OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [bfin/] [bfin.h] - Blame information for rev 154

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions for the Blackfin port.
2
   Copyright (C) 2005, 2007 Free Software Foundation, Inc.
3
   Contributed by Analog Devices.
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published
9
   by the Free Software Foundation; either version 3, or (at your
10
   option) any later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING3.  If not see
19
   <http://www.gnu.org/licenses/>.  */
20
 
21
#ifndef _BFIN_CONFIG
22
#define _BFIN_CONFIG
23
 
24
#define OBJECT_FORMAT_ELF
25
 
26
#define BRT 1
27
#define BRF 0
28
 
29
/* Print subsidiary information on the compiler version in use.  */
30
#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
31
 
32
/* Run-time compilation parameters selecting different hardware subsets.  */
33
 
34
extern int target_flags;
35
 
36
/* Predefinition in the preprocessor for this target machine */
37
#ifndef TARGET_CPU_CPP_BUILTINS
38
#define TARGET_CPU_CPP_BUILTINS()               \
39
  do                                            \
40
    {                                           \
41
      builtin_define_std ("bfin");              \
42
      builtin_define_std ("BFIN");              \
43
      builtin_define ("__ADSPBLACKFIN__");      \
44
      if (TARGET_FDPIC)                         \
45
        builtin_define ("__BFIN_FDPIC__");      \
46
      if (TARGET_ID_SHARED_LIBRARY)             \
47
        builtin_define ("__ID_SHARED_LIB__");   \
48
    }                                           \
49
  while (0)
50
#endif
51
 
52
#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS   "\
53
 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
54
            %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
55
"
56
#ifndef SUBTARGET_DRIVER_SELF_SPECS
57
# define SUBTARGET_DRIVER_SELF_SPECS
58
#endif
59
 
60
#define LINK_GCC_C_SEQUENCE_SPEC \
61
  "%{mfdpic:%{!static: %L} %{static: %G %L %G}} \
62
  %{!mfdpic:%G %L %G}"
63
 
64
/* A C string constant that tells the GCC driver program options to pass to
65
   the assembler.  It can also specify how to translate options you give to GNU
66
   CC into options for GCC to pass to the assembler.  See the file `sun3.h'
67
   for an example of this.
68
 
69
   Do not define this macro if it does not need to do anything.
70
 
71
   Defined in svr4.h.  */
72
#undef  ASM_SPEC
73
#define ASM_SPEC "\
74
%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
75
    %{mno-fdpic:-mnopic} %{mfdpic}"
76
 
77
#define LINK_SPEC "\
78
%{h*} %{v:-V} \
79
%{b} \
80
%{mfdpic:-melf32bfinfd -z text} \
81
%{static:-dn -Bstatic} \
82
%{shared:-G -Bdynamic} \
83
%{symbolic:-Bsymbolic} \
84
%{G*} \
85
%{YP,*} \
86
%{Qy:} %{!Qn:-Qy} \
87
-init __init -fini __fini "
88
 
89
/* Generate DSP instructions, like DSP halfword loads */
90
#define TARGET_DSP                      (1)
91
 
92
#define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
93
 
94
/* Maximum number of library ids we permit */
95
#define MAX_LIBRARY_ID 255
96
 
97
extern const char *bfin_library_id_string;
98
 
99
/* Sometimes certain combinations of command options do not make
100
   sense on a particular target machine.  You can define a macro
101
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
102
   defined, is executed once just after all the command options have
103
   been parsed.
104
 
105
   Don't use this macro to turn on various extra optimizations for
106
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
107
 
108
#define OVERRIDE_OPTIONS override_options ()
109
 
110
#define FUNCTION_MODE    SImode
111
#define Pmode            SImode
112
 
113
/* store-condition-codes instructions store 0 for false
114
   This is the value stored for true.  */
115
#define STORE_FLAG_VALUE 1
116
 
117
/* Define this if pushing a word on the stack
118
   makes the stack pointer a smaller address.  */
119
#define STACK_GROWS_DOWNWARD
120
 
121
#define STACK_PUSH_CODE PRE_DEC
122
 
123
/* Define this to nonzero if the nominal address of the stack frame
124
   is at the high-address end of the local variables;
125
   that is, each additional local variable allocated
126
   goes at a more negative offset in the frame.  */
127
#define FRAME_GROWS_DOWNWARD 1
128
 
129
/* We define a dummy ARGP register; the parameters start at offset 0 from
130
   it. */
131
#define FIRST_PARM_OFFSET(DECL) 0
132
 
133
/* Offset within stack frame to start allocating local variables at.
134
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
135
   first local allocated.  Otherwise, it is the offset to the BEGINNING
136
   of the first local allocated.  */
137
#define STARTING_FRAME_OFFSET 0
138
 
139
/* Register to use for pushing function arguments.  */
140
#define STACK_POINTER_REGNUM REG_P6
141
 
142
/* Base register for access to local variables of the function.  */
143
#define FRAME_POINTER_REGNUM REG_P7
144
 
145
/* A dummy register that will be eliminated to either FP or SP.  */
146
#define ARG_POINTER_REGNUM REG_ARGP
147
 
148
/* `PIC_OFFSET_TABLE_REGNUM'
149
     The register number of the register used to address a table of
150
     static data addresses in memory.  In some cases this register is
151
     defined by a processor's "application binary interface" (ABI).
152
     When this macro is defined, RTL is generated for this register
153
     once, as with the stack pointer and frame pointer registers.  If
154
     this macro is not defined, it is up to the machine-dependent files
155
     to allocate such a register (if necessary). */
156
#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
157
 
158
#define FDPIC_FPTR_REGNO REG_P1
159
#define FDPIC_REGNO REG_P3
160
#define OUR_FDPIC_REG   get_hard_reg_initial_val (SImode, FDPIC_REGNO)
161
 
