OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [binutils-2.20.1/] [gold/] [symtab.h] - Blame information for rev 304

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
// symtab.h -- the gold symbol table   -*- C++ -*-
2
 
3
// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
// Symbol_table
24
//   The symbol table.
25
 
26
#ifndef GOLD_SYMTAB_H
27
#define GOLD_SYMTAB_H
28
 
29
#include <string>
30
#include <utility>
31
#include <vector>
32
 
33
#include "elfcpp.h"
34
#include "parameters.h"
35
#include "stringpool.h"
36
#include "object.h"
37
 
38
namespace gold
39
{
40
 
41
class Mapfile;
42
class Object;
43
class Relobj;
44
template<int size, bool big_endian>
45
class Sized_relobj;
46
template<int size, bool big_endian>
47
class Sized_pluginobj;
48
class Dynobj;
49
template<int size, bool big_endian>
50
class Sized_dynobj;
51
class Versions;
52
class Version_script_info;
53
class Input_objects;
54
class Output_data;
55
class Output_section;
56
class Output_segment;
57
class Output_file;
58
class Output_symtab_xindex;
59
class Garbage_collection;
60
class Icf;
61
 
62
// The base class of an entry in the symbol table.  The symbol table
63
// can have a lot of entries, so we don't want this class to big.
64
// Size dependent fields can be found in the template class
65
// Sized_symbol.  Targets may support their own derived classes.
66
 
67
class Symbol
68
{
69
 public:
70
  // Because we want the class to be small, we don't use any virtual
71
  // functions.  But because symbols can be defined in different
72
  // places, we need to classify them.  This enum is the different
73
  // sources of symbols we support.
74
  enum Source
75
  {
76
    // Symbol defined in a relocatable or dynamic input file--this is
77
    // the most common case.
78
    FROM_OBJECT,
79
    // Symbol defined in an Output_data, a special section created by
80
    // the target.
81
    IN_OUTPUT_DATA,
82
    // Symbol defined in an Output_segment, with no associated
83
    // section.
84
    IN_OUTPUT_SEGMENT,
85
    // Symbol value is constant.
86
    IS_CONSTANT,
87
    // Symbol is undefined.
88
    IS_UNDEFINED
89
  };
90
 
91
  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92
  // the offset means.
93
  enum Segment_offset_base
94
  {
95
    // From the start of the segment.
96
    SEGMENT_START,
97
    // From the end of the segment.
98
    SEGMENT_END,
99
    // From the filesz of the segment--i.e., after the loaded bytes
100
    // but before the bytes which are allocated but zeroed.
101
    SEGMENT_BSS
102
  };
103
 
104
  // Return the symbol name.
105
  const char*
106
  name() const
107
  { return this->name_; }
108
 
109
  // Return the (ANSI) demangled version of the name, if
110
  // parameters.demangle() is true.  Otherwise, return the name.  This
111
  // is intended to be used only for logging errors, so it's not
112
  // super-efficient.
113
  std::string
114
  demangled_name() const;
115
 
116
  // Return the symbol version.  This will return NULL for an
117
  // unversioned symbol.
118
  const char*
119
  version() const
120
  { return this->version_; }
121
 
122
  // Return whether this version is the default for this symbol name
123
  // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
124
  // meaningful for versioned symbols.
125
  bool
126
  is_default() const
127
  {
128
    gold_assert(this->version_ != NULL);
129
    return this->is_def_;
130
  }
131
 
132
  // Set that this version is the default for this symbol name.
133
  void
134
  set_is_default()
135
  { this->is_def_ = true; }
136
 
137
  // Return the symbol source.
138
  Source
139
  source() const
140
  { return this->source_; }
141
 
142
  // Return the object with which this symbol is associated.
143
  Object*
144
  object() const
145
  {
146
    gold_assert(this->source_ == FROM_OBJECT);
147
    return this->u_.from_object.object;
148
  }
149
 
150
  // Return the index of the section in the input relocatable or
151
  // dynamic object file.
152
  unsigned int
153
  shndx(bool* is_ordinary) const
154
  {
155
    gold_assert(this->source_ == FROM_OBJECT);
156
    *is_ordinary = this->is_ordinary_shndx_;
157
    return this->u_.from_object.shndx;
158
  }
159
 
160
  // Return the output data section with which this symbol is
161
  // associated, if the symbol was specially defined with respect to
162
  // an output data section.
163
  Output_data*
164
  output_data() const
165
  {
166
    gold_assert(this->source_ == IN_OUTPUT_DATA);
167
    return this->u_.in_output_data.output_data;
168
  }
169
 
170
  // If this symbol was defined with respect to an output data
171
  // section, return whether the value is an offset from end.
172
  bool
173
  offset_is_from_end() const
174
  {
175
    gold_assert(this->source_ == IN_OUTPUT_DATA);
176
    return this->u_.in_output_data.offset_is_from_end;
177
  }
178
 
179
  // Return the output segment with which this symbol is associated,
180
  // if the symbol was specially defined with respect to an output
181
  // segment.
182
  Output_segment*
183
  output_segment() const
184
  {
185
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186
    return this->u_.in_output_segment.output_segment;
187
  }
188
 
189
  // If this symbol was defined with respect to an output segment,
190
  // return the offset base.
191
  Segment_offset_base
192
  offset_base() const
193
  {
194
    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195
    return this->u_.in_output_segment.offset_base;
196
  }
197
 
198
  // Return the symbol binding.
199
  elfcpp::STB
200
  binding() const
201
  { return this->binding_; }
202
 
203
  // Return the symbol type.
204
  elfcpp::STT
205
  type() const
206
  { return this->type_; }
207
 
208
  // Return the symbol visibility.
209
  elfcpp::STV
210
  visibility() const
211
  { return this->visibility_; }
212
 
213
  // Set the visibility.
214
  void
215
  set_visibility(elfcpp::STV visibility)
216
  { this->visibility_ = visibility; }
217
 
218
  // Override symbol visibility.
219
  void
220
  override_visibility(elfcpp::STV);
221
 
222
  // Return the non-visibility part of the st_other field.
223
  unsigned char
224
  nonvis() const
225
  { return this->nonvis_; }
226
 
227
  // Return whether this symbol is a forwarder.  This will never be
228
  // true of a symbol found in the hash table, but may be true of
229
  // symbol pointers attached to object files.
230
  bool
231
  is_forwarder() const
232
  { return this->is_forwarder_; }
233
 
234
  // Mark this symbol as a forwarder.
235
  void
236
  set_forwarder()
237
  { this->is_forwarder_ = true; }
238
 
239
  // Return whether this symbol has an alias in the weak aliases table
240
  // in Symbol_table.
241
  bool
242
  has_alias() const
243
  { return this->has_alias_; }
244
 
245
  // Mark this symbol as having an alias.
246
  void
247
  set_has_alias()
248
  { this->has_alias_ = true; }
249
 
250
  // Return whether this symbol needs an entry in the dynamic symbol
251
  // table.
252
  bool
253
  needs_dynsym_entry() const
254
  {
255
    return (this->needs_dynsym_entry_
256
            || (this->in_reg() && this->in_dyn()));
257
  }
258
 
259
  // Mark this symbol as needing an entry in the dynamic symbol table.
260
  void
261
  set_needs_dynsym_entry()
262
  { this->needs_dynsym_entry_ = true; }
263
 
264
  // Return whether this symbol should be added to the dynamic symbol
265
  // table.
266
  bool
267
  should_add_dynsym_entry() const;
268
 
269
  // Return whether this symbol has been seen in a regular object.
270
  bool
271
  in_reg() const
272
  { return this->in_reg_; }
273
 
274
  // Mark this symbol as having been seen in a regular object.
275
  void
276
  set_in_reg()
277
  { this->in_reg_ = true; }
278
 
