OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [gold/] [dynobj.cc] - Blame information for rev 438

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
// dynobj.cc -- dynamic object support for gold
2
 
3
// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <vector>
26
#include <cstring>
27
 
28
#include "elfcpp.h"
29
#include "parameters.h"
30
#include "script.h"
31
#include "symtab.h"
32
#include "dynobj.h"
33
 
34
namespace gold
35
{
36
 
37
// Class Dynobj.
38
 
39
// Sets up the default soname_ to use, in the (rare) cases we never
40
// see a DT_SONAME entry.
41
 
42
Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43
  : Object(name, input_file, true, offset),
44
    needed_(),
45
    unknown_needed_(UNKNOWN_NEEDED_UNSET)
46
{
47
  // This will be overridden by a DT_SONAME entry, hopefully.  But if
48
  // we never see a DT_SONAME entry, our rule is to use the dynamic
49
  // object's filename.  The only exception is when the dynamic object
50
  // is part of an archive (so the filename is the archive's
51
  // filename).  In that case, we use just the dynobj's name-in-archive.
52
  this->soname_ = this->input_file()->found_name();
53
  if (this->offset() != 0)
54
    {
55
      std::string::size_type open_paren = this->name().find('(');
56
      std::string::size_type close_paren = this->name().find(')');
57
      if (open_paren != std::string::npos && close_paren != std::string::npos)
58
        {
59
          // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60
          this->soname_ = this->name().substr(open_paren + 1,
61
                                              close_paren - (open_paren + 1));
62
        }
63
    }
64
}
65
 
66
// Class Sized_dynobj.
67
 
68
template<int size, bool big_endian>
69
Sized_dynobj<size, big_endian>::Sized_dynobj(
70
    const std::string& name,
71
    Input_file* input_file,
72
    off_t offset,
73
    const elfcpp::Ehdr<size, big_endian>& ehdr)
74
  : Dynobj(name, input_file, offset),
75
    elf_file_(this, ehdr),
76
    dynsym_shndx_(-1U),
77
    symbols_(NULL),
78
    defined_count_(0)
79
{
80
}
81
 
82
// Set up the object.
83
 
84
template<int size, bool big_endian>
85
void
86
Sized_dynobj<size, big_endian>::setup()
87
{
88
  const unsigned int shnum = this->elf_file_.shnum();
89
  this->set_shnum(shnum);
90
}
91
 
92
// Find the SHT_DYNSYM section and the various version sections, and
93
// the dynamic section, given the section headers.
94
 
95
template<int size, bool big_endian>
96
void
97
Sized_dynobj<size, big_endian>::find_dynsym_sections(
98
    const unsigned char* pshdrs,
99
    unsigned int* pversym_shndx,
100
    unsigned int* pverdef_shndx,
101
    unsigned int* pverneed_shndx,
102
    unsigned int* pdynamic_shndx)
103
{
104
  *pversym_shndx = -1U;
105
  *pverdef_shndx = -1U;
106
  *pverneed_shndx = -1U;
107
  *pdynamic_shndx = -1U;
108
 
109
  unsigned int xindex_shndx = 0;
110
  unsigned int xindex_link = 0;
111
  const unsigned int shnum = this->shnum();
112
  const unsigned char* p = pshdrs;
113
  for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
114
    {
115
      typename This::Shdr shdr(p);
116
 
117
      unsigned int* pi;
118
      switch (shdr.get_sh_type())
119
        {
120
        case elfcpp::SHT_DYNSYM:
121
          this->dynsym_shndx_ = i;
122
          if (xindex_shndx > 0 && xindex_link == i)
123
            {
124
              Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
125
              xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
126
                                                           pshdrs);
127
              this->set_xindex(xindex);
128
            }
129
          pi = NULL;
130
          break;
131
        case elfcpp::SHT_GNU_versym:
132
          pi = pversym_shndx;
133
          break;
134
        case elfcpp::SHT_GNU_verdef:
135
          pi = pverdef_shndx;
136
          break;
137
        case elfcpp::SHT_GNU_verneed:
138
          pi = pverneed_shndx;
139
          break;
140
        case elfcpp::SHT_DYNAMIC:
141
          pi = pdynamic_shndx;
142
          break;
143
        case elfcpp::SHT_SYMTAB_SHNDX:
144
          xindex_shndx = i;
145
          xindex_link = this->adjust_shndx(shdr.get_sh_link());
146
          if (xindex_link == this->dynsym_shndx_)
147
            {
148
              Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
149
              xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
150
                                                           pshdrs);
151
              this->set_xindex(xindex);
152
            }
153
          pi = NULL;
154
          break;
155
        default:
156
          pi = NULL;
157
          break;
158
        }
159
 
160
      if (pi == NULL)
161
        continue;
162
 
163
      if (*pi != -1U)
164
        this->error(_("unexpected duplicate type %u section: %u, %u"),
165
                    shdr.get_sh_type(), *pi, i);
166
 
167
      *pi = i;
168
    }
169
}
170
 
171
// Read the contents of section SHNDX.  PSHDRS points to the section
172
// headers.  TYPE is the expected section type.  LINK is the expected
173
// section link.  Store the data in *VIEW and *VIEW_SIZE.  The
174
// section's sh_info field is stored in *VIEW_INFO.
175
 
176
template<int size, bool big_endian>
177
void
178
Sized_dynobj<size, big_endian>::read_dynsym_section(
179
    const unsigned char* pshdrs,
180
    unsigned int shndx,
181
    elfcpp::SHT type,
182
    unsigned int link,
183
    File_view** view,
184
    section_size_type* view_size,
185
    unsigned int* view_info)
186
{
187
  if (shndx == -1U)
188
    {
189
      *view = NULL;
190
      *view_size = 0;
191
      *view_info = 0;
192
      return;
193
    }
194
 
195
  typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
196
 
197
  gold_assert(shdr.get_sh_type() == type);
198
 
199
  if (this->adjust_shndx(shdr.get_sh_link()) != link)
200
    this->error(_("unexpected link in section %u header: %u != %u"),
201
                shndx, this->adjust_shndx(shdr.get_sh_link()), link);
202
 
203
  *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
204
                                 true, false);
205
  *view_size = convert_to_section_size_type(shdr.get_sh_size());
206
  *view_info = shdr.get_sh_info();
207
}
208
 
209
// Read the dynamic tags.  Set the soname field if this shared object
210
// has a DT_SONAME tag.  Record the DT_NEEDED tags.  PSHDRS points to
211
// the section headers.  DYNAMIC_SHNDX is the section index of the
212
// SHT_DYNAMIC section.  STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
213
// section index and contents of a string table which may be the one
214
// associated with the SHT_DYNAMIC section.
215
 
216
template<int size, bool big_endian>
217
void
218
Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
219
                                             unsigned int dynamic_shndx,
220
                                             unsigned int strtab_shndx,
221
                                             const unsigned char* strtabu,
222
                                             off_t strtab_size)
223
{
224
  typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
225
  gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
226
 
227
  const off_t dynamic_size = dynamicshdr.get_sh_size();
228
  const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
229
                                                 dynamic_size, true, false);
230
 
231
  const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
232
  if (link != strtab_shndx)
233
    {
234
      if (link >= this->shnum())
235
        {
236
          this->error(_("DYNAMIC section %u link out of range: %u"),
237
                      dynamic_shndx, link);
238
          return;
239
        }
240
 
241
      typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
242
      if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
243
        {
244
          this->error(_("DYNAMIC section %u link %u is not a strtab"),
245
                      dynamic_shndx, link);
246
          return;
247
        }
248
 
