1 |
38 |
julius |
/* Control flow optimization code for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* This file contains optimizer of the control flow. The main entry point is
|
22 |
|
|
cleanup_cfg. Following optimizations are performed:
|
23 |
|
|
|
24 |
|
|
- Unreachable blocks removal
|
25 |
|
|
- Edge forwarding (edge to the forwarder block is forwarded to its
|
26 |
|
|
successor. Simplification of the branch instruction is performed by
|
27 |
|
|
underlying infrastructure so branch can be converted to simplejump or
|
28 |
|
|
eliminated).
|
29 |
|
|
- Cross jumping (tail merging)
|
30 |
|
|
- Conditional jump-around-simplejump simplification
|
31 |
|
|
- Basic block merging. */
|
32 |
|
|
|
33 |
|
|
#include "config.h"
|
34 |
|
|
#include "system.h"
|
35 |
|
|
#include "coretypes.h"
|
36 |
|
|
#include "tm.h"
|
37 |
|
|
#include "rtl.h"
|
38 |
|
|
#include "hard-reg-set.h"
|
39 |
|
|
#include "regs.h"
|
40 |
|
|
#include "timevar.h"
|
41 |
|
|
#include "output.h"
|
42 |
|
|
#include "insn-config.h"
|
43 |
|
|
#include "flags.h"
|
44 |
|
|
#include "recog.h"
|
45 |
|
|
#include "toplev.h"
|
46 |
|
|
#include "cselib.h"
|
47 |
|
|
#include "params.h"
|
48 |
|
|
#include "tm_p.h"
|
49 |
|
|
#include "target.h"
|
50 |
|
|
#include "cfglayout.h"
|
51 |
|
|
#include "emit-rtl.h"
|
52 |
|
|
#include "tree-pass.h"
|
53 |
|
|
#include "cfgloop.h"
|
54 |
|
|
#include "expr.h"
|
55 |
|
|
|
56 |
|
|
#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
|
57 |
|
|
|
58 |
|
|
/* Set to true when we are running first pass of try_optimize_cfg loop. */
|
59 |
|
|
static bool first_pass;
|
60 |
|
|
static bool try_crossjump_to_edge (int, edge, edge);
|
61 |
|
|
static bool try_crossjump_bb (int, basic_block);
|
62 |
|
|
static bool outgoing_edges_match (int, basic_block, basic_block);
|
63 |
|
|
static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
|
64 |
|
|
static bool old_insns_match_p (int, rtx, rtx);
|
65 |
|
|
|
66 |
|
|
static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
|
67 |
|
|
static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
|
68 |
|
|
static bool try_optimize_cfg (int);
|
69 |
|
|
static bool try_simplify_condjump (basic_block);
|
70 |
|
|
static bool try_forward_edges (int, basic_block);
|
71 |
|
|
static edge thread_jump (int, edge, basic_block);
|
72 |
|
|
static bool mark_effect (rtx, bitmap);
|
73 |
|
|
static void notice_new_block (basic_block);
|
74 |
|
|
static void update_forwarder_flag (basic_block);
|
75 |
|
|
static int mentions_nonequal_regs (rtx *, void *);
|
76 |
|
|
static void merge_memattrs (rtx, rtx);
|
77 |
|
|
|
78 |
|
|
/* Set flags for newly created block. */
|
79 |
|
|
|
80 |
|
|
static void
|
81 |
|
|
notice_new_block (basic_block bb)
|
82 |
|
|
{
|
83 |
|
|
if (!bb)
|
84 |
|
|
return;
|
85 |
|
|
|
86 |
|
|
if (forwarder_block_p (bb))
|
87 |
|
|
bb->flags |= BB_FORWARDER_BLOCK;
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
/* Recompute forwarder flag after block has been modified. */
|
91 |
|
|
|
92 |
|
|
static void
|
93 |
|
|
update_forwarder_flag (basic_block bb)
|
94 |
|
|
{
|
95 |
|
|
if (forwarder_block_p (bb))
|
96 |
|
|
bb->flags |= BB_FORWARDER_BLOCK;
|
97 |
|
|
else
|
98 |
|
|
bb->flags &= ~BB_FORWARDER_BLOCK;
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
/* Simplify a conditional jump around an unconditional jump.
|
102 |
|
|
Return true if something changed. */
|
103 |
|
|
|
104 |
|
|
static bool
|
105 |
|
|
try_simplify_condjump (basic_block cbranch_block)
|
106 |
|
|
{
|
107 |
|
|
basic_block jump_block, jump_dest_block, cbranch_dest_block;
|
108 |
|
|
edge cbranch_jump_edge, cbranch_fallthru_edge;
|
109 |
|
|
rtx cbranch_insn;
|
110 |
|
|
|
111 |
|
|
/* Verify that there are exactly two successors. */
|
112 |
|
|
if (EDGE_COUNT (cbranch_block->succs) != 2)
|
113 |
|
|
return false;
|
114 |
|
|
|
115 |
|
|
/* Verify that we've got a normal conditional branch at the end
|
116 |
|
|
of the block. */
|
117 |
|
|
cbranch_insn = BB_END (cbranch_block);
|
118 |
|
|
if (!any_condjump_p (cbranch_insn))
|
119 |
|
|
return false;
|
120 |
|
|
|
121 |
|
|
cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
|
122 |
|
|
cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
|
123 |
|
|
|
124 |
|
|
/* The next block must not have multiple predecessors, must not
|
125 |
|
|
be the last block in the function, and must contain just the
|
126 |
|
|
unconditional jump. */
|
127 |
|
|
jump_block = cbranch_fallthru_edge->dest;
|
128 |
|
|
if (!single_pred_p (jump_block)
|
129 |
|
|
|| jump_block->next_bb == EXIT_BLOCK_PTR
|
130 |
|
|
|| !FORWARDER_BLOCK_P (jump_block))
|
131 |
|
|
return false;
|
132 |
|
|
jump_dest_block = single_succ (jump_block);
|
133 |
|
|
|
134 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
135 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
136 |
|
|
and cold sections.
|
137 |
|
|
|
138 |
|
|
Basic block partitioning may result in some jumps that appear to
|
139 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
140 |
|
|
must be left untouched (they are required to make it safely across
|
141 |
|
|
partition boundaries). See the comments at the top of
|
142 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
143 |
|
|
|
144 |
|
|
if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
|
145 |
|
|
|| (cbranch_jump_edge->flags & EDGE_CROSSING))
|
146 |
|
|
return false;
|
147 |
|
|
|
148 |
|
|
/* The conditional branch must target the block after the
|
149 |
|
|
unconditional branch. */
|
150 |
|
|
cbranch_dest_block = cbranch_jump_edge->dest;
|
151 |
|
|
|
152 |
|
|
if (cbranch_dest_block == EXIT_BLOCK_PTR
|
153 |
|
|
|| !can_fallthru (jump_block, cbranch_dest_block))
|
154 |
|
|
return false;
|
155 |
|
|
|
156 |
|
|
/* Invert the conditional branch. */
|
157 |
|
|
if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
|
158 |
|
|
return false;
|
159 |
|
|
|
160 |
|
|
if (dump_file)
|
161 |
|
|
fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
|
162 |
|
|
INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
|
163 |
|
|
|
164 |
|
|
/* Success. Update the CFG to match. Note that after this point
|
165 |
|
|
the edge variable names appear backwards; the redirection is done
|
166 |
|
|
this way to preserve edge profile data. */
|
167 |
|
|
cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
|
168 |
|
|
cbranch_dest_block);
|
169 |
|
|
cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
|
170 |
|
|
jump_dest_block);
|
171 |
|
|
cbranch_jump_edge->flags |= EDGE_FALLTHRU;
|
172 |
|
|
cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
|
173 |
|
|
update_br_prob_note (cbranch_block);
|
174 |
|
|
|
175 |
|
|
/* Delete the block with the unconditional jump, and clean up the mess. */
|
176 |
|
|
delete_basic_block (jump_block);
|
177 |
|
|
tidy_fallthru_edge (cbranch_jump_edge);
|
178 |
|
|
update_forwarder_flag (cbranch_block);
|
179 |
|
|
|
180 |
|
|
return true;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/* Attempt to prove that operation is NOOP using CSElib or mark the effect
|
184 |
|
|
on register. Used by jump threading. */
|
185 |
|
|
|
186 |
|
|
static bool
|
187 |
|
|
mark_effect (rtx exp, regset nonequal)
|
188 |
|
|
{
|
189 |
|
|
int regno;
|
190 |
|
|
rtx dest;
|
191 |
|
|
switch (GET_CODE (exp))
|
192 |
|
|
{
|
193 |
|
|
/* In case we do clobber the register, mark it as equal, as we know the
|
194 |
|
|
value is dead so it don't have to match. */
|
195 |
|
|
case CLOBBER:
|
196 |
|
|
if (REG_P (XEXP (exp, 0)))
|
197 |
|
|
{
|
198 |
|
|
dest = XEXP (exp, 0);
|
199 |
|
|
regno = REGNO (dest);
|
200 |
|
|
CLEAR_REGNO_REG_SET (nonequal, regno);
|
201 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
202 |
|
|
{
|
203 |
|
|
int n = hard_regno_nregs[regno][GET_MODE (dest)];
|
204 |
|
|
while (--n > 0)
|
205 |
|
|
CLEAR_REGNO_REG_SET (nonequal, regno + n);
|
206 |
|
|
}
|
207 |
|
|
}
|
208 |
|
|
return false;
|
209 |
|
|
|
210 |
|
|
case SET:
|
211 |
|
|
if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
|
212 |
|
|
return false;
|
213 |
|
|
dest = SET_DEST (exp);
|
214 |
|
|
if (dest == pc_rtx)
|
215 |
|
|
return false;
|
216 |
|
|
if (!REG_P (dest))
|
217 |
|
|
return true;
|
218 |
|
|
regno = REGNO (dest);
|
219 |
|
|
SET_REGNO_REG_SET (nonequal, regno);
|
220 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
221 |
|
|
{
|
222 |
|
|
int n = hard_regno_nregs[regno][GET_MODE (dest)];
|
223 |
|
|
while (--n > 0)
|
224 |
|
|
SET_REGNO_REG_SET (nonequal, regno + n);
|
225 |
|
|
}
|
226 |
|
|
return false;
|
227 |
|
|
|
228 |
|
|
default:
|
229 |
|
|
return false;
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Return nonzero if X is a register set in regset DATA.
|
234 |
|
|
Called via for_each_rtx. */
|
235 |
|
|
static int
|
236 |
|
|
mentions_nonequal_regs (rtx *x, void *data)
|
237 |
|
|
{
|
238 |
|
|
regset nonequal = (regset) data;
|
239 |
|
|
if (REG_P (*x))
|
240 |
|
|
{
|
241 |
|
|
int regno;
|
242 |
|
|
|
243 |
|
|
regno = REGNO (*x);
|
244 |
|
|
if (REGNO_REG_SET_P (nonequal, regno))
|
245 |
|
|
return 1;
|
246 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
247 |
|
|
{
|
248 |
|
|
int n = hard_regno_nregs[regno][GET_MODE (*x)];
|
249 |
|
|
while (--n > 0)
|
250 |
|
|
if (REGNO_REG_SET_P (nonequal, regno + n))
|
251 |
|
|
return 1;
|
252 |
|
|
}
|
253 |
|
|
}
|
254 |
|
|
return 0;
|
255 |
|
|
}
|
256 |
|
|
/* Attempt to prove that the basic block B will have no side effects and
|
257 |
|
|
always continues in the same edge if reached via E. Return the edge
|
258 |
|
|
if exist, NULL otherwise. */
|
259 |
|
|
|
260 |
|
|
static edge
|
261 |
|
|
thread_jump (int mode, edge e, basic_block b)
|
262 |
|
|
{
|
263 |
|
|
rtx set1, set2, cond1, cond2, insn;
|
264 |
|
|
enum rtx_code code1, code2, reversed_code2;
|
265 |
|
|
bool reverse1 = false;
|
266 |
|
|
unsigned i;
|
267 |
|
|
regset nonequal;
|
268 |
|
|
bool failed = false;
|
269 |
|
|
reg_set_iterator rsi;
|
270 |
|
|
|
271 |
|
|
if (b->flags & BB_NONTHREADABLE_BLOCK)
|
272 |
|
|
return NULL;
|
273 |
|
|
|
274 |
|
|
/* At the moment, we do handle only conditional jumps, but later we may
|
275 |
|
|
want to extend this code to tablejumps and others. */
|
276 |
|
|
if (EDGE_COUNT (e->src->succs) != 2)
|
277 |
|
|
return NULL;
|
278 |
|
|
if (EDGE_COUNT (b->succs) != 2)
|
279 |
|
|
{
|
280 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
281 |
|
|
return NULL;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/* Second branch must end with onlyjump, as we will eliminate the jump. */
|
285 |
|
|
if (!any_condjump_p (BB_END (e->src)))
|
286 |
|
|
return NULL;
|
287 |
|
|
|
288 |
|
|
if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
|
289 |
|
|
{
|
290 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
291 |
|
|
return NULL;
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
set1 = pc_set (BB_END (e->src));
|
295 |
|
|
set2 = pc_set (BB_END (b));
|
296 |
|
|
if (((e->flags & EDGE_FALLTHRU) != 0)
|
297 |
|
|
!= (XEXP (SET_SRC (set1), 1) == pc_rtx))
|
298 |
|
|
reverse1 = true;
|
299 |
|
|
|
300 |
|
|
cond1 = XEXP (SET_SRC (set1), 0);
|
301 |
|
|
cond2 = XEXP (SET_SRC (set2), 0);
|
302 |
|
|
if (reverse1)
|
303 |
|
|
code1 = reversed_comparison_code (cond1, BB_END (e->src));
|
304 |
|
|
else
|
305 |
|
|
code1 = GET_CODE (cond1);
|
306 |
|
|
|
307 |
|
|
code2 = GET_CODE (cond2);
|
308 |
|
|
reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
|
309 |
|
|
|
310 |
|
|
if (!comparison_dominates_p (code1, code2)
|
311 |
|
|
&& !comparison_dominates_p (code1, reversed_code2))
|
312 |
|
|
return NULL;
|
313 |
|
|
|
314 |
|
|
/* Ensure that the comparison operators are equivalent.
