OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [crx/] [crx.c] - Blame information for rev 193

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Output routines for GCC for CRX.
2
   Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3
   2002, 2003, 2004, 2007  Free Software Foundation, Inc.
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published
9
   by the Free Software Foundation; either version 3, or (at your
10
   option) any later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING3.  If not see
19
   <http://www.gnu.org/licenses/>.  */
20
 
21
/*****************************************************************************/
22
/* HEADER INCLUDES                                                           */
23
/*****************************************************************************/
24
 
25
#include "config.h"
26
#include "system.h"
27
#include "coretypes.h"
28
#include "tm.h"
29
#include "rtl.h"
30
#include "tree.h"
31
#include "tm_p.h"
32
#include "regs.h"
33
#include "hard-reg-set.h"
34
#include "real.h"
35
#include "insn-config.h"
36
#include "conditions.h"
37
#include "output.h"
38
#include "insn-codes.h"
39
#include "insn-attr.h"
40
#include "flags.h"
41
#include "except.h"
42
#include "function.h"
43
#include "recog.h"
44
#include "expr.h"
45
#include "optabs.h"
46
#include "toplev.h"
47
#include "basic-block.h"
48
#include "target.h"
49
#include "target-def.h"
50
 
51
/*****************************************************************************/
52
/* DEFINITIONS                                                               */
53
/*****************************************************************************/
54
 
55
/* Maximum number of register used for passing parameters.  */
56
#define MAX_REG_FOR_PASSING_ARGS 6
57
 
58
/* Minimum number register used for passing parameters.  */
59
#define MIN_REG_FOR_PASSING_ARGS 2
60
 
61
/* The maximum count of words supported in the assembly of the architecture in
62
 * a push/pop instruction.  */
63
#define MAX_COUNT               8
64
 
65
/* Predicate is true if the current function is a 'noreturn' function, i.e. it
66
 * is qualified as volatile.  */
67
#define FUNC_IS_NORETURN_P(decl) (TREE_THIS_VOLATILE (decl))
68
 
69
/* The following macros are used in crx_decompose_address () */
70
 
71
/* Returns the factor of a scaled index address or -1 if invalid. */
72
#define SCALE_FOR_INDEX_P(X)    \
73
 (GET_CODE (X) == CONST_INT ?   \
74
  (INTVAL (X) == 1 ? 1 :        \
75
   INTVAL (X) == 2 ? 2 :        \
76
   INTVAL (X) == 4 ? 4 :        \
77
   INTVAL (X) == 8 ? 8 :        \
78
   -1) :                        \
79
  -1)
80
 
81
/* Nonzero if the rtx X is a signed const int of n bits */
82
#define RTX_SIGNED_INT_FITS_N_BITS(X,n)                 \
83
 ((GET_CODE (X) == CONST_INT                            \
84
   && SIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
85
 
86
/* Nonzero if the rtx X is an unsigned const int of n bits.  */
87
#define RTX_UNSIGNED_INT_FITS_N_BITS(X, n)              \
88
 ((GET_CODE (X) == CONST_INT                            \
89
   && UNSIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
90
 
91
/*****************************************************************************/
92
/* STATIC VARIABLES                                                          */
93
/*****************************************************************************/
94
 
95
/* Nonzero if the last param processed is passed in a register.  */
96
static int last_parm_in_reg;
97
 
98
/* Will hold the number of the last register the prologue saves, -1 if no
99
 * register is saved. */
100
static int last_reg_to_save;
101
 
102
/* Each object in the array is a register number. Mark 1 for registers that
103
 * need to be saved.  */
104
static int save_regs[FIRST_PSEUDO_REGISTER];
105
 
106
/* Number of bytes saved on the stack for non-scratch registers */
107
static int sum_regs = 0;
108
 
109
/* Number of bytes saved on the stack for local variables. */
110
static int local_vars_size;
111
 
112
/* The sum of 2 sizes: locals vars and padding byte for saving the registers.
113
 * Used in expand_prologue () and expand_epilogue ().  */
114
static int size_for_adjusting_sp;
115
 
116
/* In case of a POST_INC or POST_DEC memory reference, we must report the mode
117
 * of the memory reference from PRINT_OPERAND to PRINT_OPERAND_ADDRESS. */
118
static enum machine_mode output_memory_reference_mode;
119
 
120
/*****************************************************************************/
121
/* GLOBAL VARIABLES                                                          */
122
/*****************************************************************************/
123
 
124
/* Table of machine attributes.  */
125
const struct attribute_spec crx_attribute_table[];
126
 
127
/* Test and compare insns use these globals to generate branch insns.  */
128
rtx crx_compare_op0 = NULL_RTX;
129
rtx crx_compare_op1 = NULL_RTX;
130
 
131
/*****************************************************************************/
132
/* TARGETM FUNCTION PROTOTYPES                                               */
133
/*****************************************************************************/
134
 
135
static bool crx_fixed_condition_code_regs (unsigned int *, unsigned int *);
136
static rtx crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
137
                                 int incoming ATTRIBUTE_UNUSED);
138
static bool crx_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED);
139
static int crx_address_cost (rtx);
140
 
141
/*****************************************************************************/
142
/* STACK LAYOUT AND CALLING CONVENTIONS                                      */
143
/*****************************************************************************/
144
 
145
#undef  TARGET_FIXED_CONDITION_CODE_REGS
146
#define TARGET_FIXED_CONDITION_CODE_REGS crx_fixed_condition_code_regs
147
 
148
#undef  TARGET_STRUCT_VALUE_RTX
149
#define TARGET_STRUCT_VALUE_RTX         crx_struct_value_rtx
150
 
151
#undef  TARGET_RETURN_IN_MEMORY
152
#define TARGET_RETURN_IN_MEMORY         crx_return_in_memory
153
 
154
/*****************************************************************************/
155
/* RELATIVE COSTS OF OPERATIONS                                              */
156
/*****************************************************************************/
157
 
158
#undef  TARGET_ADDRESS_COST
159
#define TARGET_ADDRESS_COST             crx_address_cost
160
 
161
/*****************************************************************************/
162
/* TARGET-SPECIFIC USES OF `__attribute__'                                   */
163
/*****************************************************************************/
164
 
165
#undef  TARGET_ATTRIBUTE_TABLE
166
#define TARGET_ATTRIBUTE_TABLE          crx_attribute_table
167
 