249
      strtab_size = strtabshdr.get_sh_size();
250
      strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
251
                               false);
252
    }
253
 
254
  const char* const strtab = reinterpret_cast<const char*>(strtabu);
255
 
256
  for (const unsigned char* p = pdynamic;
257
       p < pdynamic + dynamic_size;
258
       p += This::dyn_size)
259
    {
260
      typename This::Dyn dyn(p);
261
 
262
      switch (dyn.get_d_tag())
263
        {
264
        case elfcpp::DT_NULL:
265
          // We should always see DT_NULL at the end of the dynamic
266
          // tags.
267
          return;
268
 
269
        case elfcpp::DT_SONAME:
270
          {
271
            off_t val = dyn.get_d_val();
272
            if (val >= strtab_size)
273
              this->error(_("DT_SONAME value out of range: %lld >= %lld"),
274
                          static_cast<long long>(val),
275
                          static_cast<long long>(strtab_size));
276
            else
277
              this->set_soname_string(strtab + val);
278
          }
279
          break;
280
 
281
        case elfcpp::DT_NEEDED:
282
          {
283
            off_t val = dyn.get_d_val();
284
            if (val >= strtab_size)
285
              this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
286
                          static_cast<long long>(val),
287
                          static_cast<long long>(strtab_size));
288
            else
289
              this->add_needed(strtab + val);
290
          }
291
          break;
292
 
293
        default:
294
          break;
295
        }
296
    }
297
 
298
  this->error(_("missing DT_NULL in dynamic segment"));
299
}
300
 
301
// Read the symbols and sections from a dynamic object.  We read the
302
// dynamic symbols, not the normal symbols.
303
 
304
template<int size, bool big_endian>
305
void
306
Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
307
{
308
  this->read_section_data(&this->elf_file_, sd);
309
 
310
  const unsigned char* const pshdrs = sd->section_headers->data();
311
 
312
  unsigned int versym_shndx;
313
  unsigned int verdef_shndx;
314
  unsigned int verneed_shndx;
315
  unsigned int dynamic_shndx;
316
  this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
317
                             &verneed_shndx, &dynamic_shndx);
318
 
319
  unsigned int strtab_shndx = -1U;
320
 
321
  sd->symbols = NULL;
322
  sd->symbols_size = 0;
323
  sd->external_symbols_offset = 0;
324
  sd->symbol_names = NULL;
325
  sd->symbol_names_size = 0;
326
 
327
  if (this->dynsym_shndx_ != -1U)
328
    {
329
      // Get the dynamic symbols.
330
      typename This::Shdr dynsymshdr(pshdrs
331
                                     + this->dynsym_shndx_ * This::shdr_size);
332
      gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM);
333
 
334
      sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
335
                                           dynsymshdr.get_sh_size(), true,
336
                                           false);
337
      sd->symbols_size =
338
        convert_to_section_size_type(dynsymshdr.get_sh_size());
339
 
340
      // Get the symbol names.
341
      strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
342
      if (strtab_shndx >= this->shnum())
343
        {
344
          this->error(_("invalid dynamic symbol table name index: %u"),
345
                      strtab_shndx);
346
          return;
347
        }
348
      typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
349
      if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
350
        {
351
          this->error(_("dynamic symbol table name section "
352
                        "has wrong type: %u"),
353
                      static_cast<unsigned int>(strtabshdr.get_sh_type()));
354
          return;
355
        }
356
 
357
      sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
358
                                                strtabshdr.get_sh_size(),
359
                                                false, false);
360
      sd->symbol_names_size =
361
        convert_to_section_size_type(strtabshdr.get_sh_size());
362
 
363
      // Get the version information.
364
 
365
      unsigned int dummy;
366
      this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
367
                                this->dynsym_shndx_,
368
                                &sd->versym, &sd->versym_size, &dummy);
369
 
370
      // We require that the version definition and need section link
371
      // to the same string table as the dynamic symbol table.  This
372
      // is not a technical requirement, but it always happens in
373
      // practice.  We could change this if necessary.
374
 
375
      this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
376
                                strtab_shndx, &sd->verdef, &sd->verdef_size,
377
                                &sd->verdef_info);
378
 
379
      this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
380
                                strtab_shndx, &sd->verneed, &sd->verneed_size,
381
                                &sd->verneed_info);
382
    }
383
 
384
  // Read the SHT_DYNAMIC section to find whether this shared object
385
  // has a DT_SONAME tag and to record any DT_NEEDED tags.  This
386
  // doesn't really have anything to do with reading the symbols, but
387
  // this is a convenient place to do it.
388
  if (dynamic_shndx != -1U)
389
    this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
390
                       (sd->symbol_names == NULL
391
                        ? NULL
392
                        : sd->symbol_names->data()),
393
                       sd->symbol_names_size);
394
}
395
 
396
// Return the Xindex structure to use for object with lots of
397
// sections.
398
 
399
template<int size, bool big_endian>
400
Xindex*
401
Sized_dynobj<size, big_endian>::do_initialize_xindex()
402
{
403
  gold_assert(this->dynsym_shndx_ != -1U);
404
  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
405
  xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
406
  return xindex;
407
}
408
 
409
// Lay out the input sections for a dynamic object.  We don't want to
410
// include sections from a dynamic object, so all that we actually do
411
// here is check for .gnu.warning and .note.GNU-split-stack sections.
412
 
413
template<int size, bool big_endian>
414
void
415
Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
416
                                          Layout*,
417
                                          Read_symbols_data* sd)
418
{
419
  const unsigned int shnum = this->shnum();
420
  if (shnum == 0)
421
    return;
422
 
423
  // Get the section headers.
424
  const unsigned char* pshdrs = sd->section_headers->data();
425
 
426
  // Get the section names.
427
  const unsigned char* pnamesu = sd->section_names->data();
428
  const char* pnames = reinterpret_cast<const char*>(pnamesu);
429
 
430
  // Skip the first, dummy, section.
431
  pshdrs += This::shdr_size;
432
  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
433
    {
434
      typename This::Shdr shdr(pshdrs);
435
 
436
      if (shdr.get_sh_name() >= sd->section_names_size)
437
        {
438
          this->error(_("bad section name offset for section %u: %lu"),
439
                      i, static_cast<unsigned long>(shdr.get_sh_name()));
440
          return;
441
        }
442
 
443
      const char* name = pnames + shdr.get_sh_name();
444
 
445
      this->handle_gnu_warning_section(name, i, symtab);
446
      this->handle_split_stack_section(name);
447
    }
448
 
449
  delete sd->section_headers;
450
  sd->section_headers = NULL;
451
  delete sd->section_names;
452
  sd->section_names = NULL;
453
}
454
 
455
// Add an entry to the vector mapping version numbers to version
456
// strings.
457
 
458
template<int size, bool big_endian>
459
void
460
Sized_dynobj<size, big_endian>::set_version_map(
461
    Version_map* version_map,
462
    unsigned int ndx,
463
    const char* name) const
464
{
465
  if (ndx >= version_map->size())
466
    version_map->resize(ndx + 1);
467
  if ((*version_map)[ndx] != NULL)
468
    this->error(_("duplicate definition for version %u"), ndx);
469
  (*version_map)[ndx] = name;
470
}
471
 
472
// Add mappings for the version definitions to VERSION_MAP.
473
 
474
template<int size, bool big_endian>
475
void
476
Sized_dynobj<size, big_endian>::make_verdef_map(
477
    Read_symbols_data* sd,
478
    Version_map* version_map) const
479
{
480
  if (sd->verdef == NULL)
481
    return;
482
 