|
315 |
|
|
??? This is far too pessimistic. We should allow swapped operands,
|
316 |
|
|
different CCmodes, or for example comparisons for interval, that
|
317 |
|
|
dominate even when operands are not equivalent. */
|
318 |
|
|
if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
319 |
|
|
|| !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
320 |
|
|
return NULL;
|
321 |
|
|
|
322 |
|
|
/* Short circuit cases where block B contains some side effects, as we can't
|
323 |
|
|
safely bypass it. */
|
324 |
|
|
for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
|
325 |
|
|
insn = NEXT_INSN (insn))
|
326 |
|
|
if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
|
327 |
|
|
{
|
328 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
329 |
|
|
return NULL;
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
cselib_init (false);
|
333 |
|
|
|
334 |
|
|
/* First process all values computed in the source basic block. */
|
335 |
|
|
for (insn = NEXT_INSN (BB_HEAD (e->src));
|
336 |
|
|
insn != NEXT_INSN (BB_END (e->src));
|
337 |
|
|
insn = NEXT_INSN (insn))
|
338 |
|
|
if (INSN_P (insn))
|
339 |
|
|
cselib_process_insn (insn);
|
340 |
|
|
|
341 |
|
|
nonequal = BITMAP_ALLOC (NULL);
|
342 |
|
|
CLEAR_REG_SET (nonequal);
|
343 |
|
|
|
344 |
|
|
/* Now assume that we've continued by the edge E to B and continue
|
345 |
|
|
processing as if it were same basic block.
|
346 |
|
|
Our goal is to prove that whole block is an NOOP. */
|
347 |
|
|
|
348 |
|
|
for (insn = NEXT_INSN (BB_HEAD (b));
|
349 |
|
|
insn != NEXT_INSN (BB_END (b)) && !failed;
|
350 |
|
|
insn = NEXT_INSN (insn))
|
351 |
|
|
{
|
352 |
|
|
if (INSN_P (insn))
|
353 |
|
|
{
|
354 |
|
|
rtx pat = PATTERN (insn);
|
355 |
|
|
|
356 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
357 |
|
|
{
|
358 |
|
|
for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
|
359 |
|
|
failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
|
360 |
|
|
}
|
361 |
|
|
else
|
362 |
|
|
failed |= mark_effect (pat, nonequal);
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
cselib_process_insn (insn);
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/* Later we should clear nonequal of dead registers. So far we don't
|
369 |
|
|
have life information in cfg_cleanup. */
|
370 |
|
|
if (failed)
|
371 |
|
|
{
|
372 |
|
|
b->flags |= BB_NONTHREADABLE_BLOCK;
|
373 |
|
|
goto failed_exit;
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
/* cond2 must not mention any register that is not equal to the
|
377 |
|
|
former block. */
|
378 |
|
|
if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
|
379 |
|
|
goto failed_exit;
|
380 |
|
|
|
381 |
|
|
/* In case liveness information is available, we need to prove equivalence
|
382 |
|
|
only of the live values. */
|
383 |
|
|
if (mode & CLEANUP_UPDATE_LIFE)
|
384 |
|
|
AND_REG_SET (nonequal, b->il.rtl->global_live_at_end);
|
385 |
|
|
|
386 |
|
|
EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
|
387 |
|
|
goto failed_exit;
|
388 |
|
|
|
389 |
|
|
BITMAP_FREE (nonequal);
|
390 |
|
|
cselib_finish ();
|
391 |
|
|
if ((comparison_dominates_p (code1, code2) != 0)
|
392 |
|
|
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
393 |
|
|
return BRANCH_EDGE (b);
|
394 |
|
|
else
|
395 |
|
|
return FALLTHRU_EDGE (b);
|
396 |
|
|
|
397 |
|
|
failed_exit:
|
398 |
|
|
BITMAP_FREE (nonequal);
|
399 |
|
|
cselib_finish ();
|
400 |
|
|
return NULL;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
/* Attempt to forward edges leaving basic block B.
|
404 |
|
|
Return true if successful. */
|
405 |
|
|
|
406 |
|
|
static bool
|
407 |
|
|
try_forward_edges (int mode, basic_block b)
|
408 |
|
|
{
|
409 |
|
|
bool changed = false;
|
410 |
|
|
edge_iterator ei;
|
411 |
|
|
edge e, *threaded_edges = NULL;
|
412 |
|
|
|
413 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
414 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
415 |
|
|
and cold sections.
|
416 |
|
|
|
417 |
|
|
Basic block partitioning may result in some jumps that appear to
|
418 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really m
|
419 |
|
|
ust be left untouched (they are required to make it safely across
|
420 |
|
|
partition boundaries). See the comments at the top of
|
421 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
422 |
|
|
|
423 |
|
|
if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
|
424 |
|
|
return false;
|
425 |
|
|
|
426 |
|
|
for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
|
427 |
|
|
{
|
428 |
|
|
basic_block target, first;
|
429 |
|
|
int counter;
|
430 |
|
|
bool threaded = false;
|
431 |
|
|
int nthreaded_edges = 0;
|
432 |
|
|
bool may_thread = first_pass | (b->flags & BB_DIRTY);
|
433 |
|
|
|
434 |
|
|
/* Skip complex edges because we don't know how to update them.
|
435 |
|
|
|
436 |
|
|
Still handle fallthru edges, as we can succeed to forward fallthru
|
437 |
|
|
edge to the same place as the branch edge of conditional branch
|
438 |
|
|
and turn conditional branch to an unconditional branch. */
|
439 |
|
|
if (e->flags & EDGE_COMPLEX)
|
440 |
|
|
{
|
441 |
|
|
ei_next (&ei);
|
442 |
|
|
continue;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
target = first = e->dest;
|
446 |
|
|
counter = NUM_FIXED_BLOCKS;
|
447 |
|
|
|
448 |
|
|
/* If we are partitioning hot/cold basic_blocks, we don't want to mess
|
449 |
|
|
up jumps that cross between hot/cold sections.
|
450 |
|
|
|
451 |
|
|
Basic block partitioning may result in some jumps that appear
|
452 |
|
|
to be optimizable (or blocks that appear to be mergeable), but which
|
453 |
|
|
really must be left untouched (they are required to make it safely
|
454 |
|
|
across partition boundaries). See the comments at the top of
|
455 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete
|
456 |
|
|
details. */
|
457 |
|
|
|
458 |
|
|
if (first != EXIT_BLOCK_PTR
|
459 |
|
|
&& find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
|
460 |
|
|
return false;
|
461 |
|
|
|
462 |
|
|
while (counter < n_basic_blocks)
|
463 |
|
|
{
|
464 |
|
|
basic_block new_target = NULL;
|
465 |
|
|
bool new_target_threaded = false;
|
466 |
|
|
may_thread |= target->flags & BB_DIRTY;
|
467 |
|
|
|
468 |
|
|
if (FORWARDER_BLOCK_P (target)
|
469 |
|
|
&& !(single_succ_edge (target)->flags & EDGE_CROSSING)
|
470 |
|
|
&& single_succ (target) != EXIT_BLOCK_PTR)
|
471 |
|
|
{
|
472 |
|
|
/* Bypass trivial infinite loops. */
|
473 |
|
|
new_target = single_succ (target);
|
474 |
|
|
if (target == new_target)
|
475 |
|
|
counter = n_basic_blocks;
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
/* Allow to thread only over one edge at time to simplify updating
|
479 |
|
|
of probabilities. */
|
480 |
|
|
else if ((mode & CLEANUP_THREADING) && may_thread)
|
481 |
|
|
{
|
482 |
|
|
edge t = thread_jump (mode, e, target);
|
483 |
|
|
if (t)
|
484 |
|
|
{
|
485 |
|
|
if (!threaded_edges)
|
486 |
|
|
threaded_edges = XNEWVEC (edge, n_basic_blocks);
|
487 |
|
|
else
|
488 |
|
|
{
|
489 |
|
|
int i;
|
490 |
|
|
|
491 |
|
|
/* Detect an infinite loop across blocks not
|
492 |
|
|
including the start block. */
|
493 |
|
|
for (i = 0; i < nthreaded_edges; ++i)
|
494 |
|
|
if (threaded_edges[i] == t)
|
495 |
|
|
break;
|
496 |
|
|
if (i < nthreaded_edges)
|
497 |
|
|
{
|
498 |
|
|
counter = n_basic_blocks;
|
499 |
|
|
break;
|
500 |
|
|
}
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
/* Detect an infinite loop across the start block. */
|
504 |
|
|
if (t->dest == b)
|
505 |
|
|
break;
|
506 |
|
|
|
507 |
|
|
gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
|
508 |
|
|
threaded_edges[nthreaded_edges++] = t;
|
509 |
|
|
|
510 |
|
|
new_target = t->dest;
|
511 |
|
|
new_target_threaded = true;
|
512 |
|
|
}
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
if (!new_target)
|
516 |
|
|
break;
|
517 |
|
|
|
518 |
|
|
counter++;
|
519 |
|
|
target = new_target;
|
520 |
|
|
threaded |= new_target_threaded;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
if (counter >= n_basic_blocks)
|
524 |
|
|
{
|
525 |
|
|
if (dump_file)
|
526 |
|
|
fprintf (dump_file, "Infinite loop in BB %i.\n",
|
527 |
|
|
target->index);
|
528 |
|
|
}
|
529 |
|
|
else if (target == first)
|
530 |
|
|
; /* We didn't do anything. */
|
531 |
|
|
else
|
532 |
|
|
{
|
533 |
|
|
/* Save the values now, as the edge may get removed. */
|
534 |
|
|
gcov_type edge_count = e->count;
|
535 |
|
|
int edge_probability = e->probability;
|
536 |
|
|
int edge_frequency;
|
537 |
|
|
int n = 0;
|
538 |
|
|
|
539 |
|
|
/* Don't force if target is exit block. */
|
540 |
|
|
if (threaded && target != EXIT_BLOCK_PTR)
|
541 |
|
|
{
|
542 |
|
|
notice_new_block (redirect_edge_and_branch_force (e, target));
|
543 |
|
|
if (dump_file)
|
544 |
|
|
fprintf (dump_file, "Conditionals threaded.\n");
|
545 |
|
|
}
|
546 |
|
|
else if (!redirect_edge_and_branch (e, target))
|
547 |
|
|
{
|
548 |
|
|
if (dump_file)
|
549 |
|
|
fprintf (dump_file,
|
550 |
|
|
"Forwarding edge %i->%i to %i failed.\n",
|
551 |
|
|
b->index, e->dest->index, target->index);
|
552 |
|
|
ei_next (&ei);
|
553 |
|
|
continue;
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* We successfully forwarded the edge. Now update profile
|
557 |
|
|
data: for each edge we traversed in the chain, remove
|
558 |
|
|
the original edge's execution count. */
|
559 |
|
|
edge_frequency = ((edge_probability * b->frequency
|
560 |
|
|
+ REG_BR_PROB_BASE / 2)
|
561 |
|
|
/ REG_BR_PROB_BASE);
|
562 |
|
|
|
563 |
|
|
if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
|
564 |
|
|
b->flags |= BB_FORWARDER_BLOCK;
|
565 |
|
|
|
566 |
|
|
do
|
567 |
|
|
{
|
568 |
|
|
edge t;
|
569 |
|
|
|
570 |
|
|
if (!single_succ_p (first))
|
571 |
|
|
{
|
572 |
|
|
gcc_assert (n < nthreaded_edges);
|
573 |
|
|
t = threaded_edges [n++];
|
574 |
|
|
gcc_assert (t->src == first);
|
575 |
|
|
update_bb_profile_for_threading (first, edge_frequency,
|
576 |
|
|
edge_count, t);
|
577 |
|
|
update_br_prob_note (first);
|
578 |
|
|
}
|
579 |
|
|
else
|
580 |
|
|
{
|
581 |
|
|
first->count -= edge_count;
|
582 |
|
|
if (first->count < 0)
|
583 |
|
|
first->count = 0;
|
584 |
|
|
first->frequency -= edge_frequency;
|
585 |
|
|
if (first->frequency < 0)
|
586 |
|
|
first->frequency = 0;
|
587 |
|
|
/* It is possible that as the result of
|
588 |
|
|
threading we've removed edge as it is
|
589 |
|
|
threaded to the fallthru edge. Avoid
|
590 |
|
|
getting out of sync. */
|
591 |
|
|
if (n < nthreaded_edges
|
592 |
|
|
&& first == threaded_edges [n]->src)
|
593 |
|
|
n++;
|
594 |
|
|
t = single_succ_edge (first);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
t->count -= edge_count;
|
598 |
|
|
if (t->count < 0)
|
599 |
|
|
t->count = 0;
|
600 |
|
|
first = t->dest;
|
601 |
|
|
}
|
602 |
|
|
while (first != target);
|
603 |
|
|
|
604 |
|
|
changed = true;
|
605 |
|
|
continue;
|
606 |
|
|
}
|
607 |
|
|
ei_next (&ei);
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
if (threaded_edges)
|
611 |
|
|
free (threaded_edges);
|
612 |
|
|
return changed;
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
|
616 |
|
|
/* Blocks A and B are to be merged into a single block. A has no incoming
|
617 |
|
|
fallthru edge, so it can be moved before B without adding or modifying
|
618 |
|
|
any jumps (aside from the jump from A to B). */
|
619 |
|
|
|
620 |
|
|
static void
|
621 |
|
|
merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
|
622 |
|
|
{
|
623 |
|
|
rtx barrier;
|
624 |
|
|
bool only_notes;
|
625 |
|
|
|
626 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
627 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
628 |
|
|
and cold sections.
|
629 |
|
|
|
630 |
|
|
Basic block partitioning may result in some jumps that appear to
|
631 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
632 |
|
|
must be left untouched (they are required to make it safely across
|
633 |
|
|
partition boundaries). See the comments at the top of
|
634 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
635 |
|
|
|
636 |
|
|
if (BB_PARTITION (a) != BB_PARTITION (b))
|
637 |
|
|
return;
|
638 |
|
|
|
639 |
|
|
barrier = next_nonnote_insn (BB_END (a));
|
640 |
|
|
gcc_assert (BARRIER_P (barrier));
|
641 |
|
|
delete_insn (barrier);
|
642 |
|
|
|
643 |
|
|
/* Move block and loop notes out of the chain so that we do not
|
644 |
|
|
disturb their order.