168
const struct attribute_spec crx_attribute_table[] = {
169
  /* ISRs have special prologue and epilogue requirements. */
170
  {"interrupt", 0, 0, false, true, true, NULL},
171
  {NULL, 0, 0, false, false, false, NULL}
172
};
173
 
174
 
175
/* Initialize 'targetm' variable which contains pointers to functions and data
176
 * relating to the target machine.  */
177
 
178
struct gcc_target targetm = TARGET_INITIALIZER;
179
 
180
 
181
/*****************************************************************************/
182
/* TARGET HOOK IMPLEMENTATIONS                                               */
183
/*****************************************************************************/
184
 
185
/* Return the fixed registers used for condition codes.  */
186
 
187
static bool
188
crx_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
189
{
190
    *p1 = CC_REGNUM;
191
    *p2 = INVALID_REGNUM;
192
    return true;
193
}
194
 
195
/* Implements hook TARGET_STRUCT_VALUE_RTX.  */
196
 
197
static rtx
198
crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
199
                      int incoming ATTRIBUTE_UNUSED)
200
{
201
  return gen_rtx_REG (Pmode, CRX_STRUCT_VALUE_REGNUM);
202
}
203
 
204
/* Implements hook TARGET_RETURN_IN_MEMORY.  */
205
 
206
static bool
207
crx_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
208
{
209
  if (TYPE_MODE (type) == BLKmode)
210
    {
211
      HOST_WIDE_INT size = int_size_in_bytes (type);
212
      return (size == -1 || size > 8);
213
    }
214
  else
215
    return false;
216
}
217
 
218
 
219
/*****************************************************************************/
220
/* MACRO IMPLEMENTATIONS                                                     */
221
/*****************************************************************************/
222
 
223
/* STACK LAYOUT AND CALLING CONVENTIONS ROUTINES */
224
/* --------------------------------------------- */
225
 
226
/* Return nonzero if the current function being compiled is an interrupt
227
 * function as specified by the "interrupt" attribute.  */
228
 
229
int
230
crx_interrupt_function_p (void)
231
{
232
  tree attributes;
233
 
234
  attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
235
  return lookup_attribute ("interrupt", attributes) != NULL_TREE;
236
}
237
 
238
/* Compute values for the array save_regs and the variable sum_regs.  The index
239
 * of save_regs is numbers of register, each will get 1 if we need to save it
240
 * in the current function, 0 if not. sum_regs is the total sum of the
241
 * registers being saved. */
242
 
243
static void
244
crx_compute_save_regs (void)
245
{
246
  unsigned int regno;
247
 
248
  /* initialize here so in case the function is no-return it will be -1. */
249
  last_reg_to_save = -1;
250
 
251
  /* No need to save any registers if the function never returns.  */
252
  if (FUNC_IS_NORETURN_P (current_function_decl))
253
    return;
254
 
255
  /* Initialize the number of bytes to be saved. */
256
  sum_regs = 0;
257
 
258
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
259
    {
260
      if (fixed_regs[regno])
261
        {
262
          save_regs[regno] = 0;
263
          continue;
264
        }
265
 
266
      /* If this reg is used and not call-used (except RA), save it. */
267
      if (crx_interrupt_function_p ())
268
        {
269
          if (!current_function_is_leaf && call_used_regs[regno])
270
            /* this is a volatile reg in a non-leaf interrupt routine - save it
271
             * for the sake of its sons.  */
272
            save_regs[regno] = 1;
273
 
274
          else if (regs_ever_live[regno])
275
            /* This reg is used - save it.  */
276
            save_regs[regno] = 1;
277
          else
278
            /* This reg is not used, and is not a volatile - don't save. */
279
            save_regs[regno] = 0;
280
        }
281
      else
282
        {
283
          /* If this reg is used and not call-used (except RA), save it. */
284
          if (regs_ever_live[regno]
285
              && (!call_used_regs[regno] || regno == RETURN_ADDRESS_REGNUM))
286
            save_regs[regno] = 1;
287
          else
288
            save_regs[regno] = 0;
289
        }
290
    }
291
 
292
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
293
    if (save_regs[regno] == 1)
294
      {
295
        last_reg_to_save = regno;
296
        sum_regs += UNITS_PER_WORD;
297
      }
298
}
299
 
300
/* Compute the size of the local area and the size to be adjusted by the
301
 * prologue and epilogue. */
302
 
303
static void
304
crx_compute_frame (void)
305
{
306
  /* For aligning the local variables. */
307
  int stack_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
308
  int padding_locals;
309
 
310
  /* Padding needed for each element of the frame.  */
311
  local_vars_size = get_frame_size ();
312
 
313
  /* Align to the stack alignment. */
314
  padding_locals = local_vars_size % stack_alignment;
315
  if (padding_locals)
316
    padding_locals = stack_alignment - padding_locals;
317
 
318
  local_vars_size += padding_locals;
319
 
320
  size_for_adjusting_sp = local_vars_size + (ACCUMULATE_OUTGOING_ARGS ?
321
                                     current_function_outgoing_args_size : 0);
322
}
323
 
324
/* Implements the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */
325
 
326
int
327
crx_initial_elimination_offset (int from, int to)
328
{
329
  /* Compute this since we need to use sum_regs.  */
330
  crx_compute_save_regs ();
331
 
332
  /* Compute this since we need to use local_vars_size.  */
333
  crx_compute_frame ();
334
 
335
  if ((from) == FRAME_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
336
    return (ACCUMULATE_OUTGOING_ARGS ?
337
            current_function_outgoing_args_size : 0);
338
  else if ((from) == ARG_POINTER_REGNUM && (to) == FRAME_POINTER_REGNUM)
339
    return (sum_regs + local_vars_size);
340
  else if ((from) == ARG_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
341
    return (sum_regs + local_vars_size +
342
            (ACCUMULATE_OUTGOING_ARGS ?
343
             current_function_outgoing_args_size : 0));
344
  else
345
    abort ();
346
}
347
 
348
/* REGISTER USAGE */
349
/* -------------- */
350
 
351
/* Return the class number of the smallest class containing reg number REGNO.
352
 * This could be a conditional expression or could index an array. */
353
 
354
enum reg_class
355
crx_regno_reg_class (int regno)
356
{
357
  if (regno >= 0 && regno < SP_REGNUM)
358
    return NOSP_REGS;
359
 
360
  if (regno == SP_REGNUM)
361
    return GENERAL_REGS;
362
 
363
  if (regno == LO_REGNUM)
364
    return LO_REGS;
365
  if (regno == HI_REGNUM)
366
    return HI_REGS;
367
 
