OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [alpha/] [alpha.h] - Blame information for rev 247

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions of target machine for GNU compiler, for DEC Alpha.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2004, 2005, 2007 Free Software Foundation, Inc.
4
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 3, or (at your option)
11
any later version.
12
 
13
GCC is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
/* Target CPU builtins.  */
23
#define TARGET_CPU_CPP_BUILTINS()                       \
24
  do                                                    \
25
    {                                                   \
26
        builtin_define ("__alpha");                     \
27
        builtin_define ("__alpha__");                   \
28
        builtin_assert ("cpu=alpha");                   \
29
        builtin_assert ("machine=alpha");               \
30
        if (TARGET_CIX)                                 \
31
          {                                             \
32
            builtin_define ("__alpha_cix__");           \
33
            builtin_assert ("cpu=cix");                 \
34
          }                                             \
35
        if (TARGET_FIX)                                 \
36
          {                                             \
37
            builtin_define ("__alpha_fix__");           \
38
            builtin_assert ("cpu=fix");                 \
39
          }                                             \
40
        if (TARGET_BWX)                                 \
41
          {                                             \
42
            builtin_define ("__alpha_bwx__");           \
43
            builtin_assert ("cpu=bwx");                 \
44
          }                                             \
45
        if (TARGET_MAX)                                 \
46
          {                                             \
47
            builtin_define ("__alpha_max__");           \
48
            builtin_assert ("cpu=max");                 \
49
          }                                             \
50
        if (alpha_cpu == PROCESSOR_EV6)                 \
51
          {                                             \
52
            builtin_define ("__alpha_ev6__");           \
53
            builtin_assert ("cpu=ev6");                 \
54
          }                                             \
55
        else if (alpha_cpu == PROCESSOR_EV5)            \
56
          {                                             \
57
            builtin_define ("__alpha_ev5__");           \
58
            builtin_assert ("cpu=ev5");                 \
59
          }                                             \
60
        else    /* Presumably ev4.  */                  \
61
          {                                             \
62
            builtin_define ("__alpha_ev4__");           \
63
            builtin_assert ("cpu=ev4");                 \
64
          }                                             \
65
        if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT)    \
66
          builtin_define ("_IEEE_FP");                  \
67
        if (TARGET_IEEE_WITH_INEXACT)                   \
68
          builtin_define ("_IEEE_FP_INEXACT");          \
69
        if (TARGET_LONG_DOUBLE_128)                     \
70
          builtin_define ("__LONG_DOUBLE_128__");       \
71
                                                        \
72
        /* Macros dependent on the C dialect.  */       \
73
        SUBTARGET_LANGUAGE_CPP_BUILTINS();              \
74
} while (0)
75
 
76
#ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
77
#define SUBTARGET_LANGUAGE_CPP_BUILTINS()               \
78
  do                                                    \
79
    {                                                   \
80
      if (preprocessing_asm_p ())                       \
81
        builtin_define_std ("LANGUAGE_ASSEMBLY");       \
82
      else if (c_dialect_cxx ())                        \
83
        {                                               \
84
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");    \
85
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");  \
86
        }                                               \
87
      else                                              \
88
        builtin_define_std ("LANGUAGE_C");              \
89
      if (c_dialect_objc ())                            \
90
        {                                               \
91
          builtin_define ("__LANGUAGE_OBJECTIVE_C");    \
92
          builtin_define ("__LANGUAGE_OBJECTIVE_C__");  \
93
        }                                               \
94
    }                                                   \
95
  while (0)
96
#endif
97
 
98
#define CPP_SPEC "%(cpp_subtarget)"
99
 
100
#ifndef CPP_SUBTARGET_SPEC
101
#define CPP_SUBTARGET_SPEC ""
102
#endif
103
 
104
#define WORD_SWITCH_TAKES_ARG(STR)              \
105
 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
106
 
107
/* Print subsidiary information on the compiler version in use.  */
108
#define TARGET_VERSION
109
 
110
/* Run-time compilation parameters selecting different hardware subsets.  */
111
 
112
/* Which processor to schedule for. The cpu attribute defines a list that
113
   mirrors this list, so changes to alpha.md must be made at the same time.  */
114
 
115
enum processor_type
116
{
117
  PROCESSOR_EV4,                        /* 2106[46]{a,} */
118
  PROCESSOR_EV5,                        /* 21164{a,pc,} */
119
  PROCESSOR_EV6,                        /* 21264 */
120
  PROCESSOR_MAX
121
};
122
 
123
extern enum processor_type alpha_cpu;
124
extern enum processor_type alpha_tune;
125
 
126
enum alpha_trap_precision
127
{
128
  ALPHA_TP_PROG,        /* No precision (default).  */
129
  ALPHA_TP_FUNC,        /* Trap contained within originating function.  */
130
  ALPHA_TP_INSN         /* Instruction accuracy and code is resumption safe.  */
131
};
132
 
133
enum alpha_fp_rounding_mode
134
{
135
  ALPHA_FPRM_NORM,      /* Normal rounding mode.  */
136
  ALPHA_FPRM_MINF,      /* Round towards minus-infinity.  */
137
  ALPHA_FPRM_CHOP,      /* Chopped rounding mode (towards 0).  */
138
  ALPHA_FPRM_DYN        /* Dynamic rounding mode.  */
139
};
140
 
141
enum alpha_fp_trap_mode
142
{
143
  ALPHA_FPTM_N,         /* Normal trap mode.  */
144
  ALPHA_FPTM_U,         /* Underflow traps enabled.  */
145
  ALPHA_FPTM_SU,        /* Software completion, w/underflow traps */
146
  ALPHA_FPTM_SUI        /* Software completion, w/underflow & inexact traps */
147
};
148
 
149
extern int target_flags;
150
 
151
extern enum alpha_trap_precision alpha_tp;
152
extern enum alpha_fp_rounding_mode alpha_fprm;
153
extern enum alpha_fp_trap_mode alpha_fptm;
154
 
155
/* Invert the easy way to make options work.  */
156
#define TARGET_FP       (!TARGET_SOFT_FP)
157
 
158
/* These are for target os support and cannot be changed at runtime.  */
159
#define TARGET_ABI_WINDOWS_NT 0
160
#define TARGET_ABI_OPEN_VMS 0
161
#define TARGET_ABI_UNICOSMK 0
162
#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT  \
163
                        && !TARGET_ABI_OPEN_VMS \
164
                        && !TARGET_ABI_UNICOSMK)
165
 
166
#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
167
#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
168
#endif
169
#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
170
#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
171
#endif
172
#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
173
#define TARGET_CAN_FAULT_IN_PROLOGUE 0
174
#endif
175
#ifndef TARGET_HAS_XFLOATING_LIBS
176
#define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
177
#endif
178
#ifndef TARGET_PROFILING_NEEDS_GP
179
#define TARGET_PROFILING_NEEDS_GP 0
180
#endif
181
#ifndef TARGET_LD_BUGGY_LDGP
182
#define TARGET_LD_BUGGY_LDGP 0
183
#endif
184
#ifndef TARGET_FIXUP_EV5_PREFETCH
185
#define TARGET_FIXUP_EV5_PREFETCH 0
186
#endif
187
#ifndef HAVE_AS_TLS
188
#define HAVE_AS_TLS 0
189
#endif
190
 
191
#define TARGET_DEFAULT MASK_FPREGS
192
 
193
#ifndef TARGET_CPU_DEFAULT
194
#define TARGET_CPU_DEFAULT 0
195
#endif
196
 
197
#ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
198
#ifdef HAVE_AS_EXPLICIT_RELOCS
199
#define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
200
#define TARGET_SUPPORT_ARCH 1
201
#else
202
#define TARGET_DEFAULT_EXPLICIT_RELOCS 0
203
#endif
204
#endif
205
 