162
/* A static chain register for nested functions.  We need to use a
163
   call-clobbered register for this.  */
164
#define STATIC_CHAIN_REGNUM REG_P2
165
 
166
/* Define this if functions should assume that stack space has been
167
   allocated for arguments even when their values are passed in
168
   registers.
169
 
170
   The value of this macro is the size, in bytes, of the area reserved for
171
   arguments passed in registers.
172
 
173
   This space can either be allocated by the caller or be a part of the
174
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
175
   says which.  */
176
#define FIXED_STACK_AREA 12
177
#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
178
 
179
/* Define this if the above stack space is to be considered part of the
180
 * space allocated by the caller.  */
181
#define OUTGOING_REG_PARM_STACK_SPACE
182
 
183
/* Define this if the maximum size of all the outgoing args is to be
184
   accumulated and pushed during the prologue.  The amount can be
185
   found in the variable current_function_outgoing_args_size. */
186
#define ACCUMULATE_OUTGOING_ARGS 1
187
 
188
/* Value should be nonzero if functions must have frame pointers.
189
   Zero means the frame pointer need not be set up (and parms
190
   may be accessed via the stack pointer) in functions that seem suitable.
191
   This is computed in `reload', in reload1.c.
192
*/
193
#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
194
 
195
/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
196
 
197
/* Make strings word-aligned so strcpy from constants will be faster.  */
198
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
199
  (TREE_CODE (EXP) == STRING_CST        \
200
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
201
 
202
#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
203
#define TRAMPOLINE_TEMPLATE(FILE)                                       \
204
  if (TARGET_FDPIC)                                                     \
205
    {                                                                   \
206
      fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */                     \
207
      fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */                     \
208
      fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */         \
209
      fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */        \
210
      fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */         \
211
      fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */        \
212
      fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */             \
213
      fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */                 \
214
      fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/                  \
215
    }                                                                   \
216
  else                                                                  \
217
    {                                                                   \
218
      fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */         \
219
      fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */        \
220
      fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */         \
221
      fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */        \
222
      fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/                  \
223
    }
224
 
225
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
226
  initialize_trampoline (TRAMP, FNADDR, CXT)
227
 
228
/* Definitions for register eliminations.
229
 
230
   This is an array of structures.  Each structure initializes one pair
231
   of eliminable registers.  The "from" register number is given first,
232
   followed by "to".  Eliminations of the same "from" register are listed
233
   in order of preference.
234
 
235
   There are two registers that can always be eliminated on the i386.
236
   The frame pointer and the arg pointer can be replaced by either the
237
   hard frame pointer or to the stack pointer, depending upon the
238
   circumstances.  The hard frame pointer is not used before reload and
239
   so it is not eligible for elimination.  */
240
 
241
#define ELIMINABLE_REGS                         \
242
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
243
 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
244
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
245
 
246
/* Given FROM and TO register numbers, say whether this elimination is
247
   allowed.  Frame pointer elimination is automatically handled.
248
 
249
   All other eliminations are valid.  */
250
 
251
#define CAN_ELIMINATE(FROM, TO) \
252
  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
253
 
254
/* Define the offset between two registers, one to be eliminated, and the other
255
   its replacement, at the start of a routine.  */
256
 
257
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
258
  ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
259
 
260
/* This processor has
261
   8 data register for doing arithmetic
262
   8  pointer register for doing addressing, including
263
      1  stack pointer P6
264
      1  frame pointer P7
265
   4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
266
   1  condition code flag register CC
267
   5  return address registers RETS/I/X/N/E
268
   1  arithmetic status register (ASTAT).  */
269
 
270
#define FIRST_PSEUDO_REGISTER 50
271
 
272
#define D_REGNO_P(X) ((X) <= REG_R7)
273
#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
274
#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
275
#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
276
#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
277
#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
278
#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
279
#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
280
#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
281
 
282
#define REGISTER_NAMES { \
283
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
284
  "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
285
  "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
286
  "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
287
  "A0", "A1", \
288
  "CC", \
289
  "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
290
  "ARGP", \
291
  "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
292
}
293
 
294
#define SHORT_REGISTER_NAMES { \
295
        "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
296
        "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
297
        "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
298
        "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
299
 
300
#define HIGH_REGISTER_NAMES { \
301
        "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
302
        "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
303
        "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
304
        "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
305
 
306
#define DREGS_PAIR_NAMES { \
307
  "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
308
 
309
#define BYTE_REGISTER_NAMES { \
310
  "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
311
 
312
 
313
/* 1 for registers that have pervasive standard uses
314
   and are not available for the register allocator.  */
315
 
316
#define FIXED_REGISTERS \
317
/*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
318
{ 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
319
/*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
320
  0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
321
/*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
322
  0, 0, 0, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,    \
323
/*lb0/1 */ \
324
  1, 1  \
325
}
326
 
327
/* 1 for registers not available across function calls.
328
   These must include the FIXED_REGISTERS and also any
329
   registers that can be used without being saved.
330
   The latter must include the registers where values are returned
331
   and the register where structure-value addresses are passed.
332
   Aside from that, you can include as many other registers as you like.  */
333
 
334
#define CALL_USED_REGISTERS \
335
/*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
336
{ 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
337
/*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
338
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
339
/*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
340
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1, \
341
/*lb0/1 */ \
342
  1, 1  \
343
}
344
 
345
/* Order in which to allocate registers.  Each register must be
346
   listed once, even those in FIXED_REGISTERS.  List frame pointer
347
   late and fixed registers last.  Note that, in general, we prefer
348
   registers listed in CALL_USED_REGISTERS, keeping the others
349
   available for storage of persistent values. */
350
 