|
645 |
|
|
|
646 |
|
|
??? A better solution would be to squeeze out all the non-nested notes
|
647 |
|
|
and adjust the block trees appropriately. Even better would be to have
|
648 |
|
|
a tighter connection between block trees and rtl so that this is not
|
649 |
|
|
necessary. */
|
650 |
|
|
only_notes = squeeze_notes (&BB_HEAD (a), &BB_END (a));
|
651 |
|
|
gcc_assert (!only_notes);
|
652 |
|
|
|
653 |
|
|
/* Scramble the insn chain. */
|
654 |
|
|
if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
|
655 |
|
|
reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
|
656 |
|
|
a->flags |= BB_DIRTY;
|
657 |
|
|
|
658 |
|
|
if (dump_file)
|
659 |
|
|
fprintf (dump_file, "Moved block %d before %d and merged.\n",
|
660 |
|
|
a->index, b->index);
|
661 |
|
|
|
662 |
|
|
/* Swap the records for the two blocks around. */
|
663 |
|
|
|
664 |
|
|
unlink_block (a);
|
665 |
|
|
link_block (a, b->prev_bb);
|
666 |
|
|
|
667 |
|
|
/* Now blocks A and B are contiguous. Merge them. */
|
668 |
|
|
merge_blocks (a, b);
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
/* Blocks A and B are to be merged into a single block. B has no outgoing
|
672 |
|
|
fallthru edge, so it can be moved after A without adding or modifying
|
673 |
|
|
any jumps (aside from the jump from A to B). */
|
674 |
|
|
|
675 |
|
|
static void
|
676 |
|
|
merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
|
677 |
|
|
{
|
678 |
|
|
rtx barrier, real_b_end;
|
679 |
|
|
rtx label, table;
|
680 |
|
|
bool only_notes;
|
681 |
|
|
|
682 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
683 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
684 |
|
|
and cold sections.
|
685 |
|
|
|
686 |
|
|
Basic block partitioning may result in some jumps that appear to
|
687 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
688 |
|
|
must be left untouched (they are required to make it safely across
|
689 |
|
|
partition boundaries). See the comments at the top of
|
690 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
691 |
|
|
|
692 |
|
|
if (BB_PARTITION (a) != BB_PARTITION (b))
|
693 |
|
|
return;
|
694 |
|
|
|
695 |
|
|
real_b_end = BB_END (b);
|
696 |
|
|
|
697 |
|
|
/* If there is a jump table following block B temporarily add the jump table
|
698 |
|
|
to block B so that it will also be moved to the correct location. */
|
699 |
|
|
if (tablejump_p (BB_END (b), &label, &table)
|
700 |
|
|
&& prev_active_insn (label) == BB_END (b))
|
701 |
|
|
{
|
702 |
|
|
BB_END (b) = table;
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
/* There had better have been a barrier there. Delete it. */
|
706 |
|
|
barrier = NEXT_INSN (BB_END (b));
|
707 |
|
|
if (barrier && BARRIER_P (barrier))
|
708 |
|
|
delete_insn (barrier);
|
709 |
|
|
|
710 |
|
|
/* Move block and loop notes out of the chain so that we do not
|
711 |
|
|
disturb their order.
|
712 |
|
|
|
713 |
|
|
??? A better solution would be to squeeze out all the non-nested notes
|
714 |
|
|
and adjust the block trees appropriately. Even better would be to have
|
715 |
|
|
a tighter connection between block trees and rtl so that this is not
|
716 |
|
|
necessary. */
|
717 |
|
|
only_notes = squeeze_notes (&BB_HEAD (b), &BB_END (b));
|
718 |
|
|
gcc_assert (!only_notes);
|
719 |
|
|
|
720 |
|
|
|
721 |
|
|
/* Scramble the insn chain. */
|
722 |
|
|
reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
|
723 |
|
|
|
724 |
|
|
/* Restore the real end of b. */
|
725 |
|
|
BB_END (b) = real_b_end;
|
726 |
|
|
|
727 |
|
|
if (dump_file)
|
728 |
|
|
fprintf (dump_file, "Moved block %d after %d and merged.\n",
|
729 |
|
|
b->index, a->index);
|
730 |
|
|
|
731 |
|
|
/* Now blocks A and B are contiguous. Merge them. */
|
732 |
|
|
merge_blocks (a, b);
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
/* Attempt to merge basic blocks that are potentially non-adjacent.
|
736 |
|
|
Return NULL iff the attempt failed, otherwise return basic block
|
737 |
|
|
where cleanup_cfg should continue. Because the merging commonly
|
738 |
|
|
moves basic block away or introduces another optimization
|
739 |
|
|
possibility, return basic block just before B so cleanup_cfg don't
|
740 |
|
|
need to iterate.
|
741 |
|
|
|
742 |
|
|
It may be good idea to return basic block before C in the case
|
743 |
|
|
C has been moved after B and originally appeared earlier in the
|
744 |
|
|
insn sequence, but we have no information available about the
|
745 |
|
|
relative ordering of these two. Hopefully it is not too common. */
|
746 |
|
|
|
747 |
|
|
static basic_block
|
748 |
|
|
merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
|
749 |
|
|
{
|
750 |
|
|
basic_block next;
|
751 |
|
|
|
752 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
753 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
754 |
|
|
and cold sections.
|
755 |
|
|
|
756 |
|
|
Basic block partitioning may result in some jumps that appear to
|
757 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
758 |
|
|
must be left untouched (they are required to make it safely across
|
759 |
|
|
partition boundaries). See the comments at the top of
|
760 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
761 |
|
|
|
762 |
|
|
if (BB_PARTITION (b) != BB_PARTITION (c))
|
763 |
|
|
return NULL;
|
764 |
|
|
|
765 |
|
|
|
766 |
|
|
|
767 |
|
|
/* If B has a fallthru edge to C, no need to move anything. */
|
768 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
769 |
|
|
{
|
770 |
|
|
int b_index = b->index, c_index = c->index;
|
771 |
|
|
merge_blocks (b, c);
|
772 |
|
|
update_forwarder_flag (b);
|
773 |
|
|
|
774 |
|
|
if (dump_file)
|
775 |
|
|
fprintf (dump_file, "Merged %d and %d without moving.\n",
|
776 |
|
|
b_index, c_index);
|
777 |
|
|
|
778 |
|
|
return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
/* Otherwise we will need to move code around. Do that only if expensive
|
782 |
|
|
transformations are allowed. */
|
783 |
|
|
else if (mode & CLEANUP_EXPENSIVE)
|
784 |
|
|
{
|
785 |
|
|
edge tmp_edge, b_fallthru_edge;
|
786 |
|
|
bool c_has_outgoing_fallthru;
|
787 |
|
|
bool b_has_incoming_fallthru;
|
788 |
|
|
edge_iterator ei;
|
789 |
|
|
|
790 |
|
|
/* Avoid overactive code motion, as the forwarder blocks should be
|
791 |
|
|
eliminated by edge redirection instead. One exception might have
|
792 |
|
|
been if B is a forwarder block and C has no fallthru edge, but
|
793 |
|
|
that should be cleaned up by bb-reorder instead. */
|
794 |
|
|
if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
|
795 |
|
|
return NULL;
|
796 |
|
|
|
797 |
|
|
/* We must make sure to not munge nesting of lexical blocks,
|
798 |
|
|
and loop notes. This is done by squeezing out all the notes
|
799 |
|
|
and leaving them there to lie. Not ideal, but functional. */
|
800 |
|
|
|
801 |
|
|
FOR_EACH_EDGE (tmp_edge, ei, c->succs)
|
802 |
|
|
if (tmp_edge->flags & EDGE_FALLTHRU)
|
803 |
|
|
break;
|
804 |
|
|
|
805 |
|
|
c_has_outgoing_fallthru = (tmp_edge != NULL);
|
806 |
|
|
|
807 |
|
|
FOR_EACH_EDGE (tmp_edge, ei, b->preds)
|
808 |
|
|
if (tmp_edge->flags & EDGE_FALLTHRU)
|
809 |
|
|
break;
|
810 |
|
|
|
811 |
|
|
b_has_incoming_fallthru = (tmp_edge != NULL);
|
812 |
|
|
b_fallthru_edge = tmp_edge;
|
813 |
|
|
next = b->prev_bb;
|
814 |
|
|
if (next == c)
|
815 |
|
|
next = next->prev_bb;
|
816 |
|
|
|
817 |
|
|
/* Otherwise, we're going to try to move C after B. If C does
|
818 |
|
|
not have an outgoing fallthru, then it can be moved
|
819 |
|
|
immediately after B without introducing or modifying jumps. */
|
820 |
|
|
if (! c_has_outgoing_fallthru)
|
821 |
|
|
{
|
822 |
|
|
merge_blocks_move_successor_nojumps (b, c);
|
823 |
|
|
return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
/* If B does not have an incoming fallthru, then it can be moved
|
827 |
|
|
immediately before C without introducing or modifying jumps.
|
828 |
|
|
C cannot be the first block, so we do not have to worry about
|
829 |
|
|
accessing a non-existent block. */
|
830 |
|
|
|
831 |
|
|
if (b_has_incoming_fallthru)
|
832 |
|
|
{
|
833 |
|
|
basic_block bb;
|
834 |
|
|
|
835 |
|
|
if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
|
836 |
|
|
return NULL;
|
837 |
|
|
bb = force_nonfallthru (b_fallthru_edge);
|
838 |
|
|
if (bb)
|
839 |
|
|
notice_new_block (bb);
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
merge_blocks_move_predecessor_nojumps (b, c);
|
843 |
|
|
return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
return NULL;
|
847 |
|
|
}
|
848 |
|
|
|
849 |
|
|
|
850 |
|
|
/* Removes the memory attributes of MEM expression
|
851 |
|
|
if they are not equal. */
|
852 |
|
|
|
853 |
|
|
void
|
854 |
|
|
merge_memattrs (rtx x, rtx y)
|
855 |
|
|
{
|
856 |
|
|
int i;
|
857 |
|
|
int j;
|
858 |
|
|
enum rtx_code code;
|
859 |
|
|
const char *fmt;
|
860 |
|
|
|
861 |
|
|
if (x == y)
|
862 |
|
|
return;
|
863 |
|
|
if (x == 0 || y == 0)
|
864 |
|
|
return;
|
865 |
|
|
|
866 |
|
|
code = GET_CODE (x);
|
867 |
|
|
|
868 |
|
|
if (code != GET_CODE (y))
|
869 |
|
|
return;
|
870 |
|
|
|
871 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
872 |
|
|
return;
|
873 |
|
|
|
874 |
|
|
if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
|
875 |
|
|
{
|
876 |
|
|
if (! MEM_ATTRS (x))
|
877 |
|
|
MEM_ATTRS (y) = 0;
|
878 |
|
|
else if (! MEM_ATTRS (y))
|
879 |
|
|
MEM_ATTRS (x) = 0;
|
880 |
|
|
else
|
881 |
|
|
{
|
882 |
|
|
rtx mem_size;
|
883 |
|
|
|
884 |
|
|
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
|
885 |
|
|
{
|
886 |
|
|
set_mem_alias_set (x, 0);
|
887 |
|
|
set_mem_alias_set (y, 0);
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
|
891 |
|
|
{
|
892 |
|
|
set_mem_expr (x, 0);
|
893 |
|
|
set_mem_expr (y, 0);
|
894 |
|
|
set_mem_offset (x, 0);
|
895 |
|
|
set_mem_offset (y, 0);
|
896 |
|
|
}
|
897 |
|
|
else if (MEM_OFFSET (x) != MEM_OFFSET (y))
|
898 |
|
|
{
|
899 |
|
|
set_mem_offset (x, 0);
|
900 |
|
|
set_mem_offset (y, 0);
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
if (!MEM_SIZE (x))
|
904 |
|
|
mem_size = NULL_RTX;
|
905 |
|
|
else if (!MEM_SIZE (y))
|
906 |
|
|
mem_size = NULL_RTX;
|
907 |
|
|
else
|
908 |
|
|
mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
|
909 |
|
|
INTVAL (MEM_SIZE (y))));
|
910 |
|
|
set_mem_size (x, mem_size);
|
911 |
|
|
set_mem_size (y, mem_size);
|
912 |
|
|
|
913 |
|
|
set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
|
914 |
|
|
set_mem_align (y, MEM_ALIGN (x));
|
915 |
|
|
}
|
916 |
|
|
}
|
917 |
|
|
|
918 |
|
|
fmt = GET_RTX_FORMAT (code);
|
919 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
920 |
|
|
{
|
921 |
|
|
switch (fmt[i])
|
922 |
|
|
{
|
923 |
|
|
case 'E':
|
924 |
|
|
/* Two vectors must have the same length. */
|
925 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
926 |
|
|
return;
|
927 |
|
|
|
928 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
929 |
|
|
merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
|
930 |
|
|
|
931 |
|
|
break;
|
932 |
|
|
|
933 |
|
|
case 'e':
|
934 |
|
|
merge_memattrs (XEXP (x, i), XEXP (y, i));
|
935 |
|
|
}
|
936 |
|
|
}
|
937 |
|
|
return;
|
938 |
|
|
}
|
939 |
|
|
|
940 |
|
|
|
941 |
|
|
/* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
|
942 |
|
|
|
943 |
|
|
static bool
|
944 |
|
|
old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
|
945 |
|
|
{
|
946 |
|
|
rtx p1, p2;
|
947 |
|
|
|
948 |
|
|
/* Verify that I1 and I2 are equivalent. */
|
949 |
|
|
if (GET_CODE (i1) != GET_CODE (i2))
|
950 |
|
|
return false;
|
951 |
|
|
|
952 |
|
|
p1 = PATTERN (i1);
|
953 |
|
|
p2 = PATTERN (i2);
|
954 |
|
|
|
955 |
|
|
if (GET_CODE (p1) != GET_CODE (p2))
|
956 |
|
|
return false;
|
957 |
|
|
|
958 |
|
|
/* If this is a CALL_INSN, compare register usage information.