206
#ifndef TARGET_SUPPORT_ARCH
207
#define TARGET_SUPPORT_ARCH 0
208
#endif
209
 
210
/* Support for a compile-time default CPU, et cetera.  The rules are:
211
   --with-cpu is ignored if -mcpu is specified.
212
   --with-tune is ignored if -mtune is specified.  */
213
#define OPTION_DEFAULT_SPECS \
214
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
215
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
216
 
217
/* This macro defines names of additional specifications to put in the
218
   specs that can be used in various specifications like CC1_SPEC.  Its
219
   definition is an initializer with a subgrouping for each command option.
220
 
221
   Each subgrouping contains a string constant, that defines the
222
   specification name, and a string constant that used by the GCC driver
223
   program.
224
 
225
   Do not define this macro if it does not need to do anything.  */
226
 
227
#ifndef SUBTARGET_EXTRA_SPECS
228
#define SUBTARGET_EXTRA_SPECS
229
#endif
230
 
231
#define EXTRA_SPECS                             \
232
  { "cpp_subtarget", CPP_SUBTARGET_SPEC },      \
233
  SUBTARGET_EXTRA_SPECS
234
 
235
 
236
/* Sometimes certain combinations of command options do not make sense
237
   on a particular target machine.  You can define a macro
238
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
239
   defined, is executed once just after all the command options have
240
   been parsed.
241
 
242
   On the Alpha, it is used to translate target-option strings into
243
   numeric values.  */
244
 
245
#define OVERRIDE_OPTIONS override_options ()
246
 
247
 
248
/* Define this macro to change register usage conditional on target flags.
249
 
250
   On the Alpha, we use this to disable the floating-point registers when
251
   they don't exist.  */
252
 
253
#define CONDITIONAL_REGISTER_USAGE              \
254
{                                               \
255
  int i;                                        \
256
  if (! TARGET_FPREGS)                          \
257
    for (i = 32; i < 63; i++)                   \
258
      fixed_regs[i] = call_used_regs[i] = 1;    \
259
}
260
 
261
 
262
/* Show we can debug even without a frame pointer.  */
263
#define CAN_DEBUG_WITHOUT_FP
264
 
265
/* target machine storage layout */
266
 
267
/* Define the size of `int'.  The default is the same as the word size.  */
268
#define INT_TYPE_SIZE 32
269
 
270
/* Define the size of `long long'.  The default is the twice the word size.  */
271
#define LONG_LONG_TYPE_SIZE 64
272
 
273
/* We're IEEE unless someone says to use VAX.  */
274
#define TARGET_FLOAT_FORMAT \
275
  (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
276
 
277
/* The two floating-point formats we support are S-floating, which is
278
   4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
279
   and `long double' are T.  */
280
 
281
#define FLOAT_TYPE_SIZE 32
282
#define DOUBLE_TYPE_SIZE 64
283
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
284
 
285
/* Define this to set long double type size to use in libgcc2.c, which can
286
   not depend on target_flags.  */
287
#ifdef __LONG_DOUBLE_128__
288
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
289
#else
290
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
291
#endif
292
 
293
/* Work around target_flags dependency in ada/targtyps.c.  */
294
#define WIDEST_HARDWARE_FP_SIZE 64
295
 
296
#define WCHAR_TYPE "unsigned int"
297
#define WCHAR_TYPE_SIZE 32
298
 
299
/* Define this macro if it is advisable to hold scalars in registers
300
   in a wider mode than that declared by the program.  In such cases,
301
   the value is constrained to be within the bounds of the declared
302
   type, but kept valid in the wider mode.  The signedness of the
303
   extension may differ from that of the type.
304
 
305
   For Alpha, we always store objects in a full register.  32-bit integers
306
   are always sign-extended, but smaller objects retain their signedness.
307
 
308
   Note that small vector types can get mapped onto integer modes at the
309
   whim of not appearing in alpha-modes.def.  We never promoted these
310
   values before; don't do so now that we've trimmed the set of modes to
311
   those actually implemented in the backend.  */
312
 
313
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)                       \
314
  if (GET_MODE_CLASS (MODE) == MODE_INT                         \
315
      && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE)      \
316
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                 \
317
    {                                                           \
318
      if ((MODE) == SImode)                                     \
319
        (UNSIGNEDP) = 0;                                 \
320
      (MODE) = DImode;                                          \
321
    }
322
 
323
/* Define this if most significant bit is lowest numbered
324
   in instructions that operate on numbered bit-fields.
325
 
326
   There are no such instructions on the Alpha, but the documentation
327
   is little endian.  */
328
#define BITS_BIG_ENDIAN 0
329
 
330
/* Define this if most significant byte of a word is the lowest numbered.
331
   This is false on the Alpha.  */
332
#define BYTES_BIG_ENDIAN 0
333
 
334
/* Define this if most significant word of a multiword number is lowest
335
   numbered.
336
 
337
   For Alpha we can decide arbitrarily since there are no machine instructions
338
   for them.  Might as well be consistent with bytes.  */
339
#define WORDS_BIG_ENDIAN 0
340
 
341
/* Width of a word, in units (bytes).  */
342
#define UNITS_PER_WORD 8
343
 
344
/* Width in bits of a pointer.
345
   See also the macro `Pmode' defined below.  */
346
#define POINTER_SIZE 64
347
 
348
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
349
#define PARM_BOUNDARY 64
350
 
351
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
352
#define STACK_BOUNDARY 128
353
 
354
/* Allocation boundary (in *bits*) for the code of a function.  */
355
#define FUNCTION_BOUNDARY 32
356
 
357
/* Alignment of field after `int : 0' in a structure.  */
358
#define EMPTY_FIELD_BOUNDARY 64
359
 
360
/* Every structure's size must be a multiple of this.  */
361
#define STRUCTURE_SIZE_BOUNDARY 8
362
 
363
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
364
#define PCC_BITFIELD_TYPE_MATTERS 1
365
 
366
/* No data type wants to be aligned rounder than this.  */
367
#define BIGGEST_ALIGNMENT 128
368
 
369
/* For atomic access to objects, must have at least 32-bit alignment
370
   unless the machine has byte operations.  */
371
#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
372
 
373
/* Align all constants and variables to at least a word boundary so
374
   we can pick up pieces of them faster.  */
375
/* ??? Only if block-move stuff knows about different source/destination
376
   alignment.  */
377
#if 0
378
#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
379
#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
380
#endif
381
 
382
/* Set this nonzero if move instructions will actually fail to work
383
   when given unaligned data.
384
 
385
   Since we get an error message when we do one, call them invalid.  */
386
 
387
#define STRICT_ALIGNMENT 1
388
 
389
/* Set this nonzero if unaligned move instructions are extremely slow.
390
 
391
   On the Alpha, they trap.  */
392
 
393
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
394
 
395
/* Standard register usage.  */
396
 
397
/* Number of actual hardware registers.
398
   The hardware registers are assigned numbers for the compiler
399
   from 0 to just below FIRST_PSEUDO_REGISTER.
400
   All registers that the compiler knows about must be given numbers,
401
   even those that are not normally considered general registers.
402
 
403
   We define all 32 integer registers, even though $31 is always zero,
404
   and all 32 floating-point registers, even though $f31 is also
405
   always zero.  We do not bother defining the FP status register and
406
   there are no other registers.
407
 
408
   Since $31 is always zero, we will use register number 31 as the
409
   argument pointer.  It will never appear in the generated code
410
   because we will always be eliminating it in favor of the stack
411
   pointer or hardware frame pointer.
412
 
413
   Likewise, we use $f31 for the frame pointer, which will always
414
   be eliminated in favor of the hardware frame pointer or the
415
   stack pointer.  */
416
 