483
  const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
484
  section_size_type names_size = sd->symbol_names_size;
485
 
486
  const unsigned char* pverdef = sd->verdef->data();
487
  section_size_type verdef_size = sd->verdef_size;
488
  const unsigned int count = sd->verdef_info;
489
 
490
  const unsigned char* p = pverdef;
491
  for (unsigned int i = 0; i < count; ++i)
492
    {
493
      elfcpp::Verdef<size, big_endian> verdef(p);
494
 
495
      if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
496
        {
497
          this->error(_("unexpected verdef version %u"),
498
                      verdef.get_vd_version());
499
          return;
500
        }
501
 
502
      const section_size_type vd_ndx = verdef.get_vd_ndx();
503
 
504
      // The GNU linker clears the VERSYM_HIDDEN bit.  I'm not
505
      // sure why.
506
 
507
      // The first Verdaux holds the name of this version.  Subsequent
508
      // ones are versions that this one depends upon, which we don't
509
      // care about here.
510
      const section_size_type vd_cnt = verdef.get_vd_cnt();
511
      if (vd_cnt < 1)
512
        {
513
          this->error(_("verdef vd_cnt field too small: %u"),
514
                      static_cast<unsigned int>(vd_cnt));
515
          return;
516
        }
517
 
518
      const section_size_type vd_aux = verdef.get_vd_aux();
519
      if ((p - pverdef) + vd_aux >= verdef_size)
520
        {
521
          this->error(_("verdef vd_aux field out of range: %u"),
522
                      static_cast<unsigned int>(vd_aux));
523
          return;
524
        }
525
 
526
      const unsigned char* pvda = p + vd_aux;
527
      elfcpp::Verdaux<size, big_endian> verdaux(pvda);
528
 
529
      const section_size_type vda_name = verdaux.get_vda_name();
530
      if (vda_name >= names_size)
531
        {
532
          this->error(_("verdaux vda_name field out of range: %u"),
533
                      static_cast<unsigned int>(vda_name));
534
          return;
535
        }
536
 
537
      this->set_version_map(version_map, vd_ndx, names + vda_name);
538
 
539
      const section_size_type vd_next = verdef.get_vd_next();
540
      if ((p - pverdef) + vd_next >= verdef_size)
541
        {
542
          this->error(_("verdef vd_next field out of range: %u"),
543
                      static_cast<unsigned int>(vd_next));
544
          return;
545
        }
546
 
547
      p += vd_next;
548
    }
549
}
550
 
551
// Add mappings for the required versions to VERSION_MAP.
552
 
553
template<int size, bool big_endian>
554
void
555
Sized_dynobj<size, big_endian>::make_verneed_map(
556
    Read_symbols_data* sd,
557
    Version_map* version_map) const
558
{
559
  if (sd->verneed == NULL)
560
    return;
561
 
562
  const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
563
  section_size_type names_size = sd->symbol_names_size;
564
 
565
  const unsigned char* pverneed = sd->verneed->data();
566
  const section_size_type verneed_size = sd->verneed_size;
567
  const unsigned int count = sd->verneed_info;
568
 
569
  const unsigned char* p = pverneed;
570
  for (unsigned int i = 0; i < count; ++i)
571
    {
572
      elfcpp::Verneed<size, big_endian> verneed(p);
573
 
574
      if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
575
        {
576
          this->error(_("unexpected verneed version %u"),
577
                      verneed.get_vn_version());
578
          return;
579
        }
580
 
581
      const section_size_type vn_aux = verneed.get_vn_aux();
582
 
583
      if ((p - pverneed) + vn_aux >= verneed_size)
584
        {
585
          this->error(_("verneed vn_aux field out of range: %u"),
586
                      static_cast<unsigned int>(vn_aux));
587
          return;
588
        }
589
 
590
      const unsigned int vn_cnt = verneed.get_vn_cnt();
591
      const unsigned char* pvna = p + vn_aux;
592
      for (unsigned int j = 0; j < vn_cnt; ++j)
593
        {
594
          elfcpp::Vernaux<size, big_endian> vernaux(pvna);
595
 
596
          const unsigned int vna_name = vernaux.get_vna_name();
597
          if (vna_name >= names_size)
598
            {
599
              this->error(_("vernaux vna_name field out of range: %u"),
600
                          static_cast<unsigned int>(vna_name));
601
              return;
602
            }
603
 
604
          this->set_version_map(version_map, vernaux.get_vna_other(),
605
                                names + vna_name);
606
 
607
          const section_size_type vna_next = vernaux.get_vna_next();
608
          if ((pvna - pverneed) + vna_next >= verneed_size)
609
            {
610
              this->error(_("verneed vna_next field out of range: %u"),
611
                          static_cast<unsigned int>(vna_next));
612
              return;
613
            }
614
 
615
          pvna += vna_next;
616
        }
617
 
618
      const section_size_type vn_next = verneed.get_vn_next();
619
      if ((p - pverneed) + vn_next >= verneed_size)
620
        {
621
          this->error(_("verneed vn_next field out of range: %u"),
622
                      static_cast<unsigned int>(vn_next));
623
          return;
624
        }
625
 
626
      p += vn_next;
627
    }
628
}
629
 
630
// Create a vector mapping version numbers to version strings.
631
 
632
template<int size, bool big_endian>
633
void
634
Sized_dynobj<size, big_endian>::make_version_map(
635
    Read_symbols_data* sd,
636
    Version_map* version_map) const
637
{
638
  if (sd->verdef == NULL && sd->verneed == NULL)
639
    return;
640
 
641
  // A guess at the maximum version number we will see.  If this is
642
  // wrong we will be less efficient but still correct.
643
  version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
644
 
645
  this->make_verdef_map(sd, version_map);
646
  this->make_verneed_map(sd, version_map);
647
}
648
 
649
// Add the dynamic symbols to the symbol table.
650
 
651
template<int size, bool big_endian>
652
void
653
Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
654
                                               Read_symbols_data* sd,
655
                                               Layout*)
656
{
657
  if (sd->symbols == NULL)
658
    {
659
      gold_assert(sd->symbol_names == NULL);
660
      gold_assert(sd->versym == NULL && sd->verdef == NULL
661
                  && sd->verneed == NULL);
662
      return;
663
    }
664
 
665
  const int sym_size = This::sym_size;
666
  const size_t symcount = sd->symbols_size / sym_size;
667
  gold_assert(sd->external_symbols_offset == 0);
668
  if (symcount * sym_size != sd->symbols_size)
669
    {
670
      this->error(_("size of dynamic symbols is not multiple of symbol size"));
671
      return;
672
    }
673
 
674
  Version_map version_map;
675
  this->make_version_map(sd, &version_map);
676
 
677
  // If printing symbol counts, we want to track symbols.
678
 
679
  if (parameters->options().user_set_print_symbol_counts())
680
    {
681
      this->symbols_ = new Symbols();
682
      this->symbols_->resize(symcount);
683
    }
684
 
685
  const char* sym_names =
686
    reinterpret_cast<const char*>(sd->symbol_names->data());
687
  symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
688
                          sym_names, sd->symbol_names_size,
689
                          (sd->versym == NULL
690
                           ? NULL
691
                           : sd->versym->data()),
692
                          sd->versym_size,
693
                          &version_map,
694
                          this->symbols_,
695
                          &this->defined_count_);
696
 