368
  return NO_REGS;
369
}
370
 
371
/* Transfer between HILO_REGS and memory via secondary reloading. */
372
 
373
enum reg_class
374
crx_secondary_reload_class (enum reg_class class,
375
                            enum machine_mode mode ATTRIBUTE_UNUSED,
376
                            rtx x ATTRIBUTE_UNUSED)
377
{
378
  if (reg_classes_intersect_p (class, HILO_REGS)
379
      && true_regnum (x) == -1)
380
    return GENERAL_REGS;
381
 
382
  return NO_REGS;
383
}
384
 
385
/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
386
 
387
int
388
crx_hard_regno_mode_ok (int regno, enum machine_mode mode)
389
{
390
  /* CC can only hold CCmode values.  */
391
  if (regno == CC_REGNUM)
392
    return GET_MODE_CLASS (mode) == MODE_CC;
393
  if (GET_MODE_CLASS (mode) == MODE_CC)
394
    return 0;
395
  /* HILO registers can only hold SImode and DImode */
396
  if (HILO_REGNO_P (regno))
397
    return mode == SImode || mode == DImode;
398
  return 1;
399
}
400
 
401
/* PASSING FUNCTION ARGUMENTS */
402
/* -------------------------- */
403
 
404
/* If enough param regs are available for passing the param of type TYPE return
405
 * the number of registers needed else 0.  */
406
 
407
static int
408
enough_regs_for_param (CUMULATIVE_ARGS * cum, tree type,
409
                       enum machine_mode mode)
410
{
411
  int type_size;
412
  int remaining_size;
413
 
414
  if (mode != BLKmode)
415
    type_size = GET_MODE_BITSIZE (mode);
416
  else
417
    type_size = int_size_in_bytes (type) * BITS_PER_UNIT;
418
 
419
  remaining_size =
420
    BITS_PER_WORD * (MAX_REG_FOR_PASSING_ARGS -
421
    (MIN_REG_FOR_PASSING_ARGS + cum->ints) + 1);
422
 
423
  /* Any variable which is too big to pass in two registers, will pass on
424
   * stack. */
425
  if ((remaining_size >= type_size) && (type_size <= 2 * BITS_PER_WORD))
426
    return (type_size + BITS_PER_WORD - 1) / BITS_PER_WORD;
427
 
428
  return 0;
429
}
430
 
431
/* Implements the macro FUNCTION_ARG defined in crx.h.  */
432
 
433
rtx
434
crx_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, tree type,
435
              int named ATTRIBUTE_UNUSED)
436
{
437
  last_parm_in_reg = 0;
438
 
439
  /* Function_arg () is called with this type just after all the args have had
440
   * their registers assigned. The rtx that function_arg returns from this type
441
   * is supposed to pass to 'gen_call' but currently it is not implemented (see
442
   * macro GEN_CALL).  */
443
  if (type == void_type_node)
444
    return NULL_RTX;
445
 
446
  if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
447
    return NULL_RTX;
448
 
449
  if (mode == BLKmode)
450
    {
451
      /* Enable structures that need padding bytes at the end to pass to a
452
       * function in registers. */
453
      if (enough_regs_for_param (cum, type, mode) != 0)
454
        {
455
          last_parm_in_reg = 1;
456
          return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
457
        }
458
    }
459
 
460
  if (MIN_REG_FOR_PASSING_ARGS + cum->ints > MAX_REG_FOR_PASSING_ARGS)
461
    return NULL_RTX;
462
  else
463
    {
464
      if (enough_regs_for_param (cum, type, mode) != 0)
465
        {
466
          last_parm_in_reg = 1;
467
          return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
468
        }
469
    }
470
 
471
  return NULL_RTX;
472
}
473
 
474
/* Implements the macro INIT_CUMULATIVE_ARGS defined in crx.h.  */
475
 
476
void
477
crx_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
478
                      rtx libfunc ATTRIBUTE_UNUSED)
479
{
480
  tree param, next_param;
481
 
482
  cum->ints = 0;
483
 
484
  /* Determine if this function has variable arguments.  This is indicated by
485
   * the last argument being 'void_type_mode' if there are no variable
486
   * arguments.  Change here for a different vararg.  */
487
  for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
488
       param != (tree) 0; param = next_param)
489
    {
490
      next_param = TREE_CHAIN (param);
491
      if (next_param == (tree) 0 && TREE_VALUE (param) != void_type_node)
492
        {
493
          cum->ints = -1;
494
          return;
495
        }
496
    }
497
}
498
 
499
/* Implements the macro FUNCTION_ARG_ADVANCE defined in crx.h.  */
500
 
501
void
502
crx_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
503
                      tree type, int named ATTRIBUTE_UNUSED)
504
{
505
  /* l holds the number of registers required */
506
  int l = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
507
 
508
  /* If the parameter isn't passed on a register don't advance cum.  */
509
  if (!last_parm_in_reg)
510
    return;
511
 
512
  if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
513
    return;
514
 
515
  if (mode == SImode || mode == HImode || mode == QImode || mode == DImode)
516
    {
517
      if (l <= 1)
518
        cum->ints += 1;
519
      else
520
        cum->ints += l;
521
    }
522
  else if (mode == SFmode || mode == DFmode)
523
    cum->ints += l;
524
  else if ((mode) == BLKmode)
525
    {
526
      if ((l = enough_regs_for_param (cum, type, mode)) != 0)
527
        cum->ints += l;
528
    }
529
 
530
}
531
 
532
/* Implements the macro FUNCTION_ARG_REGNO_P defined in crx.h.  Return nonzero
533
 * if N is a register used for passing parameters.  */
534
 
535
int
536
crx_function_arg_regno_p (int n)
537
{
538
  return (n <= MAX_REG_FOR_PASSING_ARGS && n >= MIN_REG_FOR_PASSING_ARGS);
539
}
540
 
541
/* ADDRESSING MODES */
542
/* ---------------- */
543
 
544
/* Implements the macro GO_IF_LEGITIMATE_ADDRESS defined in crx.h.
545
 * The following addressing modes are supported on CRX:
546
 *
547
 * Relocations          --> const | symbol_ref | label_ref
548
 * Absolute address     --> 32 bit absolute
549
 * Post increment       --> reg + 12 bit disp.
550
 * Post modify          --> reg + 12 bit disp.
551
 * Register relative    --> reg | 32 bit disp. + reg | 4 bit + reg
552
 * Scaled index         --> reg + reg | 22 bit disp. + reg + reg |
553
 *                          22 disp. + reg + reg + (2 | 4 | 8) */
554
 