279
  // Return whether this symbol has been seen in a dynamic object.
280
  bool
281
  in_dyn() const
282
  { return this->in_dyn_; }
283
 
284
  // Mark this symbol as having been seen in a dynamic object.
285
  void
286
  set_in_dyn()
287
  { this->in_dyn_ = true; }
288
 
289
  // Return whether this symbol has been seen in a real ELF object.
290
  // (IN_REG will return TRUE if the symbol has been seen in either
291
  // a real ELF object or an object claimed by a plugin.)
292
  bool
293
  in_real_elf() const
294
  { return this->in_real_elf_; }
295
 
296
  // Mark this symbol as having been seen in a real ELF object.
297
  void
298
  set_in_real_elf()
299
  { this->in_real_elf_ = true; }
300
 
301
  // Return the index of this symbol in the output file symbol table.
302
  // A value of -1U means that this symbol is not going into the
303
  // output file.  This starts out as zero, and is set to a non-zero
304
  // value by Symbol_table::finalize.  It is an error to ask for the
305
  // symbol table index before it has been set.
306
  unsigned int
307
  symtab_index() const
308
  {
309
    gold_assert(this->symtab_index_ != 0);
310
    return this->symtab_index_;
311
  }
312
 
313
  // Set the index of the symbol in the output file symbol table.
314
  void
315
  set_symtab_index(unsigned int index)
316
  {
317
    gold_assert(index != 0);
318
    this->symtab_index_ = index;
319
  }
320
 
321
  // Return whether this symbol already has an index in the output
322
  // file symbol table.
323
  bool
324
  has_symtab_index() const
325
  { return this->symtab_index_ != 0; }
326
 
327
  // Return the index of this symbol in the dynamic symbol table.  A
328
  // value of -1U means that this symbol is not going into the dynamic
329
  // symbol table.  This starts out as zero, and is set to a non-zero
330
  // during Layout::finalize.  It is an error to ask for the dynamic
331
  // symbol table index before it has been set.
332
  unsigned int
333
  dynsym_index() const
334
  {
335
    gold_assert(this->dynsym_index_ != 0);
336
    return this->dynsym_index_;
337
  }
338
 
339
  // Set the index of the symbol in the dynamic symbol table.
340
  void
341
  set_dynsym_index(unsigned int index)
342
  {
343
    gold_assert(index != 0);
344
    this->dynsym_index_ = index;
345
  }
346
 
347
  // Return whether this symbol already has an index in the dynamic
348
  // symbol table.
349
  bool
350
  has_dynsym_index() const
351
  { return this->dynsym_index_ != 0; }
352
 
353
  // Return whether this symbol has an entry in the GOT section.
354
  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
355
  bool
356
  has_got_offset(unsigned int got_type) const
357
  { return this->got_offsets_.get_offset(got_type) != -1U; }
358
 
359
  // Return the offset into the GOT section of this symbol.
360
  unsigned int
361
  got_offset(unsigned int got_type) const
362
  {
363
    unsigned int got_offset = this->got_offsets_.get_offset(got_type);
364
    gold_assert(got_offset != -1U);
365
    return got_offset;
366
  }
367
 
368
  // Set the GOT offset of this symbol.
369
  void
370
  set_got_offset(unsigned int got_type, unsigned int got_offset)
371
  { this->got_offsets_.set_offset(got_type, got_offset); }
372
 
373
  // Return whether this symbol has an entry in the PLT section.
374
  bool
375
  has_plt_offset() const
376
  { return this->has_plt_offset_; }
377
 
378
  // Return the offset into the PLT section of this symbol.
379
  unsigned int
380
  plt_offset() const
381
  {
382
    gold_assert(this->has_plt_offset());
383
    return this->plt_offset_;
384
  }
385
 
386
  // Set the PLT offset of this symbol.
387
  void
388
  set_plt_offset(unsigned int plt_offset)
389
  {
390
    this->has_plt_offset_ = true;
391
    this->plt_offset_ = plt_offset;
392
  }
393
 
394
  // Return whether this dynamic symbol needs a special value in the
395
  // dynamic symbol table.
396
  bool
397
  needs_dynsym_value() const
398
  { return this->needs_dynsym_value_; }
399
 
400
  // Set that this dynamic symbol needs a special value in the dynamic
401
  // symbol table.
402
  void
403
  set_needs_dynsym_value()
404
  {
405
    gold_assert(this->object()->is_dynamic());
406
    this->needs_dynsym_value_ = true;
407
  }
408
 
409
  // Return true if the final value of this symbol is known at link
410
  // time.
411
  bool
412
  final_value_is_known() const;
413
 
414
  // Return true if SHNDX represents a common symbol.  This depends on
415
  // the target.
416
  static bool
417
  is_common_shndx(unsigned int shndx);
418
 
419
  // Return whether this is a defined symbol (not undefined or
420
  // common).
421
  bool
422
  is_defined() const
423
  {
424
    bool is_ordinary;
425
    if (this->source_ != FROM_OBJECT)
426
      return this->source_ != IS_UNDEFINED;
427
    unsigned int shndx = this->shndx(&is_ordinary);
428
    return (is_ordinary
429
            ? shndx != elfcpp::SHN_UNDEF
430
            : !Symbol::is_common_shndx(shndx));
431
  }
432
 
433
  // Return true if this symbol is from a dynamic object.
434
  bool
435
  is_from_dynobj() const
436
  {
437
    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
438
  }
439
 
440
  // Return whether this is an undefined symbol.
441
  bool
442
  is_undefined() const
443
  {
444
    bool is_ordinary;
445
    return ((this->source_ == FROM_OBJECT
446
             && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
447
             && is_ordinary)
448
            || this->source_ == IS_UNDEFINED);
449
  }
450
 
451
  // Return whether this is a weak undefined symbol.
452
  bool
453
  is_weak_undefined() const
454
  { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
455
 
456
  // Return whether this is an absolute symbol.
457
  bool
458
  is_absolute() const
459
  {
460
    bool is_ordinary;
461
    return ((this->source_ == FROM_OBJECT
462
             && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
463
             && !is_ordinary)
464
            || this->source_ == IS_CONSTANT);
465
  }
466
 
467
  // Return whether this is a common symbol.
468
  bool
469
  is_common() const
470
  {
471
    if (this->type_ == elfcpp::STT_COMMON)
472
      return true;
473
    if (this->source_ != FROM_OBJECT)
474
      return false;
475
    bool is_ordinary;
476
    unsigned int shndx = this->shndx(&is_ordinary);
477
    return !is_ordinary && Symbol::is_common_shndx(shndx);
478
  }
479
 
480
  // Return whether this symbol can be seen outside this object.
481
  bool
482
  is_externally_visible() const
483
  {
484
    return (this->visibility_ == elfcpp::STV_DEFAULT
485
            || this->visibility_ == elfcpp::STV_PROTECTED);
486
  }
487
 
488
  // Return true if this symbol can be preempted by a definition in
489
  // another link unit.
490
  bool
491
  is_preemptible() const
492
  {
493
    // It doesn't make sense to ask whether a symbol defined in
494
    // another object is preemptible.
495
    gold_assert(!this->is_from_dynobj());
496
 
497
    // It doesn't make sense to ask whether an undefined symbol
498
    // is preemptible.
499
    gold_assert(!this->is_undefined());
500
 
501
    // If a symbol does not have default visibility, it can not be
502
    // seen outside this link unit and therefore is not preemptible.
503
    if (this->visibility_ != elfcpp::STV_DEFAULT)
504
      return false;
505
 
506
    // If this symbol has been forced to be a local symbol by a
507
    // version script, then it is not visible outside this link unit
508
    // and is not preemptible.
509
    if (this->is_forced_local_)
510
      return false;
511
 