697
  delete sd->symbols;
698
  sd->symbols = NULL;
699
  delete sd->symbol_names;
700
  sd->symbol_names = NULL;
701
  if (sd->versym != NULL)
702
    {
703
      delete sd->versym;
704
      sd->versym = NULL;
705
    }
706
  if (sd->verdef != NULL)
707
    {
708
      delete sd->verdef;
709
      sd->verdef = NULL;
710
    }
711
  if (sd->verneed != NULL)
712
    {
713
      delete sd->verneed;
714
      sd->verneed = NULL;
715
    }
716
 
717
  // This is normally the last time we will read any data from this
718
  // file.
719
  this->clear_view_cache_marks();
720
}
721
 
722
// Get symbol counts.
723
 
724
template<int size, bool big_endian>
725
void
726
Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
727
    const Symbol_table*,
728
    size_t* defined,
729
    size_t* used) const
730
{
731
  *defined = this->defined_count_;
732
  size_t count = 0;
733
  for (typename Symbols::const_iterator p = this->symbols_->begin();
734
       p != this->symbols_->end();
735
       ++p)
736
    if (*p != NULL
737
        && (*p)->source() == Symbol::FROM_OBJECT
738
        && (*p)->object() == this
739
        && (*p)->is_defined()
740
        && (*p)->dynsym_index() != -1U)
741
      ++count;
742
  *used = count;
743
}
744
 
745
// Given a vector of hash codes, compute the number of hash buckets to
746
// use.
747
 
748
unsigned int
749
Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
750
                             bool for_gnu_hash_table)
751
{
752
  // FIXME: Implement optional hash table optimization.
753
 
754
  // Array used to determine the number of hash table buckets to use
755
  // based on the number of symbols there are.  If there are fewer
756
  // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
757
  // buckets, fewer than 37 we use 17 buckets, and so forth.  We never
758
  // use more than 262147 buckets.  This is straight from the old GNU
759
  // linker.
760
  static const unsigned int buckets[] =
761
  {
762
    1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
763
    16411, 32771, 65537, 131101, 262147
764
  };
765
  const int buckets_count = sizeof buckets / sizeof buckets[0];
766
 
767
  unsigned int symcount = hashcodes.size();
768
  unsigned int ret = 1;
769
  const double full_fraction
770
    = 1.0 - parameters->options().hash_bucket_empty_fraction();
771
  for (int i = 0; i < buckets_count; ++i)
772
    {
773
      if (symcount < buckets[i] * full_fraction)
774
        break;
775
      ret = buckets[i];
776
    }
777
 
778
  if (for_gnu_hash_table && ret < 2)
779
    ret = 2;
780
 
781
  return ret;
782
}
783
 
784
// The standard ELF hash function.  This hash function must not
785
// change, as the dynamic linker uses it also.
786
 
787
uint32_t
788
Dynobj::elf_hash(const char* name)
789
{
790
  const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
791
  uint32_t h = 0;
792
  unsigned char c;
793
  while ((c = *nameu++) != '\0')
794
    {
795
      h = (h << 4) + c;
796
      uint32_t g = h & 0xf0000000;
797
      if (g != 0)
798
        {
799
          h ^= g >> 24;
800
          // The ELF ABI says h &= ~g, but using xor is equivalent in
801
          // this case (since g was set from h) and may save one
802
          // instruction.
803
          h ^= g;
804
        }
805
    }
806
  return h;
807
}
808
 
809
// Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
810
// DYNSYMS is a vector with all the global dynamic symbols.
811
// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
812
// symbol table.
813
 
814
void
815
Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
816
                              unsigned int local_dynsym_count,
817
                              unsigned char** pphash,
818
                              unsigned int* phashlen)
819
{
820
  unsigned int dynsym_count = dynsyms.size();
821
 
822
  // Get the hash values for all the symbols.
823
  std::vector<uint32_t> dynsym_hashvals(dynsym_count);
824
  for (unsigned int i = 0; i < dynsym_count; ++i)
825
    dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
826
 
827
  const unsigned int bucketcount =
828
    Dynobj::compute_bucket_count(dynsym_hashvals, false);
829
 
830
  std::vector<uint32_t> bucket(bucketcount);
831
  std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
832
 
833
  for (unsigned int i = 0; i < dynsym_count; ++i)
834
    {
835
      unsigned int dynsym_index = dynsyms[i]->dynsym_index();
836
      unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
837
      chain[dynsym_index] = bucket[bucketpos];
838
      bucket[bucketpos] = dynsym_index;
839
    }
840
 
841
  unsigned int hashlen = ((2
842
                           + bucketcount
843
                           + local_dynsym_count
844
                           + dynsym_count)
845
                          * 4);
846
  unsigned char* phash = new unsigned char[hashlen];
847
 
848
  if (parameters->target().is_big_endian())
849
    {
850
#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
851
      Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
852
                                                hashlen);
853
#else
854
      gold_unreachable();
855
#endif
856
    }
857
  else
858
    {
859
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
860
      Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
861
                                                 hashlen);
862
#else
863
      gold_unreachable();
864
#endif
865
    }
866
 
867
  *pphash = phash;
868
  *phashlen = hashlen;
869
}
870
 
871
// Fill in an ELF hash table.
872
 
873
template<bool big_endian>
874
void
875
Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
876
                                    const std::vector<uint32_t>& chain,
877
                                    unsigned char* phash,
878
                                    unsigned int hashlen)
879
{
880
  unsigned char* p = phash;
881
 
882
  const unsigned int bucketcount = bucket.size();
883
  const unsigned int chaincount = chain.size();
884
 
885
  elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
886
  p += 4;
887
  elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
888
  p += 4;
889
 
890
  for (unsigned int i = 0; i < bucketcount; ++i)
891
    {
892
      elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
893
      p += 4;
894
    }
895
 
896
  for (unsigned int i = 0; i < chaincount; ++i)
897
    {
898
      elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
899
      p += 4;
900
    }
901
 
902
  gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
903
}
904
 
905
// The hash function used for the GNU hash table.  This hash function
906
// must not change, as the dynamic linker uses it also.
907
 
908
uint32_t
909
Dynobj::gnu_hash(const char* name)
910
{
911
  const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
912
  uint32_t h = 5381;
913
  unsigned char c;
914
  while ((c = *nameu++) != '\0')
915
    h = (h << 5) + h + c;
916
  return h;
917
}
918
 
919
// Create a GNU hash table, setting *PPHASH and *PHASHLEN.  GNU hash
920
// tables are an extension to ELF which are recognized by the GNU
921
// dynamic linker.  They are referenced using dynamic tag DT_GNU_HASH.
922
// TARGET is the target.  DYNSYMS is a vector with all the global
923
// symbols which will be going into the dynamic symbol table.
924
// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
925
// symbol table.
926
 
927
void
928
Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
929
                              unsigned int local_dynsym_count,
930
                              unsigned char** pphash,
931
                              unsigned int* phashlen)
932
{
933
  const unsigned int count = dynsyms.size();
934
 
935
  // Sort the dynamic symbols into two vectors.  Symbols which we do
936
  // not want to put into the hash table we store into
937
  // UNHASHED_DYNSYMS.  Symbols which we do want to store we put into
938
  // HASHED_DYNSYMS.  DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
939
  // and records the hash codes.
940
 
941
  std::vector<Symbol*> unhashed_dynsyms;
942
  unhashed_dynsyms.reserve(count);
943
 
944
  std::vector<Symbol*> hashed_dynsyms;
945
  hashed_dynsyms.reserve(count);
946
 
947
  std::vector<uint32_t> dynsym_hashvals;
948
  dynsym_hashvals.reserve(count);
949
 
950
  for (unsigned int i = 0; i < count; ++i)
951
    {
952
      Symbol* sym = dynsyms[i];
953
 
