1 |
205 |
julius |
// dwarf_reader.cc -- parse dwarf2/3 debug information
|
2 |
|
|
|
3 |
|
|
// Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
|
4 |
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
5 |
|
|
|
6 |
|
|
// This file is part of gold.
|
7 |
|
|
|
8 |
|
|
// This program is free software; you can redistribute it and/or modify
|
9 |
|
|
// it under the terms of the GNU General Public License as published by
|
10 |
|
|
// the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
// (at your option) any later version.
|
12 |
|
|
|
13 |
|
|
// This program is distributed in the hope that it will be useful,
|
14 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
// GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
// You should have received a copy of the GNU General Public License
|
19 |
|
|
// along with this program; if not, write to the Free Software
|
20 |
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
21 |
|
|
// MA 02110-1301, USA.
|
22 |
|
|
|
23 |
|
|
#include "gold.h"
|
24 |
|
|
|
25 |
|
|
#include <algorithm>
|
26 |
|
|
#include <vector>
|
27 |
|
|
|
28 |
|
|
#include "elfcpp_swap.h"
|
29 |
|
|
#include "dwarf.h"
|
30 |
|
|
#include "object.h"
|
31 |
|
|
#include "parameters.h"
|
32 |
|
|
#include "reloc.h"
|
33 |
|
|
#include "dwarf_reader.h"
|
34 |
|
|
|
35 |
|
|
namespace gold {
|
36 |
|
|
|
37 |
|
|
// Read an unsigned LEB128 number. Each byte contains 7 bits of
|
38 |
|
|
// information, plus one bit saying whether the number continues or
|
39 |
|
|
// not.
|
40 |
|
|
|
41 |
|
|
uint64_t
|
42 |
|
|
read_unsigned_LEB_128(const unsigned char* buffer, size_t* len)
|
43 |
|
|
{
|
44 |
|
|
uint64_t result = 0;
|
45 |
|
|
size_t num_read = 0;
|
46 |
|
|
unsigned int shift = 0;
|
47 |
|
|
unsigned char byte;
|
48 |
|
|
|
49 |
|
|
do
|
50 |
|
|
{
|
51 |
|
|
if (num_read >= 64 / 7)
|
52 |
|
|
{
|
53 |
|
|
gold_warning(_("Unusually large LEB128 decoded, "
|
54 |
|
|
"debug information may be corrupted"));
|
55 |
|
|
break;
|
56 |
|
|
}
|
57 |
|
|
byte = *buffer++;
|
58 |
|
|
num_read++;
|
59 |
|
|
result |= (static_cast<uint64_t>(byte & 0x7f)) << shift;
|
60 |
|
|
shift += 7;
|
61 |
|
|
}
|
62 |
|
|
while (byte & 0x80);
|
63 |
|
|
|
64 |
|
|
*len = num_read;
|
65 |
|
|
|
66 |
|
|
return result;
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
// Read a signed LEB128 number. These are like regular LEB128
|
70 |
|
|
// numbers, except the last byte may have a sign bit set.
|
71 |
|
|
|
72 |
|
|
int64_t
|
73 |
|
|
read_signed_LEB_128(const unsigned char* buffer, size_t* len)
|
74 |
|
|
{
|
75 |
|
|
int64_t result = 0;
|
76 |
|
|
int shift = 0;
|
77 |
|
|
size_t num_read = 0;
|
78 |
|
|
unsigned char byte;
|
79 |
|
|
|
80 |
|
|
do
|
81 |
|
|
{
|
82 |
|
|
if (num_read >= 64 / 7)
|
83 |
|
|
{
|
84 |
|
|
gold_warning(_("Unusually large LEB128 decoded, "
|
85 |
|
|
"debug information may be corrupted"));
|
86 |
|
|
break;
|
87 |
|
|
}
|
88 |
|
|
byte = *buffer++;
|
89 |
|
|
num_read++;
|
90 |
|
|
result |= (static_cast<uint64_t>(byte & 0x7f) << shift);
|
91 |
|
|
shift += 7;
|
92 |
|
|
}
|
93 |
|
|
while (byte & 0x80);
|
94 |
|
|
|
95 |
|
|
if ((shift < 8 * static_cast<int>(sizeof(result))) && (byte & 0x40))
|
96 |
|
|
result |= -((static_cast<int64_t>(1)) << shift);
|
97 |
|
|
*len = num_read;
|
98 |
|
|
return result;
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
// This is the format of a DWARF2/3 line state machine that we process
|
102 |
|
|
// opcodes using. There is no need for anything outside the lineinfo
|
103 |
|
|
// processor to know how this works.
|
104 |
|
|
|
105 |
|
|
struct LineStateMachine
|
106 |
|
|
{
|
107 |
|
|
int file_num;
|
108 |
|
|
uint64_t address;
|
109 |
|
|
int line_num;
|
110 |
|
|
int column_num;
|
111 |
|
|
unsigned int shndx; // the section address refers to
|
112 |
|
|
bool is_stmt; // stmt means statement.