417
#define FIRST_PSEUDO_REGISTER 64
418
 
419
/* 1 for registers that have pervasive standard uses
420
   and are not available for the register allocator.  */
421
 
422
#define FIXED_REGISTERS  \
423
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
424
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
425
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
426
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
427
 
428
/* 1 for registers not available across function calls.
429
   These must include the FIXED_REGISTERS and also any
430
   registers that can be used without being saved.
431
   The latter must include the registers where values are returned
432
   and the register where structure-value addresses are passed.
433
   Aside from that, you can include as many other registers as you like.  */
434
#define CALL_USED_REGISTERS  \
435
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
436
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
437
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
438
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
439
 
440
/* List the order in which to allocate registers.  Each register must be
441
   listed once, even those in FIXED_REGISTERS.  */
442
 
443
#define REG_ALLOC_ORDER { \
444
   1, 2, 3, 4, 5, 6, 7, 8,      /* nonsaved integer registers */        \
445
   22, 23, 24, 25, 28,          /* likewise */                          \
446
   0,                            /* likewise, but return value */        \
447
   21, 20, 19, 18, 17, 16,      /* likewise, but input args */          \
448
   27,                          /* likewise, but OSF procedure value */ \
449
                                                                        \
450
   42, 43, 44, 45, 46, 47,      /* nonsaved floating-point registers */ \
451
   54, 55, 56, 57, 58, 59,      /* likewise */                          \
452
   60, 61, 62,                  /* likewise */                          \
453
   32, 33,                      /* likewise, but return values */       \
454
   53, 52, 51, 50, 49, 48,      /* likewise, but input args */          \
455
                                                                        \
456
   9, 10, 11, 12, 13, 14,       /* saved integer registers */           \
457
   26,                          /* return address */                    \
458
   15,                          /* hard frame pointer */                \
459
                                                                        \
460
   34, 35, 36, 37, 38, 39,      /* saved floating-point registers */    \
461
   40, 41,                      /* likewise */                          \
462
                                                                        \
463
   29, 30, 31, 63               /* gp, sp, ap, sfp */                   \
464
}
465
 
466
/* Return number of consecutive hard regs needed starting at reg REGNO
467
   to hold something of mode MODE.
468
   This is ordinarily the length in words of a value of mode MODE
469
   but can be less for certain modes in special long registers.  */
470
 
471
#define HARD_REGNO_NREGS(REGNO, MODE)   \
472
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
473
 
474
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
475
   On Alpha, the integer registers can hold any mode.  The floating-point
476
   registers can hold 64-bit integers as well, but not smaller values.  */
477
 
478
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
479
  ((REGNO) >= 32 && (REGNO) <= 62                                       \
480
   ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode           \
481
     || (MODE) == SCmode || (MODE) == DCmode                            \
482
   : 1)
483
 
484
/* A C expression that is nonzero if a value of mode
485
   MODE1 is accessible in mode MODE2 without copying.
486
 
487
   This asymmetric test is true when MODE1 could be put
488
   in an FP register but MODE2 could not.  */
489
 
490
#define MODES_TIEABLE_P(MODE1, MODE2)                           \
491
  (HARD_REGNO_MODE_OK (32, (MODE1))                             \
492
   ? HARD_REGNO_MODE_OK (32, (MODE2))                           \
493
   : 1)
494
 
495
/* Specify the registers used for certain standard purposes.
496
   The values of these macros are register numbers.  */
497
 
498
/* Alpha pc isn't overloaded on a register that the compiler knows about.  */
499
/* #define PC_REGNUM  */
500
 
501
/* Register to use for pushing function arguments.  */
502
#define STACK_POINTER_REGNUM 30
503
 
504
/* Base register for access to local variables of the function.  */
505
#define HARD_FRAME_POINTER_REGNUM 15
506
 
507
/* Value should be nonzero if functions must have frame pointers.
508
   Zero means the frame pointer need not be set up (and parms
509
   may be accessed via the stack pointer) in functions that seem suitable.
510
   This is computed in `reload', in reload1.c.  */
511
#define FRAME_POINTER_REQUIRED 0
512
 
513
/* Base register for access to arguments of the function.  */
514
#define ARG_POINTER_REGNUM 31
515
 
516
/* Base register for access to local variables of function.  */
517
#define FRAME_POINTER_REGNUM 63
518
 
519
/* Register in which static-chain is passed to a function.
520
 
521
   For the Alpha, this is based on an example; the calling sequence
522
   doesn't seem to specify this.  */
523
#define STATIC_CHAIN_REGNUM 1
524
 
525
/* The register number of the register used to address a table of
526
   static data addresses in memory.  */
527
#define PIC_OFFSET_TABLE_REGNUM 29
528
 
529
/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
530
   is clobbered by calls.  */
531
/* ??? It is and it isn't.  It's required to be valid for a given
532
   function when the function returns.  It isn't clobbered by
533
   current_file functions.  Moreover, we do not expose the ldgp
534
   until after reload, so we're probably safe.  */
535
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
536
 
537
/* Define the classes of registers for register constraints in the
538
   machine description.  Also define ranges of constants.
539
 
540
   One of the classes must always be named ALL_REGS and include all hard regs.
541
   If there is more than one class, another class must be named NO_REGS
542
   and contain no registers.
543
 
544
   The name GENERAL_REGS must be the name of a class (or an alias for
545
   another name such as ALL_REGS).  This is the class of registers
546
   that is allowed by "g" or "r" in a register constraint.
547
   Also, registers outside this class are allocated only when
548
   instructions express preferences for them.
549
 
550
   The classes must be numbered in nondecreasing order; that is,
551
   a larger-numbered class must never be contained completely
552
   in a smaller-numbered class.
553
 
554
   For any two classes, it is very desirable that there be another
555
   class that represents their union.  */
556
 
557
enum reg_class {
558
  NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
559
  GENERAL_REGS, FLOAT_REGS, ALL_REGS,
560
  LIM_REG_CLASSES
561
};
562
 
563
#define N_REG_CLASSES (int) LIM_REG_CLASSES
564
 
565
/* Give names of register classes as strings for dump file.  */
566
 
567
#define REG_CLASS_NAMES                                 \
568
 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
569
  "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
570
 
571
/* Define which registers fit in which classes.
572
   This is an initializer for a vector of HARD_REG_SET
573
   of length N_REG_CLASSES.  */
574
 
575
#define REG_CLASS_CONTENTS                              \
576
{ {0x00000000, 0x00000000},     /* NO_REGS */           \
577
  {0x00000001, 0x00000000},     /* R0_REG */            \
578
  {0x01000000, 0x00000000},     /* R24_REG */           \
579
  {0x02000000, 0x00000000},     /* R25_REG */           \
580
  {0x08000000, 0x00000000},     /* R27_REG */           \
581
  {0xffffffff, 0x80000000},     /* GENERAL_REGS */      \
582
  {0x00000000, 0x7fffffff},     /* FLOAT_REGS */        \
583
  {0xffffffff, 0xffffffff} }
584
 
585
/* The same information, inverted:
586
   Return the class number of the smallest class containing
587
   reg number REGNO.  This could be a conditional expression
588
   or could index an array.  */
589
 
590
#define REGNO_REG_CLASS(REGNO)                  \
591
 ((REGNO) == 0 ? R0_REG                          \
592
  : (REGNO) == 24 ? R24_REG                     \
593
  : (REGNO) == 25 ? R25_REG                     \
594
  : (REGNO) == 27 ? R27_REG                     \
595
  : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
596
  : GENERAL_REGS)
597
 
598
/* The class value for index registers, and the one for base regs.  */
599
#define INDEX_REG_CLASS NO_REGS
600
#define BASE_REG_CLASS GENERAL_REGS
601
 