954
      // FIXME: Should put on unhashed_dynsyms if the symbol is
955
      // hidden.
956
      if (sym->is_undefined())
957
        unhashed_dynsyms.push_back(sym);
958
      else
959
        {
960
          hashed_dynsyms.push_back(sym);
961
          dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
962
        }
963
    }
964
 
965
  // Put the unhashed symbols at the start of the global portion of
966
  // the dynamic symbol table.
967
  const unsigned int unhashed_count = unhashed_dynsyms.size();
968
  unsigned int unhashed_dynsym_index = local_dynsym_count;
969
  for (unsigned int i = 0; i < unhashed_count; ++i)
970
    {
971
      unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
972
      ++unhashed_dynsym_index;
973
    }
974
 
975
  // For the actual data generation we call out to a templatized
976
  // function.
977
  int size = parameters->target().get_size();
978
  bool big_endian = parameters->target().is_big_endian();
979
  if (size == 32)
980
    {
981
      if (big_endian)
982
        {
983
#ifdef HAVE_TARGET_32_BIG
984
          Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
985
                                                        dynsym_hashvals,
986
                                                        unhashed_dynsym_index,
987
                                                        pphash,
988
                                                        phashlen);
989
#else
990
          gold_unreachable();
991
#endif
992
        }
993
      else
994
        {
995
#ifdef HAVE_TARGET_32_LITTLE
996
          Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
997
                                                         dynsym_hashvals,
998
                                                         unhashed_dynsym_index,
999
                                                         pphash,
1000
                                                         phashlen);
1001
#else
1002
          gold_unreachable();
1003
#endif
1004
        }
1005
    }
1006
  else if (size == 64)
1007
    {
1008
      if (big_endian)
1009
        {
1010
#ifdef HAVE_TARGET_64_BIG
1011
          Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1012
                                                        dynsym_hashvals,
1013
                                                        unhashed_dynsym_index,
1014
                                                        pphash,
1015
                                                        phashlen);
1016
#else
1017
          gold_unreachable();
1018
#endif
1019
        }
1020
      else
1021
        {
1022
#ifdef HAVE_TARGET_64_LITTLE
1023
          Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1024
                                                         dynsym_hashvals,
1025
                                                         unhashed_dynsym_index,
1026
                                                         pphash,
1027
                                                         phashlen);
1028
#else
1029
          gold_unreachable();
1030
#endif
1031
        }
1032
    }
1033
  else
1034
    gold_unreachable();
1035
}
1036
 
1037
// Create the actual data for a GNU hash table.  This is just a copy
1038
// of the code from the old GNU linker.
1039
 
1040
template<int size, bool big_endian>
1041
void
1042
Dynobj::sized_create_gnu_hash_table(
1043
    const std::vector<Symbol*>& hashed_dynsyms,
1044
    const std::vector<uint32_t>& dynsym_hashvals,
1045
    unsigned int unhashed_dynsym_count,
1046
    unsigned char** pphash,
1047
    unsigned int* phashlen)
1048
{
1049
  if (hashed_dynsyms.empty())
1050
    {
1051
      // Special case for the empty hash table.
1052
      unsigned int hashlen = 5 * 4 + size / 8;
1053
      unsigned char* phash = new unsigned char[hashlen];
1054
      // One empty bucket.
1055
      elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1056
      // Symbol index above unhashed symbols.
1057
      elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1058
      // One word for bitmask.
1059
      elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1060
      // Only bloom filter.
1061
      elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1062
      // No valid hashes.
1063
      elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1064
      // No hashes in only bucket.
1065
      elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1066
 
1067
      *phashlen = hashlen;
1068
      *pphash = phash;
1069
 
1070
      return;
1071
    }
1072
 
1073
  const unsigned int bucketcount =
1074
    Dynobj::compute_bucket_count(dynsym_hashvals, true);
1075
 
1076
  const unsigned int nsyms = hashed_dynsyms.size();
1077
 
1078
  uint32_t maskbitslog2 = 1;
1079
  uint32_t x = nsyms >> 1;
1080
  while (x != 0)
1081
    {
1082
      ++maskbitslog2;
1083
      x >>= 1;
1084
    }
1085
  if (maskbitslog2 < 3)
1086
    maskbitslog2 = 5;
1087
  else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1088
    maskbitslog2 += 3;
1089
  else
1090
    maskbitslog2 += 2;
1091
 
1092
  uint32_t shift1;
1093
  if (size == 32)
1094
    shift1 = 5;
1095
  else
1096
    {
1097
      if (maskbitslog2 == 5)
1098
        maskbitslog2 = 6;
1099
      shift1 = 6;
1100
    }
1101
  uint32_t mask = (1U << shift1) - 1U;
1102
  uint32_t shift2 = maskbitslog2;
1103
  uint32_t maskbits = 1U << maskbitslog2;
1104
  uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1105
 
1106
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1107
  std::vector<Word> bitmask(maskwords);
1108
  std::vector<uint32_t> counts(bucketcount);
1109
  std::vector<uint32_t> indx(bucketcount);
1110
  uint32_t symindx = unhashed_dynsym_count;
1111
 
1112
  // Count the number of times each hash bucket is used.
1113
  for (unsigned int i = 0; i < nsyms; ++i)
1114
    ++counts[dynsym_hashvals[i] % bucketcount];
1115
 
1116
  unsigned int cnt = symindx;
1117
  for (unsigned int i = 0; i < bucketcount; ++i)
1118
    {
1119
      indx[i] = cnt;
1120
      cnt += counts[i];
1121
    }
1122
 
1123
  unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1124
  hashlen += maskbits / 8;
1125
  unsigned char* phash = new unsigned char[hashlen];
1126
 
1127
  elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1128
  elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1129
  elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1130
  elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1131
 
1132
  unsigned char* p = phash + 16 + maskbits / 8;
1133
  for (unsigned int i = 0; i < bucketcount; ++i)
1134
    {
1135
      if (counts[i] == 0)
1136
        elfcpp::Swap<32, big_endian>::writeval(p, 0);
1137
      else
1138
        elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1139
      p += 4;
1140
    }
1141
 
1142
  for (unsigned int i = 0; i < nsyms; ++i)
1143
    {
1144
      Symbol* sym = hashed_dynsyms[i];
1145
      uint32_t hashval = dynsym_hashvals[i];
1146
 
1147
      unsigned int bucket = hashval % bucketcount;
1148
      unsigned int val = ((hashval >> shift1)
1149
                          & ((maskbits >> shift1) - 1));
1150
      bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1151
      bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1152
      val = hashval & ~ 1U;
1153
      if (counts[bucket] == 1)
1154
        {
1155
          // Last element terminates the chain.
1156
          val |= 1;
1157
        }
1158
      elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1159
                                             val);
1160
      --counts[bucket];
1161
 
1162
      sym->set_dynsym_index(indx[bucket]);
1163
      ++indx[bucket];
1164
    }
1165
 
1166
  p = phash + 16;
1167
  for (unsigned int i = 0; i < maskwords; ++i)
1168
    {
1169
      elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1170
      p += size / 8;
1171
    }
1172
 
1173
  *phashlen = hashlen;
1174
  *pphash = phash;
1175
}
1176
 
1177
// Verdef methods.
1178
 
1179
// Write this definition to a buffer for the output section.
1180
 
1181
template<int size, bool big_endian>
1182
unsigned char*
1183
Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
1184
{
1185
  const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1186
  const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1187
 