555
static int crx_addr_reg_p (rtx addr_reg)
556
{
557
  rtx reg;
558
 
559
  if (REG_P (addr_reg))
560
    {
561
      reg = addr_reg;
562
    }
563
  else if ((GET_CODE (addr_reg) == SUBREG
564
           && REG_P (SUBREG_REG (addr_reg))
565
           && GET_MODE_SIZE (GET_MODE (SUBREG_REG (addr_reg)))
566
           <= UNITS_PER_WORD))
567
    {
568
      reg = SUBREG_REG (addr_reg);
569
    }
570
  else
571
    return FALSE;
572
 
573
  if (GET_MODE (addr_reg) != Pmode)
574
    {
575
      return FALSE;
576
    }
577
 
578
  return TRUE;
579
}
580
 
581
enum crx_addrtype
582
crx_decompose_address (rtx addr, struct crx_address *out)
583
{
584
  rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
585
  rtx scale_rtx = NULL_RTX, side_effect = NULL_RTX;
586
  int scale = -1;
587
 
588
  enum crx_addrtype retval = CRX_INVALID;
589
 
590
  switch (GET_CODE (addr))
591
    {
592
    case CONST_INT:
593
      /* Absolute address (known at compile time) */
594
      retval = CRX_ABSOLUTE;
595
      disp = addr;
596
      if (!UNSIGNED_INT_FITS_N_BITS (INTVAL (disp), GET_MODE_BITSIZE (Pmode)))
597
        return CRX_INVALID;
598
      break;
599
 
600
    case CONST:
601
    case SYMBOL_REF:
602
    case LABEL_REF:
603
      /* Absolute address (known at link time) */
604
      retval = CRX_ABSOLUTE;
605
      disp = addr;
606
      break;
607
 
608
    case REG:
609
    case SUBREG:
610
      /* Register relative address */
611
      retval = CRX_REG_REL;
612
      base = addr;
613
      break;
614
 
615
    case PLUS:
616
      switch (GET_CODE (XEXP (addr, 0)))
617
        {
618
        case REG:
619
        case SUBREG:
620
          if (REG_P (XEXP (addr, 1)))
621
            {
622
              /* Scaled index with scale = 1 and disp. = 0 */
623
              retval = CRX_SCALED_INDX;
624
              base = XEXP (addr, 1);
625
              index = XEXP (addr, 0);
626
              scale = 1;
627
            }
628
          else if (RTX_SIGNED_INT_FITS_N_BITS (XEXP (addr, 1), 28))
629
            {
630
              /* Register relative address and <= 28-bit disp. */
631
              retval = CRX_REG_REL;
632
              base = XEXP (addr, 0);
633
              disp = XEXP (addr, 1);
634
            }
635
          else
636
            return CRX_INVALID;
637
          break;
638
 
639
        case PLUS:
640
          /* Scaled index and <= 22-bit disp. */
641
          retval = CRX_SCALED_INDX;
642
          base = XEXP (XEXP (addr, 0), 1);
643
          disp = XEXP (addr, 1);
644
          if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 22))
645
            return CRX_INVALID;
646
          switch (GET_CODE (XEXP (XEXP (addr, 0), 0)))
647
            {
648
            case REG:
649
              /* Scaled index with scale = 0 and <= 22-bit disp. */
650
              index = XEXP (XEXP (addr, 0), 0);
651
              scale = 1;
652
              break;
653
 
654
            case MULT:
655
              /* Scaled index with scale >= 0 and <= 22-bit disp. */
656
              index = XEXP (XEXP (XEXP (addr, 0), 0), 0);
657
              scale_rtx = XEXP (XEXP (XEXP (addr, 0), 0), 1);
658
              if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
659
                return CRX_INVALID;
660
              break;
661
 
662
            default:
663
              return CRX_INVALID;
664
            }
665
          break;
666
 
667
        case MULT:
668
          /* Scaled index with scale >= 0 */
669
          retval = CRX_SCALED_INDX;
670
          base = XEXP (addr, 1);
671
          index = XEXP (XEXP (addr, 0), 0);
672
          scale_rtx = XEXP (XEXP (addr, 0), 1);
673
          /* Scaled index with scale >= 0 and <= 22-bit disp. */
674
          if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
675
            return CRX_INVALID;
676
          break;
677
 
678
        default:
679
          return CRX_INVALID;
680
        }
681
      break;
682
 
683
    case POST_INC:
684
    case POST_DEC:
685
      /* Simple post-increment */
686
      retval = CRX_POST_INC;
687
      base = XEXP (addr, 0);
688
      side_effect = addr;
689
      break;
690
 
691
    case POST_MODIFY:
692
      /* Generic post-increment with <= 12-bit disp. */
693
      retval = CRX_POST_INC;
694
      base = XEXP (addr, 0);
695
      side_effect = XEXP (addr, 1);
696
      if (base != XEXP (side_effect, 0))
697
        return CRX_INVALID;
698
      switch (GET_CODE (side_effect))
699
        {
700
        case PLUS:
701
        case MINUS:
702
          disp = XEXP (side_effect, 1);
703
          if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 12))
704
            return CRX_INVALID;
705
          break;
706
 
707
        default:
708
          /* CRX only supports PLUS and MINUS */
709
          return CRX_INVALID;
710
        }
711
      break;
712
 
713
    default:
714
      return CRX_INVALID;
715
    }
716
 
717
  if (base && !crx_addr_reg_p (base)) return CRX_INVALID;
718
  if (index && !crx_addr_reg_p (index)) return CRX_INVALID;
719
 
720
  out->base = base;
721
  out->index = index;
722
  out->disp = disp;
723
  out->scale = scale;
724
  out->side_effect = side_effect;
725
 
726
  return retval;
727
}
728
 
729
int
730
crx_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
731
                          rtx addr, int strict)
732
{
733
  enum crx_addrtype addrtype;
734
  struct crx_address address;
735
 
736
  if (TARGET_DEBUG_ADDR)
737
    {
738
      fprintf (stderr,
739
               "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
740
               GET_MODE_NAME (mode), strict);
741
      debug_rtx (addr);
742
    }
743
 
744
  addrtype = crx_decompose_address (addr, &address);
745
 
746
  if (addrtype == CRX_POST_INC && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
747
    return FALSE;
748
 