351
#define REG_ALLOC_ORDER \
352
{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
353
  REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
354
  REG_A0, REG_A1, \
355
  REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
356
  REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
357
  REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,               \
358
  REG_ASTAT, REG_SEQSTAT, REG_USP,                                \
359
  REG_CC, REG_ARGP,                                               \
360
  REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1            \
361
}
362
 
363
/* Macro to conditionally modify fixed_regs/call_used_regs.  */
364
#define CONDITIONAL_REGISTER_USAGE                      \
365
  {                                                     \
366
    conditional_register_usage();                       \
367
    if (TARGET_FDPIC)                                   \
368
      call_used_regs[FDPIC_REGNO] = 1;                  \
369
    if (!TARGET_FDPIC && flag_pic)                      \
370
      {                                                 \
371
        fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;        \
372
        call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
373
      }                                                 \
374
  }
375
 
376
/* Define the classes of registers for register constraints in the
377
   machine description.  Also define ranges of constants.
378
 
379
   One of the classes must always be named ALL_REGS and include all hard regs.
380
   If there is more than one class, another class must be named NO_REGS
381
   and contain no registers.
382
 
383
   The name GENERAL_REGS must be the name of a class (or an alias for
384
   another name such as ALL_REGS).  This is the class of registers
385
   that is allowed by "g" or "r" in a register constraint.
386
   Also, registers outside this class are allocated only when
387
   instructions express preferences for them.
388
 
389
   The classes must be numbered in nondecreasing order; that is,
390
   a larger-numbered class must never be contained completely
391
   in a smaller-numbered class.
392
 
393
   For any two classes, it is very desirable that there be another
394
   class that represents their union. */
395
 
396
 
397
enum reg_class
398
{
399
  NO_REGS,
400
  IREGS,
401
  BREGS,
402
  LREGS,
403
  MREGS,
404
  CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
405
  DAGREGS,
406
  EVEN_AREGS,
407
  ODD_AREGS,
408
  AREGS,
409
  CCREGS,
410
  EVEN_DREGS,
411
  ODD_DREGS,
412
  DREGS,
413
  FDPIC_REGS,
414
  FDPIC_FPTR_REGS,
415
  PREGS_CLOBBERED,
416
  PREGS,
417
  IPREGS,
418
  DPREGS,
419
  MOST_REGS,
420
  LT_REGS,
421
  LC_REGS,
422
  LB_REGS,
423
  PROLOGUE_REGS,
424
  NON_A_CC_REGS,
425
  ALL_REGS, LIM_REG_CLASSES
426
};
427
 
428
#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
429
 
430
#define GENERAL_REGS DPREGS
431
 
432
/* Give names of register classes as strings for dump file.   */
433
 
434
#define REG_CLASS_NAMES \
435
{  "NO_REGS",           \
436
   "IREGS",             \
437
   "BREGS",             \
438
   "LREGS",             \
439
   "MREGS",             \
440
   "CIRCREGS",          \
441
   "DAGREGS",           \
442
   "EVEN_AREGS",        \
443
   "ODD_AREGS",         \
444
   "AREGS",             \
445
   "CCREGS",            \
446
   "EVEN_DREGS",        \
447
   "ODD_DREGS",         \
448
   "DREGS",             \
449
   "FDPIC_REGS",        \
450
   "FDPIC_FPTR_REGS",   \
451
   "PREGS_CLOBBERED",   \
452
   "PREGS",             \
453
   "IPREGS",            \
454
   "DPREGS",            \
455
   "MOST_REGS",         \
456
   "LT_REGS",           \
457
   "LC_REGS",           \
458
   "LB_REGS",           \
459
   "PROLOGUE_REGS",     \
460
   "NON_A_CC_REGS",     \
461
   "ALL_REGS" }
462
 
463
/* An initializer containing the contents of the register classes, as integers
464
   which are bit masks.  The Nth integer specifies the contents of class N.
465
   The way the integer MASK is interpreted is that register R is in the class
466
   if `MASK & (1 << R)' is 1.
467
 
468
   When the machine has more than 32 registers, an integer does not suffice.
469
   Then the integers are replaced by sub-initializers, braced groupings
470
   containing several integers.  Each sub-initializer must be suitable as an
471
   initializer for the type `HARD_REG_SET' which is defined in
472
   `hard-reg-set.h'.  */
473
 
474
/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
475
   MOST_REGS as the union of DPREGS and DAGREGS.  */
476
 
477
#define REG_CLASS_CONTENTS \
478
    /* 31 - 0       63-32   */ \
479
{   { 0x00000000,    0 },               /* NO_REGS */   \
480
    { 0x000f0000,    0 },               /* IREGS */     \
481
    { 0x00f00000,    0 },               /* BREGS */             \
482
    { 0x0f000000,    0 },               /* LREGS */     \
483
    { 0xf0000000,    0 },               /* MREGS */   \
484
    { 0x0fff0000,    0 },               /* CIRCREGS */   \
485
    { 0xffff0000,    0 },               /* DAGREGS */   \
486
    { 0x00000000,    0x1 },             /* EVEN_AREGS */   \
487
    { 0x00000000,    0x2 },             /* ODD_AREGS */   \
488
    { 0x00000000,    0x3 },             /* AREGS */   \
489
    { 0x00000000,    0x4 },             /* CCREGS */  \
490
    { 0x00000055,    0 },               /* EVEN_DREGS */   \
491
    { 0x000000aa,    0 },               /* ODD_DREGS */   \
492
    { 0x000000ff,    0 },               /* DREGS */   \
493
    { 0x00000800,    0x000 },           /* FDPIC_REGS */   \
494
    { 0x00000200,    0x000 },           /* FDPIC_FPTR_REGS */   \
495
    { 0x00004700,    0x800 },           /* PREGS_CLOBBERED */   \
496
    { 0x0000ff00,    0x800 },           /* PREGS */   \
497
    { 0x000fff00,    0x800 },           /* IPREGS */    \
498
    { 0x0000ffff,    0x800 },           /* DPREGS */   \
499
    { 0xffffffff,    0x800 },           /* MOST_REGS */\
500
    { 0x00000000,    0x3000 },          /* LT_REGS */\
501
    { 0x00000000,    0xc000 },          /* LC_REGS */\
502
    { 0x00000000,    0x30000 },         /* LB_REGS */\
503
    { 0x00000000,    0x3f7f8 },         /* PROLOGUE_REGS */\
504
    { 0xffffffff,    0x3fff8 },         /* NON_A_CC_REGS */\
505
    { 0xffffffff,    0x3ffff }}         /* ALL_REGS */
506
 