1188
  elfcpp::Verdef_write<size, big_endian> vd(pb);
1189
  vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1190
  vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
1191
                  | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0));
1192
  vd.set_vd_ndx(this->index());
1193
  vd.set_vd_cnt(1 + this->deps_.size());
1194
  vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1195
  vd.set_vd_aux(verdef_size);
1196
  vd.set_vd_next(is_last
1197
                 ? 0
1198
                 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1199
  pb += verdef_size;
1200
 
1201
  elfcpp::Verdaux_write<size, big_endian> vda(pb);
1202
  vda.set_vda_name(dynpool->get_offset(this->name()));
1203
  vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1204
  pb += verdaux_size;
1205
 
1206
  Deps::const_iterator p;
1207
  unsigned int i;
1208
  for (p = this->deps_.begin(), i = 0;
1209
       p != this->deps_.end();
1210
       ++p, ++i)
1211
    {
1212
      elfcpp::Verdaux_write<size, big_endian> vda(pb);
1213
      vda.set_vda_name(dynpool->get_offset(*p));
1214
      vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
1215
      pb += verdaux_size;
1216
    }
1217
 
1218
  return pb;
1219
}
1220
 
1221
// Verneed methods.
1222
 
1223
Verneed::~Verneed()
1224
{
1225
  for (Need_versions::iterator p = this->need_versions_.begin();
1226
       p != this->need_versions_.end();
1227
       ++p)
1228
    delete *p;
1229
}
1230
 
1231
// Add a new version to this file reference.
1232
 
1233
Verneed_version*
1234
Verneed::add_name(const char* name)
1235
{
1236
  Verneed_version* vv = new Verneed_version(name);
1237
  this->need_versions_.push_back(vv);
1238
  return vv;
1239
}
1240
 
1241
// Set the version indexes starting at INDEX.
1242
 
1243
unsigned int
1244
Verneed::finalize(unsigned int index)
1245
{
1246
  for (Need_versions::iterator p = this->need_versions_.begin();
1247
       p != this->need_versions_.end();
1248
       ++p)
1249
    {
1250
      (*p)->set_index(index);
1251
      ++index;
1252
    }
1253
  return index;
1254
}
1255
 
1256
// Write this list of referenced versions to a buffer for the output
1257
// section.
1258
 
1259
template<int size, bool big_endian>
1260
unsigned char*
1261
Verneed::write(const Stringpool* dynpool, bool is_last,
1262
               unsigned char* pb) const
1263
{
1264
  const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1265
  const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1266
 
1267
  elfcpp::Verneed_write<size, big_endian> vn(pb);
1268
  vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1269
  vn.set_vn_cnt(this->need_versions_.size());
1270
  vn.set_vn_file(dynpool->get_offset(this->filename()));
1271
  vn.set_vn_aux(verneed_size);
1272
  vn.set_vn_next(is_last
1273
                 ? 0
1274
                 : verneed_size + this->need_versions_.size() * vernaux_size);
1275
  pb += verneed_size;
1276
 
1277
  Need_versions::const_iterator p;
1278
  unsigned int i;
1279
  for (p = this->need_versions_.begin(), i = 0;
1280
       p != this->need_versions_.end();
1281
       ++p, ++i)
1282
    {
1283
      elfcpp::Vernaux_write<size, big_endian> vna(pb);
1284
      vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1285
      // FIXME: We need to sometimes set VER_FLG_WEAK here.
1286
      vna.set_vna_flags(0);
1287
      vna.set_vna_other((*p)->index());
1288
      vna.set_vna_name(dynpool->get_offset((*p)->version()));
1289
      vna.set_vna_next(i + 1 >= this->need_versions_.size()
1290
                       ? 0
1291
                       : vernaux_size);
1292
      pb += vernaux_size;
1293
    }
1294
 
1295
  return pb;
1296
}
1297
 
1298
// Versions methods.
1299
 
1300
Versions::Versions(const Version_script_info& version_script,
1301
                   Stringpool* dynpool)
1302
  : defs_(), needs_(), version_table_(),
1303
    is_finalized_(false), version_script_(version_script),
1304
    needs_base_version_(parameters->options().shared())
1305
{
1306
  if (!this->version_script_.empty())
1307
    {
1308
      // Parse the version script, and insert each declared version into
1309
      // defs_ and version_table_.
1310
      std::vector<std::string> versions = this->version_script_.get_versions();
1311
 
1312
      if (this->needs_base_version_ && !versions.empty())
1313
        this->define_base_version(dynpool);
1314
 
1315
      for (size_t k = 0; k < versions.size(); ++k)
1316
        {
1317
          Stringpool::Key version_key;
1318
          const char* version = dynpool->add(versions[k].c_str(),
1319
                                             true, &version_key);
1320
          Verdef* const vd = new Verdef(
1321
              version,
1322
              this->version_script_.get_dependencies(version),
1323
              false, false, false);
1324
          this->defs_.push_back(vd);
1325
          Key key(version_key, 0);
1326
          this->version_table_.insert(std::make_pair(key, vd));
1327
        }
1328
    }
1329
}
1330
 
1331
Versions::~Versions()
1332
{
1333
  for (Defs::iterator p = this->defs_.begin();
1334
       p != this->defs_.end();
1335
       ++p)
1336
    delete *p;
1337
 
1338
  for (Needs::iterator p = this->needs_.begin();
1339
       p != this->needs_.end();
1340
       ++p)
1341
    delete *p;
1342
}
1343
 
1344
// Define the base version of a shared library.  The base version definition
1345
// must be the first entry in defs_.  We insert it lazily so that defs_ is
1346
// empty if no symbol versioning is used.  Then layout can just drop the
1347
// version sections.
1348
 
1349
void
1350
Versions::define_base_version(Stringpool* dynpool)
1351
{
1352
  // If we do any versioning at all,  we always need a base version, so
1353
  // define that first.  Nothing explicitly declares itself as part of base,
1354
  // so it doesn't need to be in version_table_.
1355
  gold_assert(this->defs_.empty());
1356
  const char* name = parameters->options().soname();
1357
  if (name == NULL)
1358
    name = parameters->options().output_file_name();
1359
  name = dynpool->add(name, false, NULL);
1360
  Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
1361
                              true, false, true);
1362
  this->defs_.push_back(vdbase);
1363
  this->needs_base_version_ = false;
1364
}
1365
 
1366
// Return the dynamic object which a symbol refers to.
1367
 
1368
Dynobj*
1369
Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1370
                             const Symbol* sym) const
1371
{
1372
  if (sym->is_copied_from_dynobj())
1373
    return symtab->get_copy_source(sym);
1374
  else
1375
    {
1376
      Object* object = sym->object();
1377
      gold_assert(object->is_dynamic());
1378
      return static_cast<Dynobj*>(object);
1379
    }
1380
}
1381
 
1382
// Record version information for a symbol going into the dynamic
1383
// symbol table.
1384
 
1385
void
1386
Versions::record_version(const Symbol_table* symtab,
1387
                         Stringpool* dynpool, const Symbol* sym)
1388
{
1389
  gold_assert(!this->is_finalized_);
1390
  gold_assert(sym->version() != NULL);
1391
 
1392
  Stringpool::Key version_key;
1393
  const char* version = dynpool->add(sym->version(), false, &version_key);
1394
 
1395
  if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1396
    {
1397
      if (parameters->options().shared())
1398
        this->add_def(sym, version, version_key);
1399
    }
1400
  else
1401
    {
1402
      // This is a version reference.
1403
      Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1404
      this->add_need(dynpool, dynobj->soname(), version, version_key);
1405
    }
1406
}
1407
 