749
  if (TARGET_DEBUG_ADDR)
750
    {
751
      const char *typestr;
752
      switch (addrtype)
753
        {
754
        case CRX_INVALID:
755
          typestr = "Invalid";
756
          break;
757
        case CRX_REG_REL:
758
          typestr = "Register relative";
759
          break;
760
        case CRX_POST_INC:
761
          typestr = "Post-increment";
762
          break;
763
        case CRX_SCALED_INDX:
764
          typestr = "Scaled index";
765
          break;
766
        case CRX_ABSOLUTE:
767
          typestr = "Absolute";
768
          break;
769
        default:
770
          abort ();
771
        }
772
      fprintf (stderr, "CRX Address type: %s\n", typestr);
773
    }
774
 
775
  if (addrtype == CRX_INVALID)
776
    return FALSE;
777
 
778
  if (strict)
779
    {
780
      if (address.base && !REGNO_OK_FOR_BASE_P (REGNO (address.base)))
781
        {
782
          if (TARGET_DEBUG_ADDR)
783
            fprintf (stderr, "Base register not strict\n");
784
          return FALSE;
785
        }
786
      if (address.index && !REGNO_OK_FOR_INDEX_P (REGNO (address.index)))
787
        {
788
          if (TARGET_DEBUG_ADDR)
789
            fprintf (stderr, "Index register not strict\n");
790
          return FALSE;
791
        }
792
    }
793
 
794
  return TRUE;
795
}
796
 
797
/* ROUTINES TO COMPUTE COSTS */
798
/* ------------------------- */
799
 
800
/* Return cost of the memory address x. */
801
 
802
static int
803
crx_address_cost (rtx addr)
804
{
805
  enum crx_addrtype addrtype;
806
  struct crx_address address;
807
 
808
  int cost = 2;
809
 
810
  addrtype = crx_decompose_address (addr, &address);
811
 
812
  gcc_assert (addrtype != CRX_INVALID);
813
 
814
  /* An absolute address causes a 3-word instruction */
815
  if (addrtype == CRX_ABSOLUTE)
816
    cost+=2;
817
 
818
  /* Post-modifying addresses are more powerful.  */
819
  if (addrtype == CRX_POST_INC)
820
    cost-=2;
821
 
822
  /* Attempt to minimize number of registers in the address. */
823
  if (address.base)
824
    cost++;
825
 
826
  if (address.index && address.scale == 1)
827
    cost+=5;
828
 
829
  if (address.disp && !INT_CST4 (INTVAL (address.disp)))
830
    cost+=2;
831
 
832
  if (TARGET_DEBUG_ADDR)
833
    {
834
      fprintf (stderr, "\n======\nTARGET_ADDRESS_COST = %d\n", cost);
835
      debug_rtx (addr);
836
    }
837
 
838
  return cost;
839
}
840
 
841
/* Return the cost of moving data of mode MODE between a register of class
842
 * CLASS and memory; IN is zero if the value is to be written to memory,
843
 * nonzero if it is to be read in. This cost is relative to those in
844
 * REGISTER_MOVE_COST.  */
845
 
846
int
847
crx_memory_move_cost (enum machine_mode mode,
848
                  enum reg_class class ATTRIBUTE_UNUSED,
849
                  int in ATTRIBUTE_UNUSED)
850
{
851
  /* One LD or ST takes twice the time of a simple reg-reg move */
852
  if (reg_classes_intersect_p (class, GENERAL_REGS))
853
    {
854
      /* printf ("GENERAL_REGS LD/ST = %d\n", 4 * HARD_REGNO_NREGS (0, mode));*/
855
      return 4 * HARD_REGNO_NREGS (0, mode);
856
    }
857
  else if (reg_classes_intersect_p (class, HILO_REGS))
858
    {
859
      /* HILO to memory and vice versa */
860
      /* printf ("HILO_REGS %s = %d\n", in ? "LD" : "ST",
861
             (REGISTER_MOVE_COST (mode,
862
                                 in ? GENERAL_REGS : HILO_REGS,
863
                                 in ? HILO_REGS : GENERAL_REGS) + 4)
864
        * HARD_REGNO_NREGS (0, mode)); */
865
      return (REGISTER_MOVE_COST (mode,
866
                                 in ? GENERAL_REGS : HILO_REGS,
867
                                 in ? HILO_REGS : GENERAL_REGS) + 4)
868
        * HARD_REGNO_NREGS (0, mode);
869
    }
870
  else /* default (like in i386) */
871
    {
872
      /* printf ("ANYREGS = 100\n"); */
873
      return 100;
874
    }
875
}
876
 
877
/* INSTRUCTION OUTPUT */
878
/* ------------------ */
879
 
880
/* Check if a const_double is ok for crx store-immediate instructions */
881
 
882
int
883
crx_const_double_ok (rtx op)
884
{
885
  if (GET_MODE (op) == DFmode)
886
  {
887
    REAL_VALUE_TYPE r;
888
    long l[2];
889
    REAL_VALUE_FROM_CONST_DOUBLE (r, op);
890
    REAL_VALUE_TO_TARGET_DOUBLE (r, l);
891
    return (UNSIGNED_INT_FITS_N_BITS (l[0], 4) &&
892
            UNSIGNED_INT_FITS_N_BITS (l[1], 4)) ? 1 : 0;
893
  }
894
 
895
  if (GET_MODE (op) == SFmode)
896
  {
897
    REAL_VALUE_TYPE r;
898
    long l;
899
    REAL_VALUE_FROM_CONST_DOUBLE (r, op);
900
    REAL_VALUE_TO_TARGET_SINGLE (r, l);
901
    return UNSIGNED_INT_FITS_N_BITS (l, 4) ? 1 : 0;
902
  }
903
 
904
  return (UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_LOW (op), 4) &&
905
          UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_HIGH (op), 4)) ? 1 : 0;
906
}
907
 
908
/* Implements the macro PRINT_OPERAND defined in crx.h.  */
909
 
910
void
911
crx_print_operand (FILE * file, rtx x, int code)
912
{
913
  switch (code)
914
    {
915
    case 'p' :
916
      if (GET_CODE (x) == REG) {
917
        if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
918
          {
919
            int regno = REGNO (x);
920
            if (regno + 1 >= SP_REGNUM) abort ();
921
            fprintf (file, "{%s, %s}", reg_names[regno], reg_names[regno + 1]);
922
            return;
923
          }
924
        else
925
          {
926
            if (REGNO (x) >= SP_REGNUM) abort ();
927
            fprintf (file, "%s", reg_names[REGNO (x)]);
928
            return;
929
          }
930
      }
931
 