507
#define IREG_POSSIBLE_P(OUTER)                               \
508
  ((OUTER) == POST_INC || (OUTER) == PRE_INC                 \
509
   || (OUTER) == POST_DEC || (OUTER) == PRE_DEC              \
510
   || (OUTER) == MEM || (OUTER) == ADDRESS)
511
 
512
#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX)                    \
513
  ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
514
 
515
#define INDEX_REG_CLASS         PREGS
516
 
517
#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX)       \
518
  (P_REGNO_P (X) || (X) == REG_ARGP                             \
519
   || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode              \
520
       && I_REGNO_P (X)))
521
 
522
#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX)    \
523
  ((X) >= FIRST_PSEUDO_REGISTER                                 \
524
   || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
525
 
526
#ifdef REG_OK_STRICT
527
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
528
  REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
529
#else
530
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
531
  REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
532
#endif
533
 
534
#define REGNO_OK_FOR_INDEX_P(X)   0
535
 
536
/* Get reg_class from a letter such as appears in the machine description.  */
537
 
538
#define REG_CLASS_FROM_LETTER(LETTER)   \
539
  ((LETTER) == 'a' ? PREGS :            \
540
   (LETTER) == 'Z' ? FDPIC_REGS :       \
541
   (LETTER) == 'Y' ? FDPIC_FPTR_REGS :  \
542
   (LETTER) == 'd' ? DREGS :            \
543
   (LETTER) == 'z' ? PREGS_CLOBBERED :  \
544
   (LETTER) == 'D' ? EVEN_DREGS :       \
545
   (LETTER) == 'W' ? ODD_DREGS :        \
546
   (LETTER) == 'e' ? AREGS :            \
547
   (LETTER) == 'A' ? EVEN_AREGS :       \
548
   (LETTER) == 'B' ? ODD_AREGS :        \
549
   (LETTER) == 'b' ? IREGS :            \
550
   (LETTER) == 'v' ? BREGS :            \
551
   (LETTER) == 'f' ? MREGS :            \
552
   (LETTER) == 'c' ? CIRCREGS :         \
553
   (LETTER) == 'C' ? CCREGS :           \
554
   (LETTER) == 't' ? LT_REGS :          \
555
   (LETTER) == 'k' ? LC_REGS :          \
556
   (LETTER) == 'u' ? LB_REGS :          \
557
   (LETTER) == 'x' ? MOST_REGS :        \
558
   (LETTER) == 'y' ? PROLOGUE_REGS :    \
559
   (LETTER) == 'w' ? NON_A_CC_REGS :    \
560
   NO_REGS)
561
 
562
/* The same information, inverted:
563
   Return the class number of the smallest class containing
564
   reg number REGNO.  This could be a conditional expression
565
   or could index an array.  */
566
 
567
#define REGNO_REG_CLASS(REGNO) \
568
 ((REGNO) < REG_P0 ? DREGS                              \
569
 : (REGNO) < REG_I0 ? PREGS                             \
570
 : (REGNO) == REG_ARGP ? PREGS                          \
571
 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS       \
572
 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS       \
573
 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS       \
574
 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS       \
575
 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS       \
576
 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS   \
577
 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS   \
578
 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS   \
579
 : (REGNO) == REG_CC ? CCREGS                           \
580
 : (REGNO) >= REG_RETS ? PROLOGUE_REGS                  \
581
 : NO_REGS)
582
 
583
/* When defined, the compiler allows registers explicitly used in the
584
   rtl to be used as spill registers but prevents the compiler from
585
   extending the lifetime of these registers. */
586
#define SMALL_REGISTER_CLASSES 1
587
 
588
#define CLASS_LIKELY_SPILLED_P(CLASS) \
589
    ((CLASS) == PREGS_CLOBBERED \
590
     || (CLASS) == PROLOGUE_REGS \
591
     || (CLASS) == CCREGS)
592
 
593
/* Do not allow to store a value in REG_CC for any mode */
594
/* Do not allow to store value in pregs if mode is not SI*/
595
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
596
 
597
/* Return the maximum number of consecutive registers
598
   needed to represent mode MODE in a register of class CLASS.  */
599
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
600
  ((MODE) == V2PDImode && (CLASS) == AREGS ? 2                          \
601
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
602
 
603
#define HARD_REGNO_NREGS(REGNO, MODE) \
604
  ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1    \
605
   : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
606
   : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
607
 
608
/* A C expression that is nonzero if hard register TO can be
609
   considered for use as a rename register for FROM register */
610
#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
611
 
612
/* A C expression that is nonzero if it is desirable to choose
613
   register allocation so as to avoid move instructions between a
614
   value of mode MODE1 and a value of mode MODE2.
615
 
616
   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
617
   MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
618
   MODE2)' must be zero. */
619
#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
620
 