|
113 |
|
|
bool basic_block;
|
114 |
|
|
bool end_sequence;
|
115 |
|
|
};
|
116 |
|
|
|
117 |
|
|
static void
|
118 |
|
|
ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
|
119 |
|
|
{
|
120 |
|
|
lsm->file_num = 1;
|
121 |
|
|
lsm->address = 0;
|
122 |
|
|
lsm->line_num = 1;
|
123 |
|
|
lsm->column_num = 0;
|
124 |
|
|
lsm->shndx = -1U;
|
125 |
|
|
lsm->is_stmt = default_is_stmt;
|
126 |
|
|
lsm->basic_block = false;
|
127 |
|
|
lsm->end_sequence = false;
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
template<int size, bool big_endian>
|
131 |
|
|
Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
|
132 |
|
|
unsigned int read_shndx)
|
133 |
|
|
: data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
|
134 |
|
|
directories_(), files_(), current_header_index_(-1)
|
135 |
|
|
{
|
136 |
|
|
unsigned int debug_shndx;
|
137 |
|
|
for (debug_shndx = 0; debug_shndx < object->shnum(); ++debug_shndx)
|
138 |
|
|
// FIXME: do this more efficiently: section_name() isn't super-fast
|
139 |
|
|
if (object->section_name(debug_shndx) == ".debug_line")
|
140 |
|
|
{
|
141 |
|
|
section_size_type buffer_size;
|
142 |
|
|
this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
|
143 |
|
|
false);
|
144 |
|
|
this->buffer_end_ = this->buffer_ + buffer_size;
|
145 |
|
|
break;
|
146 |
|
|
}
|
147 |
|
|
if (this->buffer_ == NULL)
|
148 |
|
|
return;
|
149 |
|
|
|
150 |
|
|
// Find the relocation section for ".debug_line".
|
151 |
|
|
// We expect these for relobjs (.o's) but not dynobjs (.so's).
|
152 |
|
|
bool got_relocs = false;
|
153 |
|
|
for (unsigned int reloc_shndx = 0;
|
154 |
|
|
reloc_shndx < object->shnum();
|
155 |
|
|
++reloc_shndx)
|
156 |
|
|
{
|
157 |
|
|
unsigned int reloc_sh_type = object->section_type(reloc_shndx);
|
158 |
|
|
if ((reloc_sh_type == elfcpp::SHT_REL
|
159 |
|
|
|| reloc_sh_type == elfcpp::SHT_RELA)
|
160 |
|
|
&& object->section_info(reloc_shndx) == debug_shndx)
|
161 |
|
|
{
|
162 |
|
|
got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
|
163 |
|
|
reloc_sh_type);
|
164 |
|
|
break;
|
165 |
|
|
}
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
// Finally, we need the symtab section to interpret the relocs.
|
169 |
|
|
if (got_relocs)
|
170 |
|
|
{
|
171 |
|
|
unsigned int symtab_shndx;
|
172 |
|
|
for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
|
173 |
|
|
if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
|
174 |
|
|
{
|
175 |
|
|
this->symtab_buffer_ = object->section_contents(
|
176 |
|
|
symtab_shndx, &this->symtab_buffer_size_, false);
|
177 |
|
|
break;
|
178 |
|
|
}
|
179 |
|
|
if (this->symtab_buffer_ == NULL)
|
180 |
|
|
return;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
// Now that we have successfully read all the data, parse the debug
|
184 |
|
|
// info.
|
185 |
|
|
this->data_valid_ = true;
|
186 |
|
|
this->read_line_mappings(object, read_shndx);
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
// Read the DWARF header.
|
190 |
|
|
|
191 |
|
|
template<int size, bool big_endian>
|
192 |
|
|
const unsigned char*
|
193 |
|
|
Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
|
194 |
|
|
const unsigned char* lineptr)
|
195 |
|
|
{
|
196 |
|
|
uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
|
197 |
|
|
lineptr += 4;
|
198 |
|
|
|
199 |
|
|
// In DWARF2/3, if the initial length is all 1 bits, then the offset
|
200 |
|
|
// size is 8 and we need to read the next 8 bytes for the real length.
|
201 |
|
|
if (initial_length == 0xffffffff)
|
202 |
|
|
{
|
203 |
|
|
header_.offset_size = 8;
|
204 |
|
|
initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
|
205 |
|
|
lineptr += 8;
|
206 |
|
|
}
|
207 |
|
|
else
|
208 |
|
|
header_.offset_size = 4;
|
209 |
|
|
|
210 |
|
|
header_.total_length = initial_length;
|
211 |
|
|
|
212 |
|
|
gold_assert(lineptr + header_.total_length <= buffer_end_);
|
213 |
|
|
|
214 |
|
|
header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
|
215 |
|
|
lineptr += 2;
|
216 |
|
|
|
217 |
|
|
if (header_.offset_size == 4)
|
218 |
|
|
header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
|
219 |
|
|
else
|
220 |
|
|
header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
|
221 |
|
|
lineptr += header_.offset_size;
|
222 |
|
|
|
223 |
|
|
header_.min_insn_length = *lineptr;
|
224 |
|
|
lineptr += 1;
|
225 |
|
|
|
226 |
|
|
header_.default_is_stmt = *lineptr;
|
227 |
|
|
lineptr += 1;
|
228 |
|
|
|
229 |
|
|
header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
|
230 |
|
|
lineptr += 1;
|
231 |
|
|
|
232 |
|
|
header_.line_range = *lineptr;
|
233 |
|
|
lineptr += 1;
|
234 |
|
|
|
235 |
|
|
header_.opcode_base = *lineptr;
|
236 |
|
|
lineptr += 1;
|
237 |
|
|
|
238 |
|
|
header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
|
239 |
|
|
header_.std_opcode_lengths[0] = 0;
|
240 |
|
|
for (int i = 1; i < header_.opcode_base; i++)
|
241 |
|
|
{
|
242 |
|
|
header_.std_opcode_lengths[i] = *lineptr;
|
243 |
|
|
lineptr += 1;
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
return lineptr;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
// The header for a debug_line section is mildly complicated, because
|
250 |
|
|
// the line info is very tightly encoded.
