1 |
38 |
julius |
/* Subroutines used for MIPS code generation.
|
2 |
|
|
Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by A. Lichnewsky, lich@inria.inria.fr.
|
5 |
|
|
Changes by Michael Meissner, meissner@osf.org.
|
6 |
|
|
64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
|
7 |
|
|
Brendan Eich, brendan@microunity.com.
|
8 |
|
|
|
9 |
|
|
This file is part of GCC.
|
10 |
|
|
|
11 |
|
|
GCC is free software; you can redistribute it and/or modify
|
12 |
|
|
it under the terms of the GNU General Public License as published by
|
13 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
14 |
|
|
any later version.
|
15 |
|
|
|
16 |
|
|
GCC is distributed in the hope that it will be useful,
|
17 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with GCC; see the file COPYING3. If not see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
#include "config.h"
|
26 |
|
|
#include "system.h"
|
27 |
|
|
#include "coretypes.h"
|
28 |
|
|
#include "tm.h"
|
29 |
|
|
#include <signal.h>
|
30 |
|
|
#include "rtl.h"
|
31 |
|
|
#include "regs.h"
|
32 |
|
|
#include "hard-reg-set.h"
|
33 |
|
|
#include "real.h"
|
34 |
|
|
#include "insn-config.h"
|
35 |
|
|
#include "conditions.h"
|
36 |
|
|
#include "insn-attr.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "toplev.h"
|
39 |
|
|
#include "output.h"
|
40 |
|
|
#include "tree.h"
|
41 |
|
|
#include "function.h"
|
42 |
|
|
#include "expr.h"
|
43 |
|
|
#include "optabs.h"
|
44 |
|
|
#include "flags.h"
|
45 |
|
|
#include "reload.h"
|
46 |
|
|
#include "tm_p.h"
|
47 |
|
|
#include "ggc.h"
|
48 |
|
|
#include "gstab.h"
|
49 |
|
|
#include "hashtab.h"
|
50 |
|
|
#include "debug.h"
|
51 |
|
|
#include "target.h"
|
52 |
|
|
#include "target-def.h"
|
53 |
|
|
#include "integrate.h"
|
54 |
|
|
#include "langhooks.h"
|
55 |
|
|
#include "cfglayout.h"
|
56 |
|
|
#include "sched-int.h"
|
57 |
|
|
#include "tree-gimple.h"
|
58 |
|
|
#include "bitmap.h"
|
59 |
|
|
|
60 |
|
|
/* True if X is an unspec wrapper around a SYMBOL_REF or LABEL_REF. */
|
61 |
|
|
#define UNSPEC_ADDRESS_P(X) \
|
62 |
|
|
(GET_CODE (X) == UNSPEC \
|
63 |
|
|
&& XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
|
64 |
|
|
&& XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
|
65 |
|
|
|
66 |
|
|
/* Extract the symbol or label from UNSPEC wrapper X. */
|
67 |
|
|
#define UNSPEC_ADDRESS(X) \
|
68 |
|
|
XVECEXP (X, 0, 0)
|
69 |
|
|
|
70 |
|
|
/* Extract the symbol type from UNSPEC wrapper X. */
|
71 |
|
|
#define UNSPEC_ADDRESS_TYPE(X) \
|
72 |
|
|
((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
|
73 |
|
|
|
74 |
|
|
/* The maximum distance between the top of the stack frame and the
|
75 |
|
|
value $sp has when we save & restore registers.
|
76 |
|
|
|
77 |
|
|
Use a maximum gap of 0x100 in the mips16 case. We can then use
|
78 |
|
|
unextended instructions to save and restore registers, and to
|
79 |
|
|
allocate and deallocate the top part of the frame.
|
80 |
|
|
|
81 |
|
|
The value in the !mips16 case must be a SMALL_OPERAND and must
|
82 |
|
|
preserve the maximum stack alignment. */
|
83 |
|
|
#define MIPS_MAX_FIRST_STACK_STEP (TARGET_MIPS16 ? 0x100 : 0x7ff0)
|
84 |
|
|
|
85 |
|
|
/* True if INSN is a mips.md pattern or asm statement. */
|
86 |
|
|
#define USEFUL_INSN_P(INSN) \
|
87 |
|
|
(INSN_P (INSN) \
|
88 |
|
|
&& GET_CODE (PATTERN (INSN)) != USE \
|
89 |
|
|
&& GET_CODE (PATTERN (INSN)) != CLOBBER \
|
90 |
|
|
&& GET_CODE (PATTERN (INSN)) != ADDR_VEC \
|
91 |
|
|
&& GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
|
92 |
|
|
|
93 |
|
|
/* If INSN is a delayed branch sequence, return the first instruction
|
94 |
|
|
in the sequence, otherwise return INSN itself. */
|
95 |
|
|
#define SEQ_BEGIN(INSN) \
|
96 |
|
|
(INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
|
97 |
|
|
? XVECEXP (PATTERN (INSN), 0, 0) \
|
98 |
|
|
: (INSN))
|
99 |
|
|
|
100 |
|
|
/* Likewise for the last instruction in a delayed branch sequence. */
|
101 |
|
|
#define SEQ_END(INSN) \
|
102 |
|
|
(INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
|
103 |
|
|
? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
|
104 |
|
|
: (INSN))
|
105 |
|
|
|
106 |
|
|
/* Execute the following loop body with SUBINSN set to each instruction
|
107 |
|
|
between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
|
108 |
|
|
#define FOR_EACH_SUBINSN(SUBINSN, INSN) \
|
109 |
|
|
for ((SUBINSN) = SEQ_BEGIN (INSN); \
|
110 |
|
|
(SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
|
111 |
|
|
(SUBINSN) = NEXT_INSN (SUBINSN))
|
112 |
|
|
|
113 |
|
|
/* Classifies an address.
|
114 |
|
|
|
115 |
|
|
ADDRESS_REG
|
116 |
|
|
A natural register + offset address. The register satisfies
|
117 |
|
|
mips_valid_base_register_p and the offset is a const_arith_operand.
|
118 |
|
|
|
119 |
|
|
ADDRESS_LO_SUM
|
120 |
|
|
A LO_SUM rtx. The first operand is a valid base register and
|
121 |
|
|
the second operand is a symbolic address.
|
122 |
|
|
|
123 |
|
|
ADDRESS_CONST_INT
|
124 |
|
|
A signed 16-bit constant address.
|
125 |
|
|
|
126 |
|
|
ADDRESS_SYMBOLIC:
|
127 |
|
|
A constant symbolic address (equivalent to CONSTANT_SYMBOLIC). */
|
128 |
|
|
enum mips_address_type {
|
129 |
|
|
ADDRESS_REG,
|
130 |
|
|
ADDRESS_LO_SUM,
|
131 |
|
|
ADDRESS_CONST_INT,
|
132 |
|
|
ADDRESS_SYMBOLIC
|
133 |
|
|
};
|
134 |
|
|
|
135 |
|
|
/* Classifies the prototype of a builtin function. */
|
136 |
|
|
enum mips_function_type
|
137 |
|
|
{
|
138 |
|
|
MIPS_V2SF_FTYPE_V2SF,
|
139 |
|
|
MIPS_V2SF_FTYPE_V2SF_V2SF,
|
140 |
|
|
MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
|
141 |
|
|
MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,
|
142 |
|
|
MIPS_V2SF_FTYPE_SF_SF,
|
143 |
|
|
MIPS_INT_FTYPE_V2SF_V2SF,
|
144 |
|
|
MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,
|
145 |
|
|
MIPS_INT_FTYPE_SF_SF,
|
146 |
|
|
MIPS_INT_FTYPE_DF_DF,
|
147 |
|
|
MIPS_SF_FTYPE_V2SF,
|
148 |
|
|
MIPS_SF_FTYPE_SF,
|
149 |
|
|
MIPS_SF_FTYPE_SF_SF,
|
150 |
|
|
MIPS_DF_FTYPE_DF,
|
151 |
|
|
MIPS_DF_FTYPE_DF_DF,
|
152 |
|
|
|
153 |
|
|
/* For MIPS DSP ASE */
|
154 |
|
|
MIPS_DI_FTYPE_DI_SI,
|
155 |
|
|
MIPS_DI_FTYPE_DI_SI_SI,
|
156 |
|
|
MIPS_DI_FTYPE_DI_V2HI_V2HI,
|
157 |
|
|
MIPS_DI_FTYPE_DI_V4QI_V4QI,
|
158 |
|
|
MIPS_SI_FTYPE_DI_SI,
|
159 |
|
|
MIPS_SI_FTYPE_PTR_SI,
|
160 |
|
|
MIPS_SI_FTYPE_SI,
|
161 |
|
|
MIPS_SI_FTYPE_SI_SI,
|
162 |
|
|
MIPS_SI_FTYPE_V2HI,
|
163 |
|
|
MIPS_SI_FTYPE_V2HI_V2HI,
|
164 |
|
|
MIPS_SI_FTYPE_V4QI,
|
165 |
|
|
MIPS_SI_FTYPE_V4QI_V4QI,
|
166 |
|
|
MIPS_SI_FTYPE_VOID,
|
167 |
|
|
MIPS_V2HI_FTYPE_SI,
|
168 |
|
|
MIPS_V2HI_FTYPE_SI_SI,
|
169 |
|
|
MIPS_V2HI_FTYPE_V2HI,
|
170 |
|
|
MIPS_V2HI_FTYPE_V2HI_SI,
|
171 |
|
|
MIPS_V2HI_FTYPE_V2HI_V2HI,
|
172 |
|
|
MIPS_V2HI_FTYPE_V4QI,
|
173 |
|
|
MIPS_V2HI_FTYPE_V4QI_V2HI,
|
174 |
|
|
MIPS_V4QI_FTYPE_SI,
|
175 |
|
|
MIPS_V4QI_FTYPE_V2HI_V2HI,
|
176 |
|
|
MIPS_V4QI_FTYPE_V4QI_SI,
|
177 |
|
|
MIPS_V4QI_FTYPE_V4QI_V4QI,
|
178 |
|
|
MIPS_VOID_FTYPE_SI_SI,
|
179 |
|
|
MIPS_VOID_FTYPE_V2HI_V2HI,
|
180 |
|
|
MIPS_VOID_FTYPE_V4QI_V4QI,
|
181 |
|
|
|
182 |
|
|
/* The last type. */
|
183 |
|
|
MIPS_MAX_FTYPE_MAX
|
184 |
|
|
};
|
185 |
|
|
|
186 |
|
|
/* Specifies how a builtin function should be converted into rtl. */
|
187 |
|
|
enum mips_builtin_type
|
188 |
|
|
{
|
189 |
|
|
/* The builtin corresponds directly to an .md pattern. The return
|
190 |
|
|
value is mapped to operand 0 and the arguments are mapped to
|
191 |
|
|
operands 1 and above. */
|
192 |
|
|
MIPS_BUILTIN_DIRECT,
|
193 |
|
|
|
194 |
|
|
/* The builtin corresponds directly to an .md pattern. There is no return
|
195 |
|
|
value and the arguments are mapped to operands 0 and above. */
|
196 |
|
|
MIPS_BUILTIN_DIRECT_NO_TARGET,
|
197 |
|
|
|
198 |
|
|
/* The builtin corresponds to a comparison instruction followed by
|
199 |
|
|
a mips_cond_move_tf_ps pattern. The first two arguments are the
|
200 |
|
|
values to compare and the second two arguments are the vector
|
201 |
|
|
operands for the movt.ps or movf.ps instruction (in assembly order). */
|
202 |
|
|
MIPS_BUILTIN_MOVF,
|
203 |
|
|
MIPS_BUILTIN_MOVT,
|
204 |
|
|
|
205 |
|
|
/* The builtin corresponds to a V2SF comparison instruction. Operand 0
|
206 |
|
|
of this instruction is the result of the comparison, which has mode
|
207 |
|
|
CCV2 or CCV4. The function arguments are mapped to operands 1 and
|
208 |
|
|
above. The function's return value is an SImode boolean that is
|
209 |
|
|
true under the following conditions:
|
210 |
|
|
|
211 |
|
|
MIPS_BUILTIN_CMP_ANY: one of the registers is true
|
212 |
|
|
MIPS_BUILTIN_CMP_ALL: all of the registers are true
|
213 |
|
|
MIPS_BUILTIN_CMP_LOWER: the first register is true
|
214 |
|
|
MIPS_BUILTIN_CMP_UPPER: the second register is true. */
|
215 |
|
|
MIPS_BUILTIN_CMP_ANY,
|
216 |
|
|
MIPS_BUILTIN_CMP_ALL,
|
217 |
|
|
MIPS_BUILTIN_CMP_UPPER,
|
218 |
|
|
MIPS_BUILTIN_CMP_LOWER,
|
219 |
|
|
|
220 |
|
|
/* As above, but the instruction only sets a single $fcc register. */
|
221 |
|
|
MIPS_BUILTIN_CMP_SINGLE,
|
222 |
|
|
|
223 |
|
|
/* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
|
224 |
|
|
MIPS_BUILTIN_BPOSGE32
|
225 |
|
|
};
|
226 |
|
|
|
227 |
|
|
/* Invokes MACRO (COND) for each c.cond.fmt condition. */
|
228 |
|
|
#define MIPS_FP_CONDITIONS(MACRO) \
|
229 |
|
|
MACRO (f), \
|
230 |
|
|
MACRO (un), \
|
231 |
|
|
MACRO (eq), \
|
232 |
|
|
MACRO (ueq), \
|
233 |
|
|
MACRO (olt), \
|
234 |
|
|
MACRO (ult), \
|
235 |
|
|
MACRO (ole), \
|
236 |
|
|
MACRO (ule), \
|
237 |
|
|
MACRO (sf), \
|
238 |
|
|
MACRO (ngle), \
|
239 |
|
|
MACRO (seq), \
|
240 |
|
|
MACRO (ngl), \
|
241 |
|
|
MACRO (lt), \
|
242 |
|
|
MACRO (nge), \
|
243 |
|
|
MACRO (le), \
|
244 |
|
|
MACRO (ngt)
|
245 |
|
|
|
246 |
|
|
/* Enumerates the codes above as MIPS_FP_COND_<X>. */
|
247 |
|
|
#define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
|
248 |
|
|
enum mips_fp_condition {
|
249 |
|
|
MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
|
250 |
|
|
};
|
251 |
|
|
|
252 |
|
|
/* Index X provides the string representation of MIPS_FP_COND_<X>. */
|
253 |
|
|
#define STRINGIFY(X) #X
|
254 |
|
|
static const char *const mips_fp_conditions[] = {
|
255 |
|
|
MIPS_FP_CONDITIONS (STRINGIFY)
|
256 |
|
|
};
|
257 |
|
|
|
258 |
|
|
/* A function to save or store a register. The first argument is the
|
259 |
|
|
register and the second is the stack slot. */
|
260 |
|
|
typedef void (*mips_save_restore_fn) (rtx, rtx);
|
261 |
|
|
|
262 |
|
|
struct mips16_constant;
|
263 |
|
|
struct mips_arg_info;
|
264 |
|
|
struct mips_address_info;
|
265 |
|
|
struct mips_integer_op;
|
266 |
|
|
struct mips_sim;
|
267 |
|
|
|
268 |
|
|
static enum mips_symbol_type mips_classify_symbol (rtx);
|
269 |
|
|
static void mips_split_const (rtx, rtx *, HOST_WIDE_INT *);
|
270 |
|
|
static bool mips_offset_within_object_p (rtx, HOST_WIDE_INT);
|
271 |
|
|
static bool mips_valid_base_register_p (rtx, enum machine_mode, int);
|
272 |
|
|
static bool mips_symbolic_address_p (enum mips_symbol_type, enum machine_mode);
|
273 |
|
|
static bool mips_classify_address (struct mips_address_info *, rtx,
|
274 |
|
|
enum machine_mode, int);
|
275 |
|
|
static bool mips_cannot_force_const_mem (rtx);
|
276 |
|
|
static bool mips_use_blocks_for_constant_p (enum machine_mode, rtx);
|
277 |
|
|
static int mips_symbol_insns (enum mips_symbol_type);
|
278 |
|
|
static bool mips16_unextended_reference_p (enum machine_mode mode, rtx, rtx);
|
279 |
|
|
static rtx mips_force_temporary (rtx, rtx);
|
280 |
|
|
static rtx mips_unspec_offset_high (rtx, rtx, rtx, enum mips_symbol_type);
|
281 |
|
|
static rtx mips_add_offset (rtx, rtx, HOST_WIDE_INT);
|
282 |
|
|
static unsigned int mips_build_shift (struct mips_integer_op *, HOST_WIDE_INT);
|
283 |
|
|
static unsigned int mips_build_lower (struct mips_integer_op *,
|
284 |
|
|
unsigned HOST_WIDE_INT);
|
285 |
|
|
static unsigned int mips_build_integer (struct mips_integer_op *,
|
286 |
|
|
unsigned HOST_WIDE_INT);
|
287 |
|
|
static void mips_legitimize_const_move (enum machine_mode, rtx, rtx);
|
288 |
|
|
static int m16_check_op (rtx, int, int, int);
|
289 |
|
|
static bool mips_rtx_costs (rtx, int, int, int *);
|
290 |
|
|
static int mips_address_cost (rtx);
|
291 |
|
|
static void mips_emit_compare (enum rtx_code *, rtx *, rtx *, bool);
|
292 |
|
|
static void mips_load_call_address (rtx, rtx, int);
|
293 |
|
|
static bool mips_function_ok_for_sibcall (tree, tree);
|
294 |
|
|
static void mips_block_move_straight (rtx, rtx, HOST_WIDE_INT);
|
295 |
|
|
static void mips_adjust_block_mem (rtx, HOST_WIDE_INT, rtx *, rtx *);
|
296 |
|
|
static void mips_block_move_loop (rtx, rtx, HOST_WIDE_INT);
|
297 |
|
|
static void mips_arg_info (const CUMULATIVE_ARGS *, enum machine_mode,
|
298 |
|
|
tree, int, struct mips_arg_info *);
|
299 |
|
|
static bool mips_get_unaligned_mem (rtx *, unsigned int, int, rtx *, rtx *);
|
300 |
|
|
static void mips_set_architecture (const struct mips_cpu_info *);
|
301 |
|
|
static void mips_set_tune (const struct mips_cpu_info *);
|
302 |
|
|
static bool mips_handle_option (size_t, const char *, int);
|
303 |
|
|
static struct machine_function *mips_init_machine_status (void);
|
304 |
|
|
static void print_operand_reloc (FILE *, rtx, const char **);
|
305 |
|
|
#if TARGET_IRIX
|
306 |
|
|
static void irix_output_external_libcall (rtx);
|
307 |
|
|
#endif
|
308 |
|
|
static void mips_file_start (void);
|
309 |
|
|
static void mips_file_end (void);
|
310 |
|
|
static bool mips_rewrite_small_data_p (rtx);
|
311 |
|
|
static int mips_small_data_pattern_1 (rtx *, void *);
|
312 |
|
|
static int mips_rewrite_small_data_1 (rtx *, void *);
|
313 |
|
|
static bool mips_function_has_gp_insn (void);
|
314 |
|
|
static unsigned int mips_global_pointer (void);
|
315 |
|
|
static bool mips_save_reg_p (unsigned int);
|
316 |
|
|
static void mips_save_restore_reg (enum machine_mode, int, HOST_WIDE_INT,
|
317 |
|
|
mips_save_restore_fn);
|
318 |
|
|
static void mips_for_each_saved_reg (HOST_WIDE_INT, mips_save_restore_fn);
|
319 |
|
|
static void mips_output_cplocal (void);
|
320 |
|
|
static void mips_emit_loadgp (void);
|
321 |
|
|
static void mips_output_function_prologue (FILE *, HOST_WIDE_INT);
|
322 |
|
|
static void mips_set_frame_expr (rtx);
|
323 |
|
|
static rtx mips_frame_set (rtx, rtx);
|
324 |
|
|
static void mips_save_reg (rtx, rtx);
|
325 |
|
|
static void mips_output_function_epilogue (FILE *, HOST_WIDE_INT);
|
326 |
|
|
static void mips_restore_reg (rtx, rtx);
|
327 |
|
|
static void mips_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
|
328 |
|
|
HOST_WIDE_INT, tree);
|
329 |
|
|
static int symbolic_expression_p (rtx);
|
330 |
|
|
static section *mips_select_rtx_section (enum machine_mode, rtx,
|
331 |
|
|
unsigned HOST_WIDE_INT);
|
332 |
|
|
static section *mips_function_rodata_section (tree);
|
333 |
|
|
static bool mips_in_small_data_p (tree);
|
334 |
|
|
static bool mips_use_anchors_for_symbol_p (rtx);
|
335 |
|
|
static int mips_fpr_return_fields (tree, tree *);
|
336 |
|
|
static bool mips_return_in_msb (tree);
|
337 |
|
|
static rtx mips_return_fpr_pair (enum machine_mode mode,
|
338 |
|
|
enum machine_mode mode1, HOST_WIDE_INT,
|
339 |
|
|
enum machine_mode mode2, HOST_WIDE_INT);
|
340 |
|
|
static rtx mips16_gp_pseudo_reg (void);
|
341 |
|
|
static void mips16_fp_args (FILE *, int, int);
|
342 |
|
|
static void build_mips16_function_stub (FILE *);
|
343 |
|
|
static rtx dump_constants_1 (enum machine_mode, rtx, rtx);
|
344 |
|
|
static void dump_constants (struct mips16_constant *, rtx);
|
345 |
|
|
static int mips16_insn_length (rtx);
|
346 |
|
|
static int mips16_rewrite_pool_refs (rtx *, void *);
|
347 |
|
|
static void mips16_lay_out_constants (void);
|
348 |
|
|
static void mips_sim_reset (struct mips_sim *);
|
349 |
|
|
static void mips_sim_init (struct mips_sim *, state_t);
|
350 |
|
|
static void mips_sim_next_cycle (struct mips_sim *);
|
351 |
|
|
static void mips_sim_wait_reg (struct mips_sim *, rtx, rtx);
|
352 |
|
|
static int mips_sim_wait_regs_2 (rtx *, void *);
|
353 |
|
|
static void mips_sim_wait_regs_1 (rtx *, void *);
|
354 |
|
|
static void mips_sim_wait_regs (struct mips_sim *, rtx);
|
355 |
|
|
static void mips_sim_wait_units (struct mips_sim *, rtx);
|
356 |
|
|
static void mips_sim_wait_insn (struct mips_sim *, rtx);
|
357 |
|
|
static void mips_sim_record_set (rtx, rtx, void *);
|
358 |
|
|
static void mips_sim_issue_insn (struct mips_sim *, rtx);
|
359 |
|
|
static void mips_sim_issue_nop (struct mips_sim *);
|
360 |
|
|
static void mips_sim_finish_insn (struct mips_sim *, rtx);
|
361 |
|
|
static void vr4130_avoid_branch_rt_conflict (rtx);
|
362 |
|
|
static void vr4130_align_insns (void);
|
363 |
|
|
static void mips_avoid_hazard (rtx, rtx, int *, rtx *, rtx);
|
364 |
|
|
static void mips_avoid_hazards (void);
|
365 |
|
|
static void mips_reorg (void);
|
366 |
|
|
static bool mips_strict_matching_cpu_name_p (const char *, const char *);
|
367 |
|
|
static bool mips_matching_cpu_name_p (const char *, const char *);
|
368 |
|
|
static const struct mips_cpu_info *mips_parse_cpu (const char *);
|
369 |
|
|
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
|
370 |
|
|
static bool mips_return_in_memory (tree, tree);
|
371 |
|
|
static bool mips_strict_argument_naming (CUMULATIVE_ARGS *);
|
372 |
|
|
static void mips_macc_chains_record (rtx);
|
373 |
|
|
static void mips_macc_chains_reorder (rtx *, int);
|
374 |
|
|
static void vr4130_true_reg_dependence_p_1 (rtx, rtx, void *);
|
375 |
|
|
static bool vr4130_true_reg_dependence_p (rtx);
|
376 |
|
|
static bool vr4130_swap_insns_p (rtx, rtx);
|
377 |
|
|
static void vr4130_reorder (rtx *, int);
|
378 |
|
|
static void mips_promote_ready (rtx *, int, int);
|
379 |
|
|
static int mips_sched_reorder (FILE *, int, rtx *, int *, int);
|
380 |
|
|
static int mips_variable_issue (FILE *, int, rtx, int);
|
381 |
|
|
static int mips_adjust_cost (rtx, rtx, rtx, int);
|
382 |
|
|
static int mips_issue_rate (void);
|
383 |
|
|
static int mips_multipass_dfa_lookahead (void);
|
384 |
|
|
static void mips_init_libfuncs (void);
|
385 |
|
|
static void mips_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
|
386 |
|
|
tree, int *, int);
|
387 |
|
|
static tree mips_build_builtin_va_list (void);
|
388 |
|
|
static tree mips_gimplify_va_arg_expr (tree, tree, tree *, tree *);
|
389 |
|
|
static bool mips_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode mode,
|
390 |
|
|
tree, bool);
|
391 |
|
|
static bool mips_callee_copies (CUMULATIVE_ARGS *, enum machine_mode mode,
|
392 |
|
|
tree, bool);
|
393 |
|
|
static int mips_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode mode,
|
394 |
|
|
tree, bool);
|
395 |
|
|
static bool mips_valid_pointer_mode (enum machine_mode);
|
396 |
|
|
static bool mips_vector_mode_supported_p (enum machine_mode);
|
397 |
|
|
static rtx mips_prepare_builtin_arg (enum insn_code, unsigned int, tree *);
|
398 |
|
|
static rtx mips_prepare_builtin_target (enum insn_code, unsigned int, rtx);
|
399 |
|
|
static rtx mips_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
|
400 |
|
|
static void mips_init_builtins (void);
|
401 |
|
|
static rtx mips_expand_builtin_direct (enum insn_code, rtx, tree, bool);
|
402 |
|
|
static rtx mips_expand_builtin_movtf (enum mips_builtin_type,
|
403 |
|
|
enum insn_code, enum mips_fp_condition,
|
404 |
|
|
rtx, tree);
|
405 |
|
|
static rtx mips_expand_builtin_compare (enum mips_builtin_type,
|
406 |
|
|
enum insn_code, enum mips_fp_condition,
|
407 |
|
|
rtx, tree);
|
408 |
|
|
static rtx mips_expand_builtin_bposge (enum mips_builtin_type, rtx);
|
409 |
|
|
static void mips_encode_section_info (tree, rtx, int);
|
410 |
|
|
static void mips_extra_live_on_entry (bitmap);
|
411 |
|
|
static int mips_mode_rep_extended (enum machine_mode, enum machine_mode);
|
412 |
|
|
|
413 |
|
|
/* Structure to be filled in by compute_frame_size with register
|
414 |
|
|
save masks, and offsets for the current function. */
|
415 |
|
|
|
416 |
|
|
struct mips_frame_info GTY(())
|
417 |
|
|
{
|
418 |
|
|
HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up */
|
419 |
|
|
HOST_WIDE_INT var_size; /* # bytes that variables take up */
|
420 |
|
|
HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up */
|
421 |
|
|
HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
|
422 |
|
|
HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs */
|
423 |
|
|
HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs */
|
424 |
|
|
unsigned int mask; /* mask of saved gp registers */
|
425 |
|
|
unsigned int fmask; /* mask of saved fp registers */
|
426 |
|
|
HOST_WIDE_INT gp_save_offset; /* offset from vfp to store gp registers */
|
427 |
|
|
HOST_WIDE_INT fp_save_offset; /* offset from vfp to store fp registers */
|
428 |
|
|
HOST_WIDE_INT gp_sp_offset; /* offset from new sp to store gp registers */
|
429 |
|
|
HOST_WIDE_INT fp_sp_offset; /* offset from new sp to store fp registers */
|
430 |
|
|
bool initialized; /* true if frame size already calculated */
|
431 |
|
|
int num_gp; /* number of gp registers saved */
|
432 |
|
|
int num_fp; /* number of fp registers saved */
|
433 |
|
|
};
|
434 |
|
|
|
435 |
|
|
struct machine_function GTY(()) {
|
436 |
|
|
/* Pseudo-reg holding the value of $28 in a mips16 function which
|
437 |
|
|
refers to GP relative global variables. */
|
438 |
|
|
rtx mips16_gp_pseudo_rtx;
|
439 |
|
|
|
440 |
|
|
/* The number of extra stack bytes taken up by register varargs.
|
441 |
|
|
This area is allocated by the callee at the very top of the frame. */
|
442 |
|
|
int varargs_size;
|
443 |
|
|
|
444 |
|
|
/* Current frame information, calculated by compute_frame_size. */
|
445 |
|
|
struct mips_frame_info frame;
|
446 |
|
|
|
447 |
|
|
/* The register to use as the global pointer within this function. */
|
448 |
|
|
unsigned int global_pointer;
|
449 |
|
|
|
450 |
|
|
/* True if mips_adjust_insn_length should ignore an instruction's
|
451 |
|
|
hazard attribute. */
|
452 |
|
|
bool ignore_hazard_length_p;
|
453 |
|
|
|
454 |
|
|
/* True if the whole function is suitable for .set noreorder and
|
455 |
|
|
.set nomacro. */
|
456 |
|
|
bool all_noreorder_p;
|
457 |
|
|
|
458 |
|
|
/* True if the function is known to have an instruction that needs $gp. */
|
459 |
|
|
bool has_gp_insn_p;
|
460 |
|
|
};
|
461 |
|
|
|
462 |
|
|
/* Information about a single argument. */
|
463 |
|
|
struct mips_arg_info
|
464 |
|
|
{
|
465 |
|
|
/* True if the argument is passed in a floating-point register, or
|
466 |
|
|
would have been if we hadn't run out of registers. */
|
467 |
|
|
bool fpr_p;
|
468 |
|
|
|
469 |
|
|
/* The number of words passed in registers, rounded up. */
|
470 |
|
|
unsigned int reg_words;
|
471 |
|
|
|
472 |
|
|
/* For EABI, the offset of the first register from GP_ARG_FIRST or
|
473 |
|
|
FP_ARG_FIRST. For other ABIs, the offset of the first register from
|
474 |
|
|
the start of the ABI's argument structure (see the CUMULATIVE_ARGS
|
475 |
|
|
comment for details).
|
476 |
|
|
|
477 |
|
|
The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
|
478 |
|
|
on the stack. */
|
479 |
|
|
unsigned int reg_offset;
|
480 |
|
|
|
481 |
|
|
/* The number of words that must be passed on the stack, rounded up. */
|
482 |
|
|
unsigned int stack_words;
|
483 |
|
|
|
484 |
|
|
/* The offset from the start of the stack overflow area of the argument's
|
485 |
|
|
first stack word. Only meaningful when STACK_WORDS is nonzero. */
|
486 |
|
|
unsigned int stack_offset;
|
487 |
|
|
};
|
488 |
|
|
|
489 |
|
|
|
490 |
|
|
/* Information about an address described by mips_address_type.
|
491 |
|
|
|
492 |
|
|
ADDRESS_CONST_INT
|
493 |
|
|
No fields are used.
|
494 |
|
|
|
495 |
|
|
ADDRESS_REG
|
496 |
|
|
REG is the base register and OFFSET is the constant offset.
|
497 |
|
|
|
498 |
|
|
ADDRESS_LO_SUM
|
499 |
|
|
REG is the register that contains the high part of the address,
|
500 |
|
|
OFFSET is the symbolic address being referenced and SYMBOL_TYPE
|
501 |
|
|
is the type of OFFSET's symbol.
|
502 |
|
|
|
503 |
|
|
ADDRESS_SYMBOLIC
|
504 |
|
|
SYMBOL_TYPE is the type of symbol being referenced. */
|
505 |
|
|
|
506 |
|
|
struct mips_address_info
|
507 |
|
|
{
|
508 |
|
|
enum mips_address_type type;
|
509 |
|
|
rtx reg;
|
510 |
|
|
rtx offset;
|
511 |
|
|
enum mips_symbol_type symbol_type;
|
512 |
|
|
};
|
513 |
|
|
|
514 |
|
|
|
515 |
|
|
/* One stage in a constant building sequence. These sequences have
|
516 |
|
|
the form:
|
517 |
|
|
|
518 |
|
|
A = VALUE[0]
|
519 |
|
|
A = A CODE[1] VALUE[1]
|
520 |
|
|
A = A CODE[2] VALUE[2]
|
521 |
|
|
...
|
522 |
|
|
|
523 |
|
|
where A is an accumulator, each CODE[i] is a binary rtl operation
|
524 |
|
|
and each VALUE[i] is a constant integer. */
|
525 |
|
|
struct mips_integer_op {
|
526 |
|
|
enum rtx_code code;
|
527 |
|
|
unsigned HOST_WIDE_INT value;
|
528 |
|
|
};
|
529 |
|
|
|
530 |
|
|
|
531 |
|
|
/* The largest number of operations needed to load an integer constant.
|
532 |
|
|
The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
|
533 |
|
|
When the lowest bit is clear, we can try, but reject a sequence with
|
534 |
|
|
an extra SLL at the end. */
|
535 |
|
|
#define MIPS_MAX_INTEGER_OPS 7
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
/* Global variables for machine-dependent things. */
|
539 |
|
|
|
540 |
|
|
/* Threshold for data being put into the small data/bss area, instead
|
541 |
|
|
of the normal data area. */
|
542 |
|
|
int mips_section_threshold = -1;
|
543 |
|
|
|
544 |
|
|
/* Count the number of .file directives, so that .loc is up to date. */
|
545 |
|
|
int num_source_filenames = 0;
|
546 |
|
|
|
547 |
|
|
/* Count the number of sdb related labels are generated (to find block
|
548 |
|
|
start and end boundaries). */
|
549 |
|
|
int sdb_label_count = 0;
|
550 |
|
|
|
551 |
|
|
/* Next label # for each statement for Silicon Graphics IRIS systems. */
|
552 |
|
|
int sym_lineno = 0;
|
553 |
|
|
|
554 |
|
|
/* Linked list of all externals that are to be emitted when optimizing
|
555 |
|
|
for the global pointer if they haven't been declared by the end of
|
556 |
|
|
the program with an appropriate .comm or initialization. */
|
557 |
|
|
|
558 |
|
|
struct extern_list GTY (())
|
559 |
|
|
{
|
560 |
|
|
struct extern_list *next; /* next external */
|
561 |
|
|
const char *name; /* name of the external */
|
562 |
|
|
int size; /* size in bytes */
|
563 |
|
|
};
|
564 |
|
|
|
565 |
|
|
static GTY (()) struct extern_list *extern_head = 0;
|
566 |
|
|
|
567 |
|
|
/* Name of the file containing the current function. */
|
568 |
|
|
const char *current_function_file = "";
|
569 |
|
|
|
570 |
|
|
/* Number of nested .set noreorder, noat, nomacro, and volatile requests. */
|
571 |
|
|
int set_noreorder;
|
572 |
|
|
int set_noat;
|
573 |
|
|
int set_nomacro;
|
574 |
|
|
int set_volatile;
|
575 |
|
|
|
576 |
|
|
/* The next branch instruction is a branch likely, not branch normal. */
|
577 |
|
|
int mips_branch_likely;
|
578 |
|
|
|
579 |
|
|
/* The operands passed to the last cmpMM expander. */
|
580 |
|
|
rtx cmp_operands[2];
|
581 |
|
|
|
582 |
|
|
/* The target cpu for code generation. */
|
583 |
|
|
enum processor_type mips_arch;
|
584 |
|
|
const struct mips_cpu_info *mips_arch_info;
|
585 |
|
|
|
586 |
|
|
/* The target cpu for optimization and scheduling. */
|
587 |
|
|
enum processor_type mips_tune;
|
588 |
|
|
const struct mips_cpu_info *mips_tune_info;
|
589 |
|
|
|
590 |
|
|
/* Which instruction set architecture to use. */
|
591 |
|
|
int mips_isa;
|
592 |
|
|
|
593 |
|
|
/* Which ABI to use. */
|
594 |
|
|
int mips_abi = MIPS_ABI_DEFAULT;
|
595 |
|
|
|
596 |
|
|
/* Cost information to use. */
|
597 |
|
|
const struct mips_rtx_cost_data *mips_cost;
|
598 |
|
|
|
599 |
|
|
/* Whether we are generating mips16 hard float code. In mips16 mode
|
600 |
|
|
we always set TARGET_SOFT_FLOAT; this variable is nonzero if
|
601 |
|
|
-msoft-float was not specified by the user, which means that we
|
602 |
|
|
should arrange to call mips32 hard floating point code. */
|
603 |
|
|
int mips16_hard_float;
|
604 |
|
|
|
605 |
|
|
/* The architecture selected by -mipsN. */
|
606 |
|
|
static const struct mips_cpu_info *mips_isa_info;
|
607 |
|
|
|
608 |
|
|
/* If TRUE, we split addresses into their high and low parts in the RTL. */
|
609 |
|
|
int mips_split_addresses;
|
610 |
|
|
|
611 |
|
|
/* Mode used for saving/restoring general purpose registers. */
|
612 |
|
|
static enum machine_mode gpr_mode;
|
613 |
|
|
|
614 |
|
|
/* Array giving truth value on whether or not a given hard register
|
615 |
|
|
can support a given mode. */
|
616 |
|
|
char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
|
617 |
|
|
|
618 |
|
|
/* List of all MIPS punctuation characters used by print_operand. */
|
619 |
|
|
char mips_print_operand_punct[256];
|
620 |
|
|
|
621 |
|
|
/* Map GCC register number to debugger register number. */
|
622 |
|
|
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
|
623 |
|
|
|
624 |
|
|
/* A copy of the original flag_delayed_branch: see override_options. */
|
625 |
|
|
static int mips_flag_delayed_branch;
|
626 |
|
|
|
627 |
|
|
static GTY (()) int mips_output_filename_first_time = 1;
|
628 |
|
|
|
629 |
|
|
/* mips_split_p[X] is true if symbols of type X can be split by
|
630 |
|
|
mips_split_symbol(). */
|
631 |
|
|
bool mips_split_p[NUM_SYMBOL_TYPES];
|
632 |
|
|
|
633 |
|
|
/* mips_lo_relocs[X] is the relocation to use when a symbol of type X
|
634 |
|
|
appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
|
635 |
|
|
if they are matched by a special .md file pattern. */
|
636 |
|
|
static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
|
637 |
|
|
|
638 |
|
|
/* Likewise for HIGHs. */
|
639 |
|
|
static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
|
640 |
|
|
|
641 |
|
|
/* Map hard register number to register class */
|
642 |
|
|
const enum reg_class mips_regno_to_class[] =
|
643 |
|
|
{
|
644 |
|
|
LEA_REGS, LEA_REGS, M16_NA_REGS, V1_REG,
|
645 |
|
|
M16_REGS, M16_REGS, M16_REGS, M16_REGS,
|
646 |
|
|
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
|
647 |
|
|
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
|
648 |
|
|
M16_NA_REGS, M16_NA_REGS, LEA_REGS, LEA_REGS,
|
649 |
|
|
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
|
650 |
|
|
T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
|
651 |
|
|
LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
|
652 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
653 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
654 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
655 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
656 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
657 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
658 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
659 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
660 |
|
|
HI_REG, LO_REG, NO_REGS, ST_REGS,
|
661 |
|
|
ST_REGS, ST_REGS, ST_REGS, ST_REGS,
|
662 |
|
|
ST_REGS, ST_REGS, ST_REGS, NO_REGS,
|
663 |
|
|
NO_REGS, ALL_REGS, ALL_REGS, NO_REGS,
|
664 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
665 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
666 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
667 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
668 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
669 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
670 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
671 |
|
|
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
|
672 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
673 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
674 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
675 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
676 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
677 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
678 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
679 |
|
|
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
|
680 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
681 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
682 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
683 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
684 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
685 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
686 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
687 |
|
|
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
|
688 |
|
|
DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
|
689 |
|
|
DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
|
690 |
|
|
ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
|
691 |
|
|
};
|
692 |
|
|
|
693 |
|
|
/* Table of machine dependent attributes. */
|
694 |
|
|
const struct attribute_spec mips_attribute_table[] =
|
695 |
|
|
{
|
696 |
|
|
{ "long_call", 0, 0, false, true, true, NULL },
|
697 |
|
|
{ NULL, 0, 0, false, false, false, NULL }
|
698 |
|
|
};
|
699 |
|
|
|
700 |
|
|
/* A table describing all the processors gcc knows about. Names are
|
701 |
|
|
matched in the order listed. The first mention of an ISA level is
|
702 |
|
|
taken as the canonical name for that ISA.
