |= bits & 0xff;
|
563 |
|
|
bits >>= 8;
|
564 |
|
|
nbits -= 8;
|
565 |
|
|
}
|
566 |
|
|
while (nbits > 0);
|
567 |
|
|
|
568 |
|
|
bits = rbits;
|
569 |
|
|
}
|
570 |
|
|
data->bits = bits << arg->i1;
|
571 |
|
|
|
572 |
|
|
return 0;
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/* Use this to generate a register name that starts with a given
|
576 |
|
|
prefix, and is followed by a number generated by `gen' (see
|
577 |
|
|
mk_get_bits below). The register number is shifted `shift' bits
|
578 |
|
|
left before being stored in the binary insn. */
|
579 |
|
|
int
|
580 |
|
|
reg_p (func_arg *arg, insn_data *data)
|
581 |
|
|
#define reg_p(prefix,shift,gen) \
|
582 |
|
|
{ reg_p, { i1: (shift), p1: (prefix), gen } }
|
583 |
|
|
{
|
584 |
|
|
unsigned reg = get_bits_from_size ((unsigned *) arg->p2, arg->i3);
|
585 |
|
|
char *regname = (char *) arg->p1;
|
586 |
|
|
|
587 |
|
|
data->as_in = data->dis_out = malloc (strlen (regname) + ulen (reg, 10) + 1);
|
588 |
|
|
sprintf (data->as_in, "%s%u", regname, reg);
|
589 |
|
|
data->bits = reg;
|
590 |
|
|
data->bits <<= arg->i1;
|
591 |
|
|
return 0;
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
/* Use this to generate a register name taken from an array. The
|
595 |
|
|
index into the array `names' is to be produced by `gen', but `mask'
|
596 |
|
|
may be used to filter out some of the bits before choosing the
|
597 |
|
|
disassembler output and the bits for the binary insn, shifted left
|
598 |
|
|
by `shift'. For example, if registers have canonical names, but
|
599 |
|
|
can also be referred to by aliases, the array can be n times larger
|
600 |
|
|
than the actual number of registers, and the mask is then used to
|
601 |
|
|
pick the canonical name for the disassembler output, and to
|
602 |
|
|
eliminate the extra bits from the binary output. */
|
603 |
|
|
int
|
604 |
|
|
reg_r (func_arg *arg, insn_data *data)
|
605 |
|
|
#define reg_r(names,shift,mask,gen) \
|
606 |
|
|
{ reg_r, { i1: (shift), i2: (mask), p1: (names), gen } }
|
607 |
|
|
{
|
608 |
|
|
unsigned reg = get_bits_from_size ((unsigned *) arg->p2, arg->i3);
|
609 |
|
|
|
610 |
|
|
data->as_in = strdup (((const char **) arg->p1)[reg]);
|
611 |
|
|
reg &= arg->i2;
|
612 |
|
|
data->dis_out = strdup (((const char **) arg->p1)[reg]);
|
613 |
|
|
data->bits = reg;
|
614 |
|
|
data->bits <<= arg->i1;
|
615 |
|
|
return 0;
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
/* Given a NULL-terminated array of insns-definitions (pointers to
|
619 |
|
|
arrays of funcs), output test code for the insns to as_in (assembly
|
620 |
|
|
input) and dis_out (expected disassembler output). */
|
621 |
|
|
void
|
622 |
|
|
output_insns (func **insn, FILE *as_in, FILE *dis_out)
|
623 |
|
|
{
|
624 |
|
|
for (; *insn; ++insn)
|
625 |
|
|
{
|
626 |
|
|
insn_data *data;
|
627 |
|
|
func *parts = *insn;
|
628 |
|
|
int part_count = 0, r;
|
629 |
|
|
|
630 |
|
|
/* Figure out how many funcs have to be called. */
|
631 |
|
|
while (parts[part_count].func)
|
632 |
|
|
++part_count;
|
633 |
|
|
|
634 |
|
|
/* Allocate storage for the output area of each func. */
|
635 |
|
|
data = (insn_data*) malloc (part_count * sizeof (insn_data));
|
636 |
|
|
|
637 |
|
|
#if SIMPLIFY_OUTPUT
|
638 |
|
|
randomization_counter = 0;
|
639 |
|
|
#else
|
640 |
|
|
/* Repeat each insn several times. */
|
641 |
|
|
for (r = 0; r < INSN_REPEAT; ++r)
|
642 |
|
|
#endif
|
643 |
|
|
{
|
644 |
|
|
unsigned saved_rc = randomization_counter;
|
645 |
|
|
int part;
|
646 |
|
|
word bits = 0;
|
647 |
|
|
|
648 |
|
|
for (part = 0; part < part_count; ++part)