602
/* Get reg_class from a letter such as appears in the machine description.  */
603
 
604
#define REG_CLASS_FROM_LETTER(C)        \
605
 ((C) == 'a' ? R24_REG                  \
606
  : (C) == 'b' ? R25_REG                \
607
  : (C) == 'c' ? R27_REG                \
608
  : (C) == 'f' ? FLOAT_REGS             \
609
  : (C) == 'v' ? R0_REG                 \
610
  : NO_REGS)
611
 
612
/* Define this macro to change register usage conditional on target flags.  */
613
/* #define CONDITIONAL_REGISTER_USAGE  */
614
 
615
/* The letters I, J, K, L, M, N, O, and P in a register constraint string
616
   can be used to stand for particular ranges of immediate operands.
617
   This macro defines what the ranges are.
618
   C is the letter, and VALUE is a constant value.
619
   Return 1 if VALUE is in the range specified by C.
620
 
621
   For Alpha:
622
   `I' is used for the range of constants most insns can contain.
623
   `J' is the constant zero.
624
   `K' is used for the constant in an LDA insn.
625
   `L' is used for the constant in a LDAH insn.
626
   `M' is used for the constants that can be AND'ed with using a ZAP insn.
627
   `N' is used for complemented 8-bit constants.
628
   `O' is used for negated 8-bit constants.
629
   `P' is used for the constants 1, 2 and 3.  */
630
 
631
#define CONST_OK_FOR_LETTER_P   alpha_const_ok_for_letter_p
632
 
633
/* Similar, but for floating or large integer constants, and defining letters
634
   G and H.   Here VALUE is the CONST_DOUBLE rtx itself.
635
 
636
   For Alpha, `G' is the floating-point constant zero.  `H' is a CONST_DOUBLE
637
   that is the operand of a ZAP insn.  */
638
 
639
#define CONST_DOUBLE_OK_FOR_LETTER_P  alpha_const_double_ok_for_letter_p
640
 
641
/* Optional extra constraints for this machine.
642
 
643
   For the Alpha, `Q' means that this is a memory operand but not a
644
   reference to an unaligned location.
645
 
646
   `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
647
   function.
648
 
649
   'S' is a 6-bit constant (valid for a shift insn).
650
 
651
   'T' is a HIGH.
652
 
653
   'U' is a symbolic operand.
654
 
655
   'W' is a vector zero.  */
656
 
657
#define EXTRA_CONSTRAINT  alpha_extra_constraint
658
 
659
/* Given an rtx X being reloaded into a reg required to be
660
   in class CLASS, return the class of reg to actually use.
661
   In general this is just CLASS; but on some machines
662
   in some cases it is preferable to use a more restrictive class.  */
663
 
664
#define PREFERRED_RELOAD_CLASS  alpha_preferred_reload_class
665
 
666
/* Loading and storing HImode or QImode values to and from memory
667
   usually requires a scratch register.  The exceptions are loading
668
   QImode and HImode from an aligned address to a general register
669
   unless byte instructions are permitted.
670
   We also cannot load an unaligned address or a paradoxical SUBREG into an
671
   FP register.  */
672
 
673
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
674
  alpha_secondary_reload_class((CLASS), (MODE), (IN), 1)
675
 
676
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
677
  alpha_secondary_reload_class((CLASS), (MODE), (OUT), 0)
678
 
679
/* If we are copying between general and FP registers, we need a memory
680
   location unless the FIX extension is available.  */
681
 
682
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
683
 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
684
                   || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
685
 
686
/* Specify the mode to be used for memory when a secondary memory
687
   location is needed.  If MODE is floating-point, use it.  Otherwise,
688
   widen to a word like the default.  This is needed because we always
689
   store integers in FP registers in quadword format.  This whole
690
   area is very tricky! */
691
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
692
  (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)         \
693
   : GET_MODE_SIZE (MODE) >= 4 ? (MODE)                 \
694
   : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
695
 
696
/* Return the maximum number of consecutive registers
697
   needed to represent mode MODE in a register of class CLASS.  */
698
 
699
#define CLASS_MAX_NREGS(CLASS, MODE)                            \
700
 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
701
 
702
/* Return the class of registers that cannot change mode from FROM to TO.  */
703
 
704
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
705
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                   \
706
   ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
707
 
708
/* Define the cost of moving between registers of various classes.  Moving
709
   between FLOAT_REGS and anything else except float regs is expensive.
710
   In fact, we make it quite expensive because we really don't want to
711
   do these moves unless it is clearly worth it.  Optimizations may
712
   reduce the impact of not being able to allocate a pseudo to a
713
   hard register.  */
714
 
715
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
716
  (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2     \
717
   : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8)              \
718
   : 4+2*alpha_memory_latency)
719
 
720
/* A C expressions returning the cost of moving data of MODE from a register to
721
   or from memory.
722
 
723
   On the Alpha, bump this up a bit.  */
724
 
725
extern int alpha_memory_latency;
726
#define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)
727
 
728
/* Provide the cost of a branch.  Exact meaning under development.  */
729
#define BRANCH_COST 5
730
 
731
/* Stack layout; function entry, exit and calling.  */
732
 
733
/* Define this if pushing a word on the stack
734
   makes the stack pointer a smaller address.  */
735
#define STACK_GROWS_DOWNWARD
736
 
737
/* Define this to nonzero if the nominal address of the stack frame
738
   is at the high-address end of the local variables;
739
   that is, each additional local variable allocated
740
   goes at a more negative offset in the frame.  */
741
/* #define FRAME_GROWS_DOWNWARD 0 */
742
 
743
/* Offset within stack frame to start allocating local variables at.
744
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
745
   first local allocated.  Otherwise, it is the offset to the BEGINNING
746
   of the first local allocated.  */
747
 
748
#define STARTING_FRAME_OFFSET 0
749
 
750
/* If we generate an insn to push BYTES bytes,
751
   this says how many the stack pointer really advances by.
752
   On Alpha, don't define this because there are no push insns.  */
753
/*  #define PUSH_ROUNDING(BYTES) */
754
 
755
/* Define this to be nonzero if stack checking is built into the ABI.  */
756
#define STACK_CHECK_BUILTIN 1
757
 
758
/* Define this if the maximum size of all the outgoing args is to be
759
   accumulated and pushed during the prologue.  The amount can be
760
   found in the variable current_function_outgoing_args_size.  */
761
#define ACCUMULATE_OUTGOING_ARGS 1
762
 
763
/* Offset of first parameter from the argument pointer register value.  */
764
 
765
#define FIRST_PARM_OFFSET(FNDECL) 0
766
 
767
/* Definitions for register eliminations.
768
 
769
   We have two registers that can be eliminated on the Alpha.  First, the
770
   frame pointer register can often be eliminated in favor of the stack
771
   pointer register.  Secondly, the argument pointer register can always be
772
   eliminated; it is replaced with either the stack or frame pointer.  */
773
 
774
/* This is an array of structures.  Each structure initializes one pair
775
   of eliminable registers.  The "from" register number is given first,
776
   followed by "to".  Eliminations of the same "from" register are listed
777
   in order of preference.  */
778
 
779
#define ELIMINABLE_REGS                              \
780
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},        \
781
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
782
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},      \
783
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
784
 
785
/* Given FROM and TO register numbers, say whether this elimination is allowed.
786
   Frame pointer elimination is automatically handled.
787
 
788
   All eliminations are valid since the cases where FP can't be
789
   eliminated are already handled.  */
790
 
791
#define CAN_ELIMINATE(FROM, TO) 1
792
 
793
/* Round up to a multiple of 16 bytes.  */
794
#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
795
 
796
/* Define the offset between two registers, one to be eliminated, and the other
797
   its replacement, at the start of a routine.  */
798
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
799
  ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
800
 