1408
// We've found a symbol SYM defined in version VERSION.
1409
 
1410
void
1411
Versions::add_def(const Symbol* sym, const char* version,
1412
                  Stringpool::Key version_key)
1413
{
1414
  Key k(version_key, 0);
1415
  Version_base* const vbnull = NULL;
1416
  std::pair<Version_table::iterator, bool> ins =
1417
    this->version_table_.insert(std::make_pair(k, vbnull));
1418
 
1419
  if (!ins.second)
1420
    {
1421
      // We already have an entry for this version.
1422
      Version_base* vb = ins.first->second;
1423
 
1424
      // We have now seen a symbol in this version, so it is not
1425
      // weak.
1426
      gold_assert(vb != NULL);
1427
      vb->clear_weak();
1428
    }
1429
  else
1430
    {
1431
      // If we are creating a shared object, it is an error to
1432
      // find a definition of a symbol with a version which is not
1433
      // in the version script.
1434
      if (parameters->options().shared())
1435
        gold_error(_("symbol %s has undefined version %s"),
1436
                   sym->demangled_name().c_str(), version);
1437
      else
1438
        // We only insert a base version for shared library.
1439
        gold_assert(!this->needs_base_version_);
1440
 
1441
      // When creating a regular executable, automatically define
1442
      // a new version.
1443
      Verdef* vd = new Verdef(version, std::vector<std::string>(),
1444
                              false, false, false);
1445
      this->defs_.push_back(vd);
1446
      ins.first->second = vd;
1447
    }
1448
}
1449
 
1450
// Add a reference to version NAME in file FILENAME.
1451
 
1452
void
1453
Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1454
                   Stringpool::Key name_key)
1455
{
1456
  Stringpool::Key filename_key;
1457
  filename = dynpool->add(filename, true, &filename_key);
1458
 
1459
  Key k(name_key, filename_key);
1460
  Version_base* const vbnull = NULL;
1461
  std::pair<Version_table::iterator, bool> ins =
1462
    this->version_table_.insert(std::make_pair(k, vbnull));
1463
 
1464
  if (!ins.second)
1465
    {
1466
      // We already have an entry for this filename/version.
1467
      return;
1468
    }
1469
 
1470
  // See whether we already have this filename.  We don't expect many
1471
  // version references, so we just do a linear search.  This could be
1472
  // replaced by a hash table.
1473
  Verneed* vn = NULL;
1474
  for (Needs::iterator p = this->needs_.begin();
1475
       p != this->needs_.end();
1476
       ++p)
1477
    {
1478
      if ((*p)->filename() == filename)
1479
        {
1480
          vn = *p;
1481
          break;
1482
        }
1483
    }
1484
 
1485
  if (vn == NULL)
1486
    {
1487
      // Create base version definition lazily for shared library.
1488
      if (this->needs_base_version_)
1489
        this->define_base_version(dynpool);
1490
 
1491
      // We have a new filename.
1492
      vn = new Verneed(filename);
1493
      this->needs_.push_back(vn);
1494
    }
1495
 
1496
  ins.first->second = vn->add_name(name);
1497
}
1498
 
1499
// Set the version indexes.  Create a new dynamic version symbol for
1500
// each new version definition.
1501
 
1502
unsigned int
1503
Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1504
                   std::vector<Symbol*>* syms)
1505
{
1506
  gold_assert(!this->is_finalized_);
1507
 
1508
  unsigned int vi = 1;
1509
 
1510
  for (Defs::iterator p = this->defs_.begin();
1511
       p != this->defs_.end();
1512
       ++p)
1513
    {
1514
      (*p)->set_index(vi);
1515
      ++vi;
1516
 
1517
      // Create a version symbol if necessary.
1518
      if (!(*p)->is_symbol_created())
1519
        {
1520
          Symbol* vsym = symtab->define_as_constant((*p)->name(),
1521
                                                    (*p)->name(), 0, 0,
1522
                                                    elfcpp::STT_OBJECT,
1523
                                                    elfcpp::STB_GLOBAL,
1524
                                                    elfcpp::STV_DEFAULT, 0,
1525
                                                    false, false);
1526
          vsym->set_needs_dynsym_entry();
1527
          vsym->set_dynsym_index(dynsym_index);
1528
          ++dynsym_index;
1529
          syms->push_back(vsym);
1530
          // The name is already in the dynamic pool.
1531
        }
1532
    }
1533
 
1534
  // Index 1 is used for global symbols.
1535
  if (vi == 1)
1536
    {
1537
      gold_assert(this->defs_.empty());
1538
      vi = 2;
1539
    }
1540
 
1541
  for (Needs::iterator p = this->needs_.begin();
1542
       p != this->needs_.end();
1543
       ++p)
1544
    vi = (*p)->finalize(vi);
1545
 
1546
  this->is_finalized_ = true;
1547
 
1548
  return dynsym_index;
1549
}
1550
 
1551
// Return the version index to use for a symbol.  This does two hash
1552
// table lookups: one in DYNPOOL and one in this->version_table_.
1553
// Another approach alternative would be store a pointer in SYM, which
1554
// would increase the size of the symbol table.  Or perhaps we could
1555
// use a hash table from dynamic symbol pointer values to Version_base
1556
// pointers.
1557
 
1558
unsigned int
1559
Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1560
                        const Symbol* sym) const
1561
{
1562
  Stringpool::Key version_key;
1563
  const char* version = dynpool->find(sym->version(), &version_key);
1564
  gold_assert(version != NULL);
1565
 
1566
  Key k;
1567
  if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
1568
    {
1569
      if (!parameters->options().shared())
1570
        return elfcpp::VER_NDX_GLOBAL;
1571
      k = Key(version_key, 0);
1572
    }
1573
  else
1574
    {
1575
      Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
1576
 
1577
      Stringpool::Key filename_key;
1578
      const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1579
      gold_assert(filename != NULL);
1580
 
1581
      k = Key(version_key, filename_key);
1582
    }
1583
 
1584
  Version_table::const_iterator p = this->version_table_.find(k);
1585
  gold_assert(p != this->version_table_.end());
1586
 
1587
  return p->second->index();
1588
}
1589
 
1590
// Return an allocated buffer holding the contents of the symbol
1591
// version section.
1592
 
1593
template<int size, bool big_endian>
1594
void
1595
Versions::symbol_section_contents(const Symbol_table* symtab,
1596
                                  const Stringpool* dynpool,
1597
                                  unsigned int local_symcount,
1598
                                  const std::vector<Symbol*>& syms,
1599
                                  unsigned char** pp,
1600
                                  unsigned int* psize) const
1601
{
1602
  gold_assert(this->is_finalized_);
1603
 
1604
  unsigned int sz = (local_symcount + syms.size()) * 2;
1605
  unsigned char* pbuf = new unsigned char[sz];
1606
 
1607
  for (unsigned int i = 0; i < local_symcount; ++i)
1608
    elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1609
                                           elfcpp::VER_NDX_LOCAL);
1610
 
1611
  for (std::vector<Symbol*>::const_iterator p = syms.begin();
1612
       p != syms.end();
1613
       ++p)
1614
    {
1615
      unsigned int version_index;
1616
      const char* version = (*p)->version();
1617
      if (version == NULL)
1618
        version_index = elfcpp::VER_NDX_GLOBAL;
1619
      else
1620
        version_index = this->version_index(symtab, dynpool, *p);
1621
      // If the symbol was defined as foo@V1 instead of foo@@V1, add
1622
      // the hidden bit.
1623
      if ((*p)->version() != NULL && !(*p)->is_default())
1624
        version_index |= elfcpp::VERSYM_HIDDEN;
1625
      elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
1626
                                             version_index);
1627
    }
1628
 