|
703 |
|
|
|
704 |
|
|
To ease comparison, please keep this table in the same order as
|
705 |
|
|
gas's mips_cpu_info_table[]. */
|
706 |
|
|
const struct mips_cpu_info mips_cpu_info_table[] = {
|
707 |
|
|
/* Entries for generic ISAs */
|
708 |
|
|
{ "mips1", PROCESSOR_R3000, 1 },
|
709 |
|
|
{ "mips2", PROCESSOR_R6000, 2 },
|
710 |
|
|
{ "mips3", PROCESSOR_R4000, 3 },
|
711 |
|
|
{ "mips4", PROCESSOR_R8000, 4 },
|
712 |
|
|
{ "mips32", PROCESSOR_4KC, 32 },
|
713 |
|
|
{ "mips32r2", PROCESSOR_M4K, 33 },
|
714 |
|
|
{ "mips64", PROCESSOR_5KC, 64 },
|
715 |
|
|
|
716 |
|
|
/* MIPS I */
|
717 |
|
|
{ "r3000", PROCESSOR_R3000, 1 },
|
718 |
|
|
{ "r2000", PROCESSOR_R3000, 1 }, /* = r3000 */
|
719 |
|
|
{ "r3900", PROCESSOR_R3900, 1 },
|
720 |
|
|
|
721 |
|
|
/* MIPS II */
|
722 |
|
|
{ "r6000", PROCESSOR_R6000, 2 },
|
723 |
|
|
|
724 |
|
|
/* MIPS III */
|
725 |
|
|
{ "r4000", PROCESSOR_R4000, 3 },
|
726 |
|
|
{ "vr4100", PROCESSOR_R4100, 3 },
|
727 |
|
|
{ "vr4111", PROCESSOR_R4111, 3 },
|
728 |
|
|
{ "vr4120", PROCESSOR_R4120, 3 },
|
729 |
|
|
{ "vr4130", PROCESSOR_R4130, 3 },
|
730 |
|
|
{ "vr4300", PROCESSOR_R4300, 3 },
|
731 |
|
|
{ "r4400", PROCESSOR_R4000, 3 }, /* = r4000 */
|
732 |
|
|
{ "r4600", PROCESSOR_R4600, 3 },
|
733 |
|
|
{ "orion", PROCESSOR_R4600, 3 }, /* = r4600 */
|
734 |
|
|
{ "r4650", PROCESSOR_R4650, 3 },
|
735 |
|
|
|
736 |
|
|
/* MIPS IV */
|
737 |
|
|
{ "r8000", PROCESSOR_R8000, 4 },
|
738 |
|
|
{ "vr5000", PROCESSOR_R5000, 4 },
|
739 |
|
|
{ "vr5400", PROCESSOR_R5400, 4 },
|
740 |
|
|
{ "vr5500", PROCESSOR_R5500, 4 },
|
741 |
|
|
{ "rm7000", PROCESSOR_R7000, 4 },
|
742 |
|
|
{ "rm9000", PROCESSOR_R9000, 4 },
|
743 |
|
|
|
744 |
|
|
/* MIPS32 */
|
745 |
|
|
{ "4kc", PROCESSOR_4KC, 32 },
|
746 |
|
|
{ "4km", PROCESSOR_4KC, 32 }, /* = 4kc */
|
747 |
|
|
{ "4kp", PROCESSOR_4KP, 32 },
|
748 |
|
|
|
749 |
|
|
/* MIPS32 Release 2 */
|
750 |
|
|
{ "m4k", PROCESSOR_M4K, 33 },
|
751 |
|
|
{ "24k", PROCESSOR_24K, 33 },
|
752 |
|
|
{ "24kc", PROCESSOR_24K, 33 }, /* 24K no FPU */
|
753 |
|
|
{ "24kf", PROCESSOR_24K, 33 }, /* 24K 1:2 FPU */
|
754 |
|
|
{ "24kx", PROCESSOR_24KX, 33 }, /* 24K 1:1 FPU */
|
755 |
|
|
|
756 |
|
|
/* MIPS64 */
|
757 |
|
|
{ "5kc", PROCESSOR_5KC, 64 },
|
758 |
|
|
{ "5kf", PROCESSOR_5KF, 64 },
|
759 |
|
|
{ "20kc", PROCESSOR_20KC, 64 },
|
760 |
|
|
{ "sb1", PROCESSOR_SB1, 64 },
|
761 |
|
|
{ "sb1a", PROCESSOR_SB1A, 64 },
|
762 |
|
|
{ "sr71000", PROCESSOR_SR71000, 64 },
|
763 |
|
|
|
764 |
|
|
/* End marker */
|
765 |
|
|
{ 0, 0, 0 }
|
766 |
|
|
};
|
767 |
|
|
|
768 |
|
|
/* Default costs. If these are used for a processor we should look
|
769 |
|
|
up the actual costs. */
|
770 |
|
|
#define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
|
771 |
|
|
COSTS_N_INSNS (7), /* fp_mult_sf */ \
|
772 |
|
|
COSTS_N_INSNS (8), /* fp_mult_df */ \
|
773 |
|
|
COSTS_N_INSNS (23), /* fp_div_sf */ \
|
774 |
|
|
COSTS_N_INSNS (36), /* fp_div_df */ \
|
775 |
|
|
COSTS_N_INSNS (10), /* int_mult_si */ \
|
776 |
|
|
COSTS_N_INSNS (10), /* int_mult_di */ \
|
777 |
|
|
COSTS_N_INSNS (69), /* int_div_si */ \
|
778 |
|
|
COSTS_N_INSNS (69), /* int_div_di */ \
|
779 |
|
|
2, /* branch_cost */ \
|
780 |
|
|
4 /* memory_latency */
|
781 |
|
|
|
782 |
|
|
/* Need to replace these with the costs of calling the appropriate
|
783 |
|
|
libgcc routine. */
|
784 |
|
|
#define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
|
785 |
|
|
COSTS_N_INSNS (256), /* fp_mult_sf */ \
|
786 |
|
|
COSTS_N_INSNS (256), /* fp_mult_df */ \
|
787 |
|
|
COSTS_N_INSNS (256), /* fp_div_sf */ \
|
788 |
|
|
COSTS_N_INSNS (256) /* fp_div_df */
|
789 |
|
|
|
790 |
|
|
static struct mips_rtx_cost_data const mips_rtx_cost_data[PROCESSOR_MAX] =
|
791 |
|
|
{
|
792 |
|
|
{ /* R3000 */
|
793 |
|
|
COSTS_N_INSNS (2), /* fp_add */
|
794 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
795 |
|
|
COSTS_N_INSNS (5), /* fp_mult_df */
|
796 |
|
|
COSTS_N_INSNS (12), /* fp_div_sf */
|
797 |
|
|
COSTS_N_INSNS (19), /* fp_div_df */
|
798 |
|
|
COSTS_N_INSNS (12), /* int_mult_si */
|
799 |
|
|
COSTS_N_INSNS (12), /* int_mult_di */
|
800 |
|
|
COSTS_N_INSNS (35), /* int_div_si */
|
801 |
|
|
COSTS_N_INSNS (35), /* int_div_di */
|
802 |
|
|
1, /* branch_cost */
|
803 |
|
|
4 /* memory_latency */
|
804 |
|
|
|
805 |
|
|
},
|
806 |
|
|
{ /* 4KC */
|
807 |
|
|
SOFT_FP_COSTS,
|
808 |
|
|
COSTS_N_INSNS (6), /* int_mult_si */
|
809 |
|
|
COSTS_N_INSNS (6), /* int_mult_di */
|
810 |
|
|
COSTS_N_INSNS (36), /* int_div_si */
|
811 |
|
|
COSTS_N_INSNS (36), /* int_div_di */
|
812 |
|
|
1, /* branch_cost */
|
813 |
|
|
4 /* memory_latency */
|
814 |
|
|
},
|
815 |
|
|
{ /* 4KP */
|
816 |
|
|
SOFT_FP_COSTS,
|
817 |
|
|
COSTS_N_INSNS (36), /* int_mult_si */
|
818 |
|
|
COSTS_N_INSNS (36), /* int_mult_di */
|
819 |
|
|
COSTS_N_INSNS (37), /* int_div_si */
|
820 |
|
|
COSTS_N_INSNS (37), /* int_div_di */
|
821 |
|
|
1, /* branch_cost */
|
822 |
|
|
4 /* memory_latency */
|
823 |
|
|
},
|
824 |
|
|
{ /* 5KC */
|
825 |
|
|
SOFT_FP_COSTS,
|
826 |
|
|
COSTS_N_INSNS (4), /* int_mult_si */
|
827 |
|
|
COSTS_N_INSNS (11), /* int_mult_di */
|
828 |
|
|
COSTS_N_INSNS (36), /* int_div_si */
|
829 |
|
|
COSTS_N_INSNS (68), /* int_div_di */
|
830 |
|
|
1, /* branch_cost */
|
831 |
|
|
4 /* memory_latency */
|
832 |
|
|
},
|
833 |
|
|
{ /* 5KF */
|
834 |
|
|
COSTS_N_INSNS (4), /* fp_add */
|
835 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
836 |
|
|
COSTS_N_INSNS (5), /* fp_mult_df */
|
837 |
|
|
COSTS_N_INSNS (17), /* fp_div_sf */
|
838 |
|
|
COSTS_N_INSNS (32), /* fp_div_df */
|
839 |
|
|
COSTS_N_INSNS (4), /* int_mult_si */
|
840 |
|
|
COSTS_N_INSNS (11), /* int_mult_di */
|
841 |
|
|
COSTS_N_INSNS (36), /* int_div_si */
|
842 |
|
|
COSTS_N_INSNS (68), /* int_div_di */
|
843 |
|
|
1, /* branch_cost */
|
844 |
|
|
4 /* memory_latency */
|
845 |
|
|
},
|
846 |
|
|
{ /* 20KC */
|
847 |
|
|
DEFAULT_COSTS
|
848 |
|
|
},
|
849 |
|
|
{ /* 24k */
|
850 |
|
|
COSTS_N_INSNS (8), /* fp_add */
|
851 |
|
|
COSTS_N_INSNS (8), /* fp_mult_sf */
|
852 |
|
|
COSTS_N_INSNS (10), /* fp_mult_df */
|
853 |
|
|
COSTS_N_INSNS (34), /* fp_div_sf */
|
854 |
|
|
COSTS_N_INSNS (64), /* fp_div_df */
|
855 |
|
|
COSTS_N_INSNS (5), /* int_mult_si */
|
856 |
|
|
COSTS_N_INSNS (5), /* int_mult_di */
|
857 |
|
|
COSTS_N_INSNS (41), /* int_div_si */
|
858 |
|
|
COSTS_N_INSNS (41), /* int_div_di */
|
859 |
|
|
1, /* branch_cost */
|
860 |
|
|
4 /* memory_latency */
|
861 |
|
|
},
|
862 |
|
|
{ /* 24kx */
|
863 |
|
|
COSTS_N_INSNS (4), /* fp_add */
|
864 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
865 |
|
|
COSTS_N_INSNS (5), /* fp_mult_df */
|
866 |
|
|
COSTS_N_INSNS (17), /* fp_div_sf */
|
867 |
|
|
COSTS_N_INSNS (32), /* fp_div_df */
|
868 |
|
|
COSTS_N_INSNS (5), /* int_mult_si */
|
869 |
|
|
COSTS_N_INSNS (5), /* int_mult_di */
|
870 |
|
|
COSTS_N_INSNS (41), /* int_div_si */
|
871 |
|
|
COSTS_N_INSNS (41), /* int_div_di */
|
872 |
|
|
1, /* branch_cost */
|
873 |
|
|
4 /* memory_latency */
|
874 |
|
|
},
|
875 |
|
|
{ /* M4k */
|
876 |
|
|
DEFAULT_COSTS
|
877 |
|
|
},
|
878 |
|
|
{ /* R3900 */
|
879 |
|
|
COSTS_N_INSNS (2), /* fp_add */
|
880 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
881 |
|
|
COSTS_N_INSNS (5), /* fp_mult_df */
|
882 |
|
|
COSTS_N_INSNS (12), /* fp_div_sf */
|
883 |
|
|
COSTS_N_INSNS (19), /* fp_div_df */
|
884 |
|
|
COSTS_N_INSNS (2), /* int_mult_si */
|
885 |
|
|
COSTS_N_INSNS (2), /* int_mult_di */
|
886 |
|
|
COSTS_N_INSNS (35), /* int_div_si */
|
887 |
|
|
COSTS_N_INSNS (35), /* int_div_di */
|
888 |
|
|
1, /* branch_cost */
|
889 |
|
|
4 /* memory_latency */
|
890 |
|
|
},
|
891 |
|
|
{ /* R6000 */
|
892 |
|
|
COSTS_N_INSNS (3), /* fp_add */
|
893 |
|
|
COSTS_N_INSNS (5), /* fp_mult_sf */
|
894 |
|
|
COSTS_N_INSNS (6), /* fp_mult_df */
|
895 |
|
|
COSTS_N_INSNS (15), /* fp_div_sf */
|
896 |
|
|
COSTS_N_INSNS (16), /* fp_div_df */
|
897 |
|
|
COSTS_N_INSNS (17), /* int_mult_si */
|
898 |
|
|
COSTS_N_INSNS (17), /* int_mult_di */
|
899 |
|
|
COSTS_N_INSNS (38), /* int_div_si */
|
900 |
|
|
COSTS_N_INSNS (38), /* int_div_di */
|
901 |
|
|
2, /* branch_cost */
|
902 |
|
|
6 /* memory_latency */
|
903 |
|
|
},
|
904 |
|
|
{ /* R4000 */
|
905 |
|
|
COSTS_N_INSNS (6), /* fp_add */
|
906 |
|
|
COSTS_N_INSNS (7), /* fp_mult_sf */
|
907 |
|
|
COSTS_N_INSNS (8), /* fp_mult_df */
|
908 |
|
|
COSTS_N_INSNS (23), /* fp_div_sf */
|
909 |
|
|
COSTS_N_INSNS (36), /* fp_div_df */
|
910 |
|
|
COSTS_N_INSNS (10), /* int_mult_si */
|
911 |
|
|
COSTS_N_INSNS (10), /* int_mult_di */
|
912 |
|
|
COSTS_N_INSNS (69), /* int_div_si */
|
913 |
|
|
COSTS_N_INSNS (69), /* int_div_di */
|
914 |
|
|
2, /* branch_cost */
|
915 |
|
|
6 /* memory_latency */
|
916 |
|
|
},
|
917 |
|
|
{ /* R4100 */
|
918 |
|
|
DEFAULT_COSTS
|
919 |
|
|
},
|
920 |
|
|
{ /* R4111 */
|
921 |
|
|
DEFAULT_COSTS
|
922 |
|
|
},
|
923 |
|
|
{ /* R4120 */
|
924 |
|
|
DEFAULT_COSTS
|
925 |
|
|
},
|
926 |
|
|
{ /* R4130 */
|
927 |
|
|
/* The only costs that appear to be updated here are
|
928 |
|
|
integer multiplication. */
|
929 |
|
|
SOFT_FP_COSTS,
|
930 |
|
|
COSTS_N_INSNS (4), /* int_mult_si */
|
931 |
|
|
COSTS_N_INSNS (6), /* int_mult_di */
|
932 |
|
|
COSTS_N_INSNS (69), /* int_div_si */
|
933 |
|
|
COSTS_N_INSNS (69), /* int_div_di */
|
934 |
|
|
1, /* branch_cost */
|
935 |
|
|
4 /* memory_latency */
|
936 |
|
|
},
|
937 |
|
|
{ /* R4300 */
|
938 |
|
|
DEFAULT_COSTS
|
939 |
|
|
},
|
940 |
|
|
{ /* R4600 */
|
941 |
|
|
DEFAULT_COSTS
|
942 |
|
|
},
|
943 |
|
|
{ /* R4650 */
|
944 |
|
|
DEFAULT_COSTS
|
945 |
|
|
},
|
946 |
|
|
{ /* R5000 */
|
947 |
|
|
COSTS_N_INSNS (6), /* fp_add */
|
948 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
949 |
|
|
COSTS_N_INSNS (5), /* fp_mult_df */
|
950 |
|
|
COSTS_N_INSNS (23), /* fp_div_sf */
|
951 |
|
|
COSTS_N_INSNS (36), /* fp_div_df */
|
952 |
|
|
COSTS_N_INSNS (5), /* int_mult_si */
|
953 |
|
|
COSTS_N_INSNS (5), /* int_mult_di */
|
954 |
|
|
COSTS_N_INSNS (36), /* int_div_si */
|
955 |
|
|
COSTS_N_INSNS (36), /* int_div_di */
|
956 |
|
|
1, /* branch_cost */
|
957 |
|
|
4 /* memory_latency */
|
958 |
|
|
},
|
959 |
|
|
{ /* R5400 */
|
960 |
|
|
COSTS_N_INSNS (6), /* fp_add */
|
961 |
|
|
COSTS_N_INSNS (5), /* fp_mult_sf */
|
962 |
|
|
COSTS_N_INSNS (6), /* fp_mult_df */
|
963 |
|
|
COSTS_N_INSNS (30), /* fp_div_sf */
|
964 |
|
|
COSTS_N_INSNS (59), /* fp_div_df */
|
965 |
|
|
COSTS_N_INSNS (3), /* int_mult_si */
|
966 |
|
|
COSTS_N_INSNS (4), /* int_mult_di */
|
967 |
|
|
COSTS_N_INSNS (42), /* int_div_si */
|
968 |
|
|
COSTS_N_INSNS (74), /* int_div_di */
|
969 |
|
|
1, /* branch_cost */
|
970 |
|
|
4 /* memory_latency */
|
971 |
|
|
},
|
972 |
|
|
{ /* R5500 */
|
973 |
|
|
COSTS_N_INSNS (6), /* fp_add */
|
974 |
|
|
COSTS_N_INSNS (5), /* fp_mult_sf */
|
975 |
|
|
COSTS_N_INSNS (6), /* fp_mult_df */
|
976 |
|
|
COSTS_N_INSNS (30), /* fp_div_sf */
|
977 |
|
|
COSTS_N_INSNS (59), /* fp_div_df */
|
978 |
|
|
COSTS_N_INSNS (5), /* int_mult_si */
|
979 |
|
|
COSTS_N_INSNS (9), /* int_mult_di */
|
980 |
|
|
COSTS_N_INSNS (42), /* int_div_si */
|
981 |
|
|
COSTS_N_INSNS (74), /* int_div_di */
|
982 |
|
|
1, /* branch_cost */
|
983 |
|
|
4 /* memory_latency */
|
984 |
|
|
},
|
985 |
|
|
{ /* R7000 */
|
986 |
|
|
/* The only costs that are changed here are
|
987 |
|
|
integer multiplication. */
|
988 |
|
|
COSTS_N_INSNS (6), /* fp_add */
|
989 |
|
|
COSTS_N_INSNS (7), /* fp_mult_sf */
|
990 |
|
|
COSTS_N_INSNS (8), /* fp_mult_df */
|
991 |
|
|
COSTS_N_INSNS (23), /* fp_div_sf */
|
992 |
|
|
COSTS_N_INSNS (36), /* fp_div_df */
|
993 |
|
|
COSTS_N_INSNS (5), /* int_mult_si */
|
994 |
|
|
COSTS_N_INSNS (9), /* int_mult_di */
|
995 |
|
|
COSTS_N_INSNS (69), /* int_div_si */
|
996 |
|
|
COSTS_N_INSNS (69), /* int_div_di */
|
997 |
|
|
1, /* branch_cost */
|
998 |
|
|
4 /* memory_latency */
|
999 |
|
|
},
|
1000 |
|
|
{ /* R8000 */
|
1001 |
|
|
DEFAULT_COSTS
|
1002 |
|
|
},
|
1003 |
|
|
{ /* R9000 */
|
1004 |
|
|
/* The only costs that are changed here are
|
1005 |
|
|
integer multiplication. */
|
1006 |
|
|
COSTS_N_INSNS (6), /* fp_add */
|
1007 |
|
|
COSTS_N_INSNS (7), /* fp_mult_sf */
|
1008 |
|
|
COSTS_N_INSNS (8), /* fp_mult_df */
|
1009 |
|
|
COSTS_N_INSNS (23), /* fp_div_sf */
|
1010 |
|
|
COSTS_N_INSNS (36), /* fp_div_df */
|
1011 |
|
|
COSTS_N_INSNS (3), /* int_mult_si */
|
1012 |
|
|
COSTS_N_INSNS (8), /* int_mult_di */
|
1013 |
|
|
COSTS_N_INSNS (69), /* int_div_si */
|
1014 |
|
|
COSTS_N_INSNS (69), /* int_div_di */
|
1015 |
|
|
1, /* branch_cost */
|
1016 |
|
|
4 /* memory_latency */
|
1017 |
|
|
},
|
1018 |
|
|
{ /* SB1 */
|
1019 |
|
|
/* These costs are the same as the SB-1A below. */
|
1020 |
|
|
COSTS_N_INSNS (4), /* fp_add */
|
1021 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
1022 |
|
|
COSTS_N_INSNS (4), /* fp_mult_df */
|
1023 |
|
|
COSTS_N_INSNS (24), /* fp_div_sf */
|
1024 |
|
|
COSTS_N_INSNS (32), /* fp_div_df */
|
1025 |
|
|
COSTS_N_INSNS (3), /* int_mult_si */
|
1026 |
|
|
COSTS_N_INSNS (4), /* int_mult_di */
|
1027 |
|
|
COSTS_N_INSNS (36), /* int_div_si */
|
1028 |
|
|
COSTS_N_INSNS (68), /* int_div_di */
|
1029 |
|
|
1, /* branch_cost */
|
1030 |
|
|
4 /* memory_latency */
|
1031 |
|
|
},
|
1032 |
|
|
{ /* SB1-A */
|
1033 |
|
|
/* These costs are the same as the SB-1 above. */
|
1034 |
|
|
COSTS_N_INSNS (4), /* fp_add */
|
1035 |
|
|
COSTS_N_INSNS (4), /* fp_mult_sf */
|
1036 |
|
|
COSTS_N_INSNS (4), /* fp_mult_df */
|
1037 |
|
|
COSTS_N_INSNS (24), /* fp_div_sf */
|
1038 |
|
|
COSTS_N_INSNS (32), /* fp_div_df */
|
1039 |
|
|
COSTS_N_INSNS (3), /* int_mult_si */
|
1040 |
|
|
COSTS_N_INSNS (4), /* int_mult_di */
|
1041 |
|
|
COSTS_N_INSNS (36), /* int_div_si */
|
1042 |
|
|
COSTS_N_INSNS (68), /* int_div_di */
|
1043 |
|
|
1, /* branch_cost */
|
1044 |
|
|
4 /* memory_latency */
|
1045 |
|
|
},
|
1046 |
|
|
{ /* SR71000 */
|
1047 |
|
|
DEFAULT_COSTS
|
1048 |
|
|
},
|
1049 |
|
|
};
|
1050 |
|
|
|
1051 |
|
|
|
1052 |
|
|
/* Nonzero if -march should decide the default value of MASK_SOFT_FLOAT. */
|
1053 |
|
|
#ifndef MIPS_MARCH_CONTROLS_SOFT_FLOAT
|
1054 |
|
|
#define MIPS_MARCH_CONTROLS_SOFT_FLOAT 0
|
1055 |
|
|
#endif
|
1056 |
|
|
|
1057 |
|
|
/* Initialize the GCC target structure. */
|
1058 |
|
|
#undef TARGET_ASM_ALIGNED_HI_OP
|
1059 |
|
|
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
|
1060 |
|
|
#undef TARGET_ASM_ALIGNED_SI_OP
|
1061 |
|
|
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
|
1062 |
|
|
#undef TARGET_ASM_ALIGNED_DI_OP
|
1063 |
|
|
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
|
1064 |
|
|
|
1065 |
|
|
#undef TARGET_ASM_FUNCTION_PROLOGUE
|
1066 |
|
|
#define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
|
1067 |
|
|
#undef TARGET_ASM_FUNCTION_EPILOGUE
|
1068 |
|
|
#define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
|
1069 |
|
|
#undef TARGET_ASM_SELECT_RTX_SECTION
|
1070 |
|
|
#define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
|
1071 |
|
|
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
|
1072 |
|
|
#define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
|
1073 |
|
|
|
1074 |
|
|
#undef TARGET_SCHED_REORDER
|
1075 |
|
|
#define TARGET_SCHED_REORDER mips_sched_reorder
|
1076 |
|
|
#undef TARGET_SCHED_VARIABLE_ISSUE
|
1077 |
|
|
#define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
|
1078 |
|
|
#undef TARGET_SCHED_ADJUST_COST
|
1079 |
|
|
#define TARGET_SCHED_ADJUST_COST mips_adjust_cost
|
1080 |
|
|
#undef TARGET_SCHED_ISSUE_RATE
|
1081 |
|
|
#define TARGET_SCHED_ISSUE_RATE mips_issue_rate
|
1082 |
|
|
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
|
1083 |
|
|
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
|
1084 |
|
|
mips_multipass_dfa_lookahead
|
1085 |
|
|
|
1086 |
|
|
#undef TARGET_DEFAULT_TARGET_FLAGS
|
1087 |
|
|
#define TARGET_DEFAULT_TARGET_FLAGS \
|
1088 |
|
|
(TARGET_DEFAULT \
|
1089 |
|
|
| TARGET_CPU_DEFAULT \
|
1090 |
|
|
| TARGET_ENDIAN_DEFAULT \
|
1091 |
|
|
| TARGET_FP_EXCEPTIONS_DEFAULT \
|
1092 |
|
|
| MASK_CHECK_ZERO_DIV \
|
1093 |
|
|
| MASK_FUSED_MADD)
|
1094 |
|
|
#undef TARGET_HANDLE_OPTION
|
1095 |
|
|
#define TARGET_HANDLE_OPTION mips_handle_option
|
1096 |
|
|
|
1097 |
|
|
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
1098 |
|
|
#define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
|
1099 |
|
|
|
1100 |
|
|
#undef TARGET_VALID_POINTER_MODE
|
1101 |
|
|
#define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
|
1102 |
|
|
#undef TARGET_RTX_COSTS
|
1103 |
|
|
#define TARGET_RTX_COSTS mips_rtx_costs
|
1104 |
|
|
#undef TARGET_ADDRESS_COST
|
1105 |
|
|
#define TARGET_ADDRESS_COST mips_address_cost
|
1106 |
|
|
|
1107 |
|
|
#undef TARGET_IN_SMALL_DATA_P
|
1108 |
|
|
#define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
|
1109 |
|
|
|
1110 |
|
|
#undef TARGET_MACHINE_DEPENDENT_REORG
|
1111 |
|
|
#define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
|
1112 |
|
|
|
1113 |
|
|
#undef TARGET_ASM_FILE_START
|
1114 |
|
|
#undef TARGET_ASM_FILE_END
|
1115 |
|
|
#define TARGET_ASM_FILE_START mips_file_start
|
1116 |
|
|
#define TARGET_ASM_FILE_END mips_file_end
|
1117 |
|
|
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
|
1118 |
|
|
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
|
1119 |
|
|
|
1120 |
|
|
#undef TARGET_INIT_LIBFUNCS
|
1121 |
|
|
#define TARGET_INIT_LIBFUNCS mips_init_libfuncs
|
1122 |
|
|
|
1123 |
|
|
#undef TARGET_BUILD_BUILTIN_VA_LIST
|
1124 |
|
|
#define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
|
1125 |
|
|
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
|
1126 |
|
|
#define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
|
1127 |
|
|
|
1128 |
|
|
#undef TARGET_PROMOTE_FUNCTION_ARGS
|
1129 |
|
|
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
|
1130 |
|
|
#undef TARGET_PROMOTE_FUNCTION_RETURN
|
1131 |
|
|
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
|
1132 |
|
|
#undef TARGET_PROMOTE_PROTOTYPES
|
1133 |
|
|
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
|
1134 |
|
|
|
1135 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
1136 |
|
|
#define TARGET_RETURN_IN_MEMORY mips_return_in_memory
|
1137 |
|
|
#undef TARGET_RETURN_IN_MSB
|
1138 |
|
|
#define TARGET_RETURN_IN_MSB mips_return_in_msb
|
1139 |
|
|
|
1140 |
|
|
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
1141 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
|
1142 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
1143 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
|
1144 |
|
|
|
1145 |
|
|
#undef TARGET_SETUP_INCOMING_VARARGS
|
1146 |
|
|
#define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
|
1147 |
|
|
#undef TARGET_STRICT_ARGUMENT_NAMING
|
1148 |
|
|
#define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
|
1149 |
|
|
#undef TARGET_MUST_PASS_IN_STACK
|
1150 |
|
|
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
|
1151 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
1152 |
|
|
#define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
|
1153 |
|
|
#undef TARGET_CALLEE_COPIES
|
1154 |
|
|
#define TARGET_CALLEE_COPIES mips_callee_copies
|
1155 |
|
|
#undef TARGET_ARG_PARTIAL_BYTES
|
1156 |
|
|
#define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
|
1157 |
|
|
|
1158 |
|
|
#undef TARGET_MODE_REP_EXTENDED
|
1159 |
|
|
#define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
|
1160 |
|
|
|
1161 |
|
|
#undef TARGET_VECTOR_MODE_SUPPORTED_P
|
1162 |
|
|
#define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
|
1163 |
|
|
|
1164 |
|
|
#undef TARGET_INIT_BUILTINS
|
1165 |
|
|
#define TARGET_INIT_BUILTINS mips_init_builtins
|
1166 |
|
|
#undef TARGET_EXPAND_BUILTIN
|
1167 |
|
|
#define TARGET_EXPAND_BUILTIN mips_expand_builtin
|
1168 |
|
|
|
1169 |
|
|
#undef TARGET_HAVE_TLS
|
1170 |
|
|
#define TARGET_HAVE_TLS HAVE_AS_TLS
|
1171 |
|
|
|
1172 |
|
|
#undef TARGET_CANNOT_FORCE_CONST_MEM
|
1173 |
|
|
#define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
|
1174 |
|
|
|
1175 |
|
|
#undef TARGET_ENCODE_SECTION_INFO
|
1176 |
|
|
#define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
|
1177 |
|
|
|
1178 |
|
|
#undef TARGET_ATTRIBUTE_TABLE
|
1179 |
|
|
#define TARGET_ATTRIBUTE_TABLE mips_attribute_table
|
1180 |
|
|
|
1181 |
|
|
#undef TARGET_EXTRA_LIVE_ON_ENTRY
|
1182 |
|
|
#define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
|
1183 |
|
|
|
1184 |
|
|
#undef TARGET_MIN_ANCHOR_OFFSET
|
1185 |
|
|
#define TARGET_MIN_ANCHOR_OFFSET -32768
|
1186 |
|
|
#undef TARGET_MAX_ANCHOR_OFFSET
|
1187 |
|
|
#define TARGET_MAX_ANCHOR_OFFSET 32767
|
1188 |
|
|
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
|
1189 |
|
|
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
|
1190 |
|
|
#undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
|
1191 |
|
|
#define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
|
1192 |
|
|
|
1193 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
1194 |
|
|
|
1195 |
|
|
/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF. */
|
1196 |
|
|
|
1197 |
|
|
static enum mips_symbol_type
|
1198 |
|
|
mips_classify_symbol (rtx x)
|
1199 |
|
|
{
|
1200 |
|
|
if (GET_CODE (x) == LABEL_REF)
|
1201 |
|
|
{
|
1202 |
|
|
if (TARGET_MIPS16)
|
1203 |
|
|
return SYMBOL_CONSTANT_POOL;
|
1204 |
|
|
if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
|
1205 |
|
|
return SYMBOL_GOT_LOCAL;
|
1206 |
|
|
return SYMBOL_GENERAL;
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
gcc_assert (GET_CODE (x) == SYMBOL_REF);
|
1210 |
|
|
|
1211 |
|
|
if (SYMBOL_REF_TLS_MODEL (x))
|
1212 |
|
|
return SYMBOL_TLS;
|
1213 |
|
|
|
1214 |
|
|
if (CONSTANT_POOL_ADDRESS_P (x))
|
1215 |
|
|
{
|
1216 |
|
|
if (TARGET_MIPS16)
|
1217 |
|
|
return SYMBOL_CONSTANT_POOL;
|
1218 |
|
|
|
1219 |
|
|
if (GET_MODE_SIZE (get_pool_mode (x)) <= mips_section_threshold)
|
1220 |
|
|
return SYMBOL_SMALL_DATA;
|
1221 |
|
|
}
|
1222 |
|
|
|
1223 |
|
|
/* Do not use small-data accesses for weak symbols; they may end up
|
1224 |
|
|
being zero. */
|
1225 |
|
|
if (SYMBOL_REF_SMALL_P (x)
|
1226 |
|
|
&& !SYMBOL_REF_WEAK (x))
|
1227 |
|
|
return SYMBOL_SMALL_DATA;
|
1228 |
|
|
|
1229 |
|
|
if (TARGET_ABICALLS)
|
1230 |
|
|
{
|
1231 |
|
|
if (SYMBOL_REF_DECL (x) == 0)
|
1232 |
|
|
{
|
1233 |
|
|
if (!SYMBOL_REF_LOCAL_P (x))
|
1234 |
|
|
return SYMBOL_GOT_GLOBAL;
|
1235 |
|
|
}
|
1236 |
|
|
else
|
1237 |
|
|
{
|
1238 |
|
|
/* Don't use GOT accesses for locally-binding symbols if
|
1239 |
|
|
TARGET_ABSOLUTE_ABICALLS. Otherwise, there are three
|
1240 |
|
|
cases to consider:
|
1241 |
|
|
|
1242 |
|
|
- o32 PIC (either with or without explicit relocs)
|
1243 |
|
|
- n32/n64 PIC without explicit relocs
|
1244 |
|
|
- n32/n64 PIC with explicit relocs
|
1245 |
|
|
|
1246 |
|
|
In the first case, both local and global accesses will use an
|
1247 |
|
|
R_MIPS_GOT16 relocation. We must correctly predict which of
|
1248 |
|
|
the two semantics (local or global) the assembler and linker
|
1249 |
|
|
will apply. The choice doesn't depend on the symbol's
|
1250 |
|
|
visibility, so we deliberately ignore decl_visibility and
|
1251 |
|
|
binds_local_p here.
|
1252 |
|
|
|
1253 |
|
|
In the second case, the assembler will not use R_MIPS_GOT16
|
1254 |
|
|
relocations, but it chooses between local and global accesses
|
1255 |
|
|
in the same way as for o32 PIC.
|
1256 |
|
|
|
1257 |
|
|
In the third case we have more freedom since both forms of
|
1258 |
|
|
access will work for any kind of symbol. However, there seems
|
1259 |
|
|
little point in doing things differently. */
|
1260 |
|
|
if (DECL_P (SYMBOL_REF_DECL (x))
|
1261 |
|
|
&& TREE_PUBLIC (SYMBOL_REF_DECL (x))
|
1262 |
|
|
&& !(TARGET_ABSOLUTE_ABICALLS
|
1263 |
|
|
&& targetm.binds_local_p (SYMBOL_REF_DECL (x))))
|
1264 |
|
|
return SYMBOL_GOT_GLOBAL;
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
if (!TARGET_ABSOLUTE_ABICALLS)
|
1268 |
|
|
return SYMBOL_GOT_LOCAL;
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
return SYMBOL_GENERAL;
|
1272 |
|
|
}
|
1273 |
|
|
|
1274 |
|
|
|
1275 |
|
|
/* Split X into a base and a constant offset, storing them in *BASE
|
1276 |
|
|
and *OFFSET respectively. */
|
1277 |
|
|
|
1278 |
|
|
static void
|
1279 |
|
|
mips_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
|
1280 |
|
|
{
|
1281 |
|
|
*offset = 0;
|
1282 |
|
|
|
1283 |
|
|
if (GET_CODE (x) == CONST)
|
1284 |
|
|
{
|
1285 |
|
|
x = XEXP (x, 0);
|
1286 |
|
|
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
|
1287 |
|
|
{
|
1288 |
|
|
*offset += INTVAL (XEXP (x, 1));
|
1289 |
|
|
x = XEXP (x, 0);
|
1290 |
|
|
}
|
1291 |
|
|
}
|
1292 |
|
|
*base = x;
|
1293 |
|
|
}
|
1294 |
|
|
|
1295 |
|
|
/* Classify symbolic expression X, given that it appears in context
|
1296 |
|
|
CONTEXT. */
|
1297 |
|
|
|
1298 |
|
|
static enum mips_symbol_type
|
1299 |
|
|
mips_classify_symbolic_expression (rtx x)
|
1300 |
|
|
{
|
1301 |
|
|
HOST_WIDE_INT offset;
|
1302 |
|
|
|
1303 |
|
|
mips_split_const (x, &x, &offset);
|
1304 |
|
|
if (UNSPEC_ADDRESS_P (x))
|
1305 |
|
|
return UNSPEC_ADDRESS_TYPE (x);
|
1306 |
|
|
|
1307 |
|
|
return mips_classify_symbol (x);
|
1308 |
|
|
}
|
1309 |
|
|
|
1310 |
|
|
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
|
1311 |
|
|
to the same object as SYMBOL, or to the same object_block. */
|
1312 |
|
|
|
1313 |
|
|
static bool
|
1314 |
|
|
mips_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
|
1315 |
|
|
{
|
1316 |
|
|
if (GET_CODE (symbol) != SYMBOL_REF)
|
1317 |
|
|
return false;
|
1318 |
|
|
|
1319 |
|
|
if (CONSTANT_POOL_ADDRESS_P (symbol)
|
1320 |
|
|
&& offset >= 0
|
1321 |
|
|
&& offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
|
1322 |
|
|
return true;
|
1323 |
|
|
|
1324 |
|
|
if (SYMBOL_REF_DECL (symbol) != 0
|
1325 |
|
|
&& offset >= 0
|
1326 |
|
|
&& offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
|
1327 |
|
|
return true;
|
1328 |
|
|
|
1329 |
|
|
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
|
1330 |
|
|
&& SYMBOL_REF_BLOCK (symbol)
|
1331 |
|
|
&& SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
|
1332 |
|
|
&& ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
|
1333 |
|
|
< (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
|
1334 |
|
|
return true;
|
1335 |
|
|
|
1336 |
|
|
return false;
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
|
1340 |
|
|
/* Return true if X is a symbolic constant that can be calculated in
|
1341 |
|
|
the same way as a bare symbol. If it is, store the type of the
|
1342 |
|
|
symbol in *SYMBOL_TYPE. */
|
1343 |
|
|
|
1344 |
|
|
bool
|
1345 |
|
|
mips_symbolic_constant_p (rtx x, enum mips_symbol_type *symbol_type)
|
1346 |
|
|
{
|
1347 |
|
|
HOST_WIDE_INT offset;
|
1348 |
|
|
|
1349 |
|
|
mips_split_const (x, &x, &offset);
|
1350 |
|
|
if (UNSPEC_ADDRESS_P (x))
|
1351 |
|
|
*symbol_type = UNSPEC_ADDRESS_TYPE (x);
|
1352 |
|
|
else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
|
1353 |
|
|
{
|
1354 |
|
|
*symbol_type = mips_classify_symbol (x);
|
1355 |
|
|
if (*symbol_type == SYMBOL_TLS)
|
1356 |
|
|
return false;
|
1357 |
|
|
}
|
1358 |
|
|
else
|
1359 |
|
|
return false;
|
1360 |
|
|
|
1361 |
|
|
if (offset == 0)
|
1362 |
|
|
return true;
|
1363 |
|
|
|
1364 |
|
|
/* Check whether a nonzero offset is valid for the underlying
|
1365 |
|
|
relocations. */
|
1366 |
|
|
switch (*symbol_type)
|
1367 |
|
|
{
|
1368 |
|
|
case SYMBOL_GENERAL:
|
1369 |
|
|
case SYMBOL_64_HIGH:
|
1370 |
|
|
case SYMBOL_64_MID:
|
1371 |
|
|
case SYMBOL_64_LOW:
|
1372 |
|
|
/* If the target has 64-bit pointers and the object file only
|
1373 |
|
|
supports 32-bit symbols, the values of those symbols will be
|
1374 |
|
|
sign-extended. In this case we can't allow an arbitrary offset
|
1375 |
|
|
in case the 32-bit value X + OFFSET has a different sign from X. */
|
1376 |
|
|
if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
|
1377 |
|
|
return mips_offset_within_object_p (x, offset);
|
1378 |
|
|
|
1379 |
|
|
/* In other cases the relocations can handle any offset. */
|
1380 |
|
|
return true;
|
1381 |
|
|
|
1382 |
|
|
case SYMBOL_CONSTANT_POOL:
|
1383 |
|
|
/* Allow constant pool references to be converted to LABEL+CONSTANT.
|
1384 |
|
|
In this case, we no longer have access to the underlying constant,
|
1385 |
|
|
but the original symbol-based access was known to be valid. */
|
1386 |
|
|
if (GET_CODE (x) == LABEL_REF)
|
1387 |
|
|
return true;
|
1388 |
|
|
|
1389 |
|
|
/* Fall through. */
|
1390 |
|
|
|
1391 |
|
|
case SYMBOL_SMALL_DATA:
|
1392 |
|
|
/* Make sure that the offset refers to something within the
|
1393 |
|
|
underlying object. This should guarantee that the final
|
1394 |
|
|
PC- or GP-relative offset is within the 16-bit limit. */
|
1395 |
|
|
return mips_offset_within_object_p (x, offset);
|
1396 |
|
|
|
1397 |
|
|
case SYMBOL_GOT_LOCAL:
|
1398 |
|
|
case SYMBOL_GOTOFF_PAGE:
|
1399 |
|
|
/* The linker should provide enough local GOT entries for a
|
1400 |
|
|
16-bit offset. Larger offsets may lead to GOT overflow. */
|
1401 |
|
|
return SMALL_OPERAND (offset);
|
1402 |
|
|
|
1403 |
|
|
case SYMBOL_GOT_GLOBAL:
|
1404 |
|
|
case SYMBOL_GOTOFF_GLOBAL:
|
1405 |
|
|
case SYMBOL_GOTOFF_CALL:
|
1406 |
|
|
case SYMBOL_GOTOFF_LOADGP:
|
1407 |
|
|
case SYMBOL_TLSGD:
|
1408 |
|
|
case SYMBOL_TLSLDM:
|
1409 |
|
|
case SYMBOL_DTPREL:
|
1410 |
|
|
case SYMBOL_TPREL:
|
1411 |
|
|
case SYMBOL_GOTTPREL:
|
1412 |
|
|
case SYMBOL_TLS:
|
1413 |
|
|
return false;
|
1414 |
|
|
}
|
1415 |
|
|
gcc_unreachable ();
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
|
1419 |
|
|
/* This function is used to implement REG_MODE_OK_FOR_BASE_P. */
|
1420 |
|
|
|
1421 |
|
|
int
|
1422 |
|
|
mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode, int strict)
|
1423 |
|
|
{
|
1424 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
1425 |
|
|
{
|
1426 |
|
|
if (!strict)
|
1427 |
|
|
return true;
|
1428 |
|
|
regno = reg_renumber[regno];
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
/* These fake registers will be eliminated to either the stack or
|
1432 |
|
|
hard frame pointer, both of which are usually valid base registers.
|
1433 |
|
|
Reload deals with the cases where the eliminated form isn't valid. */
|
1434 |
|
|
if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
|
1435 |
|
|
return true;
|
1436 |
|
|
|
1437 |
|
|
/* In mips16 mode, the stack pointer can only address word and doubleword
|
1438 |
|
|
values, nothing smaller. There are two problems here:
|
1439 |
|
|
|
1440 |
|
|
(a) Instantiating virtual registers can introduce new uses of the
|
1441 |
|
|
stack pointer. If these virtual registers are valid addresses,
|
1442 |
|
|
the stack pointer should be too.
|
1443 |
|
|
|
1444 |
|
|
(b) Most uses of the stack pointer are not made explicit until
|
1445 |
|
|
FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
|
1446 |
|
|
We don't know until that stage whether we'll be eliminating to the
|
1447 |
|
|
stack pointer (which needs the restriction) or the hard frame
|
1448 |
|
|
pointer (which doesn't).
|
1449 |
|
|
|
1450 |
|
|
All in all, it seems more consistent to only enforce this restriction
|
1451 |
|
|
during and after reload. */
|
1452 |
|
|
if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
|
1453 |
|
|
return !strict || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
|
1454 |
|
|
|
1455 |
|
|
return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
|
1459 |
|
|
/* Return true if X is a valid base register for the given mode.
|
1460 |
|
|
Allow only hard registers if STRICT. */
|
1461 |
|
|
|
1462 |
|
|
static bool
|
1463 |
|
|
mips_valid_base_register_p (rtx x, enum machine_mode mode, int strict)
|
1464 |
|
|
{
|
1465 |
|
|
if (!strict && GET_CODE (x) == SUBREG)
|
1466 |
|
|
x = SUBREG_REG (x);
|
1467 |
|
|
|
1468 |
|
|
return (REG_P (x)
|
1469 |
|
|
&& mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict));
|
1470 |
|
|
}
|
1471 |
|
|
|
1472 |
|
|
|
1473 |
|
|
/* Return true if symbols of type SYMBOL_TYPE can directly address a value
|
1474 |
|
|
with mode MODE. This is used for both symbolic and LO_SUM addresses. */
|
1475 |
|
|
|
1476 |
|
|
static bool
|
1477 |
|
|
mips_symbolic_address_p (enum mips_symbol_type symbol_type,
|
1478 |
|
|
enum machine_mode mode)
|
1479 |
|
|
{
|
1480 |
|
|
switch (symbol_type)
|
1481 |
|
|
{
|
1482 |
|
|
case SYMBOL_GENERAL:
|
1483 |
|
|
return !TARGET_MIPS16;
|
1484 |
|
|
|
1485 |
|
|
case SYMBOL_SMALL_DATA:
|
1486 |
|
|
return true;
|
1487 |
|
|
|
1488 |
|
|
case SYMBOL_CONSTANT_POOL:
|
1489 |
|
|
/* PC-relative addressing is only available for lw and ld. */
|
1490 |
|
|
return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
|
1491 |
|
|
|
1492 |
|
|
case SYMBOL_GOT_LOCAL:
|
1493 |
|
|
return true;
|
1494 |
|
|
|
1495 |
|
|
case SYMBOL_GOT_GLOBAL:
|
1496 |
|
|
/* The address will have to be loaded from the GOT first. */
|
1497 |
|
|
return false;
|
1498 |
|
|
|
1499 |
|
|
case SYMBOL_GOTOFF_PAGE:
|
1500 |
|
|
case SYMBOL_GOTOFF_GLOBAL:
|
1501 |
|
|
case SYMBOL_GOTOFF_CALL:
|
1502 |
|
|
case SYMBOL_GOTOFF_LOADGP:
|
1503 |
|
|
case SYMBOL_TLS:
|
1504 |
|
|
case SYMBOL_TLSGD:
|
1505 |
|
|
case SYMBOL_TLSLDM:
|
1506 |
|
|
case SYMBOL_DTPREL:
|
1507 |
|
|
case SYMBOL_GOTTPREL:
|
1508 |
|
|
case SYMBOL_TPREL:
|
1509 |
|
|
case SYMBOL_64_HIGH:
|
1510 |
|
|
case SYMBOL_64_MID:
|
1511 |
|
|
case SYMBOL_64_LOW:
|
1512 |
|
|
return true;
|
1513 |
|
|
}
|
1514 |
|
|
gcc_unreachable ();
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
|
1518 |
|
|
/* Return true if X is a valid address for machine mode MODE. If it is,
|
1519 |
|
|
fill in INFO appropriately. STRICT is true if we should only accept
|
1520 |
|
|
hard base registers. */
|
1521 |
|
|
|
1522 |
|
|
static bool
|
1523 |
|
|
mips_classify_address (struct mips_address_info *info, rtx x,
|
1524 |
|
|
enum machine_mode mode, int strict)
|
1525 |
|
|
{
|
1526 |
|
|
switch (GET_CODE (x))
|
1527 |
|
|
{
|
1528 |
|
|
case REG:
|
1529 |
|
|
case SUBREG:
|
1530 |
|
|
info->type = ADDRESS_REG;
|
1531 |
|
|
info->reg = x;
|
1532 |
|
|
info->offset = const0_rtx;
|
1533 |
|
|
return mips_valid_base_register_p (info->reg, mode, strict);
|
1534 |
|
|
|
1535 |
|
|
case PLUS:
|
1536 |
|
|
info->type = ADDRESS_REG;
|
1537 |
|
|
info->reg = XEXP (x, 0);
|
1538 |
|
|
info->offset = XEXP (x, 1);
|
1539 |
|
|
return (mips_valid_base_register_p (info->reg, mode, strict)
|
1540 |
|
|
&& const_arith_operand (info->offset, VOIDmode));
|
1541 |
|
|
|
1542 |
|
|
case LO_SUM:
|
1543 |
|
|
info->type = ADDRESS_LO_SUM;
|
1544 |
|
|
info->reg = XEXP (x, 0);
|
1545 |
|
|
info->offset = XEXP (x, 1);
|
1546 |
|
|
/* We have to trust the creator of the LO_SUM to do something vaguely
|
1547 |
|
|
sane. Target-independent code that creates a LO_SUM should also
|
1548 |
|
|
create and verify the matching HIGH. Target-independent code that
|
1549 |
|
|
adds an offset to a LO_SUM must prove that the offset will not
|
1550 |
|
|
induce a carry. Failure to do either of these things would be
|
1551 |
|
|
a bug, and we are not required to check for it here. The MIPS
|
1552 |
|
|
backend itself should only create LO_SUMs for valid symbolic
|
1553 |
|
|
constants, with the high part being either a HIGH or a copy
|
1554 |
|
|
of _gp. */
|
1555 |
|
|
info->symbol_type = mips_classify_symbolic_expression (info->offset);
|
1556 |
|
|
return (mips_valid_base_register_p (info->reg, mode, strict)
|
1557 |
|
|
&& mips_symbolic_address_p (info->symbol_type, mode)
|
1558 |
|
|
&& mips_lo_relocs[info->symbol_type] != 0);
|
1559 |
|
|
|
1560 |
|
|
case CONST_INT:
|
1561 |
|
|
/* Small-integer addresses don't occur very often, but they
|
1562 |
|
|
are legitimate if $0 is a valid base register. */
|
1563 |
|
|
info->type = ADDRESS_CONST_INT;
|
1564 |
|
|
return !TARGET_MIPS16 && SMALL_INT (x);
|
1565 |
|
|
|
1566 |
|
|
case CONST:
|
1567 |
|
|
case LABEL_REF:
|
1568 |
|
|
case SYMBOL_REF:
|
1569 |
|
|
info->type = ADDRESS_SYMBOLIC;
|
1570 |
|
|
return (mips_symbolic_constant_p (x, &info->symbol_type)
|
1571 |
|
|
&& mips_symbolic_address_p (info->symbol_type, mode)
|
1572 |
|
|
&& !mips_split_p[info->symbol_type]);
|
1573 |
|
|
|
1574 |
|
|
default:
|
1575 |
|
|
return false;
|
1576 |
|
|
}
|
1577 |
|
|
}
|
1578 |
|
|
|
1579 |
|
|
/* Return true if X is a thread-local symbol. */
|
1580 |
|
|
|
1581 |
|
|
static bool
|
1582 |
|
|
mips_tls_operand_p (rtx x)
|
1583 |
|
|
{
|
1584 |
|
|
return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
|
1585 |
|
|
}
|
1586 |
|
|
|
1587 |
|
|
/* Return true if X can not be forced into a constant pool. */
|
1588 |
|
|
|
1589 |
|
|
static int
|
1590 |
|
|
mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
|
1591 |
|
|
{
|
1592 |
|
|
return mips_tls_operand_p (*x);
|
1593 |
|
|
}
|
1594 |
|
|
|
1595 |
|
|
/* Return true if X can not be forced into a constant pool. */
|
1596 |
|
|
|
1597 |
|
|
static bool
|
1598 |
|
|
mips_cannot_force_const_mem (rtx x)
|
1599 |
|
|
{
|
1600 |
|
|
rtx base;
|
1601 |
|
|
HOST_WIDE_INT offset;
|
1602 |
|
|
|
1603 |
|
|
if (!TARGET_MIPS16)
|
1604 |
|
|
{
|
1605 |
|
|
/* As an optimization, reject constants that mips_legitimize_move
|
1606 |
|
|
can expand inline.
|
1607 |
|
|
|
1608 |
|
|
Suppose we have a multi-instruction sequence that loads constant C
|
1609 |
|
|
into register R. If R does not get allocated a hard register, and
|
1610 |
|
|
R is used in an operand that allows both registers and memory
|
1611 |
|
|
references, reload will consider forcing C into memory and using
|
1612 |
|
|
one of the instruction's memory alternatives. Returning false
|
1613 |
|
|
here will force it to use an input reload instead. */
|
1614 |
|
|
if (GET_CODE (x) == CONST_INT)
|
1615 |
|
|
return true;
|
1616 |
|
|
|
1617 |
|
|
mips_split_const (x, &base, &offset);
|
1618 |
|
|
if (symbolic_operand (base, VOIDmode) && SMALL_OPERAND (offset))
|
1619 |
|
|
return true;
|
1620 |
|
|
}
|
1621 |
|
|
|
1622 |
|
|
if (TARGET_HAVE_TLS && for_each_rtx (&x, &mips_tls_symbol_ref_1, 0))
|
1623 |
|
|
return true;
|
1624 |
|
|
|
1625 |
|
|
return false;
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
/* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. MIPS16 uses per-function
|
1629 |
|
|
constant pools, but normal-mode code doesn't need to. */
|
1630 |
|
|
|
1631 |
|
|
static bool
|
1632 |
|
|
mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
|
1633 |
|
|
rtx x ATTRIBUTE_UNUSED)
|
1634 |
|
|
{
|
1635 |
|
|
return !TARGET_MIPS16;
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/* Return the number of instructions needed to load a symbol of the
|
1639 |
|
|
given type into a register. If valid in an address, the same number
|
1640 |
|
|
of instructions are needed for loads and stores. Treat extended
|
1641 |
|
|
mips16 instructions as two instructions. */
|
1642 |
|
|
|
1643 |
|
|
static int
|
1644 |
|
|
mips_symbol_insns (enum mips_symbol_type type)
|
1645 |
|
|
{
|
1646 |
|
|
switch (type)
|
1647 |
|
|
{
|
1648 |
|
|
case SYMBOL_GENERAL:
|
1649 |
|
|
/* In mips16 code, general symbols must be fetched from the
|
1650 |
|
|
constant pool. */
|
1651 |
|
|
if (TARGET_MIPS16)
|
1652 |
|
|
return 0;
|
1653 |
|
|
|
1654 |
|
|
/* When using 64-bit symbols, we need 5 preparatory instructions,
|
1655 |
|
|
such as:
|
1656 |
|
|
|
1657 |
|
|
lui $at,%highest(symbol)
|
1658 |
|
|
daddiu $at,$at,%higher(symbol)
|
1659 |
|
|
dsll $at,$at,16
|
1660 |
|
|
daddiu $at,$at,%hi(symbol)
|
1661 |
|
|
dsll $at,$at,16
|
1662 |
|
|
|
1663 |
|
|
The final address is then $at + %lo(symbol). With 32-bit
|
1664 |
|
|
symbols we just need a preparatory lui. */
|
1665 |
|
|
return (ABI_HAS_64BIT_SYMBOLS ? 6 : 2);
|
1666 |
|
|
|
1667 |
|
|
case SYMBOL_SMALL_DATA:
|
1668 |
|
|
return 1;
|
1669 |
|
|
|
1670 |
|
|
case SYMBOL_CONSTANT_POOL:
|
1671 |
|
|
/* This case is for mips16 only. Assume we'll need an
|
1672 |
|
|
extended instruction. */
|
1673 |
|
|
return 2;
|
1674 |
|
|
|
1675 |
|
|
case SYMBOL_GOT_LOCAL:
|
1676 |
|
|
case SYMBOL_GOT_GLOBAL:
|
1677 |
|
|
/* Unless -funit-at-a-time is in effect, we can't be sure whether
|
1678 |
|
|
the local/global classification is accurate. See override_options
|
1679 |
|
|
for details.
|
1680 |
|
|
|
1681 |
|
|
The worst cases are:
|
1682 |
|
|
|
1683 |
|
|
(1) For local symbols when generating o32 or o64 code. The assembler
|
1684 |
|
|
will use:
|
1685 |
|
|
|
1686 |
|
|
lw $at,%got(symbol)
|
1687 |
|
|
nop
|
1688 |
|
|
|
1689 |
|
|
...and the final address will be $at + %lo(symbol).
|
1690 |
|
|
|
1691 |
|
|
(2) For global symbols when -mxgot. The assembler will use:
|
1692 |
|
|
|
1693 |
|
|
lui $at,%got_hi(symbol)
|
1694 |
|
|
(d)addu $at,$at,$gp
|
1695 |
|
|
|
1696 |
|
|
...and the final address will be $at + %got_lo(symbol). */
|
1697 |
|
|
return 3;
|
1698 |
|
|
|
1699 |
|
|
case SYMBOL_GOTOFF_PAGE:
|
1700 |
|
|
case SYMBOL_GOTOFF_GLOBAL:
|
1701 |
|
|
case SYMBOL_GOTOFF_CALL:
|
1702 |
|
|
case SYMBOL_GOTOFF_LOADGP:
|
1703 |
|
|
case SYMBOL_64_HIGH:
|
1704 |
|
|
case SYMBOL_64_MID:
|
1705 |
|
|
case SYMBOL_64_LOW:
|
1706 |
|
|
case SYMBOL_TLSGD:
|
1707 |
|
|
case SYMBOL_TLSLDM:
|
1708 |
|
|
case SYMBOL_DTPREL:
|
1709 |
|
|
case SYMBOL_GOTTPREL:
|
1710 |
|
|
case SYMBOL_TPREL:
|
1711 |
|
|
/* Check whether the offset is a 16- or 32-bit value. */
|
1712 |
|
|
return mips_split_p[type] ? 2 : 1;
|
1713 |
|
|
|
1714 |
|
|
case SYMBOL_TLS:
|
1715 |
|
|
/* We don't treat a bare TLS symbol as a constant. */
|
1716 |
|
|
return 0;
|
1717 |
|
|
}
|
1718 |
|
|
gcc_unreachable ();
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
/* Return true if X is a legitimate $sp-based address for mode MDOE. */
|
1722 |
|
|
|
1723 |
|
|
bool
|
1724 |
|
|
mips_stack_address_p (rtx x, enum machine_mode mode)
|
1725 |
|
|
{
|
1726 |
|
|
struct mips_address_info addr;
|
1727 |
|
|
|
1728 |
|
|
return (mips_classify_address (&addr, x, mode, false)
|
1729 |
|
|
&& addr.type == ADDRESS_REG
|
1730 |
|
|
&& addr.reg == stack_pointer_rtx);
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
/* Return true if a value at OFFSET bytes from BASE can be accessed
|
1734 |
|
|
using an unextended mips16 instruction. MODE is the mode of the
|
1735 |
|
|
value.
|
1736 |
|
|
|
1737 |
|
|
Usually the offset in an unextended instruction is a 5-bit field.
|
1738 |
|
|
The offset is unsigned and shifted left once for HIs, twice
|
1739 |
|
|
for SIs, and so on. An exception is SImode accesses off the
|
1740 |
|
|
stack pointer, which have an 8-bit immediate field. */
|
1741 |
|
|
|
1742 |
|
|
static bool
|
1743 |
|
|
mips16_unextended_reference_p (enum machine_mode mode, rtx base, rtx offset)
|
1744 |
|
|
{
|
1745 |
|
|
if (TARGET_MIPS16
|
1746 |
|
|
&& GET_CODE (offset) == CONST_INT
|
1747 |
|
|
&& INTVAL (offset) >= 0
|
1748 |
|
|
&& (INTVAL (offset) & (GET_MODE_SIZE (mode) - 1)) == 0)
|
1749 |
|
|
{
|
1750 |
|
|
if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
|
1751 |
|
|
return INTVAL (offset) < 256 * GET_MODE_SIZE (mode);
|
1752 |
|
|
return INTVAL (offset) < 32 * GET_MODE_SIZE (mode);
|
1753 |
|
|
}
|
1754 |
|
|
return false;
|
1755 |
|
|
}
|
1756 |
|
|
|
1757 |
|
|
|
1758 |
|
|
/* Return the number of instructions needed to load or store a value
|
1759 |
|
|
of mode MODE at X. Return 0 if X isn't valid for MODE.
|
1760 |
|
|
|
1761 |
|
|
For mips16 code, count extended instructions as two instructions. */
|
1762 |
|
|
|
1763 |
|
|
int
|
1764 |
|
|
mips_address_insns (rtx x, enum machine_mode mode)
|
1765 |
|
|
{
|
1766 |
|
|
struct mips_address_info addr;
|
1767 |
|
|
int factor;
|
1768 |
|
|
|
1769 |
|
|
if (mode == BLKmode)
|
1770 |
|
|
/* BLKmode is used for single unaligned loads and stores. */
|
1771 |
|
|
factor = 1;
|
1772 |
|
|
else
|
1773 |
|
|
/* Each word of a multi-word value will be accessed individually. */
|
1774 |
|
|
factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
1775 |
|
|
|
1776 |
|
|
if (mips_classify_address (&addr, x, mode, false))
|
1777 |
|
|
switch (addr.type)
|
1778 |
|
|
{
|
1779 |
|
|
case ADDRESS_REG:
|
1780 |
|
|
if (TARGET_MIPS16
|
1781 |
|
|
&& !mips16_unextended_reference_p (mode, addr.reg, addr.offset))
|
1782 |
|
|
return factor * 2;
|
1783 |
|
|
return factor;
|
1784 |
|
|
|
1785 |
|
|
case ADDRESS_LO_SUM:
|
1786 |
|
|
return (TARGET_MIPS16 ? factor * 2 : factor);
|
1787 |
|
|
|
1788 |
|
|
case ADDRESS_CONST_INT:
|
1789 |
|
|
return factor;
|
1790 |
|
|
|
1791 |
|
|
case ADDRESS_SYMBOLIC:
|
1792 |
|
|
return factor * mips_symbol_insns (addr.symbol_type);
|
1793 |
|
|
}
|
1794 |
|
|
return 0;
|
1795 |
|
|
}
|
1796 |
|
|
|
1797 |
|
|
|
1798 |
|
|
/* Likewise for constant X. */
|
1799 |
|
|
|
1800 |
|
|
int
|
1801 |
|
|
mips_const_insns (rtx x)
|
1802 |
|
|
{
|
1803 |
|
|
struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
|
1804 |
|
|
enum mips_symbol_type symbol_type;
|
1805 |
|
|
HOST_WIDE_INT offset;
|
1806 |
|
|
|
1807 |
|
|
switch (GET_CODE (x))
|
1808 |
|
|
{
|
1809 |
|
|
case HIGH:
|
1810 |
|
|
if (TARGET_MIPS16
|
1811 |
|
|
|| !mips_symbolic_constant_p (XEXP (x, 0), &symbol_type)
|
1812 |
|
|
|| !mips_split_p[symbol_type])
|
1813 |
|
|
return 0;
|
1814 |
|
|
|
1815 |
|
|
return 1;
|
1816 |
|
|
|
1817 |
|
|
case CONST_INT:
|
1818 |
|
|
if (TARGET_MIPS16)
|
1819 |
|
|
/* Unsigned 8-bit constants can be loaded using an unextended
|
1820 |
|
|
LI instruction. Unsigned 16-bit constants can be loaded
|
1821 |
|
|
using an extended LI. Negative constants must be loaded
|
1822 |
|
|
using LI and then negated. */
|
1823 |
|
|
return (INTVAL (x) >= 0 && INTVAL (x) < 256 ? 1
|
1824 |
|
|
: SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
|
1825 |
|
|
: INTVAL (x) > -256 && INTVAL (x) < 0 ? 2
|
1826 |
|
|
: SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
|
1827 |
|
|
: 0);
|
1828 |
|
|
|
1829 |
|
|
return mips_build_integer (codes, INTVAL (x));
|
1830 |
|
|
|
1831 |
|
|
case CONST_DOUBLE:
|
1832 |
|
|
case CONST_VECTOR:
|
1833 |
|
|
return (!TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0);
|
1834 |
|
|
|
1835 |
|
|
case CONST:
|
1836 |
|
|
if (CONST_GP_P (x))
|
1837 |
|
|
return 1;
|
1838 |
|
|
|
1839 |
|
|
/* See if we can refer to X directly. */
|
1840 |
|
|
if (mips_symbolic_constant_p (x, &symbol_type))
|
1841 |
|
|
return mips_symbol_insns (symbol_type);
|
1842 |
|
|
|
1843 |
|
|
/* Otherwise try splitting the constant into a base and offset.
|
1844 |
|
|
16-bit offsets can be added using an extra addiu. Larger offsets
|
1845 |
|
|
must be calculated separately and then added to the base. */
|
1846 |
|
|
mips_split_const (x, &x, &offset);
|
1847 |
|
|
if (offset != 0)
|
1848 |
|
|
{
|
1849 |
|
|
int n = mips_const_insns (x);
|
1850 |
|
|
if (n != 0)
|
1851 |
|
|
{
|
1852 |
|
|
if (SMALL_OPERAND (offset))
|
1853 |
|
|
return n + 1;
|
1854 |
|
|
else
|
1855 |
|
|
return n + 1 + mips_build_integer (codes, offset);
|
1856 |
|
|
}
|
1857 |
|
|
}
|
1858 |
|
|
return 0;
|
1859 |
|
|
|
1860 |
|
|
case SYMBOL_REF:
|
1861 |
|
|
case LABEL_REF:
|
1862 |
|
|
return mips_symbol_insns (mips_classify_symbol (x));
|
1863 |
|
|
|
1864 |
|
|
default:
|
1865 |
|
|
return 0;
|
1866 |
|
|
}
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
|
1870 |
|
|
/* Return the number of instructions needed for memory reference X.
|
1871 |
|
|
Count extended mips16 instructions as two instructions. */
|
1872 |
|
|
|
1873 |
|
|
int
|
1874 |
|
|
mips_fetch_insns (rtx x)
|
1875 |
|
|
{
|
1876 |
|
|
gcc_assert (MEM_P (x));
|
1877 |
|
|
return mips_address_insns (XEXP (x, 0), GET_MODE (x));
|
1878 |
|
|
}
|
1879 |
|
|
|
1880 |
|
|
|
1881 |
|
|
/* Return the number of instructions needed for an integer division. */
|
1882 |
|
|
|
1883 |
|
|
int
|
1884 |
|
|
mips_idiv_insns (void)
|
1885 |
|
|
{
|
1886 |
|
|
int count;
|
1887 |
|
|
|
1888 |
|
|
count = 1;
|
1889 |
|
|
if (TARGET_CHECK_ZERO_DIV)
|
1890 |
|
|
{
|
1891 |
|
|
if (GENERATE_DIVIDE_TRAPS)
|
1892 |
|
|
count++;
|
1893 |
|
|
else
|
1894 |
|
|
count += 2;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
|
1898 |
|
|
count++;
|
1899 |
|
|
return count;
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
/* This function is used to implement GO_IF_LEGITIMATE_ADDRESS. It
|
1903 |
|
|
returns a nonzero value if X is a legitimate address for a memory
|
1904 |
|
|
operand of the indicated MODE. STRICT is nonzero if this function
|
1905 |
|
|
is called during reload. */
|
1906 |
|
|
|
1907 |
|
|
bool
|
1908 |
|
|
mips_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
|
1909 |
|
|
{
|
1910 |
|
|
struct mips_address_info addr;
|
1911 |
|
|
|
1912 |
|
|
return mips_classify_address (&addr, x, mode, strict);
|
1913 |
|
|
}
|
1914 |
|
|
|
1915 |
|
|
|
1916 |
|
|
/* Copy VALUE to a register and return that register. If new psuedos
|
1917 |
|
|
are allowed, copy it into a new register, otherwise use DEST. */
|
1918 |
|
|
|
1919 |
|
|
static rtx
|
1920 |
|
|
mips_force_temporary (rtx dest, rtx value)
|
1921 |
|
|
{
|
1922 |
|
|
if (!no_new_pseudos)
|
1923 |
|
|
return force_reg (Pmode, value);
|
1924 |
|
|
else
|
1925 |
|
|
{
|
1926 |
|
|
emit_move_insn (copy_rtx (dest), value);
|
1927 |
|
|
return dest;
|
1928 |
|
|
}
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
|
1932 |
|
|
/* Return a LO_SUM expression for ADDR. TEMP is as for mips_force_temporary
|
1933 |
|
|
and is used to load the high part into a register. */
|
1934 |
|
|
|
1935 |
|
|
rtx
|
1936 |
|
|
mips_split_symbol (rtx temp, rtx addr)
|
1937 |
|
|
{
|
1938 |
|
|
rtx high;
|
1939 |
|
|
|
1940 |
|
|
if (TARGET_MIPS16)
|
1941 |
|
|
high = mips16_gp_pseudo_reg ();
|
1942 |
|
|
else
|
1943 |
|
|
high = mips_force_temporary (temp, gen_rtx_HIGH (Pmode, copy_rtx (addr)));
|
1944 |
|
|
return gen_rtx_LO_SUM (Pmode, high, addr);
|
1945 |
|
|
}
|
1946 |
|
|
|
1947 |
|
|
|
1948 |
|
|
/* Return an UNSPEC address with underlying address ADDRESS and symbol
|
1949 |
|
|
type SYMBOL_TYPE. */
|
1950 |
|
|
|
1951 |
|
|
rtx
|
1952 |
|
|
mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
|
1953 |
|
|
{
|
1954 |
|
|
rtx base;
|
1955 |
|
|
HOST_WIDE_INT offset;
|
1956 |
|
|
|
1957 |
|
|
mips_split_const (address, &base, &offset);
|
1958 |
|
|
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
|
1959 |
|
|
UNSPEC_ADDRESS_FIRST + symbol_type);
|
1960 |
|
|
return plus_constant (gen_rtx_CONST (Pmode, base), offset);
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
|
1964 |
|
|
/* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
|
1965 |
|
|
high part to BASE and return the result. Just return BASE otherwise.
|
1966 |
|
|
TEMP is available as a temporary register if needed.