801
/* Define this if stack space is still allocated for a parameter passed
802
   in a register.  */
803
/* #define REG_PARM_STACK_SPACE */
804
 
805
/* Value is the number of bytes of arguments automatically
806
   popped when returning from a subroutine call.
807
   FUNDECL is the declaration node of the function (as a tree),
808
   FUNTYPE is the data type of the function (as a tree),
809
   or for a library call it is an identifier node for the subroutine name.
810
   SIZE is the number of bytes of arguments passed on the stack.  */
811
 
812
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
813
 
814
/* Define how to find the value returned by a function.
815
   VALTYPE is the data type of the value (as a tree).
816
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
817
   otherwise, FUNC is 0.
818
 
819
   On Alpha the value is found in $0 for integer functions and
820
   $f0 for floating-point functions.  */
821
 
822
#define FUNCTION_VALUE(VALTYPE, FUNC) \
823
  function_value (VALTYPE, FUNC, VOIDmode)
824
 
825
/* Define how to find the value returned by a library function
826
   assuming the value has mode MODE.  */
827
 
828
#define LIBCALL_VALUE(MODE) \
829
  function_value (NULL, NULL, MODE)
830
 
831
/* 1 if N is a possible register number for a function value
832
   as seen by the caller.  */
833
 
834
#define FUNCTION_VALUE_REGNO_P(N)  \
835
  ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
836
 
837
/* 1 if N is a possible register number for function argument passing.
838
   On Alpha, these are $16-$21 and $f16-$f21.  */
839
 
840
#define FUNCTION_ARG_REGNO_P(N) \
841
  (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
842
 
843
/* Define a data type for recording info about an argument list
844
   during the scan of that argument list.  This data type should
845
   hold all necessary information about the function itself
846
   and about the args processed so far, enough to enable macros
847
   such as FUNCTION_ARG to determine where the next arg should go.
848
 
849
   On Alpha, this is a single integer, which is a number of words
850
   of arguments scanned so far.
851
   Thus 6 or more means all following args should go on the stack.  */
852
 
853
#define CUMULATIVE_ARGS int
854
 
855
/* Initialize a variable CUM of type CUMULATIVE_ARGS
856
   for a call to a function whose data type is FNTYPE.
857
   For a library call, FNTYPE is 0.  */
858
 
859
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
860
  (CUM) = 0
861
 
862
/* Define intermediate macro to compute the size (in registers) of an argument
863
   for the Alpha.  */
864
 
865
#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)                               \
866
  ((MODE) == TFmode || (MODE) == TCmode ? 1                             \
867
   : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
868
      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
869
 
870
/* Update the data in CUM to advance over an argument
871
   of mode MODE and data type TYPE.
872
   (TYPE is null for libcalls where that information may not be available.)  */
873
 
874
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
875
  ((CUM) +=                                                             \
876
   (targetm.calls.must_pass_in_stack (MODE, TYPE))                      \
877
    ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
878
 
879
/* Determine where to put an argument to a function.
880
   Value is zero to push the argument on the stack,
881
   or a hard register in which to store the argument.
882
 
883
   MODE is the argument's machine mode.
884
   TYPE is the data type of the argument (as a tree).
885
    This is null for libcalls where that information may
886
    not be available.
887
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
888
    the preceding args and about the function being called.
889
   NAMED is nonzero if this argument is a named parameter
890
    (otherwise it is an extra parameter matching an ellipsis).
891
 
892
   On Alpha the first 6 words of args are normally in registers
893
   and the rest are pushed.  */
894
 
895
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)    \
896
  function_arg((CUM), (MODE), (TYPE), (NAMED))
897
 
898
/* Try to output insns to set TARGET equal to the constant C if it can be
899
   done in less than N insns.  Do all computations in MODE.  Returns the place
900
   where the output has been placed if it can be done and the insns have been
901
   emitted.  If it would take more than N insns, zero is returned and no
902
   insns and emitted.  */
903
 
904
/* Define the information needed to generate branch and scc insns.  This is
905
   stored from the compare operation.  Note that we can't use "rtx" here
906
   since it hasn't been defined!  */
907
 
908
struct alpha_compare
909
{
910
  struct rtx_def *op0, *op1;
911
  int fp_p;
912
};
913
 
914
extern struct alpha_compare alpha_compare;
915
 
916
/* Make (or fake) .linkage entry for function call.
917
   IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
918
 
919
/* This macro defines the start of an assembly comment.  */
920
 
921
#define ASM_COMMENT_START " #"
922
 
923
/* This macro produces the initial definition of a function.  */
924
 
925
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
926
  alpha_start_function(FILE,NAME,DECL);
927
 
928
/* This macro closes up a function definition for the assembler.  */
929
 
930
#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
931
  alpha_end_function(FILE,NAME,DECL)
932
 
933
/* Output any profiling code before the prologue.  */
934
 
935
#define PROFILE_BEFORE_PROLOGUE 1
936
 
937
/* Never use profile counters.  */
938
 
939
#define NO_PROFILE_COUNTERS 1
940
 
941
/* Output assembler code to FILE to increment profiler label # LABELNO
942
   for profiling a function entry.  Under OSF/1, profiling is enabled
943
   by simply passing -pg to the assembler and linker.  */
944
 
945
#define FUNCTION_PROFILER(FILE, LABELNO)
946
 
947
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
948
   the stack pointer does not matter.  The value is tested only in
949
   functions that have frame pointers.
950
   No definition is equivalent to always zero.  */
951
 
952
#define EXIT_IGNORE_STACK 1
953
 
954
/* Define registers used by the epilogue and return instruction.  */
955
 
956
#define EPILOGUE_USES(REGNO)    ((REGNO) == 26)
957
 
958
/* Output assembler code for a block containing the constant parts
959
   of a trampoline, leaving space for the variable parts.
960
 
961
   The trampoline should set the static chain pointer to value placed
962
   into the trampoline and should branch to the specified routine.
963
   Note that $27 has been set to the address of the trampoline, so we can
964
   use it for addressability of the two data items.  */
965
 
966
#define TRAMPOLINE_TEMPLATE(FILE)               \
967
do {                                            \
968
  fprintf (FILE, "\tldq $1,24($27)\n");         \
969
  fprintf (FILE, "\tldq $27,16($27)\n");        \
970
  fprintf (FILE, "\tjmp $31,($27),0\n");        \
971
  fprintf (FILE, "\tnop\n");                    \
972
  fprintf (FILE, "\t.quad 0,0\n");              \
973
} while (0)
974
 
975
/* Section in which to place the trampoline.  On Alpha, instructions
976
   may only be placed in a text segment.  */
977
 
978
#define TRAMPOLINE_SECTION text_section
979
 
980
/* Length in units of the trampoline for entering a nested function.  */
981
 
982
#define TRAMPOLINE_SIZE    32
983
 
984
/* The alignment of a trampoline, in bits.  */
985
 
986
#define TRAMPOLINE_ALIGNMENT  64
987
 
988
/* Emit RTL insns to initialize the variable parts of a trampoline.
989
   FNADDR is an RTX for the address of the function's pure code.
990
   CXT is an RTX for the static chain value for the function.  */
991
 
992
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
993
  alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
994
 
995
/* A C expression whose value is RTL representing the value of the return
996
   address for the frame COUNT steps up from the current frame.
997
   FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
998
   the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */
999
 
1000
#define RETURN_ADDR_RTX  alpha_return_addr
1001
 
1002
/* Before the prologue, RA lives in $26.  */
1003
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)
1004
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1005
#define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
1006
#define DWARF_ZERO_REG 31
1007
 
1008
/* Describe how we implement __builtin_eh_return.  */
1009
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1010
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 28)
1011
#define EH_RETURN_HANDLER_RTX \
1012
  gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1013
                                     current_function_outgoing_args_size))
1014
 