932
    case 'd' :
933
        {
934
          const char *crx_cmp_str;
935
          switch (GET_CODE (x))
936
            { /* MD: compare (reg, reg or imm) but CRX: cmp (reg or imm, reg)
937
               * -> swap all non symmetric ops */
938
            case EQ  : crx_cmp_str = "eq"; break;
939
            case NE  : crx_cmp_str = "ne"; break;
940
            case GT  : crx_cmp_str = "lt"; break;
941
            case GTU : crx_cmp_str = "lo"; break;
942
            case LT  : crx_cmp_str = "gt"; break;
943
            case LTU : crx_cmp_str = "hi"; break;
944
            case GE  : crx_cmp_str = "le"; break;
945
            case GEU : crx_cmp_str = "ls"; break;
946
            case LE  : crx_cmp_str = "ge"; break;
947
            case LEU : crx_cmp_str = "hs"; break;
948
            default : abort ();
949
            }
950
          fprintf (file, "%s", crx_cmp_str);
951
          return;
952
        }
953
 
954
    case 'H':
955
      /* Print high part of a double precision value. */
956
      switch (GET_CODE (x))
957
        {
958
        case CONST_DOUBLE:
959
          if (GET_MODE (x) == SFmode) abort ();
960
          if (GET_MODE (x) == DFmode)
961
            {
962
              /* High part of a DF const. */
963
              REAL_VALUE_TYPE r;
964
              long l[2];
965
 
966
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
967
              REAL_VALUE_TO_TARGET_DOUBLE (r, l);
968
 
969
              fprintf (file, "$0x%lx", l[1]);
970
              return;
971
            }
972
 
973
          /* -- Fallthrough to handle DI consts -- */
974
 
975
        case CONST_INT:
976
            {
977
              rtx high, low;
978
              split_double (x, &low, &high);
979
              putc ('$', file);
980
              output_addr_const (file, high);
981
              return;
982
            }
983
 
984
        case REG:
985
          if (REGNO (x) + 1 >= FIRST_PSEUDO_REGISTER) abort ();
986
          fprintf (file, "%s", reg_names[REGNO (x) + 1]);
987
          return;
988
 
989
        case MEM:
990
          /* Adjust memory address to high part.  */
991
            {
992
              rtx adj_mem = x;
993
              adj_mem = adjust_address (adj_mem, GET_MODE (adj_mem), 4);
994
 
995
              output_memory_reference_mode = GET_MODE (adj_mem);
996
              output_address (XEXP (adj_mem, 0));
997
              return;
998
            }
999
 
1000
        default:
1001
          abort ();
1002
        }
1003
 
1004
    case 'L':
1005
      /* Print low part of a double precision value. */
1006
      switch (GET_CODE (x))
1007
        {
1008
        case CONST_DOUBLE:
1009
          if (GET_MODE (x) == SFmode) abort ();
1010
          if (GET_MODE (x) == DFmode)
1011
            {
1012
              /* High part of a DF const. */
1013
              REAL_VALUE_TYPE r;
1014
              long l[2];
1015
 
1016
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1017
              REAL_VALUE_TO_TARGET_DOUBLE (r, l);
1018
 
1019
              fprintf (file, "$0x%lx", l[0]);
1020
              return;
1021
            }
1022
 
1023
          /* -- Fallthrough to handle DI consts -- */
1024
 
1025
        case CONST_INT:
1026
            {
1027
              rtx high, low;
1028
              split_double (x, &low, &high);
1029
              putc ('$', file);
1030
              output_addr_const (file, low);
1031
              return;
1032
            }
1033
 
1034
        case REG:
1035
          fprintf (file, "%s", reg_names[REGNO (x)]);
1036
          return;
1037
 
1038
        case MEM:
1039
          output_memory_reference_mode = GET_MODE (x);
1040
          output_address (XEXP (x, 0));
1041
          return;
1042
 
1043
        default:
1044
          abort ();
1045
        }
1046
 
1047
    case 0 : /* default */
1048
      switch (GET_CODE (x))
1049
        {
1050
        case REG:
1051
          fprintf (file, "%s", reg_names[REGNO (x)]);
1052
          return;
1053
 
1054
        case MEM:
1055
          output_memory_reference_mode = GET_MODE (x);
1056
          output_address (XEXP (x, 0));
1057
          return;
1058
 
1059
        case CONST_DOUBLE:
1060
            {
1061
              REAL_VALUE_TYPE r;
1062
              long l;
1063
 
1064
              /* Always use H and L for double precision - see above */
1065
              gcc_assert (GET_MODE (x) == SFmode);
1066
 
1067
              REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1068
              REAL_VALUE_TO_TARGET_SINGLE (r, l);
1069
 
1070
              fprintf (file, "$0x%lx", l);
1071
              return;
1072
            }
1073
 
1074
        default:
1075
          putc ('$', file);
1076
          output_addr_const (file, x);
1077
          return;
1078
        }
1079
 
1080
    default:
1081
      output_operand_lossage ("invalid %%xn code");
1082
    }
1083
 
1084
  abort ();
1085
}
1086
 
1087
/* Implements the macro PRINT_OPERAND_ADDRESS defined in crx.h.  */
1088
 
1089
void
1090
crx_print_operand_address (FILE * file, rtx addr)
1091
{
1092
  enum crx_addrtype addrtype;
1093
  struct crx_address address;
1094
 
1095
  int offset;
1096
 
1097
  addrtype = crx_decompose_address (addr, &address);
1098
 
1099
  if (address.disp)
1100
    offset = INTVAL (address.disp);
1101
  else
1102
    offset = 0;
1103
 
1104
  switch (addrtype)
1105
    {
1106
    case CRX_REG_REL:
1107
      fprintf (file, "%d(%s)", offset, reg_names[REGNO (address.base)]);
1108
      return;
1109
 
1110
    case CRX_POST_INC:
1111
      switch (GET_CODE (address.side_effect))
1112
        {
1113
        case PLUS:
1114
          break;
1115
        case MINUS:
1116
          offset = -offset;
1117
          break;
1118
        case POST_INC:
1119
          offset = GET_MODE_SIZE (output_memory_reference_mode);
1120
          break;
1121
        case POST_DEC:
1122
          offset = -GET_MODE_SIZE (output_memory_reference_mode);
1123
          break;
1124
        default:
1125
          abort ();
1126
        }
1127
        fprintf (file, "%d(%s)+", offset, reg_names[REGNO (address.base)]);
1128
      return;
1129
 