|
1967 |
|
|
|
1968 |
|
|
The returned expression can be used as the first operand to a LO_SUM. */
|
1969 |
|
|
|
1970 |
|
|
static rtx
|
1971 |
|
|
mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
|
1972 |
|
|
enum mips_symbol_type symbol_type)
|
1973 |
|
|
{
|
1974 |
|
|
if (mips_split_p[symbol_type])
|
1975 |
|
|
{
|
1976 |
|
|
addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
|
1977 |
|
|
addr = mips_force_temporary (temp, addr);
|
1978 |
|
|
return mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
|
1979 |
|
|
}
|
1980 |
|
|
return base;
|
1981 |
|
|
}
|
1982 |
|
|
|
1983 |
|
|
|
1984 |
|
|
/* Return a legitimate address for REG + OFFSET. TEMP is as for
|
1985 |
|
|
mips_force_temporary; it is only needed when OFFSET is not a
|
1986 |
|
|
SMALL_OPERAND. */
|
1987 |
|
|
|
1988 |
|
|
static rtx
|
1989 |
|
|
mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
|
1990 |
|
|
{
|
1991 |
|
|
if (!SMALL_OPERAND (offset))
|
1992 |
|
|
{
|
1993 |
|
|
rtx high;
|
1994 |
|
|
if (TARGET_MIPS16)
|
1995 |
|
|
{
|
1996 |
|
|
/* Load the full offset into a register so that we can use
|
1997 |
|
|
an unextended instruction for the address itself. */
|
1998 |
|
|
high = GEN_INT (offset);
|
1999 |
|
|
offset = 0;
|
2000 |
|
|
}
|
2001 |
|
|
else
|
2002 |
|
|
{
|
2003 |
|
|
/* Leave OFFSET as a 16-bit offset and put the excess in HIGH. */
|
2004 |
|
|
high = GEN_INT (CONST_HIGH_PART (offset));
|
2005 |
|
|
offset = CONST_LOW_PART (offset);
|
2006 |
|
|
}
|
2007 |
|
|
high = mips_force_temporary (temp, high);
|
2008 |
|
|
reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
|
2009 |
|
|
}
|
2010 |
|
|
return plus_constant (reg, offset);
|
2011 |
|
|
}
|
2012 |
|
|
|
2013 |
|
|
/* Emit a call to __tls_get_addr. SYM is the TLS symbol we are
|
2014 |
|
|
referencing, and TYPE is the symbol type to use (either global
|
2015 |
|
|
dynamic or local dynamic). V0 is an RTX for the return value
|
2016 |
|
|
location. The entire insn sequence is returned. */
|
2017 |
|
|
|
2018 |
|
|
static GTY(()) rtx mips_tls_symbol;
|
2019 |
|
|
|
2020 |
|
|
static rtx
|
2021 |
|
|
mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
|
2022 |
|
|
{
|
2023 |
|
|
rtx insn, loc, tga, a0;
|
2024 |
|
|
|
2025 |
|
|
a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
|
2026 |
|
|
|
2027 |
|
|
if (!mips_tls_symbol)
|
2028 |
|
|
mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
|
2029 |
|
|
|
2030 |
|
|
loc = mips_unspec_address (sym, type);
|
2031 |
|
|
|
2032 |
|
|
start_sequence ();
|
2033 |
|
|
|
2034 |
|
|
emit_insn (gen_rtx_SET (Pmode, a0,
|
2035 |
|
|
gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
|
2036 |
|
|
tga = gen_rtx_MEM (Pmode, mips_tls_symbol);
|
2037 |
|
|
insn = emit_call_insn (gen_call_value (v0, tga, const0_rtx, const0_rtx));
|
2038 |
|
|
CONST_OR_PURE_CALL_P (insn) = 1;
|
2039 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), v0);
|
2040 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
|
2041 |
|
|
insn = get_insns ();
|
2042 |
|
|
|
2043 |
|
|
end_sequence ();
|
2044 |
|
|
|
2045 |
|
|
return insn;
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
/* Generate the code to access LOC, a thread local SYMBOL_REF. The
|
2049 |
|
|
return value will be a valid address and move_operand (either a REG
|
2050 |
|
|
or a LO_SUM). */
|
2051 |
|
|
|
2052 |
|
|
static rtx
|
2053 |
|
|
mips_legitimize_tls_address (rtx loc)
|
2054 |
|
|
{
|
2055 |
|
|
rtx dest, insn, v0, v1, tmp1, tmp2, eqv;
|
2056 |
|
|
enum tls_model model;
|
2057 |
|
|
|
2058 |
|
|
v0 = gen_rtx_REG (Pmode, GP_RETURN);
|
2059 |
|
|
v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);
|
2060 |
|
|
|
2061 |
|
|
model = SYMBOL_REF_TLS_MODEL (loc);
|
2062 |
|
|
/* Only TARGET_ABICALLS code can have more than one module; other
|
2063 |
|
|
code must be be static and should not use a GOT. All TLS models
|
2064 |
|
|
reduce to local exec in this situation. */
|
2065 |
|
|
if (!TARGET_ABICALLS)
|
2066 |
|
|
model = TLS_MODEL_LOCAL_EXEC;
|
2067 |
|
|
|
2068 |
|
|
switch (model)
|
2069 |
|
|
{
|
2070 |
|
|
case TLS_MODEL_GLOBAL_DYNAMIC:
|
2071 |
|
|
insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
|
2072 |
|
|
dest = gen_reg_rtx (Pmode);
|
2073 |
|
|
emit_libcall_block (insn, dest, v0, loc);
|
2074 |
|
|
break;
|
2075 |
|
|
|
2076 |
|
|
case TLS_MODEL_LOCAL_DYNAMIC:
|
2077 |
|
|
insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
|
2078 |
|
|
tmp1 = gen_reg_rtx (Pmode);
|
2079 |
|
|
|
2080 |
|
|
/* Attach a unique REG_EQUIV, to allow the RTL optimizers to
|
2081 |
|
|
share the LDM result with other LD model accesses. */
|
2082 |
|
|
eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
|
2083 |
|
|
UNSPEC_TLS_LDM);
|
2084 |
|
|
emit_libcall_block (insn, tmp1, v0, eqv);
|
2085 |
|
|
|
2086 |
|
|
tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
|
2087 |
|
|
dest = gen_rtx_LO_SUM (Pmode, tmp2,
|
2088 |
|
|
mips_unspec_address (loc, SYMBOL_DTPREL));
|
2089 |
|
|
break;
|
2090 |
|
|
|
2091 |
|
|
case TLS_MODEL_INITIAL_EXEC:
|
2092 |
|
|
tmp1 = gen_reg_rtx (Pmode);
|
2093 |
|
|
tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
|
2094 |
|
|
if (Pmode == DImode)
|
2095 |
|
|
{
|
2096 |
|
|
emit_insn (gen_tls_get_tp_di (v1));
|
2097 |
|
|
emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
|
2098 |
|
|
}
|
2099 |
|
|
else
|
2100 |
|
|
{
|
2101 |
|
|
emit_insn (gen_tls_get_tp_si (v1));
|
2102 |
|
|
emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
|
2103 |
|
|
}
|
2104 |
|
|
dest = gen_reg_rtx (Pmode);
|
2105 |
|
|
emit_insn (gen_add3_insn (dest, tmp1, v1));
|
2106 |
|
|
break;
|
2107 |
|
|
|
2108 |
|
|
case TLS_MODEL_LOCAL_EXEC:
|
2109 |
|
|
if (Pmode == DImode)
|
2110 |
|
|
emit_insn (gen_tls_get_tp_di (v1));
|
2111 |
|
|
else
|
2112 |
|
|
emit_insn (gen_tls_get_tp_si (v1));
|
2113 |
|
|
|
2114 |
|
|
tmp1 = mips_unspec_offset_high (NULL, v1, loc, SYMBOL_TPREL);
|
2115 |
|
|
dest = gen_rtx_LO_SUM (Pmode, tmp1,
|
2116 |
|
|
mips_unspec_address (loc, SYMBOL_TPREL));
|
2117 |
|
|
break;
|
2118 |
|
|
|
2119 |
|
|
default:
|
2120 |
|
|
gcc_unreachable ();
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
return dest;
|
2124 |
|
|
}
|
2125 |
|
|
|
2126 |
|
|
/* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
|
2127 |
|
|
be legitimized in a way that the generic machinery might not expect,
|
2128 |
|
|
put the new address in *XLOC and return true. MODE is the mode of
|
2129 |
|
|
the memory being accessed. */
|
2130 |
|
|
|
2131 |
|
|
bool
|
2132 |
|
|
mips_legitimize_address (rtx *xloc, enum machine_mode mode)
|
2133 |
|
|
{
|
2134 |
|
|
enum mips_symbol_type symbol_type;
|
2135 |
|
|
|
2136 |
|
|
if (mips_tls_operand_p (*xloc))
|
2137 |
|
|
{
|
2138 |
|
|
*xloc = mips_legitimize_tls_address (*xloc);
|
2139 |
|
|
return true;
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
/* See if the address can split into a high part and a LO_SUM. */
|
2143 |
|
|
if (mips_symbolic_constant_p (*xloc, &symbol_type)
|
2144 |
|
|
&& mips_symbolic_address_p (symbol_type, mode)
|
2145 |
|
|
&& mips_split_p[symbol_type])
|
2146 |
|
|
{
|
2147 |
|
|
*xloc = mips_split_symbol (0, *xloc);
|
2148 |
|
|
return true;
|
2149 |
|
|
}
|
2150 |
|
|
|
2151 |
|
|
if (GET_CODE (*xloc) == PLUS && GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
|
2152 |
|
|
{
|
2153 |
|
|
/* Handle REG + CONSTANT using mips_add_offset. */
|
2154 |
|
|
rtx reg;
|
2155 |
|
|
|
2156 |
|
|
reg = XEXP (*xloc, 0);
|
2157 |
|
|
if (!mips_valid_base_register_p (reg, mode, 0))
|
2158 |
|
|
reg = copy_to_mode_reg (Pmode, reg);
|
2159 |
|
|
*xloc = mips_add_offset (0, reg, INTVAL (XEXP (*xloc, 1)));
|
2160 |
|
|
return true;
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
return false;
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
|
2167 |
|
|
/* Subroutine of mips_build_integer (with the same interface).
|
2168 |
|
|
Assume that the final action in the sequence should be a left shift. */
|
2169 |
|
|
|
2170 |
|
|
static unsigned int
|
2171 |
|
|
mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
|
2172 |
|
|
{
|
2173 |
|
|
unsigned int i, shift;
|
2174 |
|
|
|
2175 |
|
|
/* Shift VALUE right until its lowest bit is set. Shift arithmetically
|
2176 |
|
|
since signed numbers are easier to load than unsigned ones. */
|
2177 |
|
|
shift = 0;
|
2178 |
|
|
while ((value & 1) == 0)
|
2179 |
|
|
value /= 2, shift++;
|
2180 |
|
|
|
2181 |
|
|
i = mips_build_integer (codes, value);
|
2182 |
|
|
codes[i].code = ASHIFT;
|
2183 |
|
|
codes[i].value = shift;
|
2184 |
|
|
return i + 1;
|
2185 |
|
|
}
|
2186 |
|
|
|
2187 |
|
|
|
2188 |
|
|
/* As for mips_build_shift, but assume that the final action will be
|
2189 |
|
|
an IOR or PLUS operation. */
|
2190 |
|
|
|
2191 |
|
|
static unsigned int
|
2192 |
|
|
mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
|
2193 |
|
|
{
|
2194 |
|
|
unsigned HOST_WIDE_INT high;
|
2195 |
|
|
unsigned int i;
|
2196 |
|
|
|
2197 |
|
|
high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
|
2198 |
|
|
if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
|
2199 |
|
|
{
|
2200 |
|
|
/* The constant is too complex to load with a simple lui/ori pair
|
2201 |
|
|
so our goal is to clear as many trailing zeros as possible.
|
2202 |
|
|
In this case, we know bit 16 is set and that the low 16 bits
|
2203 |
|
|
form a negative number. If we subtract that number from VALUE,
|
2204 |
|
|
we will clear at least the lowest 17 bits, maybe more. */
|
2205 |
|
|
i = mips_build_integer (codes, CONST_HIGH_PART (value));
|
2206 |
|
|
codes[i].code = PLUS;
|
2207 |
|
|
codes[i].value = CONST_LOW_PART (value);
|
2208 |
|
|
}
|
2209 |
|
|
else
|
2210 |
|
|
{
|
2211 |
|
|
i = mips_build_integer (codes, high);
|
2212 |
|
|
codes[i].code = IOR;
|
2213 |
|
|
codes[i].value = value & 0xffff;
|
2214 |
|
|
}
|
2215 |
|
|
return i + 1;
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
|
2219 |
|
|
/* Fill CODES with a sequence of rtl operations to load VALUE.
|
2220 |
|
|
Return the number of operations needed. */
|
2221 |
|
|
|
2222 |
|
|
static unsigned int
|
2223 |
|
|
mips_build_integer (struct mips_integer_op *codes,
|
2224 |
|
|
unsigned HOST_WIDE_INT value)
|
2225 |
|
|
{
|
2226 |
|
|
if (SMALL_OPERAND (value)
|
2227 |
|
|
|| SMALL_OPERAND_UNSIGNED (value)
|
2228 |
|
|
|| LUI_OPERAND (value))
|
2229 |
|
|
{
|
2230 |
|
|
/* The value can be loaded with a single instruction. */
|
2231 |
|
|
codes[0].code = UNKNOWN;
|
2232 |
|
|
codes[0].value = value;
|
2233 |
|
|
return 1;
|
2234 |
|
|
}
|
2235 |
|
|
else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
|
2236 |
|
|
{
|
2237 |
|
|
/* Either the constant is a simple LUI/ORI combination or its
|
2238 |
|
|
lowest bit is set. We don't want to shift in this case. */
|
2239 |
|
|
return mips_build_lower (codes, value);
|
2240 |
|
|
}
|
2241 |
|
|
else if ((value & 0xffff) == 0)
|
2242 |
|
|
{
|
2243 |
|
|
/* The constant will need at least three actions. The lowest
|
2244 |
|
|
16 bits are clear, so the final action will be a shift. */
|
2245 |
|
|
return mips_build_shift (codes, value);
|
2246 |
|
|
}
|
2247 |
|
|
else
|
2248 |
|
|
{
|
2249 |
|
|
/* The final action could be a shift, add or inclusive OR.
|
2250 |
|
|
Rather than use a complex condition to select the best
|
2251 |
|
|
approach, try both mips_build_shift and mips_build_lower
|
2252 |
|
|
and pick the one that gives the shortest sequence.
|
2253 |
|
|
Note that this case is only used once per constant. */
|
2254 |
|
|
struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
|
2255 |
|
|
unsigned int cost, alt_cost;
|
2256 |
|
|
|
2257 |
|
|
cost = mips_build_shift (codes, value);
|
2258 |
|
|
alt_cost = mips_build_lower (alt_codes, value);
|
2259 |
|
|
if (alt_cost < cost)
|
2260 |
|
|
{
|
2261 |
|
|
memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
|
2262 |
|
|
cost = alt_cost;
|
2263 |
|
|
}
|
2264 |
|
|
return cost;
|
2265 |
|
|
}
|
2266 |
|
|
}
|
2267 |
|
|
|
2268 |
|
|
|
2269 |
|
|
/* Load VALUE into DEST, using TEMP as a temporary register if need be. */
|
2270 |
|
|
|
2271 |
|
|
void
|
2272 |
|
|
mips_move_integer (rtx dest, rtx temp, unsigned HOST_WIDE_INT value)
|
2273 |
|
|
{
|
2274 |
|
|
struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
|
2275 |
|
|
enum machine_mode mode;
|
2276 |
|
|
unsigned int i, cost;
|
2277 |
|
|
rtx x;
|
2278 |
|
|
|
2279 |
|
|
mode = GET_MODE (dest);
|
2280 |
|
|
cost = mips_build_integer (codes, value);
|
2281 |
|
|
|
2282 |
|
|
/* Apply each binary operation to X. Invariant: X is a legitimate
|
2283 |
|
|
source operand for a SET pattern. */
|
2284 |
|
|
x = GEN_INT (codes[0].value);
|
2285 |
|
|
for (i = 1; i < cost; i++)
|
2286 |
|
|
{
|
2287 |
|
|
if (no_new_pseudos)
|
2288 |
|
|
{
|
2289 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp, x));
|
2290 |
|
|
x = temp;
|
2291 |
|
|
}
|
2292 |
|
|
else
|
2293 |
|
|
x = force_reg (mode, x);
|
2294 |
|
|
x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, dest, x));
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
|
2301 |
|
|
/* Subroutine of mips_legitimize_move. Move constant SRC into register
|
2302 |
|
|
DEST given that SRC satisfies immediate_operand but doesn't satisfy
|
2303 |
|
|
move_operand. */
|
2304 |
|
|
|
2305 |
|
|
static void
|
2306 |
|
|
mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
|
2307 |
|
|
{
|
2308 |
|
|
rtx base;
|
2309 |
|
|
HOST_WIDE_INT offset;
|
2310 |
|
|
|
2311 |
|
|
/* Split moves of big integers into smaller pieces. */
|
2312 |
|
|
if (splittable_const_int_operand (src, mode))
|
2313 |
|
|
{
|
2314 |
|
|
mips_move_integer (dest, dest, INTVAL (src));
|
2315 |
|
|
return;
|
2316 |
|
|
}
|
2317 |
|
|
|
2318 |
|
|
/* Split moves of symbolic constants into high/low pairs. */
|
2319 |
|
|
if (splittable_symbolic_operand (src, mode))
|
2320 |
|
|
{
|
2321 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, dest, mips_split_symbol (dest, src)));
|
2322 |
|
|
return;
|
2323 |
|
|
}
|
2324 |
|
|
|
2325 |
|
|
if (mips_tls_operand_p (src))
|
2326 |
|
|
{
|
2327 |
|
|
emit_move_insn (dest, mips_legitimize_tls_address (src));
|
2328 |
|
|
return;
|
2329 |
|
|
}
|
2330 |
|
|
|
2331 |
|
|
/* If we have (const (plus symbol offset)), load the symbol first
|
2332 |
|
|
and then add in the offset. This is usually better than forcing
|
2333 |
|
|
the constant into memory, at least in non-mips16 code. */
|
2334 |
|
|
mips_split_const (src, &base, &offset);
|
2335 |
|
|
if (!TARGET_MIPS16
|
2336 |
|
|
&& offset != 0
|
2337 |
|
|
&& (!no_new_pseudos || SMALL_OPERAND (offset)))
|
2338 |
|
|
{
|
2339 |
|
|
base = mips_force_temporary (dest, base);
|
2340 |
|
|
emit_move_insn (dest, mips_add_offset (0, base, offset));
|
2341 |
|
|
return;
|
2342 |
|
|
}
|
2343 |
|
|
|
2344 |
|
|
src = force_const_mem (mode, src);
|
2345 |
|
|
|
2346 |
|
|
/* When using explicit relocs, constant pool references are sometimes
|
2347 |
|
|
not legitimate addresses. */
|
2348 |
|
|
if (!memory_operand (src, VOIDmode))
|
2349 |
|
|
src = replace_equiv_address (src, mips_split_symbol (dest, XEXP (src, 0)));
|
2350 |
|
|
emit_move_insn (dest, src);
|
2351 |
|
|
}
|
2352 |
|
|
|
2353 |
|
|
|
2354 |
|
|
/* If (set DEST SRC) is not a valid instruction, emit an equivalent
|
2355 |
|
|
sequence that is valid. */
|
2356 |
|
|
|
2357 |
|
|
bool
|
2358 |
|
|
mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
|
2359 |
|
|
{
|
2360 |
|
|
if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
|
2361 |
|
|
{
|
2362 |
|
|
emit_move_insn (dest, force_reg (mode, src));
|
2363 |
|
|
return true;
|
2364 |
|
|
}
|
2365 |
|
|
|
2366 |
|
|
/* Check for individual, fully-reloaded mflo and mfhi instructions. */
|
2367 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
|
2368 |
|
|
&& REG_P (src) && MD_REG_P (REGNO (src))
|
2369 |
|
|
&& REG_P (dest) && GP_REG_P (REGNO (dest)))
|
2370 |
|
|
{
|
2371 |
|
|
int other_regno = REGNO (src) == HI_REGNUM ? LO_REGNUM : HI_REGNUM;
|
2372 |
|
|
if (GET_MODE_SIZE (mode) <= 4)
|
2373 |
|
|
emit_insn (gen_mfhilo_si (gen_rtx_REG (SImode, REGNO (dest)),
|
2374 |
|
|
gen_rtx_REG (SImode, REGNO (src)),
|
2375 |
|
|
gen_rtx_REG (SImode, other_regno)));
|
2376 |
|
|
else
|
2377 |
|
|
emit_insn (gen_mfhilo_di (gen_rtx_REG (DImode, REGNO (dest)),
|
2378 |
|
|
gen_rtx_REG (DImode, REGNO (src)),
|
2379 |
|
|
gen_rtx_REG (DImode, other_regno)));
|
2380 |
|
|
return true;
|
2381 |
|
|
}
|
2382 |
|
|
|
2383 |
|
|
/* We need to deal with constants that would be legitimate
|
2384 |
|
|
immediate_operands but not legitimate move_operands. */
|
2385 |
|
|
if (CONSTANT_P (src) && !move_operand (src, mode))
|
2386 |
|
|
{
|
2387 |
|
|
mips_legitimize_const_move (mode, dest, src);
|
2388 |
|
|
set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
|
2389 |
|
|
return true;
|
2390 |
|
|
}
|
2391 |
|
|
return false;
|
2392 |
|
|
}
|
2393 |
|
|
|
2394 |
|
|
/* We need a lot of little routines to check constant values on the
|
2395 |
|
|
mips16. These are used to figure out how long the instruction will
|
2396 |
|
|
be. It would be much better to do this using constraints, but
|
2397 |
|
|
there aren't nearly enough letters available. */
|
2398 |
|
|
|
2399 |
|
|
static int
|
2400 |
|
|
m16_check_op (rtx op, int low, int high, int mask)
|
2401 |
|
|
{
|
2402 |
|
|
return (GET_CODE (op) == CONST_INT
|
2403 |
|
|
&& INTVAL (op) >= low
|
2404 |
|
|
&& INTVAL (op) <= high
|
2405 |
|
|
&& (INTVAL (op) & mask) == 0);
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
int
|
2409 |
|
|
m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2410 |
|
|
{
|
2411 |
|
|
return m16_check_op (op, 0x1, 0x8, 0);
|
2412 |
|
|
}
|
2413 |
|
|
|
2414 |
|
|
int
|
2415 |
|
|
m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2416 |
|
|
{
|
2417 |
|
|
return m16_check_op (op, - 0x8, 0x7, 0);
|
2418 |
|
|
}
|
2419 |
|
|
|
2420 |
|
|
int
|
2421 |
|
|
m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2422 |
|
|
{
|
2423 |
|
|
return m16_check_op (op, - 0x7, 0x8, 0);
|
2424 |
|
|
}
|
2425 |
|
|
|
2426 |
|
|
int
|
2427 |
|
|
m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2428 |
|
|
{
|
2429 |
|
|
return m16_check_op (op, - 0x10, 0xf, 0);
|
2430 |
|
|
}
|
2431 |
|
|
|
2432 |
|
|
int
|
2433 |
|
|
m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2434 |
|
|
{
|
2435 |
|
|
return m16_check_op (op, - 0xf, 0x10, 0);
|
2436 |
|
|
}
|
2437 |
|
|
|
2438 |
|
|
int
|
2439 |
|
|
m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2440 |
|
|
{
|
2441 |
|
|
return m16_check_op (op, (- 0x10) << 2, 0xf << 2, 3);
|
2442 |
|
|
}
|
2443 |
|
|
|
2444 |
|
|
int
|
2445 |
|
|
m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2446 |
|
|
{
|
2447 |
|
|
return m16_check_op (op, (- 0xf) << 2, 0x10 << 2, 3);
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
int
|
2451 |
|
|
m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2452 |
|
|
{
|
2453 |
|
|
return m16_check_op (op, - 0x80, 0x7f, 0);
|
2454 |
|
|
}
|
2455 |
|
|
|
2456 |
|
|
int
|
2457 |
|
|
m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2458 |
|
|
{
|
2459 |
|
|
return m16_check_op (op, - 0x7f, 0x80, 0);
|
2460 |
|
|
}
|
2461 |
|
|
|
2462 |
|
|
int
|
2463 |
|
|
m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2464 |
|
|
{
|
2465 |
|
|
return m16_check_op (op, 0x0, 0xff, 0);
|
2466 |
|
|
}
|
2467 |
|
|
|
2468 |
|
|
int
|
2469 |
|
|
m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2470 |
|
|
{
|
2471 |
|
|
return m16_check_op (op, - 0xff, 0x0, 0);
|
2472 |
|
|
}
|
2473 |
|
|
|
2474 |
|
|
int
|
2475 |
|
|
m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2476 |
|
|
{
|
2477 |
|
|
return m16_check_op (op, - 0x1, 0xfe, 0);
|
2478 |
|
|
}
|
2479 |
|
|
|
2480 |
|
|
int
|
2481 |
|
|
m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2482 |
|
|
{
|
2483 |
|
|
return m16_check_op (op, 0x0, 0xff << 2, 3);
|
2484 |
|
|
}
|
2485 |
|
|
|
2486 |
|
|
int
|
2487 |
|
|
m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2488 |
|
|
{
|
2489 |
|
|
return m16_check_op (op, (- 0xff) << 2, 0x0, 3);
|
2490 |
|
|
}
|
2491 |
|
|
|
2492 |
|
|
int
|
2493 |
|
|
m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2494 |
|
|
{
|
2495 |
|
|
return m16_check_op (op, (- 0x80) << 3, 0x7f << 3, 7);
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
int
|
2499 |
|
|
m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2500 |
|
|
{
|
2501 |
|
|
return m16_check_op (op, (- 0x7f) << 3, 0x80 << 3, 7);
|
2502 |
|
|
}
|
2503 |
|
|
|
2504 |
|
|
static bool
|
2505 |
|
|
mips_rtx_costs (rtx x, int code, int outer_code, int *total)
|
2506 |
|
|
{
|
2507 |
|
|
enum machine_mode mode = GET_MODE (x);
|
2508 |
|
|
bool float_mode_p = FLOAT_MODE_P (mode);
|
2509 |
|
|
|
2510 |
|
|
switch (code)
|
2511 |
|
|
{
|
2512 |
|
|
case CONST_INT:
|
2513 |
|
|
if (TARGET_MIPS16)
|
2514 |
|
|
{
|
2515 |
|
|
/* A number between 1 and 8 inclusive is efficient for a shift.
|
2516 |
|
|
Otherwise, we will need an extended instruction. */
|
2517 |
|
|
if ((outer_code) == ASHIFT || (outer_code) == ASHIFTRT
|
2518 |
|
|
|| (outer_code) == LSHIFTRT)
|
2519 |
|
|
{
|
2520 |
|
|
if (INTVAL (x) >= 1 && INTVAL (x) <= 8)
|
2521 |
|
|
*total = 0;
|
2522 |
|
|
else
|
2523 |
|
|
*total = COSTS_N_INSNS (1);
|
2524 |
|
|
return true;
|
2525 |
|
|
}
|
2526 |
|
|
|
2527 |
|
|
/* We can use cmpi for an xor with an unsigned 16 bit value. */
|
2528 |
|
|
if ((outer_code) == XOR
|
2529 |
|
|
&& INTVAL (x) >= 0 && INTVAL (x) < 0x10000)
|
2530 |
|
|
{
|
2531 |
|
|
*total = 0;
|
2532 |
|
|
return true;
|
2533 |
|
|
}
|
2534 |
|
|
|
2535 |
|
|
/* We may be able to use slt or sltu for a comparison with a
|
2536 |
|
|
signed 16 bit value. (The boundary conditions aren't quite
|
2537 |
|
|
right, but this is just a heuristic anyhow.) */
|
2538 |
|
|
if (((outer_code) == LT || (outer_code) == LE
|
2539 |
|
|
|| (outer_code) == GE || (outer_code) == GT
|
2540 |
|
|
|| (outer_code) == LTU || (outer_code) == LEU
|
2541 |
|
|
|| (outer_code) == GEU || (outer_code) == GTU)
|
2542 |
|
|
&& INTVAL (x) >= -0x8000 && INTVAL (x) < 0x8000)
|
2543 |
|
|
{
|
2544 |
|
|
*total = 0;
|
2545 |
|
|
return true;
|
2546 |
|
|
}
|
2547 |
|
|
|
2548 |
|
|
/* Equality comparisons with 0 are cheap. */
|
2549 |
|
|
if (((outer_code) == EQ || (outer_code) == NE)
|
2550 |
|
|
&& INTVAL (x) == 0)
|
2551 |
|
|
{
|
2552 |
|
|
*total = 0;
|
2553 |
|
|
return true;
|
2554 |
|
|
}
|
2555 |
|
|
|
2556 |
|
|
/* Constants in the range 0...255 can be loaded with an unextended
|
2557 |
|
|
instruction. They are therefore as cheap as a register move.
|
2558 |
|
|
|
2559 |
|
|
Given the choice between "li R1,0...255" and "move R1,R2"
|
2560 |
|
|
(where R2 is a known constant), it is usually better to use "li",
|
2561 |
|
|
since we do not want to unnecessarily extend the lifetime
|
2562 |
|
|
of R2. */
|
2563 |
|
|
if (outer_code == SET
|
2564 |
|
|
&& INTVAL (x) >= 0
|
2565 |
|
|
&& INTVAL (x) < 256)
|
2566 |
|
|
{
|
2567 |
|
|
*total = 0;
|
2568 |
|
|
return true;
|
2569 |
|
|
}
|
2570 |
|
|
}
|
2571 |
|
|
else
|
2572 |
|
|
{
|
2573 |
|
|
/* These can be used anywhere. */
|
2574 |
|
|
*total = 0;
|
2575 |
|
|
return true;
|
2576 |
|
|
}
|
2577 |
|
|
|
2578 |
|
|
/* Otherwise fall through to the handling below because
|
2579 |
|
|
we'll need to construct the constant. */
|
2580 |
|
|
|
2581 |
|
|
case CONST:
|
2582 |
|
|
case SYMBOL_REF:
|
2583 |
|
|
case LABEL_REF:
|
2584 |
|
|
case CONST_DOUBLE:
|
2585 |
|
|
if (LEGITIMATE_CONSTANT_P (x))
|
2586 |
|
|
{
|
2587 |
|
|
*total = COSTS_N_INSNS (1);
|
2588 |
|
|
return true;
|
2589 |
|
|
}
|
2590 |
|
|
else
|
2591 |
|
|
{
|
2592 |
|
|
/* The value will need to be fetched from the constant pool. */
|
2593 |
|
|
*total = CONSTANT_POOL_COST;
|
2594 |
|
|
return true;
|
2595 |
|
|
}
|
2596 |
|
|
|
2597 |
|
|
case MEM:
|
2598 |
|
|
{
|
2599 |
|
|
/* If the address is legitimate, return the number of
|
2600 |
|
|
instructions it needs, otherwise use the default handling. */
|
2601 |
|
|
int n = mips_address_insns (XEXP (x, 0), GET_MODE (x));
|
2602 |
|
|
if (n > 0)
|
2603 |
|
|
{
|
2604 |
|
|
*total = COSTS_N_INSNS (n + 1);
|
2605 |
|
|
return true;
|
2606 |
|
|
}
|
2607 |
|
|
return false;
|
2608 |
|
|
}
|
2609 |
|
|
|
2610 |
|
|
case FFS:
|
2611 |
|
|
*total = COSTS_N_INSNS (6);
|
2612 |
|
|
return true;
|
2613 |
|
|
|
2614 |
|
|
case NOT:
|
2615 |
|
|
*total = COSTS_N_INSNS ((mode == DImode && !TARGET_64BIT) ? 2 : 1);
|
2616 |
|
|
return true;
|
2617 |
|
|
|
2618 |
|
|
case AND:
|
2619 |
|
|
case IOR:
|
2620 |
|
|
case XOR:
|
2621 |
|
|
if (mode == DImode && !TARGET_64BIT)
|
2622 |
|
|
{
|
2623 |
|
|
*total = COSTS_N_INSNS (2);
|
2624 |
|
|
return true;
|
2625 |
|
|
}
|
2626 |
|
|
return false;
|
2627 |
|
|
|
2628 |
|
|
case ASHIFT:
|
2629 |
|
|
case ASHIFTRT:
|
2630 |
|
|
case LSHIFTRT:
|
2631 |
|
|
if (mode == DImode && !TARGET_64BIT)
|
2632 |
|
|
{
|
2633 |
|
|
*total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
|
2634 |
|
|
? 4 : 12);
|
2635 |
|
|
return true;
|
2636 |
|
|
}
|
2637 |
|
|
return false;
|
2638 |
|
|
|
2639 |
|
|
case ABS:
|
2640 |
|
|
if (float_mode_p)
|
2641 |
|
|
*total = COSTS_N_INSNS (1);
|
2642 |
|
|
else
|
2643 |
|
|
*total = COSTS_N_INSNS (4);
|
2644 |
|
|
return true;
|
2645 |
|
|
|
2646 |
|
|
case LO_SUM:
|
2647 |
|
|
*total = COSTS_N_INSNS (1);
|
2648 |
|
|
return true;
|
2649 |
|
|
|
2650 |
|
|
case PLUS:
|
2651 |
|
|
case MINUS:
|
2652 |
|
|
if (float_mode_p)
|
2653 |
|
|
{
|
2654 |
|
|
*total = mips_cost->fp_add;
|
2655 |
|
|
return true;
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
else if (mode == DImode && !TARGET_64BIT)
|
2659 |
|
|
{
|
2660 |
|
|
*total = COSTS_N_INSNS (4);
|
2661 |
|
|
return true;
|
2662 |
|
|
}
|
2663 |
|
|
return false;
|
2664 |
|
|
|
2665 |
|
|
case NEG:
|
2666 |
|
|
if (mode == DImode && !TARGET_64BIT)
|
2667 |
|
|
{
|
2668 |
|
|
*total = COSTS_N_INSNS (4);
|
2669 |
|
|
return true;
|
2670 |
|
|
}
|
2671 |
|
|
return false;
|
2672 |
|
|
|
2673 |
|
|
case MULT:
|
2674 |
|
|
if (mode == SFmode)
|
2675 |
|
|
*total = mips_cost->fp_mult_sf;
|
2676 |
|
|
|
2677 |
|
|
else if (mode == DFmode)
|
2678 |
|
|
*total = mips_cost->fp_mult_df;
|
2679 |
|
|
|
2680 |
|
|
else if (mode == SImode)
|
2681 |
|
|
*total = mips_cost->int_mult_si;
|
2682 |
|
|
|
2683 |
|
|
else
|
2684 |
|
|
*total = mips_cost->int_mult_di;
|
2685 |
|
|
|
2686 |
|
|
return true;
|
2687 |
|
|
|
2688 |
|
|
case DIV:
|
2689 |
|
|
case MOD:
|
2690 |
|
|
if (float_mode_p)
|
2691 |
|
|
{
|
2692 |
|
|
if (mode == SFmode)
|
2693 |
|
|
*total = mips_cost->fp_div_sf;
|
2694 |
|
|
else
|
2695 |
|
|
*total = mips_cost->fp_div_df;
|
2696 |
|
|
|
2697 |
|
|
return true;
|
2698 |
|
|
}
|
2699 |
|
|
/* Fall through. */
|
2700 |
|
|
|
2701 |
|
|
case UDIV:
|
2702 |
|
|
case UMOD:
|
2703 |
|
|
if (mode == DImode)
|
2704 |
|
|
*total = mips_cost->int_div_di;
|
2705 |
|
|
else
|
2706 |
|
|
*total = mips_cost->int_div_si;
|
2707 |
|
|
|
2708 |
|
|
return true;
|
2709 |
|
|
|
2710 |
|
|
case SIGN_EXTEND:
|
2711 |
|
|
/* A sign extend from SImode to DImode in 64 bit mode is often
|
2712 |
|
|
zero instructions, because the result can often be used
|
2713 |
|
|
directly by another instruction; we'll call it one. */
|
2714 |
|
|
if (TARGET_64BIT && mode == DImode
|
2715 |
|
|
&& GET_MODE (XEXP (x, 0)) == SImode)
|
2716 |
|
|
*total = COSTS_N_INSNS (1);
|
2717 |
|
|
else
|
2718 |
|
|
*total = COSTS_N_INSNS (2);
|
2719 |
|
|
return true;
|
2720 |
|
|
|
2721 |
|
|
case ZERO_EXTEND:
|
2722 |
|
|
if (TARGET_64BIT && mode == DImode
|
2723 |
|
|
&& GET_MODE (XEXP (x, 0)) == SImode)
|
2724 |
|
|
*total = COSTS_N_INSNS (2);
|
2725 |
|
|
else
|
2726 |
|
|
*total = COSTS_N_INSNS (1);
|
2727 |
|
|
return true;
|
2728 |
|
|
|
2729 |
|
|
case FLOAT:
|
2730 |
|
|
case UNSIGNED_FLOAT:
|
2731 |
|
|
case FIX:
|
2732 |
|
|
case FLOAT_EXTEND:
|
2733 |
|
|
case FLOAT_TRUNCATE:
|
2734 |
|
|
case SQRT:
|
2735 |
|
|
*total = mips_cost->fp_add;
|
2736 |
|
|
return true;
|
2737 |
|
|
|
2738 |
|
|
default:
|
2739 |
|
|
return false;
|
2740 |
|
|
}
|
2741 |
|
|
}
|
2742 |
|
|
|
2743 |
|
|
/* Provide the costs of an addressing mode that contains ADDR.
|
2744 |
|
|
If ADDR is not a valid address, its cost is irrelevant. */
|
2745 |
|
|
|
2746 |
|
|
static int
|
2747 |
|
|
mips_address_cost (rtx addr)
|
2748 |
|
|
{
|
2749 |
|
|
return mips_address_insns (addr, SImode);
|
2750 |
|
|
}
|
2751 |
|
|
|
2752 |
|
|
/* Return one word of double-word value OP, taking into account the fixed
|
2753 |
|
|
endianness of certain registers. HIGH_P is true to select the high part,
|
2754 |
|
|
false to select the low part. */
|
2755 |
|
|
|
2756 |
|
|
rtx
|
2757 |
|
|
mips_subword (rtx op, int high_p)
|
2758 |
|
|
{
|
2759 |
|
|
unsigned int byte;
|
2760 |
|
|
enum machine_mode mode;
|
2761 |
|
|
|
2762 |
|
|
mode = GET_MODE (op);
|
2763 |
|
|
if (mode == VOIDmode)
|
2764 |
|
|
mode = DImode;
|
2765 |
|
|
|
2766 |
|
|
if (TARGET_BIG_ENDIAN ? !high_p : high_p)
|
2767 |
|
|
byte = UNITS_PER_WORD;
|
2768 |
|
|
else
|
2769 |
|
|
byte = 0;
|
2770 |
|
|
|
2771 |
|
|
if (REG_P (op))
|
2772 |
|
|
{
|
2773 |
|
|
if (FP_REG_P (REGNO (op)))
|
2774 |
|
|
return gen_rtx_REG (word_mode, high_p ? REGNO (op) + 1 : REGNO (op));
|
2775 |
|
|
if (ACC_HI_REG_P (REGNO (op)))
|
2776 |
|
|
return gen_rtx_REG (word_mode, high_p ? REGNO (op) : REGNO (op) + 1);
|
2777 |
|
|
}
|
2778 |
|
|
|
2779 |
|
|
if (MEM_P (op))
|
2780 |
|
|
return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
|
2781 |
|
|
|
2782 |
|
|
return simplify_gen_subreg (word_mode, op, mode, byte);
|
2783 |
|
|
}
|
2784 |
|
|
|
2785 |
|
|
|
2786 |
|
|
/* Return true if a 64-bit move from SRC to DEST should be split into two. */
|
2787 |
|
|
|
2788 |
|
|
bool
|
2789 |
|
|
mips_split_64bit_move_p (rtx dest, rtx src)
|
2790 |
|
|
{
|
2791 |
|
|
if (TARGET_64BIT)
|
2792 |
|
|
return false;
|
2793 |
|
|
|
2794 |
|
|
/* FP->FP moves can be done in a single instruction. */
|
2795 |
|
|
if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
|
2796 |
|
|
return false;
|
2797 |
|
|
|
2798 |
|
|
/* Check for floating-point loads and stores. They can be done using
|
2799 |
|
|
ldc1 and sdc1 on MIPS II and above. */
|
2800 |
|
|
if (mips_isa > 1)
|
2801 |
|
|
{
|
2802 |
|
|
if (FP_REG_RTX_P (dest) && MEM_P (src))
|
2803 |
|
|
return false;
|
2804 |
|
|
if (FP_REG_RTX_P (src) && MEM_P (dest))
|
2805 |
|
|
return false;
|
2806 |
|
|
}
|
2807 |
|
|
return true;
|
2808 |
|
|
}
|
2809 |
|
|
|
2810 |
|
|
|
2811 |
|
|
/* Split a 64-bit move from SRC to DEST assuming that
|
2812 |
|
|
mips_split_64bit_move_p holds.
|
2813 |
|
|
|
2814 |
|
|
Moves into and out of FPRs cause some difficulty here. Such moves
|
2815 |
|
|
will always be DFmode, since paired FPRs are not allowed to store
|
2816 |
|
|
DImode values. The most natural representation would be two separate
|
2817 |
|
|
32-bit moves, such as:
|
2818 |
|
|
|
2819 |
|
|
(set (reg:SI $f0) (mem:SI ...))
|
2820 |
|
|
(set (reg:SI $f1) (mem:SI ...))
|
2821 |
|
|
|
2822 |
|
|
However, the second insn is invalid because odd-numbered FPRs are
|
2823 |
|
|
not allowed to store independent values. Use the patterns load_df_low,
|
2824 |
|
|
load_df_high and store_df_high instead. */
|
2825 |
|
|
|
2826 |
|
|
void
|
2827 |
|
|
mips_split_64bit_move (rtx dest, rtx src)
|
2828 |
|
|
{
|
2829 |
|
|
if (FP_REG_RTX_P (dest))
|
2830 |
|
|
{
|
2831 |
|
|
/* Loading an FPR from memory or from GPRs. */
|
2832 |
|
|
emit_insn (gen_load_df_low (copy_rtx (dest), mips_subword (src, 0)));
|
2833 |
|
|
emit_insn (gen_load_df_high (dest, mips_subword (src, 1),
|
2834 |
|
|
copy_rtx (dest)));
|
2835 |
|
|
}
|
2836 |
|
|
else if (FP_REG_RTX_P (src))
|
2837 |
|
|
{
|
2838 |
|
|
/* Storing an FPR into memory or GPRs. */
|
2839 |
|
|
emit_move_insn (mips_subword (dest, 0), mips_subword (src, 0));
|
2840 |
|
|
emit_insn (gen_store_df_high (mips_subword (dest, 1), src));
|
2841 |
|
|
}
|
2842 |
|
|
else
|
2843 |
|
|
{
|
2844 |
|
|
/* The operation can be split into two normal moves. Decide in
|
2845 |
|
|
which order to do them. */
|
2846 |
|
|
rtx low_dest;
|
2847 |
|
|
|
2848 |
|
|
low_dest = mips_subword (dest, 0);
|
2849 |
|
|
if (REG_P (low_dest)
|
2850 |
|
|
&& reg_overlap_mentioned_p (low_dest, src))
|
2851 |
|
|
{
|
2852 |
|
|
emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
|
2853 |
|
|
emit_move_insn (low_dest, mips_subword (src, 0));
|
2854 |
|
|
}
|
2855 |
|
|
else
|
2856 |
|
|
{
|
2857 |
|
|
emit_move_insn (low_dest, mips_subword (src, 0));
|
2858 |
|
|
emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
|
2859 |
|
|
}
|
2860 |
|
|
}
|
2861 |
|
|
}
|
2862 |
|
|
|
2863 |
|
|
/* Return the appropriate instructions to move SRC into DEST. Assume
|
2864 |
|
|
that SRC is operand 1 and DEST is operand 0. */
|
2865 |
|
|
|
2866 |
|
|
const char *
|
2867 |
|
|
mips_output_move (rtx dest, rtx src)
|
2868 |
|
|
{
|
2869 |
|
|
enum rtx_code dest_code, src_code;
|
2870 |
|
|
bool dbl_p;
|
2871 |
|
|
|
2872 |
|
|
dest_code = GET_CODE (dest);
|
2873 |
|
|
src_code = GET_CODE (src);
|
2874 |
|
|
dbl_p = (GET_MODE_SIZE (GET_MODE (dest)) == 8);
|
2875 |
|
|
|
2876 |
|
|
if (dbl_p && mips_split_64bit_move_p (dest, src))
|
2877 |
|
|
return "#";
|
2878 |
|
|
|
2879 |
|
|
if ((src_code == REG && GP_REG_P (REGNO (src)))
|
2880 |
|
|
|| (!TARGET_MIPS16 && src == CONST0_RTX (GET_MODE (dest))))
|
2881 |
|
|
{
|
2882 |
|
|
if (dest_code == REG)
|
2883 |
|
|
{
|
2884 |
|
|
if (GP_REG_P (REGNO (dest)))
|
2885 |
|
|
return "move\t%0,%z1";
|
2886 |
|
|
|
2887 |
|
|
if (MD_REG_P (REGNO (dest)))
|
2888 |
|
|
return "mt%0\t%z1";
|
2889 |
|
|
|
2890 |
|
|
if (DSP_ACC_REG_P (REGNO (dest)))
|
2891 |
|
|
{
|
2892 |
|
|
static char retval[] = "mt__\t%z1,%q0";
|
2893 |
|
|
retval[2] = reg_names[REGNO (dest)][4];
|
2894 |
|
|
retval[3] = reg_names[REGNO (dest)][5];
|
2895 |
|
|
return retval;
|
2896 |
|
|
}
|
2897 |
|
|
|
2898 |
|
|
if (FP_REG_P (REGNO (dest)))
|
2899 |
|
|
return (dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0");
|
2900 |
|
|
|
2901 |
|
|
if (ALL_COP_REG_P (REGNO (dest)))
|
2902 |
|
|
{
|
2903 |
|
|
static char retval[] = "dmtc_\t%z1,%0";
|
2904 |
|
|
|
2905 |
|
|
retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
|
2906 |
|
|
return (dbl_p ? retval : retval + 1);
|
2907 |
|
|
}
|
2908 |
|
|
}
|
2909 |
|
|
if (dest_code == MEM)
|
2910 |
|
|
return (dbl_p ? "sd\t%z1,%0" : "sw\t%z1,%0");
|
2911 |
|
|
}
|
2912 |
|
|
if (dest_code == REG && GP_REG_P (REGNO (dest)))
|
2913 |
|
|
{
|
2914 |
|
|
if (src_code == REG)
|
2915 |
|
|
{
|
2916 |
|
|
if (DSP_ACC_REG_P (REGNO (src)))
|
2917 |
|
|
{
|
2918 |
|
|
static char retval[] = "mf__\t%0,%q1";
|
2919 |
|
|
retval[2] = reg_names[REGNO (src)][4];
|
2920 |
|
|
retval[3] = reg_names[REGNO (src)][5];
|
2921 |
|
|
return retval;
|
2922 |
|
|
}
|
2923 |
|
|
|
2924 |
|
|
if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
|
2925 |
|
|
return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
|
2926 |
|
|
|
2927 |
|
|
if (FP_REG_P (REGNO (src)))
|
2928 |
|
|
return (dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1");
|
2929 |
|
|
|
2930 |
|
|
if (ALL_COP_REG_P (REGNO (src)))
|
2931 |
|
|
{
|
2932 |
|
|
static char retval[] = "dmfc_\t%0,%1";
|
2933 |
|
|
|
2934 |
|
|
retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
|
2935 |
|
|
return (dbl_p ? retval : retval + 1);
|
2936 |
|
|
}
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
if (src_code == MEM)
|
2940 |
|
|
return (dbl_p ? "ld\t%0,%1" : "lw\t%0,%1");
|
2941 |
|
|
|
2942 |
|
|
if (src_code == CONST_INT)
|
2943 |
|
|
{
|
2944 |
|
|
/* Don't use the X format, because that will give out of
|
2945 |
|
|
range numbers for 64 bit hosts and 32 bit targets. */
|
2946 |
|
|
if (!TARGET_MIPS16)
|
2947 |
|
|
return "li\t%0,%1\t\t\t# %X1";
|
2948 |
|
|
|
2949 |
|
|
if (INTVAL (src) >= 0 && INTVAL (src) <= 0xffff)
|
2950 |
|
|
return "li\t%0,%1";
|
2951 |
|
|
|
2952 |
|
|
if (INTVAL (src) < 0 && INTVAL (src) >= -0xffff)
|
2953 |
|
|
return "#";
|
2954 |
|
|
}
|
2955 |
|
|
|
2956 |
|
|
if (src_code == HIGH)
|
2957 |
|
|
return "lui\t%0,%h1";
|
2958 |
|
|
|
2959 |
|
|
if (CONST_GP_P (src))
|
2960 |
|
|
return "move\t%0,%1";
|
2961 |
|
|
|
2962 |
|
|
if (symbolic_operand (src, VOIDmode))
|
2963 |
|
|
return (dbl_p ? "dla\t%0,%1" : "la\t%0,%1");
|
2964 |
|
|
}
|
2965 |
|
|
if (src_code == REG && FP_REG_P (REGNO (src)))
|
2966 |
|
|
{
|
2967 |
|
|
if (dest_code == REG && FP_REG_P (REGNO (dest)))
|
2968 |
|
|
{
|
2969 |
|
|
if (GET_MODE (dest) == V2SFmode)
|
2970 |
|
|
return "mov.ps\t%0,%1";
|
2971 |
|
|
else
|
2972 |
|
|
return (dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1");
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
if (dest_code == MEM)
|
2976 |
|
|
return (dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0");
|
2977 |
|
|
}
|
2978 |
|
|
if (dest_code == REG && FP_REG_P (REGNO (dest)))
|
2979 |
|
|
{
|
2980 |
|
|
if (src_code == MEM)
|
2981 |
|
|
return (dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1");
|
2982 |
|
|
}
|
2983 |
|
|
if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
|
2984 |
|
|
{
|
2985 |
|
|
static char retval[] = "l_c_\t%0,%1";
|
2986 |
|
|
|
2987 |
|
|
retval[1] = (dbl_p ? 'd' : 'w');
|
2988 |
|
|
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
|
2989 |
|
|
return retval;
|
2990 |
|
|
}
|
2991 |
|
|
if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
|
2992 |
|
|
{
|
2993 |
|
|
static char retval[] = "s_c_\t%1,%0";
|
2994 |
|
|
|
2995 |
|
|
retval[1] = (dbl_p ? 'd' : 'w');
|
2996 |
|
|
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
|
2997 |
|
|
return retval;
|
2998 |
|
|
}
|
2999 |
|
|
gcc_unreachable ();
|
3000 |
|
|
}
|
3001 |
|
|
|
3002 |
|
|
/* Restore $gp from its save slot. Valid only when using o32 or
|
3003 |
|
|
o64 abicalls. */
|
3004 |
|
|
|
3005 |
|
|
void
|
3006 |
|
|
mips_restore_gp (void)
|
3007 |
|
|
{
|
3008 |
|
|
rtx address, slot;
|
3009 |
|
|
|
3010 |
|
|
gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);
|
3011 |
|
|
|
3012 |
|
|
address = mips_add_offset (pic_offset_table_rtx,
|
3013 |
|
|
frame_pointer_needed
|
3014 |
|
|
? hard_frame_pointer_rtx
|
3015 |
|
|
: stack_pointer_rtx,
|
3016 |
|
|
current_function_outgoing_args_size);
|
3017 |
|
|
slot = gen_rtx_MEM (Pmode, address);
|
3018 |
|
|
|
3019 |
|
|
emit_move_insn (pic_offset_table_rtx, slot);
|
3020 |
|
|
if (!TARGET_EXPLICIT_RELOCS)
|
3021 |
|
|
emit_insn (gen_blockage ());
|
3022 |
|
|
}
|
3023 |
|
|
|
3024 |
|
|
/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
|
3025 |
|
|
|
3026 |
|
|
static void
|
3027 |
|
|
mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
|
3028 |
|
|
{
|
3029 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, target,
|
3030 |
|
|
gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
|
3031 |
|
|
}
|
3032 |
|
|
|
3033 |
|
|
/* Return true if CMP1 is a suitable second operand for relational
|
3034 |
|
|
operator CODE. See also the *sCC patterns in mips.md. */
|
3035 |
|
|
|
3036 |
|
|
static bool
|
3037 |
|
|
mips_relational_operand_ok_p (enum rtx_code code, rtx cmp1)
|
3038 |
|
|
{
|
3039 |
|
|
switch (code)
|
3040 |
|
|
{
|
3041 |
|
|
case GT:
|
3042 |
|
|
case GTU:
|
3043 |
|
|
return reg_or_0_operand (cmp1, VOIDmode);
|
3044 |
|
|
|
3045 |
|
|
case GE:
|
3046 |
|
|
case GEU:
|
3047 |
|
|
return !TARGET_MIPS16 && cmp1 == const1_rtx;
|
3048 |
|
|
|
3049 |
|
|
case LT:
|
3050 |
|
|
case LTU:
|
3051 |
|
|
return arith_operand (cmp1, VOIDmode);
|
3052 |
|
|
|
3053 |
|
|
case LE:
|
3054 |
|
|
return sle_operand (cmp1, VOIDmode);
|
3055 |
|
|
|
3056 |
|
|
case LEU:
|
3057 |
|
|
return sleu_operand (cmp1, VOIDmode);
|
3058 |
|
|
|
3059 |
|
|
default:
|
3060 |
|
|
gcc_unreachable ();
|
3061 |
|
|
}
|
3062 |
|
|
}
|
3063 |
|
|
|
3064 |
|
|
/* Canonicalize LE or LEU comparisons into LT comparisons when
|
3065 |
|
|
possible to avoid extra instructions or inverting the
|
3066 |
|
|
comparison. */
|
3067 |
|
|
|
3068 |
|
|
static bool
|
3069 |
|
|
mips_canonicalize_comparison (enum rtx_code *code, rtx *cmp1,
|
3070 |
|
|
enum machine_mode mode)
|
3071 |
|
|
{
|
3072 |
|
|
HOST_WIDE_INT original, plus_one;
|
3073 |
|
|
|
3074 |
|
|
if (GET_CODE (*cmp1) != CONST_INT)
|
3075 |
|
|
return false;
|
3076 |
|
|
|
3077 |
|
|
original = INTVAL (*cmp1);
|
3078 |
|
|
plus_one = trunc_int_for_mode ((unsigned HOST_WIDE_INT) original + 1, mode);
|
3079 |
|
|
|
3080 |
|
|
switch (*code)
|
3081 |
|
|
{
|
3082 |
|
|
case LE:
|
3083 |
|
|
if (original < plus_one)
|
3084 |
|
|
{
|
3085 |
|
|
*code = LT;
|
3086 |
|
|
*cmp1 = force_reg (mode, GEN_INT (plus_one));
|
3087 |
|
|
return true;
|
3088 |
|
|
}
|
3089 |
|
|
break;
|
3090 |
|
|
|
3091 |
|
|
case LEU:
|
3092 |
|
|
if (plus_one != 0)
|
3093 |
|
|
{
|
3094 |
|
|
*code = LTU;
|
3095 |
|
|
*cmp1 = force_reg (mode, GEN_INT (plus_one));
|
3096 |
|
|
return true;
|
3097 |
|
|
}
|
3098 |
|
|
break;
|
3099 |
|
|
|
3100 |
|
|
default:
|
3101 |
|
|
return false;
|
3102 |
|
|
}
|
3103 |
|
|
|
3104 |
|
|
return false;
|
3105 |
|
|
|
3106 |
|
|
}
|
3107 |
|
|
|
3108 |
|
|
/* Compare CMP0 and CMP1 using relational operator CODE and store the
|
3109 |
|
|
result in TARGET. CMP0 and TARGET are register_operands that have
|
3110 |
|
|
the same integer mode. If INVERT_PTR is nonnull, it's OK to set
|
3111 |
|
|
TARGET to the inverse of the result and flip *INVERT_PTR instead. */
|
3112 |
|
|
|
3113 |
|
|
static void
|
3114 |
|
|
mips_emit_int_relational (enum rtx_code code, bool *invert_ptr,
|
3115 |
|
|
rtx target, rtx cmp0, rtx cmp1)
|
3116 |
|
|
{
|
3117 |
|
|
/* First see if there is a MIPS instruction that can do this operation
|
3118 |
|
|
with CMP1 in its current form. If not, try to canonicalize the
|
3119 |
|
|
comparison to LT. If that fails, try doing the same for the
|
3120 |
|
|
inverse operation. If that also fails, force CMP1 into a register
|
3121 |
|
|
and try again. */
|
3122 |
|
|
if (mips_relational_operand_ok_p (code, cmp1))
|
3123 |
|
|
mips_emit_binary (code, target, cmp0, cmp1);
|
3124 |
|
|
else if (mips_canonicalize_comparison (&code, &cmp1, GET_MODE (target)))
|
3125 |
|
|
mips_emit_binary (code, target, cmp0, cmp1);
|
3126 |
|
|
else
|
3127 |
|
|
{
|
3128 |
|
|
enum rtx_code inv_code = reverse_condition (code);
|
3129 |
|
|
if (!mips_relational_operand_ok_p (inv_code, cmp1))
|
3130 |
|
|
{
|
3131 |
|
|
cmp1 = force_reg (GET_MODE (cmp0), cmp1);
|
3132 |
|
|
mips_emit_int_relational (code, invert_ptr, target, cmp0, cmp1);
|
3133 |
|
|
}
|
3134 |
|
|
else if (invert_ptr == 0)
|
3135 |
|
|
{
|
3136 |
|
|
rtx inv_target = gen_reg_rtx (GET_MODE (target));
|
3137 |
|
|
mips_emit_binary (inv_code, inv_target, cmp0, cmp1);
|
3138 |
|
|
mips_emit_binary (XOR, target, inv_target, const1_rtx);
|
3139 |
|
|
}
|
3140 |
|
|
else
|
3141 |
|
|
{
|
3142 |
|
|
*invert_ptr = !*invert_ptr;
|
3143 |
|
|
mips_emit_binary (inv_code, target, cmp0, cmp1);
|
3144 |
|
|
}
|
3145 |
|
|
}
|
3146 |
|
|
}
|
3147 |
|
|
|
3148 |
|
|
/* Return a register that is zero iff CMP0 and CMP1 are equal.