512
    // If we are not producing a shared library, then nothing is
513
    // preemptible.
514
    if (!parameters->options().shared())
515
      return false;
516
 
517
    // If the user used -Bsymbolic, then nothing is preemptible.
518
    if (parameters->options().Bsymbolic())
519
      return false;
520
 
521
    // If the user used -Bsymbolic-functions, then functions are not
522
    // preemptible.  We explicitly check for not being STT_OBJECT,
523
    // rather than for being STT_FUNC, because that is what the GNU
524
    // linker does.
525
    if (this->type() != elfcpp::STT_OBJECT
526
        && parameters->options().Bsymbolic_functions())
527
      return false;
528
 
529
    // Otherwise the symbol is preemptible.
530
    return true;
531
  }
532
 
533
  // Return true if this symbol is a function that needs a PLT entry.
534
  // If the symbol is defined in a dynamic object or if it is subject
535
  // to pre-emption, we need to make a PLT entry. If we're doing a
536
  // static link or a -pie link, we don't create PLT entries.
537
  bool
538
  needs_plt_entry() const
539
  {
540
    // An undefined symbol from an executable does not need a PLT entry.
541
    if (this->is_undefined() && !parameters->options().shared())
542
      return false;
543
 
544
    return (!parameters->doing_static_link()
545
            && !parameters->options().pie()
546
            && this->type() == elfcpp::STT_FUNC
547
            && (this->is_from_dynobj()
548
                || this->is_undefined()
549
                || this->is_preemptible()));
550
  }
551
 
552
  // When determining whether a reference to a symbol needs a dynamic
553
  // relocation, we need to know several things about the reference.
554
  // These flags may be or'ed together.
555
  enum Reference_flags
556
  {
557
    // Reference to the symbol's absolute address.
558
    ABSOLUTE_REF = 1,
559
    // A non-PIC reference.
560
    NON_PIC_REF = 2,
561
    // A function call.
562
    FUNCTION_CALL = 4
563
  };
564
 
565
  // Given a direct absolute or pc-relative static relocation against
566
  // the global symbol, this function returns whether a dynamic relocation
567
  // is needed.
568
 
569
  bool
570
  needs_dynamic_reloc(int flags) const
571
  {
572
    // No dynamic relocations in a static link!
573
    if (parameters->doing_static_link())
574
      return false;
575
 
576
    // A reference to an undefined symbol from an executable should be
577
    // statically resolved to 0, and does not need a dynamic relocation.
578
    // This matches gnu ld behavior.
579
    if (this->is_undefined() && !parameters->options().shared())
580
      return false;
581
 
582
    // A reference to an absolute symbol does not need a dynamic relocation.
583
    if (this->is_absolute())
584
      return false;
585
 
586
    // An absolute reference within a position-independent output file
587
    // will need a dynamic relocation.
588
    if ((flags & ABSOLUTE_REF)
589
        && parameters->options().output_is_position_independent())
590
      return true;
591
 
592
    // A function call that can branch to a local PLT entry does not need
593
    // a dynamic relocation.  A non-pic pc-relative function call in a
594
    // shared library cannot use a PLT entry.
595
    if ((flags & FUNCTION_CALL)
596
        && this->has_plt_offset()
597
        && !((flags & NON_PIC_REF) && parameters->options().shared()))
598
      return false;
599
 
600
    // A reference to any PLT entry in a non-position-independent executable
601
    // does not need a dynamic relocation.
602
    if (!parameters->options().output_is_position_independent()
603
        && this->has_plt_offset())
604
      return false;
605
 
606
    // A reference to a symbol defined in a dynamic object or to a
607
    // symbol that is preemptible will need a dynamic relocation.
608
    if (this->is_from_dynobj()
609
        || this->is_undefined()
610
        || this->is_preemptible())
611
      return true;
612
 
613
    // For all other cases, return FALSE.
614
    return false;
615
  }
616
 
617
  // Whether we should use the PLT offset associated with a symbol for
618
  // a relocation.  IS_NON_PIC_REFERENCE is true if this is a non-PIC
619
  // reloc--the same set of relocs for which we would pass NON_PIC_REF
620
  // to the needs_dynamic_reloc function.
621
 
622
  bool
623
  use_plt_offset(bool is_non_pic_reference) const
624
  {
625
    // If the symbol doesn't have a PLT offset, then naturally we
626
    // don't want to use it.
627
    if (!this->has_plt_offset())
628
      return false;
629
 
630
    // If we are going to generate a dynamic relocation, then we will
631
    // wind up using that, so no need to use the PLT entry.
632
    if (this->needs_dynamic_reloc(FUNCTION_CALL
633
                                  | (is_non_pic_reference
634
                                     ? NON_PIC_REF
635
                                     : 0)))
636
      return false;
637
 
638
    // If the symbol is from a dynamic object, we need to use the PLT
639
    // entry.
640
    if (this->is_from_dynobj())
641
      return true;
642
 
643
    // If we are generating a shared object, and this symbol is
644
    // undefined or preemptible, we need to use the PLT entry.
645
    if (parameters->options().shared()
646
        && (this->is_undefined() || this->is_preemptible()))
647
      return true;
648
 
649
    // If this is a weak undefined symbol, we need to use the PLT
650
    // entry; the symbol may be defined by a library loaded at
651
    // runtime.
652
    if (this->is_weak_undefined())
653
      return true;
654
 
655
    // Otherwise we can use the regular definition.
656
    return false;
657
  }
658
 
659
  // Given a direct absolute static relocation against
660
  // the global symbol, where a dynamic relocation is needed, this
661
  // function returns whether a relative dynamic relocation can be used.
662
  // The caller must determine separately whether the static relocation
663
  // is compatible with a relative relocation.
664
 
665
  bool
666
  can_use_relative_reloc(bool is_function_call) const
667
  {
668
    // A function call that can branch to a local PLT entry can
669
    // use a RELATIVE relocation.
670
    if (is_function_call && this->has_plt_offset())
671
      return true;
672
 
673
    // A reference to a symbol defined in a dynamic object or to a
674
    // symbol that is preemptible can not use a RELATIVE relocaiton.
675
    if (this->is_from_dynobj()
676
        || this->is_undefined()
677
        || this->is_preemptible())
678
      return false;
679
 
680
    // For all other cases, return TRUE.
681
    return true;
682
  }
683
 
684
  // Return the output section where this symbol is defined.  Return
685
  // NULL if the symbol has an absolute value.
686
  Output_section*
687
  output_section() const;
688
 
689
  // Set the symbol's output section.  This is used for symbols
690
  // defined in scripts.  This should only be called after the symbol
691
  // table has been finalized.
692
  void
693
  set_output_section(Output_section*);
694
 
695
  // Return whether there should be a warning for references to this
696
  // symbol.
697
  bool
698
  has_warning() const
699
  { return this->has_warning_; }
700
 
701
  // Mark this symbol as having a warning.
702
  void
703
  set_has_warning()
704
  { this->has_warning_ = true; }
705
 
706
  // Return whether this symbol is defined by a COPY reloc from a
707
  // dynamic object.
708
  bool
709
  is_copied_from_dynobj() const
710
  { return this->is_copied_from_dynobj_; }
711
 
712
  // Mark this symbol as defined by a COPY reloc.
713
  void
714
  set_is_copied_from_dynobj()
715
  { this->is_copied_from_dynobj_ = true; }
716
 
717
  // Return whether this symbol is forced to visibility STB_LOCAL
718
  // by a "local:" entry in a version script.
719
  bool
720
  is_forced_local() const
721
  { return this->is_forced_local_; }
722
 
723
  // Mark this symbol as forced to STB_LOCAL visibility.
724
  void
725
  set_is_forced_local()
726
  { this->is_forced_local_ = true; }
727
 