1130
    case CRX_SCALED_INDX:
1131
      fprintf (file, "%d(%s, %s, %d)", offset, reg_names[REGNO (address.base)],
1132
               reg_names[REGNO (address.index)], address.scale);
1133
      return;
1134
 
1135
    case CRX_ABSOLUTE:
1136
      output_addr_const (file, address.disp);
1137
      return;
1138
 
1139
    default:
1140
      abort ();
1141
    }
1142
}
1143
 
1144
 
1145
/*****************************************************************************/
1146
/* MACHINE DESCRIPTION HELPER-FUNCTIONS                                      */
1147
/*****************************************************************************/
1148
 
1149
void crx_expand_movmem_single (rtx src, rtx srcbase, rtx dst, rtx dstbase,
1150
                               rtx tmp_reg, unsigned HOST_WIDE_INT *offset_p)
1151
{
1152
  rtx addr, mem;
1153
  unsigned HOST_WIDE_INT offset = *offset_p;
1154
 
1155
  /* Load */
1156
  addr = plus_constant (src, offset);
1157
  mem = adjust_automodify_address (srcbase, SImode, addr, offset);
1158
  emit_move_insn (tmp_reg, mem);
1159
 
1160
  /* Store */
1161
  addr = plus_constant (dst, offset);
1162
  mem = adjust_automodify_address (dstbase, SImode, addr, offset);
1163
  emit_move_insn (mem, tmp_reg);
1164
 
1165
  *offset_p = offset + 4;
1166
}
1167
 
1168
int
1169
crx_expand_movmem (rtx dstbase, rtx srcbase, rtx count_exp, rtx align_exp)
1170
{
1171
  unsigned HOST_WIDE_INT count = 0, offset, si_moves, i;
1172
  HOST_WIDE_INT align = 0;
1173
 
1174
  rtx src, dst;
1175
  rtx tmp_reg;
1176
 
1177
  if (GET_CODE (align_exp) == CONST_INT)
1178
    { /* Only if aligned */
1179
      align = INTVAL (align_exp);
1180
      if (align & 3)
1181
        return 0;
1182
    }
1183
 
1184
  if (GET_CODE (count_exp) == CONST_INT)
1185
    { /* No more than 16 SImode moves */
1186
      count = INTVAL (count_exp);
1187
      if (count > 64)
1188
        return 0;
1189
    }
1190
 
1191
  tmp_reg = gen_reg_rtx (SImode);
1192
 
1193
  /* Create psrs for the src and dest pointers */
1194
  dst = copy_to_mode_reg (Pmode, XEXP (dstbase, 0));
1195
  if (dst != XEXP (dstbase, 0))
1196
    dstbase = replace_equiv_address_nv (dstbase, dst);
1197
  src = copy_to_mode_reg (Pmode, XEXP (srcbase, 0));
1198
  if (src != XEXP (srcbase, 0))
1199
    srcbase = replace_equiv_address_nv (srcbase, src);
1200
 
1201
  offset = 0;
1202
 
1203
  /* Emit SImode moves */
1204
  si_moves = count >> 2;
1205
  for (i = 0; i < si_moves; i++)
1206
    crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1207
 
1208
  /* Special cases */
1209
  if (count & 3)
1210
    {
1211
      offset = count - 4;
1212
      crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1213
    }
1214
 
1215
  gcc_assert (offset == count);
1216
 
1217
  return 1;
1218
}
1219
 
1220
rtx
1221
crx_expand_compare (enum rtx_code code, enum machine_mode mode)
1222
{
1223
  rtx op0, op1, cc_reg, ret;
1224
 
1225
  op0 = crx_compare_op0;
1226
  op1 = crx_compare_op1;
1227
 
1228
  /* Emit the compare that writes into CC_REGNUM) */
1229
  cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
1230
  ret = gen_rtx_COMPARE (CCmode, op0, op1);
1231
  emit_insn (gen_rtx_SET (VOIDmode, cc_reg, ret));
1232
  /* debug_rtx (get_last_insn ()); */
1233
 
1234
  /* Return the rtx for using the result in CC_REGNUM */
1235
  return gen_rtx_fmt_ee (code, mode, cc_reg, const0_rtx);
1236
}
1237
 
1238
void
1239
crx_expand_branch (enum rtx_code code, rtx label)
1240
{
1241
  rtx tmp = crx_expand_compare (code, VOIDmode);
1242
  tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
1243
                              gen_rtx_LABEL_REF (VOIDmode, label),
1244
                              pc_rtx);
1245
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
1246
  /* debug_rtx (get_last_insn ()); */
1247
}
1248
 
1249
void
1250
crx_expand_scond (enum rtx_code code, rtx dest)
1251
{
1252
  rtx tmp = crx_expand_compare (code, GET_MODE (dest));
1253
  emit_move_insn (dest, tmp);
1254
  /* debug_rtx (get_last_insn ()); */
1255
}
1256
 
1257
static void
1258
mpushpop_str (char *stringbuffer, const char *mnemonic, char *mask)
1259
{
1260
  if (strlen (mask) > 2 || crx_interrupt_function_p ()) /* needs 2-word instr. */
1261
    sprintf (stringbuffer, "\n\t%s\tsp, {%s}", mnemonic, mask);
1262
  else /* single word instruction */
1263
    sprintf (stringbuffer, "\n\t%s\t%s", mnemonic, mask);
1264
}
1265
 
1266
/* Called from crx.md. The return value depends on the parameter push_or_pop:
1267
 * When push_or_pop is zero -> string for push instructions of prologue.
1268
 * When push_or_pop is nonzero -> string for pop/popret/retx in epilogue.
1269
 * Relies on the assumptions:
1270
 * 1. RA is the last register to be saved.
1271
 * 2. The maximal value of the counter is MAX_COUNT. */
1272
 
1273
char *
1274
crx_prepare_push_pop_string (int push_or_pop)
1275
{
1276
  /* j is the number of registers being saved, takes care that there won't be
1277
   * more than 8 in one push/pop instruction */
1278
 
1279
  /* For the register mask string */
1280
  static char mask_str[50];
1281
 
1282
  /* i is the index of save_regs[], going from 0 until last_reg_to_save */
1283
  int i = 0;
1284
 
1285
  int ra_in_bitmask = 0;
1286
 
1287
  char *return_str;
1288
 
1289
  /* For reversing on the push instructions if there are more than one. */
1290
  char *temp_str;
1291
 