|
959 |
|
|
If we don't check this on stack register machines, the two
|
960 |
|
|
CALL_INSNs might be merged leaving reg-stack.c with mismatching
|
961 |
|
|
numbers of stack registers in the same basic block.
|
962 |
|
|
If we don't check this on machines with delay slots, a delay slot may
|
963 |
|
|
be filled that clobbers a parameter expected by the subroutine.
|
964 |
|
|
|
965 |
|
|
??? We take the simple route for now and assume that if they're
|
966 |
|
|
equal, they were constructed identically. */
|
967 |
|
|
|
968 |
|
|
if (CALL_P (i1)
|
969 |
|
|
&& (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
|
970 |
|
|
CALL_INSN_FUNCTION_USAGE (i2))
|
971 |
|
|
|| SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
|
972 |
|
|
return false;
|
973 |
|
|
|
974 |
|
|
#ifdef STACK_REGS
|
975 |
|
|
/* If cross_jump_death_matters is not 0, the insn's mode
|
976 |
|
|
indicates whether or not the insn contains any stack-like
|
977 |
|
|
regs. */
|
978 |
|
|
|
979 |
|
|
if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
|
980 |
|
|
{
|
981 |
|
|
/* If register stack conversion has already been done, then
|
982 |
|
|
death notes must also be compared before it is certain that
|
983 |
|
|
the two instruction streams match. */
|
984 |
|
|
|
985 |
|
|
rtx note;
|
986 |
|
|
HARD_REG_SET i1_regset, i2_regset;
|
987 |
|
|
|
988 |
|
|
CLEAR_HARD_REG_SET (i1_regset);
|
989 |
|
|
CLEAR_HARD_REG_SET (i2_regset);
|
990 |
|
|
|
991 |
|
|
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
992 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
993 |
|
|
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
994 |
|
|
|
995 |
|
|
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
996 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
997 |
|
|
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
|
998 |
|
|
|
999 |
|
|
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
|
1000 |
|
|
|
1001 |
|
|
return false;
|
1002 |
|
|
|
1003 |
|
|
done:
|
1004 |
|
|
;
|
1005 |
|
|
}
|
1006 |
|
|
#endif
|
1007 |
|
|
|
1008 |
|
|
if (reload_completed
|
1009 |
|
|
? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
|
1010 |
|
|
return true;
|
1011 |
|
|
|
1012 |
|
|
/* Do not do EQUIV substitution after reload. First, we're undoing the
|
1013 |
|
|
work of reload_cse. Second, we may be undoing the work of the post-
|
1014 |
|
|
reload splitting pass. */
|
1015 |
|
|
/* ??? Possibly add a new phase switch variable that can be used by
|
1016 |
|
|
targets to disallow the troublesome insns after splitting. */
|
1017 |
|
|
if (!reload_completed)
|
1018 |
|
|
{
|
1019 |
|
|
/* The following code helps take care of G++ cleanups. */
|
1020 |
|
|
rtx equiv1 = find_reg_equal_equiv_note (i1);
|
1021 |
|
|
rtx equiv2 = find_reg_equal_equiv_note (i2);
|
1022 |
|
|
|
1023 |
|
|
if (equiv1 && equiv2
|
1024 |
|
|
/* If the equivalences are not to a constant, they may
|
1025 |
|
|
reference pseudos that no longer exist, so we can't
|
1026 |
|
|
use them. */
|
1027 |
|
|
&& (! reload_completed
|
1028 |
|
|
|| (CONSTANT_P (XEXP (equiv1, 0))
|
1029 |
|
|
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
|
1030 |
|
|
{
|
1031 |
|
|
rtx s1 = single_set (i1);
|
1032 |
|
|
rtx s2 = single_set (i2);
|
1033 |
|
|
if (s1 != 0 && s2 != 0
|
1034 |
|
|
&& rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
|
1035 |
|
|
{
|
1036 |
|
|
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
|
1037 |
|
|
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
|
1038 |
|
|
if (! rtx_renumbered_equal_p (p1, p2))
|
1039 |
|
|
cancel_changes (0);
|
1040 |
|
|
else if (apply_change_group ())
|
1041 |
|
|
return true;
|
1042 |
|
|
}
|
1043 |
|
|
}
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
return false;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
/* Look through the insns at the end of BB1 and BB2 and find the longest
|
1050 |
|
|
sequence that are equivalent. Store the first insns for that sequence
|
1051 |
|
|
in *F1 and *F2 and return the sequence length.
|
1052 |
|
|
|
1053 |
|
|
To simplify callers of this function, if the blocks match exactly,
|
1054 |
|
|
store the head of the blocks in *F1 and *F2. */
|
1055 |
|
|
|
1056 |
|
|
static int
|
1057 |
|
|
flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
|
1058 |
|
|
basic_block bb2, rtx *f1, rtx *f2)
|
1059 |
|
|
{
|
1060 |
|
|
rtx i1, i2, last1, last2, afterlast1, afterlast2;
|
1061 |
|
|
int ninsns = 0;
|
1062 |
|
|
|
1063 |
|
|
/* Skip simple jumps at the end of the blocks. Complex jumps still
|
1064 |
|
|
need to be compared for equivalence, which we'll do below. */
|
1065 |
|
|
|
1066 |
|
|
i1 = BB_END (bb1);
|
1067 |
|
|
last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
|
1068 |
|
|
if (onlyjump_p (i1)
|
1069 |
|
|
|| (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
|
1070 |
|
|
{
|
1071 |
|
|
last1 = i1;
|
1072 |
|
|
i1 = PREV_INSN (i1);
|
1073 |
|
|
}
|
1074 |
|
|
|
1075 |
|
|
i2 = BB_END (bb2);
|
1076 |
|
|
if (onlyjump_p (i2)
|
1077 |
|
|
|| (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
|
1078 |
|
|
{
|
1079 |
|
|
last2 = i2;
|
1080 |
|
|
/* Count everything except for unconditional jump as insn. */
|
1081 |
|
|
if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
|
1082 |
|
|
ninsns++;
|
1083 |
|
|
i2 = PREV_INSN (i2);
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
while (true)
|
1087 |
|
|
{
|
1088 |
|
|
/* Ignore notes. */
|
1089 |
|
|
while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
|
1090 |
|
|
i1 = PREV_INSN (i1);
|
1091 |
|
|
|
1092 |
|
|
while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
|
1093 |
|
|
i2 = PREV_INSN (i2);
|
1094 |
|
|
|
1095 |
|
|
if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
|
1096 |
|
|
break;
|
1097 |
|
|
|
1098 |
|
|
if (!old_insns_match_p (mode, i1, i2))
|
1099 |
|
|
break;
|
1100 |
|
|
|
1101 |
|
|
merge_memattrs (i1, i2);
|
1102 |
|
|
|
1103 |
|
|
/* Don't begin a cross-jump with a NOTE insn. */
|
1104 |
|
|
if (INSN_P (i1))
|
1105 |
|
|
{
|
1106 |
|
|
/* If the merged insns have different REG_EQUAL notes, then
|
1107 |
|
|
remove them. */
|
1108 |
|
|
rtx equiv1 = find_reg_equal_equiv_note (i1);
|
1109 |
|
|
rtx equiv2 = find_reg_equal_equiv_note (i2);
|
1110 |
|
|
|
1111 |
|
|
if (equiv1 && !equiv2)
|
1112 |
|
|
remove_note (i1, equiv1);
|
1113 |
|
|
else if (!equiv1 && equiv2)
|
1114 |
|
|
remove_note (i2, equiv2);
|
1115 |
|
|
else if (equiv1 && equiv2
|
1116 |
|
|
&& !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
|
1117 |
|
|
{
|
1118 |
|
|
remove_note (i1, equiv1);
|
1119 |
|
|
remove_note (i2, equiv2);
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
afterlast1 = last1, afterlast2 = last2;
|
1123 |
|
|
last1 = i1, last2 = i2;
|
1124 |
|
|
ninsns++;
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
i1 = PREV_INSN (i1);
|
1128 |
|
|
i2 = PREV_INSN (i2);
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
#ifdef HAVE_cc0
|
1132 |
|
|
/* Don't allow the insn after a compare to be shared by
|
1133 |
|
|
cross-jumping unless the compare is also shared. */
|
1134 |
|
|
if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
|
1135 |
|
|
last1 = afterlast1, last2 = afterlast2, ninsns--;
|
1136 |
|
|
#endif
|
1137 |
|
|
|
1138 |
|
|
/* Include preceding notes and labels in the cross-jump. One,
|
1139 |
|
|
this may bring us to the head of the blocks as requested above.
|
1140 |
|
|
Two, it keeps line number notes as matched as may be. */
|
1141 |
|
|
if (ninsns)
|
1142 |
|
|
{
|
1143 |
|
|
while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
|
1144 |
|
|
last1 = PREV_INSN (last1);
|
1145 |
|
|
|
1146 |
|
|
if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
|
1147 |
|
|
last1 = PREV_INSN (last1);
|
1148 |
|
|
|
1149 |
|
|
while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
|
1150 |
|
|
last2 = PREV_INSN (last2);
|
1151 |
|
|
|
1152 |
|
|
if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
|
1153 |
|
|
last2 = PREV_INSN (last2);
|
1154 |
|
|
|
1155 |
|
|
*f1 = last1;
|
1156 |
|
|
*f2 = last2;
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
return ninsns;
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
/* Return true iff the condbranches at the end of BB1 and BB2 match. */
|
1163 |
|
|
bool
|
1164 |
|
|
condjump_equiv_p (struct equiv_info *info, bool call_init)
|
1165 |
|
|
{
|
1166 |
|
|
basic_block bb1 = info->x_block;
|
1167 |
|
|
basic_block bb2 = info->y_block;
|
1168 |
|
|
edge b1 = BRANCH_EDGE (bb1);
|
1169 |
|
|
edge b2 = BRANCH_EDGE (bb2);
|
1170 |
|
|
edge f1 = FALLTHRU_EDGE (bb1);
|
1171 |
|
|
edge f2 = FALLTHRU_EDGE (bb2);
|
1172 |
|
|
bool reverse, match;
|
1173 |
|
|
rtx set1, set2, cond1, cond2;
|
1174 |
|
|
rtx src1, src2;
|
1175 |
|
|
enum rtx_code code1, code2;
|
1176 |
|
|
|
1177 |
|
|
/* Get around possible forwarders on fallthru edges. Other cases
|
1178 |
|
|
should be optimized out already. */
|
1179 |
|
|
if (FORWARDER_BLOCK_P (f1->dest))
|
1180 |
|
|
f1 = single_succ_edge (f1->dest);
|
1181 |
|
|
|
1182 |
|
|
if (FORWARDER_BLOCK_P (f2->dest))
|
1183 |
|
|
f2 = single_succ_edge (f2->dest);
|
1184 |
|
|
|
1185 |
|
|
/* To simplify use of this function, return false if there are
|
1186 |
|
|
unneeded forwarder blocks. These will get eliminated later
|
1187 |
|
|
during cleanup_cfg. */
|
1188 |
|
|
if (FORWARDER_BLOCK_P (f1->dest)
|
1189 |
|
|
|| FORWARDER_BLOCK_P (f2->dest)
|
1190 |
|
|
|| FORWARDER_BLOCK_P (b1->dest)
|
1191 |
|
|
|| FORWARDER_BLOCK_P (b2->dest))
|
1192 |
|
|
return false;
|
1193 |
|
|
|
1194 |
|
|
if (f1->dest == f2->dest && b1->dest == b2->dest)
|
1195 |
|
|
reverse = false;
|
1196 |
|
|
else if (f1->dest == b2->dest && b1->dest == f2->dest)
|
1197 |
|
|
reverse = true;
|
1198 |
|
|
else
|
1199 |
|
|
return false;
|
1200 |
|
|
|
1201 |
|
|
set1 = pc_set (BB_END (bb1));
|
1202 |
|
|
set2 = pc_set (BB_END (bb2));
|
1203 |
|
|
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
|
1204 |
|
|
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
1205 |
|
|
reverse = !reverse;
|
1206 |
|
|
|
1207 |
|
|
src1 = SET_SRC (set1);
|
1208 |
|
|
src2 = SET_SRC (set2);
|
1209 |
|
|
cond1 = XEXP (src1, 0);
|
1210 |
|
|
cond2 = XEXP (src2, 0);
|
1211 |
|
|
code1 = GET_CODE (cond1);
|
1212 |
|
|
if (reverse)
|
1213 |
|
|
code2 = reversed_comparison_code (cond2, BB_END (bb2));
|
1214 |
|
|
else
|
1215 |
|
|
code2 = GET_CODE (cond2);
|
1216 |
|
|
|
1217 |
|
|
if (code2 == UNKNOWN)
|
1218 |
|
|
return false;
|
1219 |
|
|
|
1220 |
|
|
if (call_init && !struct_equiv_init (STRUCT_EQUIV_START | info->mode, info))
|
1221 |
|
|
gcc_unreachable ();
|
1222 |
|
|
/* Make the sources of the pc sets unreadable so that when we call
|
1223 |
|
|
insns_match_p it won't process them.