728
  // Return true if this may need a COPY relocation.
729
  // References from an executable object to non-function symbols
730
  // defined in a dynamic object may need a COPY relocation.
731
  bool
732
  may_need_copy_reloc() const
733
  {
734
    return (!parameters->options().shared()
735
            && parameters->options().copyreloc()
736
            && this->is_from_dynobj()
737
            && this->type() != elfcpp::STT_FUNC);
738
  }
739
 
740
 protected:
741
  // Instances of this class should always be created at a specific
742
  // size.
743
  Symbol()
744
  { memset(this, 0, sizeof *this); }
745
 
746
  // Initialize the general fields.
747
  void
748
  init_fields(const char* name, const char* version,
749
              elfcpp::STT type, elfcpp::STB binding,
750
              elfcpp::STV visibility, unsigned char nonvis);
751
 
752
  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
753
  // section index, IS_ORDINARY is whether it is a normal section
754
  // index rather than a special code.
755
  template<int size, bool big_endian>
756
  void
757
  init_base_object(const char *name, const char* version, Object* object,
758
                   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
759
                   bool is_ordinary);
760
 
761
  // Initialize fields for an Output_data.
762
  void
763
  init_base_output_data(const char* name, const char* version, Output_data*,
764
                        elfcpp::STT, elfcpp::STB, elfcpp::STV,
765
                        unsigned char nonvis, bool offset_is_from_end);
766
 
767
  // Initialize fields for an Output_segment.
768
  void
769
  init_base_output_segment(const char* name, const char* version,
770
                           Output_segment* os, elfcpp::STT type,
771
                           elfcpp::STB binding, elfcpp::STV visibility,
772
                           unsigned char nonvis,
773
                           Segment_offset_base offset_base);
774
 
775
  // Initialize fields for a constant.
776
  void
777
  init_base_constant(const char* name, const char* version, elfcpp::STT type,
778
                     elfcpp::STB binding, elfcpp::STV visibility,
779
                     unsigned char nonvis);
780
 
781
  // Initialize fields for an undefined symbol.
782
  void
783
  init_base_undefined(const char* name, const char* version, elfcpp::STT type,
784
                      elfcpp::STB binding, elfcpp::STV visibility,
785
                      unsigned char nonvis);
786
 
787
  // Override existing symbol.
788
  template<int size, bool big_endian>
789
  void
790
  override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
791
                bool is_ordinary, Object* object, const char* version);
792
 
793
  // Override existing symbol with a special symbol.
794
  void
795
  override_base_with_special(const Symbol* from);
796
 
797
  // Override symbol version.
798
  void
799
  override_version(const char* version);
800
 
801
  // Allocate a common symbol by giving it a location in the output
802
  // file.
803
  void
804
  allocate_base_common(Output_data*);
805
 
806
 private:
807
  Symbol(const Symbol&);
808
  Symbol& operator=(const Symbol&);
809
 
810
  // Symbol name (expected to point into a Stringpool).
811
  const char* name_;
812
  // Symbol version (expected to point into a Stringpool).  This may
813
  // be NULL.
814
  const char* version_;
815
 
816
  union
817
  {
818
    // This struct is used if SOURCE_ == FROM_OBJECT.
819
    struct
820
    {
821
      // Object in which symbol is defined, or in which it was first
822
      // seen.
823
      Object* object;
824
      // Section number in object_ in which symbol is defined.
825
      unsigned int shndx;
826
    } from_object;
827
 
828
    // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
829
    struct
830
    {
831
      // Output_data in which symbol is defined.  Before
832
      // Layout::finalize the symbol's value is an offset within the
833
      // Output_data.
834
      Output_data* output_data;
835
      // True if the offset is from the end, false if the offset is
836
      // from the beginning.
837
      bool offset_is_from_end;
838
    } in_output_data;
839
 
840
    // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
841
    struct
842
    {
843
      // Output_segment in which the symbol is defined.  Before
844
      // Layout::finalize the symbol's value is an offset.
845
      Output_segment* output_segment;
846
      // The base to use for the offset before Layout::finalize.
847
      Segment_offset_base offset_base;
848
    } in_output_segment;
849
  } u_;
850
 
851
  // The index of this symbol in the output file.  If the symbol is
852
  // not going into the output file, this value is -1U.  This field
853
  // starts as always holding zero.  It is set to a non-zero value by
854
  // Symbol_table::finalize.
855
  unsigned int symtab_index_;
856
 
857
  // The index of this symbol in the dynamic symbol table.  If the
858
  // symbol is not going into the dynamic symbol table, this value is
859
  // -1U.  This field starts as always holding zero.  It is set to a
860
  // non-zero value during Layout::finalize.
861
  unsigned int dynsym_index_;
862
 
863
  // If this symbol has an entry in the GOT section (has_got_offset_
864
  // is true), this holds the offset from the start of the GOT section.
865
  // A symbol may have more than one GOT offset (e.g., when mixing
866
  // modules compiled with two different TLS models), but will usually
867
  // have at most one.
868
  Got_offset_list got_offsets_;
869
 
870
  // If this symbol has an entry in the PLT section (has_plt_offset_
871
  // is true), then this is the offset from the start of the PLT
872
  // section.
873
  unsigned int plt_offset_;
874
 
875
  // Symbol type (bits 0 to 3).
876
  elfcpp::STT type_ : 4;
877
  // Symbol binding (bits 4 to 7).
878
  elfcpp::STB binding_ : 4;
879
  // Symbol visibility (bits 8 to 9).
880
  elfcpp::STV visibility_ : 2;
881
  // Rest of symbol st_other field (bits 10 to 15).
882
  unsigned int nonvis_ : 6;
883
  // The type of symbol (bits 16 to 18).
884
  Source source_ : 3;
885
  // True if this symbol always requires special target-specific
886
  // handling (bit 19).
887
  bool is_target_special_ : 1;
888
  // True if this is the default version of the symbol (bit 20).
889
  bool is_def_ : 1;
890
  // True if this symbol really forwards to another symbol.  This is
891
  // used when we discover after the fact that two different entries
892
  // in the hash table really refer to the same symbol.  This will
893
  // never be set for a symbol found in the hash table, but may be set
894
  // for a symbol found in the list of symbols attached to an Object.
895
  // It forwards to the symbol found in the forwarders_ map of
896
  // Symbol_table (bit 21).
897
  bool is_forwarder_ : 1;
898
  // True if the symbol has an alias in the weak_aliases table in
899
  // Symbol_table (bit 22).
900
  bool has_alias_ : 1;
901
  // True if this symbol needs to be in the dynamic symbol table (bit
902
  // 23).
903
  bool needs_dynsym_entry_ : 1;
904
  // True if we've seen this symbol in a regular object (bit 24).
905
  bool in_reg_ : 1;
906
  // True if we've seen this symbol in a dynamic object (bit 25).
907
  bool in_dyn_ : 1;
908
  // True if the symbol has an entry in the PLT section (bit 26).
909
  bool has_plt_offset_ : 1;
910
  // True if this is a dynamic symbol which needs a special value in
911
  // the dynamic symbol table (bit 27).
912
  bool needs_dynsym_value_ : 1;
913
  // True if there is a warning for this symbol (bit 28).
914
  bool has_warning_ : 1;
915
  // True if we are using a COPY reloc for this symbol, so that the
916
  // real definition lives in a dynamic object (bit 29).
917
  bool is_copied_from_dynobj_ : 1;
918
  // True if this symbol was forced to local visibility by a version
919
  // script (bit 30).
920
  bool is_forced_local_ : 1;
921
  // True if the field u_.from_object.shndx is an ordinary section
922
  // index, not one of the special codes from SHN_LORESERVE to
923
  // SHN_HIRESERVE (bit 31).
924
  bool is_ordinary_shndx_ : 1;
925
  // True if we've seen this symbol in a real ELF object.
926
  bool in_real_elf_ : 1;
927
};
928
 