|
3149 |
|
|
The register will have the same mode as CMP0. */
|
3150 |
|
|
|
3151 |
|
|
static rtx
|
3152 |
|
|
mips_zero_if_equal (rtx cmp0, rtx cmp1)
|
3153 |
|
|
{
|
3154 |
|
|
if (cmp1 == const0_rtx)
|
3155 |
|
|
return cmp0;
|
3156 |
|
|
|
3157 |
|
|
if (uns_arith_operand (cmp1, VOIDmode))
|
3158 |
|
|
return expand_binop (GET_MODE (cmp0), xor_optab,
|
3159 |
|
|
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
|
3160 |
|
|
|
3161 |
|
|
return expand_binop (GET_MODE (cmp0), sub_optab,
|
3162 |
|
|
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
|
3163 |
|
|
}
|
3164 |
|
|
|
3165 |
|
|
/* Convert *CODE into a code that can be used in a floating-point
|
3166 |
|
|
scc instruction (c.<cond>.<fmt>). Return true if the values of
|
3167 |
|
|
the condition code registers will be inverted, with 0 indicating
|
3168 |
|
|
that the condition holds. */
|
3169 |
|
|
|
3170 |
|
|
static bool
|
3171 |
|
|
mips_reverse_fp_cond_p (enum rtx_code *code)
|
3172 |
|
|
{
|
3173 |
|
|
switch (*code)
|
3174 |
|
|
{
|
3175 |
|
|
case NE:
|
3176 |
|
|
case LTGT:
|
3177 |
|
|
case ORDERED:
|
3178 |
|
|
*code = reverse_condition_maybe_unordered (*code);
|
3179 |
|
|
return true;
|
3180 |
|
|
|
3181 |
|
|
default:
|
3182 |
|
|
return false;
|
3183 |
|
|
}
|
3184 |
|
|
}
|
3185 |
|
|
|
3186 |
|
|
/* Convert a comparison into something that can be used in a branch or
|
3187 |
|
|
conditional move. cmp_operands[0] and cmp_operands[1] are the values
|
3188 |
|
|
being compared and *CODE is the code used to compare them.
|
3189 |
|
|
|
3190 |
|
|
Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
|
3191 |
|
|
If NEED_EQ_NE_P, then only EQ/NE comparisons against zero are possible,
|
3192 |
|
|
otherwise any standard branch condition can be used. The standard branch
|
3193 |
|
|
conditions are:
|
3194 |
|
|
|
3195 |
|
|
- EQ/NE between two registers.
|
3196 |
|
|
- any comparison between a register and zero. */
|
3197 |
|
|
|
3198 |
|
|
static void
|
3199 |
|
|
mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
|
3200 |
|
|
{
|
3201 |
|
|
if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT)
|
3202 |
|
|
{
|
3203 |
|
|
if (!need_eq_ne_p && cmp_operands[1] == const0_rtx)
|
3204 |
|
|
{
|
3205 |
|
|
*op0 = cmp_operands[0];
|
3206 |
|
|
*op1 = cmp_operands[1];
|
3207 |
|
|
}
|
3208 |
|
|
else if (*code == EQ || *code == NE)
|
3209 |
|
|
{
|
3210 |
|
|
if (need_eq_ne_p)
|
3211 |
|
|
{
|
3212 |
|
|
*op0 = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
|
3213 |
|
|
*op1 = const0_rtx;
|
3214 |
|
|
}
|
3215 |
|
|
else
|
3216 |
|
|
{
|
3217 |
|
|
*op0 = cmp_operands[0];
|
3218 |
|
|
*op1 = force_reg (GET_MODE (*op0), cmp_operands[1]);
|
3219 |
|
|
}
|
3220 |
|
|
}
|
3221 |
|
|
else
|
3222 |
|
|
{
|
3223 |
|
|
/* The comparison needs a separate scc instruction. Store the
|
3224 |
|
|
result of the scc in *OP0 and compare it against zero. */
|
3225 |
|
|
bool invert = false;
|
3226 |
|
|
*op0 = gen_reg_rtx (GET_MODE (cmp_operands[0]));
|
3227 |
|
|
*op1 = const0_rtx;
|
3228 |
|
|
mips_emit_int_relational (*code, &invert, *op0,
|
3229 |
|
|
cmp_operands[0], cmp_operands[1]);
|
3230 |
|
|
*code = (invert ? EQ : NE);
|
3231 |
|
|
}
|
3232 |
|
|
}
|
3233 |
|
|
else
|
3234 |
|
|
{
|
3235 |
|
|
enum rtx_code cmp_code;
|
3236 |
|
|
|
3237 |
|
|
/* Floating-point tests use a separate c.cond.fmt comparison to
|
3238 |
|
|
set a condition code register. The branch or conditional move
|
3239 |
|
|
will then compare that register against zero.
|
3240 |
|
|
|
3241 |
|
|
Set CMP_CODE to the code of the comparison instruction and
|
3242 |
|
|
*CODE to the code that the branch or move should use. */
|
3243 |
|
|
cmp_code = *code;
|
3244 |
|
|
*code = mips_reverse_fp_cond_p (&cmp_code) ? EQ : NE;
|
3245 |
|
|
*op0 = (ISA_HAS_8CC
|
3246 |
|
|
? gen_reg_rtx (CCmode)
|
3247 |
|
|
: gen_rtx_REG (CCmode, FPSW_REGNUM));
|
3248 |
|
|
*op1 = const0_rtx;
|
3249 |
|
|
mips_emit_binary (cmp_code, *op0, cmp_operands[0], cmp_operands[1]);
|
3250 |
|
|
}
|
3251 |
|
|
}
|
3252 |
|
|
|
3253 |
|
|
/* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
|
3254 |
|
|
Store the result in TARGET and return true if successful.
|
3255 |
|
|
|
3256 |
|
|
On 64-bit targets, TARGET may be wider than cmp_operands[0]. */
|
3257 |
|
|
|
3258 |
|
|
bool
|
3259 |
|
|
mips_emit_scc (enum rtx_code code, rtx target)
|
3260 |
|
|
{
|
3261 |
|
|
if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) != MODE_INT)
|
3262 |
|
|
return false;
|
3263 |
|
|
|
3264 |
|
|
target = gen_lowpart (GET_MODE (cmp_operands[0]), target);
|
3265 |
|
|
if (code == EQ || code == NE)
|
3266 |
|
|
{
|
3267 |
|
|
rtx zie = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
|
3268 |
|
|
mips_emit_binary (code, target, zie, const0_rtx);
|
3269 |
|
|
}
|
3270 |
|
|
else
|
3271 |
|
|
mips_emit_int_relational (code, 0, target,
|
3272 |
|
|
cmp_operands[0], cmp_operands[1]);
|
3273 |
|
|
return true;
|
3274 |
|
|
}
|
3275 |
|
|
|
3276 |
|
|
/* Emit the common code for doing conditional branches.
|
3277 |
|
|
operand[0] is the label to jump to.
|
3278 |
|
|
The comparison operands are saved away by cmp{si,di,sf,df}. */
|
3279 |
|
|
|
3280 |
|
|
void
|
3281 |
|
|
gen_conditional_branch (rtx *operands, enum rtx_code code)
|
3282 |
|
|
{
|
3283 |
|
|
rtx op0, op1, condition;
|
3284 |
|
|
|
3285 |
|
|
mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
|
3286 |
|
|
condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
|
3287 |
|
|
emit_jump_insn (gen_condjump (condition, operands[0]));
|
3288 |
|
|
}
|
3289 |
|
|
|
3290 |
|
|
/* Implement:
|
3291 |
|
|
|
3292 |
|
|
(set temp (COND:CCV2 CMP_OP0 CMP_OP1))
|
3293 |
|
|
(set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
|
3294 |
|
|
|
3295 |
|
|
void
|
3296 |
|
|
mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
|
3297 |
|
|
enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
|
3298 |
|
|
{
|
3299 |
|
|
rtx cmp_result;
|
3300 |
|
|
bool reversed_p;
|
3301 |
|
|
|
3302 |
|
|
reversed_p = mips_reverse_fp_cond_p (&cond);
|
3303 |
|
|
cmp_result = gen_reg_rtx (CCV2mode);
|
3304 |
|
|
emit_insn (gen_scc_ps (cmp_result,
|
3305 |
|
|
gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
|
3306 |
|
|
if (reversed_p)
|
3307 |
|
|
emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
|
3308 |
|
|
cmp_result));
|
3309 |
|
|
else
|
3310 |
|
|
emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
|
3311 |
|
|
cmp_result));
|
3312 |
|
|
}
|
3313 |
|
|
|
3314 |
|
|
/* Emit the common code for conditional moves. OPERANDS is the array
|
3315 |
|
|
of operands passed to the conditional move define_expand. */
|
3316 |
|
|
|
3317 |
|
|
void
|
3318 |
|
|
gen_conditional_move (rtx *operands)
|
3319 |
|
|
{
|
3320 |
|
|
enum rtx_code code;
|
3321 |
|
|
rtx op0, op1;
|
3322 |
|
|
|
3323 |
|
|
code = GET_CODE (operands[1]);
|
3324 |
|
|
mips_emit_compare (&code, &op0, &op1, true);
|
3325 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
|
3326 |
|
|
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
|
3327 |
|
|
gen_rtx_fmt_ee (code,
|
3328 |
|
|
GET_MODE (op0),
|
3329 |
|
|
op0, op1),
|
3330 |
|
|
operands[2], operands[3])));
|
3331 |
|
|
}
|
3332 |
|
|
|
3333 |
|
|
/* Emit a conditional trap. OPERANDS is the array of operands passed to
|
3334 |
|
|
the conditional_trap expander. */
|
3335 |
|
|
|
3336 |
|
|
void
|
3337 |
|
|
mips_gen_conditional_trap (rtx *operands)
|
3338 |
|
|
{
|
3339 |
|
|
rtx op0, op1;
|
3340 |
|
|
enum rtx_code cmp_code = GET_CODE (operands[0]);
|
3341 |
|
|
enum machine_mode mode = GET_MODE (cmp_operands[0]);
|
3342 |
|
|
|
3343 |
|
|
/* MIPS conditional trap machine instructions don't have GT or LE
|
3344 |
|
|
flavors, so we must invert the comparison and convert to LT and
|
3345 |
|
|
GE, respectively. */
|
3346 |
|
|
switch (cmp_code)
|
3347 |
|
|
{
|
3348 |
|
|
case GT: cmp_code = LT; break;
|
3349 |
|
|
case LE: cmp_code = GE; break;
|
3350 |
|
|
case GTU: cmp_code = LTU; break;
|
3351 |
|
|
case LEU: cmp_code = GEU; break;
|
3352 |
|
|
default: break;
|
3353 |
|
|
}
|
3354 |
|
|
if (cmp_code == GET_CODE (operands[0]))
|
3355 |
|
|
{
|
3356 |
|
|
op0 = cmp_operands[0];
|
3357 |
|
|
op1 = cmp_operands[1];
|
3358 |
|
|
}
|
3359 |
|
|
else
|
3360 |
|
|
{
|
3361 |
|
|
op0 = cmp_operands[1];
|
3362 |
|
|
op1 = cmp_operands[0];
|
3363 |
|
|
}
|
3364 |
|
|
op0 = force_reg (mode, op0);
|
3365 |
|
|
if (!arith_operand (op1, mode))
|
3366 |
|
|
op1 = force_reg (mode, op1);
|
3367 |
|
|
|
3368 |
|
|
emit_insn (gen_rtx_TRAP_IF (VOIDmode,
|
3369 |
|
|
gen_rtx_fmt_ee (cmp_code, mode, op0, op1),
|
3370 |
|
|
operands[1]));
|
3371 |
|
|
}
|
3372 |
|
|
|
3373 |
|
|
/* Load function address ADDR into register DEST. SIBCALL_P is true
|
3374 |
|
|
if the address is needed for a sibling call. */
|
3375 |
|
|
|
3376 |
|
|
static void
|
3377 |
|
|
mips_load_call_address (rtx dest, rtx addr, int sibcall_p)
|
3378 |
|
|
{
|
3379 |
|
|
/* If we're generating PIC, and this call is to a global function,
|
3380 |
|
|
try to allow its address to be resolved lazily. This isn't
|
3381 |
|
|
possible for NewABI sibcalls since the value of $gp on entry
|
3382 |
|
|
to the stub would be our caller's gp, not ours. */
|
3383 |
|
|
if (TARGET_EXPLICIT_RELOCS
|
3384 |
|
|
&& !(sibcall_p && TARGET_NEWABI)
|
3385 |
|
|
&& global_got_operand (addr, VOIDmode))
|
3386 |
|
|
{
|
3387 |
|
|
rtx high, lo_sum_symbol;
|
3388 |
|
|
|
3389 |
|
|
high = mips_unspec_offset_high (dest, pic_offset_table_rtx,
|
3390 |
|
|
addr, SYMBOL_GOTOFF_CALL);
|
3391 |
|
|
lo_sum_symbol = mips_unspec_address (addr, SYMBOL_GOTOFF_CALL);
|
3392 |
|
|
if (Pmode == SImode)
|
3393 |
|
|
emit_insn (gen_load_callsi (dest, high, lo_sum_symbol));
|
3394 |
|
|
else
|
3395 |
|
|
emit_insn (gen_load_calldi (dest, high, lo_sum_symbol));
|
3396 |
|
|
}
|
3397 |
|
|
else
|
3398 |
|
|
emit_move_insn (dest, addr);
|
3399 |
|
|
}
|
3400 |
|
|
|
3401 |
|
|
|
3402 |
|
|
/* Expand a call or call_value instruction. RESULT is where the
|
3403 |
|
|
result will go (null for calls), ADDR is the address of the
|
3404 |
|
|
function, ARGS_SIZE is the size of the arguments and AUX is
|
3405 |
|
|
the value passed to us by mips_function_arg. SIBCALL_P is true
|
3406 |
|
|
if we are expanding a sibling call, false if we're expanding
|
3407 |
|
|
a normal call. */
|
3408 |
|
|
|
3409 |
|
|
void
|
3410 |
|
|
mips_expand_call (rtx result, rtx addr, rtx args_size, rtx aux, int sibcall_p)
|
3411 |
|
|
{
|
3412 |
|
|
rtx orig_addr, pattern, insn;
|
3413 |
|
|
|
3414 |
|
|
orig_addr = addr;
|
3415 |
|
|
if (!call_insn_operand (addr, VOIDmode))
|
3416 |
|
|
{
|
3417 |
|
|
addr = gen_reg_rtx (Pmode);
|
3418 |
|
|
mips_load_call_address (addr, orig_addr, sibcall_p);
|
3419 |
|
|
}
|
3420 |
|
|
|
3421 |
|
|
if (TARGET_MIPS16
|
3422 |
|
|
&& mips16_hard_float
|
3423 |
|
|
&& build_mips16_call_stub (result, addr, args_size,
|
3424 |
|
|
aux == 0 ? 0 : (int) GET_MODE (aux)))
|
3425 |
|
|
return;
|
3426 |
|
|
|
3427 |
|
|
if (result == 0)
|
3428 |
|
|
pattern = (sibcall_p
|
3429 |
|
|
? gen_sibcall_internal (addr, args_size)
|
3430 |
|
|
: gen_call_internal (addr, args_size));
|
3431 |
|
|
else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
|
3432 |
|
|
{
|
3433 |
|
|
rtx reg1, reg2;
|
3434 |
|
|
|
3435 |
|
|
reg1 = XEXP (XVECEXP (result, 0, 0), 0);
|
3436 |
|
|
reg2 = XEXP (XVECEXP (result, 0, 1), 0);
|
3437 |
|
|
pattern =
|
3438 |
|
|
(sibcall_p
|
3439 |
|
|
? gen_sibcall_value_multiple_internal (reg1, addr, args_size, reg2)
|
3440 |
|
|
: gen_call_value_multiple_internal (reg1, addr, args_size, reg2));
|
3441 |
|
|
}
|
3442 |
|
|
else
|
3443 |
|
|
pattern = (sibcall_p
|
3444 |
|
|
? gen_sibcall_value_internal (result, addr, args_size)
|
3445 |
|
|
: gen_call_value_internal (result, addr, args_size));
|
3446 |
|
|
|
3447 |
|
|
insn = emit_call_insn (pattern);
|
3448 |
|
|
|
3449 |
|
|
/* Lazy-binding stubs require $gp to be valid on entry. */
|
3450 |
|
|
if (global_got_operand (orig_addr, VOIDmode))
|
3451 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
|
3452 |
|
|
}
|
3453 |
|
|
|
3454 |
|
|
|
3455 |
|
|
/* We can handle any sibcall when TARGET_SIBCALLS is true. */
|
3456 |
|
|
|
3457 |
|
|
static bool
|
3458 |
|
|
mips_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
|
3459 |
|
|
tree exp ATTRIBUTE_UNUSED)
|
3460 |
|
|
{
|
3461 |
|
|
return TARGET_SIBCALLS;
|
3462 |
|
|
}
|
3463 |
|
|
|
3464 |
|
|
/* Emit code to move general operand SRC into condition-code
|
3465 |
|
|
register DEST. SCRATCH is a scratch TFmode float register.
|
3466 |
|
|
The sequence is:
|
3467 |
|
|
|
3468 |
|
|
FP1 = SRC
|
3469 |
|
|
FP2 = 0.0f
|
3470 |
|
|
DEST = FP2 < FP1
|
3471 |
|
|
|
3472 |
|
|
where FP1 and FP2 are single-precision float registers
|
3473 |
|
|
taken from SCRATCH. */
|
3474 |
|
|
|
3475 |
|
|
void
|
3476 |
|
|
mips_emit_fcc_reload (rtx dest, rtx src, rtx scratch)
|
3477 |
|
|
{
|
3478 |
|
|
rtx fp1, fp2;
|
3479 |
|
|
|
3480 |
|
|
/* Change the source to SFmode. */
|
3481 |
|
|
if (MEM_P (src))
|
3482 |
|
|
src = adjust_address (src, SFmode, 0);
|
3483 |
|
|
else if (REG_P (src) || GET_CODE (src) == SUBREG)
|
3484 |
|
|
src = gen_rtx_REG (SFmode, true_regnum (src));
|
3485 |
|
|
|
3486 |
|
|
fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
|
3487 |
|
|
fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + FP_INC);
|
3488 |
|
|
|
3489 |
|
|
emit_move_insn (copy_rtx (fp1), src);
|
3490 |
|
|
emit_move_insn (copy_rtx (fp2), CONST0_RTX (SFmode));
|
3491 |
|
|
emit_insn (gen_slt_sf (dest, fp2, fp1));
|
3492 |
|
|
}
|
3493 |
|
|
|
3494 |
|
|
/* Emit code to change the current function's return address to
|
3495 |
|
|
ADDRESS. SCRATCH is available as a scratch register, if needed.
|
3496 |
|
|
ADDRESS and SCRATCH are both word-mode GPRs. */
|
3497 |
|
|
|
3498 |
|
|
void
|
3499 |
|
|
mips_set_return_address (rtx address, rtx scratch)
|
3500 |
|
|
{
|
3501 |
|
|
rtx slot_address;
|
3502 |
|
|
|
3503 |
|
|
compute_frame_size (get_frame_size ());
|
3504 |
|
|
gcc_assert ((cfun->machine->frame.mask >> 31) & 1);
|
3505 |
|
|
slot_address = mips_add_offset (scratch, stack_pointer_rtx,
|
3506 |
|
|
cfun->machine->frame.gp_sp_offset);
|
3507 |
|
|
|
3508 |
|
|
emit_move_insn (gen_rtx_MEM (GET_MODE (address), slot_address), address);
|
3509 |
|
|
}
|
3510 |
|
|
|
3511 |
|
|
/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
|
3512 |
|
|
Assume that the areas do not overlap. */
|
3513 |
|
|
|
3514 |
|
|
static void
|
3515 |
|
|
mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
|
3516 |
|
|
{
|
3517 |
|
|
HOST_WIDE_INT offset, delta;
|
3518 |
|
|
unsigned HOST_WIDE_INT bits;
|
3519 |
|
|
int i;
|
3520 |
|
|
enum machine_mode mode;
|
3521 |
|
|
rtx *regs;
|
3522 |
|
|
|
3523 |
|
|
/* Work out how many bits to move at a time. If both operands have
|
3524 |
|
|
half-word alignment, it is usually better to move in half words.
|
3525 |
|
|
For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
|
3526 |
|
|
and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
|
3527 |
|
|
Otherwise move word-sized chunks. */
|
3528 |
|
|
if (MEM_ALIGN (src) == BITS_PER_WORD / 2
|
3529 |
|
|
&& MEM_ALIGN (dest) == BITS_PER_WORD / 2)
|
3530 |
|
|
bits = BITS_PER_WORD / 2;
|
3531 |
|
|
else
|
3532 |
|
|
bits = BITS_PER_WORD;
|
3533 |
|
|
|
3534 |
|
|
mode = mode_for_size (bits, MODE_INT, 0);
|
3535 |
|
|
delta = bits / BITS_PER_UNIT;
|
3536 |
|
|
|
3537 |
|
|
/* Allocate a buffer for the temporary registers. */
|
3538 |
|
|
regs = alloca (sizeof (rtx) * length / delta);
|
3539 |
|
|
|
3540 |
|
|
/* Load as many BITS-sized chunks as possible. Use a normal load if
|
3541 |
|
|
the source has enough alignment, otherwise use left/right pairs. */
|
3542 |
|
|
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
|
3543 |
|
|
{
|
3544 |
|
|
regs[i] = gen_reg_rtx (mode);
|
3545 |
|
|
if (MEM_ALIGN (src) >= bits)
|
3546 |
|
|
emit_move_insn (regs[i], adjust_address (src, mode, offset));
|
3547 |
|
|
else
|
3548 |
|
|
{
|
3549 |
|
|
rtx part = adjust_address (src, BLKmode, offset);
|
3550 |
|
|
if (!mips_expand_unaligned_load (regs[i], part, bits, 0))
|
3551 |
|
|
gcc_unreachable ();
|
3552 |
|
|
}
|
3553 |
|
|
}
|
3554 |
|
|
|
3555 |
|
|
/* Copy the chunks to the destination. */
|
3556 |
|
|
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
|
3557 |
|
|
if (MEM_ALIGN (dest) >= bits)
|
3558 |
|
|
emit_move_insn (adjust_address (dest, mode, offset), regs[i]);
|
3559 |
|
|
else
|
3560 |
|
|
{
|
3561 |
|
|
rtx part = adjust_address (dest, BLKmode, offset);
|
3562 |
|
|
if (!mips_expand_unaligned_store (part, regs[i], bits, 0))
|
3563 |
|
|
gcc_unreachable ();
|
3564 |
|
|
}
|
3565 |
|
|
|
3566 |
|
|
/* Mop up any left-over bytes. */
|
3567 |
|
|
if (offset < length)
|
3568 |
|
|
{
|
3569 |
|
|
src = adjust_address (src, BLKmode, offset);
|
3570 |
|
|
dest = adjust_address (dest, BLKmode, offset);
|
3571 |
|
|
move_by_pieces (dest, src, length - offset,
|
3572 |
|
|
MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
|
3573 |
|
|
}
|
3574 |
|
|
}
|
3575 |
|
|
|
3576 |
|
|
#define MAX_MOVE_REGS 4
|
3577 |
|
|
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
|
3578 |
|
|
|
3579 |
|
|
|
3580 |
|
|
/* Helper function for doing a loop-based block operation on memory
|
3581 |
|
|
reference MEM. Each iteration of the loop will operate on LENGTH
|
3582 |
|
|
bytes of MEM.
|
3583 |
|
|
|
3584 |
|
|
Create a new base register for use within the loop and point it to
|
3585 |
|
|
the start of MEM. Create a new memory reference that uses this
|
3586 |
|
|
register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
|
3587 |
|
|
|
3588 |
|
|
static void
|
3589 |
|
|
mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
|
3590 |
|
|
rtx *loop_reg, rtx *loop_mem)
|
3591 |
|
|
{
|
3592 |
|
|
*loop_reg = copy_addr_to_reg (XEXP (mem, 0));
|
3593 |
|
|
|
3594 |
|
|
/* Although the new mem does not refer to a known location,
|
3595 |
|
|
it does keep up to LENGTH bytes of alignment. */
|
3596 |
|
|
*loop_mem = change_address (mem, BLKmode, *loop_reg);
|
3597 |
|
|
set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
|
3598 |
|
|
}
|
3599 |
|
|
|
3600 |
|
|
|
3601 |
|
|
/* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
|
3602 |
|
|
per iteration. LENGTH must be at least MAX_MOVE_BYTES. Assume that the
|
3603 |
|
|
memory regions do not overlap. */
|
3604 |
|
|
|
3605 |
|
|
static void
|
3606 |
|
|
mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
|
3607 |
|
|
{
|
3608 |
|
|
rtx label, src_reg, dest_reg, final_src;
|
3609 |
|
|
HOST_WIDE_INT leftover;
|
3610 |
|
|
|
3611 |
|
|
leftover = length % MAX_MOVE_BYTES;
|
3612 |
|
|
length -= leftover;
|
3613 |
|
|
|
3614 |
|
|
/* Create registers and memory references for use within the loop. */
|
3615 |
|
|
mips_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
|
3616 |
|
|
mips_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);
|
3617 |
|
|
|
3618 |
|
|
/* Calculate the value that SRC_REG should have after the last iteration
|
3619 |
|
|
of the loop. */
|
3620 |
|
|
final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
|
3621 |
|
|
0, 0, OPTAB_WIDEN);
|
3622 |
|
|
|
3623 |
|
|
/* Emit the start of the loop. */
|
3624 |
|
|
label = gen_label_rtx ();
|
3625 |
|
|
emit_label (label);
|
3626 |
|
|
|
3627 |
|
|
/* Emit the loop body. */
|
3628 |
|
|
mips_block_move_straight (dest, src, MAX_MOVE_BYTES);
|
3629 |
|
|
|
3630 |
|
|
/* Move on to the next block. */
|
3631 |
|
|
emit_move_insn (src_reg, plus_constant (src_reg, MAX_MOVE_BYTES));
|
3632 |
|
|
emit_move_insn (dest_reg, plus_constant (dest_reg, MAX_MOVE_BYTES));
|
3633 |
|
|
|
3634 |
|
|
/* Emit the loop condition. */
|
3635 |
|
|
if (Pmode == DImode)
|
3636 |
|
|
emit_insn (gen_cmpdi (src_reg, final_src));
|
3637 |
|
|
else
|
3638 |
|
|
emit_insn (gen_cmpsi (src_reg, final_src));
|
3639 |
|
|
emit_jump_insn (gen_bne (label));
|
3640 |
|
|
|
3641 |
|
|
/* Mop up any left-over bytes. */
|
3642 |
|
|
if (leftover)
|
3643 |
|
|
mips_block_move_straight (dest, src, leftover);
|
3644 |
|
|
}
|
3645 |
|
|
|
3646 |
|
|
/* Expand a movmemsi instruction. */
|
3647 |
|
|
|
3648 |
|
|
bool
|
3649 |
|
|
mips_expand_block_move (rtx dest, rtx src, rtx length)
|
3650 |
|
|
{
|
3651 |
|
|
if (GET_CODE (length) == CONST_INT)
|
3652 |
|
|
{
|
3653 |
|
|
if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
|
3654 |
|
|
{
|
3655 |
|
|
mips_block_move_straight (dest, src, INTVAL (length));
|
3656 |
|
|
return true;
|
3657 |
|
|
}
|
3658 |
|
|
else if (optimize)
|
3659 |
|
|
{
|
3660 |
|
|
mips_block_move_loop (dest, src, INTVAL (length));
|
3661 |
|
|
return true;
|
3662 |
|
|
}
|
3663 |
|
|
}
|
3664 |
|
|
return false;
|
3665 |
|
|
}
|
3666 |
|
|
|
3667 |
|
|
/* Argument support functions. */
|
3668 |
|
|
|
3669 |
|
|
/* Initialize CUMULATIVE_ARGS for a function. */
|
3670 |
|
|
|
3671 |
|
|
void
|
3672 |
|
|
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
|
3673 |
|
|
rtx libname ATTRIBUTE_UNUSED)
|
3674 |
|
|
{
|
3675 |
|
|
static CUMULATIVE_ARGS zero_cum;
|
3676 |
|
|
tree param, next_param;
|
3677 |
|
|
|
3678 |
|
|
*cum = zero_cum;
|
3679 |
|
|
cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
|
3680 |
|
|
|
3681 |
|
|
/* Determine if this function has variable arguments. This is
|
3682 |
|
|
indicated by the last argument being 'void_type_mode' if there
|
3683 |
|
|
are no variable arguments. The standard MIPS calling sequence
|
3684 |
|
|
passes all arguments in the general purpose registers in this case. */
|
3685 |
|
|
|
3686 |
|
|
for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
|
3687 |
|
|
param != 0; param = next_param)
|
3688 |
|
|
{
|
3689 |
|
|
next_param = TREE_CHAIN (param);
|
3690 |
|
|
if (next_param == 0 && TREE_VALUE (param) != void_type_node)
|
3691 |
|
|
cum->gp_reg_found = 1;
|
3692 |
|
|
}
|
3693 |
|
|
}
|
3694 |
|
|
|
3695 |
|
|
|
3696 |
|
|
/* Fill INFO with information about a single argument. CUM is the
|
3697 |
|
|
cumulative state for earlier arguments. MODE is the mode of this
|
3698 |
|
|
argument and TYPE is its type (if known). NAMED is true if this
|
3699 |
|
|
is a named (fixed) argument rather than a variable one. */
|
3700 |
|
|
|
3701 |
|
|
static void
|
3702 |
|
|
mips_arg_info (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
3703 |
|
|
tree type, int named, struct mips_arg_info *info)
|
3704 |
|
|
{
|
3705 |
|
|
bool doubleword_aligned_p;
|
3706 |
|
|
unsigned int num_bytes, num_words, max_regs;
|
3707 |
|
|
|
3708 |
|
|
/* Work out the size of the argument. */
|
3709 |
|
|
num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
|
3710 |
|
|
num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
3711 |
|
|
|
3712 |
|
|
/* Decide whether it should go in a floating-point register, assuming
|
3713 |
|
|
one is free. Later code checks for availability.
|
3714 |
|
|
|
3715 |
|
|
The checks against UNITS_PER_FPVALUE handle the soft-float and
|
3716 |
|
|
single-float cases. */
|
3717 |
|
|
switch (mips_abi)
|
3718 |
|
|
{
|
3719 |
|
|
case ABI_EABI:
|
3720 |
|
|
/* The EABI conventions have traditionally been defined in terms
|
3721 |
|
|
of TYPE_MODE, regardless of the actual type. */
|
3722 |
|
|
info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
|
3723 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
3724 |
|
|
&& GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
|
3725 |
|
|
break;
|
3726 |
|
|
|
3727 |
|
|
case ABI_32:
|
3728 |
|
|
case ABI_O64:
|
3729 |
|
|
/* Only leading floating-point scalars are passed in
|
3730 |
|
|
floating-point registers. We also handle vector floats the same
|
3731 |
|
|
say, which is OK because they are not covered by the standard ABI. */
|
3732 |
|
|
info->fpr_p = (!cum->gp_reg_found
|
3733 |
|
|
&& cum->arg_number < 2
|
3734 |
|
|
&& (type == 0 || SCALAR_FLOAT_TYPE_P (type)
|
3735 |
|
|
|| VECTOR_FLOAT_TYPE_P (type))
|
3736 |
|
|
&& (GET_MODE_CLASS (mode) == MODE_FLOAT
|
3737 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
3738 |
|
|
&& GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
|
3739 |
|
|
break;
|
3740 |
|
|
|
3741 |
|
|
case ABI_N32:
|
3742 |
|
|
case ABI_64:
|
3743 |
|
|
/* Scalar and complex floating-point types are passed in
|
3744 |
|
|
floating-point registers. */
|
3745 |
|
|
info->fpr_p = (named
|
3746 |
|
|
&& (type == 0 || FLOAT_TYPE_P (type))
|
3747 |
|
|
&& (GET_MODE_CLASS (mode) == MODE_FLOAT
|
3748 |
|
|
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
3749 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
3750 |
|
|
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
|
3751 |
|
|
|
3752 |
|
|
/* ??? According to the ABI documentation, the real and imaginary
|
3753 |
|
|
parts of complex floats should be passed in individual registers.
|
3754 |
|
|
The real and imaginary parts of stack arguments are supposed
|
3755 |
|
|
to be contiguous and there should be an extra word of padding
|
3756 |
|
|
at the end.
|
3757 |
|
|
|
3758 |
|
|
This has two problems. First, it makes it impossible to use a
|
3759 |
|
|
single "void *" va_list type, since register and stack arguments
|
3760 |
|
|
are passed differently. (At the time of writing, MIPSpro cannot
|
3761 |
|
|
handle complex float varargs correctly.) Second, it's unclear
|
3762 |
|
|
what should happen when there is only one register free.
|
3763 |
|
|
|
3764 |
|
|
For now, we assume that named complex floats should go into FPRs
|
3765 |
|
|
if there are two FPRs free, otherwise they should be passed in the
|
3766 |
|
|
same way as a struct containing two floats. */
|
3767 |
|
|
if (info->fpr_p
|
3768 |
|
|
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
3769 |
|
|
&& GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
|
3770 |
|
|
{
|
3771 |
|
|
if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
|
3772 |
|
|
info->fpr_p = false;
|
3773 |
|
|
else
|
3774 |
|
|
num_words = 2;
|
3775 |
|
|
}
|
3776 |
|
|
break;
|
3777 |
|
|
|
3778 |
|
|
default:
|
3779 |
|
|
gcc_unreachable ();
|
3780 |
|
|
}
|
3781 |
|
|
|
3782 |
|
|
/* See whether the argument has doubleword alignment. */
|
3783 |
|
|
doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;
|
3784 |
|
|
|
3785 |
|
|
/* Set REG_OFFSET to the register count we're interested in.
|
3786 |
|
|
The EABI allocates the floating-point registers separately,
|
3787 |
|
|
but the other ABIs allocate them like integer registers. */
|
3788 |
|
|
info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
|
3789 |
|
|
? cum->num_fprs
|
3790 |
|
|
: cum->num_gprs);
|
3791 |
|
|
|
3792 |
|
|
/* Advance to an even register if the argument is doubleword-aligned. */
|
3793 |
|
|
if (doubleword_aligned_p)
|
3794 |
|
|
info->reg_offset += info->reg_offset & 1;
|
3795 |
|
|
|
3796 |
|
|
/* Work out the offset of a stack argument. */
|
3797 |
|
|
info->stack_offset = cum->stack_words;
|
3798 |
|
|
if (doubleword_aligned_p)
|
3799 |
|
|
info->stack_offset += info->stack_offset & 1;
|
3800 |
|
|
|
3801 |
|
|
max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
|
3802 |
|
|
|
3803 |
|
|
/* Partition the argument between registers and stack. */
|
3804 |
|
|
info->reg_words = MIN (num_words, max_regs);
|
3805 |
|
|
info->stack_words = num_words - info->reg_words;
|
3806 |
|
|
}
|
3807 |
|
|
|
3808 |
|
|
|
3809 |
|
|
/* Implement FUNCTION_ARG_ADVANCE. */
|
3810 |
|
|
|
3811 |
|
|
void
|
3812 |
|
|
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
3813 |
|
|
tree type, int named)
|
3814 |
|
|
{
|
3815 |
|
|
struct mips_arg_info info;
|
3816 |
|
|
|
3817 |
|
|
mips_arg_info (cum, mode, type, named, &info);
|
3818 |
|
|
|
3819 |
|
|
if (!info.fpr_p)
|
3820 |
|
|
cum->gp_reg_found = true;
|
3821 |
|
|
|
3822 |
|
|
/* See the comment above the cumulative args structure in mips.h
|
3823 |
|
|
for an explanation of what this code does. It assumes the O32
|
3824 |
|
|
ABI, which passes at most 2 arguments in float registers. */
|
3825 |
|
|
if (cum->arg_number < 2 && info.fpr_p)
|
3826 |
|
|
cum->fp_code += (mode == SFmode ? 1 : 2) << ((cum->arg_number - 1) * 2);
|
3827 |
|
|
|
3828 |
|
|
if (mips_abi != ABI_EABI || !info.fpr_p)
|
3829 |
|
|
cum->num_gprs = info.reg_offset + info.reg_words;
|
3830 |
|
|
else if (info.reg_words > 0)
|
3831 |
|
|
cum->num_fprs += FP_INC;
|
3832 |
|
|
|
3833 |
|
|
if (info.stack_words > 0)
|
3834 |
|
|
cum->stack_words = info.stack_offset + info.stack_words;
|
3835 |
|
|
|
3836 |
|
|
cum->arg_number++;
|
3837 |
|
|
}
|
3838 |
|
|
|
3839 |
|
|
/* Implement FUNCTION_ARG. */
|
3840 |
|
|
|
3841 |
|
|
struct rtx_def *
|
3842 |
|
|
function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
3843 |
|
|
tree type, int named)
|
3844 |
|
|
{
|
3845 |
|
|
struct mips_arg_info info;
|
3846 |
|
|
|
3847 |
|
|
/* We will be called with a mode of VOIDmode after the last argument
|
3848 |
|
|
has been seen. Whatever we return will be passed to the call
|
3849 |
|
|
insn. If we need a mips16 fp_code, return a REG with the code
|
3850 |
|
|
stored as the mode. */
|
3851 |
|
|
if (mode == VOIDmode)
|
3852 |
|
|
{
|
3853 |
|
|
if (TARGET_MIPS16 && cum->fp_code != 0)
|
3854 |
|
|
return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
|
3855 |
|
|
|
3856 |
|
|
else
|
3857 |
|
|
return 0;
|
3858 |
|
|
}
|
3859 |
|
|
|
3860 |
|
|
mips_arg_info (cum, mode, type, named, &info);
|
3861 |
|
|
|
3862 |
|
|
/* Return straight away if the whole argument is passed on the stack. */
|
3863 |
|
|
if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
|
3864 |
|
|
return 0;
|
3865 |
|
|
|
3866 |
|
|
if (type != 0
|
3867 |
|
|
&& TREE_CODE (type) == RECORD_TYPE
|
3868 |
|
|
&& TARGET_NEWABI
|
3869 |
|
|
&& TYPE_SIZE_UNIT (type)
|
3870 |
|
|
&& host_integerp (TYPE_SIZE_UNIT (type), 1)
|
3871 |
|
|
&& named)
|
3872 |
|
|
{
|
3873 |
|
|
/* The Irix 6 n32/n64 ABIs say that if any 64 bit chunk of the
|
3874 |
|
|
structure contains a double in its entirety, then that 64 bit
|
3875 |
|
|
chunk is passed in a floating point register. */
|
3876 |
|
|
tree field;
|
3877 |
|
|
|
3878 |
|
|
/* First check to see if there is any such field. */
|
3879 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
3880 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
3881 |
|
|
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
3882 |
|
|
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
|
3883 |
|
|
&& host_integerp (bit_position (field), 0)
|
3884 |
|
|
&& int_bit_position (field) % BITS_PER_WORD == 0)
|
3885 |
|
|
break;
|
3886 |
|
|
|
3887 |
|
|
if (field != 0)
|
3888 |
|
|
{
|
3889 |
|
|
/* Now handle the special case by returning a PARALLEL
|
3890 |
|
|
indicating where each 64 bit chunk goes. INFO.REG_WORDS
|
3891 |
|
|
chunks are passed in registers. */
|
3892 |
|
|
unsigned int i;
|
3893 |
|
|
HOST_WIDE_INT bitpos;
|
3894 |
|
|
rtx ret;
|
3895 |
|
|
|
3896 |
|
|
/* assign_parms checks the mode of ENTRY_PARM, so we must
|
3897 |
|
|
use the actual mode here. */
|
3898 |
|
|
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
|
3899 |
|
|
|
3900 |
|
|
bitpos = 0;
|
3901 |
|
|
field = TYPE_FIELDS (type);
|
3902 |
|
|
for (i = 0; i < info.reg_words; i++)
|
3903 |
|
|
{
|
3904 |
|
|
rtx reg;
|
3905 |
|
|
|
3906 |
|
|
for (; field; field = TREE_CHAIN (field))
|
3907 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
3908 |
|
|
&& int_bit_position (field) >= bitpos)
|
3909 |
|
|
break;
|
3910 |
|
|
|
3911 |
|
|
if (field
|
3912 |
|
|
&& int_bit_position (field) == bitpos
|
3913 |
|
|
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
3914 |
|
|
&& !TARGET_SOFT_FLOAT
|
3915 |
|
|
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
|
3916 |
|
|
reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
|
3917 |
|
|
else
|
3918 |
|
|
reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
|
3919 |
|
|
|
3920 |
|
|
XVECEXP (ret, 0, i)
|
3921 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode, reg,
|
3922 |
|
|
GEN_INT (bitpos / BITS_PER_UNIT));
|
3923 |
|
|
|
3924 |
|
|
bitpos += BITS_PER_WORD;
|
3925 |
|
|
}
|
3926 |
|
|
return ret;
|
3927 |
|
|
}
|
3928 |
|
|
}
|
3929 |
|
|
|
3930 |
|
|
/* Handle the n32/n64 conventions for passing complex floating-point
|
3931 |
|
|
arguments in FPR pairs. The real part goes in the lower register
|
3932 |
|
|
and the imaginary part goes in the upper register. */
|
3933 |
|
|
if (TARGET_NEWABI
|
3934 |
|
|
&& info.fpr_p
|
3935 |
|
|
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
3936 |
|
|
{
|
3937 |
|
|
rtx real, imag;
|
3938 |
|
|
enum machine_mode inner;
|
3939 |
|
|
int reg;
|
3940 |
|
|
|
3941 |
|
|
inner = GET_MODE_INNER (mode);
|
3942 |
|
|
reg = FP_ARG_FIRST + info.reg_offset;
|
3943 |
|
|
if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
|
3944 |
|
|
{
|
3945 |
|
|
/* Real part in registers, imaginary part on stack. */
|
3946 |
|
|
gcc_assert (info.stack_words == info.reg_words);
|
3947 |
|
|
return gen_rtx_REG (inner, reg);
|
3948 |
|
|
}
|
3949 |
|
|
else
|
3950 |
|
|
{
|
3951 |
|
|
gcc_assert (info.stack_words == 0);
|
3952 |
|
|
real = gen_rtx_EXPR_LIST (VOIDmode,
|
3953 |
|
|
gen_rtx_REG (inner, reg),
|
3954 |
|
|
const0_rtx);
|
3955 |
|
|
imag = gen_rtx_EXPR_LIST (VOIDmode,
|
3956 |
|
|
gen_rtx_REG (inner,
|
3957 |
|
|
reg + info.reg_words / 2),
|
3958 |
|
|
GEN_INT (GET_MODE_SIZE (inner)));
|
3959 |
|
|
return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
|
3960 |
|
|
}
|
3961 |
|
|
}
|
3962 |
|
|
|
3963 |
|
|
if (!info.fpr_p)
|
3964 |
|
|
return gen_rtx_REG (mode, GP_ARG_FIRST + info.reg_offset);
|
3965 |
|
|
else if (info.reg_offset == 1)
|
3966 |
|
|
/* This code handles the special o32 case in which the second word
|
3967 |
|
|
of the argument structure is passed in floating-point registers. */
|
3968 |
|
|
return gen_rtx_REG (mode, FP_ARG_FIRST + FP_INC);
|
3969 |
|
|
else
|
3970 |
|
|
return gen_rtx_REG (mode, FP_ARG_FIRST + info.reg_offset);
|
3971 |
|
|
}
|
3972 |
|
|
|
3973 |
|
|
|
3974 |
|
|
/* Implement TARGET_ARG_PARTIAL_BYTES. */
|
3975 |
|
|
|
3976 |
|
|
static int
|
3977 |
|
|
mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
|
3978 |
|
|
enum machine_mode mode, tree type, bool named)
|
3979 |
|
|
{
|
3980 |
|
|
struct mips_arg_info info;
|
3981 |
|
|
|
3982 |
|
|
mips_arg_info (cum, mode, type, named, &info);
|
3983 |
|
|
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
|
3984 |
|
|
}
|
3985 |
|
|
|
3986 |
|
|
|
3987 |
|
|
/* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least
|
3988 |
|
|
PARM_BOUNDARY bits of alignment, but will be given anything up
|
3989 |
|
|
to STACK_BOUNDARY bits if the type requires it. */
|
3990 |
|
|
|
3991 |
|
|
int
|
3992 |
|
|
function_arg_boundary (enum machine_mode mode, tree type)
|
3993 |
|
|
{
|
3994 |
|
|
unsigned int alignment;
|
3995 |
|
|
|
3996 |
|
|
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
|
3997 |
|
|
if (alignment < PARM_BOUNDARY)
|
3998 |
|
|
alignment = PARM_BOUNDARY;
|
3999 |
|
|
if (alignment > STACK_BOUNDARY)
|
4000 |
|
|
alignment = STACK_BOUNDARY;
|
4001 |
|
|
return alignment;
|
4002 |
|
|
}
|
4003 |
|
|
|
4004 |
|
|
/* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
|
4005 |
|
|
upward rather than downward. In other words, return true if the
|
4006 |
|
|
first byte of the stack slot has useful data, false if the last
|
4007 |
|
|
byte does. */
|
4008 |
|
|
|
4009 |
|
|
bool
|
4010 |
|
|
mips_pad_arg_upward (enum machine_mode mode, tree type)
|
4011 |
|
|
{
|
4012 |
|
|
/* On little-endian targets, the first byte of every stack argument
|
4013 |
|
|
is passed in the first byte of the stack slot. */
|
4014 |
|
|
if (!BYTES_BIG_ENDIAN)
|
4015 |
|
|
return true;
|
4016 |
|
|
|
4017 |
|
|
/* Otherwise, integral types are padded downward: the last byte of a
|
4018 |
|
|
stack argument is passed in the last byte of the stack slot. */
|
4019 |
|
|
if (type != 0
|
4020 |
|
|
? INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)
|
4021 |
|
|
: GET_MODE_CLASS (mode) == MODE_INT)
|
4022 |
|
|
return false;
|
4023 |
|
|
|
4024 |
|
|
/* Big-endian o64 pads floating-point arguments downward. */
|
4025 |
|
|
if (mips_abi == ABI_O64)
|
4026 |
|
|
if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
|
4027 |
|
|
return false;
|
4028 |
|
|
|
4029 |
|
|
/* Other types are padded upward for o32, o64, n32 and n64. */
|
4030 |
|
|
if (mips_abi != ABI_EABI)
|
4031 |
|
|
return true;
|
4032 |
|
|
|
4033 |
|
|
/* Arguments smaller than a stack slot are padded downward. */
|
4034 |
|
|
if (mode != BLKmode)
|
4035 |
|
|
return (GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY);
|
4036 |
|
|
else
|
4037 |
|
|
return (int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT));
|
4038 |
|
|
}
|
4039 |
|
|
|
4040 |
|
|
|
4041 |
|
|
/* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
|
4042 |
|
|
if the least significant byte of the register has useful data. Return
|
4043 |
|
|
the opposite if the most significant byte does. */
|
4044 |
|
|
|
4045 |
|
|
bool
|
4046 |
|
|
mips_pad_reg_upward (enum machine_mode mode, tree type)
|
4047 |
|
|
{
|
4048 |
|
|
/* No shifting is required for floating-point arguments. */
|
4049 |
|
|
if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
|
4050 |
|
|
return !BYTES_BIG_ENDIAN;
|
4051 |
|
|
|
4052 |
|
|
/* Otherwise, apply the same padding to register arguments as we do
|
4053 |
|
|
to stack arguments. */
|
4054 |
|
|
return mips_pad_arg_upward (mode, type);
|
4055 |
|
|
}
|
4056 |
|
|
|
4057 |
|
|
static void
|
4058 |
|
|
mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
4059 |
|
|
tree type, int *pretend_size ATTRIBUTE_UNUSED,
|
4060 |
|
|
int no_rtl)
|
4061 |
|
|
{
|
4062 |
|
|
CUMULATIVE_ARGS local_cum;
|
4063 |
|
|
int gp_saved, fp_saved;
|
4064 |
|
|
|
4065 |
|
|
/* The caller has advanced CUM up to, but not beyond, the last named
|
4066 |
|
|
argument. Advance a local copy of CUM past the last "real" named
|
4067 |
|
|
argument, to find out how many registers are left over. */
|
4068 |
|
|
|
4069 |
|
|
local_cum = *cum;
|
4070 |
|
|
FUNCTION_ARG_ADVANCE (local_cum, mode, type, 1);
|
4071 |
|
|
|
4072 |
|
|
/* Found out how many registers we need to save. */
|
4073 |
|
|
gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
|
4074 |
|
|
fp_saved = (EABI_FLOAT_VARARGS_P
|
4075 |
|
|
? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
|
4076 |
|
|
: 0);
|
4077 |
|
|
|
4078 |
|
|
if (!no_rtl)
|
4079 |
|
|
{
|
4080 |
|
|
if (gp_saved > 0)
|
4081 |
|
|
{
|
4082 |
|
|
rtx ptr, mem;
|
4083 |
|
|
|
4084 |
|
|
ptr = plus_constant (virtual_incoming_args_rtx,
|
4085 |
|
|
REG_PARM_STACK_SPACE (cfun->decl)
|
4086 |
|
|
- gp_saved * UNITS_PER_WORD);
|
4087 |
|
|
mem = gen_rtx_MEM (BLKmode, ptr);
|
4088 |
|
|
set_mem_alias_set (mem, get_varargs_alias_set ());
|
4089 |
|
|
|
4090 |
|
|
move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
|
4091 |
|
|
mem, gp_saved);
|
4092 |
|
|
}
|
4093 |
|
|
if (fp_saved > 0)
|
4094 |
|
|
{
|
4095 |
|
|
/* We can't use move_block_from_reg, because it will use
|
4096 |
|
|
the wrong mode. */
|
4097 |
|
|
enum machine_mode mode;
|
4098 |
|
|
int off, i;
|
4099 |
|
|
|
4100 |
|
|
/* Set OFF to the offset from virtual_incoming_args_rtx of
|
4101 |
|
|
the first float register. The FP save area lies below
|
4102 |
|
|
the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
|
4103 |
|
|
off = -gp_saved * UNITS_PER_WORD;
|
4104 |
|
|
off &= ~(UNITS_PER_FPVALUE - 1);
|
4105 |
|
|
off -= fp_saved * UNITS_PER_FPREG;
|
4106 |
|
|
|
4107 |
|
|
mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
|
4108 |
|
|
|
4109 |
|
|
for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS; i += FP_INC)
|
4110 |
|
|
{
|
4111 |
|
|
rtx ptr, mem;
|
4112 |
|
|
|
4113 |
|
|
ptr = plus_constant (virtual_incoming_args_rtx, off);
|
4114 |
|
|
mem = gen_rtx_MEM (mode, ptr);
|
4115 |
|
|
set_mem_alias_set (mem, get_varargs_alias_set ());
|
4116 |
|
|
emit_move_insn (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
|
4117 |
|
|
off += UNITS_PER_HWFPVALUE;
|
4118 |
|
|
}
|
4119 |
|
|
}
|
4120 |
|
|
}
|
4121 |
|
|
if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
|
4122 |
|
|
cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
|
4123 |
|
|
+ fp_saved * UNITS_PER_FPREG);
|
4124 |
|
|
}
|
4125 |
|
|
|
4126 |
|
|
/* Create the va_list data type.
|
4127 |
|
|
We keep 3 pointers, and two offsets.
|
4128 |
|
|
Two pointers are to the overflow area, which starts at the CFA.
|
4129 |
|
|
One of these is constant, for addressing into the GPR save area below it.
|
4130 |
|
|
The other is advanced up the stack through the overflow region.
|
4131 |
|
|
The third pointer is to the GPR save area. Since the FPR save area
|
4132 |
|
|
is just below it, we can address FPR slots off this pointer.
|
4133 |
|
|
We also keep two one-byte offsets, which are to be subtracted from the
|
4134 |
|
|
constant pointers to yield addresses in the GPR and FPR save areas.
|
4135 |
|
|
These are downcounted as float or non-float arguments are used,
|
4136 |
|
|
and when they get to zero, the argument must be obtained from the
|
4137 |
|
|
overflow region.
|
4138 |
|
|
If !EABI_FLOAT_VARARGS_P, then no FPR save area exists, and a single
|
4139 |
|
|
pointer is enough. It's started at the GPR save area, and is
|
4140 |
|
|
advanced, period.
|
4141 |
|
|
Note that the GPR save area is not constant size, due to optimization
|
4142 |
|
|
in the prologue. Hence, we can't use a design with two pointers
|
4143 |
|
|
and two offsets, although we could have designed this with two pointers
|
4144 |
|
|
and three offsets. */
|
4145 |
|
|
|
4146 |
|
|
static tree
|
4147 |
|
|
mips_build_builtin_va_list (void)
|
4148 |
|
|
{
|
4149 |
|
|
if (EABI_FLOAT_VARARGS_P)
|
4150 |
|
|
{
|
4151 |
|
|
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
|
4152 |
|
|
tree array, index;
|
4153 |
|
|
|
4154 |
|
|
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
|
4155 |
|
|
|
4156 |
|
|
f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
|
4157 |
|
|
ptr_type_node);
|
4158 |
|
|
f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
|
4159 |
|
|
ptr_type_node);
|
4160 |
|
|
f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
|
4161 |
|
|
ptr_type_node);
|
4162 |
|
|
f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
|
4163 |
|
|
unsigned_char_type_node);
|
4164 |
|
|
f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
|
4165 |
|
|
unsigned_char_type_node);
|
4166 |
|
|
/* Explicitly pad to the size of a pointer, so that -Wpadded won't
|
4167 |
|
|
warn on every user file. */
|
4168 |
|
|
index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
|
4169 |
|
|
array = build_array_type (unsigned_char_type_node,
|
4170 |
|
|
build_index_type (index));
|
4171 |
|
|
f_res = build_decl (FIELD_DECL, get_identifier ("__reserved"), array);
|
4172 |
|
|
|
4173 |
|
|
DECL_FIELD_CONTEXT (f_ovfl) = record;
|
4174 |
|
|
DECL_FIELD_CONTEXT (f_gtop) = record;
|
4175 |
|
|
DECL_FIELD_CONTEXT (f_ftop) = record;
|
4176 |
|
|
DECL_FIELD_CONTEXT (f_goff) = record;
|
4177 |
|
|
DECL_FIELD_CONTEXT (f_foff) = record;
|
4178 |
|
|
DECL_FIELD_CONTEXT (f_res) = record;
|
4179 |
|
|
|
4180 |
|
|
TYPE_FIELDS (record) = f_ovfl;
|
4181 |
|
|
TREE_CHAIN (f_ovfl) = f_gtop;
|
4182 |
|
|
TREE_CHAIN (f_gtop) = f_ftop;
|
4183 |
|
|
TREE_CHAIN (f_ftop) = f_goff;
|
4184 |
|
|
TREE_CHAIN (f_goff) = f_foff;
|
4185 |
|
|
TREE_CHAIN (f_foff) = f_res;
|
4186 |
|
|
|
4187 |
|
|
layout_type (record);
|
4188 |
|
|
return record;
|
4189 |
|
|
}
|
4190 |
|
|
else if (TARGET_IRIX && TARGET_IRIX6)
|
4191 |
|
|
/* On IRIX 6, this type is 'char *'. */
|
4192 |
|
|
return build_pointer_type (char_type_node);
|
4193 |
|
|
else
|
4194 |
|
|
/* Otherwise, we use 'void *'. */
|
4195 |
|
|
return ptr_type_node;
|
4196 |
|
|
}
|
4197 |
|
|
|
4198 |
|
|
/* Implement va_start. */
|
4199 |
|
|
|
4200 |
|
|
void
|
4201 |
|
|
mips_va_start (tree valist, rtx nextarg)
|
4202 |
|
|
{
|
4203 |
|
|
if (EABI_FLOAT_VARARGS_P)
|
4204 |
|
|
{
|
4205 |
|
|
const CUMULATIVE_ARGS *cum;
|
4206 |
|
|
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
|
4207 |
|
|
tree ovfl, gtop, ftop, goff, foff;
|
4208 |
|
|
tree t;
|
4209 |
|
|
int gpr_save_area_size;
|
4210 |
|
|
int fpr_save_area_size;
|
4211 |
|
|
int fpr_offset;
|
4212 |
|
|
|
4213 |
|
|
cum = ¤t_function_args_info;
|
4214 |
|
|
gpr_save_area_size
|
4215 |
|
|
= (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
|
4216 |
|
|
fpr_save_area_size
|
4217 |
|
|
= (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
|
4218 |
|
|
|
4219 |
|
|
f_ovfl = TYPE_FIELDS (va_list_type_node);
|
4220 |
|
|
f_gtop = TREE_CHAIN (f_ovfl);
|
4221 |
|
|
f_ftop = TREE_CHAIN (f_gtop);
|
4222 |
|
|
f_goff = TREE_CHAIN (f_ftop);
|
4223 |
|
|
f_foff = TREE_CHAIN (f_goff);
|
4224 |
|
|
|
4225 |
|
|
ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
|
4226 |
|
|
NULL_TREE);
|
4227 |
|
|
gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
|
4228 |
|
|
NULL_TREE);
|
4229 |
|
|
ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
|
4230 |
|
|
NULL_TREE);
|
4231 |
|
|
goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
|
4232 |
|
|
NULL_TREE);
|
4233 |
|
|
foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
|
4234 |
|
|
NULL_TREE);
|
4235 |
|
|
|
4236 |
|
|
/* Emit code to initialize OVFL, which points to the next varargs
|
4237 |
|
|
stack argument. CUM->STACK_WORDS gives the number of stack
|
4238 |
|
|
words used by named arguments. */
|
4239 |
|
|
t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
|
4240 |
|
|
if (cum->stack_words > 0)
|
4241 |
|
|
t = build2 (PLUS_EXPR, TREE_TYPE (ovfl), t,
|
4242 |
|
|
build_int_cst (NULL_TREE,
|
4243 |
|
|
cum->stack_words * UNITS_PER_WORD));
|
4244 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
|
4245 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
4246 |
|
|
|
4247 |
|
|
/* Emit code to initialize GTOP, the top of the GPR save area. */
|
4248 |
|
|
t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
|
4249 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
|
4250 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
4251 |
|
|
|
4252 |
|
|
/* Emit code to initialize FTOP, the top of the FPR save area.