|
1224 |
|
|
The death_notes_match_p from insns_match_p won't see the local registers
|
1225 |
|
|
used for the pc set, but that could only cause missed optimizations when
|
1226 |
|
|
there are actually condjumps that use stack registers. */
|
1227 |
|
|
SET_SRC (set1) = pc_rtx;
|
1228 |
|
|
SET_SRC (set2) = pc_rtx;
|
1229 |
|
|
/* Verify codes and operands match. */
|
1230 |
|
|
if (code1 == code2)
|
1231 |
|
|
{
|
1232 |
|
|
match = (insns_match_p (BB_END (bb1), BB_END (bb2), info)
|
1233 |
|
|
&& rtx_equiv_p (&XEXP (cond1, 0), XEXP (cond2, 0), 1, info)
|
1234 |
|
|
&& rtx_equiv_p (&XEXP (cond1, 1), XEXP (cond2, 1), 1, info));
|
1235 |
|
|
|
1236 |
|
|
}
|
1237 |
|
|
else if (code1 == swap_condition (code2))
|
1238 |
|
|
{
|
1239 |
|
|
match = (insns_match_p (BB_END (bb1), BB_END (bb2), info)
|
1240 |
|
|
&& rtx_equiv_p (&XEXP (cond1, 1), XEXP (cond2, 0), 1, info)
|
1241 |
|
|
&& rtx_equiv_p (&XEXP (cond1, 0), XEXP (cond2, 1), 1, info));
|
1242 |
|
|
|
1243 |
|
|
}
|
1244 |
|
|
else
|
1245 |
|
|
match = false;
|
1246 |
|
|
SET_SRC (set1) = src1;
|
1247 |
|
|
SET_SRC (set2) = src2;
|
1248 |
|
|
match &= verify_changes (0);
|
1249 |
|
|
|
1250 |
|
|
/* If we return true, we will join the blocks. Which means that
|
1251 |
|
|
we will only have one branch prediction bit to work with. Thus
|
1252 |
|
|
we require the existing branches to have probabilities that are
|
1253 |
|
|
roughly similar. */
|
1254 |
|
|
if (match
|
1255 |
|
|
&& !optimize_size
|
1256 |
|
|
&& maybe_hot_bb_p (bb1)
|
1257 |
|
|
&& maybe_hot_bb_p (bb2))
|
1258 |
|
|
{
|
1259 |
|
|
int prob2;
|
1260 |
|
|
|
1261 |
|
|
if (b1->dest == b2->dest)
|
1262 |
|
|
prob2 = b2->probability;
|
1263 |
|
|
else
|
1264 |
|
|
/* Do not use f2 probability as f2 may be forwarded. */
|
1265 |
|
|
prob2 = REG_BR_PROB_BASE - b2->probability;
|
1266 |
|
|
|
1267 |
|
|
/* Fail if the difference in probabilities is greater than 50%.
|
1268 |
|
|
This rules out two well-predicted branches with opposite
|
1269 |
|
|
outcomes. */
|
1270 |
|
|
if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
|
1271 |
|
|
{
|
1272 |
|
|
if (dump_file)
|
1273 |
|
|
fprintf (dump_file,
|
1274 |
|
|
"Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
|
1275 |
|
|
bb1->index, bb2->index, b1->probability, prob2);
|
1276 |
|
|
|
1277 |
|
|
match = false;
|
1278 |
|
|
}
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
if (dump_file && match)
|
1282 |
|
|
fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
|
1283 |
|
|
bb1->index, bb2->index);
|
1284 |
|
|
|
1285 |
|
|
if (!match)
|
1286 |
|
|
cancel_changes (0);
|
1287 |
|
|
return match;
|
1288 |
|
|
}
|
1289 |
|
|
|
1290 |
|
|
/* Return true iff outgoing edges of BB1 and BB2 match, together with
|
1291 |
|
|
the branch instruction. This means that if we commonize the control
|
1292 |
|
|
flow before end of the basic block, the semantic remains unchanged.
|
1293 |
|
|
|
1294 |
|
|
We may assume that there exists one edge with a common destination. */
|
1295 |
|
|
|
1296 |
|
|
static bool
|
1297 |
|
|
outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
|
1298 |
|
|
{
|
1299 |
|
|
int nehedges1 = 0, nehedges2 = 0;
|
1300 |
|
|
edge fallthru1 = 0, fallthru2 = 0;
|
1301 |
|
|
edge e1, e2;
|
1302 |
|
|
edge_iterator ei;
|
1303 |
|
|
|
1304 |
|
|
/* If BB1 has only one successor, we may be looking at either an
|
1305 |
|
|
unconditional jump, or a fake edge to exit. */
|
1306 |
|
|
if (single_succ_p (bb1)
|
1307 |
|
|
&& (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
1308 |
|
|
&& (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
|
1309 |
|
|
return (single_succ_p (bb2)
|
1310 |
|
|
&& (single_succ_edge (bb2)->flags
|
1311 |
|
|
& (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
1312 |
|
|
&& (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
|
1313 |
|
|
|
1314 |
|
|
/* Match conditional jumps - this may get tricky when fallthru and branch
|
1315 |
|
|
edges are crossed. */
|
1316 |
|
|
if (EDGE_COUNT (bb1->succs) == 2
|
1317 |
|
|
&& any_condjump_p (BB_END (bb1))
|
1318 |
|
|
&& onlyjump_p (BB_END (bb1)))
|
1319 |
|
|
{
|
1320 |
|
|
edge b1, f1, b2, f2;
|
1321 |
|
|
bool reverse, match;
|
1322 |
|
|
rtx set1, set2, cond1, cond2;
|
1323 |
|
|
enum rtx_code code1, code2;
|
1324 |
|
|
|
1325 |
|
|
if (EDGE_COUNT (bb2->succs) != 2
|
1326 |
|
|
|| !any_condjump_p (BB_END (bb2))
|
1327 |
|
|
|| !onlyjump_p (BB_END (bb2)))
|
1328 |
|
|
return false;
|
1329 |
|
|
|
1330 |
|
|
b1 = BRANCH_EDGE (bb1);
|
1331 |
|
|
b2 = BRANCH_EDGE (bb2);
|
1332 |
|
|
f1 = FALLTHRU_EDGE (bb1);
|
1333 |
|
|
f2 = FALLTHRU_EDGE (bb2);
|
1334 |
|
|
|
1335 |
|
|
/* Get around possible forwarders on fallthru edges. Other cases
|
1336 |
|
|
should be optimized out already. */
|
1337 |
|
|
if (FORWARDER_BLOCK_P (f1->dest))
|
1338 |
|
|
f1 = single_succ_edge (f1->dest);
|
1339 |
|
|
|
1340 |
|
|
if (FORWARDER_BLOCK_P (f2->dest))
|
1341 |
|
|
f2 = single_succ_edge (f2->dest);
|
1342 |
|
|
|
1343 |
|
|
/* To simplify use of this function, return false if there are
|
1344 |
|
|
unneeded forwarder blocks. These will get eliminated later
|
1345 |
|
|
during cleanup_cfg. */
|
1346 |
|
|
if (FORWARDER_BLOCK_P (f1->dest)
|
1347 |
|
|
|| FORWARDER_BLOCK_P (f2->dest)
|
1348 |
|
|
|| FORWARDER_BLOCK_P (b1->dest)
|
1349 |
|
|
|| FORWARDER_BLOCK_P (b2->dest))
|
1350 |
|
|
return false;
|
1351 |
|
|
|
1352 |
|
|
if (f1->dest == f2->dest && b1->dest == b2->dest)
|
1353 |
|
|
reverse = false;
|
1354 |
|
|
else if (f1->dest == b2->dest && b1->dest == f2->dest)
|
1355 |
|
|
reverse = true;
|
1356 |
|
|
else
|
1357 |
|
|
return false;
|
1358 |
|
|
|
1359 |
|
|
set1 = pc_set (BB_END (bb1));
|
1360 |
|
|
set2 = pc_set (BB_END (bb2));
|
1361 |
|
|
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
|
1362 |
|
|
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
1363 |
|
|
reverse = !reverse;
|
1364 |
|
|
|
1365 |
|
|
cond1 = XEXP (SET_SRC (set1), 0);
|
1366 |
|
|
cond2 = XEXP (SET_SRC (set2), 0);
|
1367 |
|
|
code1 = GET_CODE (cond1);
|
1368 |
|
|
if (reverse)
|
1369 |
|
|
code2 = reversed_comparison_code (cond2, BB_END (bb2));
|
1370 |
|
|
else
|
1371 |
|
|
code2 = GET_CODE (cond2);
|
1372 |
|
|
|
1373 |
|
|
if (code2 == UNKNOWN)
|
1374 |
|
|
return false;
|
1375 |
|
|
|
1376 |
|
|
/* Verify codes and operands match. */
|
1377 |
|
|
match = ((code1 == code2
|
1378 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
1379 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
1380 |
|
|
|| (code1 == swap_condition (code2)
|
1381 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 1),
|
1382 |
|
|
XEXP (cond2, 0))
|
1383 |
|
|
&& rtx_renumbered_equal_p (XEXP (cond1, 0),
|
1384 |
|
|
XEXP (cond2, 1))));
|
1385 |
|
|
|
1386 |
|
|
/* If we return true, we will join the blocks. Which means that
|
1387 |
|
|
we will only have one branch prediction bit to work with. Thus
|
1388 |
|
|
we require the existing branches to have probabilities that are
|
1389 |
|
|
roughly similar. */
|
1390 |
|
|
if (match
|
1391 |
|
|
&& !optimize_size
|
1392 |
|
|
&& maybe_hot_bb_p (bb1)
|
1393 |
|
|
&& maybe_hot_bb_p (bb2))
|
1394 |
|
|
{
|
1395 |
|
|
int prob2;
|
1396 |
|
|
|
1397 |
|
|
if (b1->dest == b2->dest)
|
1398 |
|
|
prob2 = b2->probability;
|
1399 |
|
|
else
|
1400 |
|
|
/* Do not use f2 probability as f2 may be forwarded. */
|
1401 |
|
|
prob2 = REG_BR_PROB_BASE - b2->probability;
|
1402 |
|
|
|
1403 |
|
|
/* Fail if the difference in probabilities is greater than 50%.
|
1404 |
|
|
This rules out two well-predicted branches with opposite
|
1405 |
|
|
outcomes. */
|
1406 |
|
|
if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
|
1407 |
|
|
{
|
1408 |
|
|
if (dump_file)
|
1409 |
|
|
fprintf (dump_file,
|
1410 |
|
|
"Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
|
1411 |
|
|
bb1->index, bb2->index, b1->probability, prob2);
|
1412 |
|
|
|
1413 |
|
|
return false;
|
1414 |
|
|
}
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
if (dump_file && match)
|
1418 |
|
|
fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
|
1419 |
|
|
bb1->index, bb2->index);
|
1420 |
|
|
|
1421 |
|
|
return match;
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
/* Generic case - we are seeing a computed jump, table jump or trapping
|
1425 |
|
|
instruction. */
|
1426 |
|
|
|
1427 |
|
|
/* Check whether there are tablejumps in the end of BB1 and BB2.