929
// The parts of a symbol which are size specific.  Using a template
930
// derived class like this helps us use less space on a 32-bit system.
931
 
932
template<int size>
933
class Sized_symbol : public Symbol
934
{
935
 public:
936
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
937
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
938
 
939
  Sized_symbol()
940
  { }
941
 
942
  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
943
  // section index, IS_ORDINARY is whether it is a normal section
944
  // index rather than a special code.
945
  template<bool big_endian>
946
  void
947
  init_object(const char *name, const char* version, Object* object,
948
              const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
949
              bool is_ordinary);
950
 
951
  // Initialize fields for an Output_data.
952
  void
953
  init_output_data(const char* name, const char* version, Output_data*,
954
                   Value_type value, Size_type symsize, elfcpp::STT,
955
                   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
956
                   bool offset_is_from_end);
957
 
958
  // Initialize fields for an Output_segment.
959
  void
960
  init_output_segment(const char* name, const char* version, Output_segment*,
961
                      Value_type value, Size_type symsize, elfcpp::STT,
962
                      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
963
                      Segment_offset_base offset_base);
964
 
965
  // Initialize fields for a constant.
966
  void
967
  init_constant(const char* name, const char* version, Value_type value,
968
                Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
969
                unsigned char nonvis);
970
 
971
  // Initialize fields for an undefined symbol.
972
  void
973
  init_undefined(const char* name, const char* version, elfcpp::STT,
974
                 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
975
 
976
  // Override existing symbol.
977
  template<bool big_endian>
978
  void
979
  override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
980
           bool is_ordinary, Object* object, const char* version);
981
 
982
  // Override existing symbol with a special symbol.
983
  void
984
  override_with_special(const Sized_symbol<size>*);
985
 
986
  // Return the symbol's value.
987
  Value_type
988
  value() const
989
  { return this->value_; }
990
 
991
  // Return the symbol's size (we can't call this 'size' because that
992
  // is a template parameter).
993
  Size_type
994
  symsize() const
995
  { return this->symsize_; }
996
 
997
  // Set the symbol size.  This is used when resolving common symbols.
998
  void
999
  set_symsize(Size_type symsize)
1000
  { this->symsize_ = symsize; }
1001
 
1002
  // Set the symbol value.  This is called when we store the final
1003
  // values of the symbols into the symbol table.
1004
  void
1005
  set_value(Value_type value)
1006
  { this->value_ = value; }
1007
 
1008
  // Allocate a common symbol by giving it a location in the output
1009
  // file.
1010
  void
1011
  allocate_common(Output_data*, Value_type value);
1012
 
1013
 private:
1014
  Sized_symbol(const Sized_symbol&);
1015
  Sized_symbol& operator=(const Sized_symbol&);
1016
 
1017
  // Symbol value.  Before Layout::finalize this is the offset in the
1018
  // input section.  This is set to the final value during
1019
  // Layout::finalize.
1020
  Value_type value_;
1021
  // Symbol size.
1022
  Size_type symsize_;
1023
};
1024
 
1025
// A struct describing a symbol defined by the linker, where the value
1026
// of the symbol is defined based on an output section.  This is used
1027
// for symbols defined by the linker, like "_init_array_start".
1028
 
1029
struct Define_symbol_in_section
1030
{
1031
  // The symbol name.
1032
  const char* name;
1033
  // The name of the output section with which this symbol should be
1034
  // associated.  If there is no output section with that name, the
1035
  // symbol will be defined as zero.
1036
  const char* output_section;
1037
  // The offset of the symbol within the output section.  This is an
1038
  // offset from the start of the output section, unless start_at_end
1039
  // is true, in which case this is an offset from the end of the
1040
  // output section.
1041
  uint64_t value;
1042
  // The size of the symbol.
1043
  uint64_t size;
1044
  // The symbol type.
1045
  elfcpp::STT type;
1046
  // The symbol binding.
1047
  elfcpp::STB binding;
1048
  // The symbol visibility.
1049
  elfcpp::STV visibility;
1050
  // The rest of the st_other field.
1051
  unsigned char nonvis;
1052
  // If true, the value field is an offset from the end of the output
1053
  // section.
1054
  bool offset_is_from_end;
1055
  // If true, this symbol is defined only if we see a reference to it.
1056
  bool only_if_ref;
1057
};
1058
 
1059
// A struct describing a symbol defined by the linker, where the value
1060
// of the symbol is defined based on a segment.  This is used for
1061
// symbols defined by the linker, like "_end".  We describe the
1062
// segment with which the symbol should be associated by its
1063
// characteristics.  If no segment meets these characteristics, the
1064
// symbol will be defined as zero.  If there is more than one segment
1065
// which meets these characteristics, we will use the first one.
1066
 
1067
struct Define_symbol_in_segment
1068
{
1069
  // The symbol name.
1070
  const char* name;
1071
  // The segment type where the symbol should be defined, typically
1072
  // PT_LOAD.
1073
  elfcpp::PT segment_type;
1074
  // Bitmask of segment flags which must be set.
1075
  elfcpp::PF segment_flags_set;
1076
  // Bitmask of segment flags which must be clear.
1077
  elfcpp::PF segment_flags_clear;
1078
  // The offset of the symbol within the segment.  The offset is
1079
  // calculated from the position set by offset_base.
1080
  uint64_t value;
1081
  // The size of the symbol.
1082
  uint64_t size;
1083
  // The symbol type.
1084
  elfcpp::STT type;
1085
  // The symbol binding.
1086
  elfcpp::STB binding;
1087
  // The symbol visibility.
1088
  elfcpp::STV visibility;
1089
  // The rest of the st_other field.
1090
  unsigned char nonvis;
1091
  // The base from which we compute the offset.
1092
  Symbol::Segment_offset_base offset_base;
1093
  // If true, this symbol is defined only if we see a reference to it.
1094
  bool only_if_ref;
1095
};
1096
 
1097
// This class manages warnings.  Warnings are a GNU extension.  When
1098
// we see a section named .gnu.warning.SYM in an object file, and if
1099
// we wind using the definition of SYM from that object file, then we
1100
// will issue a warning for any relocation against SYM from a
1101
// different object file.  The text of the warning is the contents of
1102
// the section.  This is not precisely the definition used by the old
1103
// GNU linker; the old GNU linker treated an occurrence of
1104
// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1105
// would trigger a warning on any reference.  However, it was
1106
// inconsistent in that a warning in a dynamic object only triggered
1107
// if there was no definition in a regular object.  This linker is
1108
// different in that we only issue a warning if we use the symbol
1109
// definition from the same object file as the warning section.
1110
 
1111
class Warnings
1112
{
1113
 public:
1114
  Warnings()
1115
    : warnings_()
1116
  { }
1117
 
1118
  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1119
  // of the warning.
1120
  void
1121
  add_warning(Symbol_table* symtab, const char* name, Object* obj,
1122
              const std::string& warning);
1123
 
1124
  // For each symbol for which we should give a warning, make a note
1125
  // on the symbol.
1126
  void
1127
  note_warnings(Symbol_table* symtab);
1128
 
1129
  // Issue a warning for a reference to SYM at RELINFO's location.
1130
  template<int size, bool big_endian>
1131
  void
1132
  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1133
                size_t relnum, off_t reloffset) const;
1134
 
1135
 private:
1136
  Warnings(const Warnings&);
1137
  Warnings& operator=(const Warnings&);
1138
 