1629
  *pp = pbuf;
1630
  *psize = sz;
1631
}
1632
 
1633
// Return an allocated buffer holding the contents of the version
1634
// definition section.
1635
 
1636
template<int size, bool big_endian>
1637
void
1638
Versions::def_section_contents(const Stringpool* dynpool,
1639
                               unsigned char** pp, unsigned int* psize,
1640
                               unsigned int* pentries) const
1641
{
1642
  gold_assert(this->is_finalized_);
1643
  gold_assert(!this->defs_.empty());
1644
 
1645
  const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1646
  const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1647
 
1648
  unsigned int sz = 0;
1649
  for (Defs::const_iterator p = this->defs_.begin();
1650
       p != this->defs_.end();
1651
       ++p)
1652
    {
1653
      sz += verdef_size + verdaux_size;
1654
      sz += (*p)->count_dependencies() * verdaux_size;
1655
    }
1656
 
1657
  unsigned char* pbuf = new unsigned char[sz];
1658
 
1659
  unsigned char* pb = pbuf;
1660
  Defs::const_iterator p;
1661
  unsigned int i;
1662
  for (p = this->defs_.begin(), i = 0;
1663
       p != this->defs_.end();
1664
       ++p, ++i)
1665
    pb = (*p)->write<size, big_endian>(dynpool,
1666
                                       i + 1 >= this->defs_.size(),
1667
                                       pb);
1668
 
1669
  gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1670
 
1671
  *pp = pbuf;
1672
  *psize = sz;
1673
  *pentries = this->defs_.size();
1674
}
1675
 
1676
// Return an allocated buffer holding the contents of the version
1677
// reference section.
1678
 
1679
template<int size, bool big_endian>
1680
void
1681
Versions::need_section_contents(const Stringpool* dynpool,
1682
                                unsigned char** pp, unsigned int *psize,
1683
                                unsigned int *pentries) const
1684
{
1685
  gold_assert(this->is_finalized_);
1686
  gold_assert(!this->needs_.empty());
1687
 
1688
  const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1689
  const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1690
 
1691
  unsigned int sz = 0;
1692
  for (Needs::const_iterator p = this->needs_.begin();
1693
       p != this->needs_.end();
1694
       ++p)
1695
    {
1696
      sz += verneed_size;
1697
      sz += (*p)->count_versions() * vernaux_size;
1698
    }
1699
 
1700
  unsigned char* pbuf = new unsigned char[sz];
1701
 
1702
  unsigned char* pb = pbuf;
1703
  Needs::const_iterator p;
1704
  unsigned int i;
1705
  for (p = this->needs_.begin(), i = 0;
1706
       p != this->needs_.end();
1707
       ++p, ++i)
1708
    pb = (*p)->write<size, big_endian>(dynpool,
1709
                                       i + 1 >= this->needs_.size(),
1710
                                       pb);
1711
 
1712
  gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1713
 
1714
  *pp = pbuf;
1715
  *psize = sz;
1716
  *pentries = this->needs_.size();
1717
}
1718
 
1719
// Instantiate the templates we need.  We could use the configure
1720
// script to restrict this to only the ones for implemented targets.
1721
 
1722
#ifdef HAVE_TARGET_32_LITTLE
1723
template
1724
class Sized_dynobj<32, false>;
1725
#endif
1726
 
1727
#ifdef HAVE_TARGET_32_BIG
1728
template
1729
class Sized_dynobj<32, true>;
1730
#endif
1731
 
1732
#ifdef HAVE_TARGET_64_LITTLE
1733
template
1734
class Sized_dynobj<64, false>;
1735
#endif
1736
 
1737
#ifdef HAVE_TARGET_64_BIG
1738
template
1739
class Sized_dynobj<64, true>;
1740
#endif
1741
 
1742
#ifdef HAVE_TARGET_32_LITTLE
1743
template
1744
void
1745
Versions::symbol_section_contents<32, false>(
1746
    const Symbol_table*,
1747
    const Stringpool*,
1748
    unsigned int,
1749
    const std::vector<Symbol*>&,
1750
    unsigned char**,
1751
    unsigned int*) const;
1752
#endif
1753
 
1754
#ifdef HAVE_TARGET_32_BIG
1755
template
1756
void
1757
Versions::symbol_section_contents<32, true>(
1758
    const Symbol_table*,
1759
    const Stringpool*,
1760
    unsigned int,
1761
    const std::vector<Symbol*>&,
1762
    unsigned char**,
1763
    unsigned int*) const;
1764
#endif
1765
 
1766
#ifdef HAVE_TARGET_64_LITTLE
1767
template
1768
void
1769
Versions::symbol_section_contents<64, false>(
1770
    const Symbol_table*,
1771
    const Stringpool*,
1772
    unsigned int,
1773
    const std::vector<Symbol*>&,
1774
    unsigned char**,
1775
    unsigned int*) const;
1776
#endif
1777
 
1778
#ifdef HAVE_TARGET_64_BIG
1779
template
1780
void
1781
Versions::symbol_section_contents<64, true>(
1782
    const Symbol_table*,
1783
    const Stringpool*,
1784
    unsigned int,
1785
    const std::vector<Symbol*>&,
1786
    unsigned char**,
1787
    unsigned int*) const;
1788
#endif
1789
 
1790
#ifdef HAVE_TARGET_32_LITTLE
1791
template
1792
void
1793
Versions::def_section_contents<32, false>(
1794
    const Stringpool*,
1795
    unsigned char**,
1796
    unsigned int*,
1797
    unsigned int*) const;
1798
#endif
1799
 
1800
#ifdef HAVE_TARGET_32_BIG
1801
template
1802
void
1803
Versions::def_section_contents<32, true>(
1804
    const Stringpool*,
1805
    unsigned char**,
1806
    unsigned int*,
1807
    unsigned int*) const;
1808
#endif
1809
 
1810
#ifdef HAVE_TARGET_64_LITTLE
1811
template
1812
void
1813
Versions::def_section_contents<64, false>(
1814
    const Stringpool*,
1815
    unsigned char**,
1816
    unsigned int*,
1817
    unsigned int*) const;
1818
#endif
1819
 
1820
#ifdef HAVE_TARGET_64_BIG
1821
template
1822
void
1823
Versions::def_section_contents<64, true>(
1824
    const Stringpool*,
1825
    unsigned char**,
1826
    unsigned int*,
1827
    unsigned int*) const;
1828
#endif
1829
 
1830
#ifdef HAVE_TARGET_32_LITTLE
1831
template
1832
void
1833
Versions::need_section_contents<32, false>(
1834
    const Stringpool*,
1835
    unsigned char**,
1836
    unsigned int*,
1837
    unsigned int*) const;
1838
#endif
1839
 
1840
#ifdef HAVE_TARGET_32_BIG
1841
template
1842
void
1843
Versions::need_section_contents<32, true>(
1844
    const Stringpool*,
1845
    unsigned char**,
1846
    unsigned int*,
1847
    unsigned int*) const;
1848
#endif
1849
 
1850
#ifdef HAVE_TARGET_64_LITTLE
1851
template
1852
void
1853
Versions::need_section_contents<64, false>(
1854
    const Stringpool*,
1855
    unsigned char**,
1856
    unsigned int*,
1857
    unsigned int*) const;
1858
#endif
1859
 
1860
#ifdef HAVE_TARGET_64_BIG
1861
template
1862
void
1863
Versions::need_section_contents<64, true>(
1864
    const Stringpool*,
1865
    unsigned char**,
1866
    unsigned int*,
1867
    unsigned int*) const;
1868
#endif
1869
 
1870
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.