|
4253 |
|
|
This address is gpr_save_area_bytes below GTOP, rounded
|
4254 |
|
|
down to the next fp-aligned boundary. */
|
4255 |
|
|
t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
|
4256 |
|
|
fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
|
4257 |
|
|
fpr_offset &= ~(UNITS_PER_FPVALUE - 1);
|
4258 |
|
|
if (fpr_offset)
|
4259 |
|
|
t = build2 (PLUS_EXPR, TREE_TYPE (ftop), t,
|
4260 |
|
|
build_int_cst (NULL_TREE, -fpr_offset));
|
4261 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
|
4262 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
4263 |
|
|
|
4264 |
|
|
/* Emit code to initialize GOFF, the offset from GTOP of the
|
4265 |
|
|
next GPR argument. */
|
4266 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
|
4267 |
|
|
build_int_cst (NULL_TREE, gpr_save_area_size));
|
4268 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
4269 |
|
|
|
4270 |
|
|
/* Likewise emit code to initialize FOFF, the offset from FTOP
|
4271 |
|
|
of the next FPR argument. */
|
4272 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
|
4273 |
|
|
build_int_cst (NULL_TREE, fpr_save_area_size));
|
4274 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
4275 |
|
|
}
|
4276 |
|
|
else
|
4277 |
|
|
{
|
4278 |
|
|
nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
|
4279 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
4280 |
|
|
}
|
4281 |
|
|
}
|
4282 |
|
|
|
4283 |
|
|
/* Implement va_arg. */
|
4284 |
|
|
|
4285 |
|
|
static tree
|
4286 |
|
|
mips_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
|
4287 |
|
|
{
|
4288 |
|
|
HOST_WIDE_INT size, rsize;
|
4289 |
|
|
tree addr;
|
4290 |
|
|
bool indirect;
|
4291 |
|
|
|
4292 |
|
|
indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
|
4293 |
|
|
|
4294 |
|
|
if (indirect)
|
4295 |
|
|
type = build_pointer_type (type);
|
4296 |
|
|
|
4297 |
|
|
size = int_size_in_bytes (type);
|
4298 |
|
|
rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
|
4299 |
|
|
|
4300 |
|
|
if (mips_abi != ABI_EABI || !EABI_FLOAT_VARARGS_P)
|
4301 |
|
|
addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
|
4302 |
|
|
else
|
4303 |
|
|
{
|
4304 |
|
|
/* Not a simple merged stack. */
|
4305 |
|
|
|
4306 |
|
|
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
|
4307 |
|
|
tree ovfl, top, off, align;
|
4308 |
|
|
HOST_WIDE_INT osize;
|
4309 |
|
|
tree t, u;
|
4310 |
|
|
|
4311 |
|
|
f_ovfl = TYPE_FIELDS (va_list_type_node);
|
4312 |
|
|
f_gtop = TREE_CHAIN (f_ovfl);
|
4313 |
|
|
f_ftop = TREE_CHAIN (f_gtop);
|
4314 |
|
|
f_goff = TREE_CHAIN (f_ftop);
|
4315 |
|
|
f_foff = TREE_CHAIN (f_goff);
|
4316 |
|
|
|
4317 |
|
|
/* We maintain separate pointers and offsets for floating-point
|
4318 |
|
|
and integer arguments, but we need similar code in both cases.
|
4319 |
|
|
Let:
|
4320 |
|
|
|
4321 |
|
|
TOP be the top of the register save area;
|
4322 |
|
|
OFF be the offset from TOP of the next register;
|
4323 |
|
|
ADDR_RTX be the address of the argument;
|
4324 |
|
|
RSIZE be the number of bytes used to store the argument
|
4325 |
|
|
when it's in the register save area;
|
4326 |
|
|
OSIZE be the number of bytes used to store it when it's
|
4327 |
|
|
in the stack overflow area; and
|
4328 |
|
|
PADDING be (BYTES_BIG_ENDIAN ? OSIZE - RSIZE : 0)
|
4329 |
|
|
|
4330 |
|
|
The code we want is:
|
4331 |
|
|
|
4332 |
|
|
1: off &= -rsize; // round down
|
4333 |
|
|
2: if (off != 0)
|
4334 |
|
|
3: {
|
4335 |
|
|
4: addr_rtx = top - off;
|
4336 |
|
|
5: off -= rsize;
|
4337 |
|
|
6: }
|
4338 |
|
|
7: else
|
4339 |
|
|
8: {
|
4340 |
|
|
9: ovfl += ((intptr_t) ovfl + osize - 1) & -osize;
|
4341 |
|
|
10: addr_rtx = ovfl + PADDING;
|
4342 |
|
|
11: ovfl += osize;
|
4343 |
|
|
14: }
|
4344 |
|
|
|
4345 |
|
|
[1] and [9] can sometimes be optimized away. */
|
4346 |
|
|
|
4347 |
|
|
ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
|
4348 |
|
|
NULL_TREE);
|
4349 |
|
|
|
4350 |
|
|
if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
|
4351 |
|
|
&& GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
|
4352 |
|
|
{
|
4353 |
|
|
top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
|
4354 |
|
|
NULL_TREE);
|
4355 |
|
|
off = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
|
4356 |
|
|
NULL_TREE);
|
4357 |
|
|
|
4358 |
|
|
/* When floating-point registers are saved to the stack,
|
4359 |
|
|
each one will take up UNITS_PER_HWFPVALUE bytes, regardless
|
4360 |
|
|
of the float's precision. */
|
4361 |
|
|
rsize = UNITS_PER_HWFPVALUE;
|
4362 |
|
|
|
4363 |
|
|
/* Overflow arguments are padded to UNITS_PER_WORD bytes
|
4364 |
|
|
(= PARM_BOUNDARY bits). This can be different from RSIZE
|
4365 |
|
|
in two cases:
|
4366 |
|
|
|
4367 |
|
|
(1) On 32-bit targets when TYPE is a structure such as:
|
4368 |
|
|
|
4369 |
|
|
struct s { float f; };
|
4370 |
|
|
|
4371 |
|
|
Such structures are passed in paired FPRs, so RSIZE
|
4372 |
|
|
will be 8 bytes. However, the structure only takes
|
4373 |
|
|
up 4 bytes of memory, so OSIZE will only be 4.
|
4374 |
|
|
|
4375 |
|
|
(2) In combinations such as -mgp64 -msingle-float
|
4376 |
|
|
-fshort-double. Doubles passed in registers
|
4377 |
|
|
will then take up 4 (UNITS_PER_HWFPVALUE) bytes,
|
4378 |
|
|
but those passed on the stack take up
|
4379 |
|
|
UNITS_PER_WORD bytes. */
|
4380 |
|
|
osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
|
4381 |
|
|
}
|
4382 |
|
|
else
|
4383 |
|
|
{
|
4384 |
|
|
top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
|
4385 |
|
|
NULL_TREE);
|
4386 |
|
|
off = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
|
4387 |
|
|
NULL_TREE);
|
4388 |
|
|
if (rsize > UNITS_PER_WORD)
|
4389 |
|
|
{
|
4390 |
|
|
/* [1] Emit code for: off &= -rsize. */
|
4391 |
|
|
t = build2 (BIT_AND_EXPR, TREE_TYPE (off), off,
|
4392 |
|
|
build_int_cst (NULL_TREE, -rsize));
|
4393 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t);
|
4394 |
|
|
gimplify_and_add (t, pre_p);
|
4395 |
|
|
}
|
4396 |
|
|
osize = rsize;
|
4397 |
|
|
}
|
4398 |
|
|
|
4399 |
|
|
/* [2] Emit code to branch if off == 0. */
|
4400 |
|
|
t = build2 (NE_EXPR, boolean_type_node, off,
|
4401 |
|
|
build_int_cst (TREE_TYPE (off), 0));
|
4402 |
|
|
addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
|
4403 |
|
|
|
4404 |
|
|
/* [5] Emit code for: off -= rsize. We do this as a form of
|
4405 |
|
|
post-increment not available to C. Also widen for the
|
4406 |
|
|
coming pointer arithmetic. */
|
4407 |
|
|
t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
|
4408 |
|
|
t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
|
4409 |
|
|
t = fold_convert (sizetype, t);
|
4410 |
|
|
t = fold_convert (TREE_TYPE (top), t);
|
4411 |
|
|
|
4412 |
|
|
/* [4] Emit code for: addr_rtx = top - off. On big endian machines,
|
4413 |
|
|
the argument has RSIZE - SIZE bytes of leading padding. */
|
4414 |
|
|
t = build2 (MINUS_EXPR, TREE_TYPE (top), top, t);
|
4415 |
|
|
if (BYTES_BIG_ENDIAN && rsize > size)
|
4416 |
|
|
{
|
4417 |
|
|
u = fold_convert (TREE_TYPE (t), build_int_cst (NULL_TREE,
|
4418 |
|
|
rsize - size));
|
4419 |
|
|
t = build2 (PLUS_EXPR, TREE_TYPE (t), t, u);
|
4420 |
|
|
}
|
4421 |
|
|
COND_EXPR_THEN (addr) = t;
|
4422 |
|
|
|
4423 |
|
|
if (osize > UNITS_PER_WORD)
|
4424 |
|
|
{
|
4425 |
|
|
/* [9] Emit: ovfl += ((intptr_t) ovfl + osize - 1) & -osize. */
|
4426 |
|
|
u = fold_convert (TREE_TYPE (ovfl),
|
4427 |
|
|
build_int_cst (NULL_TREE, osize - 1));
|
4428 |
|
|
t = build2 (PLUS_EXPR, TREE_TYPE (ovfl), ovfl, u);
|
4429 |
|
|
u = fold_convert (TREE_TYPE (ovfl),
|
4430 |
|
|
build_int_cst (NULL_TREE, -osize));
|
4431 |
|
|
t = build2 (BIT_AND_EXPR, TREE_TYPE (ovfl), t, u);
|
4432 |
|
|
align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
|
4433 |
|
|
}
|
4434 |
|
|
else
|
4435 |
|
|
align = NULL;
|
4436 |
|
|
|
4437 |
|
|
/* [10, 11]. Emit code to store ovfl in addr_rtx, then
|
4438 |
|
|
post-increment ovfl by osize. On big-endian machines,
|
4439 |
|
|
the argument has OSIZE - SIZE bytes of leading padding. */
|
4440 |
|
|
u = fold_convert (TREE_TYPE (ovfl),
|
4441 |
|
|
build_int_cst (NULL_TREE, osize));
|
4442 |
|
|
t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
|
4443 |
|
|
if (BYTES_BIG_ENDIAN && osize > size)
|
4444 |
|
|
{
|
4445 |
|
|
u = fold_convert (TREE_TYPE (t),
|
4446 |
|
|
build_int_cst (NULL_TREE, osize - size));
|
4447 |
|
|
t = build2 (PLUS_EXPR, TREE_TYPE (t), t, u);
|
4448 |
|
|
}
|
4449 |
|
|
|
4450 |
|
|
/* String [9] and [10,11] together. */
|
4451 |
|
|
if (align)
|
4452 |
|
|
t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
|
4453 |
|
|
COND_EXPR_ELSE (addr) = t;
|
4454 |
|
|
|
4455 |
|
|
addr = fold_convert (build_pointer_type (type), addr);
|
4456 |
|
|
addr = build_va_arg_indirect_ref (addr);
|
4457 |
|
|
}
|
4458 |
|
|
|
4459 |
|
|
if (indirect)
|
4460 |
|
|
addr = build_va_arg_indirect_ref (addr);
|
4461 |
|
|
|
4462 |
|
|
return addr;
|
4463 |
|
|
}
|
4464 |
|
|
|
4465 |
|
|
/* Return true if it is possible to use left/right accesses for a
|
4466 |
|
|
bitfield of WIDTH bits starting BITPOS bits into *OP. When
|
4467 |
|
|
returning true, update *OP, *LEFT and *RIGHT as follows:
|
4468 |
|
|
|
4469 |
|
|
*OP is a BLKmode reference to the whole field.
|
4470 |
|
|
|
4471 |
|
|
*LEFT is a QImode reference to the first byte if big endian or
|
4472 |
|
|
the last byte if little endian. This address can be used in the
|
4473 |
|
|
left-side instructions (lwl, swl, ldl, sdl).
|
4474 |
|
|
|
4475 |
|
|
*RIGHT is a QImode reference to the opposite end of the field and
|
4476 |
|
|
can be used in the patterning right-side instruction. */
|
4477 |
|
|
|
4478 |
|
|
static bool
|
4479 |
|
|
mips_get_unaligned_mem (rtx *op, unsigned int width, int bitpos,
|
4480 |
|
|
rtx *left, rtx *right)
|
4481 |
|
|
{
|
4482 |
|
|
rtx first, last;
|
4483 |
|
|
|
4484 |
|
|
/* Check that the operand really is a MEM. Not all the extv and
|
4485 |
|
|
extzv predicates are checked. */
|
4486 |
|
|
if (!MEM_P (*op))
|
4487 |
|
|
return false;
|
4488 |
|
|
|
4489 |
|
|
/* Check that the size is valid. */
|
4490 |
|
|
if (width != 32 && (!TARGET_64BIT || width != 64))
|
4491 |
|
|
return false;
|
4492 |
|
|
|
4493 |
|
|
/* We can only access byte-aligned values. Since we are always passed
|
4494 |
|
|
a reference to the first byte of the field, it is not necessary to
|
4495 |
|
|
do anything with BITPOS after this check. */
|
4496 |
|
|
if (bitpos % BITS_PER_UNIT != 0)
|
4497 |
|
|
return false;
|
4498 |
|
|
|
4499 |
|
|
/* Reject aligned bitfields: we want to use a normal load or store
|
4500 |
|
|
instead of a left/right pair. */
|
4501 |
|
|
if (MEM_ALIGN (*op) >= width)
|
4502 |
|
|
return false;
|
4503 |
|
|
|
4504 |
|
|
/* Adjust *OP to refer to the whole field. This also has the effect
|
4505 |
|
|
of legitimizing *OP's address for BLKmode, possibly simplifying it. */
|
4506 |
|
|
*op = adjust_address (*op, BLKmode, 0);
|
4507 |
|
|
set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));
|
4508 |
|
|
|
4509 |
|
|
/* Get references to both ends of the field. We deliberately don't
|
4510 |
|
|
use the original QImode *OP for FIRST since the new BLKmode one
|
4511 |
|
|
might have a simpler address. */
|
4512 |
|
|
first = adjust_address (*op, QImode, 0);
|
4513 |
|
|
last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);
|
4514 |
|
|
|
4515 |
|
|
/* Allocate to LEFT and RIGHT according to endianness. LEFT should
|
4516 |
|
|
be the upper word and RIGHT the lower word. */
|
4517 |
|
|
if (TARGET_BIG_ENDIAN)
|
4518 |
|
|
*left = first, *right = last;
|
4519 |
|
|
else
|
4520 |
|
|
*left = last, *right = first;
|
4521 |
|
|
|
4522 |
|
|
return true;
|
4523 |
|
|
}
|
4524 |
|
|
|
4525 |
|
|
|
4526 |
|
|
/* Try to emit the equivalent of (set DEST (zero_extract SRC WIDTH BITPOS)).
|
4527 |
|
|
Return true on success. We only handle cases where zero_extract is
|
4528 |
|
|
equivalent to sign_extract. */
|
4529 |
|
|
|
4530 |
|
|
bool
|
4531 |
|
|
mips_expand_unaligned_load (rtx dest, rtx src, unsigned int width, int bitpos)
|
4532 |
|
|
{
|
4533 |
|
|
rtx left, right, temp;
|
4534 |
|
|
|
4535 |
|
|
/* If TARGET_64BIT, the destination of a 32-bit load will be a
|
4536 |
|
|
paradoxical word_mode subreg. This is the only case in which
|
4537 |
|
|
we allow the destination to be larger than the source. */
|
4538 |
|
|
if (GET_CODE (dest) == SUBREG
|
4539 |
|
|
&& GET_MODE (dest) == DImode
|
4540 |
|
|
&& SUBREG_BYTE (dest) == 0
|
4541 |
|
|
&& GET_MODE (SUBREG_REG (dest)) == SImode)
|
4542 |
|
|
dest = SUBREG_REG (dest);
|
4543 |
|
|
|
4544 |
|
|
/* After the above adjustment, the destination must be the same
|
4545 |
|
|
width as the source. */
|
4546 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
|
4547 |
|
|
return false;
|
4548 |
|
|
|
4549 |
|
|
if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
|
4550 |
|
|
return false;
|
4551 |
|
|
|
4552 |
|
|
temp = gen_reg_rtx (GET_MODE (dest));
|
4553 |
|
|
if (GET_MODE (dest) == DImode)
|
4554 |
|
|
{
|
4555 |
|
|
emit_insn (gen_mov_ldl (temp, src, left));
|
4556 |
|
|
emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
|
4557 |
|
|
}
|
4558 |
|
|
else
|
4559 |
|
|
{
|
4560 |
|
|
emit_insn (gen_mov_lwl (temp, src, left));
|
4561 |
|
|
emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
|
4562 |
|
|
}
|
4563 |
|
|
return true;
|
4564 |
|
|
}
|
4565 |
|
|
|
4566 |
|
|
|
4567 |
|
|
/* Try to expand (set (zero_extract DEST WIDTH BITPOS) SRC). Return
|
4568 |
|
|
true on success. */
|
4569 |
|
|
|
4570 |
|
|
bool
|
4571 |
|
|
mips_expand_unaligned_store (rtx dest, rtx src, unsigned int width, int bitpos)
|
4572 |
|
|
{
|
4573 |
|
|
rtx left, right;
|
4574 |
|
|
enum machine_mode mode;
|
4575 |
|
|
|
4576 |
|
|
if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
|
4577 |
|
|
return false;
|
4578 |
|
|
|
4579 |
|
|
mode = mode_for_size (width, MODE_INT, 0);
|
4580 |
|
|
src = gen_lowpart (mode, src);
|
4581 |
|
|
|
4582 |
|
|
if (mode == DImode)
|
4583 |
|
|
{
|
4584 |
|
|
emit_insn (gen_mov_sdl (dest, src, left));
|
4585 |
|
|
emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
|
4586 |
|
|
}
|
4587 |
|
|
else
|
4588 |
|
|
{
|
4589 |
|
|
emit_insn (gen_mov_swl (dest, src, left));
|
4590 |
|
|
emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
|
4591 |
|
|
}
|
4592 |
|
|
return true;
|
4593 |
|
|
}
|
4594 |
|
|
|
4595 |
|
|
/* Return true if X is a MEM with the same size as MODE. */
|
4596 |
|
|
|
4597 |
|
|
bool
|
4598 |
|
|
mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
|
4599 |
|
|
{
|
4600 |
|
|
rtx size;
|
4601 |
|
|
|
4602 |
|
|
if (!MEM_P (x))
|
4603 |
|
|
return false;
|
4604 |
|
|
|
4605 |
|
|
size = MEM_SIZE (x);
|
4606 |
|
|
return size && INTVAL (size) == GET_MODE_SIZE (mode);
|
4607 |
|
|
}
|
4608 |
|
|
|
4609 |
|
|
/* Return true if (zero_extract OP SIZE POSITION) can be used as the
|
4610 |
|
|
source of an "ext" instruction or the destination of an "ins"
|
4611 |
|
|
instruction. OP must be a register operand and the following
|
4612 |
|
|
conditions must hold:
|
4613 |
|
|
|
4614 |
|
|
|
4615 |
|
|
|
4616 |
|
|
|
4617 |
|
|
|
4618 |
|
|
Also reject lengths equal to a word as they are better handled
|
4619 |
|
|
by the move patterns. */
|
4620 |
|
|
|
4621 |
|
|
bool
|
4622 |
|
|
mips_use_ins_ext_p (rtx op, rtx size, rtx position)
|
4623 |
|
|
{
|
4624 |
|
|
HOST_WIDE_INT len, pos;
|
4625 |
|
|
|
4626 |
|
|
if (!ISA_HAS_EXT_INS
|
4627 |
|
|
|| !register_operand (op, VOIDmode)
|
4628 |
|
|
|| GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
|
4629 |
|
|
return false;
|
4630 |
|
|
|
4631 |
|
|
len = INTVAL (size);
|
4632 |
|
|
pos = INTVAL (position);
|
4633 |
|
|
|
4634 |
|
|
if (len <= 0 || len >= GET_MODE_BITSIZE (GET_MODE (op))
|
4635 |
|
|
|| pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (op)))
|
4636 |
|
|
return false;
|
4637 |
|
|
|
4638 |
|
|
return true;
|
4639 |
|
|
}
|
4640 |
|
|
|
4641 |
|
|
/* Set up globals to generate code for the ISA or processor
|
4642 |
|
|
described by INFO. */
|
4643 |
|
|
|
4644 |
|
|
static void
|
4645 |
|
|
mips_set_architecture (const struct mips_cpu_info *info)
|
4646 |
|
|
{
|
4647 |
|
|
if (info != 0)
|
4648 |
|
|
{
|
4649 |
|
|
mips_arch_info = info;
|
4650 |
|
|
mips_arch = info->cpu;
|
4651 |
|
|
mips_isa = info->isa;
|
4652 |
|
|
}
|
4653 |
|
|
}
|
4654 |
|
|
|
4655 |
|
|
|
4656 |
|
|
/* Likewise for tuning. */
|
4657 |
|
|
|
4658 |
|
|
static void
|
4659 |
|
|
mips_set_tune (const struct mips_cpu_info *info)
|
4660 |
|
|
{
|
4661 |
|
|
if (info != 0)
|
4662 |
|
|
{
|
4663 |
|
|
mips_tune_info = info;
|
4664 |
|
|
mips_tune = info->cpu;
|
4665 |
|
|
}
|
4666 |
|
|
}
|
4667 |
|
|
|
4668 |
|
|
/* Implement TARGET_HANDLE_OPTION. */
|
4669 |
|
|
|
4670 |
|
|
static bool
|
4671 |
|
|
mips_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
|
4672 |
|
|
{
|
4673 |
|
|
switch (code)
|
4674 |
|
|
{
|
4675 |
|
|
case OPT_mabi_:
|
4676 |
|
|
if (strcmp (arg, "32") == 0)
|
4677 |
|
|
mips_abi = ABI_32;
|
4678 |
|
|
else if (strcmp (arg, "o64") == 0)
|
4679 |
|
|
mips_abi = ABI_O64;
|
4680 |
|
|
else if (strcmp (arg, "n32") == 0)
|
4681 |
|
|
mips_abi = ABI_N32;
|
4682 |
|
|
else if (strcmp (arg, "64") == 0)
|
4683 |
|
|
mips_abi = ABI_64;
|
4684 |
|
|
else if (strcmp (arg, "eabi") == 0)
|
4685 |
|
|
mips_abi = ABI_EABI;
|
4686 |
|
|
else
|
4687 |
|
|
return false;
|
4688 |
|
|
return true;
|
4689 |
|
|
|
4690 |
|
|
case OPT_march_:
|
4691 |
|
|
case OPT_mtune_:
|
4692 |
|
|
return mips_parse_cpu (arg) != 0;
|
4693 |
|
|
|
4694 |
|
|
case OPT_mips:
|
4695 |
|
|
mips_isa_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
|
4696 |
|
|
return mips_isa_info != 0;
|
4697 |
|
|
|
4698 |
|
|
case OPT_mno_flush_func:
|
4699 |
|
|
mips_cache_flush_func = NULL;
|
4700 |
|
|
return true;
|
4701 |
|
|
|
4702 |
|
|
default:
|
4703 |
|
|
return true;
|
4704 |
|
|
}
|
4705 |
|
|
}
|
4706 |
|
|
|
4707 |
|
|
/* Set up the threshold for data to go into the small data area, instead
|
4708 |
|
|
of the normal data area, and detect any conflicts in the switches. */
|
4709 |
|
|
|
4710 |
|
|
void
|
4711 |
|
|
override_options (void)
|
4712 |
|
|
{
|
4713 |
|
|
int i, start, regno;
|
4714 |
|
|
enum machine_mode mode;
|
4715 |
|
|
|
4716 |
|
|
mips_section_threshold = g_switch_set ? g_switch_value : MIPS_DEFAULT_GVALUE;
|
4717 |
|
|
|
4718 |
|
|
/* The following code determines the architecture and register size.
|
4719 |
|
|
Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
|
4720 |
|
|
The GAS and GCC code should be kept in sync as much as possible. */
|
4721 |
|
|
|
4722 |
|
|
if (mips_arch_string != 0)
|
4723 |
|
|
mips_set_architecture (mips_parse_cpu (mips_arch_string));
|
4724 |
|
|
|
4725 |
|
|
if (mips_isa_info != 0)
|
4726 |
|
|
{
|
4727 |
|
|
if (mips_arch_info == 0)
|
4728 |
|
|
mips_set_architecture (mips_isa_info);
|
4729 |
|
|
else if (mips_arch_info->isa != mips_isa_info->isa)
|
4730 |
|
|
error ("-%s conflicts with the other architecture options, "
|
4731 |
|
|
"which specify a %s processor",
|
4732 |
|
|
mips_isa_info->name,
|
4733 |
|
|
mips_cpu_info_from_isa (mips_arch_info->isa)->name);
|
4734 |
|
|
}
|
4735 |
|
|
|
4736 |
|
|
if (mips_arch_info == 0)
|
4737 |
|
|
{
|
4738 |
|
|
#ifdef MIPS_CPU_STRING_DEFAULT
|
4739 |
|
|
mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
|
4740 |
|
|
#else
|
4741 |
|
|
mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
|
4742 |
|
|
#endif
|
4743 |
|
|
}
|
4744 |
|
|
|
4745 |
|
|
if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
|
4746 |
|
|
error ("-march=%s is not compatible with the selected ABI",
|
4747 |
|
|
mips_arch_info->name);
|
4748 |
|
|
|
4749 |
|
|
/* Optimize for mips_arch, unless -mtune selects a different processor. */
|
4750 |
|
|
if (mips_tune_string != 0)
|
4751 |
|
|
mips_set_tune (mips_parse_cpu (mips_tune_string));
|
4752 |
|
|
|
4753 |
|
|
if (mips_tune_info == 0)
|
4754 |
|
|
mips_set_tune (mips_arch_info);
|
4755 |
|
|
|
4756 |
|
|
/* Set cost structure for the processor. */
|
4757 |
|
|
mips_cost = &mips_rtx_cost_data[mips_tune];
|
4758 |
|
|
|
4759 |
|
|
if ((target_flags_explicit & MASK_64BIT) != 0)
|
4760 |
|
|
{
|
4761 |
|
|
/* The user specified the size of the integer registers. Make sure
|
4762 |
|
|
it agrees with the ABI and ISA. */
|
4763 |
|
|
if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
|
4764 |
|
|
error ("-mgp64 used with a 32-bit processor");
|
4765 |
|
|
else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
|
4766 |
|
|
error ("-mgp32 used with a 64-bit ABI");
|
4767 |
|
|
else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
|
4768 |
|
|
error ("-mgp64 used with a 32-bit ABI");
|
4769 |
|
|
}
|
4770 |
|
|
else
|
4771 |
|
|
{
|
4772 |
|
|
/* Infer the integer register size from the ABI and processor.
|
4773 |
|
|
Restrict ourselves to 32-bit registers if that's all the
|
4774 |
|
|
processor has, or if the ABI cannot handle 64-bit registers. */
|
4775 |
|
|
if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
|
4776 |
|
|
target_flags &= ~MASK_64BIT;
|
4777 |
|
|
else
|
4778 |
|
|
target_flags |= MASK_64BIT;
|
4779 |
|
|
}
|
4780 |
|
|
|
4781 |
|
|
if ((target_flags_explicit & MASK_FLOAT64) != 0)
|
4782 |
|
|
{
|
4783 |
|
|
/* Really, -mfp32 and -mfp64 are ornamental options. There's
|
4784 |
|
|
only one right answer here. */
|
4785 |
|
|
if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
|
4786 |
|
|
error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
|
4787 |
|
|
else if (!TARGET_64BIT && TARGET_FLOAT64)
|
4788 |
|
|
error ("unsupported combination: %s", "-mgp32 -mfp64");
|
4789 |
|
|
else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
|
4790 |
|
|
error ("unsupported combination: %s", "-mfp64 -msingle-float");
|
4791 |
|
|
}
|
4792 |
|
|
else
|
4793 |
|
|
{
|
4794 |
|
|
/* -msingle-float selects 32-bit float registers. Otherwise the
|
4795 |
|
|
float registers should be the same size as the integer ones. */
|
4796 |
|
|
if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
|
4797 |
|
|
target_flags |= MASK_FLOAT64;
|
4798 |
|
|
else
|
4799 |
|
|
target_flags &= ~MASK_FLOAT64;
|
4800 |
|
|
}
|
4801 |
|
|
|
4802 |
|
|
/* End of code shared with GAS. */
|
4803 |
|
|
|
4804 |
|
|
if ((target_flags_explicit & MASK_LONG64) == 0)
|
4805 |
|
|
{
|
4806 |
|
|
if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
|
4807 |
|
|
target_flags |= MASK_LONG64;
|
4808 |
|
|
else
|
4809 |
|
|
target_flags &= ~MASK_LONG64;
|
4810 |
|
|
}
|
4811 |
|
|
|
4812 |
|
|
if (MIPS_MARCH_CONTROLS_SOFT_FLOAT
|
4813 |
|
|
&& (target_flags_explicit & MASK_SOFT_FLOAT) == 0)
|
4814 |
|
|
{
|
4815 |
|
|
/* For some configurations, it is useful to have -march control
|
4816 |
|
|
the default setting of MASK_SOFT_FLOAT. */
|
4817 |
|
|
switch ((int) mips_arch)
|
4818 |
|
|
{
|
4819 |
|
|
case PROCESSOR_R4100:
|
4820 |
|
|
case PROCESSOR_R4111:
|
4821 |
|
|
case PROCESSOR_R4120:
|
4822 |
|
|
case PROCESSOR_R4130:
|
4823 |
|
|
target_flags |= MASK_SOFT_FLOAT;
|
4824 |
|
|
break;
|
4825 |
|
|
|
4826 |
|
|
default:
|
4827 |
|
|
target_flags &= ~MASK_SOFT_FLOAT;
|
4828 |
|
|
break;
|
4829 |
|
|
}
|
4830 |
|
|
}
|
4831 |
|
|
|
4832 |
|
|
if (!TARGET_OLDABI)
|
4833 |
|
|
flag_pcc_struct_return = 0;
|
4834 |
|
|
|
4835 |
|
|
if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
|
4836 |
|
|
{
|
4837 |
|
|
/* If neither -mbranch-likely nor -mno-branch-likely was given
|
4838 |
|
|
on the command line, set MASK_BRANCHLIKELY based on the target
|
4839 |
|
|
architecture.
|
4840 |
|
|
|
4841 |
|
|
By default, we enable use of Branch Likely instructions on
|
4842 |
|
|
all architectures which support them with the following
|
4843 |
|
|
exceptions: when creating MIPS32 or MIPS64 code, and when
|
4844 |
|
|
tuning for architectures where their use tends to hurt
|
4845 |
|
|
performance.
|
4846 |
|
|
|
4847 |
|
|
The MIPS32 and MIPS64 architecture specifications say "Software
|
4848 |
|
|
is strongly encouraged to avoid use of Branch Likely
|
4849 |
|
|
instructions, as they will be removed from a future revision
|
4850 |
|
|
of the [MIPS32 and MIPS64] architecture." Therefore, we do not
|
4851 |
|
|
issue those instructions unless instructed to do so by
|
4852 |
|
|
-mbranch-likely. */
|
4853 |
|
|
if (ISA_HAS_BRANCHLIKELY
|
4854 |
|
|
&& !(ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64)
|
4855 |
|
|
&& !(TUNE_MIPS5500 || TUNE_SB1))
|
4856 |
|
|
target_flags |= MASK_BRANCHLIKELY;
|
4857 |
|
|
else
|
4858 |
|
|
target_flags &= ~MASK_BRANCHLIKELY;
|
4859 |
|
|
}
|
4860 |
|
|
if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
|
4861 |
|
|
warning (0, "generation of Branch Likely instructions enabled, but not supported by architecture");
|
4862 |
|
|
|
4863 |
|
|
/* The effect of -mabicalls isn't defined for the EABI. */
|
4864 |
|
|
if (mips_abi == ABI_EABI && TARGET_ABICALLS)
|
4865 |
|
|
{
|
4866 |
|
|
error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
|
4867 |
|
|
target_flags &= ~MASK_ABICALLS;
|
4868 |
|
|
}
|
4869 |
|
|
|
4870 |
|
|
if (TARGET_ABICALLS)
|
4871 |
|
|
{
|
4872 |
|
|
/* We need to set flag_pic for executables as well as DSOs
|
4873 |
|
|
because we may reference symbols that are not defined in
|
4874 |
|
|
the final executable. (MIPS does not use things like
|
4875 |
|
|
copy relocs, for example.)
|
4876 |
|
|
|
4877 |
|
|
Also, there is a body of code that uses __PIC__ to distinguish
|
4878 |
|
|
between -mabicalls and -mno-abicalls code. */
|
4879 |
|
|
flag_pic = 1;
|
4880 |
|
|
if (mips_section_threshold > 0)
|
4881 |
|
|
warning (0, "%<-G%> is incompatible with %<-mabicalls%>");
|
4882 |
|
|
}
|
4883 |
|
|
|
4884 |
|
|
/* mips_split_addresses is a half-way house between explicit
|
4885 |
|
|
relocations and the traditional assembler macros. It can
|
4886 |
|
|
split absolute 32-bit symbolic constants into a high/lo_sum
|
4887 |
|
|
pair but uses macros for other sorts of access.
|
4888 |
|
|
|
4889 |
|
|
Like explicit relocation support for REL targets, it relies
|
4890 |
|
|
on GNU extensions in the assembler and the linker.
|
4891 |
|
|
|
4892 |
|
|
Although this code should work for -O0, it has traditionally
|
4893 |
|
|
been treated as an optimization. */
|
4894 |
|
|
if (!TARGET_MIPS16 && TARGET_SPLIT_ADDRESSES
|
4895 |
|
|
&& optimize && !flag_pic
|
4896 |
|
|
&& !ABI_HAS_64BIT_SYMBOLS)
|
4897 |
|
|
mips_split_addresses = 1;
|
4898 |
|
|
else
|
4899 |
|
|
mips_split_addresses = 0;
|
4900 |
|
|
|
4901 |
|
|
/* -mvr4130-align is a "speed over size" optimization: it usually produces
|
4902 |
|
|
faster code, but at the expense of more nops. Enable it at -O3 and
|
4903 |
|
|
above. */
|
4904 |
|
|
if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
|
4905 |
|
|
target_flags |= MASK_VR4130_ALIGN;
|
4906 |
|
|
|
4907 |
|
|
/* When compiling for the mips16, we cannot use floating point. We
|
4908 |
|
|
record the original hard float value in mips16_hard_float. */
|
4909 |
|
|
if (TARGET_MIPS16)
|
4910 |
|
|
{
|
4911 |
|
|
if (TARGET_SOFT_FLOAT)
|
4912 |
|
|
mips16_hard_float = 0;
|
4913 |
|
|
else
|
4914 |
|
|
mips16_hard_float = 1;
|
4915 |
|
|
target_flags |= MASK_SOFT_FLOAT;
|
4916 |
|
|
|
4917 |
|
|
/* Don't run the scheduler before reload, since it tends to
|
4918 |
|
|
increase register pressure. */
|
4919 |
|
|
flag_schedule_insns = 0;
|
4920 |
|
|
|
4921 |
|
|
/* Don't do hot/cold partitioning. The constant layout code expects
|
4922 |
|
|
the whole function to be in a single section. */
|
4923 |
|
|
flag_reorder_blocks_and_partition = 0;
|
4924 |
|
|
|
4925 |
|
|
/* Silently disable -mexplicit-relocs since it doesn't apply
|
4926 |
|
|
to mips16 code. Even so, it would overly pedantic to warn
|
4927 |
|
|
about "-mips16 -mexplicit-relocs", especially given that
|
4928 |
|
|
we use a %gprel() operator. */
|
4929 |
|
|
target_flags &= ~MASK_EXPLICIT_RELOCS;
|
4930 |
|
|
}
|
4931 |
|
|
|
4932 |
|
|
/* When using explicit relocs, we call dbr_schedule from within
|
4933 |
|
|
mips_reorg. */
|
4934 |
|
|
if (TARGET_EXPLICIT_RELOCS)
|
4935 |
|
|
{
|
4936 |
|
|
mips_flag_delayed_branch = flag_delayed_branch;
|
4937 |
|
|
flag_delayed_branch = 0;
|
4938 |
|
|
}
|
4939 |
|
|
|
4940 |
|
|
#ifdef MIPS_TFMODE_FORMAT
|
4941 |
|
|
REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
|
4942 |
|
|
#endif
|
4943 |
|
|
|
4944 |
|
|
/* Make sure that the user didn't turn off paired single support when
|
4945 |
|
|
MIPS-3D support is requested. */
|
4946 |
|
|
if (TARGET_MIPS3D && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
|
4947 |
|
|
&& !TARGET_PAIRED_SINGLE_FLOAT)
|
4948 |
|
|
error ("-mips3d requires -mpaired-single");
|
4949 |
|
|
|
4950 |
|
|
/* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
|
4951 |
|
|
if (TARGET_MIPS3D)
|
4952 |
|
|
target_flags |= MASK_PAIRED_SINGLE_FLOAT;
|
4953 |
|
|
|
4954 |
|
|
/* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
|
4955 |
|
|
and TARGET_HARD_FLOAT are both true. */
|
4956 |
|
|
if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT))
|
4957 |
|
|
error ("-mips3d/-mpaired-single must be used with -mfp64 -mhard-float");
|
4958 |
|
|
|
4959 |
|
|
/* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
|
4960 |
|
|
enabled. */
|
4961 |
|
|
if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_MIPS64)
|
4962 |
|
|
error ("-mips3d/-mpaired-single must be used with -mips64");
|
4963 |
|
|
|
4964 |
|
|
if (TARGET_MIPS16 && TARGET_DSP)
|
4965 |
|
|
error ("-mips16 and -mdsp cannot be used together");
|
4966 |
|
|
|
4967 |
|
|
mips_print_operand_punct['?'] = 1;
|
4968 |
|
|
mips_print_operand_punct['#'] = 1;
|
4969 |
|
|
mips_print_operand_punct['/'] = 1;
|
4970 |
|
|
mips_print_operand_punct['&'] = 1;
|
4971 |
|
|
mips_print_operand_punct['!'] = 1;
|
4972 |
|
|
mips_print_operand_punct['*'] = 1;
|
4973 |
|
|
mips_print_operand_punct['@'] = 1;
|
4974 |
|
|
mips_print_operand_punct['.'] = 1;
|
4975 |
|
|
mips_print_operand_punct['('] = 1;
|
4976 |
|
|
mips_print_operand_punct[')'] = 1;
|
4977 |
|
|
mips_print_operand_punct['['] = 1;
|
4978 |
|
|
mips_print_operand_punct[']'] = 1;
|
4979 |
|
|
mips_print_operand_punct['<'] = 1;
|
4980 |
|
|
mips_print_operand_punct['>'] = 1;
|
4981 |
|
|
mips_print_operand_punct['{'] = 1;
|
4982 |
|
|
mips_print_operand_punct['}'] = 1;
|
4983 |
|
|
mips_print_operand_punct['^'] = 1;
|
4984 |
|
|
mips_print_operand_punct['$'] = 1;
|
4985 |
|
|
mips_print_operand_punct['+'] = 1;
|
4986 |
|
|
mips_print_operand_punct['~'] = 1;
|
4987 |
|
|
|
4988 |
|
|
/* Set up array to map GCC register number to debug register number.
|
4989 |
|
|
Ignore the special purpose register numbers. */
|
4990 |
|
|
|
4991 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
4992 |
|
|
mips_dbx_regno[i] = -1;
|
4993 |
|
|
|
4994 |
|
|
start = GP_DBX_FIRST - GP_REG_FIRST;
|
4995 |
|
|
for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
|
4996 |
|
|
mips_dbx_regno[i] = i + start;
|
4997 |
|
|
|
4998 |
|
|
start = FP_DBX_FIRST - FP_REG_FIRST;
|
4999 |
|
|
for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
|
5000 |
|
|
mips_dbx_regno[i] = i + start;
|
5001 |
|
|
|
5002 |
|
|
mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
|
5003 |
|
|
mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
|
5004 |
|
|
|
5005 |
|
|
/* Set up array giving whether a given register can hold a given mode. */
|
5006 |
|
|
|
5007 |
|
|
for (mode = VOIDmode;
|
5008 |
|
|
mode != MAX_MACHINE_MODE;
|
5009 |
|
|
mode = (enum machine_mode) ((int)mode + 1))
|
5010 |
|
|
{
|
5011 |
|
|
register int size = GET_MODE_SIZE (mode);
|
5012 |
|
|
register enum mode_class class = GET_MODE_CLASS (mode);
|
5013 |
|
|
|
5014 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
5015 |
|
|
{
|
5016 |
|
|
register int temp;
|
5017 |
|
|
|
5018 |
|
|
if (mode == CCV2mode)
|
5019 |
|
|
temp = (ISA_HAS_8CC
|
5020 |
|
|
&& ST_REG_P (regno)
|
5021 |
|
|
&& (regno - ST_REG_FIRST) % 2 == 0);
|
5022 |
|
|
|
5023 |
|
|
else if (mode == CCV4mode)
|
5024 |
|
|
temp = (ISA_HAS_8CC
|
5025 |
|
|
&& ST_REG_P (regno)
|
5026 |
|
|
&& (regno - ST_REG_FIRST) % 4 == 0);
|
5027 |
|
|
|
5028 |
|
|
else if (mode == CCmode)
|
5029 |
|
|
{
|
5030 |
|
|
if (! ISA_HAS_8CC)
|
5031 |
|
|
temp = (regno == FPSW_REGNUM);
|
5032 |
|
|
else
|
5033 |
|
|
temp = (ST_REG_P (regno) || GP_REG_P (regno)
|
5034 |
|
|
|| FP_REG_P (regno));
|
5035 |
|
|
}
|
5036 |
|
|
|
5037 |
|
|
else if (GP_REG_P (regno))
|
5038 |
|
|
temp = ((regno & 1) == 0 || size <= UNITS_PER_WORD);
|
5039 |
|
|
|
5040 |
|
|
else if (FP_REG_P (regno))
|
5041 |
|
|
temp = ((regno % FP_INC) == 0)
|
5042 |
|
|
&& (((class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT
|
5043 |
|
|
|| class == MODE_VECTOR_FLOAT)
|
5044 |
|
|
&& size <= UNITS_PER_FPVALUE)
|
5045 |
|
|
/* Allow integer modes that fit into a single
|
5046 |
|
|
register. We need to put integers into FPRs
|
5047 |
|
|
when using instructions like cvt and trunc.
|
5048 |
|
|
We can't allow sizes smaller than a word,
|
5049 |
|
|
the FPU has no appropriate load/store
|
5050 |
|
|
instructions for those. */
|
5051 |
|
|
|| (class == MODE_INT
|
5052 |
|
|
&& size >= MIN_UNITS_PER_WORD
|
5053 |
|
|
&& size <= UNITS_PER_FPREG)
|
5054 |
|
|
/* Allow TFmode for CCmode reloads. */
|
5055 |
|
|
|| (ISA_HAS_8CC && mode == TFmode));
|
5056 |
|
|
|
5057 |
|
|
else if (ACC_REG_P (regno))
|
5058 |
|
|
temp = (INTEGRAL_MODE_P (mode)
|
5059 |
|
|
&& (size <= UNITS_PER_WORD
|
5060 |
|
|
|| (ACC_HI_REG_P (regno)
|
5061 |
|
|
&& size == 2 * UNITS_PER_WORD)));
|
5062 |
|
|
|
5063 |
|
|
else if (ALL_COP_REG_P (regno))
|
5064 |
|
|
temp = (class == MODE_INT && size <= UNITS_PER_WORD);
|
5065 |
|
|
else
|
5066 |
|
|
temp = 0;
|
5067 |
|
|
|
5068 |
|
|
mips_hard_regno_mode_ok[(int)mode][regno] = temp;
|
5069 |
|
|
}
|
5070 |
|
|
}
|
5071 |
|
|
|
5072 |
|
|
/* Save GPR registers in word_mode sized hunks. word_mode hasn't been
|
5073 |
|
|
initialized yet, so we can't use that here. */
|
5074 |
|
|
gpr_mode = TARGET_64BIT ? DImode : SImode;
|
5075 |
|
|
|
5076 |
|
|
/* Provide default values for align_* for 64-bit targets. */
|
5077 |
|
|
if (TARGET_64BIT && !TARGET_MIPS16)
|
5078 |
|
|
{
|
5079 |
|
|
if (align_loops == 0)
|
5080 |
|
|
align_loops = 8;
|
5081 |
|
|
if (align_jumps == 0)
|
5082 |
|
|
align_jumps = 8;
|
5083 |
|
|
if (align_functions == 0)
|
5084 |
|
|
align_functions = 8;
|
5085 |
|
|
}
|
5086 |
|
|
|
5087 |
|
|
/* Function to allocate machine-dependent function status. */
|
5088 |
|
|
init_machine_status = &mips_init_machine_status;
|
5089 |
|
|
|
5090 |
|
|
if (ABI_HAS_64BIT_SYMBOLS)
|
5091 |
|
|
{
|
5092 |
|
|
if (TARGET_EXPLICIT_RELOCS)
|
5093 |
|
|
{
|
5094 |
|
|
mips_split_p[SYMBOL_64_HIGH] = true;
|
5095 |
|
|
mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
|
5096 |
|
|
mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
|
5097 |
|
|
|
5098 |
|
|
mips_split_p[SYMBOL_64_MID] = true;
|
5099 |
|
|
mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
|
5100 |
|
|
mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
|
5101 |
|
|
|
5102 |
|
|
mips_split_p[SYMBOL_64_LOW] = true;
|
5103 |
|
|
mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
|
5104 |
|
|
mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
|
5105 |
|
|
|
5106 |
|
|
mips_split_p[SYMBOL_GENERAL] = true;
|
5107 |
|
|
mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
|
5108 |
|
|
}
|
5109 |
|
|
}
|
5110 |
|
|
else
|
5111 |
|
|
{
|
5112 |
|
|
if (TARGET_EXPLICIT_RELOCS || mips_split_addresses)
|
5113 |
|
|
{
|
5114 |
|
|
mips_split_p[SYMBOL_GENERAL] = true;
|
5115 |
|
|
mips_hi_relocs[SYMBOL_GENERAL] = "%hi(";
|
5116 |
|
|
mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
|
5117 |
|
|
}
|
5118 |
|
|
}
|
5119 |
|
|
|
5120 |
|
|
if (TARGET_MIPS16)
|
5121 |
|
|
{
|
5122 |
|
|
/* The high part is provided by a pseudo copy of $gp. */
|
5123 |
|
|
mips_split_p[SYMBOL_SMALL_DATA] = true;
|
5124 |
|
|
mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gprel(";
|
5125 |
|
|
}
|
5126 |
|
|
|
5127 |
|
|
if (TARGET_EXPLICIT_RELOCS)
|
5128 |
|
|
{
|
5129 |
|
|
/* Small data constants are kept whole until after reload,
|
5130 |
|
|
then lowered by mips_rewrite_small_data. */
|
5131 |
|
|
mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gp_rel(";
|
5132 |
|
|
|
5133 |
|
|
mips_split_p[SYMBOL_GOT_LOCAL] = true;
|
5134 |
|
|
if (TARGET_NEWABI)
|
5135 |
|
|
{
|
5136 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
|
5137 |
|
|
mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%got_ofst(";
|
5138 |
|
|
}
|
5139 |
|
|
else
|
5140 |
|
|
{
|
5141 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
|
5142 |
|
|
mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%lo(";
|
5143 |
|
|
}
|
5144 |
|
|
|
5145 |
|
|
if (TARGET_XGOT)
|
5146 |
|
|
{
|
5147 |
|
|
/* The HIGH and LO_SUM are matched by special .md patterns. */
|
5148 |
|
|
mips_split_p[SYMBOL_GOT_GLOBAL] = true;
|
5149 |
|
|
|
5150 |
|
|
mips_split_p[SYMBOL_GOTOFF_GLOBAL] = true;
|
5151 |
|
|
mips_hi_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_hi(";
|
5152 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_lo(";
|
5153 |
|
|
|
5154 |
|
|
mips_split_p[SYMBOL_GOTOFF_CALL] = true;
|
5155 |
|
|
mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
|
5156 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
|
5157 |
|
|
}
|
5158 |
|
|
else
|
5159 |
|
|
{
|
5160 |
|
|
if (TARGET_NEWABI)
|
5161 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_disp(";
|
5162 |
|
|
else
|
5163 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got(";
|
5164 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
|
5165 |
|
|
}
|
5166 |
|
|
}
|
5167 |
|
|
|
5168 |
|
|
if (TARGET_NEWABI)
|
5169 |
|
|
{
|
5170 |
|
|
mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
|
5171 |
|
|
mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
|
5172 |
|
|
mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
|
5173 |
|
|
}
|
5174 |
|
|
|
5175 |
|
|
/* Thread-local relocation operators. */
|
5176 |
|
|
mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
|
5177 |
|
|
mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
|
5178 |
|
|
mips_split_p[SYMBOL_DTPREL] = 1;
|
5179 |
|
|
mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
|
5180 |
|
|
mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
|
5181 |
|
|
mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
|
5182 |
|
|
mips_split_p[SYMBOL_TPREL] = 1;
|
5183 |
|
|
mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
|
5184 |
|
|
mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
|
5185 |
|
|
|
5186 |
|
|
/* We don't have a thread pointer access instruction on MIPS16, or
|
5187 |
|
|
appropriate TLS relocations. */
|
5188 |
|
|
if (TARGET_MIPS16)
|
5189 |
|
|
targetm.have_tls = false;
|
5190 |
|
|
|
5191 |
|
|
/* Default to working around R4000 errata only if the processor
|
5192 |
|
|
was selected explicitly. */
|
5193 |
|
|
if ((target_flags_explicit & MASK_FIX_R4000) == 0
|
5194 |
|
|
&& mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
|
5195 |
|
|
target_flags |= MASK_FIX_R4000;
|
5196 |
|
|
|
5197 |
|
|
/* Default to working around R4400 errata only if the processor
|
5198 |
|
|
was selected explicitly. */
|
5199 |
|
|
if ((target_flags_explicit & MASK_FIX_R4400) == 0
|
5200 |
|
|
&& mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
|
5201 |
|
|
target_flags |= MASK_FIX_R4400;
|
5202 |
|
|
}
|
5203 |
|
|
|
5204 |
|
|
/* Implement CONDITIONAL_REGISTER_USAGE. */
|
5205 |
|
|
|
5206 |
|
|
void
|
5207 |
|
|
mips_conditional_register_usage (void)
|
5208 |
|
|
{
|
5209 |
|
|
if (!TARGET_DSP)
|
5210 |
|
|
{
|
5211 |
|
|
int regno;
|
5212 |
|
|
|
5213 |
|
|
for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
|
5214 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
5215 |
|
|
}
|
5216 |
|
|
if (!TARGET_HARD_FLOAT)
|
5217 |
|
|
{
|
5218 |
|
|
int regno;
|
5219 |
|
|
|
5220 |
|
|
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
5221 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
5222 |
|
|
for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
|
5223 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
5224 |
|
|
}
|
5225 |
|
|
else if (! ISA_HAS_8CC)
|
5226 |
|
|
{
|
5227 |
|
|
int regno;
|
5228 |
|
|
|
5229 |
|
|
/* We only have a single condition code register. We
|
5230 |
|
|
implement this by hiding all the condition code registers,
|
5231 |
|
|
and generating RTL that refers directly to ST_REG_FIRST. */
|
5232 |
|
|
for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
|
5233 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
5234 |
|
|
}
|
5235 |
|
|
/* In mips16 mode, we permit the $t temporary registers to be used
|
5236 |
|
|
for reload. We prohibit the unused $s registers, since they
|
5237 |
|
|
are caller saved, and saving them via a mips16 register would
|
5238 |
|
|
probably waste more time than just reloading the value. */
|
5239 |
|
|
if (TARGET_MIPS16)
|
5240 |
|
|
{
|
5241 |
|
|
fixed_regs[18] = call_used_regs[18] = 1;
|
5242 |
|
|
fixed_regs[19] = call_used_regs[19] = 1;
|
5243 |
|
|
fixed_regs[20] = call_used_regs[20] = 1;
|
5244 |
|
|
fixed_regs[21] = call_used_regs[21] = 1;
|
5245 |
|
|
fixed_regs[22] = call_used_regs[22] = 1;
|
5246 |
|
|
fixed_regs[23] = call_used_regs[23] = 1;
|
5247 |
|
|
fixed_regs[26] = call_used_regs[26] = 1;
|
5248 |
|
|
fixed_regs[27] = call_used_regs[27] = 1;
|
5249 |
|
|
fixed_regs[30] = call_used_regs[30] = 1;
|
5250 |
|
|
}
|
5251 |
|
|
/* fp20-23 are now caller saved. */
|
5252 |
|
|
if (mips_abi == ABI_64)
|
5253 |
|
|
{
|
5254 |
|
|
int regno;
|
5255 |
|
|
for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
|
5256 |
|
|
call_really_used_regs[regno] = call_used_regs[regno] = 1;
|
5257 |
|
|
}
|
5258 |
|
|
/* Odd registers from fp21 to fp31 are now caller saved. */
|
5259 |
|
|
if (mips_abi == ABI_N32)
|
5260 |
|
|
{
|
5261 |
|
|
int regno;
|
5262 |
|
|
for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
|
5263 |
|
|
call_really_used_regs[regno] = call_used_regs[regno] = 1;
|
5264 |
|
|
}
|
5265 |
|
|
}
|
5266 |
|
|
|
5267 |
|
|
/* Allocate a chunk of memory for per-function machine-dependent data. */
|
5268 |
|
|
static struct machine_function *
|
5269 |
|
|
mips_init_machine_status (void)
|
5270 |
|
|
{
|
5271 |
|
|
return ((struct machine_function *)
|
5272 |
|
|
ggc_alloc_cleared (sizeof (struct machine_function)));
|
5273 |
|
|
}
|
5274 |
|
|
|
5275 |
|
|
/* On the mips16, we want to allocate $24 (T_REG) before other
|
5276 |
|
|
registers for instructions for which it is possible. This helps
|
5277 |
|
|
avoid shuffling registers around in order to set up for an xor,
|
5278 |
|
|
encouraging the compiler to use a cmp instead. */
|
5279 |
|
|
|
5280 |
|
|
void
|
5281 |
|
|
mips_order_regs_for_local_alloc (void)
|
5282 |
|
|
{
|
5283 |
|
|
register int i;
|
5284 |
|
|
|
5285 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
5286 |
|
|
reg_alloc_order[i] = i;
|
5287 |
|
|
|
5288 |
|
|
if (TARGET_MIPS16)
|
5289 |
|
|
{
|
5290 |
|
|
/* It really doesn't matter where we put register 0, since it is
|
5291 |
|
|
a fixed register anyhow. */
|
5292 |
|
|
reg_alloc_order[0] = 24;
|
5293 |
|
|
reg_alloc_order[24] = 0;
|
5294 |
|
|
}
|
5295 |
|
|
}
|
5296 |
|
|
|
5297 |
|
|
|
5298 |
|
|
/* The MIPS debug format wants all automatic variables and arguments
|
5299 |
|
|
to be in terms of the virtual frame pointer (stack pointer before
|
5300 |
|
|
any adjustment in the function), while the MIPS 3.0 linker wants
|
5301 |
|
|
the frame pointer to be the stack pointer after the initial
|
5302 |
|
|
adjustment. So, we do the adjustment here. The arg pointer (which
|
5303 |
|
|
is eliminated) points to the virtual frame pointer, while the frame
|
5304 |
|
|
pointer (which may be eliminated) points to the stack pointer after
|
5305 |
|
|
the initial adjustments. */
|
5306 |
|
|
|
5307 |
|
|
HOST_WIDE_INT
|
5308 |
|
|
mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
|
5309 |
|
|
{
|
5310 |
|
|
rtx offset2 = const0_rtx;
|
5311 |
|
|
rtx reg = eliminate_constant_term (addr, &offset2);
|
5312 |
|
|
|
5313 |
|
|
if (offset == 0)
|
5314 |
|
|
offset = INTVAL (offset2);
|
5315 |
|
|
|
5316 |
|
|
if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
|
5317 |
|
|
|| reg == hard_frame_pointer_rtx)
|
5318 |
|
|
{
|
5319 |
|
|
HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
|
5320 |
|
|
? compute_frame_size (get_frame_size ())
|
5321 |
|
|
: cfun->machine->frame.total_size;
|
5322 |
|
|
|
5323 |
|
|
/* MIPS16 frame is smaller */
|
5324 |
|
|
if (frame_pointer_needed && TARGET_MIPS16)
|
5325 |
|
|
frame_size -= cfun->machine->frame.args_size;
|
5326 |
|
|
|
5327 |
|
|
offset = offset - frame_size;
|
5328 |
|
|
}
|
5329 |
|
|
|
5330 |
|
|
/* sdbout_parms does not want this to crash for unrecognized cases. */
|
5331 |
|
|
#if 0
|
5332 |
|
|
else if (reg != arg_pointer_rtx)
|
5333 |
|
|
fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
|
5334 |
|
|
addr);
|
5335 |
|
|
#endif
|
5336 |
|
|
|
5337 |
|
|
return offset;
|
5338 |
|
|
}
|
5339 |
|
|
|
5340 |
|
|
/* Implement the PRINT_OPERAND macro. The MIPS-specific operand codes are:
|
5341 |
|
|
|
5342 |
|
|
'X' OP is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
|
5343 |
|
|
'x' OP is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
|
5344 |
|
|
'h' OP is HIGH, prints %hi(X),
|
5345 |
|
|
'd' output integer constant in decimal,
|
5346 |
|
|
'z' if the operand is 0, use $0 instead of normal operand.