1139
  // What we need to know to get the warning text.
1140
  struct Warning_location
1141
  {
1142
    // The object the warning is in.
1143
    Object* object;
1144
    // The warning text.
1145
    std::string text;
1146
 
1147
    Warning_location()
1148
      : object(NULL), text()
1149
    { }
1150
 
1151
    void
1152
    set(Object* o, const std::string& t)
1153
    {
1154
      this->object = o;
1155
      this->text = t;
1156
    }
1157
  };
1158
 
1159
  // A mapping from warning symbol names (canonicalized in
1160
  // Symbol_table's namepool_ field) to warning information.
1161
  typedef Unordered_map<const char*, Warning_location> Warning_table;
1162
 
1163
  Warning_table warnings_;
1164
};
1165
 
1166
// The main linker symbol table.
1167
 
1168
class Symbol_table
1169
{
1170
 public:
1171
  // COUNT is an estimate of how many symbosl will be inserted in the
1172
  // symbol table.  It's ok to put 0 if you don't know; a correct
1173
  // guess will just save some CPU by reducing hashtable resizes.
1174
  Symbol_table(unsigned int count, const Version_script_info& version_script);
1175
 
1176
  ~Symbol_table();
1177
 
1178
  void
1179
  set_icf(Icf* icf)
1180
  { this->icf_ = icf;}
1181
 
1182
  Icf*
1183
  icf() const
1184
  { return this->icf_; }
1185
 
1186
  // Returns true if ICF determined that this is a duplicate section. 
1187
  bool
1188
  is_section_folded(Object* obj, unsigned int shndx) const;
1189
 
1190
  void
1191
  set_gc(Garbage_collection* gc)
1192
  { this->gc_ = gc; }
1193
 
1194
  Garbage_collection*
1195
  gc() const
1196
  { return this->gc_; }
1197
 
1198
  // During garbage collection, this keeps undefined symbols.
1199
  void
1200
  gc_mark_undef_symbols();
1201
 
1202
  // During garbage collection, this ensures externally visible symbols
1203
  // are not treated as garbage while building shared objects.
1204
  void
1205
  gc_mark_symbol_for_shlib(Symbol* sym);
1206
 
1207
  // During garbage collection, this keeps sections that correspond to 
1208
  // symbols seen in dynamic objects.
1209
  inline void
1210
  gc_mark_dyn_syms(Symbol* sym);
1211
 
1212
  // Add COUNT external symbols from the relocatable object RELOBJ to
1213
  // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1214
  // offset in the symbol table of the first symbol, SYM_NAMES is
1215
  // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1216
  // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1217
  // *DEFINED to the number of defined symbols.
1218
  template<int size, bool big_endian>
1219
  void
1220
  add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1221
                  const unsigned char* syms, size_t count,
1222
                  size_t symndx_offset, const char* sym_names,
1223
                  size_t sym_name_size,
1224
                  typename Sized_relobj<size, big_endian>::Symbols*,
1225
                  size_t* defined);
1226
 
1227
  // Add one external symbol from the plugin object OBJ to the symbol table.
1228
  // Returns a pointer to the resolved symbol in the symbol table.
1229
  template<int size, bool big_endian>
1230
  Symbol*
1231
  add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1232
                     const char* name, const char* ver,
1233
                     elfcpp::Sym<size, big_endian>* sym);
1234
 
1235
  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1236
  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1237
  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1238
  // symbol version data.
1239
  template<int size, bool big_endian>
1240
  void
1241
  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1242
                  const unsigned char* syms, size_t count,
1243
                  const char* sym_names, size_t sym_name_size,
1244
                  const unsigned char* versym, size_t versym_size,
1245
                  const std::vector<const char*>*,
1246
                  typename Sized_relobj<size, big_endian>::Symbols*,
1247
                  size_t* defined);
1248
 
1249
  // Define a special symbol based on an Output_data.  It is a
1250
  // multiple definition error if this symbol is already defined.
1251
  Symbol*
1252
  define_in_output_data(const char* name, const char* version,
1253
                        Output_data*, uint64_t value, uint64_t symsize,
1254
                        elfcpp::STT type, elfcpp::STB binding,
1255
                        elfcpp::STV visibility, unsigned char nonvis,
1256
                        bool offset_is_from_end, bool only_if_ref);
1257
 
1258
  // Define a special symbol based on an Output_segment.  It is a
1259
  // multiple definition error if this symbol is already defined.
1260
  Symbol*
1261
  define_in_output_segment(const char* name, const char* version,
1262
                           Output_segment*, uint64_t value, uint64_t symsize,
1263
                           elfcpp::STT type, elfcpp::STB binding,
1264
                           elfcpp::STV visibility, unsigned char nonvis,
1265
                           Symbol::Segment_offset_base, bool only_if_ref);
1266
 
1267
  // Define a special symbol with a constant value.  It is a multiple
1268
  // definition error if this symbol is already defined.
1269
  Symbol*
1270
  define_as_constant(const char* name, const char* version,
1271
                     uint64_t value, uint64_t symsize, elfcpp::STT type,
1272
                     elfcpp::STB binding, elfcpp::STV visibility,
1273
                     unsigned char nonvis, bool only_if_ref,
1274
                     bool force_override);
1275
 
1276
  // Define a set of symbols in output sections.  If ONLY_IF_REF is
1277
  // true, only define them if they are referenced.
1278
  void
1279
  define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1280
                 bool only_if_ref);
1281
 
1282
  // Define a set of symbols in output segments.  If ONLY_IF_REF is
1283
  // true, only defined them if they are referenced.
1284
  void
1285
  define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1286
                 bool only_if_ref);
1287
 
1288
  // Define SYM using a COPY reloc.  POSD is the Output_data where the
1289
  // symbol should be defined--typically a .dyn.bss section.  VALUE is
1290
  // the offset within POSD.
1291
  template<int size>
1292
  void
1293
  define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1294
                         typename elfcpp::Elf_types<size>::Elf_Addr);
1295
 
1296
  // Look up a symbol.
1297
  Symbol*
1298
  lookup(const char*, const char* version = NULL) const;
1299
 
1300
  // Return the real symbol associated with the forwarder symbol FROM.
1301
  Symbol*
1302
  resolve_forwards(const Symbol* from) const;
1303
 
1304
  // Return the sized version of a symbol in this table.
1305
  template<int size>
1306
  Sized_symbol<size>*
1307
  get_sized_symbol(Symbol*) const;
1308
 
1309
  template<int size>
1310
  const Sized_symbol<size>*
1311
  get_sized_symbol(const Symbol*) const;
1312
 
1313
  // Return the count of undefined symbols seen.
1314
  int
1315
  saw_undefined() const
1316
  { return this->saw_undefined_; }
1317
 
1318
  // Allocate the common symbols
1319
  void
1320
  allocate_commons(Layout*, Mapfile*);
1321
 
1322
  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1323
  // of the warning.
1324
  void
1325
  add_warning(const char* name, Object* obj, const std::string& warning)
1326
  { this->warnings_.add_warning(this, name, obj, warning); }
1327
 
1328
  // Canonicalize a symbol name for use in the hash table.
1329
  const char*
1330
  canonicalize_name(const char* name)
1331
  { return this->namepool_.add(name, true, NULL); }
1332
 
1333
  // Possibly issue a warning for a reference to SYM at LOCATION which
1334
  // is in OBJ.
1335
  template<int size, bool big_endian>
1336
  void
1337
  issue_warning(const Symbol* sym,
1338
                const Relocate_info<size, big_endian>* relinfo,
1339
                size_t relnum, off_t reloffset) const
1340
  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1341
 
1342
  // Check candidate_odr_violations_ to find symbols with the same name
1343
  // but apparently different definitions (different source-file/line-no).
1344
  void
1345
  detect_odr_violations(const Task*, const char* output_file_name) const;
1346
 