|
251 |
|
|
|
252 |
|
|
template<int size, bool big_endian>
|
253 |
|
|
const unsigned char*
|
254 |
|
|
Sized_dwarf_line_info<size, big_endian>::read_header_tables(
|
255 |
|
|
const unsigned char* lineptr)
|
256 |
|
|
{
|
257 |
|
|
++this->current_header_index_;
|
258 |
|
|
|
259 |
|
|
// Create a new directories_ entry and a new files_ entry for our new
|
260 |
|
|
// header. We initialize each with a single empty element, because
|
261 |
|
|
// dwarf indexes directory and filenames starting at 1.
|
262 |
|
|
gold_assert(static_cast<int>(this->directories_.size())
|
263 |
|
|
== this->current_header_index_);
|
264 |
|
|
gold_assert(static_cast<int>(this->files_.size())
|
265 |
|
|
== this->current_header_index_);
|
266 |
|
|
this->directories_.push_back(std::vector<std::string>(1));
|
267 |
|
|
this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
|
268 |
|
|
|
269 |
|
|
// It is legal for the directory entry table to be empty.
|
270 |
|
|
if (*lineptr)
|
271 |
|
|
{
|
272 |
|
|
int dirindex = 1;
|
273 |
|
|
while (*lineptr)
|
274 |
|
|
{
|
275 |
|
|
const char* dirname = reinterpret_cast<const char*>(lineptr);
|
276 |
|
|
gold_assert(dirindex
|
277 |
|
|
== static_cast<int>(this->directories_.back().size()));
|
278 |
|
|
this->directories_.back().push_back(dirname);
|
279 |
|
|
lineptr += this->directories_.back().back().size() + 1;
|
280 |
|
|
dirindex++;
|
281 |
|
|
}
|
282 |
|
|
}
|
283 |
|
|
lineptr++;
|
284 |
|
|
|
285 |
|
|
// It is also legal for the file entry table to be empty.
|
286 |
|
|
if (*lineptr)
|
287 |
|
|
{
|
288 |
|
|
int fileindex = 1;
|
289 |
|
|
size_t len;
|
290 |
|
|
while (*lineptr)
|
291 |
|
|
{
|
292 |
|
|
const char* filename = reinterpret_cast<const char*>(lineptr);
|
293 |
|
|
lineptr += strlen(filename) + 1;
|
294 |
|
|
|
295 |
|
|
uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
|
296 |
|
|
lineptr += len;
|
297 |
|
|
|
298 |
|
|
if (dirindex >= this->directories_.back().size())
|
299 |
|
|
dirindex = 0;
|
300 |
|
|
int dirindexi = static_cast<int>(dirindex);
|
301 |
|
|
|
302 |
|
|
read_unsigned_LEB_128(lineptr, &len); // mod_time
|
303 |
|
|
lineptr += len;
|
304 |
|
|
|
305 |
|
|
read_unsigned_LEB_128(lineptr, &len); // filelength
|
306 |
|
|
lineptr += len;
|
307 |
|
|
|
308 |
|
|
gold_assert(fileindex
|
309 |
|
|
== static_cast<int>(this->files_.back().size()));
|
310 |
|
|
this->files_.back().push_back(std::make_pair(dirindexi, filename));
|
311 |
|
|
fileindex++;
|
312 |
|
|
}
|
313 |
|
|
}
|
314 |
|
|
lineptr++;
|
315 |
|
|
|
316 |
|
|
return lineptr;
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
// Process a single opcode in the .debug.line structure.
|
320 |
|
|
|
321 |
|
|
// Templating on size and big_endian would yield more efficient (and
|
322 |
|
|
// simpler) code, but would bloat the binary. Speed isn't important
|
323 |
|
|
// here.
|
324 |
|
|
|
325 |
|
|
template<int size, bool big_endian>
|
326 |
|
|
bool
|
327 |
|
|
Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
|
328 |
|
|
const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
|
329 |
|
|
{
|
330 |
|
|
size_t oplen = 0;
|
331 |
|
|
size_t templen;
|
332 |
|
|
unsigned char opcode = *start;
|
333 |
|
|
oplen++;
|
334 |
|
|
start++;
|
335 |
|
|
|
336 |
|
|
// If the opcode is great than the opcode_base, it is a special
|
337 |
|
|
// opcode. Most line programs consist mainly of special opcodes.