|
5347 |
|
|
'D' print second part of double-word register or memory operand.
|
5348 |
|
|
'L' print low-order register of double-word register operand.
|
5349 |
|
|
'M' print high-order register of double-word register operand.
|
5350 |
|
|
'C' print part of opcode for a branch condition.
|
5351 |
|
|
'F' print part of opcode for a floating-point branch condition.
|
5352 |
|
|
'N' print part of opcode for a branch condition, inverted.
|
5353 |
|
|
'W' print part of opcode for a floating-point branch condition, inverted.
|
5354 |
|
|
'T' print 'f' for (eq:CC ...), 't' for (ne:CC ...),
|
5355 |
|
|
'z' for (eq:?I ...), 'n' for (ne:?I ...).
|
5356 |
|
|
't' like 'T', but with the EQ/NE cases reversed
|
5357 |
|
|
'Y' for a CONST_INT X, print mips_fp_conditions[X]
|
5358 |
|
|
'Z' print the operand and a comma for ISA_HAS_8CC, otherwise print nothing
|
5359 |
|
|
'R' print the reloc associated with LO_SUM
|
5360 |
|
|
'q' print DSP accumulator registers
|
5361 |
|
|
|
5362 |
|
|
The punctuation characters are:
|
5363 |
|
|
|
5364 |
|
|
'(' Turn on .set noreorder
|
5365 |
|
|
')' Turn on .set reorder
|
5366 |
|
|
'[' Turn on .set noat
|
5367 |
|
|
']' Turn on .set at
|
5368 |
|
|
'<' Turn on .set nomacro
|
5369 |
|
|
'>' Turn on .set macro
|
5370 |
|
|
'{' Turn on .set volatile (not GAS)
|
5371 |
|
|
'}' Turn on .set novolatile (not GAS)
|
5372 |
|
|
'&' Turn on .set noreorder if filling delay slots
|
5373 |
|
|
'*' Turn on both .set noreorder and .set nomacro if filling delay slots
|
5374 |
|
|
'!' Turn on .set nomacro if filling delay slots
|
5375 |
|
|
'#' Print nop if in a .set noreorder section.
|
5376 |
|
|
'/' Like '#', but does nothing within a delayed branch sequence
|
5377 |
|
|
'?' Print 'l' if we are to use a branch likely instead of normal branch.
|
5378 |
|
|
'@' Print the name of the assembler temporary register (at or $1).
|
5379 |
|
|
'.' Print the name of the register with a hard-wired zero (zero or $0).
|
5380 |
|
|
'^' Print the name of the pic call-through register (t9 or $25).
|
5381 |
|
|
'$' Print the name of the stack pointer register (sp or $29).
|
5382 |
|
|
'+' Print the name of the gp register (usually gp or $28).
|
5383 |
|
|
'~' Output a branch alignment to LABEL_ALIGN(NULL). */
|
5384 |
|
|
|
5385 |
|
|
void
|
5386 |
|
|
print_operand (FILE *file, rtx op, int letter)
|
5387 |
|
|
{
|
5388 |
|
|
register enum rtx_code code;
|
5389 |
|
|
|
5390 |
|
|
if (PRINT_OPERAND_PUNCT_VALID_P (letter))
|
5391 |
|
|
{
|
5392 |
|
|
switch (letter)
|
5393 |
|
|
{
|
5394 |
|
|
case '?':
|
5395 |
|
|
if (mips_branch_likely)
|
5396 |
|
|
putc ('l', file);
|
5397 |
|
|
break;
|
5398 |
|
|
|
5399 |
|
|
case '@':
|
5400 |
|
|
fputs (reg_names [GP_REG_FIRST + 1], file);
|
5401 |
|
|
break;
|
5402 |
|
|
|
5403 |
|
|
case '^':
|
5404 |
|
|
fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
|
5405 |
|
|
break;
|
5406 |
|
|
|
5407 |
|
|
case '.':
|
5408 |
|
|
fputs (reg_names [GP_REG_FIRST + 0], file);
|
5409 |
|
|
break;
|
5410 |
|
|
|
5411 |
|
|
case '$':
|
5412 |
|
|
fputs (reg_names[STACK_POINTER_REGNUM], file);
|
5413 |
|
|
break;
|
5414 |
|
|
|
5415 |
|
|
case '+':
|
5416 |
|
|
fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
|
5417 |
|
|
break;
|
5418 |
|
|
|
5419 |
|
|
case '&':
|
5420 |
|
|
if (final_sequence != 0 && set_noreorder++ == 0)
|
5421 |
|
|
fputs (".set\tnoreorder\n\t", file);
|
5422 |
|
|
break;
|
5423 |
|
|
|
5424 |
|
|
case '*':
|
5425 |
|
|
if (final_sequence != 0)
|
5426 |
|
|
{
|
5427 |
|
|
if (set_noreorder++ == 0)
|
5428 |
|
|
fputs (".set\tnoreorder\n\t", file);
|
5429 |
|
|
|
5430 |
|
|
if (set_nomacro++ == 0)
|
5431 |
|
|
fputs (".set\tnomacro\n\t", file);
|
5432 |
|
|
}
|
5433 |
|
|
break;
|
5434 |
|
|
|
5435 |
|
|
case '!':
|
5436 |
|
|
if (final_sequence != 0 && set_nomacro++ == 0)
|
5437 |
|
|
fputs ("\n\t.set\tnomacro", file);
|
5438 |
|
|
break;
|
5439 |
|
|
|
5440 |
|
|
case '#':
|
5441 |
|
|
if (set_noreorder != 0)
|
5442 |
|
|
fputs ("\n\tnop", file);
|
5443 |
|
|
break;
|
5444 |
|
|
|
5445 |
|
|
case '/':
|
5446 |
|
|
/* Print an extra newline so that the delayed insn is separated
|
5447 |
|
|
from the following ones. This looks neater and is consistent
|
5448 |
|
|
with non-nop delayed sequences. */
|
5449 |
|
|
if (set_noreorder != 0 && final_sequence == 0)
|
5450 |
|
|
fputs ("\n\tnop\n", file);
|
5451 |
|
|
break;
|
5452 |
|
|
|
5453 |
|
|
case '(':
|
5454 |
|
|
if (set_noreorder++ == 0)
|
5455 |
|
|
fputs (".set\tnoreorder\n\t", file);
|
5456 |
|
|
break;
|
5457 |
|
|
|
5458 |
|
|
case ')':
|
5459 |
|
|
if (set_noreorder == 0)
|
5460 |
|
|
error ("internal error: %%) found without a %%( in assembler pattern");
|
5461 |
|
|
|
5462 |
|
|
else if (--set_noreorder == 0)
|
5463 |
|
|
fputs ("\n\t.set\treorder", file);
|
5464 |
|
|
|
5465 |
|
|
break;
|
5466 |
|
|
|
5467 |
|
|
case '[':
|
5468 |
|
|
if (set_noat++ == 0)
|
5469 |
|
|
fputs (".set\tnoat\n\t", file);
|
5470 |
|
|
break;
|
5471 |
|
|
|
5472 |
|
|
case ']':
|
5473 |
|
|
if (set_noat == 0)
|
5474 |
|
|
error ("internal error: %%] found without a %%[ in assembler pattern");
|
5475 |
|
|
else if (--set_noat == 0)
|
5476 |
|
|
fputs ("\n\t.set\tat", file);
|
5477 |
|
|
|
5478 |
|
|
break;
|
5479 |
|
|
|
5480 |
|
|
case '<':
|
5481 |
|
|
if (set_nomacro++ == 0)
|
5482 |
|
|
fputs (".set\tnomacro\n\t", file);
|
5483 |
|
|
break;
|
5484 |
|
|
|
5485 |
|
|
case '>':
|
5486 |
|
|
if (set_nomacro == 0)
|
5487 |
|
|
error ("internal error: %%> found without a %%< in assembler pattern");
|
5488 |
|
|
else if (--set_nomacro == 0)
|
5489 |
|
|
fputs ("\n\t.set\tmacro", file);
|
5490 |
|
|
|
5491 |
|
|
break;
|
5492 |
|
|
|
5493 |
|
|
case '{':
|
5494 |
|
|
if (set_volatile++ == 0)
|
5495 |
|
|
fputs ("#.set\tvolatile\n\t", file);
|
5496 |
|
|
break;
|
5497 |
|
|
|
5498 |
|
|
case '}':
|
5499 |
|
|
if (set_volatile == 0)
|
5500 |
|
|
error ("internal error: %%} found without a %%{ in assembler pattern");
|
5501 |
|
|
else if (--set_volatile == 0)
|
5502 |
|
|
fputs ("\n\t#.set\tnovolatile", file);
|
5503 |
|
|
|
5504 |
|
|
break;
|
5505 |
|
|
|
5506 |
|
|
case '~':
|
5507 |
|
|
{
|
5508 |
|
|
if (align_labels_log > 0)
|
5509 |
|
|
ASM_OUTPUT_ALIGN (file, align_labels_log);
|
5510 |
|
|
}
|
5511 |
|
|
break;
|
5512 |
|
|
|
5513 |
|
|
default:
|
5514 |
|
|
error ("PRINT_OPERAND: unknown punctuation '%c'", letter);
|
5515 |
|
|
break;
|
5516 |
|
|
}
|
5517 |
|
|
|
5518 |
|
|
return;
|
5519 |
|
|
}
|
5520 |
|
|
|
5521 |
|
|
if (! op)
|
5522 |
|
|
{
|
5523 |
|
|
error ("PRINT_OPERAND null pointer");
|
5524 |
|
|
return;
|
5525 |
|
|
}
|
5526 |
|
|
|
5527 |
|
|
code = GET_CODE (op);
|
5528 |
|
|
|
5529 |
|
|
if (letter == 'C')
|
5530 |
|
|
switch (code)
|
5531 |
|
|
{
|
5532 |
|
|
case EQ: fputs ("eq", file); break;
|
5533 |
|
|
case NE: fputs ("ne", file); break;
|
5534 |
|
|
case GT: fputs ("gt", file); break;
|
5535 |
|
|
case GE: fputs ("ge", file); break;
|
5536 |
|
|
case LT: fputs ("lt", file); break;
|
5537 |
|
|
case LE: fputs ("le", file); break;
|
5538 |
|
|
case GTU: fputs ("gtu", file); break;
|
5539 |
|
|
case GEU: fputs ("geu", file); break;
|
5540 |
|
|
case LTU: fputs ("ltu", file); break;
|
5541 |
|
|
case LEU: fputs ("leu", file); break;
|
5542 |
|
|
default:
|
5543 |
|
|
fatal_insn ("PRINT_OPERAND, invalid insn for %%C", op);
|
5544 |
|
|
}
|
5545 |
|
|
|
5546 |
|
|
else if (letter == 'N')
|
5547 |
|
|
switch (code)
|
5548 |
|
|
{
|
5549 |
|
|
case EQ: fputs ("ne", file); break;
|
5550 |
|
|
case NE: fputs ("eq", file); break;
|
5551 |
|
|
case GT: fputs ("le", file); break;
|
5552 |
|
|
case GE: fputs ("lt", file); break;
|
5553 |
|
|
case LT: fputs ("ge", file); break;
|
5554 |
|
|
case LE: fputs ("gt", file); break;
|
5555 |
|
|
case GTU: fputs ("leu", file); break;
|
5556 |
|
|
case GEU: fputs ("ltu", file); break;
|
5557 |
|
|
case LTU: fputs ("geu", file); break;
|
5558 |
|
|
case LEU: fputs ("gtu", file); break;
|
5559 |
|
|
default:
|
5560 |
|
|
fatal_insn ("PRINT_OPERAND, invalid insn for %%N", op);
|
5561 |
|
|
}
|
5562 |
|
|
|
5563 |
|
|
else if (letter == 'F')
|
5564 |
|
|
switch (code)
|
5565 |
|
|
{
|
5566 |
|
|
case EQ: fputs ("c1f", file); break;
|
5567 |
|
|
case NE: fputs ("c1t", file); break;
|
5568 |
|
|
default:
|
5569 |
|
|
fatal_insn ("PRINT_OPERAND, invalid insn for %%F", op);
|
5570 |
|
|
}
|
5571 |
|
|
|
5572 |
|
|
else if (letter == 'W')
|
5573 |
|
|
switch (code)
|
5574 |
|
|
{
|
5575 |
|
|
case EQ: fputs ("c1t", file); break;
|
5576 |
|
|
case NE: fputs ("c1f", file); break;
|
5577 |
|
|
default:
|
5578 |
|
|
fatal_insn ("PRINT_OPERAND, invalid insn for %%W", op);
|
5579 |
|
|
}
|
5580 |
|
|
|
5581 |
|
|
else if (letter == 'h')
|
5582 |
|
|
{
|
5583 |
|
|
if (GET_CODE (op) == HIGH)
|
5584 |
|
|
op = XEXP (op, 0);
|
5585 |
|
|
|
5586 |
|
|
print_operand_reloc (file, op, mips_hi_relocs);
|
5587 |
|
|
}
|
5588 |
|
|
|
5589 |
|
|
else if (letter == 'R')
|
5590 |
|
|
print_operand_reloc (file, op, mips_lo_relocs);
|
5591 |
|
|
|
5592 |
|
|
else if (letter == 'Y')
|
5593 |
|
|
{
|
5594 |
|
|
if (GET_CODE (op) == CONST_INT
|
5595 |
|
|
&& ((unsigned HOST_WIDE_INT) INTVAL (op)
|
5596 |
|
|
< ARRAY_SIZE (mips_fp_conditions)))
|
5597 |
|
|
fputs (mips_fp_conditions[INTVAL (op)], file);
|
5598 |
|
|
else
|
5599 |
|
|
output_operand_lossage ("invalid %%Y value");
|
5600 |
|
|
}
|
5601 |
|
|
|
5602 |
|
|
else if (letter == 'Z')
|
5603 |
|
|
{
|
5604 |
|
|
if (ISA_HAS_8CC)
|
5605 |
|
|
{
|
5606 |
|
|
print_operand (file, op, 0);
|
5607 |
|
|
fputc (',', file);
|
5608 |
|
|
}
|
5609 |
|
|
}
|
5610 |
|
|
|
5611 |
|
|
else if (letter == 'q')
|
5612 |
|
|
{
|
5613 |
|
|
int regnum;
|
5614 |
|
|
|
5615 |
|
|
if (code != REG)
|
5616 |
|
|
fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
|
5617 |
|
|
|
5618 |
|
|
regnum = REGNO (op);
|
5619 |
|
|
if (MD_REG_P (regnum))
|
5620 |
|
|
fprintf (file, "$ac0");
|
5621 |
|
|
else if (DSP_ACC_REG_P (regnum))
|
5622 |
|
|
fprintf (file, "$ac%c", reg_names[regnum][3]);
|
5623 |
|
|
else
|
5624 |
|
|
fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
|
5625 |
|
|
}
|
5626 |
|
|
|
5627 |
|
|
else if (code == REG || code == SUBREG)
|
5628 |
|
|
{
|
5629 |
|
|
register int regnum;
|
5630 |
|
|
|
5631 |
|
|
if (code == REG)
|
5632 |
|
|
regnum = REGNO (op);
|
5633 |
|
|
else
|
5634 |
|
|
regnum = true_regnum (op);
|
5635 |
|
|
|
5636 |
|
|
if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
|
5637 |
|
|
|| (letter == 'L' && WORDS_BIG_ENDIAN)
|
5638 |
|
|
|| letter == 'D')
|
5639 |
|
|
regnum++;
|
5640 |
|
|
|
5641 |
|
|
fprintf (file, "%s", reg_names[regnum]);
|
5642 |
|
|
}
|
5643 |
|
|
|
5644 |
|
|
else if (code == MEM)
|
5645 |
|
|
{
|
5646 |
|
|
if (letter == 'D')
|
5647 |
|
|
output_address (plus_constant (XEXP (op, 0), 4));
|
5648 |
|
|
else
|
5649 |
|
|
output_address (XEXP (op, 0));
|
5650 |
|
|
}
|
5651 |
|
|
|
5652 |
|
|
else if (letter == 'x' && GET_CODE (op) == CONST_INT)
|
5653 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
|
5654 |
|
|
|
5655 |
|
|
else if (letter == 'X' && GET_CODE(op) == CONST_INT)
|
5656 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
|
5657 |
|
|
|
5658 |
|
|
else if (letter == 'd' && GET_CODE(op) == CONST_INT)
|
5659 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
|
5660 |
|
|
|
5661 |
|
|
else if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
|
5662 |
|
|
fputs (reg_names[GP_REG_FIRST], file);
|
5663 |
|
|
|
5664 |
|
|
else if (letter == 'd' || letter == 'x' || letter == 'X')
|
5665 |
|
|
output_operand_lossage ("invalid use of %%d, %%x, or %%X");
|
5666 |
|
|
|
5667 |
|
|
else if (letter == 'T' || letter == 't')
|
5668 |
|
|
{
|
5669 |
|
|
int truth = (code == NE) == (letter == 'T');
|
5670 |
|
|
fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
|
5671 |
|
|
}
|
5672 |
|
|
|
5673 |
|
|
else if (CONST_GP_P (op))
|
5674 |
|
|
fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
|
5675 |
|
|
|
5676 |
|
|
else
|
5677 |
|
|
output_addr_const (file, op);
|
5678 |
|
|
}
|
5679 |
|
|
|
5680 |
|
|
|
5681 |
|
|
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM.
|
5682 |
|
|
RELOCS is the array of relocations to use. */
|
5683 |
|
|
|
5684 |
|
|
static void
|
5685 |
|
|
print_operand_reloc (FILE *file, rtx op, const char **relocs)
|
5686 |
|
|
{
|
5687 |
|
|
enum mips_symbol_type symbol_type;
|
5688 |
|
|
const char *p;
|
5689 |
|
|
rtx base;
|
5690 |
|
|
HOST_WIDE_INT offset;
|
5691 |
|
|
|
5692 |
|
|
symbol_type = mips_classify_symbolic_expression (op);
|
5693 |
|
|
if (relocs[symbol_type] == 0)
|
5694 |
|
|
fatal_insn ("PRINT_OPERAND, invalid operand for relocation", op);
|
5695 |
|
|
|
5696 |
|
|
/* If OP uses an UNSPEC address, we want to print the inner symbol. */
|
5697 |
|
|
mips_split_const (op, &base, &offset);
|
5698 |
|
|
if (UNSPEC_ADDRESS_P (base))
|
5699 |
|
|
op = plus_constant (UNSPEC_ADDRESS (base), offset);
|
5700 |
|
|
|
5701 |
|
|
fputs (relocs[symbol_type], file);
|
5702 |
|
|
output_addr_const (file, op);
|
5703 |
|
|
for (p = relocs[symbol_type]; *p != 0; p++)
|
5704 |
|
|
if (*p == '(')
|
5705 |
|
|
fputc (')', file);
|
5706 |
|
|
}
|
5707 |
|
|
|
5708 |
|
|
/* Output address operand X to FILE. */
|
5709 |
|
|
|
5710 |
|
|
void
|
5711 |
|
|
print_operand_address (FILE *file, rtx x)
|
5712 |
|
|
{
|
5713 |
|
|
struct mips_address_info addr;
|
5714 |
|
|
|
5715 |
|
|
if (mips_classify_address (&addr, x, word_mode, true))
|
5716 |
|
|
switch (addr.type)
|
5717 |
|
|
{
|
5718 |
|
|
case ADDRESS_REG:
|
5719 |
|
|
print_operand (file, addr.offset, 0);
|
5720 |
|
|
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
|
5721 |
|
|
return;
|
5722 |
|
|
|
5723 |
|
|
case ADDRESS_LO_SUM:
|
5724 |
|
|
print_operand (file, addr.offset, 'R');
|
5725 |
|
|
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
|
5726 |
|
|
return;
|
5727 |
|
|
|
5728 |
|
|
case ADDRESS_CONST_INT:
|
5729 |
|
|
output_addr_const (file, x);
|
5730 |
|
|
fprintf (file, "(%s)", reg_names[0]);
|
5731 |
|
|
return;
|
5732 |
|
|
|
5733 |
|
|
case ADDRESS_SYMBOLIC:
|
5734 |
|
|
output_addr_const (file, x);
|
5735 |
|
|
return;
|
5736 |
|
|
}
|
5737 |
|
|
gcc_unreachable ();
|
5738 |
|
|
}
|
5739 |
|
|
|
5740 |
|
|
/* When using assembler macros, keep track of all of small-data externs
|
5741 |
|
|
so that mips_file_end can emit the appropriate declarations for them.
|
5742 |
|
|
|
5743 |
|
|
In most cases it would be safe (though pointless) to emit .externs
|
5744 |
|
|
for other symbols too. One exception is when an object is within
|
5745 |
|
|
the -G limit but declared by the user to be in a section other
|
5746 |
|
|
than .sbss or .sdata. */
|
5747 |
|
|
|
5748 |
|
|
int
|
5749 |
|
|
mips_output_external (FILE *file ATTRIBUTE_UNUSED, tree decl, const char *name)
|
5750 |
|
|
{
|
5751 |
|
|
register struct extern_list *p;
|
5752 |
|
|
|
5753 |
|
|
if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
|
5754 |
|
|
{
|
5755 |
|
|
p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
|
5756 |
|
|
p->next = extern_head;
|
5757 |
|
|
p->name = name;
|
5758 |
|
|
p->size = int_size_in_bytes (TREE_TYPE (decl));
|
5759 |
|
|
extern_head = p;
|
5760 |
|
|
}
|
5761 |
|
|
|
5762 |
|
|
if (TARGET_IRIX && mips_abi == ABI_32 && TREE_CODE (decl) == FUNCTION_DECL)
|
5763 |
|
|
{
|
5764 |
|
|
p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
|
5765 |
|
|
p->next = extern_head;
|
5766 |
|
|
p->name = name;
|
5767 |
|
|
p->size = -1;
|
5768 |
|
|
extern_head = p;
|
5769 |
|
|
}
|
5770 |
|
|
|
5771 |
|
|
return 0;
|
5772 |
|
|
}
|
5773 |
|
|
|
5774 |
|
|
#if TARGET_IRIX
|
5775 |
|
|
static void
|
5776 |
|
|
irix_output_external_libcall (rtx fun)
|
5777 |
|
|
{
|
5778 |
|
|
register struct extern_list *p;
|
5779 |
|
|
|
5780 |
|
|
if (mips_abi == ABI_32)
|
5781 |
|
|
{
|
5782 |
|
|
p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
|
5783 |
|
|
p->next = extern_head;
|
5784 |
|
|
p->name = XSTR (fun, 0);
|
5785 |
|
|
p->size = -1;
|
5786 |
|
|
extern_head = p;
|
5787 |
|
|
}
|
5788 |
|
|
}
|
5789 |
|
|
#endif
|
5790 |
|
|
|
5791 |
|
|
/* Emit a new filename to a stream. If we are smuggling stabs, try to
|
5792 |
|
|
put out a MIPS ECOFF file and a stab. */
|
5793 |
|
|
|
5794 |
|
|
void
|
5795 |
|
|
mips_output_filename (FILE *stream, const char *name)
|
5796 |
|
|
{
|
5797 |
|
|
|
5798 |
|
|
/* If we are emitting DWARF-2, let dwarf2out handle the ".file"
|
5799 |
|
|
directives. */
|
5800 |
|
|
if (write_symbols == DWARF2_DEBUG)
|
5801 |
|
|
return;
|
5802 |
|
|
else if (mips_output_filename_first_time)
|
5803 |
|
|
{
|
5804 |
|
|
mips_output_filename_first_time = 0;
|
5805 |
|
|
num_source_filenames += 1;
|
5806 |
|
|
current_function_file = name;
|
5807 |
|
|
fprintf (stream, "\t.file\t%d ", num_source_filenames);
|
5808 |
|
|
output_quoted_string (stream, name);
|
5809 |
|
|
putc ('\n', stream);
|
5810 |
|
|
}
|
5811 |
|
|
|
5812 |
|
|
/* If we are emitting stabs, let dbxout.c handle this (except for
|
5813 |
|
|
the mips_output_filename_first_time case). */
|
5814 |
|
|
else if (write_symbols == DBX_DEBUG)
|
5815 |
|
|
return;
|
5816 |
|
|
|
5817 |
|
|
else if (name != current_function_file
|
5818 |
|
|
&& strcmp (name, current_function_file) != 0)
|
5819 |
|
|
{
|
5820 |
|
|
num_source_filenames += 1;
|
5821 |
|
|
current_function_file = name;
|
5822 |
|
|
fprintf (stream, "\t.file\t%d ", num_source_filenames);
|
5823 |
|
|
output_quoted_string (stream, name);
|
5824 |
|
|
putc ('\n', stream);
|
5825 |
|
|
}
|
5826 |
|
|
}
|
5827 |
|
|
|
5828 |
|
|
/* Output an ASCII string, in a space-saving way. PREFIX is the string
|
5829 |
|
|
that should be written before the opening quote, such as "\t.ascii\t"
|
5830 |
|
|
for real string data or "\t# " for a comment. */
|
5831 |
|
|
|
5832 |
|
|
void
|
5833 |
|
|
mips_output_ascii (FILE *stream, const char *string_param, size_t len,
|
5834 |
|
|
const char *prefix)
|
5835 |
|
|
{
|
5836 |
|
|
size_t i;
|
5837 |
|
|
int cur_pos = 17;
|
5838 |
|
|
register const unsigned char *string =
|
5839 |
|
|
(const unsigned char *)string_param;
|
5840 |
|
|
|
5841 |
|
|
fprintf (stream, "%s\"", prefix);
|
5842 |
|
|
for (i = 0; i < len; i++)
|
5843 |
|
|
{
|
5844 |
|
|
register int c = string[i];
|
5845 |
|
|
|
5846 |
|
|
if (ISPRINT (c))
|
5847 |
|
|
{
|
5848 |
|
|
if (c == '\\' || c == '\"')
|
5849 |
|
|
{
|
5850 |
|
|
putc ('\\', stream);
|
5851 |
|
|
cur_pos++;
|
5852 |
|
|
}
|
5853 |
|
|
putc (c, stream);
|
5854 |
|
|
cur_pos++;
|
5855 |
|
|
}
|
5856 |
|
|
else
|
5857 |
|
|
{
|
5858 |
|
|
fprintf (stream, "\\%03o", c);
|
5859 |
|
|
cur_pos += 4;
|
5860 |
|
|
}
|
5861 |
|
|
|
5862 |
|
|
if (cur_pos > 72 && i+1 < len)
|
5863 |
|
|
{
|
5864 |
|
|
cur_pos = 17;
|
5865 |
|
|
fprintf (stream, "\"\n%s\"", prefix);
|
5866 |
|
|
}
|
5867 |
|
|
}
|
5868 |
|
|
fprintf (stream, "\"\n");
|
5869 |
|
|
}
|
5870 |
|
|
|
5871 |
|
|
/* Implement TARGET_ASM_FILE_START. */
|
5872 |
|
|
|
5873 |
|
|
static void
|
5874 |
|
|
mips_file_start (void)
|
5875 |
|
|
{
|
5876 |
|
|
default_file_start ();
|
5877 |
|
|
|
5878 |
|
|
if (!TARGET_IRIX)
|
5879 |
|
|
{
|
5880 |
|
|
/* Generate a special section to describe the ABI switches used to
|
5881 |
|
|
produce the resultant binary. This used to be done by the assembler
|
5882 |
|
|
setting bits in the ELF header's flags field, but we have run out of
|
5883 |
|
|
bits. GDB needs this information in order to be able to correctly
|
5884 |
|
|
debug these binaries. See the function mips_gdbarch_init() in
|
5885 |
|
|
gdb/mips-tdep.c. This is unnecessary for the IRIX 5/6 ABIs and
|
5886 |
|
|
causes unnecessary IRIX 6 ld warnings. */
|
5887 |
|
|
const char * abi_string = NULL;
|
5888 |
|
|
|
5889 |
|
|
switch (mips_abi)
|
5890 |
|
|
{
|
5891 |
|
|
case ABI_32: abi_string = "abi32"; break;
|
5892 |
|
|
case ABI_N32: abi_string = "abiN32"; break;
|
5893 |
|
|
case ABI_64: abi_string = "abi64"; break;
|
5894 |
|
|
case ABI_O64: abi_string = "abiO64"; break;
|
5895 |
|
|
case ABI_EABI: abi_string = TARGET_64BIT ? "eabi64" : "eabi32"; break;
|
5896 |
|
|
default:
|
5897 |
|
|
gcc_unreachable ();
|
5898 |
|
|
}
|
5899 |
|
|
/* Note - we use fprintf directly rather than calling switch_to_section
|
5900 |
|
|
because in this way we can avoid creating an allocated section. We
|
5901 |
|
|
do not want this section to take up any space in the running
|
5902 |
|
|
executable. */
|
5903 |
|
|
fprintf (asm_out_file, "\t.section .mdebug.%s\n", abi_string);
|
5904 |
|
|
|
5905 |
|
|
/* There is no ELF header flag to distinguish long32 forms of the
|
5906 |
|
|
EABI from long64 forms. Emit a special section to help tools
|
5907 |
|
|
such as GDB. Do the same for o64, which is sometimes used with
|
5908 |
|
|
-mlong64. */
|
5909 |
|
|
if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
|
5910 |
|
|
fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n",
|
5911 |
|
|
TARGET_LONG64 ? 64 : 32);
|
5912 |
|
|
|
5913 |
|
|
/* Restore the default section. */
|
5914 |
|
|
fprintf (asm_out_file, "\t.previous\n");
|
5915 |
|
|
}
|
5916 |
|
|
|
5917 |
|
|
/* Generate the pseudo ops that System V.4 wants. */
|
5918 |
|
|
if (TARGET_ABICALLS)
|
5919 |
|
|
fprintf (asm_out_file, "\t.abicalls\n");
|
5920 |
|
|
|
5921 |
|
|
if (TARGET_MIPS16)
|
5922 |
|
|
fprintf (asm_out_file, "\t.set\tmips16\n");
|
5923 |
|
|
|
5924 |
|
|
if (flag_verbose_asm)
|
5925 |
|
|
fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
|
5926 |
|
|
ASM_COMMENT_START,
|
5927 |
|
|
mips_section_threshold, mips_arch_info->name, mips_isa);
|
5928 |
|
|
}
|
5929 |
|
|
|
5930 |
|
|
#ifdef BSS_SECTION_ASM_OP
|
5931 |
|
|
/* Implement ASM_OUTPUT_ALIGNED_BSS. This differs from the default only
|
5932 |
|
|
in the use of sbss. */
|
5933 |
|
|
|
5934 |
|
|
void
|
5935 |
|
|
mips_output_aligned_bss (FILE *stream, tree decl, const char *name,
|
5936 |
|
|
unsigned HOST_WIDE_INT size, int align)
|
5937 |
|
|
{
|
5938 |
|
|
extern tree last_assemble_variable_decl;
|
5939 |
|
|
|
5940 |
|
|
if (mips_in_small_data_p (decl))
|
5941 |
|
|
switch_to_section (get_named_section (NULL, ".sbss", 0));
|
5942 |
|
|
else
|
5943 |
|
|
switch_to_section (bss_section);
|
5944 |
|
|
ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
|
5945 |
|
|
last_assemble_variable_decl = decl;
|
5946 |
|
|
ASM_DECLARE_OBJECT_NAME (stream, name, decl);
|
5947 |
|
|
ASM_OUTPUT_SKIP (stream, size != 0 ? size : 1);
|
5948 |
|
|
}
|
5949 |
|
|
#endif
|
5950 |
|
|
|
5951 |
|
|
/* Implement TARGET_ASM_FILE_END. When using assembler macros, emit
|
5952 |
|
|
.externs for any small-data variables that turned out to be external. */
|
5953 |
|
|
|
5954 |
|
|
static void
|
5955 |
|
|
mips_file_end (void)
|
5956 |
|
|
{
|
5957 |
|
|
tree name_tree;
|
5958 |
|
|
struct extern_list *p;
|
5959 |
|
|
|
5960 |
|
|
if (extern_head)
|
5961 |
|
|
{
|
5962 |
|
|
fputs ("\n", asm_out_file);
|
5963 |
|
|
|
5964 |
|
|
for (p = extern_head; p != 0; p = p->next)
|
5965 |
|
|
{
|
5966 |
|
|
name_tree = get_identifier (p->name);
|
5967 |
|
|
|
5968 |
|
|
/* Positively ensure only one .extern for any given symbol. */
|
5969 |
|
|
if (!TREE_ASM_WRITTEN (name_tree)
|
5970 |
|
|
&& TREE_SYMBOL_REFERENCED (name_tree))
|
5971 |
|
|
{
|
5972 |
|
|
TREE_ASM_WRITTEN (name_tree) = 1;
|
5973 |
|
|
/* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
|
5974 |
|
|
`.global name .text' directive for every used but
|
5975 |
|
|
undefined function. If we don't, the linker may perform
|
5976 |
|
|
an optimization (skipping over the insns that set $gp)
|
5977 |
|
|
when it is unsafe. */
|
5978 |
|
|
if (TARGET_IRIX && mips_abi == ABI_32 && p->size == -1)
|
5979 |
|
|
{
|
5980 |
|
|
fputs ("\t.globl ", asm_out_file);
|
5981 |
|
|
assemble_name (asm_out_file, p->name);
|
5982 |
|
|
fputs (" .text\n", asm_out_file);
|
5983 |
|
|
}
|
5984 |
|
|
else
|
5985 |
|
|
{
|
5986 |
|
|
fputs ("\t.extern\t", asm_out_file);
|
5987 |
|
|
assemble_name (asm_out_file, p->name);
|
5988 |
|
|
fprintf (asm_out_file, ", %d\n", p->size);
|
5989 |
|
|
}
|
5990 |
|
|
}
|
5991 |
|
|
}
|
5992 |
|
|
}
|
5993 |
|
|
}
|
5994 |
|
|
|
5995 |
|
|
/* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
|
5996 |
|
|
elfos.h version, but we also need to handle -muninit-const-in-rodata. */
|
5997 |
|
|
|
5998 |
|
|
void
|
5999 |
|
|
mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
|
6000 |
|
|
unsigned HOST_WIDE_INT size,
|
6001 |
|
|
unsigned int align)
|
6002 |
|
|
{
|
6003 |
|
|
/* If the target wants uninitialized const declarations in
|
6004 |
|
|
.rdata then don't put them in .comm. */
|
6005 |
|
|
if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA
|
6006 |
|
|
&& TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl)
|
6007 |
|
|
&& (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
|
6008 |
|
|
{
|
6009 |
|
|
if (TREE_PUBLIC (decl) && DECL_NAME (decl))
|
6010 |
|
|
targetm.asm_out.globalize_label (stream, name);
|
6011 |
|
|
|
6012 |
|
|
switch_to_section (readonly_data_section);
|
6013 |
|
|
ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
|
6014 |
|
|
mips_declare_object (stream, name, "",
|
6015 |
|
|
":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
|
6016 |
|
|
size);
|
6017 |
|
|
}
|
6018 |
|
|
else
|
6019 |
|
|
mips_declare_common_object (stream, name, "\n\t.comm\t",
|
6020 |
|
|
size, align, true);
|
6021 |
|
|
}
|
6022 |
|
|
|
6023 |
|
|
/* Declare a common object of SIZE bytes using asm directive INIT_STRING.
|
6024 |
|
|
NAME is the name of the object and ALIGN is the required alignment
|
6025 |
|
|
in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
|
6026 |
|
|
alignment argument. */
|
6027 |
|
|
|
6028 |
|
|
void
|
6029 |
|
|
mips_declare_common_object (FILE *stream, const char *name,
|
6030 |
|
|
const char *init_string,
|
6031 |
|
|
unsigned HOST_WIDE_INT size,
|
6032 |
|
|
unsigned int align, bool takes_alignment_p)
|
6033 |
|
|
{
|
6034 |
|
|
if (!takes_alignment_p)
|
6035 |
|
|
{
|
6036 |
|
|
size += (align / BITS_PER_UNIT) - 1;
|
6037 |
|
|
size -= size % (align / BITS_PER_UNIT);
|
6038 |
|
|
mips_declare_object (stream, name, init_string,
|
6039 |
|
|
"," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
|
6040 |
|
|
}
|
6041 |
|
|
else
|
6042 |
|
|
mips_declare_object (stream, name, init_string,
|
6043 |
|
|
"," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
|
6044 |
|
|
size, align / BITS_PER_UNIT);
|
6045 |
|
|
}
|
6046 |
|
|
|
6047 |
|
|
/* Emit either a label, .comm, or .lcomm directive. When using assembler
|
6048 |
|
|
macros, mark the symbol as written so that mips_file_end won't emit an
|
6049 |
|
|
.extern for it. STREAM is the output file, NAME is the name of the
|
6050 |
|
|
symbol, INIT_STRING is the string that should be written before the
|
6051 |
|
|
symbol and FINAL_STRING is the string that should be written after it.
|
6052 |
|
|
FINAL_STRING is a printf() format that consumes the remaining arguments. */
|
6053 |
|
|
|
6054 |
|
|
void
|
6055 |
|
|
mips_declare_object (FILE *stream, const char *name, const char *init_string,
|
6056 |
|
|
const char *final_string, ...)
|
6057 |
|
|
{
|
6058 |
|
|
va_list ap;
|
6059 |
|
|
|
6060 |
|
|
fputs (init_string, stream);
|
6061 |
|
|
assemble_name (stream, name);
|
6062 |
|
|
va_start (ap, final_string);
|
6063 |
|
|
vfprintf (stream, final_string, ap);
|
6064 |
|
|
va_end (ap);
|
6065 |
|
|
|
6066 |
|
|
if (!TARGET_EXPLICIT_RELOCS)
|
6067 |
|
|
{
|
6068 |
|
|
tree name_tree = get_identifier (name);
|
6069 |
|
|
TREE_ASM_WRITTEN (name_tree) = 1;
|
6070 |
|
|
}
|
6071 |
|
|
}
|
6072 |
|
|
|
6073 |
|
|
#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
|
6074 |
|
|
extern int size_directive_output;
|
6075 |
|
|
|
6076 |
|
|
/* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
|
6077 |
|
|
definitions except that it uses mips_declare_object() to emit the label. */
|
6078 |
|
|
|
6079 |
|
|
void
|
6080 |
|
|
mips_declare_object_name (FILE *stream, const char *name,
|
6081 |
|
|
tree decl ATTRIBUTE_UNUSED)
|
6082 |
|
|
{
|
6083 |
|
|
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
|
6084 |
|
|
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
|
6085 |
|
|
#endif
|
6086 |
|
|
|
6087 |
|
|
size_directive_output = 0;
|
6088 |
|
|
if (!flag_inhibit_size_directive && DECL_SIZE (decl))
|
6089 |
|
|
{
|
6090 |
|
|
HOST_WIDE_INT size;
|
6091 |
|
|
|
6092 |
|
|
size_directive_output = 1;
|
6093 |
|
|
size = int_size_in_bytes (TREE_TYPE (decl));
|
6094 |
|
|
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
|
6095 |
|
|
}
|
6096 |
|
|
|
6097 |
|
|
mips_declare_object (stream, name, "", ":\n");
|
6098 |
|
|
}
|
6099 |
|
|
|
6100 |
|
|
/* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
|
6101 |
|
|
|
6102 |
|
|
void
|
6103 |
|
|
mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
|
6104 |
|
|
{
|
6105 |
|
|
const char *name;
|
6106 |
|
|
|
6107 |
|
|
name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
|
6108 |
|
|
if (!flag_inhibit_size_directive
|
6109 |
|
|
&& DECL_SIZE (decl) != 0
|
6110 |
|
|
&& !at_end && top_level
|
6111 |
|
|
&& DECL_INITIAL (decl) == error_mark_node
|
6112 |
|
|
&& !size_directive_output)
|
6113 |
|
|
{
|
6114 |
|
|
HOST_WIDE_INT size;
|
6115 |
|
|
|
6116 |
|
|
size_directive_output = 1;
|
6117 |
|
|
size = int_size_in_bytes (TREE_TYPE (decl));
|
6118 |
|
|
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
|
6119 |
|
|
}
|
6120 |
|
|
}
|
6121 |
|
|
#endif
|
6122 |
|
|
|
6123 |
|
|
/* Return true if X is a small data address that can be rewritten
|
6124 |
|
|
as a LO_SUM. */
|
6125 |
|
|
|
6126 |
|
|
static bool
|
6127 |
|
|
mips_rewrite_small_data_p (rtx x)
|
6128 |
|
|
{
|
6129 |
|
|
enum mips_symbol_type symbol_type;
|
6130 |
|
|
|
6131 |
|
|
return (TARGET_EXPLICIT_RELOCS
|
6132 |
|
|
&& mips_symbolic_constant_p (x, &symbol_type)
|
6133 |
|
|
&& symbol_type == SYMBOL_SMALL_DATA);
|
6134 |
|
|
}
|
6135 |
|
|
|
6136 |
|
|
|
6137 |
|
|
/* A for_each_rtx callback for mips_small_data_pattern_p. */
|
6138 |
|
|
|
6139 |
|
|
static int
|
6140 |
|
|
mips_small_data_pattern_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
6141 |
|
|
{
|
6142 |
|
|
if (GET_CODE (*loc) == LO_SUM)
|
6143 |
|
|
return -1;
|
6144 |
|
|
|
6145 |
|
|
return mips_rewrite_small_data_p (*loc);
|
6146 |
|
|
}
|
6147 |
|
|
|
6148 |
|
|
/* Return true if OP refers to small data symbols directly, not through
|
6149 |
|
|
a LO_SUM. */
|
6150 |
|
|
|
6151 |
|
|
bool
|
6152 |
|
|
mips_small_data_pattern_p (rtx op)
|
6153 |
|
|
{
|
6154 |
|
|
return for_each_rtx (&op, mips_small_data_pattern_1, 0);
|
6155 |
|
|
}
|
6156 |
|
|
|
6157 |
|
|
/* A for_each_rtx callback, used by mips_rewrite_small_data. */
|
6158 |
|
|
|
6159 |
|
|
static int
|
6160 |
|
|
mips_rewrite_small_data_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
6161 |
|
|
{
|
6162 |
|
|
if (mips_rewrite_small_data_p (*loc))
|
6163 |
|
|
*loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
|
6164 |
|
|
|
6165 |
|
|
if (GET_CODE (*loc) == LO_SUM)
|
6166 |
|
|
return -1;
|
6167 |
|
|
|
6168 |
|
|
return 0;
|
6169 |
|
|
}
|
6170 |
|
|
|
6171 |
|
|
/* If possible, rewrite OP so that it refers to small data using
|
6172 |
|
|
explicit relocations. */
|
6173 |
|
|
|
6174 |
|
|
rtx
|
6175 |
|
|
mips_rewrite_small_data (rtx op)
|
6176 |
|
|
{
|
6177 |
|
|
op = copy_insn (op);
|
6178 |
|
|
for_each_rtx (&op, mips_rewrite_small_data_1, 0);
|
6179 |
|
|
return op;
|
6180 |
|
|
}
|
6181 |
|
|
|
6182 |
|
|
/* Return true if the current function has an insn that implicitly
|
6183 |
|
|
refers to $gp. */
|
6184 |
|
|
|
6185 |
|
|
static bool
|
6186 |
|
|
mips_function_has_gp_insn (void)
|
6187 |
|
|
{
|
6188 |
|
|
/* Don't bother rechecking if we found one last time. */
|
6189 |
|
|
if (!cfun->machine->has_gp_insn_p)
|
6190 |
|
|
{
|
6191 |
|
|
rtx insn;
|
6192 |
|
|
|
6193 |
|
|
push_topmost_sequence ();
|
6194 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
6195 |
|
|
if (INSN_P (insn)
|
6196 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
6197 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER
|
6198 |
|
|
&& (get_attr_got (insn) != GOT_UNSET
|
6199 |
|
|
|| small_data_pattern (PATTERN (insn), VOIDmode)))
|
6200 |
|
|
break;
|
6201 |
|
|
pop_topmost_sequence ();
|
6202 |
|
|
|
6203 |
|
|
cfun->machine->has_gp_insn_p = (insn != 0);
|
6204 |
|
|
}
|
6205 |
|
|
return cfun->machine->has_gp_insn_p;
|
6206 |
|
|
}
|
6207 |
|
|
|
6208 |
|
|
|
6209 |
|
|
/* Return the register that should be used as the global pointer
|
6210 |
|
|
within this function. Return 0 if the function doesn't need
|
6211 |
|
|
a global pointer. */
|
6212 |
|
|
|
6213 |
|
|
static unsigned int
|
6214 |
|
|
mips_global_pointer (void)
|
6215 |
|
|
{
|
6216 |
|
|
unsigned int regno;
|
6217 |
|
|
|
6218 |
|
|
/* $gp is always available in non-abicalls code. */
|
6219 |
|
|
if (!TARGET_ABICALLS)
|
6220 |
|
|
return GLOBAL_POINTER_REGNUM;
|
6221 |
|
|
|
6222 |
|
|
/* We must always provide $gp when it is used implicitly. */
|
6223 |
|
|
if (!TARGET_EXPLICIT_RELOCS)
|
6224 |
|
|
return GLOBAL_POINTER_REGNUM;
|
6225 |
|
|
|
6226 |
|
|
/* FUNCTION_PROFILER includes a jal macro, so we need to give it
|
6227 |
|
|
a valid gp. */
|
6228 |
|
|
if (current_function_profile)
|
6229 |
|
|
return GLOBAL_POINTER_REGNUM;
|
6230 |
|
|
|
6231 |
|
|
/* If the function has a nonlocal goto, $gp must hold the correct
|
6232 |
|
|
global pointer for the target function. */
|
6233 |
|
|
if (current_function_has_nonlocal_goto)
|
6234 |
|
|
return GLOBAL_POINTER_REGNUM;
|
6235 |
|
|
|
6236 |
|
|
/* If the gp is never referenced, there's no need to initialize it.
|
6237 |
|
|
Note that reload can sometimes introduce constant pool references
|
6238 |
|
|
into a function that otherwise didn't need them. For example,
|
6239 |
|
|
suppose we have an instruction like:
|
6240 |
|
|
|
6241 |
|
|
(set (reg:DF R1) (float:DF (reg:SI R2)))
|
6242 |
|
|
|
6243 |
|
|
If R2 turns out to be constant such as 1, the instruction may have a
|
6244 |
|
|
REG_EQUAL note saying that R1 == 1.0. Reload then has the option of
|
6245 |
|
|
using this constant if R2 doesn't get allocated to a register.
|
6246 |
|
|
|
6247 |
|
|
In cases like these, reload will have added the constant to the pool
|
6248 |
|
|
but no instruction will yet refer to it. */
|
6249 |
|
|
if (!regs_ever_live[GLOBAL_POINTER_REGNUM]
|
6250 |
|
|
&& !current_function_uses_const_pool
|
6251 |
|
|
&& !mips_function_has_gp_insn ())
|
6252 |
|
|
return 0;
|
6253 |
|
|
|
6254 |
|
|
/* We need a global pointer, but perhaps we can use a call-clobbered
|
6255 |
|
|
register instead of $gp. */
|
6256 |
|
|
if (TARGET_NEWABI && current_function_is_leaf)
|
6257 |
|
|
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
|
6258 |
|
|
if (!regs_ever_live[regno]
|
6259 |
|
|
&& call_used_regs[regno]
|
6260 |
|
|
&& !fixed_regs[regno]
|
6261 |
|
|
&& regno != PIC_FUNCTION_ADDR_REGNUM)
|
6262 |
|
|
return regno;
|
6263 |
|
|
|
6264 |
|
|
return GLOBAL_POINTER_REGNUM;
|
6265 |
|
|
}
|
6266 |
|
|
|
6267 |
|
|
|
6268 |
|
|
/* Return true if the current function must save REGNO. */
|
6269 |
|
|
|
6270 |
|
|
static bool
|
6271 |
|
|
mips_save_reg_p (unsigned int regno)
|
6272 |
|
|
{
|
6273 |
|
|
/* We only need to save $gp for NewABI PIC. */
|
6274 |
|
|
if (regno == GLOBAL_POINTER_REGNUM)
|
6275 |
|
|
return (TARGET_ABICALLS && TARGET_NEWABI
|
6276 |
|
|
&& cfun->machine->global_pointer == regno);
|
6277 |
|
|
|
6278 |
|
|
/* Check call-saved registers. */
|
6279 |
|
|
if (regs_ever_live[regno] && !call_used_regs[regno])
|
6280 |
|
|
return true;
|
6281 |
|
|
|
6282 |
|
|
/* We need to save the old frame pointer before setting up a new one. */
|
6283 |
|
|
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
|
6284 |
|
|
return true;
|
6285 |
|
|
|
6286 |
|
|
/* We need to save the incoming return address if it is ever clobbered
|
6287 |
|
|
within the function. */
|
6288 |
|
|
if (regno == GP_REG_FIRST + 31 && regs_ever_live[regno])
|
6289 |
|
|
return true;
|
6290 |
|
|
|
6291 |
|
|
if (TARGET_MIPS16)
|
6292 |
|
|
{
|
6293 |
|
|
tree return_type;
|
6294 |
|
|
|
6295 |
|
|
return_type = DECL_RESULT (current_function_decl);
|
6296 |
|
|
|
6297 |
|
|
/* $18 is a special case in mips16 code. It may be used to call
|
6298 |
|
|
a function which returns a floating point value, but it is
|
6299 |
|
|
marked in call_used_regs. */
|
6300 |
|
|
if (regno == GP_REG_FIRST + 18 && regs_ever_live[regno])
|
6301 |
|
|
return true;
|
6302 |
|
|
|
6303 |
|
|
/* $31 is also a special case. It will be used to copy a return
|
6304 |
|
|
value into the floating point registers if the return value is
|
6305 |
|
|
floating point. */
|
6306 |
|
|
if (regno == GP_REG_FIRST + 31
|
6307 |
|
|
&& mips16_hard_float
|
6308 |
|
|
&& !aggregate_value_p (return_type, current_function_decl)
|
6309 |
|
|
&& GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
|
6310 |
|
|
&& GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
|
6311 |
|
|
return true;
|
6312 |
|
|
}
|
6313 |
|
|
|
6314 |
|
|
return false;
|
6315 |
|
|
}
|
6316 |
|
|
|
6317 |
|
|
|
6318 |
|
|
/* Return the bytes needed to compute the frame pointer from the current
|
6319 |
|
|
stack pointer. SIZE is the size (in bytes) of the local variables.