1015
/* Addressing modes, and classification of registers for them.  */
1016
 
1017
/* Macros to check register numbers against specific register classes.  */
1018
 
1019
/* These assume that REGNO is a hard or pseudo reg number.
1020
   They give nonzero only if REGNO is a hard reg of the suitable class
1021
   or a pseudo reg currently allocated to a suitable hard reg.
1022
   Since they use reg_renumber, they are safe only once reg_renumber
1023
   has been allocated, which happens in local-alloc.c.  */
1024
 
1025
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1026
#define REGNO_OK_FOR_BASE_P(REGNO) \
1027
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
1028
 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1029
 
1030
/* Maximum number of registers that can appear in a valid memory address.  */
1031
#define MAX_REGS_PER_ADDRESS 1
1032
 
1033
/* Recognize any constant value that is a valid address.  For the Alpha,
1034
   there are only constants none since we want to use LDA to load any
1035
   symbolic addresses into registers.  */
1036
 
1037
#define CONSTANT_ADDRESS_P(X)   \
1038
  (GET_CODE (X) == CONST_INT    \
1039
   && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1040
 
1041
/* Include all constant integers and constant doubles, but not
1042
   floating-point, except for floating-point zero.  */
1043
 
1044
#define LEGITIMATE_CONSTANT_P  alpha_legitimate_constant_p
1045
 
1046
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1047
   and check its validity for a certain class.
1048
   We have two alternate definitions for each of them.
1049
   The usual definition accepts all pseudo regs; the other rejects
1050
   them unless they have been allocated suitable hard regs.
1051
   The symbol REG_OK_STRICT causes the latter definition to be used.
1052
 
1053
   Most source files want to accept pseudo regs in the hope that
1054
   they will get allocated to the class that the insn wants them to be in.
1055
   Source files for reload pass need to be strict.
1056
   After reload, it makes no difference, since pseudo regs have
1057
   been eliminated by then.  */
1058
 
1059
/* Nonzero if X is a hard reg that can be used as an index
1060
   or if it is a pseudo reg.  */
1061
#define REG_OK_FOR_INDEX_P(X) 0
1062
 
1063
/* Nonzero if X is a hard reg that can be used as a base reg
1064
   or if it is a pseudo reg.  */
1065
#define NONSTRICT_REG_OK_FOR_BASE_P(X)  \
1066
  (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1067
 
1068
/* ??? Nonzero if X is the frame pointer, or some virtual register
1069
   that may eliminate to the frame pointer.  These will be allowed to
1070
   have offsets greater than 32K.  This is done because register
1071
   elimination offsets will change the hi/lo split, and if we split
1072
   before reload, we will require additional instructions.  */
1073
#define NONSTRICT_REG_OK_FP_BASE_P(X)           \
1074
  (REGNO (X) == 31 || REGNO (X) == 63           \
1075
   || (REGNO (X) >= FIRST_PSEUDO_REGISTER       \
1076
       && REGNO (X) < LAST_VIRTUAL_REGISTER))
1077
 
1078
/* Nonzero if X is a hard reg that can be used as a base reg.  */
1079
#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1080
 
1081
#ifdef REG_OK_STRICT
1082
#define REG_OK_FOR_BASE_P(X)    STRICT_REG_OK_FOR_BASE_P (X)
1083
#else
1084
#define REG_OK_FOR_BASE_P(X)    NONSTRICT_REG_OK_FOR_BASE_P (X)
1085
#endif
1086
 
1087
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1088
   valid memory address for an instruction.  */
1089
 
1090
#ifdef REG_OK_STRICT
1091
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)  \
1092
do {                                            \
1093
  if (alpha_legitimate_address_p (MODE, X, 1))  \
1094
    goto WIN;                                   \
1095
} while (0)
1096
#else
1097
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)  \
1098
do {                                            \
1099
  if (alpha_legitimate_address_p (MODE, X, 0))   \
1100
    goto WIN;                                   \
1101
} while (0)
1102
#endif
1103
 
1104
/* Try machine-dependent ways of modifying an illegitimate address
1105
   to be legitimate.  If we find one, return the new, valid address.
1106
   This macro is used in only one place: `memory_address' in explow.c.  */
1107
 
1108
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
1109
do {                                                            \
1110
  rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE);     \
1111
  if (new_x)                                                    \
1112
    {                                                           \
1113
      X = new_x;                                                \
1114
      goto WIN;                                                 \
1115
    }                                                           \
1116
} while (0)
1117
 
1118
/* Try a machine-dependent way of reloading an illegitimate address
1119
   operand.  If we find one, push the reload and jump to WIN.  This
1120
   macro is used in only one place: `find_reloads_address' in reload.c.  */
1121
 
1122
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)               \
1123
do {                                                                         \
1124
  rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1125
  if (new_x)                                                                 \
1126
    {                                                                        \
1127
      X = new_x;                                                             \
1128
      goto WIN;                                                              \
1129
    }                                                                        \
1130
} while (0)
1131
 
1132
/* Go to LABEL if ADDR (a legitimate address expression)
1133
   has an effect that depends on the machine mode it is used for.
1134
   On the Alpha this is true only for the unaligned modes.   We can
1135
   simplify this test since we know that the address must be valid.  */
1136
 
1137
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
1138
{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1139
 
1140
/* Specify the machine mode that this machine uses
1141
   for the index in the tablejump instruction.  */
1142
#define CASE_VECTOR_MODE SImode
1143
 
1144
/* Define as C expression which evaluates to nonzero if the tablejump
1145
   instruction expects the table to contain offsets from the address of the
1146
   table.
1147
 
1148
   Do not define this if the table should contain absolute addresses.
1149
   On the Alpha, the table is really GP-relative, not relative to the PC
1150
   of the table, but we pretend that it is PC-relative; this should be OK,
1151
   but we should try to find some better way sometime.  */
1152
#define CASE_VECTOR_PC_RELATIVE 1
1153
 
1154
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1155
#define DEFAULT_SIGNED_CHAR 1
1156
 
1157
/* Max number of bytes we can move to or from memory
1158
   in one reasonably fast instruction.  */
1159
 
1160
#define MOVE_MAX 8
1161
 
1162
/* If a memory-to-memory move would take MOVE_RATIO or more simple
1163
   move-instruction pairs, we will do a movmem or libcall instead.
1164
 
1165
   Without byte/word accesses, we want no more than four instructions;
1166
   with, several single byte accesses are better.  */
1167
 
1168
#define MOVE_RATIO  (TARGET_BWX ? 7 : 2)
1169
 
1170
/* Largest number of bytes of an object that can be placed in a register.
1171
   On the Alpha we have plenty of registers, so use TImode.  */
1172
#define MAX_FIXED_MODE_SIZE     GET_MODE_BITSIZE (TImode)
1173
 
1174
/* Nonzero if access to memory by bytes is no faster than for words.
1175
   Also nonzero if doing byte operations (specifically shifts) in registers
1176
   is undesirable.
1177
 
1178
   On the Alpha, we want to not use the byte operation and instead use
1179
   masking operations to access fields; these will save instructions.  */
1180
 
1181
#define SLOW_BYTE_ACCESS        1
1182
 
1183
/* Define if operations between registers always perform the operation
1184
   on the full register even if a narrower mode is specified.  */
1185
#define WORD_REGISTER_OPERATIONS
1186
 
1187
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1188
   will either zero-extend or sign-extend.  The value of this macro should
1189
   be the code that says which one of the two operations is implicitly
1190
   done, UNKNOWN if none.  */
1191
#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1192
 
1193
/* Define if loading short immediate values into registers sign extends.  */
1194
#define SHORT_IMMEDIATES_SIGN_EXTEND
1195
 