|
338 |
|
|
if (opcode >= header_.opcode_base)
|
339 |
|
|
{
|
340 |
|
|
opcode -= header_.opcode_base;
|
341 |
|
|
const int advance_address = ((opcode / header_.line_range)
|
342 |
|
|
* header_.min_insn_length);
|
343 |
|
|
lsm->address += advance_address;
|
344 |
|
|
|
345 |
|
|
const int advance_line = ((opcode % header_.line_range)
|
346 |
|
|
+ header_.line_base);
|
347 |
|
|
lsm->line_num += advance_line;
|
348 |
|
|
lsm->basic_block = true;
|
349 |
|
|
*len = oplen;
|
350 |
|
|
return true;
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
// Otherwise, we have the regular opcodes
|
354 |
|
|
switch (opcode)
|
355 |
|
|
{
|
356 |
|
|
case elfcpp::DW_LNS_copy:
|
357 |
|
|
lsm->basic_block = false;
|
358 |
|
|
*len = oplen;
|
359 |
|
|
return true;
|
360 |
|
|
|
361 |
|
|
case elfcpp::DW_LNS_advance_pc:
|
362 |
|
|
{
|
363 |
|
|
const uint64_t advance_address
|
364 |
|
|
= read_unsigned_LEB_128(start, &templen);
|
365 |
|
|
oplen += templen;
|
366 |
|
|
lsm->address += header_.min_insn_length * advance_address;
|
367 |
|
|
}
|
368 |
|
|
break;
|
369 |
|
|
|
370 |
|
|
case elfcpp::DW_LNS_advance_line:
|
371 |
|
|
{
|
372 |
|
|
const uint64_t advance_line = read_signed_LEB_128(start, &templen);
|
373 |
|
|
oplen += templen;
|
374 |
|
|
lsm->line_num += advance_line;
|
375 |
|
|
}
|
376 |
|
|
break;
|
377 |
|
|
|
378 |
|
|
case elfcpp::DW_LNS_set_file:
|
379 |
|
|
{
|
380 |
|
|
const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
|
381 |
|
|
oplen += templen;
|
382 |
|
|
lsm->file_num = fileno;
|
383 |
|
|
}
|
384 |
|
|
break;
|
385 |
|
|
|
386 |
|
|
case elfcpp::DW_LNS_set_column:
|
387 |
|
|
{
|
388 |
|
|
const uint64_t colno = read_unsigned_LEB_128(start, &templen);
|
389 |
|
|
oplen += templen;
|
390 |
|
|
lsm->column_num = colno;
|
391 |
|
|
}
|
392 |
|
|
break;
|
393 |
|
|
|
394 |
|
|
case elfcpp::DW_LNS_negate_stmt:
|
395 |
|
|
lsm->is_stmt = !lsm->is_stmt;
|
396 |
|
|
break;
|
397 |
|
|
|
398 |
|
|
case elfcpp::DW_LNS_set_basic_block:
|
399 |
|
|
lsm->basic_block = true;
|
400 |
|
|
break;
|
401 |
|
|
|
402 |
|
|
case elfcpp::DW_LNS_fixed_advance_pc:
|
403 |
|
|
{
|
404 |
|
|
int advance_address;
|
405 |
|
|
advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
|
406 |
|
|
oplen += 2;
|
407 |
|
|
lsm->address += advance_address;
|
408 |
|
|
}
|
409 |
|
|
break;
|
410 |
|
|
|
411 |
|
|
case elfcpp::DW_LNS_const_add_pc:
|
412 |
|
|
{
|
413 |
|
|
const int advance_address = (header_.min_insn_length
|
414 |
|
|
* ((255 - header_.opcode_base)
|
415 |
|
|
/ header_.line_range));
|
416 |
|
|
lsm->address += advance_address;
|
417 |
|
|
}
|
418 |
|
|
break;
|
419 |
|
|
|
420 |
|
|
case elfcpp::DW_LNS_extended_op:
|
421 |
|
|
{
|
422 |
|
|
const uint64_t extended_op_len
|
423 |
|
|
= read_unsigned_LEB_128(start, &templen);
|
424 |
|
|
start += templen;
|
425 |
|
|
oplen += templen + extended_op_len;
|
426 |
|
|
|
427 |
|
|
const unsigned char extended_op = *start;
|
428 |
|
|
start++;
|
429 |
|
|
|
430 |
|
|
switch (extended_op)
|
431 |
|
|
{
|
432 |
|
|
case elfcpp::DW_LNE_end_sequence:
|
433 |
|
|
// This means that the current byte is the one immediately
|
434 |
|
|
// after a set of instructions. Record the current line
|
435 |
|
|
// for up to one less than the current address.
|
436 |
|
|
lsm->line_num = -1;
|
437 |
|
|
lsm->end_sequence = true;
|
438 |
|
|
*len = oplen;
|
439 |
|
|
return true;
|
440 |
|
|
|
441 |
|
|
case elfcpp::DW_LNE_set_address:
|
442 |
|
|
{
|
443 |
|
|
lsm->address = elfcpp::Swap_unaligned<size, big_endian>::readval(start);
|
444 |
|
|
typename Reloc_map::const_iterator it
|
445 |
|
|
= reloc_map_.find(start - this->buffer_);
|
446 |
|
|
if (it != reloc_map_.end())
|
447 |
|
|
{
|
448 |
|
|
// value + addend.
|
449 |
|
|
lsm->address += it->second.second;
|
450 |
|
|
lsm->shndx = it->second.first;
|
451 |
|
|
}
|
452 |
|
|
else
|
453 |
|
|
{
|
454 |
|
|
// If we're a normal .o file, with relocs, every
|
455 |
|
|
// set_address should have an associated relocation.
|
456 |
|
|
if (this->input_is_relobj())
|
457 |
|
|
this->data_valid_ = false;
|
458 |
|
|
}
|
459 |
|
|
break;
|
460 |
|
|
}
|
461 |
|
|
case elfcpp::DW_LNE_define_file:
|
462 |
|
|
{
|
463 |
|
|
const char* filename = reinterpret_cast<const char*>(start);
|
464 |
|
|
templen = strlen(filename) + 1;
|
465 |
|
|
start += templen;
|
466 |
|
|
|
467 |
|
|
uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
|
468 |
|
|
oplen += templen;
|
469 |
|
|
|
470 |
|
|
if (dirindex >= this->directories_.back().size())
|
471 |
|
|
dirindex = 0;
|
472 |
|
|
int dirindexi = static_cast<int>(dirindex);
|
473 |
|
|
|
474 |
|
|
read_unsigned_LEB_128(start, &templen); // mod_time
|
475 |
|
|
oplen += templen;
|
476 |
|
|
|
477 |
|
|
read_unsigned_LEB_128(start, &templen); // filelength
|
478 |
|
|
oplen += templen;
|
479 |
|
|
|
480 |
|
|
this->files_.back().push_back(std::make_pair(dirindexi,
|
481 |
|
|
filename));
|
482 |
|
|
}
|
483 |
|
|
break;
|
484 |
|
|
}
|
485 |
|
|
}
|
486 |
|
|
break;
|
487 |
|
|
|
488 |
|
|
default:
|
489 |
|
|
{
|
490 |
|
|
// Ignore unknown opcode silently
|
491 |
|
|
for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
|
492 |
|
|
{
|
493 |
|
|
size_t templen;
|
494 |
|
|
read_unsigned_LEB_128(start, &templen);
|
495 |
|
|
start += templen;
|
496 |
|
|
oplen += templen;
|
497 |
|
|
}
|
498 |
|
|
}
|
499 |
|
|
break;
|
500 |
|
|
}
|
501 |
|
|
*len = oplen;
|
502 |
|
|
return false;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
// Read the debug information at LINEPTR and store it in the line
|
506 |
|
|
// number map.