1347
  // Add any undefined symbols named on the command line to the symbol
1348
  // table.
1349
  void
1350
  add_undefined_symbols_from_command_line();
1351
 
1352
  // SYM is defined using a COPY reloc.  Return the dynamic object
1353
  // where the original definition was found.
1354
  Dynobj*
1355
  get_copy_source(const Symbol* sym) const;
1356
 
1357
  // Set the dynamic symbol indexes.  INDEX is the index of the first
1358
  // global dynamic symbol.  Pointers to the symbols are stored into
1359
  // the vector.  The names are stored into the Stringpool.  This
1360
  // returns an updated dynamic symbol index.
1361
  unsigned int
1362
  set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1363
                     Stringpool*, Versions*);
1364
 
1365
  // Finalize the symbol table after we have set the final addresses
1366
  // of all the input sections.  This sets the final symbol indexes,
1367
  // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1368
  // index of the first global symbol.  OFF is the file offset of the
1369
  // global symbol table, DYNOFF is the offset of the globals in the
1370
  // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1371
  // global dynamic symbol, and DYNCOUNT is the number of global
1372
  // dynamic symbols.  This records the parameters, and returns the
1373
  // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1374
  // local symbols.
1375
  off_t
1376
  finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1377
           Stringpool* pool, unsigned int *plocal_symcount);
1378
 
1379
  // Status code of Symbol_table::compute_final_value.
1380
  enum Compute_final_value_status
1381
  {
1382
    // No error.
1383
    CFVS_OK,
1384
    // Unspported symbol section.
1385
    CFVS_UNSUPPORTED_SYMBOL_SECTION,
1386
    // No output section.
1387
    CFVS_NO_OUTPUT_SECTION
1388
  };
1389
 
1390
  // Compute the final value of SYM and store status in location PSTATUS.
1391
  // During relaxation, this may be called multiple times for a symbol to 
1392
  // compute its would-be final value in each relaxation pass.
1393
 
1394
  template<int size>
1395
  typename Sized_symbol<size>::Value_type
1396
  compute_final_value(const Sized_symbol<size>* sym,
1397
                      Compute_final_value_status* pstatus) const;
1398
 
1399
  // Write out the global symbols.
1400
  void
1401
  write_globals(const Stringpool*, const Stringpool*,
1402
                Output_symtab_xindex*, Output_symtab_xindex*,
1403
                Output_file*) const;
1404
 
1405
  // Write out a section symbol.  Return the updated offset.
1406
  void
1407
  write_section_symbol(const Output_section*, Output_symtab_xindex*,
1408
                       Output_file*, off_t) const;
1409
 
1410
  // Dump statistical information to stderr.
1411
  void
1412
  print_stats() const;
1413
 
1414
  // Return the version script information.
1415
  const Version_script_info&
1416
  version_script() const
1417
  { return version_script_; }
1418
 
1419
 private:
1420
  Symbol_table(const Symbol_table&);
1421
  Symbol_table& operator=(const Symbol_table&);
1422
 
1423
  // The type of the list of common symbols.
1424
  typedef std::vector<Symbol*> Commons_type;
1425
 
1426
  // The type of the symbol hash table.
1427
 
1428
  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1429
 
1430
  struct Symbol_table_hash
1431
  {
1432
    size_t
1433
    operator()(const Symbol_table_key&) const;
1434
  };
1435
 
1436
  struct Symbol_table_eq
1437
  {
1438
    bool
1439
    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1440
  };
1441
 
1442
  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1443
                        Symbol_table_eq> Symbol_table_type;
1444
 
1445
  // Make FROM a forwarder symbol to TO.
1446
  void
1447
  make_forwarder(Symbol* from, Symbol* to);
1448
 
1449
  // Add a symbol.
1450
  template<int size, bool big_endian>
1451
  Sized_symbol<size>*
1452
  add_from_object(Object*, const char *name, Stringpool::Key name_key,
1453
                  const char *version, Stringpool::Key version_key,
1454
                  bool def, const elfcpp::Sym<size, big_endian>& sym,
1455
                  unsigned int st_shndx, bool is_ordinary,
1456
                  unsigned int orig_st_shndx);
1457
 
1458
  // Define a default symbol.
1459
  template<int size, bool big_endian>
1460
  void
1461
  define_default_version(Sized_symbol<size>*, bool,
1462
                         Symbol_table_type::iterator);
1463
 
1464
  // Resolve symbols.
1465
  template<int size, bool big_endian>
1466
  void
1467
  resolve(Sized_symbol<size>* to,
1468
          const elfcpp::Sym<size, big_endian>& sym,
1469
          unsigned int st_shndx, bool is_ordinary,
1470
          unsigned int orig_st_shndx,
1471
          Object*, const char* version);
1472
 
1473
  template<int size, bool big_endian>
1474
  void
1475
  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1476
 
1477
  // Record that a symbol is forced to be local by a version script or
1478
  // by visibility.
1479
  void
1480
  force_local(Symbol*);
1481
 
1482
  // Adjust NAME and *NAME_KEY for wrapping.
1483
  const char*
1484
  wrap_symbol(const char* name, Stringpool::Key* name_key);
1485
 
1486
  // Whether we should override a symbol, based on flags in
1487
  // resolve.cc.
1488
  static bool
1489
  should_override(const Symbol*, unsigned int, Object*, bool*);
1490
 
1491
  // Report a problem in symbol resolution.
1492
  static void
1493
  report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1494
                         Object* object);
1495
 
1496
  // Override a symbol.
1497
  template<int size, bool big_endian>
1498
  void
1499
  override(Sized_symbol<size>* tosym,
1500
           const elfcpp::Sym<size, big_endian>& fromsym,
1501
           unsigned int st_shndx, bool is_ordinary,
1502
           Object* object, const char* version);
1503
 
1504
  // Whether we should override a symbol with a special symbol which
1505
  // is automatically defined by the linker.
1506
  static bool
1507
  should_override_with_special(const Symbol*);
1508
 
1509
  // Override a symbol with a special symbol.
1510
  template<int size>
1511
  void
1512
  override_with_special(Sized_symbol<size>* tosym,
1513
                        const Sized_symbol<size>* fromsym);
1514
 
1515
  // Record all weak alias sets for a dynamic object.
1516
  template<int size>
1517
  void
1518
  record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1519
 
1520
  // Define a special symbol.
1521
  template<int size, bool big_endian>
1522
  Sized_symbol<size>*
1523
  define_special_symbol(const char** pname, const char** pversion,
1524
                        bool only_if_ref, Sized_symbol<size>** poldsym,
1525
                        bool* resolve_oldsym);
1526
 
1527
  // Define a symbol in an Output_data, sized version.
1528
  template<int size>
1529
  Sized_symbol<size>*
1530
  do_define_in_output_data(const char* name, const char* version, Output_data*,
1531
                           typename elfcpp::Elf_types<size>::Elf_Addr value,
1532
                           typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1533
                           elfcpp::STT type, elfcpp::STB binding,
1534
                           elfcpp::STV visibility, unsigned char nonvis,
1535
                           bool offset_is_from_end, bool only_if_ref);
1536
 
1537
  // Define a symbol in an Output_segment, sized version.
1538
  template<int size>
1539
  Sized_symbol<size>*
1540
  do_define_in_output_segment(
1541
    const char* name, const char* version, Output_segment* os,
1542
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1543
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1544
    elfcpp::STT type, elfcpp::STB binding,
1545
    elfcpp::STV visibility, unsigned char nonvis,
1546
    Symbol::Segment_offset_base offset_base, bool only_if_ref);
1547
 