|
1428 |
|
|
Return true if they are identical. */
|
1429 |
|
|
{
|
1430 |
|
|
rtx label1, label2;
|
1431 |
|
|
rtx table1, table2;
|
1432 |
|
|
|
1433 |
|
|
if (tablejump_p (BB_END (bb1), &label1, &table1)
|
1434 |
|
|
&& tablejump_p (BB_END (bb2), &label2, &table2)
|
1435 |
|
|
&& GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
|
1436 |
|
|
{
|
1437 |
|
|
/* The labels should never be the same rtx. If they really are same
|
1438 |
|
|
the jump tables are same too. So disable crossjumping of blocks BB1
|
1439 |
|
|
and BB2 because when deleting the common insns in the end of BB1
|
1440 |
|
|
by delete_basic_block () the jump table would be deleted too. */
|
1441 |
|
|
/* If LABEL2 is referenced in BB1->END do not do anything
|
1442 |
|
|
because we would loose information when replacing
|
1443 |
|
|
LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
|
1444 |
|
|
if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
|
1445 |
|
|
{
|
1446 |
|
|
/* Set IDENTICAL to true when the tables are identical. */
|
1447 |
|
|
bool identical = false;
|
1448 |
|
|
rtx p1, p2;
|
1449 |
|
|
|
1450 |
|
|
p1 = PATTERN (table1);
|
1451 |
|
|
p2 = PATTERN (table2);
|
1452 |
|
|
if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
|
1453 |
|
|
{
|
1454 |
|
|
identical = true;
|
1455 |
|
|
}
|
1456 |
|
|
else if (GET_CODE (p1) == ADDR_DIFF_VEC
|
1457 |
|
|
&& (XVECLEN (p1, 1) == XVECLEN (p2, 1))
|
1458 |
|
|
&& rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
|
1459 |
|
|
&& rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
|
1460 |
|
|
{
|
1461 |
|
|
int i;
|
1462 |
|
|
|
1463 |
|
|
identical = true;
|
1464 |
|
|
for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
|
1465 |
|
|
if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
|
1466 |
|
|
identical = false;
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
if (identical)
|
1470 |
|
|
{
|
1471 |
|
|
replace_label_data rr;
|
1472 |
|
|
bool match;
|
1473 |
|
|
|
1474 |
|
|
/* Temporarily replace references to LABEL1 with LABEL2
|
1475 |
|
|
in BB1->END so that we could compare the instructions. */
|
1476 |
|
|
rr.r1 = label1;
|
1477 |
|
|
rr.r2 = label2;
|
1478 |
|
|
rr.update_label_nuses = false;
|
1479 |
|
|
for_each_rtx (&BB_END (bb1), replace_label, &rr);
|
1480 |
|
|
|
1481 |
|
|
match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
|
1482 |
|
|
if (dump_file && match)
|
1483 |
|
|
fprintf (dump_file,
|
1484 |
|
|
"Tablejumps in bb %i and %i match.\n",
|
1485 |
|
|
bb1->index, bb2->index);
|
1486 |
|
|
|
1487 |
|
|
/* Set the original label in BB1->END because when deleting
|
1488 |
|
|
a block whose end is a tablejump, the tablejump referenced
|
1489 |
|
|
from the instruction is deleted too. */
|
1490 |
|
|
rr.r1 = label2;
|
1491 |
|
|
rr.r2 = label1;
|
1492 |
|
|
for_each_rtx (&BB_END (bb1), replace_label, &rr);
|
1493 |
|
|
|
1494 |
|
|
return match;
|
1495 |
|
|
}
|
1496 |
|
|
}
|
1497 |
|
|
return false;
|
1498 |
|
|
}
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
/* First ensure that the instructions match. There may be many outgoing
|
1502 |
|
|
edges so this test is generally cheaper. */
|
1503 |
|
|
if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
|
1504 |
|
|
return false;
|
1505 |
|
|
|
1506 |
|
|
/* Search the outgoing edges, ensure that the counts do match, find possible
|
1507 |
|
|
fallthru and exception handling edges since these needs more
|
1508 |
|
|
validation. */
|
1509 |
|
|
if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
|
1510 |
|
|
return false;
|
1511 |
|
|
|
1512 |
|
|
FOR_EACH_EDGE (e1, ei, bb1->succs)
|
1513 |
|
|
{
|
1514 |
|
|
e2 = EDGE_SUCC (bb2, ei.index);
|
1515 |
|
|
|
1516 |
|
|
if (e1->flags & EDGE_EH)
|
1517 |
|
|
nehedges1++;
|
1518 |
|
|
|
1519 |
|
|
if (e2->flags & EDGE_EH)
|
1520 |
|
|
nehedges2++;
|
1521 |
|
|
|
1522 |
|
|
if (e1->flags & EDGE_FALLTHRU)
|
1523 |
|
|
fallthru1 = e1;
|
1524 |
|
|
if (e2->flags & EDGE_FALLTHRU)
|
1525 |
|
|
fallthru2 = e2;
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* If number of edges of various types does not match, fail. */
|
1529 |
|
|
if (nehedges1 != nehedges2
|
1530 |
|
|
|| (fallthru1 != 0) != (fallthru2 != 0))
|
1531 |
|
|
return false;
|
1532 |
|
|
|
1533 |
|
|
/* fallthru edges must be forwarded to the same destination. */
|
1534 |
|
|
if (fallthru1)
|
1535 |
|
|
{
|
1536 |
|
|
basic_block d1 = (forwarder_block_p (fallthru1->dest)
|
1537 |
|
|
? single_succ (fallthru1->dest): fallthru1->dest);
|
1538 |
|
|
basic_block d2 = (forwarder_block_p (fallthru2->dest)
|
1539 |
|
|
? single_succ (fallthru2->dest): fallthru2->dest);
|
1540 |
|
|
|
1541 |
|
|
if (d1 != d2)
|
1542 |
|
|
return false;
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
/* Ensure the same EH region. */
|
1546 |
|
|
{
|
1547 |
|
|
rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
|
1548 |
|
|
rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
|
1549 |
|
|
|
1550 |
|
|
if (!n1 && n2)
|
1551 |
|
|
return false;
|
1552 |
|
|
|
1553 |
|
|
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
|
1554 |
|
|
return false;
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
/* The same checks as in try_crossjump_to_edge. It is required for RTL
|
1558 |
|
|
version of sequence abstraction. */
|
1559 |
|
|
FOR_EACH_EDGE (e1, ei, bb2->succs)
|
1560 |
|
|
{
|
1561 |
|
|
edge e2;
|
1562 |
|
|
edge_iterator ei;
|
1563 |
|
|
basic_block d1 = e1->dest;
|
1564 |
|
|
|
1565 |
|
|
if (FORWARDER_BLOCK_P (d1))
|
1566 |
|
|
d1 = EDGE_SUCC (d1, 0)->dest;
|
1567 |
|
|
|
1568 |
|
|
FOR_EACH_EDGE (e2, ei, bb1->succs)
|
1569 |
|
|
{
|
1570 |
|
|
basic_block d2 = e2->dest;
|
1571 |
|
|
if (FORWARDER_BLOCK_P (d2))
|
1572 |
|
|
d2 = EDGE_SUCC (d2, 0)->dest;
|
1573 |
|
|
if (d1 == d2)
|
1574 |
|
|
break;
|
1575 |
|
|
}
|
1576 |
|
|
|
1577 |
|
|
if (!e2)
|
1578 |
|
|
return false;
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
return true;
|
1582 |
|
|
}
|
1583 |
|
|
|
1584 |
|
|
/* Returns true if BB basic block has a preserve label. */
|
1585 |
|
|
|
1586 |
|
|
static bool
|
1587 |
|
|
block_has_preserve_label (basic_block bb)
|
1588 |
|
|
{
|
1589 |
|
|
return (bb
|
1590 |
|
|
&& block_label (bb)
|
1591 |
|
|
&& LABEL_PRESERVE_P (block_label (bb)));
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
/* E1 and E2 are edges with the same destination block. Search their
|
1595 |
|
|
predecessors for common code. If found, redirect control flow from
|
1596 |
|
|
(maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
|
1597 |
|
|
|
1598 |
|
|
static bool
|
1599 |
|
|
try_crossjump_to_edge (int mode, edge e1, edge e2)
|
1600 |
|
|
{
|
1601 |
|
|
int nmatch;
|
1602 |
|
|
basic_block src1 = e1->src, src2 = e2->src;
|
1603 |
|
|
basic_block redirect_to, redirect_from, to_remove;
|
1604 |
|
|
rtx newpos1, newpos2;
|
1605 |
|
|
edge s;
|
1606 |
|
|
edge_iterator ei;
|
1607 |
|
|
|
1608 |
|
|
newpos1 = newpos2 = NULL_RTX;
|
1609 |
|
|
|
1610 |
|
|
/* If we have partitioned hot/cold basic blocks, it is a bad idea
|
1611 |
|
|
to try this optimization.
|
1612 |
|
|
|
1613 |
|
|
Basic block partitioning may result in some jumps that appear to
|
1614 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
1615 |
|
|
must be left untouched (they are required to make it safely across
|
1616 |
|
|
partition boundaries). See the comments at the top of
|
1617 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
1618 |
|
|
|
1619 |
|
|
if (flag_reorder_blocks_and_partition && no_new_pseudos)
|
1620 |
|
|
return false;
|
1621 |
|
|
|
1622 |
|
|
/* Search backward through forwarder blocks. We don't need to worry
|
1623 |
|
|
about multiple entry or chained forwarders, as they will be optimized
|
1624 |
|
|
away. We do this to look past the unconditional jump following a
|
1625 |
|
|
conditional jump that is required due to the current CFG shape. */
|
1626 |
|
|
if (single_pred_p (src1)
|
1627 |
|
|
&& FORWARDER_BLOCK_P (src1))
|
1628 |
|
|
e1 = single_pred_edge (src1), src1 = e1->src;
|
1629 |
|
|
|
1630 |
|
|
if (single_pred_p (src2)
|
1631 |
|
|
&& FORWARDER_BLOCK_P (src2))
|
1632 |
|
|
e2 = single_pred_edge (src2), src2 = e2->src;
|
1633 |
|
|
|
1634 |
|
|
/* Nothing to do if we reach ENTRY, or a common source block. */
|
1635 |
|
|
if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
|
1636 |
|
|
return false;
|
1637 |
|
|
if (src1 == src2)
|
1638 |
|
|
return false;
|
1639 |
|
|
|
1640 |
|
|
/* Seeing more than 1 forwarder blocks would confuse us later... */
|
1641 |
|
|
if (FORWARDER_BLOCK_P (e1->dest)
|
1642 |
|
|
&& FORWARDER_BLOCK_P (single_succ (e1->dest)))
|
1643 |
|
|
return false;
|
1644 |
|
|
|
1645 |
|
|
if (FORWARDER_BLOCK_P (e2->dest)
|
1646 |
|
|
&& FORWARDER_BLOCK_P (single_succ (e2->dest)))
|
1647 |
|
|
return false;
|
1648 |
|
|
|
1649 |
|
|
/* Likewise with dead code (possibly newly created by the other optimizations
|
1650 |
|
|
of cfg_cleanup). */
|
1651 |
|
|
if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
|
1652 |
|
|
return false;
|
1653 |
|
|
|
1654 |
|
|
/* Look for the common insn sequence, part the first ... */
|
1655 |
|
|
if (!outgoing_edges_match (mode, src1, src2))
|
1656 |
|
|
return false;
|
1657 |
|
|
|
1658 |
|
|
/* ... and part the second. */
|
1659 |
|
|
nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
|
1660 |
|
|
|
1661 |
|
|
/* Don't proceed with the crossjump unless we found a sufficient number
|
1662 |
|
|
of matching instructions or the 'from' block was totally matched
|
1663 |
|
|
(such that its predecessors will hopefully be redirected and the
|
1664 |
|
|
block removed). */
|
1665 |
|
|
if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
|
1666 |
|
|
&& (newpos1 != BB_HEAD (src1)))
|
1667 |
|
|
return false;
|
1668 |
|
|
|
1669 |
|
|
/* Avoid deleting preserve label when redirecting ABNORMAL edges. */
|
1670 |
|
|
if (block_has_preserve_label (e1->dest)
|
1671 |
|
|
&& (e1->flags & EDGE_ABNORMAL))
|
1672 |
|
|
return false;
|
1673 |
|
|
|
1674 |
|
|
/* Here we know that the insns in the end of SRC1 which are common with SRC2
|
1675 |
|
|
will be deleted.
|
1676 |
|
|
If we have tablejumps in the end of SRC1 and SRC2
|
1677 |
|
|
they have been already compared for equivalence in outgoing_edges_match ()
|
1678 |
|
|
so replace the references to TABLE1 by references to TABLE2. */
|
1679 |
|
|
{
|
1680 |
|
|
rtx label1, label2;
|
1681 |
|
|
rtx table1, table2;
|
1682 |
|
|
|
1683 |
|
|
if (tablejump_p (BB_END (src1), &label1, &table1)
|
1684 |
|
|
&& tablejump_p (BB_END (src2), &label2, &table2)
|
1685 |
|
|
&& label1 != label2)
|
1686 |
|
|
{
|
1687 |
|
|
replace_label_data rr;
|
1688 |
|
|
rtx insn;
|
1689 |
|
|
|
1690 |
|
|
/* Replace references to LABEL1 with LABEL2. */
|
1691 |
|
|
rr.r1 = label1;
|
1692 |
|
|
rr.r2 = label2;
|
1693 |
|
|
rr.update_label_nuses = true;
|
1694 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
1695 |
|
|
{
|
1696 |
|
|
/* Do not replace the label in SRC1->END because when deleting
|
1697 |
|
|
a block whose end is a tablejump, the tablejump referenced
|
1698 |
|
|
from the instruction is deleted too. */
|
1699 |
|
|
if (insn != BB_END (src1))
|
1700 |
|
|
for_each_rtx (&insn, replace_label, &rr);
|
1701 |
|
|
}
|
1702 |
|
|
}
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
/* Avoid splitting if possible. We must always split when SRC2 has
|
1706 |
|
|
EH predecessor edges, or we may end up with basic blocks with both
|
1707 |
|
|
normal and EH predecessor edges. */
|
1708 |
|
|
if (newpos2 == BB_HEAD (src2)
|
1709 |
|
|
&& !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
|
1710 |
|
|
redirect_to = src2;
|
1711 |
|
|
else
|
1712 |
|
|
{
|
1713 |
|
|
if (newpos2 == BB_HEAD (src2))
|
1714 |
|
|
{
|
1715 |
|
|
/* Skip possible basic block header. */
|
1716 |
|
|
if (LABEL_P (newpos2))
|
1717 |
|
|
newpos2 = NEXT_INSN (newpos2);
|
1718 |
|
|
if (NOTE_P (newpos2))
|
1719 |
|
|
newpos2 = NEXT_INSN (newpos2);
|
1720 |
|
|
}
|
1721 |
|
|
|
1722 |
|
|
if (dump_file)
|
1723 |
|
|
fprintf (dump_file, "Splitting bb %i before %i insns\n",
|
1724 |
|
|
src2->index, nmatch);
|
1725 |
|
|
redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
|
1726 |
|
|
}
|
1727 |
|
|
|
1728 |
|
|
if (dump_file)
|
1729 |
|
|
fprintf (dump_file,
|
1730 |
|
|
"Cross jumping from bb %i to bb %i; %i common insns\n",
|
1731 |
|
|
src1->index, src2->index, nmatch);
|
1732 |
|
|
|
1733 |
|
|
redirect_to->count += src1->count;
|
1734 |
|
|
redirect_to->frequency += src1->frequency;
|
1735 |
|
|
/* We may have some registers visible through the block. */
|
1736 |
|
|
redirect_to->flags |= BB_DIRTY;
|
1737 |
|
|
|
1738 |
|
|
/* Recompute the frequencies and counts of outgoing edges. */
|
1739 |
|
|
FOR_EACH_EDGE (s, ei, redirect_to->succs)
|
1740 |
|
|
{
|
1741 |
|
|
edge s2;
|
1742 |
|
|
edge_iterator ei;
|
1743 |
|
|
basic_block d = s->dest;
|
1744 |
|
|
|
1745 |
|
|
if (FORWARDER_BLOCK_P (d))
|
1746 |
|
|
d = single_succ (d);
|
1747 |
|
|
|
1748 |
|
|
FOR_EACH_EDGE (s2, ei, src1->succs)
|
1749 |
|
|
{
|
1750 |
|
|
basic_block d2 = s2->dest;
|
1751 |
|
|
if (FORWARDER_BLOCK_P (d2))
|
1752 |
|
|
d2 = single_succ (d2);
|
1753 |
|
|
if (d == d2)
|
1754 |
|
|
break;
|
1755 |
|
|
}
|
1756 |
|
|
|
1757 |
|
|
s->count += s2->count;
|
1758 |
|
|
|
1759 |
|
|
/* Take care to update possible forwarder blocks. We verified
|
1760 |
|
|
that there is no more than one in the chain, so we can't run
|
1761 |
|
|
into infinite loop. */
|
1762 |
|
|
if (FORWARDER_BLOCK_P (s->dest))
|
1763 |
|
|
{
|
1764 |
|
|
single_succ_edge (s->dest)->count += s2->count;
|
1765 |
|
|
s->dest->count += s2->count;
|
1766 |
|
|
s->dest->frequency += EDGE_FREQUENCY (s);
|
1767 |
|
|
}
|
1768 |
|
|
|
1769 |
|
|
if (FORWARDER_BLOCK_P (s2->dest))
|
1770 |
|
|
{
|
1771 |
|
|
single_succ_edge (s2->dest)->count -= s2->count;
|
1772 |
|
|
if (single_succ_edge (s2->dest)->count < 0)
|
1773 |
|
|
single_succ_edge (s2->dest)->count = 0;
|
1774 |
|
|
s2->dest->count -= s2->count;
|
1775 |
|
|
s2->dest->frequency -= EDGE_FREQUENCY (s);
|
1776 |
|
|
if (s2->dest->frequency < 0)
|
1777 |
|
|
s2->dest->frequency = 0;
|
1778 |
|
|
if (s2->dest->count < 0)
|
1779 |
|
|
s2->dest->count = 0;
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
if (!redirect_to->frequency && !src1->frequency)
|
1783 |
|
|
s->probability = (s->probability + s2->probability) / 2;
|
1784 |
|
|
else
|
1785 |
|
|
s->probability
|
1786 |
|
|
= ((s->probability * redirect_to->frequency +
|
1787 |
|
|
s2->probability * src1->frequency)
|
1788 |
|
|
/ (redirect_to->frequency + src1->frequency));
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
update_br_prob_note (redirect_to);
|
1792 |
|
|
|
1793 |
|
|
/* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
|
1794 |
|
|
|
1795 |
|
|
/* Skip possible basic block header. */
|
1796 |
|
|
if (LABEL_P (newpos1))
|
1797 |
|
|
newpos1 = NEXT_INSN (newpos1);
|
1798 |
|
|
|
1799 |
|
|
if (NOTE_P (newpos1))
|
1800 |
|
|
newpos1 = NEXT_INSN (newpos1);
|
1801 |
|
|
|
1802 |
|
|
redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
|
1803 |
|
|
to_remove = single_succ (redirect_from);
|
1804 |
|
|
|
1805 |
|
|
redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
|
1806 |
|
|
delete_basic_block (to_remove);
|
1807 |
|
|
|
1808 |
|
|
update_forwarder_flag (redirect_from);
|
1809 |
|
|
if (redirect_to != src2)
|
1810 |
|
|
update_forwarder_flag (src2);
|
1811 |
|
|
|
1812 |
|
|
return true;
|
1813 |
|
|
}
|
1814 |
|
|
|
1815 |
|
|
/* Search the predecessors of BB for common insn sequences. When found,
|
1816 |
|
|
share code between them by redirecting control flow. Return true if
|
1817 |
|
|
any changes made. */
|
1818 |
|
|
|
1819 |
|
|
static bool
|
1820 |
|
|
try_crossjump_bb (int mode, basic_block bb)
|
1821 |
|
|
{
|
1822 |
|
|
edge e, e2, fallthru;
|
1823 |
|
|
bool changed;
|
1824 |
|
|
unsigned max, ix, ix2;
|
1825 |
|
|
basic_block ev, ev2;
|
1826 |
|
|
edge_iterator ei;
|
1827 |
|
|
|
1828 |
|
|
/* Nothing to do if there is not at least two incoming edges. */
|
1829 |
|
|
if (EDGE_COUNT (bb->preds) < 2)
|
1830 |
|
|
return false;
|
1831 |
|
|
|
1832 |
|
|
/* Don't crossjump if this block ends in a computed jump,
|
1833 |
|
|
unless we are optimizing for size. */
|
1834 |
|
|
if (!optimize_size
|
1835 |
|
|
&& bb != EXIT_BLOCK_PTR
|
1836 |
|
|
&& computed_jump_p (BB_END (bb)))
|
1837 |
|
|
return false;
|
1838 |
|
|
|
1839 |
|
|
/* If we are partitioning hot/cold basic blocks, we don't want to
|
1840 |
|
|
mess up unconditional or indirect jumps that cross between hot
|
1841 |
|
|
and cold sections.