|
507 |
|
|
|
508 |
|
|
template<int size, bool big_endian>
|
509 |
|
|
unsigned const char*
|
510 |
|
|
Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
|
511 |
|
|
unsigned int shndx)
|
512 |
|
|
{
|
513 |
|
|
struct LineStateMachine lsm;
|
514 |
|
|
|
515 |
|
|
// LENGTHSTART is the place the length field is based on. It is the
|
516 |
|
|
// point in the header after the initial length field.
|
517 |
|
|
const unsigned char* lengthstart = buffer_;
|
518 |
|
|
|
519 |
|
|
// In 64 bit dwarf, the initial length is 12 bytes, because of the
|
520 |
|
|
// 0xffffffff at the start.
|
521 |
|
|
if (header_.offset_size == 8)
|
522 |
|
|
lengthstart += 12;
|
523 |
|
|
else
|
524 |
|
|
lengthstart += 4;
|
525 |
|
|
|
526 |
|
|
while (lineptr < lengthstart + header_.total_length)
|
527 |
|
|
{
|
528 |
|
|
ResetLineStateMachine(&lsm, header_.default_is_stmt);
|
529 |
|
|
while (!lsm.end_sequence)
|
530 |
|
|
{
|
531 |
|
|
size_t oplength;
|
532 |
|
|
bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
|
533 |
|
|
if (add_line
|
534 |
|
|
&& (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
|
535 |
|
|
{
|
536 |
|
|
Offset_to_lineno_entry entry
|
537 |
|
|
= { lsm.address, this->current_header_index_,
|
538 |
|
|
lsm.file_num, lsm.line_num };
|
539 |
|
|
line_number_map_[lsm.shndx].push_back(entry);
|
540 |
|
|
}
|
541 |
|
|
lineptr += oplength;
|
542 |
|
|
}
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
return lengthstart + header_.total_length;
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
// Looks in the symtab to see what section a symbol is in.
|
549 |
|
|
|
550 |
|
|
template<int size, bool big_endian>
|
551 |
|
|
unsigned int
|
552 |
|
|
Sized_dwarf_line_info<size, big_endian>::symbol_section(
|
553 |
|
|
Object* object,
|
554 |
|
|
unsigned int sym,
|
555 |
|
|
typename elfcpp::Elf_types<size>::Elf_Addr* value,
|
556 |
|
|
bool* is_ordinary)
|
557 |
|
|
{
|
558 |
|
|
const int symsize = elfcpp::Elf_sizes<size>::sym_size;
|
559 |
|
|
gold_assert(sym * symsize < this->symtab_buffer_size_);
|
560 |
|
|
elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
|
561 |
|
|
*value = elfsym.get_st_value();
|
562 |
|
|
return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
// Read the relocations into a Reloc_map.
|
566 |
|
|
|
567 |
|
|
template<int size, bool big_endian>
|
568 |
|
|
void
|
569 |
|
|
Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
|
570 |
|
|
{
|
571 |
|
|
if (this->symtab_buffer_ == NULL)
|
572 |
|
|
return;
|
573 |
|
|
|
574 |
|
|
typename elfcpp::Elf_types<size>::Elf_Addr value;
|
575 |
|
|
off_t reloc_offset;
|
576 |
|
|
while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
|
577 |
|
|
{
|
578 |
|
|
const unsigned int sym = this->track_relocs_.next_symndx();
|
579 |
|
|
|
580 |
|
|
bool is_ordinary;
|
581 |
|
|
const unsigned int shndx = this->symbol_section(object, sym, &value,
|
582 |
|
|
&is_ordinary);
|
583 |
|
|
|
584 |
|
|
// There is no reason to record non-ordinary section indexes, or
|
585 |
|
|
// SHN_UNDEF, because they will never match the real section.
|
586 |
|
|
if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
|
587 |
|
|
this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
|
588 |
|
|
|
589 |
|
|
this->track_relocs_.advance(reloc_offset + 1);
|
590 |
|
|
}
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
// Read the line number info.
|
594 |
|
|
|
595 |
|
|
template<int size, bool big_endian>
|
596 |
|
|
void
|
597 |
|
|
Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
|
598 |
|
|
unsigned int shndx)
|
599 |
|
|
{
|
600 |
|
|
gold_assert(this->data_valid_ == true);
|
601 |
|
|
|
602 |
|
|
this->read_relocs(object);
|
603 |
|
|
while (this->buffer_ < this->buffer_end_)
|
604 |
|
|
{
|
605 |
|
|
const unsigned char* lineptr = this->buffer_;
|
606 |
|
|
lineptr = this->read_header_prolog(lineptr);
|
607 |
|
|
lineptr = this->read_header_tables(lineptr);
|
608 |
|
|
lineptr = this->read_lines(lineptr, shndx);
|
609 |
|
|
this->buffer_ = lineptr;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
// Sort the lines numbers, so addr2line can use binary search.