621
/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
622
   A C expression that places additional restrictions on the register
623
   class to use when it is necessary to copy value X into a register
624
   in class CLASS.  The value is a register class; perhaps CLASS, or
625
   perhaps another, smaller class.  */
626
#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
627
 
628
/* Function Calling Conventions. */
629
 
630
/* The type of the current function; normal functions are of type
631
   SUBROUTINE.  */
632
typedef enum {
633
  SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
634
} e_funkind;
635
 
636
#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
637
 
638
/* Flags for the call/call_value rtl operations set up by function_arg */
639
#define CALL_NORMAL             0x00000000      /* no special processing */
640
#define CALL_LONG               0x00000001      /* always call indirect */
641
#define CALL_SHORT              0x00000002      /* always call by symbol */
642
 
643
typedef struct {
644
  int words;                    /* # words passed so far */
645
  int nregs;                    /* # registers available for passing */
646
  int *arg_regs;                /* array of register -1 terminated */
647
  int call_cookie;              /* Do special things for this call */
648
} CUMULATIVE_ARGS;
649
 
650
/* Define where to put the arguments to a function.
651
   Value is zero to push the argument on the stack,
652
   or a hard register in which to store the argument.
653
 
654
   MODE is the argument's machine mode.
655
   TYPE is the data type of the argument (as a tree).
656
    This is null for libcalls where that information may
657
    not be available.
658
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
659
    the preceding args and about the function being called.
660
   NAMED is nonzero if this argument is a named parameter
661
    (otherwise it is an extra parameter matching an ellipsis).  */
662
 
663
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
664
  (function_arg (&CUM, MODE, TYPE, NAMED))
665
 
666
#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
667
 
668
 
669
/* Initialize a variable CUM of type CUMULATIVE_ARGS
670
   for a call to a function whose data type is FNTYPE.
671
   For a library call, FNTYPE is 0.  */
672
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
673
  (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
674
 
675
/* Update the data in CUM to advance over an argument
676
   of mode MODE and data type TYPE.
677
   (TYPE is null for libcalls where that information may not be available.)  */
678
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
679
  (function_arg_advance (&CUM, MODE, TYPE, NAMED))
680
 
681
#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
682
 
683
/* Define how to find the value returned by a function.
684
   VALTYPE is the data type of the value (as a tree).
685
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
686
   otherwise, FUNC is 0.
687
*/
688
 
689
#define VALUE_REGNO(MODE) (REG_R0)
690
 
691
#define FUNCTION_VALUE(VALTYPE, FUNC)           \
692
  gen_rtx_REG (TYPE_MODE (VALTYPE),             \
693
               VALUE_REGNO(TYPE_MODE(VALTYPE)))
694
 
695
/* Define how to find the value returned by a library function
696
   assuming the value has mode MODE.  */
697
 
698
#define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
699
 
700
#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
701
 
702
#define DEFAULT_PCC_STRUCT_RETURN 0
703
#define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
704
 
705
/* Before the prologue, the return address is in the RETS register.  */
706
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
707
 
708
#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
709
 
710
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
711
 
712
/* Call instructions don't modify the stack pointer on the Blackfin.  */
713
#define INCOMING_FRAME_SP_OFFSET 0
714
 
715
/* Describe how we implement __builtin_eh_return.  */
716
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
717
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, REG_P2)
718
#define EH_RETURN_HANDLER_RTX \
719
    gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
720
 
721
/* Addressing Modes */
722
 
723
/* Recognize any constant value that is a valid address.  */
724
#define CONSTANT_ADDRESS_P(X)   (CONSTANT_P (X))
725
 
726
/* Nonzero if the constant value X is a legitimate general operand.
727
   symbol_ref are not legitimate and will be put into constant pool.
728
   See force_const_mem().
729
   If -mno-pool, all constants are legitimate.
730
 */
731
#define LEGITIMATE_CONSTANT_P(x) 1
732
 
733
/*   A number, the maximum number of registers that can appear in a
734
     valid memory address.  Note that it is up to you to specify a
735
     value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
736
     would ever accept. */
737
#define MAX_REGS_PER_ADDRESS 1
738
 
739
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
740
   that is a valid memory address for an instruction.
741
   The MODE argument is the machine mode for the MEM expression
742
   that wants to use this address.
743
 
744
   Blackfin addressing modes are as follows:
745
 
746
      [preg]
747
      [preg + imm16]
748
 
749
      B [ Preg + uimm15 ]
750
      W [ Preg + uimm16m2 ]
751
      [ Preg + uimm17m4 ]
752
 
753
      [preg++]
754
      [preg--]
755
      [--sp]
756
*/
757
 
758
#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
759
      (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
760
 
761
#ifdef REG_OK_STRICT
762
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)          \
763
  do {                                                  \
764
    if (bfin_legitimate_address_p (MODE, X, 1))         \
765
      goto WIN;                                         \
766
  } while (0);
767
#else
768
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)          \
769
  do {                                                  \
770
    if (bfin_legitimate_address_p (MODE, X, 0))         \
771
      goto WIN;                                         \
772
  } while (0);
773
#endif
774
 
775
/* Try machine-dependent ways of modifying an illegitimate address
776
   to be legitimate.  If we find one, return the new, valid address.
777
   This macro is used in only one place: `memory_address' in explow.c.
778
 
779
   OLDX is the address as it was before break_out_memory_refs was called.
780
   In some cases it is useful to look at this to decide what needs to be done.
781
 
782
   MODE and WIN are passed so that this macro can use
783
   GO_IF_LEGITIMATE_ADDRESS.
784
 
785
   It is always safe for this macro to do nothing.  It exists to recognize
786
   opportunities to optimize the output.
787
 */
788
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)    \
789
do {                                           \
790
   rtx _q = legitimize_address(X, OLDX, MODE); \
791
   if (_q) { X = _q; goto WIN; }               \
792
} while (0)
793
 