|
1842 |
|
|
|
1843 |
|
|
Basic block partitioning may result in some jumps that appear to
|
1844 |
|
|
be optimizable (or blocks that appear to be mergeable), but which really
|
1845 |
|
|
must be left untouched (they are required to make it safely across
|
1846 |
|
|
partition boundaries). See the comments at the top of
|
1847 |
|
|
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
|
1848 |
|
|
|
1849 |
|
|
if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
|
1850 |
|
|
BB_PARTITION (EDGE_PRED (bb, 1)->src)
|
1851 |
|
|
|| (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
|
1852 |
|
|
return false;
|
1853 |
|
|
|
1854 |
|
|
/* It is always cheapest to redirect a block that ends in a branch to
|
1855 |
|
|
a block that falls through into BB, as that adds no branches to the
|
1856 |
|
|
program. We'll try that combination first. */
|
1857 |
|
|
fallthru = NULL;
|
1858 |
|
|
max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
|
1859 |
|
|
|
1860 |
|
|
if (EDGE_COUNT (bb->preds) > max)
|
1861 |
|
|
return false;
|
1862 |
|
|
|
1863 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1864 |
|
|
{
|
1865 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
1866 |
|
|
fallthru = e;
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
changed = false;
|
1870 |
|
|
for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
|
1871 |
|
|
{
|
1872 |
|
|
e = EDGE_PRED (ev, ix);
|
1873 |
|
|
ix++;
|
1874 |
|
|
|
1875 |
|
|
/* As noted above, first try with the fallthru predecessor. */
|
1876 |
|
|
if (fallthru)
|
1877 |
|
|
{
|
1878 |
|
|
/* Don't combine the fallthru edge into anything else.
|
1879 |
|
|
If there is a match, we'll do it the other way around. */
|
1880 |
|
|
if (e == fallthru)
|
1881 |
|
|
continue;
|
1882 |
|
|
/* If nothing changed since the last attempt, there is nothing
|
1883 |
|
|
we can do. */
|
1884 |
|
|
if (!first_pass
|
1885 |
|
|
&& (!(e->src->flags & BB_DIRTY)
|
1886 |
|
|
&& !(fallthru->src->flags & BB_DIRTY)))
|
1887 |
|
|
continue;
|
1888 |
|
|
|
1889 |
|
|
if (try_crossjump_to_edge (mode, e, fallthru))
|
1890 |
|
|
{
|
1891 |
|
|
changed = true;
|
1892 |
|
|
ix = 0;
|
1893 |
|
|
ev = bb;
|
1894 |
|
|
continue;
|
1895 |
|
|
}
|
1896 |
|
|
}
|
1897 |
|
|
|
1898 |
|
|
/* Non-obvious work limiting check: Recognize that we're going
|
1899 |
|
|
to call try_crossjump_bb on every basic block. So if we have
|
1900 |
|
|
two blocks with lots of outgoing edges (a switch) and they
|
1901 |
|
|
share lots of common destinations, then we would do the
|
1902 |
|
|
cross-jump check once for each common destination.
|
1903 |
|
|
|
1904 |
|
|
Now, if the blocks actually are cross-jump candidates, then
|
1905 |
|
|
all of their destinations will be shared. Which means that
|
1906 |
|
|
we only need check them for cross-jump candidacy once. We
|
1907 |
|
|
can eliminate redundant checks of crossjump(A,B) by arbitrarily
|
1908 |
|
|
choosing to do the check from the block for which the edge
|
1909 |
|
|
in question is the first successor of A. */
|
1910 |
|
|
if (EDGE_SUCC (e->src, 0) != e)
|
1911 |
|
|
continue;
|
1912 |
|
|
|
1913 |
|
|
for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
|
1914 |
|
|
{
|
1915 |
|
|
e2 = EDGE_PRED (ev2, ix2);
|
1916 |
|
|
ix2++;
|
1917 |
|
|
|
1918 |
|
|
if (e2 == e)
|
1919 |
|
|
continue;
|
1920 |
|
|
|
1921 |
|
|
/* We've already checked the fallthru edge above. */
|
1922 |
|
|
if (e2 == fallthru)
|
1923 |
|
|
continue;
|
1924 |
|
|
|
1925 |
|
|
/* The "first successor" check above only prevents multiple
|
1926 |
|
|
checks of crossjump(A,B). In order to prevent redundant
|
1927 |
|
|
checks of crossjump(B,A), require that A be the block
|
1928 |
|
|
with the lowest index. */
|
1929 |
|
|
if (e->src->index > e2->src->index)
|
1930 |
|
|
continue;
|
1931 |
|
|
|
1932 |
|
|
/* If nothing changed since the last attempt, there is nothing
|
1933 |
|
|
we can do. */
|
1934 |
|
|
if (!first_pass
|
1935 |
|
|
&& (!(e->src->flags & BB_DIRTY)
|
1936 |
|
|
&& !(e2->src->flags & BB_DIRTY)))
|
1937 |
|
|
continue;
|
1938 |
|
|
|
1939 |
|
|
if (try_crossjump_to_edge (mode, e, e2))
|
1940 |
|
|
{
|
1941 |
|
|
changed = true;
|
1942 |
|
|
ev2 = bb;
|
1943 |
|
|
ix = 0;
|
1944 |
|
|
break;
|
1945 |
|
|
}
|
1946 |
|
|
}
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
return changed;
|
1950 |
|
|
}
|
1951 |
|
|
|
1952 |
|
|
/* Do simple CFG optimizations - basic block merging, simplifying of jump
|
1953 |
|
|
instructions etc. Return nonzero if changes were made. */
|
1954 |
|
|
|
1955 |
|
|
static bool
|
1956 |
|
|
try_optimize_cfg (int mode)
|
1957 |
|
|
{
|
1958 |
|
|
bool changed_overall = false;
|
1959 |
|
|
bool changed;
|
1960 |
|
|
int iterations = 0;
|
1961 |
|
|
basic_block bb, b, next;
|
1962 |
|
|
|
1963 |
|
|
if (mode & CLEANUP_CROSSJUMP)
|
1964 |
|
|
add_noreturn_fake_exit_edges ();
|
1965 |
|
|
|
1966 |
|
|
if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
|
1967 |
|
|
clear_bb_flags ();
|
1968 |
|
|
|
1969 |
|
|
FOR_EACH_BB (bb)
|
1970 |
|
|
update_forwarder_flag (bb);
|
1971 |
|
|
|
1972 |
|
|
if (! targetm.cannot_modify_jumps_p ())
|
1973 |
|
|
{
|
1974 |
|
|
first_pass = true;
|
1975 |
|
|
/* Attempt to merge blocks as made possible by edge removal. If
|
1976 |
|
|
a block has only one successor, and the successor has only
|
1977 |
|
|
one predecessor, they may be combined. */
|
1978 |
|
|
do
|
1979 |
|
|
{
|
1980 |
|
|
changed = false;
|
1981 |
|
|
iterations++;
|
1982 |
|
|
|
1983 |
|
|
if (dump_file)
|
1984 |
|
|
fprintf (dump_file,
|
1985 |
|
|
"\n\ntry_optimize_cfg iteration %i\n\n",
|
1986 |
|
|
iterations);
|
1987 |
|
|
|
1988 |
|
|
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
|
1989 |
|
|
{
|
1990 |
|
|
basic_block c;
|
1991 |
|
|
edge s;
|
1992 |
|
|
bool changed_here = false;
|
1993 |
|
|
|
1994 |
|
|
/* Delete trivially dead basic blocks. */
|
1995 |
|
|
while (EDGE_COUNT (b->preds) == 0)
|
1996 |
|
|
{
|
1997 |
|
|
c = b->prev_bb;
|
1998 |
|
|
if (dump_file)
|
1999 |
|
|
fprintf (dump_file, "Deleting block %i.\n",
|
2000 |
|
|
b->index);
|
2001 |
|
|
|
2002 |
|
|
delete_basic_block (b);
|
2003 |
|
|
if (!(mode & CLEANUP_CFGLAYOUT))
|
2004 |
|
|
changed = true;
|
2005 |
|
|
b = c;
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
/* Remove code labels no longer used. */
|
2009 |
|
|
if (single_pred_p (b)
|
2010 |
|
|
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
|
2011 |
|
|
&& !(single_pred_edge (b)->flags & EDGE_COMPLEX)
|
2012 |
|
|
&& LABEL_P (BB_HEAD (b))
|
2013 |
|
|
/* If the previous block ends with a branch to this
|
2014 |
|
|
block, we can't delete the label. Normally this
|
2015 |
|
|
is a condjump that is yet to be simplified, but
|
2016 |
|
|
if CASE_DROPS_THRU, this can be a tablejump with
|
2017 |
|
|
some element going to the same place as the
|
2018 |
|
|
default (fallthru). */
|
2019 |
|
|
&& (single_pred (b) == ENTRY_BLOCK_PTR
|
2020 |
|
|
|| !JUMP_P (BB_END (single_pred (b)))
|
2021 |
|
|
|| ! label_is_jump_target_p (BB_HEAD (b),
|
2022 |
|
|
BB_END (single_pred (b)))))
|
2023 |
|
|
{
|
2024 |
|
|
rtx label = BB_HEAD (b);
|
2025 |
|
|
|
2026 |
|
|
delete_insn_chain (label, label);
|
2027 |
|
|
/* In the case label is undeletable, move it after the
|
2028 |
|
|
BASIC_BLOCK note. */
|
2029 |
|
|
if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
|
2030 |
|
|
{
|
2031 |
|
|
rtx bb_note = NEXT_INSN (BB_HEAD (b));
|
2032 |
|
|
|
2033 |
|
|
reorder_insns_nobb (label, label, bb_note);
|
2034 |
|
|
BB_HEAD (b) = bb_note;
|
2035 |
|
|
}
|
2036 |
|
|
if (dump_file)
|
2037 |
|
|
fprintf (dump_file, "Deleted label in block %i.\n",
|
2038 |
|
|
b->index);
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
/* If we fall through an empty block, we can remove it. */
|
2042 |
|
|
if (!(mode & CLEANUP_CFGLAYOUT)
|
2043 |
|
|
&& single_pred_p (b)
|
2044 |
|
|
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
|
2045 |
|
|
&& !LABEL_P (BB_HEAD (b))
|
2046 |
|
|
&& FORWARDER_BLOCK_P (b)
|
2047 |
|
|
/* Note that forwarder_block_p true ensures that
|
2048 |
|
|
there is a successor for this block. */
|
2049 |
|
|
&& (single_succ_edge (b)->flags & EDGE_FALLTHRU)
|
2050 |
|
|
&& n_basic_blocks > NUM_FIXED_BLOCKS + 1)
|
2051 |
|
|
{
|
2052 |
|
|
if (dump_file)
|
2053 |
|
|
fprintf (dump_file,
|
2054 |
|
|
"Deleting fallthru block %i.\n",
|
2055 |
|
|
b->index);
|
2056 |
|
|
|
2057 |
|
|
c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
|
2058 |
|
|
redirect_edge_succ_nodup (single_pred_edge (b),
|
2059 |
|
|
single_succ (b));
|
2060 |
|
|
delete_basic_block (b);
|
2061 |
|
|
changed = true;
|
2062 |
|
|
b = c;
|
2063 |
|
|
}
|
2064 |
|
|
|
2065 |
|
|
if (single_succ_p (b)
|
2066 |
|
|
&& (s = single_succ_edge (b))
|
2067 |
|
|
&& !(s->flags & EDGE_COMPLEX)
|
2068 |
|
|
&& (c = s->dest) != EXIT_BLOCK_PTR
|
2069 |
|
|
&& single_pred_p (c)
|
2070 |
|
|
&& b != c)
|
2071 |
|
|
{
|
2072 |
|
|
/* When not in cfg_layout mode use code aware of reordering
|
2073 |
|
|
INSN. This code possibly creates new basic blocks so it
|
2074 |
|
|
does not fit merge_blocks interface and is kept here in
|
2075 |
|
|
hope that it will become useless once more of compiler
|
2076 |
|
|