|
613 |
|
|
for (typename Lineno_map::iterator it = line_number_map_.begin();
|
614 |
|
|
it != line_number_map_.end();
|
615 |
|
|
++it)
|
616 |
|
|
// Each vector needs to be sorted by offset.
|
617 |
|
|
std::sort(it->second.begin(), it->second.end());
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
// Some processing depends on whether the input is a .o file or not.
|
621 |
|
|
// For instance, .o files have relocs, and have .debug_lines
|
622 |
|
|
// information on a per section basis. .so files, on the other hand,
|
623 |
|
|
// lack relocs, and offsets are unique, so we can ignore the section
|
624 |
|
|
// information.
|
625 |
|
|
|
626 |
|
|
template<int size, bool big_endian>
|
627 |
|
|
bool
|
628 |
|
|
Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
|
629 |
|
|
{
|
630 |
|
|
// Only .o files have relocs and the symtab buffer that goes with them.
|
631 |
|
|
return this->symtab_buffer_ != NULL;
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
// Given an Offset_to_lineno_entry vector, and an offset, figure out
|
635 |
|
|
// if the offset points into a function according to the vector (see
|
636 |
|
|
// comments below for the algorithm). If it does, return an iterator
|
637 |
|
|
// into the vector that points to the line-number that contains that
|
638 |
|
|
// offset. If not, it returns vector::end().
|
639 |
|
|
|
640 |
|
|
static std::vector<Offset_to_lineno_entry>::const_iterator
|
641 |
|
|
offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
|
642 |
|
|
off_t offset)
|
643 |
|
|
{
|
644 |
|
|
const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
|
645 |
|
|
|
646 |
|
|
// lower_bound() returns the smallest offset which is >= lookup_key.
|
647 |
|
|
// If no offset in offsets is >= lookup_key, returns end().
|
648 |
|
|
std::vector<Offset_to_lineno_entry>::const_iterator it
|
649 |
|
|
= std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
|
650 |
|
|
|
651 |
|
|
// This code is easiest to understand with a concrete example.
|
652 |
|
|
// Here's a possible offsets array:
|
653 |
|
|
// {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
|
654 |
|
|
// {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
|
655 |
|
|
// {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
|
656 |
|
|
// {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
|
657 |
|
|
// {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
|
658 |
|
|
// {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
|
659 |
|
|
// {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
|
660 |
|
|
// {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
|
661 |
|
|
// {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
|
662 |
|
|
// {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
|
663 |
|
|
// {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
|
664 |
|
|
// {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
|
665 |
|
|
// {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
|
666 |
|
|
// {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
|
667 |
|
|
// {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
|
668 |
|
|
// {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
|
669 |
|
|
// {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
|
670 |
|
|
// {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
|
671 |
|
|
// {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
|
672 |
|
|
// The entries with line_num == -1 mark the end of a function: the
|
673 |
|
|
// associated offset is one past the last instruction in the
|
674 |
|
|
// function. This can correspond to the beginning of the next
|
675 |
|
|
// function (as is true for offset 3232); alternately, there can be
|
676 |
|
|
// a gap between the end of one function and the start of the next
|
677 |
|
|
// (as is true for some others, most obviously from 3236->5764).
|
678 |
|
|
//
|
679 |
|
|
// Case 1: lookup_key has offset == 10. lower_bound returns
|
680 |
|
|
// offsets[0]. Since it's not an exact match and we're
|
681 |
|
|
// at the beginning of offsets, we return end() (invalid).
|
682 |
|
|
// Case 2: lookup_key has offset 10000. lower_bound returns
|
683 |
|
|
// offset[19] (end()). We return end() (invalid).
|
684 |
|
|
// Case 3: lookup_key has offset == 3211. lower_bound matches
|
685 |
|
|
// offsets[0] exactly, and that's the entry we return.
|
686 |
|
|
// Case 4: lookup_key has offset == 3232. lower_bound returns
|
687 |
|
|
// offsets[4]. That's an exact match, but indicates
|
688 |
|
|
// end-of-function. We check if offsets[5] is also an
|
689 |
|
|
// exact match but not end-of-function. It is, so we
|
690 |
|
|
// return offsets[5].
|
691 |
|
|
// Case 5: lookup_key has offset == 3214. lower_bound returns
|
692 |
|
|
// offsets[1]. Since it's not an exact match, we back
|
693 |
|
|
// up to the offset that's < lookup_key, offsets[0].
|
694 |
|
|
// We note offsets[0] is a valid entry (not end-of-function),
|
695 |
|
|
// so that's the entry we return.
|
696 |
|
|
// Case 6: lookup_key has offset == 4000. lower_bound returns
|
697 |
|
|
// offsets[8]. Since it's not an exact match, we back
|
698 |
|
|
// up to offsets[7]. Since offsets[7] indicates
|
699 |
|
|
// end-of-function, we know lookup_key is between
|
700 |
|
|
// functions, so we return end() (not a valid offset).
|
701 |
|
|
// Case 7: lookup_key has offset == 5794. lower_bound returns
|
702 |
|
|
// offsets[17]. Since it's not an exact match, we back
|
703 |
|
|
// up to offsets[15]. Note we back up to the *first*
|
704 |
|
|
// entry with offset 5793, not just offsets[17-1].
|
705 |
|
|
// We note offsets[15] is a valid entry, so we return it.