794
#define HAVE_POST_INCREMENT 1
795
#define HAVE_POST_DECREMENT 1
796
#define HAVE_PRE_DECREMENT  1
797
 
798
/* `LEGITIMATE_PIC_OPERAND_P (X)'
799
     A C expression that is nonzero if X is a legitimate immediate
800
     operand on the target machine when generating position independent
801
     code.  You can assume that X satisfies `CONSTANT_P', so you need
802
     not check this.  You can also assume FLAG_PIC is true, so you need
803
     not check it either.  You need not define this macro if all
804
     constants (including `SYMBOL_REF') can be immediate operands when
805
     generating position independent code. */
806
#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
807
 
808
#define SYMBOLIC_CONST(X)       \
809
(GET_CODE (X) == SYMBOL_REF                                             \
810
 || GET_CODE (X) == LABEL_REF                                           \
811
 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
812
 
813
/*
814
     A C statement or compound statement with a conditional `goto
815
     LABEL;' executed if memory address X (an RTX) can have different
816
     meanings depending on the machine mode of the memory reference it
817
     is used for or if the address is valid for some modes but not
818
     others.
819
 
820
     Autoincrement and autodecrement addresses typically have
821
     mode-dependent effects because the amount of the increment or
822
     decrement is the size of the operand being addressed.  Some
823
     machines have other mode-dependent addresses.  Many RISC machines
824
     have no mode-dependent addresses.
825
 
826
     You may assume that ADDR is a valid address for the machine.
827
*/
828
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
829
do {                                              \
830
 if (GET_CODE (ADDR) == POST_INC                  \
831
     || GET_CODE (ADDR) == POST_DEC               \
832
     || GET_CODE (ADDR) == PRE_DEC)               \
833
   goto LABEL;                                    \
834
} while (0)
835
 
836
#define NOTICE_UPDATE_CC(EXPR, INSN) 0
837
 
838
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
839
   is done just by pretending it is already truncated.  */
840
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
841
 
842
/* Max number of bytes we can move from memory to memory
843
   in one reasonably fast instruction.  */
844
#define MOVE_MAX UNITS_PER_WORD
845
 
846
 
847
/* STORAGE LAYOUT: target machine storage layout
848
   Define this macro as a C expression which is nonzero if accessing
849
   less than a word of memory (i.e. a `char' or a `short') is no
850
   faster than accessing a word of memory, i.e., if such access
851
   require more than one instruction or if there is no difference in
852
   cost between byte and (aligned) word loads.
853
 
854
   When this macro is not defined, the compiler will access a field by
855
   finding the smallest containing object; when it is defined, a
856
   fullword load will be used if alignment permits.  Unless bytes
857
   accesses are faster than word accesses, using word accesses is
858
   preferable since it may eliminate subsequent memory access if
859
   subsequent accesses occur to other fields in the same word of the
860
   structure, but to different bytes.  */
861
#define SLOW_BYTE_ACCESS  0
862
#define SLOW_SHORT_ACCESS 0
863
 
864
/* Define this if most significant bit is lowest numbered
865
   in instructions that operate on numbered bit-fields. */
866
#define BITS_BIG_ENDIAN  0
867
 
868
/* Define this if most significant byte of a word is the lowest numbered.
869
   We can't access bytes but if we could we would in the Big Endian order. */
870
#define BYTES_BIG_ENDIAN 0
871
 
872
/* Define this if most significant word of a multiword number is numbered. */
873
#define WORDS_BIG_ENDIAN 0
874
 
875
/* number of bits in an addressable storage unit */
876
#define BITS_PER_UNIT 8
877
 
878
/* Width in bits of a "word", which is the contents of a machine register.
879
   Note that this is not necessarily the width of data type `int';
880
   if using 16-bit ints on a 68000, this would still be 32.
881
   But on a machine with 16-bit registers, this would be 16.  */
882
#define BITS_PER_WORD 32
883
 
884
/* Width of a word, in units (bytes).  */
885
#define UNITS_PER_WORD 4
886
 
887
/* Width in bits of a pointer.
888
   See also the macro `Pmode1' defined below.  */
889
#define POINTER_SIZE 32
890
 
891
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
892
#define POINTER_BOUNDARY 32
893
 
894
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
895
#define PARM_BOUNDARY 32
896
 
897
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
898
#define STACK_BOUNDARY 32
899
 
900
/* Allocation boundary (in *bits*) for the code of a function.  */
901
#define FUNCTION_BOUNDARY 32
902
 
903
/* Alignment of field after `int : 0' in a structure.  */
904
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
905
 
906
/* No data type wants to be aligned rounder than this.  */
907
#define BIGGEST_ALIGNMENT 32
908
 
909
/* Define this if move instructions will actually fail to work
910
   when given unaligned data.  */
911
#define STRICT_ALIGNMENT 1
912
 
913
/* (shell-command "rm c-decl.o stor-layout.o")
914
 *  never define PCC_BITFIELD_TYPE_MATTERS
915
 *  really cause some alignment problem
916
 */
917
 
918
#define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
919
                           BITS_PER_UNIT)
920
 
921
#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
922
                           BITS_PER_UNIT)
923
 
924
 
925
/* what is the 'type' of size_t */
926
#define SIZE_TYPE "long unsigned int"
927
 
928
/* Define this as 1 if `char' should by default be signed; else as 0.  */
929
#define DEFAULT_SIGNED_CHAR 1
930
#define FLOAT_TYPE_SIZE BITS_PER_WORD
931
#define SHORT_TYPE_SIZE 16
932
#define CHAR_TYPE_SIZE  8
933
#define INT_TYPE_SIZE   32
934
#define LONG_TYPE_SIZE  32
935
#define LONG_LONG_TYPE_SIZE 64
936
 