|
6320 |
|
|
|
6321 |
|
|
MIPS stack frames look like:
|
6322 |
|
|
|
6323 |
|
|
Before call After call
|
6324 |
|
|
+-----------------------+ +-----------------------+
|
6325 |
|
|
high | | | |
|
6326 |
|
|
mem. | | | |
|
6327 |
|
|
| caller's temps. | | caller's temps. |
|
6328 |
|
|
| | | |
|
6329 |
|
|
+-----------------------+ +-----------------------+
|
6330 |
|
|
| | | |
|
6331 |
|
|
| arguments on stack. | | arguments on stack. |
|
6332 |
|
|
| | | |
|
6333 |
|
|
+-----------------------+ +-----------------------+
|
6334 |
|
|
| 4 words to save | | 4 words to save |
|
6335 |
|
|
| arguments passed | | arguments passed |
|
6336 |
|
|
| in registers, even | | in registers, even |
|
6337 |
|
|
SP->| if not passed. | VFP->| if not passed. |
|
6338 |
|
|
+-----------------------+ +-----------------------+
|
6339 |
|
|
| |
|
6340 |
|
|
| fp register save |
|
6341 |
|
|
| |
|
6342 |
|
|
+-----------------------+
|
6343 |
|
|
| |
|
6344 |
|
|
| gp register save |
|
6345 |
|
|
| |
|
6346 |
|
|
+-----------------------+
|
6347 |
|
|
| |
|
6348 |
|
|
| local variables |
|
6349 |
|
|
| |
|
6350 |
|
|
+-----------------------+
|
6351 |
|
|
| |
|
6352 |
|
|
| alloca allocations |
|
6353 |
|
|
| |
|
6354 |
|
|
+-----------------------+
|
6355 |
|
|
| |
|
6356 |
|
|
| GP save for V.4 abi |
|
6357 |
|
|
| |
|
6358 |
|
|
+-----------------------+
|
6359 |
|
|
| |
|
6360 |
|
|
| arguments on stack |
|
6361 |
|
|
| |
|
6362 |
|
|
+-----------------------+
|
6363 |
|
|
| 4 words to save |
|
6364 |
|
|
| arguments passed |
|
6365 |
|
|
| in registers, even |
|
6366 |
|
|
low SP->| if not passed. |
|
6367 |
|
|
memory +-----------------------+
|
6368 |
|
|
|
6369 |
|
|
*/
|
6370 |
|
|
|
6371 |
|
|
HOST_WIDE_INT
|
6372 |
|
|
compute_frame_size (HOST_WIDE_INT size)
|
6373 |
|
|
{
|
6374 |
|
|
unsigned int regno;
|
6375 |
|
|
HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up */
|
6376 |
|
|
HOST_WIDE_INT var_size; /* # bytes that variables take up */
|
6377 |
|
|
HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up */
|
6378 |
|
|
HOST_WIDE_INT cprestore_size; /* # bytes that the cprestore slot takes up */
|
6379 |
|
|
HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding */
|
6380 |
|
|
HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs */
|
6381 |
|
|
HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs */
|
6382 |
|
|
unsigned int mask; /* mask of saved gp registers */
|
6383 |
|
|
unsigned int fmask; /* mask of saved fp registers */
|
6384 |
|
|
|
6385 |
|
|
cfun->machine->global_pointer = mips_global_pointer ();
|
6386 |
|
|
|
6387 |
|
|
gp_reg_size = 0;
|
6388 |
|
|
fp_reg_size = 0;
|
6389 |
|
|
mask = 0;
|
6390 |
|
|
fmask = 0;
|
6391 |
|
|
var_size = MIPS_STACK_ALIGN (size);
|
6392 |
|
|
args_size = current_function_outgoing_args_size;
|
6393 |
|
|
cprestore_size = MIPS_STACK_ALIGN (STARTING_FRAME_OFFSET) - args_size;
|
6394 |
|
|
|
6395 |
|
|
/* The space set aside by STARTING_FRAME_OFFSET isn't needed in leaf
|
6396 |
|
|
functions. If the function has local variables, we're committed
|
6397 |
|
|
to allocating it anyway. Otherwise reclaim it here. */
|
6398 |
|
|
if (var_size == 0 && current_function_is_leaf)
|
6399 |
|
|
cprestore_size = args_size = 0;
|
6400 |
|
|
|
6401 |
|
|
/* The MIPS 3.0 linker does not like functions that dynamically
|
6402 |
|
|
allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
|
6403 |
|
|
looks like we are trying to create a second frame pointer to the
|
6404 |
|
|
function, so allocate some stack space to make it happy. */
|
6405 |
|
|
|
6406 |
|
|
if (args_size == 0 && current_function_calls_alloca)
|
6407 |
|
|
args_size = 4 * UNITS_PER_WORD;
|
6408 |
|
|
|
6409 |
|
|
total_size = var_size + args_size + cprestore_size;
|
6410 |
|
|
|
6411 |
|
|
/* Calculate space needed for gp registers. */
|
6412 |
|
|
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
|
6413 |
|
|
if (mips_save_reg_p (regno))
|
6414 |
|
|
{
|
6415 |
|
|
gp_reg_size += GET_MODE_SIZE (gpr_mode);
|
6416 |
|
|
mask |= 1 << (regno - GP_REG_FIRST);
|
6417 |
|
|
}
|
6418 |
|
|
|
6419 |
|
|
/* We need to restore these for the handler. */
|
6420 |
|
|
if (current_function_calls_eh_return)
|
6421 |
|
|
{
|
6422 |
|
|
unsigned int i;
|
6423 |
|
|
for (i = 0; ; ++i)
|
6424 |
|
|
{
|
6425 |
|
|
regno = EH_RETURN_DATA_REGNO (i);
|
6426 |
|
|
if (regno == INVALID_REGNUM)
|
6427 |
|
|
break;
|
6428 |
|
|
gp_reg_size += GET_MODE_SIZE (gpr_mode);
|
6429 |
|
|
mask |= 1 << (regno - GP_REG_FIRST);
|
6430 |
|
|
}
|
6431 |
|
|
}
|
6432 |
|
|
|
6433 |
|
|
/* This loop must iterate over the same space as its companion in
|
6434 |
|
|
save_restore_insns. */
|
6435 |
|
|
for (regno = (FP_REG_LAST - FP_INC + 1);
|
6436 |
|
|
regno >= FP_REG_FIRST;
|
6437 |
|
|
regno -= FP_INC)
|
6438 |
|
|
{
|
6439 |
|
|
if (mips_save_reg_p (regno))
|
6440 |
|
|
{
|
6441 |
|
|
fp_reg_size += FP_INC * UNITS_PER_FPREG;
|
6442 |
|
|
fmask |= ((1 << FP_INC) - 1) << (regno - FP_REG_FIRST);
|
6443 |
|
|
}
|
6444 |
|
|
}
|
6445 |
|
|
|
6446 |
|
|
gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
|
6447 |
|
|
total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);
|
6448 |
|
|
|
6449 |
|
|
/* Add in the space required for saving incoming register arguments. */
|
6450 |
|
|
total_size += current_function_pretend_args_size;
|
6451 |
|
|
total_size += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
|
6452 |
|
|
|
6453 |
|
|
/* Save other computed information. */
|
6454 |
|
|
cfun->machine->frame.total_size = total_size;
|
6455 |
|
|
cfun->machine->frame.var_size = var_size;
|
6456 |
|
|
cfun->machine->frame.args_size = args_size;
|
6457 |
|
|
cfun->machine->frame.cprestore_size = cprestore_size;
|
6458 |
|
|
cfun->machine->frame.gp_reg_size = gp_reg_size;
|
6459 |
|
|
cfun->machine->frame.fp_reg_size = fp_reg_size;
|
6460 |
|
|
cfun->machine->frame.mask = mask;
|
6461 |
|
|
cfun->machine->frame.fmask = fmask;
|
6462 |
|
|
cfun->machine->frame.initialized = reload_completed;
|
6463 |
|
|
cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
|
6464 |
|
|
cfun->machine->frame.num_fp = fp_reg_size / (FP_INC * UNITS_PER_FPREG);
|
6465 |
|
|
|
6466 |
|
|
if (mask)
|
6467 |
|
|
{
|
6468 |
|
|
HOST_WIDE_INT offset;
|
6469 |
|
|
|
6470 |
|
|
offset = (args_size + cprestore_size + var_size
|
6471 |
|
|
+ gp_reg_size - GET_MODE_SIZE (gpr_mode));
|
6472 |
|
|
cfun->machine->frame.gp_sp_offset = offset;
|
6473 |
|
|
cfun->machine->frame.gp_save_offset = offset - total_size;
|
6474 |
|
|
}
|
6475 |
|
|
else
|
6476 |
|
|
{
|
6477 |
|
|
cfun->machine->frame.gp_sp_offset = 0;
|
6478 |
|
|
cfun->machine->frame.gp_save_offset = 0;
|
6479 |
|
|
}
|
6480 |
|
|
|
6481 |
|
|
if (fmask)
|
6482 |
|
|
{
|
6483 |
|
|
HOST_WIDE_INT offset;
|
6484 |
|
|
|
6485 |
|
|
offset = (args_size + cprestore_size + var_size
|
6486 |
|
|
+ gp_reg_rounded + fp_reg_size
|
6487 |
|
|
- FP_INC * UNITS_PER_FPREG);
|
6488 |
|
|
cfun->machine->frame.fp_sp_offset = offset;
|
6489 |
|
|
cfun->machine->frame.fp_save_offset = offset - total_size;
|
6490 |
|
|
}
|
6491 |
|
|
else
|
6492 |
|
|
{
|
6493 |
|
|
cfun->machine->frame.fp_sp_offset = 0;
|
6494 |
|
|
cfun->machine->frame.fp_save_offset = 0;
|
6495 |
|
|
}
|
6496 |
|
|
|
6497 |
|
|
/* Ok, we're done. */
|
6498 |
|
|
return total_size;
|
6499 |
|
|
}
|
6500 |
|
|
|
6501 |
|
|
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
|
6502 |
|
|
pointer or argument pointer. TO is either the stack pointer or
|
6503 |
|
|
hard frame pointer. */
|
6504 |
|
|
|
6505 |
|
|
HOST_WIDE_INT
|
6506 |
|
|
mips_initial_elimination_offset (int from, int to)
|
6507 |
|
|
{
|
6508 |
|
|
HOST_WIDE_INT offset;
|
6509 |
|
|
|
6510 |
|
|
compute_frame_size (get_frame_size ());
|
6511 |
|
|
|
6512 |
|
|
/* Set OFFSET to the offset from the stack pointer. */
|
6513 |
|
|
switch (from)
|
6514 |
|
|
{
|
6515 |
|
|
case FRAME_POINTER_REGNUM:
|
6516 |
|
|
offset = 0;
|
6517 |
|
|
break;
|
6518 |
|
|
|
6519 |
|
|
case ARG_POINTER_REGNUM:
|
6520 |
|
|
offset = (cfun->machine->frame.total_size
|
6521 |
|
|
- current_function_pretend_args_size);
|
6522 |
|
|
break;
|
6523 |
|
|
|
6524 |
|
|
default:
|
6525 |
|
|
gcc_unreachable ();
|
6526 |
|
|
}
|
6527 |
|
|
|
6528 |
|
|
if (TARGET_MIPS16 && to == HARD_FRAME_POINTER_REGNUM)
|
6529 |
|
|
offset -= cfun->machine->frame.args_size;
|
6530 |
|
|
|
6531 |
|
|
return offset;
|
6532 |
|
|
}
|
6533 |
|
|
|
6534 |
|
|
/* Implement RETURN_ADDR_RTX. Note, we do not support moving
|
6535 |
|
|
back to a previous frame. */
|
6536 |
|
|
rtx
|
6537 |
|
|
mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
|
6538 |
|
|
{
|
6539 |
|
|
if (count != 0)
|
6540 |
|
|
return const0_rtx;
|
6541 |
|
|
|
6542 |
|
|
return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
|
6543 |
|
|
}
|
6544 |
|
|
|
6545 |
|
|
/* Use FN to save or restore register REGNO. MODE is the register's
|
6546 |
|
|
mode and OFFSET is the offset of its save slot from the current
|
6547 |
|
|
stack pointer. */
|
6548 |
|
|
|
6549 |
|
|
static void
|
6550 |
|
|
mips_save_restore_reg (enum machine_mode mode, int regno,
|
6551 |
|
|
HOST_WIDE_INT offset, mips_save_restore_fn fn)
|
6552 |
|
|
{
|
6553 |
|
|
rtx mem;
|
6554 |
|
|
|
6555 |
|
|
mem = gen_frame_mem (mode, plus_constant (stack_pointer_rtx, offset));
|
6556 |
|
|
|
6557 |
|
|
fn (gen_rtx_REG (mode, regno), mem);
|
6558 |
|
|
}
|
6559 |
|
|
|
6560 |
|
|
|
6561 |
|
|
/* Call FN for each register that is saved by the current function.
|
6562 |
|
|
SP_OFFSET is the offset of the current stack pointer from the start
|
6563 |
|
|
of the frame. */
|
6564 |
|
|
|
6565 |
|
|
static void
|
6566 |
|
|
mips_for_each_saved_reg (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
|
6567 |
|
|
{
|
6568 |
|
|
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)
|
6569 |
|
|
|
6570 |
|
|
enum machine_mode fpr_mode;
|
6571 |
|
|
HOST_WIDE_INT offset;
|
6572 |
|
|
int regno;
|
6573 |
|
|
|
6574 |
|
|
/* Save registers starting from high to low. The debuggers prefer at least
|
6575 |
|
|
the return register be stored at func+4, and also it allows us not to
|
6576 |
|
|
need a nop in the epilog if at least one register is reloaded in
|
6577 |
|
|
addition to return address. */
|
6578 |
|
|
offset = cfun->machine->frame.gp_sp_offset - sp_offset;
|
6579 |
|
|
for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
|
6580 |
|
|
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
|
6581 |
|
|
{
|
6582 |
|
|
mips_save_restore_reg (gpr_mode, regno, offset, fn);
|
6583 |
|
|
offset -= GET_MODE_SIZE (gpr_mode);
|
6584 |
|
|
}
|
6585 |
|
|
|
6586 |
|
|
/* This loop must iterate over the same space as its companion in
|
6587 |
|
|
compute_frame_size. */
|
6588 |
|
|
offset = cfun->machine->frame.fp_sp_offset - sp_offset;
|
6589 |
|
|
fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
|
6590 |
|
|
for (regno = (FP_REG_LAST - FP_INC + 1);
|
6591 |
|
|
regno >= FP_REG_FIRST;
|
6592 |
|
|
regno -= FP_INC)
|
6593 |
|
|
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
|
6594 |
|
|
{
|
6595 |
|
|
mips_save_restore_reg (fpr_mode, regno, offset, fn);
|
6596 |
|
|
offset -= GET_MODE_SIZE (fpr_mode);
|
6597 |
|
|
}
|
6598 |
|
|
#undef BITSET_P
|
6599 |
|
|
}
|
6600 |
|
|
|
6601 |
|
|
/* If we're generating n32 or n64 abicalls, and the current function
|
6602 |
|
|
does not use $28 as its global pointer, emit a cplocal directive.
|
6603 |
|
|
Use pic_offset_table_rtx as the argument to the directive. */
|
6604 |
|
|
|
6605 |
|
|
static void
|
6606 |
|
|
mips_output_cplocal (void)
|
6607 |
|
|
{
|
6608 |
|
|
if (!TARGET_EXPLICIT_RELOCS
|
6609 |
|
|
&& cfun->machine->global_pointer > 0
|
6610 |
|
|
&& cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
|
6611 |
|
|
output_asm_insn (".cplocal %+", 0);
|
6612 |
|
|
}
|
6613 |
|
|
|
6614 |
|
|
/* Return the style of GP load sequence that is being used for the
|
6615 |
|
|
current function. */
|
6616 |
|
|
|
6617 |
|
|
enum mips_loadgp_style
|
6618 |
|
|
mips_current_loadgp_style (void)
|
6619 |
|
|
{
|
6620 |
|
|
if (!TARGET_ABICALLS || cfun->machine->global_pointer == 0)
|
6621 |
|
|
return LOADGP_NONE;
|
6622 |
|
|
|
6623 |
|
|
if (TARGET_ABSOLUTE_ABICALLS)
|
6624 |
|
|
return LOADGP_ABSOLUTE;
|
6625 |
|
|
|
6626 |
|
|
return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
|
6627 |
|
|
}
|
6628 |
|
|
|
6629 |
|
|
/* The __gnu_local_gp symbol. */
|
6630 |
|
|
|
6631 |
|
|
static GTY(()) rtx mips_gnu_local_gp;
|
6632 |
|
|
|
6633 |
|
|
/* If we're generating n32 or n64 abicalls, emit instructions
|
6634 |
|
|
to set up the global pointer. */
|
6635 |
|
|
|
6636 |
|
|
static void
|
6637 |
|
|
mips_emit_loadgp (void)
|
6638 |
|
|
{
|
6639 |
|
|
rtx addr, offset, incoming_address;
|
6640 |
|
|
|
6641 |
|
|
switch (mips_current_loadgp_style ())
|
6642 |
|
|
{
|
6643 |
|
|
case LOADGP_ABSOLUTE:
|
6644 |
|
|
if (mips_gnu_local_gp == NULL)
|
6645 |
|
|
{
|
6646 |
|
|
mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
|
6647 |
|
|
SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
|
6648 |
|
|
}
|
6649 |
|
|
emit_insn (gen_loadgp_noshared (mips_gnu_local_gp));
|
6650 |
|
|
break;
|
6651 |
|
|
|
6652 |
|
|
case LOADGP_NEWABI:
|
6653 |
|
|
addr = XEXP (DECL_RTL (current_function_decl), 0);
|
6654 |
|
|
offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
|
6655 |
|
|
incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
|
6656 |
|
|
emit_insn (gen_loadgp (offset, incoming_address));
|
6657 |
|
|
if (!TARGET_EXPLICIT_RELOCS)
|
6658 |
|
|
emit_insn (gen_loadgp_blockage ());
|
6659 |
|
|
break;
|
6660 |
|
|
|
6661 |
|
|
default:
|
6662 |
|
|
break;
|
6663 |
|
|
}
|
6664 |
|
|
}
|
6665 |
|
|
|
6666 |
|
|
/* Set up the stack and frame (if desired) for the function. */
|
6667 |
|
|
|
6668 |
|
|
static void
|
6669 |
|
|
mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
6670 |
|
|
{
|
6671 |
|
|
const char *fnname;
|
6672 |
|
|
HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
|
6673 |
|
|
|
6674 |
|
|
#ifdef SDB_DEBUGGING_INFO
|
6675 |
|
|
if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
|
6676 |
|
|
SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
|
6677 |
|
|
#endif
|
6678 |
|
|
|
6679 |
|
|
/* In mips16 mode, we may need to generate a 32 bit to handle
|
6680 |
|
|
floating point arguments. The linker will arrange for any 32 bit
|
6681 |
|
|
functions to call this stub, which will then jump to the 16 bit
|
6682 |
|
|
function proper. */
|
6683 |
|
|
if (TARGET_MIPS16 && !TARGET_SOFT_FLOAT
|
6684 |
|
|
&& current_function_args_info.fp_code != 0)
|
6685 |
|
|
build_mips16_function_stub (file);
|
6686 |
|
|
|
6687 |
|
|
if (!FUNCTION_NAME_ALREADY_DECLARED)
|
6688 |
|
|
{
|
6689 |
|
|
/* Get the function name the same way that toplev.c does before calling
|
6690 |
|
|
assemble_start_function. This is needed so that the name used here
|
6691 |
|
|
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
|
6692 |
|
|
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
|
6693 |
|
|
|
6694 |
|
|
if (!flag_inhibit_size_directive)
|
6695 |
|
|
{
|
6696 |
|
|
fputs ("\t.ent\t", file);
|
6697 |
|
|
assemble_name (file, fnname);
|
6698 |
|
|
fputs ("\n", file);
|
6699 |
|
|
}
|
6700 |
|
|
|
6701 |
|
|
assemble_name (file, fnname);
|
6702 |
|
|
fputs (":\n", file);
|
6703 |
|
|
}
|
6704 |
|
|
|
6705 |
|
|
/* Stop mips_file_end from treating this function as external. */
|
6706 |
|
|
if (TARGET_IRIX && mips_abi == ABI_32)
|
6707 |
|
|
TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;
|
6708 |
|
|
|
6709 |
|
|
if (!flag_inhibit_size_directive)
|
6710 |
|
|
{
|
6711 |
|
|
/* .frame FRAMEREG, FRAMESIZE, RETREG */
|
6712 |
|
|
fprintf (file,
|
6713 |
|
|
"\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
|
6714 |
|
|
"# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d/%d"
|
6715 |
|
|
", args= " HOST_WIDE_INT_PRINT_DEC
|
6716 |
|
|
", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
|
6717 |
|
|
(reg_names[(frame_pointer_needed)
|
6718 |
|
|
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
|
6719 |
|
|
((frame_pointer_needed && TARGET_MIPS16)
|
6720 |
|
|
? tsize - cfun->machine->frame.args_size
|
6721 |
|
|
: tsize),
|
6722 |
|
|
reg_names[GP_REG_FIRST + 31],
|
6723 |
|
|
cfun->machine->frame.var_size,
|
6724 |
|
|
cfun->machine->frame.num_gp,
|
6725 |
|
|
cfun->machine->frame.num_fp,
|
6726 |
|
|
cfun->machine->frame.args_size,
|
6727 |
|
|
cfun->machine->frame.cprestore_size);
|
6728 |
|
|
|
6729 |
|
|
/* .mask MASK, GPOFFSET; .fmask FPOFFSET */
|
6730 |
|
|
fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
|
6731 |
|
|
cfun->machine->frame.mask,
|
6732 |
|
|
cfun->machine->frame.gp_save_offset);
|
6733 |
|
|
fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
|
6734 |
|
|
cfun->machine->frame.fmask,
|
6735 |
|
|
cfun->machine->frame.fp_save_offset);
|
6736 |
|
|
|
6737 |
|
|
/* Require:
|
6738 |
|
|
OLD_SP == *FRAMEREG + FRAMESIZE => can find old_sp from nominated FP reg.
|
6739 |
|
|
HIGHEST_GP_SAVED == *FRAMEREG + FRAMESIZE + GPOFFSET => can find saved regs. */
|
6740 |
|
|
}
|
6741 |
|
|
|
6742 |
|
|
if (mips_current_loadgp_style () == LOADGP_OLDABI)
|
6743 |
|
|
{
|
6744 |
|
|
/* Handle the initialization of $gp for SVR4 PIC. */
|
6745 |
|
|
if (!cfun->machine->all_noreorder_p)
|
6746 |
|
|
output_asm_insn ("%(.cpload\t%^%)", 0);
|
6747 |
|
|
else
|
6748 |
|
|
output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
|
6749 |
|
|
}
|
6750 |
|
|
else if (cfun->machine->all_noreorder_p)
|
6751 |
|
|
output_asm_insn ("%(%<", 0);
|
6752 |
|
|
|
6753 |
|
|
/* Tell the assembler which register we're using as the global
|
6754 |
|
|
pointer. This is needed for thunks, since they can use either
|
6755 |
|
|
explicit relocs or assembler macros. */
|
6756 |
|
|
mips_output_cplocal ();
|
6757 |
|
|
}
|
6758 |
|
|
|
6759 |
|
|
/* Make the last instruction frame related and note that it performs
|
6760 |
|
|
the operation described by FRAME_PATTERN. */
|
6761 |
|
|
|
6762 |
|
|
static void
|
6763 |
|
|
mips_set_frame_expr (rtx frame_pattern)
|
6764 |
|
|
{
|
6765 |
|
|
rtx insn;
|
6766 |
|
|
|
6767 |
|
|
insn = get_last_insn ();
|
6768 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
6769 |
|
|
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
6770 |
|
|
frame_pattern,
|
6771 |
|
|
REG_NOTES (insn));
|
6772 |
|
|
}
|
6773 |
|
|
|
6774 |
|
|
|
6775 |
|
|
/* Return a frame-related rtx that stores REG at MEM.
|
6776 |
|
|
REG must be a single register. */
|
6777 |
|
|
|
6778 |
|
|
static rtx
|
6779 |
|
|
mips_frame_set (rtx mem, rtx reg)
|
6780 |
|
|
{
|
6781 |
|
|
rtx set;
|
6782 |
|
|
|
6783 |
|
|
/* If we're saving the return address register and the dwarf return
|
6784 |
|
|
address column differs from the hard register number, adjust the
|
6785 |
|
|
note reg to refer to the former. */
|
6786 |
|
|
if (REGNO (reg) == GP_REG_FIRST + 31
|
6787 |
|
|
&& DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
|
6788 |
|
|
reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);
|
6789 |
|
|
|
6790 |
|
|
set = gen_rtx_SET (VOIDmode, mem, reg);
|
6791 |
|
|
RTX_FRAME_RELATED_P (set) = 1;
|
6792 |
|
|
|
6793 |
|
|
return set;
|
6794 |
|
|
}
|
6795 |
|
|
|
6796 |
|
|
|
6797 |
|
|
/* Save register REG to MEM. Make the instruction frame-related. */
|
6798 |
|
|
|
6799 |
|
|
static void
|
6800 |
|
|
mips_save_reg (rtx reg, rtx mem)
|
6801 |
|
|
{
|
6802 |
|
|
if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
|
6803 |
|
|
{
|
6804 |
|
|
rtx x1, x2;
|
6805 |
|
|
|
6806 |
|
|
if (mips_split_64bit_move_p (mem, reg))
|
6807 |
|
|
mips_split_64bit_move (mem, reg);
|
6808 |
|
|
else
|
6809 |
|
|
emit_move_insn (mem, reg);
|
6810 |
|
|
|
6811 |
|
|
x1 = mips_frame_set (mips_subword (mem, 0), mips_subword (reg, 0));
|
6812 |
|
|
x2 = mips_frame_set (mips_subword (mem, 1), mips_subword (reg, 1));
|
6813 |
|
|
mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
|
6814 |
|
|
}
|
6815 |
|
|
else
|
6816 |
|
|
{
|
6817 |
|
|
if (TARGET_MIPS16
|
6818 |
|
|
&& REGNO (reg) != GP_REG_FIRST + 31
|
6819 |
|
|
&& !M16_REG_P (REGNO (reg)))
|
6820 |
|
|
{
|
6821 |
|
|
/* Save a non-mips16 register by moving it through a temporary.
|
6822 |
|
|
We don't need to do this for $31 since there's a special
|
6823 |
|
|
instruction for it. */
|
6824 |
|
|
emit_move_insn (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
|
6825 |
|
|
emit_move_insn (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
|
6826 |
|
|
}
|
6827 |
|
|
else
|
6828 |
|
|
emit_move_insn (mem, reg);
|
6829 |
|
|
|
6830 |
|
|
mips_set_frame_expr (mips_frame_set (mem, reg));
|
6831 |
|
|
}
|
6832 |
|
|
}
|
6833 |
|
|
|
6834 |
|
|
|
6835 |
|
|
/* Expand the prologue into a bunch of separate insns. */
|
6836 |
|
|
|
6837 |
|
|
void
|
6838 |
|
|
mips_expand_prologue (void)
|
6839 |
|
|
{
|
6840 |
|
|
HOST_WIDE_INT size;
|
6841 |
|
|
|
6842 |
|
|
if (cfun->machine->global_pointer > 0)
|
6843 |
|
|
REGNO (pic_offset_table_rtx) = cfun->machine->global_pointer;
|
6844 |
|
|
|
6845 |
|
|
size = compute_frame_size (get_frame_size ());
|
6846 |
|
|
|
6847 |
|
|
/* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
|
6848 |
|
|
bytes beforehand; this is enough to cover the register save area
|
6849 |
|
|
without going out of range. */
|
6850 |
|
|
if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
|
6851 |
|
|
{
|
6852 |
|
|
HOST_WIDE_INT step1;
|
6853 |
|
|
|
6854 |
|
|
step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
|
6855 |
|
|
RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
|
6856 |
|
|
stack_pointer_rtx,
|
6857 |
|
|
GEN_INT (-step1)))) = 1;
|
6858 |
|
|
size -= step1;
|
6859 |
|
|
mips_for_each_saved_reg (size, mips_save_reg);
|
6860 |
|
|
}
|
6861 |
|
|
|
6862 |
|
|
/* Allocate the rest of the frame. */
|
6863 |
|
|
if (size > 0)
|
6864 |
|
|
{
|
6865 |
|
|
if (SMALL_OPERAND (-size))
|
6866 |
|
|
RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
|
6867 |
|
|
stack_pointer_rtx,
|
6868 |
|
|
GEN_INT (-size)))) = 1;
|
6869 |
|
|
else
|
6870 |
|
|
{
|
6871 |
|
|
emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
|
6872 |
|
|
if (TARGET_MIPS16)
|
6873 |
|
|
{
|
6874 |
|
|
/* There are no instructions to add or subtract registers
|
6875 |
|
|
from the stack pointer, so use the frame pointer as a
|
6876 |
|
|
temporary. We should always be using a frame pointer
|
6877 |
|
|
in this case anyway. */
|
6878 |
|
|
gcc_assert (frame_pointer_needed);
|
6879 |
|
|
emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
|
6880 |
|
|
emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
|
6881 |
|
|
hard_frame_pointer_rtx,
|
6882 |
|
|
MIPS_PROLOGUE_TEMP (Pmode)));
|
6883 |
|
|
emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
|
6884 |
|
|
}
|
6885 |
|
|
else
|
6886 |
|
|
emit_insn (gen_sub3_insn (stack_pointer_rtx,
|
6887 |
|
|
stack_pointer_rtx,
|
6888 |
|
|
MIPS_PROLOGUE_TEMP (Pmode)));
|
6889 |
|
|
|
6890 |
|
|
/* Describe the combined effect of the previous instructions. */
|
6891 |
|
|
mips_set_frame_expr
|
6892 |
|
|
(gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
6893 |
|
|
plus_constant (stack_pointer_rtx, -size)));
|
6894 |
|
|
}
|
6895 |
|
|
}
|
6896 |
|
|
|
6897 |
|
|
/* Set up the frame pointer, if we're using one. In mips16 code,
|
6898 |
|
|
we point the frame pointer ahead of the outgoing argument area.
|
6899 |
|
|
This should allow more variables & incoming arguments to be
|
6900 |
|
|
accessed with unextended instructions. */
|
6901 |
|
|
if (frame_pointer_needed)
|
6902 |
|
|
{
|
6903 |
|
|
if (TARGET_MIPS16 && cfun->machine->frame.args_size != 0)
|
6904 |
|
|
{
|
6905 |
|
|
rtx offset = GEN_INT (cfun->machine->frame.args_size);
|
6906 |
|
|
if (SMALL_OPERAND (cfun->machine->frame.args_size))
|
6907 |
|
|
RTX_FRAME_RELATED_P
|
6908 |
|
|
(emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
|
6909 |
|
|
stack_pointer_rtx,
|
6910 |
|
|
offset))) = 1;
|
6911 |
|
|
else
|
6912 |
|
|
{
|
6913 |
|
|
emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), offset);
|
6914 |
|
|
emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
|
6915 |
|
|
emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
|
6916 |
|
|
hard_frame_pointer_rtx,
|
6917 |
|
|
MIPS_PROLOGUE_TEMP (Pmode)));
|
6918 |
|
|
mips_set_frame_expr
|
6919 |
|
|
(gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
|
6920 |
|
|
plus_constant (stack_pointer_rtx,
|
6921 |
|
|
cfun->machine->frame.args_size)));
|
6922 |
|
|
}
|
6923 |
|
|
}
|
6924 |
|
|
else
|
6925 |
|
|
RTX_FRAME_RELATED_P (emit_move_insn (hard_frame_pointer_rtx,
|
6926 |
|
|
stack_pointer_rtx)) = 1;
|
6927 |
|
|
}
|
6928 |
|
|
|
6929 |
|
|
mips_emit_loadgp ();
|
6930 |
|
|
|
6931 |
|
|
/* If generating o32/o64 abicalls, save $gp on the stack. */
|
6932 |
|
|
if (TARGET_ABICALLS && !TARGET_NEWABI && !current_function_is_leaf)
|
6933 |
|
|
emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size)));
|
6934 |
|
|
|
6935 |
|
|
/* If we are profiling, make sure no instructions are scheduled before
|
6936 |
|
|
the call to mcount. */
|
6937 |
|
|
|
6938 |
|
|
if (current_function_profile)
|
6939 |
|
|
emit_insn (gen_blockage ());
|
6940 |
|
|
}
|
6941 |
|
|
|
6942 |
|
|
/* Do any necessary cleanup after a function to restore stack, frame,
|
6943 |
|
|
and regs. */
|
6944 |
|
|
|
6945 |
|
|
#define RA_MASK BITMASK_HIGH /* 1 << 31 */
|
6946 |
|
|
|
6947 |
|
|
static void
|
6948 |
|
|
mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
|
6949 |
|
|
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
6950 |
|
|
{
|
6951 |
|
|
/* Reinstate the normal $gp. */
|
6952 |
|
|
REGNO (pic_offset_table_rtx) = GLOBAL_POINTER_REGNUM;
|
6953 |
|
|
mips_output_cplocal ();
|
6954 |
|
|
|
6955 |
|
|
if (cfun->machine->all_noreorder_p)
|
6956 |
|
|
{
|
6957 |
|
|
/* Avoid using %>%) since it adds excess whitespace. */
|
6958 |
|
|
output_asm_insn (".set\tmacro", 0);
|
6959 |
|
|
output_asm_insn (".set\treorder", 0);
|
6960 |
|
|
set_noreorder = set_nomacro = 0;
|
6961 |
|
|
}
|
6962 |
|
|
|
6963 |
|
|
if (!FUNCTION_NAME_ALREADY_DECLARED && !flag_inhibit_size_directive)
|
6964 |
|
|
{
|
6965 |
|
|
const char *fnname;
|
6966 |
|
|
|
6967 |
|
|
/* Get the function name the same way that toplev.c does before calling
|
6968 |
|
|
assemble_start_function. This is needed so that the name used here
|
6969 |
|
|
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
|
6970 |
|
|
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
|
6971 |
|
|
fputs ("\t.end\t", file);
|
6972 |
|
|
assemble_name (file, fnname);
|
6973 |
|
|
fputs ("\n", file);
|
6974 |
|
|
}
|
6975 |
|
|
}
|
6976 |
|
|
|
6977 |
|
|
/* Emit instructions to restore register REG from slot MEM. */
|
6978 |
|
|
|
6979 |
|
|
static void
|
6980 |
|
|
mips_restore_reg (rtx reg, rtx mem)
|
6981 |
|
|
{
|
6982 |
|
|
/* There's no mips16 instruction to load $31 directly. Load into
|
6983 |
|
|
$7 instead and adjust the return insn appropriately. */
|
6984 |
|
|
if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
|
6985 |
|
|
reg = gen_rtx_REG (GET_MODE (reg), 7);
|
6986 |
|
|
|
6987 |
|
|
if (TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
|
6988 |
|
|
{
|
6989 |
|
|
/* Can't restore directly; move through a temporary. */
|
6990 |
|
|
emit_move_insn (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
|
6991 |
|
|
emit_move_insn (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
|
6992 |
|
|
}
|
6993 |
|
|
else
|
6994 |
|
|
emit_move_insn (reg, mem);
|
6995 |
|
|
}
|
6996 |
|
|
|
6997 |
|
|
|
6998 |
|
|
/* Expand the epilogue into a bunch of separate insns. SIBCALL_P is true
|
6999 |
|
|
if this epilogue precedes a sibling call, false if it is for a normal
|
7000 |
|
|
"epilogue" pattern. */
|
7001 |
|
|
|
7002 |
|
|
void
|
7003 |
|
|
mips_expand_epilogue (int sibcall_p)
|
7004 |
|
|
{
|
7005 |
|
|
HOST_WIDE_INT step1, step2;
|
7006 |
|
|
rtx base, target;
|
7007 |
|
|
|
7008 |
|
|
if (!sibcall_p && mips_can_use_return_insn ())
|
7009 |
|
|
{
|
7010 |
|
|
emit_jump_insn (gen_return ());
|
7011 |
|
|
return;
|
7012 |
|
|
}
|
7013 |
|
|
|
7014 |
|
|
/* Split the frame into two. STEP1 is the amount of stack we should
|
7015 |
|
|
deallocate before restoring the registers. STEP2 is the amount we
|
7016 |
|
|
should deallocate afterwards.
|
7017 |
|
|
|
7018 |
|
|
Start off by assuming that no registers need to be restored. */
|
7019 |
|
|
step1 = cfun->machine->frame.total_size;
|
7020 |
|
|
step2 = 0;
|
7021 |
|
|
|
7022 |
|
|
/* Work out which register holds the frame address. Account for the
|
7023 |
|
|
frame pointer offset used by mips16 code. */
|
7024 |
|
|
if (!frame_pointer_needed)
|
7025 |
|
|
base = stack_pointer_rtx;
|
7026 |
|
|
else
|
7027 |
|
|
{
|
7028 |
|
|
base = hard_frame_pointer_rtx;
|
7029 |
|
|
if (TARGET_MIPS16)
|
7030 |
|
|
step1 -= cfun->machine->frame.args_size;
|
7031 |
|
|
}
|
7032 |
|
|
|
7033 |
|
|
/* If we need to restore registers, deallocate as much stack as
|
7034 |
|
|
possible in the second step without going out of range. */
|
7035 |
|
|
if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
|
7036 |
|
|
{
|
7037 |
|
|
step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
|
7038 |
|
|
step1 -= step2;
|
7039 |
|
|
}
|
7040 |
|
|
|
7041 |
|
|
/* Set TARGET to BASE + STEP1. */
|
7042 |
|
|
target = base;
|
7043 |
|
|
if (step1 > 0)
|
7044 |
|
|
{
|
7045 |
|
|
rtx adjust;
|
7046 |
|
|
|
7047 |
|
|
/* Get an rtx for STEP1 that we can add to BASE. */
|
7048 |
|
|
adjust = GEN_INT (step1);
|
7049 |
|
|
if (!SMALL_OPERAND (step1))
|
7050 |
|
|
{
|
7051 |
|
|
emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), adjust);
|
7052 |
|
|
adjust = MIPS_EPILOGUE_TEMP (Pmode);
|
7053 |
|
|
}
|
7054 |
|
|
|
7055 |
|
|
/* Normal mode code can copy the result straight into $sp. */
|
7056 |
|
|
if (!TARGET_MIPS16)
|
7057 |
|
|
target = stack_pointer_rtx;
|
7058 |
|
|
|
7059 |
|
|
emit_insn (gen_add3_insn (target, base, adjust));
|
7060 |
|
|
}
|
7061 |
|
|
|
7062 |
|
|
/* Copy TARGET into the stack pointer. */
|
7063 |
|
|
if (target != stack_pointer_rtx)
|
7064 |
|
|
emit_move_insn (stack_pointer_rtx, target);
|
7065 |
|
|
|
7066 |
|
|
/* If we're using addressing macros for n32/n64 abicalls, $gp is
|
7067 |
|
|
implicitly used by all SYMBOL_REFs. We must emit a blockage
|
7068 |
|
|
insn before restoring it. */
|
7069 |
|
|
if (TARGET_ABICALLS && TARGET_NEWABI && !TARGET_EXPLICIT_RELOCS)
|
7070 |
|
|
emit_insn (gen_blockage ());
|
7071 |
|
|
|
7072 |
|
|
/* Restore the registers. */
|
7073 |
|
|
mips_for_each_saved_reg (cfun->machine->frame.total_size - step2,
|
7074 |
|
|
mips_restore_reg);
|
7075 |
|
|
|
7076 |
|
|
/* Deallocate the final bit of the frame. */
|
7077 |
|
|
if (step2 > 0)
|
7078 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx,
|
7079 |
|
|
stack_pointer_rtx,
|
7080 |
|
|
GEN_INT (step2)));
|
7081 |
|
|
|
7082 |
|
|
/* Add in the __builtin_eh_return stack adjustment. We need to
|
7083 |
|
|
use a temporary in mips16 code. */
|
7084 |
|
|
if (current_function_calls_eh_return)
|
7085 |
|
|
{
|
7086 |
|
|
if (TARGET_MIPS16)
|
7087 |
|
|
{
|
7088 |
|
|
emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
|
7089 |
|
|
emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
|
7090 |
|
|
MIPS_EPILOGUE_TEMP (Pmode),
|
7091 |
|
|
EH_RETURN_STACKADJ_RTX));
|
7092 |
|
|
emit_move_insn (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
|
7093 |
|
|
}
|
7094 |
|
|
else
|
7095 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx,
|
7096 |
|
|
stack_pointer_rtx,
|
7097 |
|
|
EH_RETURN_STACKADJ_RTX));
|
7098 |
|
|
}
|
7099 |
|
|
|
7100 |
|
|
if (!sibcall_p)
|
7101 |
|
|
{
|
7102 |
|
|
/* The mips16 loads the return address into $7, not $31. */
|
7103 |
|
|
if (TARGET_MIPS16 && (cfun->machine->frame.mask & RA_MASK) != 0)
|
7104 |
|
|
emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
|
7105 |
|
|
GP_REG_FIRST + 7)));
|
7106 |
|
|
else
|
7107 |
|
|
emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
|
7108 |
|
|
GP_REG_FIRST + 31)));
|
7109 |
|
|
}
|
7110 |
|
|
}
|
7111 |
|
|
|
7112 |
|
|
/* Return nonzero if this function is known to have a null epilogue.
|
7113 |
|
|
This allows the optimizer to omit jumps to jumps if no stack
|
7114 |
|
|
was created. */
|
7115 |
|
|
|
7116 |
|
|
int
|
7117 |
|
|
mips_can_use_return_insn (void)
|
7118 |
|
|
{
|
7119 |
|
|
tree return_type;
|
7120 |
|
|
|
7121 |
|
|
if (! reload_completed)
|
7122 |
|
|
return 0;
|
7123 |
|
|
|
7124 |
|
|
if (regs_ever_live[31] || current_function_profile)
|
7125 |
|
|
return 0;
|
7126 |
|
|
|
7127 |
|
|
return_type = DECL_RESULT (current_function_decl);
|
7128 |
|
|
|
7129 |
|
|
/* In mips16 mode, a function which returns a floating point value
|
7130 |
|
|
needs to arrange to copy the return value into the floating point
|
7131 |
|
|
registers. */
|
7132 |
|
|
if (TARGET_MIPS16
|
7133 |
|
|
&& mips16_hard_float
|
7134 |
|
|
&& ! aggregate_value_p (return_type, current_function_decl)
|
7135 |
|
|
&& GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
|
7136 |
|
|
&& GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
|
7137 |
|
|
return 0;
|
7138 |
|
|
|
7139 |
|
|
if (cfun->machine->frame.initialized)
|
7140 |
|
|
return cfun->machine->frame.total_size == 0;
|
7141 |
|
|
|
7142 |
|
|
return compute_frame_size (get_frame_size ()) == 0;
|
7143 |
|
|
}
|
7144 |
|
|
|
7145 |
|
|
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
|
7146 |
|
|
in order to avoid duplicating too much logic from elsewhere. */
|
7147 |
|
|
|
7148 |
|
|
static void
|
7149 |
|
|
mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
|
7150 |
|
|
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
|
7151 |
|
|
tree function)
|
7152 |
|
|
{
|
7153 |
|
|
rtx this, temp1, temp2, insn, fnaddr;
|
7154 |
|
|
|
7155 |
|
|
/* Pretend to be a post-reload pass while generating rtl. */
|
7156 |
|
|
no_new_pseudos = 1;
|
7157 |
|
|
reload_completed = 1;
|
7158 |
|
|
reset_block_changes ();
|
7159 |
|
|
|
7160 |
|
|
/* Pick a global pointer for -mabicalls. Use $15 rather than $28
|
7161 |
|
|
for TARGET_NEWABI since the latter is a call-saved register. */
|
7162 |
|
|
if (TARGET_ABICALLS)
|
7163 |
|
|
cfun->machine->global_pointer
|
7164 |
|
|
= REGNO (pic_offset_table_rtx)
|
7165 |
|
|
= TARGET_NEWABI ? 15 : GLOBAL_POINTER_REGNUM;
|
7166 |
|
|
|
7167 |
|
|
/* Set up the global pointer for n32 or n64 abicalls. */
|
7168 |
|
|
mips_emit_loadgp ();
|
7169 |
|
|
|
7170 |
|
|
/* We need two temporary registers in some cases. */
|
7171 |
|
|
temp1 = gen_rtx_REG (Pmode, 2);
|
7172 |
|
|
temp2 = gen_rtx_REG (Pmode, 3);
|
7173 |
|
|
|
7174 |
|
|
/* Find out which register contains the "this" pointer. */
|
7175 |
|
|
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
|
7176 |
|
|
this = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
|
7177 |
|
|
else
|
7178 |
|
|
this = gen_rtx_REG (Pmode, GP_ARG_FIRST);
|
7179 |
|
|
|
7180 |
|
|
/* Add DELTA to THIS. */
|
7181 |
|
|
if (delta != 0)
|
7182 |
|
|
{
|
7183 |
|
|
rtx offset = GEN_INT (delta);
|
7184 |
|
|
if (!SMALL_OPERAND (delta))
|
7185 |
|
|
{
|
7186 |
|
|
emit_move_insn (temp1, offset);
|
7187 |
|
|
offset = temp1;
|
7188 |
|
|
}
|
7189 |
|
|
emit_insn (gen_add3_insn (this, this, offset));
|
7190 |
|
|
}
|
7191 |
|
|
|
7192 |
|
|
/* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
|
7193 |
|
|
if (vcall_offset != 0)
|
7194 |
|
|
{
|
7195 |
|
|
rtx addr;
|
7196 |
|
|
|
7197 |
|
|
/* Set TEMP1 to *THIS. */
|
7198 |
|
|
emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));
|
7199 |
|
|
|
7200 |
|
|
/* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
|
7201 |
|
|
addr = mips_add_offset (temp2, temp1, vcall_offset);
|
7202 |
|
|
|
7203 |
|
|
/* Load the offset and add it to THIS. */
|
7204 |
|
|
emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
|
7205 |
|
|
emit_insn (gen_add3_insn (this, this, temp1));
|
7206 |
|
|
}
|
7207 |
|
|
|
7208 |
|
|
/* Jump to the target function. Use a sibcall if direct jumps are
|
7209 |
|
|
allowed, otherwise load the address into a register first. */
|
7210 |
|
|
fnaddr = XEXP (DECL_RTL (function), 0);
|
7211 |
|
|
if (TARGET_MIPS16 || TARGET_ABICALLS || TARGET_LONG_CALLS)
|
7212 |
|
|
{
|
7213 |
|
|
/* This is messy. gas treats "la $25,foo" as part of a call
|
7214 |
|
|
sequence and may allow a global "foo" to be lazily bound.
|
7215 |
|
|
The general move patterns therefore reject this combination.
|
7216 |
|
|
|
7217 |
|
|
In this context, lazy binding would actually be OK for o32 and o64,
|
7218 |
|
|
but it's still wrong for n32 and n64; see mips_load_call_address.
|
7219 |
|
|
We must therefore load the address via a temporary register if
|
7220 |
|
|
mips_dangerous_for_la25_p.
|
7221 |
|
|
|
7222 |
|
|
If we jump to the temporary register rather than $25, the assembler
|
7223 |
|
|
can use the move insn to fill the jump's delay slot. */
|
7224 |
|
|
if (TARGET_ABICALLS && !mips_dangerous_for_la25_p (fnaddr))
|
7225 |
|
|
temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
|
7226 |
|
|
mips_load_call_address (temp1, fnaddr, true);
|
7227 |
|
|
|
7228 |
|
|
if (TARGET_ABICALLS && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
|
7229 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
|
7230 |
|
|
emit_jump_insn (gen_indirect_jump (temp1));
|
7231 |
|
|
}
|
7232 |
|
|
else
|
7233 |
|
|
{
|
7234 |
|
|
insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
|
7235 |
|
|
SIBLING_CALL_P (insn) = 1;
|
7236 |
|
|
}
|
7237 |
|
|
|
7238 |
|
|
/* Run just enough of rest_of_compilation. This sequence was
|
7239 |
|
|
"borrowed" from alpha.c. */
|
7240 |
|
|
insn = get_insns ();
|
7241 |
|
|
insn_locators_initialize ();
|
7242 |
|
|
split_all_insns_noflow ();
|
7243 |
|
|
if (TARGET_MIPS16)
|
7244 |
|
|
mips16_lay_out_constants ();
|
7245 |
|
|
shorten_branches (insn);
|
7246 |
|
|
final_start_function (insn, file, 1);
|
7247 |
|
|
final (insn, file, 1);
|
7248 |
|
|
final_end_function ();
|
7249 |
|
|
|
7250 |
|
|
/* Clean up the vars set above. Note that final_end_function resets
|
7251 |
|
|
the global pointer for us. */
|
7252 |
|
|
reload_completed = 0;
|
7253 |
|
|
no_new_pseudos = 0;
|
7254 |
|
|
}
|
7255 |
|
|
|
7256 |
|
|
/* Returns nonzero if X contains a SYMBOL_REF. */
|
7257 |
|
|
|
7258 |
|
|
static int
|
7259 |
|
|
symbolic_expression_p (rtx x)
|
7260 |
|
|
{
|
7261 |
|
|
if (GET_CODE (x) == SYMBOL_REF)
|
7262 |
|
|
return 1;
|
7263 |
|
|
|
7264 |
|
|
if (GET_CODE (x) == CONST)
|
7265 |
|
|
return symbolic_expression_p (XEXP (x, 0));
|
7266 |
|
|
|
7267 |
|
|
if (UNARY_P (x))
|
7268 |
|
|
return symbolic_expression_p (XEXP (x, 0));
|
7269 |
|
|
|
7270 |
|
|
if (ARITHMETIC_P (x))
|
7271 |
|
|
return (symbolic_expression_p (XEXP (x, 0))
|
7272 |
|
|
|| symbolic_expression_p (XEXP (x, 1)));
|
7273 |
|
|
|
7274 |
|
|
return 0;
|
7275 |
|
|
}
|
7276 |
|
|
|
7277 |
|
|
/* Choose the section to use for the constant rtx expression X that has
|
7278 |
|
|
mode MODE. */
|
7279 |
|
|
|
7280 |
|
|
static section *
|
7281 |
|
|
mips_select_rtx_section (enum machine_mode mode, rtx x,
|
7282 |
|
|
unsigned HOST_WIDE_INT align)
|
7283 |
|
|
{
|
7284 |
|
|
if (TARGET_MIPS16)
|
7285 |
|
|
{
|
7286 |
|
|
/* In mips16 mode, the constant table always goes in the same section
|
7287 |
|
|
as the function, so that constants can be loaded using PC relative
|
7288 |
|
|
addressing. */
|
7289 |
|
|
return function_section (current_function_decl);
|
7290 |
|
|
}
|
7291 |
|
|
else if (TARGET_EMBEDDED_DATA)
|
7292 |
|
|
{
|
7293 |
|
|
/* For embedded applications, always put constants in read-only data,
|
7294 |
|
|
in order to reduce RAM usage. */
|
7295 |
|
|
return mergeable_constant_section (mode, align, 0);
|
7296 |
|
|
}
|
7297 |
|
|
else
|
7298 |
|
|
{
|
7299 |
|
|
/* For hosted applications, always put constants in small data if
|
7300 |
|
|
possible, as this gives the best performance. */
|
7301 |
|
|
/* ??? Consider using mergeable small data sections. */
|
7302 |
|
|
|
7303 |
|
|
if (GET_MODE_SIZE (mode) <= (unsigned) mips_section_threshold
|
7304 |
|
|
&& mips_section_threshold > 0)
|
7305 |
|
|
return get_named_section (NULL, ".sdata", 0);
|
7306 |
|
|
else if (flag_pic && symbolic_expression_p (x))
|
7307 |
|
|
return get_named_section (NULL, ".data.rel.ro", 3);
|
7308 |
|
|
else
|
7309 |
|
|
return mergeable_constant_section (mode, align, 0);
|
7310 |
|
|
}
|
7311 |
|
|
}
|
7312 |
|
|
|
7313 |
|
|
/* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
|
7314 |
|
|
|
7315 |
|
|
The complication here is that, with the combination TARGET_ABICALLS
|
7316 |
|
|
&& !TARGET_GPWORD, jump tables will use absolute addresses, and should
|
7317 |
|
|
therefore not be included in the read-only part of a DSO. Handle such
|
7318 |
|
|
cases by selecting a normal data section instead of a read-only one.
|
7319 |
|
|
The logic apes that in default_function_rodata_section. */
|
7320 |
|
|
|
7321 |
|
|
static section *
|
7322 |
|
|
mips_function_rodata_section (tree decl)
|
7323 |
|
|
{
|
7324 |
|
|
if (!TARGET_ABICALLS || TARGET_GPWORD)
|
7325 |
|
|
return default_function_rodata_section (decl);
|
7326 |
|
|
|
7327 |
|
|
if (decl && DECL_SECTION_NAME (decl))
|
7328 |
|
|
{
|
7329 |
|
|
const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
|
7330 |
|
|
if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
|
7331 |
|
|
{
|
7332 |
|
|
char *rname = ASTRDUP (name);
|
7333 |
|
|
rname[14] = 'd';
|
7334 |
|
|
return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
|
7335 |
|
|
}
|
7336 |
|
|
else if (flag_function_sections && flag_data_sections
|
7337 |
|
|
&& strncmp (name, ".text.", 6) == 0)
|
7338 |
|
|
{
|
7339 |
|
|
char *rname = ASTRDUP (name);
|
7340 |
|
|
memcpy (rname + 1, "data", 4);
|
7341 |
|
|
return get_section (rname, SECTION_WRITE, decl);
|
7342 |
|
|
}
|
7343 |
|
|
}
|
7344 |
|
|
return data_section;
|
7345 |
|
|
}
|
7346 |
|
|
|
7347 |
|
|
/* Implement TARGET_IN_SMALL_DATA_P. This function controls whether
|
7348 |
|
|
locally-defined objects go in a small data section. It also controls
|
7349 |
|
|
the setting of the SYMBOL_REF_SMALL_P flag, which in turn helps
|
7350 |
|
|
mips_classify_symbol decide when to use %gp_rel(...)($gp) accesses. */
|
7351 |
|
|
|
7352 |
|
|
static bool
|
7353 |
|
|
mips_in_small_data_p (tree decl)
|
7354 |
|
|
{
|
7355 |
|
|
HOST_WIDE_INT size;
|
7356 |
|
|
|
7357 |
|
|
if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
|
7358 |
|
|
return false;
|
7359 |
|
|
|
7360 |
|
|
/* We don't yet generate small-data references for -mabicalls. See related
|
7361 |
|
|
-G handling in override_options. */
|
7362 |
|
|
if (TARGET_ABICALLS)
|
7363 |
|
|
return false;
|
7364 |
|
|
|
7365 |
|
|
if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
|
7366 |
|
|
{
|
7367 |
|
|
const char *name;
|
7368 |
|
|
|
7369 |
|
|
/* Reject anything that isn't in a known small-data section. */
|
7370 |
|
|
name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
|
7371 |
|
|
if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
|
7372 |
|
|
return false;
|
7373 |
|
|
|
7374 |
|
|
/* If a symbol is defined externally, the assembler will use the
|
7375 |
|
|
usual -G rules when deciding how to implement macros. */
|
7376 |
|
|
if (TARGET_EXPLICIT_RELOCS || !DECL_EXTERNAL (decl))
|
7377 |
|
|
return true;
|
7378 |
|
|
}
|
7379 |
|
|
else if (TARGET_EMBEDDED_DATA)
|
7380 |
|
|
{
|
7381 |
|
|
/* Don't put constants into the small data section: we want them
|
7382 |
|
|
to be in ROM rather than RAM. */
|
7383 |
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
7384 |
|
|
return false;
|
7385 |
|
|
|
7386 |
|
|
if (TREE_READONLY (decl)
|
7387 |
|
|
&& !TREE_SIDE_EFFECTS (decl)
|
7388 |
|
|
&& (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
|
7389 |
|
|
return false;
|
7390 |
|
|
}
|
7391 |
|
|
|
7392 |
|
|
size = int_size_in_bytes (TREE_TYPE (decl));
|
7393 |
|
|
return (size > 0 && size <= mips_section_threshold);
|
7394 |
|
|
}
|
7395 |
|
|
|
7396 |
|
|
/* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
|
7397 |
|
|
anchors for small data: the GP register acts as an anchor in that
|
7398 |
|
|
case. We also don't want to use them for PC-relative accesses,
|
7399 |
|
|
where the PC acts as an anchor. */
|
7400 |
|
|
|
7401 |
|
|
static bool
|
7402 |
|
|
mips_use_anchors_for_symbol_p (rtx symbol)
|
7403 |
|
|
{
|
7404 |
|
|
switch (mips_classify_symbol (symbol))
|
7405 |
|
|
{
|
7406 |
|
|
case SYMBOL_CONSTANT_POOL:
|
7407 |
|
|
case SYMBOL_SMALL_DATA:
|
7408 |
|
|
return false;
|
7409 |
|
|
|
7410 |
|
|
default:
|
7411 |
|
|
return true;
|
7412 |
|
|
}
|
7413 |
|
|
}
|
7414 |
|
|
|
7415 |
|
|
/* See whether VALTYPE is a record whose fields should be returned in
|
7416 |
|
|
floating-point registers. If so, return the number of fields and
|
7417 |
|
|
list them in FIELDS (which should have two elements). Return 0
|
7418 |
|
|
otherwise.