|
706 |
|
|
// If offsets[15] had had line_num == -1, we would have
|
707 |
|
|
// checked offsets[16]. The reason for this is that
|
708 |
|
|
// 15 and 16 can be in an arbitrary order, since we sort
|
709 |
|
|
// only by offset. (Note it doesn't help to use line_number
|
710 |
|
|
// as a secondary sort key, since sometimes we want the -1
|
711 |
|
|
// to be first and sometimes we want it to be last.)
|
712 |
|
|
|
713 |
|
|
// This deals with cases (1) and (2).
|
714 |
|
|
if ((it == offsets->begin() && offset < it->offset)
|
715 |
|
|
|| it == offsets->end())
|
716 |
|
|
return offsets->end();
|
717 |
|
|
|
718 |
|
|
// This deals with cases (3) and (4).
|
719 |
|
|
if (offset == it->offset)
|
720 |
|
|
{
|
721 |
|
|
while (it != offsets->end()
|
722 |
|
|
&& it->offset == offset
|
723 |
|
|
&& it->line_num == -1)
|
724 |
|
|
++it;
|
725 |
|
|
if (it == offsets->end() || it->offset != offset)
|
726 |
|
|
return offsets->end();
|
727 |
|
|
else
|
728 |
|
|
return it;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
// This handles the first part of case (7) -- we back up to the
|
732 |
|
|
// *first* entry that has the offset that's behind us.
|
733 |
|
|
gold_assert(it != offsets->begin());
|
734 |
|
|
std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
|
735 |
|
|
--it;
|
736 |
|
|
const off_t range_value = it->offset;
|
737 |
|
|
while (it != offsets->begin() && (it-1)->offset == range_value)
|
738 |
|
|
--it;
|
739 |
|
|
|
740 |
|
|
// This handles cases (5), (6), and (7): if any entry in the
|
741 |
|
|
// equal_range [it, range_end) has a line_num != -1, it's a valid
|
742 |
|
|
// match. If not, we're not in a function.
|
743 |
|
|
for (; it != range_end; ++it)
|
744 |
|
|
if (it->line_num != -1)
|
745 |
|
|
return it;
|
746 |
|
|
return offsets->end();
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
// Return a string for a file name and line number.
|
750 |
|
|
|
751 |
|
|
template<int size, bool big_endian>
|
752 |
|
|
std::string
|
753 |
|
|
Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
|
754 |
|
|
off_t offset)
|
755 |
|
|
{
|
756 |
|
|
if (this->data_valid_ == false)
|
757 |
|
|
return "";
|
758 |
|
|
|
759 |
|
|
const std::vector<Offset_to_lineno_entry>* offsets;
|
760 |
|
|
// If we do not have reloc information, then our input is a .so or
|
761 |
|
|
// some similar data structure where all the information is held in
|
762 |
|
|
// the offset. In that case, we ignore the input shndx.
|
763 |
|
|
if (this->input_is_relobj())
|
764 |
|
|
offsets = &this->line_number_map_[shndx];
|
765 |
|
|
else
|
766 |
|
|
offsets = &this->line_number_map_[-1U];
|
767 |
|
|
if (offsets->empty())
|
768 |
|
|
return "";
|
769 |
|
|
|
770 |
|
|
typename std::vector<Offset_to_lineno_entry>::const_iterator it
|
771 |
|
|
= offset_to_iterator(offsets, offset);
|
772 |
|
|
if (it == offsets->end())
|
773 |
|
|
return "";
|
774 |
|
|
|
775 |
|
|
// Convert the file_num + line_num into a string.
|
776 |
|
|
std::string ret;
|
777 |
|
|
|
778 |
|
|
gold_assert(it->header_num < static_cast<int>(this->files_.size()));
|
779 |
|
|
gold_assert(it->file_num
|
780 |
|
|
< static_cast<int>(this->files_[it->header_num].size()));
|
781 |
|
|
const std::pair<int, std::string>& filename_pair
|
782 |
|
|
= this->files_[it->header_num][it->file_num];
|
783 |
|
|
const std::string& filename = filename_pair.second;
|
784 |
|
|
|
785 |
|
|
gold_assert(it->header_num < static_cast<int>(this->directories_.size()));
|
786 |
|
|
gold_assert(filename_pair.first
|
787 |
|
|
< static_cast<int>(this->directories_[it->header_num].size()));
|
788 |
|
|
const std::string& dirname
|
789 |
|
|
= this->directories_[it->header_num][filename_pair.first];
|
790 |
|
|
|
791 |
|
|
if (!dirname.empty())
|
792 |
|
|
{
|
793 |
|
|
ret += dirname;
|
794 |
|
|
ret += "/";
|
795 |
|
|
}
|
796 |
|
|
ret += filename;
|
797 |
|
|
if (ret.empty())
|
798 |
|
|
ret = "(unknown)";
|
799 |
|
|
|
800 |
|
|
char buffer[64]; // enough to hold a line number
|
801 |
|
|
snprintf(buffer, sizeof(buffer), "%d", it->line_num);
|
802 |
|
|
ret += ":";
|
803 |
|
|
ret += buffer;
|
804 |
|
|
|
805 |
|
|
return ret;
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
// Dwarf_line_info routines.
|
809 |
|
|
|
810 |
|
|
static unsigned int next_generation_count = 0;
|
811 |
|
|
|
812 |
|
|
struct Addr2line_cache_entry
|
813 |
|
|
{
|
814 |
|
|
Object* object;
|
815 |
|
|
unsigned int shndx;
|
816 |
|
|
Dwarf_line_info* dwarf_line_info;
|
817 |
|
|
unsigned int generation_count;
|
818 |
|
|
unsigned int access_count;
|
819 |
|
|
|
820 |
|
|
Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
|
821 |
|
|
: object(o), shndx(s), dwarf_line_info(d),
|
822 |
|
|
generation_count(next_generation_count), access_count(0)
|
823 |
|
|
{
|
824 |
|
|
if (next_generation_count < (1U << 31))
|
825 |
|
|
++next_generation_count;
|
826 |
|
|
}
|
827 |
|
|
};
|
828 |
|
|
// We expect this cache to be small, so don't bother with a hashtable
|
829 |
|
|
// or priority queue or anything: just use a simple vector.