1292
  return_str = (char *) xmalloc (120);
1293
  temp_str = (char *) xmalloc (120);
1294
 
1295
  /* Initialize */
1296
  memset (return_str, 0, 3);
1297
 
1298
  while (i <= last_reg_to_save)
1299
    {
1300
      /* Prepare mask for one instruction. */
1301
      mask_str[0] = 0;
1302
 
1303
      if (i <= SP_REGNUM)
1304
        { /* Add regs unit full or SP register reached */
1305
          int j = 0;
1306
          while (j < MAX_COUNT && i <= SP_REGNUM)
1307
            {
1308
              if (save_regs[i])
1309
                {
1310
                  /* TODO to use ra_in_bitmask for detecting last pop is not
1311
                   * smart it prevents things like:  popret r5 */
1312
                  if (i == RETURN_ADDRESS_REGNUM) ra_in_bitmask = 1;
1313
                  if (j > 0) strcat (mask_str, ", ");
1314
                  strcat (mask_str, reg_names[i]);
1315
                  ++j;
1316
                }
1317
              ++i;
1318
            }
1319
        }
1320
      else
1321
        {
1322
          /* Handle hi/lo savings */
1323
          while (i <= last_reg_to_save)
1324
            {
1325
              if (save_regs[i])
1326
                {
1327
                  strcat (mask_str, "lo, hi");
1328
                  i = last_reg_to_save + 1;
1329
                  break;
1330
                }
1331
              ++i;
1332
            }
1333
        }
1334
 
1335
      if (strlen (mask_str) == 0) continue;
1336
 
1337
      if (push_or_pop == 1)
1338
        {
1339
          if (crx_interrupt_function_p ())
1340
            mpushpop_str (temp_str, "popx", mask_str);
1341
          else
1342
            {
1343
              if (ra_in_bitmask)
1344
                {
1345
                  mpushpop_str (temp_str, "popret", mask_str);
1346
                  ra_in_bitmask = 0;
1347
                }
1348
              else mpushpop_str (temp_str, "pop", mask_str);
1349
            }
1350
 
1351
          strcat (return_str, temp_str);
1352
        }
1353
      else
1354
        {
1355
          /* push - We need to reverse the order of the instructions if there
1356
           * are more than one. (since the pop will not be reversed in the
1357
           * epilogue */
1358
          if (crx_interrupt_function_p ())
1359
            mpushpop_str (temp_str, "pushx", mask_str);
1360
          else
1361
            mpushpop_str (temp_str, "push", mask_str);
1362
          strcat (temp_str, return_str);
1363
          strcpy (strcat (return_str, "\t"), temp_str);
1364
        }
1365
 
1366
    }
1367
 
1368
  if (push_or_pop == 1)
1369
    {
1370
      /* pop */
1371
      if (crx_interrupt_function_p ())
1372
        strcat (return_str, "\n\tretx\n");
1373
 
1374
      else if (!FUNC_IS_NORETURN_P (current_function_decl)
1375
               && !save_regs[RETURN_ADDRESS_REGNUM])
1376
        strcat (return_str, "\n\tjump\tra\n");
1377
    }
1378
 
1379
  /* Skip the newline and the tab in the start of return_str. */
1380
  return_str += 2;
1381
  return return_str;
1382
}
1383
 
1384
/*  CompactRISC CRX Architecture stack layout:
1385
 
1386
 
1387
        |
1388
        .
1389
        .
1390
        |
1391
        +==================== Sp(x)=Ap(x+1)
1392
      A | Args for functions
1393
      | | called by X and      Dynamically
1394
      | | Dynamic allocations  allocated and
1395
      | | (alloca, variable    deallocated
1396
  Stack | length arrays).
1397
  grows +-------------------- Fp(x)
1398
  down| | Local variables of X
1399
  ward| +--------------------
1400
      | | Regs saved for X-1
1401
      | +==================== Sp(x-1)=Ap(x)
1402
        | Args for func X
1403
        | pushed by X-1
1404
        +-------------------- Fp(x-1)
1405
        |
1406
        |
1407
        V
1408
 
1409
*/
1410
 
1411
void
1412
crx_expand_prologue (void)
1413
{
1414
  crx_compute_frame ();
1415
  crx_compute_save_regs ();
1416
 
1417
  /* If there is no need in push and adjustment to sp, return. */
1418
  if (size_for_adjusting_sp + sum_regs == 0)
1419
    return;
1420
 
1421
  if (last_reg_to_save != -1)
1422
    /* If there are registers to push.  */
1423
    emit_insn (gen_push_for_prologue (GEN_INT (sum_regs)));
1424
 
1425
  if (size_for_adjusting_sp > 0)
1426
    emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1427
                           GEN_INT (-size_for_adjusting_sp)));
1428
 
1429
  if (frame_pointer_needed)
1430
    /* Initialize the frame pointer with the value of the stack pointer
1431
     * pointing now to the locals. */
1432
    emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
1433
}
1434
 
1435
/* Generate insn that updates the stack for local variables and padding for
1436
 * registers we save. - Generate the appropriate return insn. */
1437
 
1438
void
1439
crx_expand_epilogue (void)
1440
{
1441
  rtx return_reg;
1442
 
1443
  /* Nonzero if we need to return and pop only RA. This will generate a
1444
   * different insn. This differentiate is for the peepholes for call as last
1445
   * statement in function. */
1446
  int only_popret_RA = (save_regs[RETURN_ADDRESS_REGNUM]
1447
                        && (sum_regs == UNITS_PER_WORD));
1448
 
1449
  /* Return register.  */
1450
  return_reg = gen_rtx_REG (Pmode, RETURN_ADDRESS_REGNUM);
1451
 
1452
  if (frame_pointer_needed)
1453
    /* Restore the stack pointer with the frame pointers value */
1454
    emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
1455
 
1456
  if (size_for_adjusting_sp > 0)
1457
    emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1458
                           GEN_INT (size_for_adjusting_sp)));
1459
 
1460
  if (crx_interrupt_function_p ())
1461
    emit_jump_insn (gen_interrupt_return ());
1462
  else if (last_reg_to_save == -1)
1463
    /* Nothing to pop */
1464
    /* Don't output jump for interrupt routine, only retx.  */
1465
    emit_jump_insn (gen_indirect_jump_return ());
1466
  else if (only_popret_RA)
1467
    emit_jump_insn (gen_popret_RA_return ());
1468
  else
1469
    emit_jump_insn (gen_pop_and_popret_return (GEN_INT (sum_regs)));
1470
}
1471
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.