|
649 |
|
|
{
|
650 |
|
|
/* Zero-initialize the storage. */
|
651 |
|
|
data[part].as_in = data[part].dis_out = 0;
|
652 |
|
|
data[part].bits = 0;
|
653 |
|
|
/* If a func returns non-zero, skip this line. */
|
654 |
|
|
if (parts[part].func (&parts[part].arg, &data[part]))
|
655 |
|
|
goto skip;
|
656 |
|
|
/* Otherwise, get its output bit pattern into the total
|
657 |
|
|
bit pattern. */
|
658 |
|
|
bits |= data[part].bits;
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
if (as_in)
|
662 |
|
|
{
|
663 |
|
|
/* Output the whole assembly line. */
|
664 |
|
|
fputc ('\t', as_in);
|
665 |
|
|
for (part = 0; part < part_count; ++part)
|
666 |
|
|
if (data[part].as_in)
|
667 |
|
|
fputs (data[part].as_in, as_in);
|
668 |
|
|
fputc ('\n', as_in);
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
if (dis_out)
|
672 |
|
|
{
|
673 |
|
|
/* Output the disassembler expected output line,
|
674 |
|
|
starting with the offset and the insn binary pattern,
|
675 |
|
|
just like objdump outputs. Because objdump sometimes
|
676 |
|
|
inserts spaces between each byte in the insn binary
|
677 |
|
|
pattern, make the space optional. */
|
678 |
|
|
fprintf (dis_out, "0*%x <", current_offset);
|
679 |
|
|
if (last_label_name)
|
680 |
|
|
if (current_offset == last_label_offset)
|
681 |
|
|
fputs (last_label_name, dis_out);
|
682 |
|
|
else
|
683 |
|
|
fprintf (dis_out, "%s\\+0x%x", last_label_name,
|
684 |
|
|
current_offset - last_label_offset);
|
685 |
|
|
else
|
686 |
|
|
fputs ("[^>]*", dis_out);
|
687 |
|
|
fputs ("> ", dis_out);
|
688 |
|
|
for (part = insn_size; part-- > 0; )
|
689 |
|
|
fprintf (dis_out, "%02x ?", (int)(bits >> (part * 8)) & 0xff);
|
690 |
|
|
fputs (" *\t", dis_out);
|
691 |
|
|
|
692 |
|
|
#if DISASSEMBLER_TEST
|
693 |
|
|
for (part = 0; part < part_count; ++part)
|
694 |
|
|
if (data[part].dis_out)
|
695 |
|
|
fputs (data[part].dis_out, dis_out);
|
696 |
|
|
#else
|
697 |
|
|
/* If we're not testing the DISASSEMBLER, just match
|
698 |
|
|
anything. */
|
699 |
|
|
fputs (".*", dis_out);
|
700 |
|
|
#endif
|
701 |
|
|
fputc ('\n', dis_out);
|
702 |
|
|
#if OUTPUT_RANDOMIZATION_COUNTER
|
703 |
|
|
fprintf (dis_out, "# %i\n", randomization_counter);
|
704 |
|
|
#endif
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/* Account for the insn_size bytes we've just output. */
|
708 |
|
|
current_offset += insn_size;
|
709 |
|
|
|
710 |
|
|
/* Release the memory that each func may have allocated. */
|
711 |
|
|
for (; part-- > 0;)
|
712 |
|
|
{
|
713 |
|
|
skip:
|
714 |
|
|
if (data[part].as_in)
|
715 |
|
|
free (data[part].as_in);
|
716 |
|
|
if (data[part].dis_out
|
717 |
|
|
&& data[part].dis_out != data[part].as_in)
|
718 |
|
|
free (data[part].dis_out);
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/* There's nothing random here, don't repeat this insn. */
|
722 |
|
|
if (randomization_counter == saved_rc)
|
723 |
|
|
break;
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
free (data);
|
727 |
|
|
}
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
/* For each group, output an asm label and the insns of the group. */
|
731 |
|
|
void
|
732 |
|
|
output_groups (group_t group[], FILE *as_in, FILE *dis_out)
|
733 |
|
|
{
|
734 |
|
|
for (; group->name; ++group)
|
735 |
|
|
{
|
736 |
|
|
fprintf (as_in, "%s:\n", group->name);
|
737 |
|
|
fprintf (dis_out, "# %s:\n", group->name);
|
738 |
|
|
last_label_offset = current_offset;
|
739 |
|
|
last_label_name = group->name;
|
740 |
|
|
output_insns (group->insns, as_in, dis_out);
|
741 |
|
|
}
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
#endif
|