is transformed to use cfg_layout mode. */
|
2077 |
|
|
|
2078 |
|
|
if ((mode & CLEANUP_CFGLAYOUT)
|
2079 |
|
|
&& can_merge_blocks_p (b, c))
|
2080 |
|
|
{
|
2081 |
|
|
merge_blocks (b, c);
|
2082 |
|
|
update_forwarder_flag (b);
|
2083 |
|
|
changed_here = true;
|
2084 |
|
|
}
|
2085 |
|
|
else if (!(mode & CLEANUP_CFGLAYOUT)
|
2086 |
|
|
/* If the jump insn has side effects,
|
2087 |
|
|
we can't kill the edge. */
|
2088 |
|
|
&& (!JUMP_P (BB_END (b))
|
2089 |
|
|
|| (reload_completed
|
2090 |
|
|
? simplejump_p (BB_END (b))
|
2091 |
|
|
: (onlyjump_p (BB_END (b))
|
2092 |
|
|
&& !tablejump_p (BB_END (b),
|
2093 |
|
|
NULL, NULL))))
|
2094 |
|
|
&& (next = merge_blocks_move (s, b, c, mode)))
|
2095 |
|
|
{
|
2096 |
|
|
b = next;
|
2097 |
|
|
changed_here = true;
|
2098 |
|
|
}
|
2099 |
|
|
}
|
2100 |
|
|
|
2101 |
|
|
/* Simplify branch over branch. */
|
2102 |
|
|
if ((mode & CLEANUP_EXPENSIVE)
|
2103 |
|
|
&& !(mode & CLEANUP_CFGLAYOUT)
|
2104 |
|
|
&& try_simplify_condjump (b))
|
2105 |
|
|
changed_here = true;
|
2106 |
|
|
|
2107 |
|
|
/* If B has a single outgoing edge, but uses a
|
2108 |
|
|
non-trivial jump instruction without side-effects, we
|
2109 |
|
|
can either delete the jump entirely, or replace it
|
2110 |
|
|
with a simple unconditional jump. */
|
2111 |
|
|
if (single_succ_p (b)
|
2112 |
|
|
&& single_succ (b) != EXIT_BLOCK_PTR
|
2113 |
|
|
&& onlyjump_p (BB_END (b))
|
2114 |
|
|
&& !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
|
2115 |
|
|
&& try_redirect_by_replacing_jump (single_succ_edge (b),
|
2116 |
|
|
single_succ (b),
|
2117 |
|
|
(mode & CLEANUP_CFGLAYOUT) != 0))
|
2118 |
|
|
{
|
2119 |
|
|
update_forwarder_flag (b);
|
2120 |
|
|
changed_here = true;
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
/* Simplify branch to branch. */
|
2124 |
|
|
if (try_forward_edges (mode, b))
|
2125 |
|
|
changed_here = true;
|
2126 |
|
|
|
2127 |
|
|
/* Look for shared code between blocks. */
|
2128 |
|
|
if ((mode & CLEANUP_CROSSJUMP)
|
2129 |
|
|
&& try_crossjump_bb (mode, b))
|
2130 |
|
|
changed_here = true;
|
2131 |
|
|
|
2132 |
|
|
/* Don't get confused by the index shift caused by
|
2133 |
|
|
deleting blocks. */
|
2134 |
|
|
if (!changed_here)
|
2135 |
|
|
b = b->next_bb;
|
2136 |
|
|
else
|
2137 |
|
|
changed = true;
|
2138 |
|
|
}
|
2139 |
|
|
|
2140 |
|
|
if ((mode & CLEANUP_CROSSJUMP)
|
2141 |
|
|
&& try_crossjump_bb (mode, EXIT_BLOCK_PTR))
|
2142 |
|
|
changed = true;
|
2143 |
|
|
|
2144 |
|
|
#ifdef ENABLE_CHECKING
|
2145 |
|
|
if (changed)
|
2146 |
|
|
verify_flow_info ();
|
2147 |
|
|
#endif
|
2148 |
|
|
|
2149 |
|
|
changed_overall |= changed;
|
2150 |
|
|
first_pass = false;
|
2151 |
|
|
}
|
2152 |
|
|
while (changed);
|
2153 |
|
|
}
|
2154 |
|
|
|
2155 |
|
|
if (mode & CLEANUP_CROSSJUMP)
|
2156 |
|
|
remove_fake_exit_edges ();
|
2157 |
|
|
|
2158 |
|
|
FOR_ALL_BB (b)
|
2159 |
|
|
b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
|
2160 |
|
|
|
2161 |
|
|
return changed_overall;
|
2162 |
|
|
}
|
2163 |
|
|
|
2164 |
|
|
/* Delete all unreachable basic blocks. */
|
2165 |
|
|
|
2166 |
|
|
bool
|
2167 |
|
|
delete_unreachable_blocks (void)
|
2168 |
|
|
{
|
2169 |
|
|
bool changed = false;
|
2170 |
|
|
basic_block b, next_bb;
|
2171 |
|
|
|
2172 |
|
|
find_unreachable_blocks ();
|
2173 |
|
|
|
2174 |
|
|
/* Delete all unreachable basic blocks. */
|
2175 |
|
|
|
2176 |
|
|
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
|
2177 |
|
|
{
|
2178 |
|
|
next_bb = b->next_bb;
|
2179 |
|
|
|
2180 |
|
|
if (!(b->flags & BB_REACHABLE))
|
2181 |
|
|
{
|
2182 |
|
|
delete_basic_block (b);
|
2183 |
|
|
changed = true;
|
2184 |
|
|
}
|
2185 |
|
|
}
|
2186 |
|
|
|
2187 |
|
|
if (changed)
|
2188 |
|
|
tidy_fallthru_edges ();
|
2189 |
|
|
return changed;
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
/* Merges sequential blocks if possible. */
|
2193 |
|
|
|
2194 |
|
|
bool
|
2195 |
|
|
merge_seq_blocks (void)
|
2196 |
|
|
{
|
2197 |
|
|
basic_block bb;
|
2198 |
|
|
bool changed = false;
|
2199 |
|
|
|
2200 |
|
|
for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
|
2201 |
|
|
{
|
2202 |
|
|
if (single_succ_p (bb)
|
2203 |
|
|
&& can_merge_blocks_p (bb, single_succ (bb)))
|
2204 |
|
|
{
|
2205 |
|
|
/* Merge the blocks and retry. */
|
2206 |
|
|
merge_blocks (bb, single_succ (bb));
|
2207 |
|
|
changed = true;
|
2208 |
|
|
continue;
|
2209 |
|
|
}
|
2210 |
|
|
|
2211 |
|
|
bb = bb->next_bb;
|
2212 |
|
|
}
|
2213 |
|
|
|
2214 |
|
|
return changed;
|
2215 |
|
|
}
|
2216 |
|
|
|
2217 |
|
|
/* Tidy the CFG by deleting unreachable code and whatnot. */
|
2218 |
|
|
|
2219 |
|
|
bool
|
2220 |
|
|
cleanup_cfg (int mode)
|
2221 |
|
|
{
|
2222 |
|
|
bool changed = false;
|
2223 |
|
|
|
2224 |
|
|
timevar_push (TV_CLEANUP_CFG);
|
2225 |
|
|
if (delete_unreachable_blocks ())
|
2226 |
|
|
{
|
2227 |
|
|
changed = true;
|
2228 |
|
|
/* We've possibly created trivially dead code. Cleanup it right
|
2229 |
|
|
now to introduce more opportunities for try_optimize_cfg. */
|
2230 |
|
|
if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
|
2231 |
|
|
&& !reload_completed)
|
2232 |
|
|
delete_trivially_dead_insns (get_insns(), max_reg_num ());
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
compact_blocks ();
|
2236 |
|
|
|
2237 |
|
|
while (try_optimize_cfg (mode))
|
2238 |
|
|
{
|
2239 |
|
|
delete_unreachable_blocks (), changed = true;
|
2240 |
|
|
if (mode & CLEANUP_UPDATE_LIFE)
|
2241 |
|
|
{
|
2242 |
|
|
/* Cleaning up CFG introduces more opportunities for dead code
|
2243 |
|
|
removal that in turn may introduce more opportunities for
|
2244 |
|
|
cleaning up the CFG. */
|
2245 |
|
|
if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
2246 |
|
|
PROP_DEATH_NOTES
|
2247 |
|
|
| PROP_SCAN_DEAD_CODE
|
2248 |
|
|
| PROP_KILL_DEAD_CODE
|
2249 |
|
|
| ((mode & CLEANUP_LOG_LINKS)
|
2250 |
|
|
? PROP_LOG_LINKS : 0)))
|
2251 |
|
|
break;
|
2252 |
|
|
}
|
2253 |
|
|
else if (!(mode & CLEANUP_NO_INSN_DEL)
|
2254 |
|
|
&& (mode & CLEANUP_EXPENSIVE)
|
2255 |
|
|
&& !reload_completed)
|
2256 |
|
|
{
|
2257 |
|
|
if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
|
2258 |
|
|
break;
|
2259 |
|
|
}
|
2260 |
|
|
else
|
2261 |
|
|
break;
|
2262 |
|
|
delete_dead_jumptables ();
|
2263 |
|
|
}
|
2264 |
|
|
|
2265 |
|
|
timevar_pop (TV_CLEANUP_CFG);
|
2266 |
|
|
|
2267 |
|
|
return changed;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
static unsigned int
|
2271 |
|
|
rest_of_handle_jump (void)
|
2272 |
|
|
{
|
2273 |
|
|
delete_unreachable_blocks ();
|
2274 |
|
|
|
2275 |
|
|
if (cfun->tail_call_emit)
|
2276 |
|
|
fixup_tail_calls ();
|
2277 |
|
|
return 0;
|
2278 |
|
|
}
|
2279 |
|
|
|
2280 |
|
|
struct tree_opt_pass pass_jump =
|
2281 |
|
|
{
|
2282 |
|
|
"sibling", /* name */
|
2283 |
|
|
NULL, /* gate */
|
2284 |
|
|
rest_of_handle_jump, /* execute */
|
2285 |
|
|
NULL, /* sub */
|
2286 |
|
|
NULL, /* next */
|
2287 |
|
|
0, /* static_pass_number */
|
2288 |
|
|
TV_JUMP, /* tv_id */
|
2289 |
|
|
0, /* properties_required */
|
2290 |
|
|
0, /* properties_provided */
|
2291 |
|
|
0, /* properties_destroyed */
|
2292 |
|
|
TODO_ggc_collect, /* todo_flags_start */
|
2293 |
|
|
TODO_dump_func |
|
2294 |
|
|
TODO_verify_flow, /* todo_flags_finish */
|
2295 |
|
|
'i' /* letter */
|
2296 |
|
|
};
|
2297 |
|
|
|
2298 |
|
|
|
2299 |
|
|
static unsigned int
|
2300 |
|
|
rest_of_handle_jump2 (void)
|
2301 |
|
|
{
|
2302 |
|
|
/* Turn NOTE_INSN_EXPECTED_VALUE into REG_BR_PROB. Do this
|
2303 |
|
|
before jump optimization switches branch directions. */
|
2304 |
|
|
if (flag_guess_branch_prob)
|
2305 |
|
|
expected_value_to_br_prob ();
|
2306 |
|
|
|
2307 |
|
|
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
2308 |
|
|
reg_scan (get_insns (), max_reg_num ());
|
2309 |
|
|
if (dump_file)
|
2310 |
|
|
dump_flow_info (dump_file, dump_flags);
|
2311 |
|
|
cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
|
2312 |
|
|
| (flag_thread_jumps ? CLEANUP_THREADING : 0));
|
2313 |
|
|
|
2314 |
|
|
purge_line_number_notes ();
|
2315 |
|
|
|
2316 |
|
|
if (optimize)
|
2317 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
2318 |
|
|
|
2319 |
|
|
/* Jump optimization, and the removal of NULL pointer checks, may
|
2320 |
|
|
have reduced the number of instructions substantially. CSE, and
|
2321 |
|
|
future passes, allocate arrays whose dimensions involve the
|
2322 |
|
|
maximum instruction UID, so if we can reduce the maximum UID
|
2323 |
|
|
we'll save big on memory. */
|
2324 |
|
|
renumber_insns ();
|
2325 |
|
|
return 0;
|
2326 |
|
|
}
|
2327 |
|
|
|
2328 |
|
|
|
2329 |
|
|
struct tree_opt_pass pass_jump2 =
|
2330 |
|
|
{
|
2331 |
|
|
"jump", /* name */
|
2332 |
|
|
NULL, /* gate */
|
2333 |
|
|
rest_of_handle_jump2, /* execute */
|
2334 |
|
|
NULL, /* sub */
|
2335 |
|
|
NULL, /* next */
|
2336 |
|
|
0, /* static_pass_number */
|
2337 |
|
|
TV_JUMP, /* tv_id */
|
2338 |
|
|
0, /* properties_required */
|
2339 |
|
|
0, /* properties_provided */
|
2340 |
|
|
0, /* properties_destroyed */
|
2341 |
|
|
TODO_ggc_collect, /* todo_flags_start */
|
2342 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
2343 |
|
|
'j' /* letter */
|
2344 |
|
|
};
|
2345 |
|
|
|
2346 |
|
|
|