937
/* Note: Fix this to depend on target switch. -- lev */
938
 
939
/* Note: Try to implement double and force long double. -- tonyko
940
 * #define __DOUBLES_ARE_FLOATS__
941
 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
942
 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
943
 * #define DOUBLES_ARE_FLOATS 1
944
 */
945
 
946
#define DOUBLE_TYPE_SIZE        64
947
#define LONG_DOUBLE_TYPE_SIZE   64
948
 
949
/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
950
     A macro to update M and UNSIGNEDP when an object whose type is
951
     TYPE and which has the specified mode and signedness is to be
952
     stored in a register.  This macro is only called when TYPE is a
953
     scalar type.
954
 
955
     On most RISC machines, which only have operations that operate on
956
     a full register, define this macro to set M to `word_mode' if M is
957
     an integer mode narrower than `BITS_PER_WORD'.  In most cases,
958
     only integer modes should be widened because wider-precision
959
     floating-point operations are usually more expensive than their
960
     narrower counterparts.
961
 
962
     For most machines, the macro definition does not change UNSIGNEDP.
963
     However, some machines, have instructions that preferentially
964
     handle either signed or unsigned quantities of certain modes.  For
965
     example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
966
     instructions sign-extend the result to 64 bits.  On such machines,
967
     set UNSIGNEDP according to which kind of extension is more
968
     efficient.
969
 
970
     Do not define this macro if it would never modify M.*/
971
 
972
#define BFIN_PROMOTE_MODE_P(MODE) \
973
    (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT   \
974
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
975
 
976
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
977
  if (BFIN_PROMOTE_MODE_P(MODE))                \
978
    {                                           \
979
      if (MODE == QImode)                       \
980
        UNSIGNEDP = 1;                          \
981
      else if (MODE == HImode)                  \
982
        UNSIGNEDP = 0;                          \
983
      (MODE) = SImode;                          \
984
    }
985
 
986
/* Describing Relative Costs of Operations */
987
 
988
/* Do not put function addr into constant pool */
989
#define NO_FUNCTION_CSE 1
990
 
991
/* A C expression for the cost of moving data from a register in class FROM to
992
   one in class TO.  The classes are expressed using the enumeration values
993
   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
994
   interpreted relative to that.
995
 
996
   It is not required that the cost always equal 2 when FROM is the same as TO;
997
   on some machines it is expensive to move between registers if they are not
998
   general registers.  */
999
 
1000
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1001
   bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1002
 
1003
/* A C expression for the cost of moving data of mode M between a
1004
   register and memory.  A value of 2 is the default; this cost is
1005
   relative to those in `REGISTER_MOVE_COST'.
1006
 
1007
   If moving between registers and memory is more expensive than
1008
   between two registers, you should define this macro to express the
1009
   relative cost.  */
1010
 
1011
#define MEMORY_MOVE_COST(MODE, CLASS, IN)       \
1012
  bfin_memory_move_cost ((MODE), (CLASS), (IN))
1013
 
1014
/* Specify the machine mode that this machine uses
1015
   for the index in the tablejump instruction.  */
1016
#define CASE_VECTOR_MODE SImode
1017
 
1018
#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1019
 
1020
/* Define if operations between registers always perform the operation
1021
   on the full register even if a narrower mode is specified.
1022
#define WORD_REGISTER_OPERATIONS
1023
*/
1024
 
1025
#define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
1026
#define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
1027
#define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
1028
#define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
1029
#define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
1030
#define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
1031
#define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
1032
#define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
1033
#define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
1034
#define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
1035
 
1036
#define CONSTRAINT_LEN(C, STR)                  \
1037
    ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
1038
     : (C) == 'K' ? 3                           \
1039
     : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1040
 
1041
#define CONST_OK_FOR_P(VALUE, STR)    \
1042
    ((STR)[1] == '0' ? (VALUE) == 0   \
1043
     : (STR)[1] == '1' ? (VALUE) == 1 \
1044
     : (STR)[1] == '2' ? (VALUE) == 2 \
1045
     : (STR)[1] == '3' ? (VALUE) == 3 \
1046
     : (STR)[1] == '4' ? (VALUE) == 4 \
1047
     : 0)
1048
 
1049
#define CONST_OK_FOR_K(VALUE, STR)                      \
1050
    ((STR)[1] == 'u'                                    \
1051
     ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE)     \
1052
        : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE)   \
1053
        : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE)   \
1054
        : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE)  \
1055
        : 0)                                            \
1056
     : (STR)[1] == 's'                                  \
1057
     ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE)      \
1058
        : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE)    \
1059
        : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE)    \
1060
        : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE)   \
1061
        : 0)                                            \
1062
     : (STR)[1] == 'n'                                  \
1063
     ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE)     \
1064
        : 0)                                            \
1065
     : (STR)[1] == 'N'                                  \
1066
     ? ((STR)[2] == '7' ? CONST_7BIT_IMM_P (-(VALUE))   \
1067
        : 0)                                            \
1068
     : 0)
1069
 
1070
#define CONST_OK_FOR_M(VALUE, STR)                      \
1071
    ((STR)[1] == '1' ? (VALUE) == 255                   \
1072
     : (STR)[1] == '2' ? (VALUE) == 65535               \
1073
     : 0)
1074
 
1075
/* The letters I, J, K, L and M in a register constraint string
1076
   can be used to stand for particular ranges of immediate operands.
1077
   This macro defines what the ranges are.
1078
   C is the letter, and VALUE is a constant value.
1079
   Return 1 if VALUE is in the range specified by C.
1080
 