1196
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1197
   is done just by pretending it is already truncated.  */
1198
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1199
 
1200
/* The CIX ctlz and cttz instructions return 64 for zero.  */
1201
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
1202
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 64, TARGET_CIX)
1203
 
1204
/* Define the value returned by a floating-point comparison instruction.  */
1205
 
1206
#define FLOAT_STORE_FLAG_VALUE(MODE) \
1207
  REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1208
 
1209
/* Canonicalize a comparison from one we don't have to one we do have.  */
1210
 
1211
#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1212
  do {                                                                  \
1213
    if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1214
        && (GET_CODE (OP1) == REG || (OP1) == const0_rtx))              \
1215
      {                                                                 \
1216
        rtx tem = (OP0);                                                \
1217
        (OP0) = (OP1);                                                  \
1218
        (OP1) = tem;                                                    \
1219
        (CODE) = swap_condition (CODE);                                 \
1220
      }                                                                 \
1221
    if (((CODE) == LT || (CODE) == LTU)                                 \
1222
        && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256)          \
1223
      {                                                                 \
1224
        (CODE) = (CODE) == LT ? LE : LEU;                               \
1225
        (OP1) = GEN_INT (255);                                          \
1226
      }                                                                 \
1227
  } while (0)
1228
 
1229
/* Specify the machine mode that pointers have.
1230
   After generation of rtl, the compiler makes no further distinction
1231
   between pointers and any other objects of this machine mode.  */
1232
#define Pmode DImode
1233
 
1234
/* Mode of a function address in a call instruction (for indexing purposes).  */
1235
 
1236
#define FUNCTION_MODE Pmode
1237
 
1238
/* Define this if addresses of constant functions
1239
   shouldn't be put through pseudo regs where they can be cse'd.
1240
   Desirable on machines where ordinary constants are expensive
1241
   but a CALL with constant address is cheap.
1242
 
1243
   We define this on the Alpha so that gen_call and gen_call_value
1244
   get to see the SYMBOL_REF (for the hint field of the jsr).  It will
1245
   then copy it into a register, thus actually letting the address be
1246
   cse'ed.  */
1247
 
1248
#define NO_FUNCTION_CSE
1249
 
1250
/* Define this to be nonzero if shift instructions ignore all but the low-order
1251
   few bits.  */
1252
#define SHIFT_COUNT_TRUNCATED 1
1253
 
1254
/* Control the assembler format that we output.  */
1255
 
1256
/* Output to assembler file text saying following lines
1257
   may contain character constants, extra white space, comments, etc.  */
1258
#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1259
 
1260
/* Output to assembler file text saying following lines
1261
   no longer contain unusual constructs.  */
1262
#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1263
 
1264
#define TEXT_SECTION_ASM_OP "\t.text"
1265
 
1266
/* Output before read-only data.  */
1267
 
1268
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1269
 
1270
/* Output before writable data.  */
1271
 
1272
#define DATA_SECTION_ASM_OP "\t.data"
1273
 
1274
/* How to refer to registers in assembler output.
1275
   This sequence is indexed by compiler's hard-register-number (see above).  */
1276
 
1277
#define REGISTER_NAMES                                          \
1278
{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",          \
1279
 "$9", "$10", "$11", "$12", "$13", "$14", "$15",                \
1280
 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",        \
1281
 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",         \
1282
 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1283
 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",         \
1284
 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1285
 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1286
 
1287
/* Strip name encoding when emitting labels.  */
1288
 
1289
#define ASM_OUTPUT_LABELREF(STREAM, NAME)       \
1290
do {                                            \
1291
  const char *name_ = NAME;                     \
1292
  if (*name_ == '@' || *name_ == '%')           \
1293
    name_ += 2;                                 \
1294
  if (*name_ == '*')                            \
1295
    name_++;                                    \
1296
  else                                          \
1297
    fputs (user_label_prefix, STREAM);          \
1298
  fputs (name_, STREAM);                        \
1299
} while (0)
1300
 
1301
/* Globalizing directive for a label.  */
1302
#define GLOBAL_ASM_OP "\t.globl "
1303
 
1304
/* The prefix to add to user-visible assembler symbols.  */
1305
 
1306
#define USER_LABEL_PREFIX ""
1307
 
1308
/* This is how to output a label for a jump table.  Arguments are the same as
1309
   for (*targetm.asm_out.internal_label), except the insn for the jump table is
1310
   passed.  */
1311
 
1312
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)        \
1313
{ ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1314
 
1315
/* This is how to store into the string LABEL
1316
   the symbol_ref name of an internal numbered label where
1317
   PREFIX is the class of label and NUM is the number within the class.
1318
   This is suitable for output with `assemble_name'.  */
1319
 
1320
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1321
  sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1322
 
1323
/* We use the default ASCII-output routine, except that we don't write more
1324
   than 50 characters since the assembler doesn't support very long lines.  */
1325
 
1326
#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1327
  do {                                                                        \
1328
    FILE *_hide_asm_out_file = (MYFILE);                                      \
1329
    const unsigned char *_hide_p = (const unsigned char *) (MYSTRING);        \
1330
    int _hide_thissize = (MYLENGTH);                                          \
1331
    int _size_so_far = 0;                                                      \
1332
    {                                                                         \
1333
      FILE *asm_out_file = _hide_asm_out_file;                                \
1334
      const unsigned char *p = _hide_p;                                       \
1335
      int thissize = _hide_thissize;                                          \
1336
      int i;                                                                  \
1337
      fprintf (asm_out_file, "\t.ascii \"");                                  \
1338
                                                                              \
1339
      for (i = 0; i < thissize; i++)                                           \
1340
        {                                                                     \
1341
          register int c = p[i];                                              \
1342
                                                                              \
1343
          if (_size_so_far ++ > 50 && i < thissize - 4)                       \
1344
            _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
1345
                                                                              \
1346
          if (c == '\"' || c == '\\')                                         \
1347
            putc ('\\', asm_out_file);                                        \
1348
          if (c >= ' ' && c < 0177)                                           \
1349
            putc (c, asm_out_file);                                           \
1350
          else                                                                \
1351
            {                                                                 \
1352
              fprintf (asm_out_file, "\\%o", c);                              \
1353
              /* After an octal-escape, if a digit follows,                   \
1354
                 terminate one string constant and start another.             \
1355
                 The VAX assembler fails to stop reading the escape           \
1356
                 after three digits, so this is the only way we               \
1357
                 can get it to parse the data properly.  */                   \
1358
              if (i < thissize - 1 && ISDIGIT (p[i + 1]))                     \
1359
                _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
1360
          }                                                                   \
1361
        }                                                                     \
1362
      fprintf (asm_out_file, "\"\n");                                         \
1363
    }                                                                         \
1364
  }                                                                           \
1365
  while (0)
1366
 
1367
/* This is how to output an element of a case-vector that is relative.  */
1368
 
1369
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1370
  fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1371
           (VALUE))
1372
 
1373
/* This is how to output an assembler line
1374
   that says to advance the location counter
1375
   to a multiple of 2**LOG bytes.  */
1376
 
1377
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1378
  if ((LOG) != 0)                        \
1379
    fprintf (FILE, "\t.align %d\n", LOG);
1380
 
1381
/* This is how to advance the location counter by SIZE bytes.  */
1382
 
1383
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1384
  fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1385
 
1386
/* This says how to output an assembler line
1387
   to define a global common symbol.  */
1388
 
1389
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1390
( fputs ("\t.comm ", (FILE)),                   \
1391
  assemble_name ((FILE), (NAME)),               \
1392
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1393
 
1394
/* This says how to output an assembler line
1395
   to define a local common symbol.  */
1396
 