1548
  // Define a symbol as a constant, sized version.
1549
  template<int size>
1550
  Sized_symbol<size>*
1551
  do_define_as_constant(
1552
    const char* name, const char* version,
1553
    typename elfcpp::Elf_types<size>::Elf_Addr value,
1554
    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1555
    elfcpp::STT type, elfcpp::STB binding,
1556
    elfcpp::STV visibility, unsigned char nonvis,
1557
    bool only_if_ref, bool force_override);
1558
 
1559
  // Add any undefined symbols named on the command line to the symbol
1560
  // table, sized version.
1561
  template<int size>
1562
  void
1563
  do_add_undefined_symbols_from_command_line();
1564
 
1565
  // Types of common symbols.
1566
 
1567
  enum Commons_section_type
1568
  {
1569
    COMMONS_NORMAL,
1570
    COMMONS_TLS,
1571
    COMMONS_SMALL,
1572
    COMMONS_LARGE
1573
  };
1574
 
1575
  // Allocate the common symbols, sized version.
1576
  template<int size>
1577
  void
1578
  do_allocate_commons(Layout*, Mapfile*);
1579
 
1580
  // Allocate the common symbols from one list.
1581
  template<int size>
1582
  void
1583
  do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1584
                           Mapfile*);
1585
 
1586
  // Implement detect_odr_violations.
1587
  template<int size, bool big_endian>
1588
  void
1589
  sized_detect_odr_violations() const;
1590
 
1591
  // Finalize symbols specialized for size.
1592
  template<int size>
1593
  off_t
1594
  sized_finalize(off_t, Stringpool*, unsigned int*);
1595
 
1596
  // Finalize a symbol.  Return whether it should be added to the
1597
  // symbol table.
1598
  template<int size>
1599
  bool
1600
  sized_finalize_symbol(Symbol*);
1601
 
1602
  // Add a symbol the final symtab by setting its index.
1603
  template<int size>
1604
  void
1605
  add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1606
 
1607
  // Write globals specialized for size and endianness.
1608
  template<int size, bool big_endian>
1609
  void
1610
  sized_write_globals(const Stringpool*, const Stringpool*,
1611
                      Output_symtab_xindex*, Output_symtab_xindex*,
1612
                      Output_file*) const;
1613
 
1614
  // Write out a symbol to P.
1615
  template<int size, bool big_endian>
1616
  void
1617
  sized_write_symbol(Sized_symbol<size>*,
1618
                     typename elfcpp::Elf_types<size>::Elf_Addr value,
1619
                     unsigned int shndx,
1620
                     const Stringpool*, unsigned char* p) const;
1621
 
1622
  // Possibly warn about an undefined symbol from a dynamic object.
1623
  void
1624
  warn_about_undefined_dynobj_symbol(Symbol*) const;
1625
 
1626
  // Write out a section symbol, specialized for size and endianness.
1627
  template<int size, bool big_endian>
1628
  void
1629
  sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1630
                             Output_file*, off_t) const;
1631
 
1632
  // The type of the list of symbols which have been forced local.
1633
  typedef std::vector<Symbol*> Forced_locals;
1634
 
1635
  // A map from symbols with COPY relocs to the dynamic objects where
1636
  // they are defined.
1637
  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1638
 
1639
  // A map from symbol name (as a pointer into the namepool) to all
1640
  // the locations the symbols is (weakly) defined (and certain other
1641
  // conditions are met).  This map will be used later to detect
1642
  // possible One Definition Rule (ODR) violations.
1643
  struct Symbol_location
1644
  {
1645
    Object* object;         // Object where the symbol is defined.
1646
    unsigned int shndx;     // Section-in-object where the symbol is defined.
1647
    off_t offset;           // Offset-in-section where the symbol is defined.
1648
    bool operator==(const Symbol_location& that) const
1649
    {
1650
      return (this->object == that.object
1651
              && this->shndx == that.shndx
1652
              && this->offset == that.offset);
1653
    }
1654
  };
1655
 
1656
  struct Symbol_location_hash
1657
  {
1658
    size_t operator()(const Symbol_location& loc) const
1659
    { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1660
  };
1661
 
1662
  typedef Unordered_map<const char*,
1663
                        Unordered_set<Symbol_location, Symbol_location_hash> >
1664
  Odr_map;
1665
 
1666
  // We increment this every time we see a new undefined symbol, for
1667
  // use in archive groups.
1668
  int saw_undefined_;
1669
  // The index of the first global symbol in the output file.
1670
  unsigned int first_global_index_;
1671
  // The file offset within the output symtab section where we should
1672
  // write the table.
1673
  off_t offset_;
1674
  // The number of global symbols we want to write out.
1675
  unsigned int output_count_;
1676
  // The file offset of the global dynamic symbols, or 0 if none.
1677
  off_t dynamic_offset_;
1678
  // The index of the first global dynamic symbol.
1679
  unsigned int first_dynamic_global_index_;
1680
  // The number of global dynamic symbols, or 0 if none.
1681
  unsigned int dynamic_count_;
1682
  // The symbol hash table.
1683
  Symbol_table_type table_;
1684
  // A pool of symbol names.  This is used for all global symbols.
1685
  // Entries in the hash table point into this pool.
1686
  Stringpool namepool_;
1687
  // Forwarding symbols.
1688
  Unordered_map<const Symbol*, Symbol*> forwarders_;
1689
  // Weak aliases.  A symbol in this list points to the next alias.
1690
  // The aliases point to each other in a circular list.
1691
  Unordered_map<Symbol*, Symbol*> weak_aliases_;
1692
  // We don't expect there to be very many common symbols, so we keep
1693
  // a list of them.  When we find a common symbol we add it to this
1694
  // list.  It is possible that by the time we process the list the
1695
  // symbol is no longer a common symbol.  It may also have become a
1696
  // forwarder.
1697
  Commons_type commons_;
1698
  // This is like the commons_ field, except that it holds TLS common
1699
  // symbols.
1700
  Commons_type tls_commons_;
1701
  // This is for small common symbols.
1702
  Commons_type small_commons_;
1703
  // This is for large common symbols.
1704
  Commons_type large_commons_;
1705
  // A list of symbols which have been forced to be local.  We don't
1706
  // expect there to be very many of them, so we keep a list of them
1707
  // rather than walking the whole table to find them.
1708
  Forced_locals forced_locals_;
1709
  // Manage symbol warnings.
1710
  Warnings warnings_;
1711
  // Manage potential One Definition Rule (ODR) violations.
1712
  Odr_map candidate_odr_violations_;
1713
 
1714
  // When we emit a COPY reloc for a symbol, we define it in an
1715
  // Output_data.  When it's time to emit version information for it,
1716
  // we need to know the dynamic object in which we found the original
1717
  // definition.  This maps symbols with COPY relocs to the dynamic
1718
  // object where they were defined.
1719
  Copied_symbol_dynobjs copied_symbol_dynobjs_;
1720
  // Information parsed from the version script, if any.
1721
  const Version_script_info& version_script_;
1722
  Garbage_collection* gc_;
1723
  Icf* icf_;
1724
};
1725
 
1726
// We inline get_sized_symbol for efficiency.
1727
 
1728
template<int size>
1729
Sized_symbol<size>*
1730
Symbol_table::get_sized_symbol(Symbol* sym) const
1731
{
1732
  gold_assert(size == parameters->target().get_size());
1733
  return static_cast<Sized_symbol<size>*>(sym);
1734
}
1735
 
1736
template<int size>
1737
const Sized_symbol<size>*
1738
Symbol_table::get_sized_symbol(const Symbol* sym) const
1739
{
1740
  gold_assert(size == parameters->target().get_size());
1741
  return static_cast<const Sized_symbol<size>*>(sym);
1742
}
1743
 
1744
} // End namespace gold.
1745
 
1746
#endif // !defined(GOLD_SYMTAB_H)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.