|
830 |
|
|
static std::vector<Addr2line_cache_entry> addr2line_cache;
|
831 |
|
|
|
832 |
|
|
std::string
|
833 |
|
|
Dwarf_line_info::one_addr2line(Object* object,
|
834 |
|
|
unsigned int shndx, off_t offset,
|
835 |
|
|
size_t cache_size)
|
836 |
|
|
{
|
837 |
|
|
Dwarf_line_info* lineinfo = NULL;
|
838 |
|
|
std::vector<Addr2line_cache_entry>::iterator it;
|
839 |
|
|
|
840 |
|
|
// First, check the cache. If we hit, update the counts.
|
841 |
|
|
for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
|
842 |
|
|
{
|
843 |
|
|
if (it->object == object && it->shndx == shndx)
|
844 |
|
|
{
|
845 |
|
|
lineinfo = it->dwarf_line_info;
|
846 |
|
|
it->generation_count = next_generation_count;
|
847 |
|
|
// We cap generation_count at 2^31 -1 to avoid overflow.
|
848 |
|
|
if (next_generation_count < (1U << 31))
|
849 |
|
|
++next_generation_count;
|
850 |
|
|
// We cap access_count at 31 so 2^access_count doesn't overflow
|
851 |
|
|
if (it->access_count < 31)
|
852 |
|
|
++it->access_count;
|
853 |
|
|
break;
|
854 |
|
|
}
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
// If we don't hit the cache, create a new object and insert into the
|
858 |
|
|
// cache.
|
859 |
|
|
if (lineinfo == NULL)
|
860 |
|
|
{
|
861 |
|
|
switch (parameters->size_and_endianness())
|
862 |
|
|
{
|
863 |
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
864 |
|
|
case Parameters::TARGET_32_LITTLE:
|
865 |
|
|
lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
|
866 |
|
|
#endif
|
867 |
|
|
#ifdef HAVE_TARGET_32_BIG
|
868 |
|
|
case Parameters::TARGET_32_BIG:
|
869 |
|
|
lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
|
870 |
|
|
#endif
|
871 |
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
872 |
|
|
case Parameters::TARGET_64_LITTLE:
|
873 |
|
|
lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
|
874 |
|
|
#endif
|
875 |
|
|
#ifdef HAVE_TARGET_64_BIG
|
876 |
|
|
case Parameters::TARGET_64_BIG:
|
877 |
|
|
lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
|
878 |
|
|
#endif
|
879 |
|
|
default:
|
880 |
|
|
gold_unreachable();
|
881 |
|
|
}
|
882 |
|
|
addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
// Now that we have our object, figure out the answer
|
886 |
|
|
std::string retval = lineinfo->addr2line(shndx, offset);
|
887 |
|
|
|
888 |
|
|
// Finally, if our cache has grown too big, delete old objects. We
|
889 |
|
|
// assume the common (probably only) case is deleting only one object.
|
890 |
|
|
// We use a pretty simple scheme to evict: function of LRU and MFU.
|
891 |
|
|
while (addr2line_cache.size() > cache_size)
|
892 |
|
|
{
|
893 |
|
|
unsigned int lowest_score = ~0U;
|
894 |
|
|
std::vector<Addr2line_cache_entry>::iterator lowest
|
895 |
|
|
= addr2line_cache.end();
|
896 |
|
|
for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
|
897 |
|
|
{
|
898 |
|
|
const unsigned int score = (it->generation_count
|
899 |
|
|
+ (1U << it->access_count));
|
900 |
|
|
if (score < lowest_score)
|
901 |
|
|
{
|
902 |
|
|
lowest_score = score;
|
903 |
|
|
lowest = it;
|
904 |
|
|
}
|
905 |
|
|
}
|
906 |
|
|
if (lowest != addr2line_cache.end())
|
907 |
|
|
{
|
908 |
|
|
delete lowest->dwarf_line_info;
|
909 |
|
|
addr2line_cache.erase(lowest);
|
910 |
|
|
}
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
return retval;
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
void
|
917 |
|
|
Dwarf_line_info::clear_addr2line_cache()
|
918 |
|
|
{
|
919 |
|
|
for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
|
920 |
|
|
it != addr2line_cache.end();
|
921 |
|
|
++it)
|
922 |
|
|
delete it->dwarf_line_info;
|
923 |
|
|
addr2line_cache.clear();
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
927 |
|
|
template
|
928 |
|
|
class Sized_dwarf_line_info<32, false>;
|
929 |
|
|
#endif
|
930 |
|
|
|
931 |
|
|
#ifdef HAVE_TARGET_32_BIG
|
932 |
|
|
template
|
933 |
|
|
class Sized_dwarf_line_info<32, true>;
|
934 |
|
|
#endif
|
935 |
|
|
|
936 |
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
937 |
|
|
template
|
938 |
|
|
class Sized_dwarf_line_info<64, false>;
|
939 |
|
|
#endif
|
940 |
|
|
|
941 |
|
|
#ifdef HAVE_TARGET_64_BIG
|
942 |
|
|
template
|
943 |
|
|
class Sized_dwarf_line_info<64, true>;
|
944 |
|
|
#endif
|
945 |
|
|
|
946 |
|
|
} // End namespace gold.
|