1397
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)      \
1398
( fputs ("\t.lcomm ", (FILE)),                          \
1399
  assemble_name ((FILE), (NAME)),                       \
1400
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1401
 
1402
 
1403
/* Print operand X (an rtx) in assembler syntax to file FILE.
1404
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1405
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
1406
 
1407
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
1408
 
1409
/* Determine which codes are valid without a following integer.  These must
1410
   not be alphabetic.
1411
 
1412
   ~    Generates the name of the current function.
1413
 
1414
   /    Generates the instruction suffix.  The TRAP_SUFFIX and ROUND_SUFFIX
1415
        attributes are examined to determine what is appropriate.
1416
 
1417
   ,    Generates single precision suffix for floating point
1418
        instructions (s for IEEE, f for VAX)
1419
 
1420
   -    Generates double precision suffix for floating point
1421
        instructions (t for IEEE, g for VAX)
1422
 
1423
   +    Generates a nop instruction after a noreturn call at the very end
1424
        of the function
1425
   */
1426
 
1427
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1428
  ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1429
   || (CODE) == '#' || (CODE) == '*' || (CODE) == '&' || (CODE) == '+')
1430
 
1431
/* Print a memory address as an operand to reference that memory location.  */
1432
 
1433
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1434
  print_operand_address((FILE), (ADDR))
1435
 
1436
/* Implement `va_start' for varargs and stdarg.  */
1437
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1438
  alpha_va_start (valist, nextarg)
1439
 
1440
/* Tell collect that the object format is ECOFF.  */
1441
#define OBJECT_FORMAT_COFF
1442
#define EXTENDED_COFF
1443
 
1444
/* If we use NM, pass -g to it so it only lists globals.  */
1445
#define NM_FLAGS "-pg"
1446
 
1447
/* Definitions for debugging.  */
1448
 
1449
#define SDB_DEBUGGING_INFO 1            /* generate info for mips-tfile */
1450
#define DBX_DEBUGGING_INFO 1            /* generate embedded stabs */
1451
#define MIPS_DEBUGGING_INFO 1           /* MIPS specific debugging info */
1452
 
1453
#ifndef PREFERRED_DEBUGGING_TYPE        /* assume SDB_DEBUGGING_INFO */
1454
#define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
1455
#endif
1456
 
1457
 
1458
/* Correct the offset of automatic variables and arguments.  Note that
1459
   the Alpha debug format wants all automatic variables and arguments
1460
   to be in terms of two different offsets from the virtual frame pointer,
1461
   which is the stack pointer before any adjustment in the function.
1462
   The offset for the argument pointer is fixed for the native compiler,
1463
   it is either zero (for the no arguments case) or large enough to hold
1464
   all argument registers.
1465
   The offset for the auto pointer is the fourth argument to the .frame
1466
   directive (local_offset).
1467
   To stay compatible with the native tools we use the same offsets
1468
   from the virtual frame pointer and adjust the debugger arg/auto offsets
1469
   accordingly. These debugger offsets are set up in output_prolog.  */
1470
 
1471
extern long alpha_arg_offset;
1472
extern long alpha_auto_offset;
1473
#define DEBUGGER_AUTO_OFFSET(X) \
1474
  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1475
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1476
 
1477
/* mips-tfile doesn't understand .stabd directives.  */
1478
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
1479
  dbxout_begin_stabn_sline (LINE);                              \
1480
  dbxout_stab_value_internal_label ("LM", &COUNTER);            \
1481
} while (0)
1482
 
1483
/* We want to use MIPS-style .loc directives for SDB line numbers.  */
1484
extern int num_source_filenames;
1485
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)    \
1486
  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1487
 
1488
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)                        \
1489
  alpha_output_filename (STREAM, NAME)
1490
 
1491
/* mips-tfile.c limits us to strings of one page.  We must underestimate this
1492
   number, because the real length runs past this up to the next
1493
   continuation point.  This is really a dbxout.c bug.  */
1494
#define DBX_CONTIN_LENGTH 3000
1495
 
1496
/* By default, turn on GDB extensions.  */
1497
#define DEFAULT_GDB_EXTENSIONS 1
1498
 
1499
/* Stabs-in-ECOFF can't handle dbxout_function_end().  */
1500
#define NO_DBX_FUNCTION_END 1
1501
 
1502
/* If we are smuggling stabs through the ALPHA ECOFF object
1503
   format, put a comment in front of the .stab<x> operation so
1504
   that the ALPHA assembler does not choke.  The mips-tfile program
1505
   will correctly put the stab into the object file.  */
1506
 
1507
#define ASM_STABS_OP    ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1508
#define ASM_STABN_OP    ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1509
#define ASM_STABD_OP    ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1510
 
1511
/* Forward references to tags are allowed.  */
1512
#define SDB_ALLOW_FORWARD_REFERENCES
1513
 
1514
/* Unknown tags are also allowed.  */
1515
#define SDB_ALLOW_UNKNOWN_REFERENCES
1516
 
1517
#define PUT_SDB_DEF(a)                                  \
1518
do {                                                    \
1519
  fprintf (asm_out_file, "\t%s.def\t",                  \
1520
           (TARGET_GAS) ? "" : "#");                    \
1521
  ASM_OUTPUT_LABELREF (asm_out_file, a);                \
1522
  fputc (';', asm_out_file);                            \
1523
} while (0)
1524
 
1525
#define PUT_SDB_PLAIN_DEF(a)                            \
1526
do {                                                    \
1527
  fprintf (asm_out_file, "\t%s.def\t.%s;",              \
1528
           (TARGET_GAS) ? "" : "#", (a));               \
1529
} while (0)
1530
 
1531
#define PUT_SDB_TYPE(a)                                 \
1532
do {                                                    \
1533
  fprintf (asm_out_file, "\t.type\t0x%x;", (a));        \
1534
} while (0)
1535
 
1536
/* For block start and end, we create labels, so that
1537
   later we can figure out where the correct offset is.
1538
   The normal .ent/.end serve well enough for functions,
1539
   so those are just commented out.  */
1540
 
1541
extern int sdb_label_count;             /* block start/end next label # */
1542
 
1543
#define PUT_SDB_BLOCK_START(LINE)                       \
1544
do {                                                    \
1545
  fprintf (asm_out_file,                                \
1546
           "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",           \
1547
           sdb_label_count,                             \
1548
           (TARGET_GAS) ? "" : "#",                     \
1549
           sdb_label_count,                             \
1550
           (LINE));                                     \
1551
  sdb_label_count++;                                    \
1552
} while (0)
1553
 
1554
#define PUT_SDB_BLOCK_END(LINE)                         \
1555
do {                                                    \
1556
  fprintf (asm_out_file,                                \
1557
           "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",            \
1558
           sdb_label_count,                             \
1559
           (TARGET_GAS) ? "" : "#",                     \
1560
           sdb_label_count,                             \
1561
           (LINE));                                     \
1562
  sdb_label_count++;                                    \
1563
} while (0)
1564
 
1565
#define PUT_SDB_FUNCTION_START(LINE)
1566
 
1567
#define PUT_SDB_FUNCTION_END(LINE)
1568
 
1569
#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1570
 
1571
/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1572
   mips-tdump.c to print them out.
1573
 
1574
   These must match the corresponding definitions in gdb/mipsread.c.
1575
   Unfortunately, gcc and gdb do not currently share any directories.  */
1576
 
1577
#define CODE_MASK 0x8F300
1578
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1579
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1580
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1581
 
1582
/* Override some mips-tfile definitions.  */
1583
 
1584
#define SHASH_SIZE 511
1585
#define THASH_SIZE 55
1586
 
1587
/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints.  */
1588
 
1589
#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1590
 
1591
/* The system headers under Alpha systems are generally C++-aware.  */
1592
#define NO_IMPLICIT_EXTERN_C

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.