1081
   bfin constant operands are as follows
1082
 
1083
     J   2**N       5bit imm scaled
1084
     Ks7 -64 .. 63  signed 7bit imm
1085
     Ku5 0..31      unsigned 5bit imm
1086
     Ks4 -8 .. 7    signed 4bit imm
1087
     Ks3 -4 .. 3    signed 3bit imm
1088
     Ku3 0 .. 7     unsigned 3bit imm
1089
     Pn  0, 1, 2    constants 0, 1 or 2, corresponding to n
1090
*/
1091
#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR)                \
1092
  ((C) == 'J' ? (log2constp (VALUE))                            \
1093
   : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR)                   \
1094
   : (C) == 'L' ? log2constp (~(VALUE))                         \
1095
   : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR)                   \
1096
   : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR)                   \
1097
   : 0)
1098
 
1099
     /*Constant Output Formats */
1100
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1101
  ((C) == 'H' ? 1 : 0)
1102
 
1103
#define EXTRA_CONSTRAINT(VALUE, D) \
1104
    ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1105
 
1106
/* Switch into a generic section.  */
1107
#define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
1108
 
1109
#define PRINT_OPERAND(FILE, RTX, CODE)   print_operand (FILE, RTX, CODE)
1110
#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1111
 
1112
typedef enum sections {
1113
    CODE_DIR,
1114
    DATA_DIR,
1115
    LAST_SECT_NM
1116
} SECT_ENUM_T;
1117
 
1118
typedef enum directives {
1119
    LONG_CONST_DIR,
1120
    SHORT_CONST_DIR,
1121
    BYTE_CONST_DIR,
1122
    SPACE_DIR,
1123
    INIT_DIR,
1124
    LAST_DIR_NM
1125
} DIR_ENUM_T;
1126
 
1127
#define TEXT_SECTION_ASM_OP ".text;"
1128
#define DATA_SECTION_ASM_OP ".data;"
1129
 
1130
#define ASM_APP_ON  ""
1131
#define ASM_APP_OFF ""
1132
 
1133
#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1134
  do {  fputs (".global ", FILE);               \
1135
        assemble_name (FILE, NAME);             \
1136
        fputc (';',FILE);                       \
1137
        fputc ('\n',FILE);                      \
1138
      } while (0)
1139
 
1140
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1141
  do {                                  \
1142
    fputs (".type ", FILE);             \
1143
    assemble_name (FILE, NAME);         \
1144
    fputs (", STT_FUNC", FILE);         \
1145
    fputc (';',FILE);                   \
1146
    fputc ('\n',FILE);                  \
1147
    ASM_OUTPUT_LABEL(FILE, NAME);       \
1148
  } while (0)
1149
 
1150
#define ASM_OUTPUT_LABEL(FILE, NAME)    \
1151
  do {  assemble_name (FILE, NAME);             \
1152
        fputs (":\n",FILE);                     \
1153
      } while (0)
1154
 
1155
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1156
    do {  fprintf (FILE, "_%s", NAME); \
1157
        } while (0)
1158
 
1159
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)            \
1160
do { char __buf[256];                                   \
1161
     fprintf (FILE, "\t.dd\t");                         \
1162
     ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);   \
1163
     assemble_name (FILE, __buf);                       \
1164
     fputc (';', FILE);                                 \
1165
     fputc ('\n', FILE);                                \
1166
   } while (0)
1167
 
1168
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1169
    MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1170
 
1171
#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)           \
1172
    do {                                                        \
1173
        char __buf[256];                                        \
1174
        fprintf (FILE, "\t.dd\t");                              \
1175
        ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);        \
1176
        assemble_name (FILE, __buf);                            \
1177
        fputs (" - ", FILE);                                    \
1178
        ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);          \
1179
        assemble_name (FILE, __buf);                            \
1180
        fputc (';', FILE);                                      \
1181
        fputc ('\n', FILE);                                     \
1182
    } while (0)
1183
 
1184
#define ASM_OUTPUT_ALIGN(FILE,LOG)                              \
1185
    do {                                                        \
1186
      if ((LOG) != 0)                                           \
1187
        fprintf (FILE, "\t.align %d\n", 1 << (LOG));            \
1188
    } while (0)
1189
 
1190
#define ASM_OUTPUT_SKIP(FILE,SIZE)              \
1191
    do {                                        \
1192
        asm_output_skip (FILE, SIZE);           \
1193
    } while (0)
1194
 
1195
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)     \
1196
do {                                            \
1197
    switch_to_section (data_section);                           \
1198
    if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);  \
1199
    ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);               \
1200
    ASM_OUTPUT_LABEL (FILE, NAME);                              \
1201
    fprintf (FILE, "%s %ld;\n", ASM_SPACE,                      \
1202
             (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);     \
1203
} while (0)
1204
 
1205
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)    \
1206
     do {                                               \
1207
        ASM_GLOBALIZE_LABEL1(FILE,NAME);                \
1208
        ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1209
 
1210
#define ASM_COMMENT_START "//"
1211
 
1212
#define FUNCTION_PROFILER(FILE, LABELNO)        \
1213
  do {                                          \
1214
    fprintf (FILE, "\tCALL __mcount;\n");       \
1215
  } while(0)
1216
 
1217
#undef NO_PROFILE_COUNTERS
1218
#define NO_PROFILE_COUNTERS 1
1219
 
1220
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1221
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1222
 
1223
extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1224
extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1225
 
1226
/* This works for GAS and some other assemblers.  */
1227
#define SET_ASM_OP              ".set "
1228
 
1229
/* DBX register number for a given compiler register number */
1230
#define DBX_REGISTER_NUMBER(REGNO)  (REGNO) 
1231
 
1232
#define SIZE_ASM_OP     "\t.size\t"
1233
 
1234
#endif /*  _BFIN_CONFIG */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.