|
7419 |
|
|
|
7420 |
|
|
For n32 & n64, a structure with one or two fields is returned in
|
7421 |
|
|
floating-point registers as long as every field has a floating-point
|
7422 |
|
|
type. */
|
7423 |
|
|
|
7424 |
|
|
static int
|
7425 |
|
|
mips_fpr_return_fields (tree valtype, tree *fields)
|
7426 |
|
|
{
|
7427 |
|
|
tree field;
|
7428 |
|
|
int i;
|
7429 |
|
|
|
7430 |
|
|
if (!TARGET_NEWABI)
|
7431 |
|
|
return 0;
|
7432 |
|
|
|
7433 |
|
|
if (TREE_CODE (valtype) != RECORD_TYPE)
|
7434 |
|
|
return 0;
|
7435 |
|
|
|
7436 |
|
|
i = 0;
|
7437 |
|
|
for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
|
7438 |
|
|
{
|
7439 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
7440 |
|
|
continue;
|
7441 |
|
|
|
7442 |
|
|
if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE)
|
7443 |
|
|
return 0;
|
7444 |
|
|
|
7445 |
|
|
if (i == 2)
|
7446 |
|
|
return 0;
|
7447 |
|
|
|
7448 |
|
|
fields[i++] = field;
|
7449 |
|
|
}
|
7450 |
|
|
return i;
|
7451 |
|
|
}
|
7452 |
|
|
|
7453 |
|
|
|
7454 |
|
|
/* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
|
7455 |
|
|
a value in the most significant part of $2/$3 if:
|
7456 |
|
|
|
7457 |
|
|
- the target is big-endian;
|
7458 |
|
|
|
7459 |
|
|
- the value has a structure or union type (we generalize this to
|
7460 |
|
|
cover aggregates from other languages too); and
|
7461 |
|
|
|
7462 |
|
|
- the structure is not returned in floating-point registers. */
|
7463 |
|
|
|
7464 |
|
|
static bool
|
7465 |
|
|
mips_return_in_msb (tree valtype)
|
7466 |
|
|
{
|
7467 |
|
|
tree fields[2];
|
7468 |
|
|
|
7469 |
|
|
return (TARGET_NEWABI
|
7470 |
|
|
&& TARGET_BIG_ENDIAN
|
7471 |
|
|
&& AGGREGATE_TYPE_P (valtype)
|
7472 |
|
|
&& mips_fpr_return_fields (valtype, fields) == 0);
|
7473 |
|
|
}
|
7474 |
|
|
|
7475 |
|
|
|
7476 |
|
|
/* Return a composite value in a pair of floating-point registers.
|
7477 |
|
|
MODE1 and OFFSET1 are the mode and byte offset for the first value,
|
7478 |
|
|
likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
|
7479 |
|
|
complete value.
|
7480 |
|
|
|
7481 |
|
|
For n32 & n64, $f0 always holds the first value and $f2 the second.
|
7482 |
|
|
Otherwise the values are packed together as closely as possible. */
|
7483 |
|
|
|
7484 |
|
|
static rtx
|
7485 |
|
|
mips_return_fpr_pair (enum machine_mode mode,
|
7486 |
|
|
enum machine_mode mode1, HOST_WIDE_INT offset1,
|
7487 |
|
|
enum machine_mode mode2, HOST_WIDE_INT offset2)
|
7488 |
|
|
{
|
7489 |
|
|
int inc;
|
7490 |
|
|
|
7491 |
|
|
inc = (TARGET_NEWABI ? 2 : FP_INC);
|
7492 |
|
|
return gen_rtx_PARALLEL
|
7493 |
|
|
(mode,
|
7494 |
|
|
gen_rtvec (2,
|
7495 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
7496 |
|
|
gen_rtx_REG (mode1, FP_RETURN),
|
7497 |
|
|
GEN_INT (offset1)),
|
7498 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
7499 |
|
|
gen_rtx_REG (mode2, FP_RETURN + inc),
|
7500 |
|
|
GEN_INT (offset2))));
|
7501 |
|
|
|
7502 |
|
|
}
|
7503 |
|
|
|
7504 |
|
|
|
7505 |
|
|
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
|
7506 |
|
|
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
|
7507 |
|
|
VALTYPE is null and MODE is the mode of the return value. */
|
7508 |
|
|
|
7509 |
|
|
rtx
|
7510 |
|
|
mips_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
|
7511 |
|
|
enum machine_mode mode)
|
7512 |
|
|
{
|
7513 |
|
|
if (valtype)
|
7514 |
|
|
{
|
7515 |
|
|
tree fields[2];
|
7516 |
|
|
int unsignedp;
|
7517 |
|
|
|
7518 |
|
|
mode = TYPE_MODE (valtype);
|
7519 |
|
|
unsignedp = TYPE_UNSIGNED (valtype);
|
7520 |
|
|
|
7521 |
|
|
/* Since we define TARGET_PROMOTE_FUNCTION_RETURN that returns
|
7522 |
|
|
true, we must promote the mode just as PROMOTE_MODE does. */
|
7523 |
|
|
mode = promote_mode (valtype, mode, &unsignedp, 1);
|
7524 |
|
|
|
7525 |
|
|
/* Handle structures whose fields are returned in $f0/$f2. */
|
7526 |
|
|
switch (mips_fpr_return_fields (valtype, fields))
|
7527 |
|
|
{
|
7528 |
|
|
case 1:
|
7529 |
|
|
return gen_rtx_REG (mode, FP_RETURN);
|
7530 |
|
|
|
7531 |
|
|
case 2:
|
7532 |
|
|
return mips_return_fpr_pair (mode,
|
7533 |
|
|
TYPE_MODE (TREE_TYPE (fields[0])),
|
7534 |
|
|
int_byte_position (fields[0]),
|
7535 |
|
|
TYPE_MODE (TREE_TYPE (fields[1])),
|
7536 |
|
|
int_byte_position (fields[1]));
|
7537 |
|
|
}
|
7538 |
|
|
|
7539 |
|
|
/* If a value is passed in the most significant part of a register, see
|
7540 |
|
|
whether we have to round the mode up to a whole number of words. */
|
7541 |
|
|
if (mips_return_in_msb (valtype))
|
7542 |
|
|
{
|
7543 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (valtype);
|
7544 |
|
|
if (size % UNITS_PER_WORD != 0)
|
7545 |
|
|
{
|
7546 |
|
|
size += UNITS_PER_WORD - size % UNITS_PER_WORD;
|
7547 |
|
|
mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
|
7548 |
|
|
}
|
7549 |
|
|
}
|
7550 |
|
|
|
7551 |
|
|
/* For EABI, the class of return register depends entirely on MODE.
|
7552 |
|
|
For example, "struct { some_type x; }" and "union { some_type x; }"
|
7553 |
|
|
are returned in the same way as a bare "some_type" would be.
|
7554 |
|
|
Other ABIs only use FPRs for scalar, complex or vector types. */
|
7555 |
|
|
if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
|
7556 |
|
|
return gen_rtx_REG (mode, GP_RETURN);
|
7557 |
|
|
}
|
7558 |
|
|
|
7559 |
|
|
if ((GET_MODE_CLASS (mode) == MODE_FLOAT
|
7560 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
7561 |
|
|
&& GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE)
|
7562 |
|
|
return gen_rtx_REG (mode, FP_RETURN);
|
7563 |
|
|
|
7564 |
|
|
/* Handle long doubles for n32 & n64. */
|
7565 |
|
|
if (mode == TFmode)
|
7566 |
|
|
return mips_return_fpr_pair (mode,
|
7567 |
|
|
DImode, 0,
|
7568 |
|
|
DImode, GET_MODE_SIZE (mode) / 2);
|
7569 |
|
|
|
7570 |
|
|
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
7571 |
|
|
&& GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE * 2)
|
7572 |
|
|
return mips_return_fpr_pair (mode,
|
7573 |
|
|
GET_MODE_INNER (mode), 0,
|
7574 |
|
|
GET_MODE_INNER (mode),
|
7575 |
|
|
GET_MODE_SIZE (mode) / 2);
|
7576 |
|
|
|
7577 |
|
|
return gen_rtx_REG (mode, GP_RETURN);
|
7578 |
|
|
}
|
7579 |
|
|
|
7580 |
|
|
/* Return nonzero when an argument must be passed by reference. */
|
7581 |
|
|
|
7582 |
|
|
static bool
|
7583 |
|
|
mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
|
7584 |
|
|
enum machine_mode mode, tree type,
|
7585 |
|
|
bool named ATTRIBUTE_UNUSED)
|
7586 |
|
|
{
|
7587 |
|
|
if (mips_abi == ABI_EABI)
|
7588 |
|
|
{
|
7589 |
|
|
int size;
|
7590 |
|
|
|
7591 |
|
|
/* ??? How should SCmode be handled? */
|
7592 |
|
|
if (mode == DImode || mode == DFmode)
|
7593 |
|
|
return 0;
|
7594 |
|
|
|
7595 |
|
|
size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
|
7596 |
|
|
return size == -1 || size > UNITS_PER_WORD;
|
7597 |
|
|
}
|
7598 |
|
|
else
|
7599 |
|
|
{
|
7600 |
|
|
/* If we have a variable-sized parameter, we have no choice. */
|
7601 |
|
|
return targetm.calls.must_pass_in_stack (mode, type);
|
7602 |
|
|
}
|
7603 |
|
|
}
|
7604 |
|
|
|
7605 |
|
|
static bool
|
7606 |
|
|
mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
|
7607 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
7608 |
|
|
tree type ATTRIBUTE_UNUSED, bool named)
|
7609 |
|
|
{
|
7610 |
|
|
return mips_abi == ABI_EABI && named;
|
7611 |
|
|
}
|
7612 |
|
|
|
7613 |
|
|
/* Return true if registers of class CLASS cannot change from mode FROM
|
7614 |
|
|
to mode TO. */
|
7615 |
|
|
|
7616 |
|
|
bool
|
7617 |
|
|
mips_cannot_change_mode_class (enum machine_mode from,
|
7618 |
|
|
enum machine_mode to, enum reg_class class)
|
7619 |
|
|
{
|
7620 |
|
|
if (MIN (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) <= UNITS_PER_WORD
|
7621 |
|
|
&& MAX (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) > UNITS_PER_WORD)
|
7622 |
|
|
{
|
7623 |
|
|
if (TARGET_BIG_ENDIAN)
|
7624 |
|
|
{
|
7625 |
|
|
/* When a multi-word value is stored in paired floating-point
|
7626 |
|
|
registers, the first register always holds the low word.
|
7627 |
|
|
We therefore can't allow FPRs to change between single-word
|
7628 |
|
|
and multi-word modes. */
|
7629 |
|
|
if (FP_INC > 1 && reg_classes_intersect_p (FP_REGS, class))
|
7630 |
|
|
return true;
|
7631 |
|
|
}
|
7632 |
|
|
else
|
7633 |
|
|
{
|
7634 |
|
|
/* LO_REGNO == HI_REGNO + 1, so if a multi-word value is stored
|
7635 |
|
|
in LO and HI, the high word always comes first. We therefore
|
7636 |
|
|
can't allow values stored in HI to change between single-word
|
7637 |
|
|
and multi-word modes.
|
7638 |
|
|
This rule applies to both the original HI/LO pair and the new
|
7639 |
|
|
DSP accumulators. */
|
7640 |
|
|
if (reg_classes_intersect_p (ACC_REGS, class))
|
7641 |
|
|
return true;
|
7642 |
|
|
}
|
7643 |
|
|
}
|
7644 |
|
|
/* Loading a 32-bit value into a 64-bit floating-point register
|
7645 |
|
|
will not sign-extend the value, despite what LOAD_EXTEND_OP says.
|
7646 |
|
|
We can't allow 64-bit float registers to change from SImode to
|
7647 |
|
|
to a wider mode. */
|
7648 |
|
|
if (TARGET_FLOAT64
|
7649 |
|
|
&& from == SImode
|
7650 |
|
|
&& GET_MODE_SIZE (to) >= UNITS_PER_WORD
|
7651 |
|
|
&& reg_classes_intersect_p (FP_REGS, class))
|
7652 |
|
|
return true;
|
7653 |
|
|
return false;
|
7654 |
|
|
}
|
7655 |
|
|
|
7656 |
|
|
/* Return true if X should not be moved directly into register $25.
|
7657 |
|
|
We need this because many versions of GAS will treat "la $25,foo" as
|
7658 |
|
|
part of a call sequence and so allow a global "foo" to be lazily bound. */
|
7659 |
|
|
|
7660 |
|
|
bool
|
7661 |
|
|
mips_dangerous_for_la25_p (rtx x)
|
7662 |
|
|
{
|
7663 |
|
|
HOST_WIDE_INT offset;
|
7664 |
|
|
|
7665 |
|
|
if (TARGET_EXPLICIT_RELOCS)
|
7666 |
|
|
return false;
|
7667 |
|
|
|
7668 |
|
|
mips_split_const (x, &x, &offset);
|
7669 |
|
|
return global_got_operand (x, VOIDmode);
|
7670 |
|
|
}
|
7671 |
|
|
|
7672 |
|
|
/* Implement PREFERRED_RELOAD_CLASS. */
|
7673 |
|
|
|
7674 |
|
|
enum reg_class
|
7675 |
|
|
mips_preferred_reload_class (rtx x, enum reg_class class)
|
7676 |
|
|
{
|
7677 |
|
|
if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, class))
|
7678 |
|
|
return LEA_REGS;
|
7679 |
|
|
|
7680 |
|
|
if (TARGET_HARD_FLOAT
|
7681 |
|
|
&& FLOAT_MODE_P (GET_MODE (x))
|
7682 |
|
|
&& reg_class_subset_p (FP_REGS, class))
|
7683 |
|
|
return FP_REGS;
|
7684 |
|
|
|
7685 |
|
|
if (reg_class_subset_p (GR_REGS, class))
|
7686 |
|
|
class = GR_REGS;
|
7687 |
|
|
|
7688 |
|
|
if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, class))
|
7689 |
|
|
class = M16_REGS;
|
7690 |
|
|
|
7691 |
|
|
return class;
|
7692 |
|
|
}
|
7693 |
|
|
|
7694 |
|
|
/* This function returns the register class required for a secondary
|
7695 |
|
|
register when copying between one of the registers in CLASS, and X,
|
7696 |
|
|
using MODE. If IN_P is nonzero, the copy is going from X to the
|
7697 |
|
|
register, otherwise the register is the source. A return value of
|
7698 |
|
|
NO_REGS means that no secondary register is required. */
|
7699 |
|
|
|
7700 |
|
|
enum reg_class
|
7701 |
|
|
mips_secondary_reload_class (enum reg_class class,
|
7702 |
|
|
enum machine_mode mode, rtx x, int in_p)
|
7703 |
|
|
{
|
7704 |
|
|
enum reg_class gr_regs = TARGET_MIPS16 ? M16_REGS : GR_REGS;
|
7705 |
|
|
int regno = -1;
|
7706 |
|
|
int gp_reg_p;
|
7707 |
|
|
|
7708 |
|
|
if (REG_P (x)|| GET_CODE (x) == SUBREG)
|
7709 |
|
|
regno = true_regnum (x);
|
7710 |
|
|
|
7711 |
|
|
gp_reg_p = TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
|
7712 |
|
|
|
7713 |
|
|
if (mips_dangerous_for_la25_p (x))
|
7714 |
|
|
{
|
7715 |
|
|
gr_regs = LEA_REGS;
|
7716 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], 25))
|
7717 |
|
|
return gr_regs;
|
7718 |
|
|
}
|
7719 |
|
|
|
7720 |
|
|
/* Copying from HI or LO to anywhere other than a general register
|
7721 |
|
|
requires a general register.
|
7722 |
|
|
This rule applies to both the original HI/LO pair and the new
|
7723 |
|
|
DSP accumulators. */
|
7724 |
|
|
if (reg_class_subset_p (class, ACC_REGS))
|
7725 |
|
|
{
|
7726 |
|
|
if (TARGET_MIPS16 && in_p)
|
7727 |
|
|
{
|
7728 |
|
|
/* We can't really copy to HI or LO at all in mips16 mode. */
|
7729 |
|
|
return M16_REGS;
|
7730 |
|
|
}
|
7731 |
|
|
return gp_reg_p ? NO_REGS : gr_regs;
|
7732 |
|
|
}
|
7733 |
|
|
if (ACC_REG_P (regno))
|
7734 |
|
|
{
|
7735 |
|
|
if (TARGET_MIPS16 && ! in_p)
|
7736 |
|
|
{
|
7737 |
|
|
/* We can't really copy to HI or LO at all in mips16 mode. */
|
7738 |
|
|
return M16_REGS;
|
7739 |
|
|
}
|
7740 |
|
|
return class == gr_regs ? NO_REGS : gr_regs;
|
7741 |
|
|
}
|
7742 |
|
|
|
7743 |
|
|
/* We can only copy a value to a condition code register from a
|
7744 |
|
|
floating point register, and even then we require a scratch
|
7745 |
|
|
floating point register. We can only copy a value out of a
|
7746 |
|
|
condition code register into a general register. */
|
7747 |
|
|
if (class == ST_REGS)
|
7748 |
|
|
{
|
7749 |
|
|
if (in_p)
|
7750 |
|
|
return FP_REGS;
|
7751 |
|
|
return gp_reg_p ? NO_REGS : gr_regs;
|
7752 |
|
|
}
|
7753 |
|
|
if (ST_REG_P (regno))
|
7754 |
|
|
{
|
7755 |
|
|
if (! in_p)
|
7756 |
|
|
return FP_REGS;
|
7757 |
|
|
return class == gr_regs ? NO_REGS : gr_regs;
|
7758 |
|
|
}
|
7759 |
|
|
|
7760 |
|
|
if (class == FP_REGS)
|
7761 |
|
|
{
|
7762 |
|
|
if (MEM_P (x))
|
7763 |
|
|
{
|
7764 |
|
|
/* In this case we can use lwc1, swc1, ldc1 or sdc1. */
|
7765 |
|
|
return NO_REGS;
|
7766 |
|
|
}
|
7767 |
|
|
else if (CONSTANT_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT)
|
7768 |
|
|
{
|
7769 |
|
|
/* We can use the l.s and l.d macros to load floating-point
|
7770 |
|
|
constants. ??? For l.s, we could probably get better
|
7771 |
|
|
code by returning GR_REGS here. */
|
7772 |
|
|
return NO_REGS;
|
7773 |
|
|
}
|
7774 |
|
|
else if (gp_reg_p || x == CONST0_RTX (mode))
|
7775 |
|
|
{
|
7776 |
|
|
/* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
|
7777 |
|
|
return NO_REGS;
|
7778 |
|
|
}
|
7779 |
|
|
else if (FP_REG_P (regno))
|
7780 |
|
|
{
|
7781 |
|
|
/* In this case we can use mov.s or mov.d. */
|
7782 |
|
|
return NO_REGS;
|
7783 |
|
|
}
|
7784 |
|
|
else
|
7785 |
|
|
{
|
7786 |
|
|
/* Otherwise, we need to reload through an integer register. */
|
7787 |
|
|
return gr_regs;
|
7788 |
|
|
}
|
7789 |
|
|
}
|
7790 |
|
|
|
7791 |
|
|
/* In mips16 mode, going between memory and anything but M16_REGS
|
7792 |
|
|
requires an M16_REG. */
|
7793 |
|
|
if (TARGET_MIPS16)
|
7794 |
|
|
{
|
7795 |
|
|
if (class != M16_REGS && class != M16_NA_REGS)
|
7796 |
|
|
{
|
7797 |
|
|
if (gp_reg_p)
|
7798 |
|
|
return NO_REGS;
|
7799 |
|
|
return M16_REGS;
|
7800 |
|
|
}
|
7801 |
|
|
if (! gp_reg_p)
|
7802 |
|
|
{
|
7803 |
|
|
if (class == M16_REGS || class == M16_NA_REGS)
|
7804 |
|
|
return NO_REGS;
|
7805 |
|
|
return M16_REGS;
|
7806 |
|
|
}
|
7807 |
|
|
}
|
7808 |
|
|
|
7809 |
|
|
return NO_REGS;
|
7810 |
|
|
}
|
7811 |
|
|
|
7812 |
|
|
/* Implement CLASS_MAX_NREGS.
|
7813 |
|
|
|
7814 |
|
|
Usually all registers are word-sized. The only supported exception
|
7815 |
|
|
is -mgp64 -msingle-float, which has 64-bit words but 32-bit float
|
7816 |
|
|
registers. A word-based calculation is correct even in that case,
|
7817 |
|
|
since -msingle-float disallows multi-FPR values.
|
7818 |
|
|
|
7819 |
|
|
The FP status registers are an exception to this rule. They are always
|
7820 |
|
|
4 bytes wide as they only hold condition code modes, and CCmode is always
|
7821 |
|
|
considered to be 4 bytes wide. */
|
7822 |
|
|
|
7823 |
|
|
int
|
7824 |
|
|
mips_class_max_nregs (enum reg_class class ATTRIBUTE_UNUSED,
|
7825 |
|
|
enum machine_mode mode)
|
7826 |
|
|
{
|
7827 |
|
|
if (class == ST_REGS)
|
7828 |
|
|
return (GET_MODE_SIZE (mode) + 3) / 4;
|
7829 |
|
|
else
|
7830 |
|
|
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
7831 |
|
|
}
|
7832 |
|
|
|
7833 |
|
|
static bool
|
7834 |
|
|
mips_valid_pointer_mode (enum machine_mode mode)
|
7835 |
|
|
{
|
7836 |
|
|
return (mode == SImode || (TARGET_64BIT && mode == DImode));
|
7837 |
|
|
}
|
7838 |
|
|
|
7839 |
|
|
/* Target hook for vector_mode_supported_p. */
|
7840 |
|
|
|
7841 |
|
|
static bool
|
7842 |
|
|
mips_vector_mode_supported_p (enum machine_mode mode)
|
7843 |
|
|
{
|
7844 |
|
|
switch (mode)
|
7845 |
|
|
{
|
7846 |
|
|
case V2SFmode:
|
7847 |
|
|
return TARGET_PAIRED_SINGLE_FLOAT;
|
7848 |
|
|
|
7849 |
|
|
case V2HImode:
|
7850 |
|
|
case V4QImode:
|
7851 |
|
|
return TARGET_DSP;
|
7852 |
|
|
|
7853 |
|
|
default:
|
7854 |
|
|
return false;
|
7855 |
|
|
}
|
7856 |
|
|
}
|
7857 |
|
|
|
7858 |
|
|
/* If we can access small data directly (using gp-relative relocation
|
7859 |
|
|
operators) return the small data pointer, otherwise return null.
|
7860 |
|
|
|
7861 |
|
|
For each mips16 function which refers to GP relative symbols, we
|
7862 |
|
|
use a pseudo register, initialized at the start of the function, to
|
7863 |
|
|
hold the $gp value. */
|
7864 |
|
|
|
7865 |
|
|
static rtx
|
7866 |
|
|
mips16_gp_pseudo_reg (void)
|
7867 |
|
|
{
|
7868 |
|
|
if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
|
7869 |
|
|
{
|
7870 |
|
|
rtx unspec;
|
7871 |
|
|
rtx insn, scan;
|
7872 |
|
|
|
7873 |
|
|
cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
|
7874 |
|
|
|
7875 |
|
|
/* We want to initialize this to a value which gcc will believe
|
7876 |
|
|
is constant. */
|
7877 |
|
|
start_sequence ();
|
7878 |
|
|
unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), UNSPEC_GP);
|
7879 |
|
|
emit_move_insn (cfun->machine->mips16_gp_pseudo_rtx,
|
7880 |
|
|
gen_rtx_CONST (Pmode, unspec));
|
7881 |
|
|
insn = get_insns ();
|
7882 |
|
|
end_sequence ();
|
7883 |
|
|
|
7884 |
|
|
push_topmost_sequence ();
|
7885 |
|
|
/* We need to emit the initialization after the FUNCTION_BEG
|
7886 |
|
|
note, so that it will be integrated. */
|
7887 |
|
|
for (scan = get_insns (); scan != NULL_RTX; scan = NEXT_INSN (scan))
|
7888 |
|
|
if (NOTE_P (scan)
|
7889 |
|
|
&& NOTE_LINE_NUMBER (scan) == NOTE_INSN_FUNCTION_BEG)
|
7890 |
|
|
break;
|
7891 |
|
|
if (scan == NULL_RTX)
|
7892 |
|
|
scan = get_insns ();
|
7893 |
|
|
insn = emit_insn_after (insn, scan);
|
7894 |
|
|
pop_topmost_sequence ();
|
7895 |
|
|
}
|
7896 |
|
|
|
7897 |
|
|
return cfun->machine->mips16_gp_pseudo_rtx;
|
7898 |
|
|
}
|
7899 |
|
|
|
7900 |
|
|
/* Write out code to move floating point arguments in or out of
|
7901 |
|
|
general registers. Output the instructions to FILE. FP_CODE is
|
7902 |
|
|
the code describing which arguments are present (see the comment at
|
7903 |
|
|
the definition of CUMULATIVE_ARGS in mips.h). FROM_FP_P is nonzero if
|
7904 |
|
|
we are copying from the floating point registers. */
|
7905 |
|
|
|
7906 |
|
|
static void
|
7907 |
|
|
mips16_fp_args (FILE *file, int fp_code, int from_fp_p)
|
7908 |
|
|
{
|
7909 |
|
|
const char *s;
|
7910 |
|
|
int gparg, fparg;
|
7911 |
|
|
unsigned int f;
|
7912 |
|
|
|
7913 |
|
|
/* This code only works for the original 32 bit ABI and the O64 ABI. */
|
7914 |
|
|
gcc_assert (TARGET_OLDABI);
|
7915 |
|
|
|
7916 |
|
|
if (from_fp_p)
|
7917 |
|
|
s = "mfc1";
|
7918 |
|
|
else
|
7919 |
|
|
s = "mtc1";
|
7920 |
|
|
gparg = GP_ARG_FIRST;
|
7921 |
|
|
fparg = FP_ARG_FIRST;
|
7922 |
|
|
for (f = (unsigned int) fp_code; f != 0; f >>= 2)
|
7923 |
|
|
{
|
7924 |
|
|
if ((f & 3) == 1)
|
7925 |
|
|
{
|
7926 |
|
|
if ((fparg & 1) != 0)
|
7927 |
|
|
++fparg;
|
7928 |
|
|
fprintf (file, "\t%s\t%s,%s\n", s,
|
7929 |
|
|
reg_names[gparg], reg_names[fparg]);
|
7930 |
|
|
}
|
7931 |
|
|
else if ((f & 3) == 2)
|
7932 |
|
|
{
|
7933 |
|
|
if (TARGET_64BIT)
|
7934 |
|
|
fprintf (file, "\td%s\t%s,%s\n", s,
|
7935 |
|
|
reg_names[gparg], reg_names[fparg]);
|
7936 |
|
|
else
|
7937 |
|
|
{
|
7938 |
|
|
if ((fparg & 1) != 0)
|
7939 |
|
|
++fparg;
|
7940 |
|
|
if (TARGET_BIG_ENDIAN)
|
7941 |
|
|
fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
|
7942 |
|
|
reg_names[gparg], reg_names[fparg + 1], s,
|
7943 |
|
|
reg_names[gparg + 1], reg_names[fparg]);
|
7944 |
|
|
else
|
7945 |
|
|
fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
|
7946 |
|
|
reg_names[gparg], reg_names[fparg], s,
|
7947 |
|
|
reg_names[gparg + 1], reg_names[fparg + 1]);
|
7948 |
|
|
++gparg;
|
7949 |
|
|
++fparg;
|
7950 |
|
|
}
|
7951 |
|
|
}
|
7952 |
|
|
else
|
7953 |
|
|
gcc_unreachable ();
|
7954 |
|
|
|
7955 |
|
|
++gparg;
|
7956 |
|
|
++fparg;
|
7957 |
|
|
}
|
7958 |
|
|
}
|
7959 |
|
|
|
7960 |
|
|
/* Build a mips16 function stub. This is used for functions which
|
7961 |
|
|
take arguments in the floating point registers. It is 32 bit code
|
7962 |
|
|
that moves the floating point args into the general registers, and
|
7963 |
|
|
then jumps to the 16 bit code. */
|
7964 |
|
|
|
7965 |
|
|
static void
|
7966 |
|
|
build_mips16_function_stub (FILE *file)
|
7967 |
|
|
{
|
7968 |
|
|
const char *fnname;
|
7969 |
|
|
char *secname, *stubname;
|
7970 |
|
|
tree stubid, stubdecl;
|
7971 |
|
|
int need_comma;
|
7972 |
|
|
unsigned int f;
|
7973 |
|
|
|
7974 |
|
|
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
|
7975 |
|
|
secname = (char *) alloca (strlen (fnname) + 20);
|
7976 |
|
|
sprintf (secname, ".mips16.fn.%s", fnname);
|
7977 |
|
|
stubname = (char *) alloca (strlen (fnname) + 20);
|
7978 |
|
|
sprintf (stubname, "__fn_stub_%s", fnname);
|
7979 |
|
|
stubid = get_identifier (stubname);
|
7980 |
|
|
stubdecl = build_decl (FUNCTION_DECL, stubid,
|
7981 |
|
|
build_function_type (void_type_node, NULL_TREE));
|
7982 |
|
|
DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
|
7983 |
|
|
|
7984 |
|
|
fprintf (file, "\t# Stub function for %s (", current_function_name ());
|
7985 |
|
|
need_comma = 0;
|
7986 |
|
|
for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
|
7987 |
|
|
{
|
7988 |
|
|
fprintf (file, "%s%s",
|
7989 |
|
|
need_comma ? ", " : "",
|
7990 |
|
|
(f & 3) == 1 ? "float" : "double");
|
7991 |
|
|
need_comma = 1;
|
7992 |
|
|
}
|
7993 |
|
|
fprintf (file, ")\n");
|
7994 |
|
|
|
7995 |
|
|
fprintf (file, "\t.set\tnomips16\n");
|
7996 |
|
|
switch_to_section (function_section (stubdecl));
|
7997 |
|
|
ASM_OUTPUT_ALIGN (file, floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));
|
7998 |
|
|
|
7999 |
|
|
/* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
|
8000 |
|
|
within a .ent, and we cannot emit another .ent. */
|
8001 |
|
|
if (!FUNCTION_NAME_ALREADY_DECLARED)
|
8002 |
|
|
{
|
8003 |
|
|
fputs ("\t.ent\t", file);
|
8004 |
|
|
assemble_name (file, stubname);
|
8005 |
|
|
fputs ("\n", file);
|
8006 |
|
|
}
|
8007 |
|
|
|
8008 |
|
|
assemble_name (file, stubname);
|
8009 |
|
|
fputs (":\n", file);
|
8010 |
|
|
|
8011 |
|
|
/* We don't want the assembler to insert any nops here. */
|
8012 |
|
|
fprintf (file, "\t.set\tnoreorder\n");
|
8013 |
|
|
|
8014 |
|
|
mips16_fp_args (file, current_function_args_info.fp_code, 1);
|
8015 |
|
|
|
8016 |
|
|
fprintf (asm_out_file, "\t.set\tnoat\n");
|
8017 |
|
|
fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
|
8018 |
|
|
assemble_name (file, fnname);
|
8019 |
|
|
fprintf (file, "\n");
|
8020 |
|
|
fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
|
8021 |
|
|
fprintf (asm_out_file, "\t.set\tat\n");
|
8022 |
|
|
|
8023 |
|
|
/* Unfortunately, we can't fill the jump delay slot. We can't fill
|
8024 |
|
|
with one of the mfc1 instructions, because the result is not
|
8025 |
|
|
available for one instruction, so if the very first instruction
|
8026 |
|
|
in the function refers to the register, it will see the wrong
|
8027 |
|
|
value. */
|
8028 |
|
|
fprintf (file, "\tnop\n");
|
8029 |
|
|
|
8030 |
|
|
fprintf (file, "\t.set\treorder\n");
|
8031 |
|
|
|
8032 |
|
|
if (!FUNCTION_NAME_ALREADY_DECLARED)
|
8033 |
|
|
{
|
8034 |
|
|
fputs ("\t.end\t", file);
|
8035 |
|
|
assemble_name (file, stubname);
|
8036 |
|
|
fputs ("\n", file);
|
8037 |
|
|
}
|
8038 |
|
|
|
8039 |
|
|
fprintf (file, "\t.set\tmips16\n");
|
8040 |
|
|
|
8041 |
|
|
switch_to_section (function_section (current_function_decl));
|
8042 |
|
|
}
|
8043 |
|
|
|
8044 |
|
|
/* We keep a list of functions for which we have already built stubs
|
8045 |
|
|
in build_mips16_call_stub. */
|
8046 |
|
|
|
8047 |
|
|
struct mips16_stub
|
8048 |
|
|
{
|
8049 |
|
|
struct mips16_stub *next;
|
8050 |
|
|
char *name;
|
8051 |
|
|
int fpret;
|
8052 |
|
|
};
|
8053 |
|
|
|
8054 |
|
|
static struct mips16_stub *mips16_stubs;
|
8055 |
|
|
|
8056 |
|
|
/* Build a call stub for a mips16 call. A stub is needed if we are
|
8057 |
|
|
passing any floating point values which should go into the floating
|
8058 |
|
|
point registers. If we are, and the call turns out to be to a 32
|
8059 |
|
|
bit function, the stub will be used to move the values into the
|
8060 |
|
|
floating point registers before calling the 32 bit function. The
|
8061 |
|
|
linker will magically adjust the function call to either the 16 bit
|
8062 |
|
|
function or the 32 bit stub, depending upon where the function call
|
8063 |
|
|
is actually defined.
|
8064 |
|
|
|
8065 |
|
|
Similarly, we need a stub if the return value might come back in a
|
8066 |
|
|
floating point register.
|
8067 |
|
|
|
8068 |
|
|
RETVAL is the location of the return value, or null if this is
|
8069 |
|
|
a call rather than a call_value. FN is the address of the
|
8070 |
|
|
function and ARG_SIZE is the size of the arguments. FP_CODE
|
8071 |
|
|
is the code built by function_arg. This function returns a nonzero
|
8072 |
|
|
value if it builds the call instruction itself. */
|
8073 |
|
|
|
8074 |
|
|
int
|
8075 |
|
|
build_mips16_call_stub (rtx retval, rtx fn, rtx arg_size, int fp_code)
|
8076 |
|
|
{
|
8077 |
|
|
int fpret;
|
8078 |
|
|
const char *fnname;
|
8079 |
|
|
char *secname, *stubname;
|
8080 |
|
|
struct mips16_stub *l;
|
8081 |
|
|
tree stubid, stubdecl;
|
8082 |
|
|
int need_comma;
|
8083 |
|
|
unsigned int f;
|
8084 |
|
|
|
8085 |
|
|
/* We don't need to do anything if we aren't in mips16 mode, or if
|
8086 |
|
|
we were invoked with the -msoft-float option. */
|
8087 |
|
|
if (! TARGET_MIPS16 || ! mips16_hard_float)
|
8088 |
|
|
return 0;
|
8089 |
|
|
|
8090 |
|
|
/* Figure out whether the value might come back in a floating point
|
8091 |
|
|
register. */
|
8092 |
|
|
fpret = (retval != 0
|
8093 |
|
|
&& GET_MODE_CLASS (GET_MODE (retval)) == MODE_FLOAT
|
8094 |
|
|
&& GET_MODE_SIZE (GET_MODE (retval)) <= UNITS_PER_FPVALUE);
|
8095 |
|
|
|
8096 |
|
|
/* We don't need to do anything if there were no floating point
|
8097 |
|
|
arguments and the value will not be returned in a floating point
|
8098 |
|
|
register. */
|
8099 |
|
|
if (fp_code == 0 && ! fpret)
|
8100 |
|
|
return 0;
|
8101 |
|
|
|
8102 |
|
|
/* We don't need to do anything if this is a call to a special
|
8103 |
|
|
mips16 support function. */
|
8104 |
|
|
if (GET_CODE (fn) == SYMBOL_REF
|
8105 |
|
|
&& strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
|
8106 |
|
|
return 0;
|
8107 |
|
|
|
8108 |
|
|
/* This code will only work for o32 and o64 abis. The other ABI's
|
8109 |
|
|
require more sophisticated support. */
|
8110 |
|
|
gcc_assert (TARGET_OLDABI);
|
8111 |
|
|
|
8112 |
|
|
/* We can only handle SFmode and DFmode floating point return
|
8113 |
|
|
values. */
|
8114 |
|
|
if (fpret)
|
8115 |
|
|
gcc_assert (GET_MODE (retval) == SFmode || GET_MODE (retval) == DFmode);
|
8116 |
|
|
|
8117 |
|
|
/* If we're calling via a function pointer, then we must always call
|
8118 |
|
|
via a stub. There are magic stubs provided in libgcc.a for each
|
8119 |
|
|
of the required cases. Each of them expects the function address
|
8120 |
|
|
to arrive in register $2. */
|
8121 |
|
|
|
8122 |
|
|
if (GET_CODE (fn) != SYMBOL_REF)
|
8123 |
|
|
{
|
8124 |
|
|
char buf[30];
|
8125 |
|
|
tree id;
|
8126 |
|
|
rtx stub_fn, insn;
|
8127 |
|
|
|
8128 |
|
|
/* ??? If this code is modified to support other ABI's, we need
|
8129 |
|
|
to handle PARALLEL return values here. */
|
8130 |
|
|
|
8131 |
|
|
sprintf (buf, "__mips16_call_stub_%s%d",
|
8132 |
|
|
(fpret
|
8133 |
|
|
? (GET_MODE (retval) == SFmode ? "sf_" : "df_")
|
8134 |
|
|
: ""),
|
8135 |
|
|
fp_code);
|
8136 |
|
|
id = get_identifier (buf);
|
8137 |
|
|
stub_fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
|
8138 |
|
|
|
8139 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, 2), fn);
|
8140 |
|
|
|
8141 |
|
|
if (retval == NULL_RTX)
|
8142 |
|
|
insn = gen_call_internal (stub_fn, arg_size);
|
8143 |
|
|
else
|
8144 |
|
|
insn = gen_call_value_internal (retval, stub_fn, arg_size);
|
8145 |
|
|
insn = emit_call_insn (insn);
|
8146 |
|
|
|
8147 |
|
|
/* Put the register usage information on the CALL. */
|
8148 |
|
|
CALL_INSN_FUNCTION_USAGE (insn) =
|
8149 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
8150 |
|
|
gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 2)),
|
8151 |
|
|
CALL_INSN_FUNCTION_USAGE (insn));
|
8152 |
|
|
|
8153 |
|
|
/* If we are handling a floating point return value, we need to
|
8154 |
|
|
save $18 in the function prologue. Putting a note on the
|
8155 |
|
|
call will mean that regs_ever_live[$18] will be true if the
|
8156 |
|
|
call is not eliminated, and we can check that in the prologue
|
8157 |
|
|
code. */
|
8158 |
|
|
if (fpret)
|
8159 |
|
|
CALL_INSN_FUNCTION_USAGE (insn) =
|
8160 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
8161 |
|
|
gen_rtx_USE (VOIDmode,
|
8162 |
|
|
gen_rtx_REG (word_mode, 18)),
|
8163 |
|
|
CALL_INSN_FUNCTION_USAGE (insn));
|
8164 |
|
|
|
8165 |
|
|
/* Return 1 to tell the caller that we've generated the call
|
8166 |
|
|
insn. */
|
8167 |
|
|
return 1;
|
8168 |
|
|
}
|
8169 |
|
|
|
8170 |
|
|
/* We know the function we are going to call. If we have already
|
8171 |
|
|
built a stub, we don't need to do anything further. */
|
8172 |
|
|
|
8173 |
|
|
fnname = XSTR (fn, 0);
|
8174 |
|
|
for (l = mips16_stubs; l != NULL; l = l->next)
|
8175 |
|
|
if (strcmp (l->name, fnname) == 0)
|
8176 |
|
|
break;
|
8177 |
|
|
|
8178 |
|
|
if (l == NULL)
|
8179 |
|
|
{
|
8180 |
|
|
/* Build a special purpose stub. When the linker sees a
|
8181 |
|
|
function call in mips16 code, it will check where the target
|
8182 |
|
|
is defined. If the target is a 32 bit call, the linker will
|
8183 |
|
|
search for the section defined here. It can tell which
|
8184 |
|
|
symbol this section is associated with by looking at the
|
8185 |
|
|
relocation information (the name is unreliable, since this
|
8186 |
|
|
might be a static function). If such a section is found, the
|
8187 |
|
|
linker will redirect the call to the start of the magic
|
8188 |
|
|
section.
|
8189 |
|
|
|
8190 |
|
|
If the function does not return a floating point value, the
|
8191 |
|
|
special stub section is named
|
8192 |
|
|
.mips16.call.FNNAME
|
8193 |
|
|
|
8194 |
|
|
If the function does return a floating point value, the stub
|
8195 |
|
|
section is named
|
8196 |
|
|
.mips16.call.fp.FNNAME
|
8197 |
|
|
*/
|
8198 |
|
|
|
8199 |
|
|
secname = (char *) alloca (strlen (fnname) + 40);
|
8200 |
|
|
sprintf (secname, ".mips16.call.%s%s",
|
8201 |
|
|
fpret ? "fp." : "",
|
8202 |
|
|
fnname);
|
8203 |
|
|
stubname = (char *) alloca (strlen (fnname) + 20);
|
8204 |
|
|
sprintf (stubname, "__call_stub_%s%s",
|
8205 |
|
|
fpret ? "fp_" : "",
|
8206 |
|
|
fnname);
|
8207 |
|
|
stubid = get_identifier (stubname);
|
8208 |
|
|
stubdecl = build_decl (FUNCTION_DECL, stubid,
|
8209 |
|
|
build_function_type (void_type_node, NULL_TREE));
|
8210 |
|
|
DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
|
8211 |
|
|
|
8212 |
|
|
fprintf (asm_out_file, "\t# Stub function to call %s%s (",
|
8213 |
|
|
(fpret
|
8214 |
|
|
? (GET_MODE (retval) == SFmode ? "float " : "double ")
|
8215 |
|
|
: ""),
|
8216 |
|
|
fnname);
|
8217 |
|
|
need_comma = 0;
|
8218 |
|
|
for (f = (unsigned int) fp_code; f != 0; f >>= 2)
|
8219 |
|
|
{
|
8220 |
|
|
fprintf (asm_out_file, "%s%s",
|
8221 |
|
|
need_comma ? ", " : "",
|
8222 |
|
|
(f & 3) == 1 ? "float" : "double");
|
8223 |
|
|
need_comma = 1;
|
8224 |
|
|
}
|
8225 |
|
|
fprintf (asm_out_file, ")\n");
|
8226 |
|
|
|
8227 |
|
|
fprintf (asm_out_file, "\t.set\tnomips16\n");
|
8228 |
|
|
assemble_start_function (stubdecl, stubname);
|
8229 |
|
|
|
8230 |
|
|
if (!FUNCTION_NAME_ALREADY_DECLARED)
|
8231 |
|
|
{
|
8232 |
|
|
fputs ("\t.ent\t", asm_out_file);
|
8233 |
|
|
assemble_name (asm_out_file, stubname);
|
8234 |
|
|
fputs ("\n", asm_out_file);
|
8235 |
|
|
|
8236 |
|
|
assemble_name (asm_out_file, stubname);
|
8237 |
|
|
fputs (":\n", asm_out_file);
|
8238 |
|
|
}
|
8239 |
|
|
|
8240 |
|
|
/* We build the stub code by hand. That's the only way we can
|
8241 |
|
|
do it, since we can't generate 32 bit code during a 16 bit
|
8242 |
|
|
compilation. */
|
8243 |
|
|
|
8244 |
|
|
/* We don't want the assembler to insert any nops here. */
|
8245 |
|
|
fprintf (asm_out_file, "\t.set\tnoreorder\n");
|
8246 |
|
|
|
8247 |
|
|
mips16_fp_args (asm_out_file, fp_code, 0);
|
8248 |
|
|
|
8249 |
|
|
if (! fpret)
|
8250 |
|
|
{
|
8251 |
|
|
fprintf (asm_out_file, "\t.set\tnoat\n");
|
8252 |
|
|
fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
|
8253 |
|
|
fnname);
|
8254 |
|
|
fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
|
8255 |
|
|
fprintf (asm_out_file, "\t.set\tat\n");
|
8256 |
|
|
/* Unfortunately, we can't fill the jump delay slot. We
|
8257 |
|
|
can't fill with one of the mtc1 instructions, because the
|
8258 |
|
|
result is not available for one instruction, so if the
|
8259 |
|
|
very first instruction in the function refers to the
|
8260 |
|
|
register, it will see the wrong value. */
|
8261 |
|
|
fprintf (asm_out_file, "\tnop\n");
|
8262 |
|
|
}
|
8263 |
|
|
else
|
8264 |
|
|
{
|
8265 |
|
|
fprintf (asm_out_file, "\tmove\t%s,%s\n",
|
8266 |
|
|
reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
|
8267 |
|
|
fprintf (asm_out_file, "\tjal\t%s\n", fnname);
|
8268 |
|
|
/* As above, we can't fill the delay slot. */
|
8269 |
|
|
fprintf (asm_out_file, "\tnop\n");
|
8270 |
|
|
if (GET_MODE (retval) == SFmode)
|
8271 |
|
|
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
|
8272 |
|
|
reg_names[GP_REG_FIRST + 2], reg_names[FP_REG_FIRST + 0]);
|
8273 |
|
|
else
|
8274 |
|
|
{
|
8275 |
|
|
if (TARGET_BIG_ENDIAN)
|
8276 |
|
|
{
|
8277 |
|
|
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
|
8278 |
|
|
reg_names[GP_REG_FIRST + 2],
|
8279 |
|
|
reg_names[FP_REG_FIRST + 1]);
|
8280 |
|
|
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
|
8281 |
|
|
reg_names[GP_REG_FIRST + 3],
|
8282 |
|
|
reg_names[FP_REG_FIRST + 0]);
|
8283 |
|
|
}
|
8284 |
|
|
else
|
8285 |
|
|
{
|
8286 |
|
|
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
|
8287 |
|
|
reg_names[GP_REG_FIRST + 2],
|
8288 |
|
|
reg_names[FP_REG_FIRST + 0]);
|
8289 |
|
|
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
|
8290 |
|
|
reg_names[GP_REG_FIRST + 3],
|
8291 |
|
|
reg_names[FP_REG_FIRST + 1]);
|
8292 |
|
|
}
|
8293 |
|
|
}
|
8294 |
|
|
fprintf (asm_out_file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 18]);
|
8295 |
|
|
/* As above, we can't fill the delay slot. */
|
8296 |
|
|
fprintf (asm_out_file, "\tnop\n");
|
8297 |
|
|
}
|
8298 |
|
|
|
8299 |
|
|
fprintf (asm_out_file, "\t.set\treorder\n");
|
8300 |
|
|
|
8301 |
|
|
#ifdef ASM_DECLARE_FUNCTION_SIZE
|
8302 |
|
|
ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
|
8303 |
|
|
#endif
|
8304 |
|
|
|
8305 |
|
|
if (!FUNCTION_NAME_ALREADY_DECLARED)
|
8306 |
|
|
{
|
8307 |
|
|
fputs ("\t.end\t", asm_out_file);
|
8308 |
|
|
assemble_name (asm_out_file, stubname);
|
8309 |
|
|
fputs ("\n", asm_out_file);
|
8310 |
|
|
}
|
8311 |
|
|
|
8312 |
|
|
fprintf (asm_out_file, "\t.set\tmips16\n");
|
8313 |
|
|
|
8314 |
|
|
/* Record this stub. */
|
8315 |
|
|
l = (struct mips16_stub *) xmalloc (sizeof *l);
|
8316 |
|
|
l->name = xstrdup (fnname);
|
8317 |
|
|
l->fpret = fpret;
|
8318 |
|
|
l->next = mips16_stubs;
|
8319 |
|
|
mips16_stubs = l;
|
8320 |
|
|
}
|
8321 |
|
|
|
8322 |
|
|
/* If we expect a floating point return value, but we've built a
|
8323 |
|
|
stub which does not expect one, then we're in trouble. We can't
|
8324 |
|
|
use the existing stub, because it won't handle the floating point
|
8325 |
|
|
value. We can't build a new stub, because the linker won't know
|
8326 |
|
|
which stub to use for the various calls in this object file.
|
8327 |
|
|
Fortunately, this case is illegal, since it means that a function
|
8328 |
|
|
was declared in two different ways in a single compilation. */
|
8329 |
|
|
if (fpret && ! l->fpret)
|
8330 |
|
|
error ("cannot handle inconsistent calls to %qs", fnname);
|
8331 |
|
|
|
8332 |
|
|
/* If we are calling a stub which handles a floating point return
|
8333 |
|
|
value, we need to arrange to save $18 in the prologue. We do
|
8334 |
|
|
this by marking the function call as using the register. The
|
8335 |
|
|
prologue will later see that it is used, and emit code to save
|
8336 |
|
|
it. */
|
8337 |
|
|
|
8338 |
|
|
if (l->fpret)
|
8339 |
|
|
{
|
8340 |
|
|
rtx insn;
|
8341 |
|
|
|
8342 |
|
|
if (retval == NULL_RTX)
|
8343 |
|
|
insn = gen_call_internal (fn, arg_size);
|
8344 |
|
|
else
|
8345 |
|
|
insn = gen_call_value_internal (retval, fn, arg_size);
|
8346 |
|
|
insn = emit_call_insn (insn);
|
8347 |
|
|
|
8348 |
|
|
CALL_INSN_FUNCTION_USAGE (insn) =
|
8349 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
8350 |
|
|
gen_rtx_USE (VOIDmode, gen_rtx_REG (word_mode, 18)),
|
8351 |
|
|
CALL_INSN_FUNCTION_USAGE (insn));
|
8352 |
|
|
|
8353 |
|
|
/* Return 1 to tell the caller that we've generated the call
|
8354 |
|
|
insn. */
|
8355 |
|
|
return 1;
|
8356 |
|
|
}
|
8357 |
|
|
|
8358 |
|
|
/* Return 0 to let the caller generate the call insn. */
|
8359 |
|
|
return 0;
|
8360 |
|
|
}
|
8361 |
|
|
|
8362 |
|
|
/* An entry in the mips16 constant pool. VALUE is the pool constant,
|
8363 |
|
|
MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
|
8364 |
|
|
|
8365 |
|
|
struct mips16_constant {
|
8366 |
|
|
struct mips16_constant *next;
|
8367 |
|
|
rtx value;
|
8368 |
|
|
rtx label;
|
8369 |
|
|
enum machine_mode mode;
|
8370 |
|
|
};
|
8371 |
|
|
|
8372 |
|
|
/* Information about an incomplete mips16 constant pool. FIRST is the
|
8373 |
|
|
first constant, HIGHEST_ADDRESS is the highest address that the first
|
8374 |
|
|
byte of the pool can have, and INSN_ADDRESS is the current instruction
|
8375 |
|
|
address. */
|
8376 |
|
|
|
8377 |
|
|
struct mips16_constant_pool {
|
8378 |
|
|
struct mips16_constant *first;
|
8379 |
|
|
int highest_address;
|
8380 |
|
|
int insn_address;
|
8381 |
|
|
};
|
8382 |
|
|
|
8383 |
|
|
/* Add constant VALUE to POOL and return its label. MODE is the
|
8384 |
|
|
value's mode (used for CONST_INTs, etc.). */
|
8385 |
|
|
|
8386 |
|
|
static rtx
|
8387 |
|
|
add_constant (struct mips16_constant_pool *pool,
|
8388 |
|
|
rtx value, enum machine_mode mode)
|
8389 |
|
|
{
|
8390 |
|
|
struct mips16_constant **p, *c;
|
8391 |
|
|
bool first_of_size_p;
|
8392 |
|
|
|
8393 |
|
|
/* See whether the constant is already in the pool. If so, return the
|
8394 |
|
|
existing label, otherwise leave P pointing to the place where the
|
8395 |
|
|
constant should be added.
|
8396 |
|
|
|
8397 |
|
|
Keep the pool sorted in increasing order of mode size so that we can
|
8398 |
|
|
reduce the number of alignments needed. */
|
8399 |
|
|
first_of_size_p = true;
|
8400 |
|
|
for (p = &pool->first; *p != 0; p = &(*p)->next)
|
8401 |
|
|
{
|
8402 |
|
|
if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
|
8403 |
|
|
return (*p)->label;
|
8404 |
|
|
if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
|
8405 |
|
|
break;
|
8406 |
|
|
if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
|
8407 |
|
|
first_of_size_p = false;
|
8408 |
|
|
}
|
8409 |
|
|
|
8410 |
|
|
/* In the worst case, the constant needed by the earliest instruction
|
8411 |
|
|
will end up at the end of the pool. The entire pool must then be
|
8412 |
|
|
accessible from that instruction.
|
8413 |
|
|
|
8414 |
|
|
When adding the first constant, set the pool's highest address to
|
8415 |
|
|
the address of the first out-of-range byte. Adjust this address
|
8416 |
|
|
downwards each time a new constant is added. */
|
8417 |
|
|
if (pool->first == 0)
|
8418 |
|
|
/* For pc-relative lw, addiu and daddiu instructions, the base PC value
|
8419 |
|
|
is the address of the instruction with the lowest two bits clear.
|
8420 |
|
|
The base PC value for ld has the lowest three bits clear. Assume
|
8421 |
|
|
the worst case here. */
|
8422 |
|
|
pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
|
8423 |
|
|
pool->highest_address -= GET_MODE_SIZE (mode);
|
8424 |
|
|
if (first_of_size_p)
|
8425 |
|
|
/* Take into account the worst possible padding due to alignment. */
|
8426 |
|
|
pool->highest_address -= GET_MODE_SIZE (mode) - 1;
|
8427 |
|
|
|
8428 |
|
|
/* Create a new entry. */
|
8429 |
|
|
c = (struct mips16_constant *) xmalloc (sizeof *c);
|
8430 |
|
|
c->value = value;
|
8431 |
|
|
c->mode = mode;
|
8432 |
|
|
c->label = gen_label_rtx ();
|
8433 |
|
|
c->next = *p;
|
8434 |
|
|
*p = c;
|
8435 |
|
|
|
8436 |
|
|
return c->label;
|
8437 |
|
|
}
|
8438 |
|
|
|
8439 |
|
|
/* Output constant VALUE after instruction INSN and return the last
|
8440 |
|
|
instruction emitted. MODE is the mode of the constant. */
|
8441 |
|
|
|
8442 |
|
|
static rtx
|
8443 |
|
|
dump_constants_1 (enum machine_mode mode, rtx value, rtx insn)
|
8444 |
|
|
{
|
8445 |
|
|
switch (GET_MODE_CLASS (mode))
|
8446 |
|
|
{
|
8447 |
|
|
case MODE_INT:
|
8448 |
|
|
{
|
8449 |
|
|
rtx size = GEN_INT (GET_MODE_SIZE (mode));
|
8450 |
|
|
return emit_insn_after (gen_consttable_int (value, size), insn);
|
8451 |
|
|
}
|
8452 |
|
|
|
8453 |
|
|
case MODE_FLOAT:
|
8454 |
|
|
return emit_insn_after (gen_consttable_float (value), insn);
|
8455 |
|
|
|
8456 |
|
|
case MODE_VECTOR_FLOAT:
|
8457 |
|
|
case MODE_VECTOR_INT:
|
8458 |
|
|
{
|
8459 |
|
|
int i;
|
8460 |
|
|
for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
|
8461 |
|
|
insn = dump_constants_1 (GET_MODE_INNER (mode),
|
8462 |
|
|
CONST_VECTOR_ELT (value, i), insn);
|
8463 |
|
|
return insn;
|
8464 |
|
|
}
|
8465 |
|
|
|
8466 |
|
|
default:
|
8467 |
|
|
gcc_unreachable ();
|
8468 |
|
|
}
|
8469 |
|
|
}
|
8470 |
|
|
|
8471 |
|
|
|
8472 |
|
|
/* Dump out the constants in CONSTANTS after INSN. */
|
8473 |
|
|
|
8474 |
|
|
static void
|
8475 |
|
|
dump_constants (struct mips16_constant *constants, rtx insn)
|
8476 |
|
|
{
|
8477 |
|
|
struct mips16_constant *c, *next;
|
8478 |
|
|
int align;
|
8479 |
|
|
|
8480 |
|
|
align = 0;
|
8481 |
|
|
for (c = constants; c != NULL; c = next)
|
8482 |
|
|
{
|
8483 |
|
|
/* If necessary, increase the alignment of PC. */
|
8484 |
|
|
if (align < GET_MODE_SIZE (c->mode))
|
8485 |
|
|
{
|
8486 |
|
|
int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
|
8487 |
|
|
insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
|
8488 |
|
|
}
|
8489 |
|
|
align = GET_MODE_SIZE (c->mode);
|
8490 |
|
|
|
8491 |
|
|
insn = emit_label_after (c->label, insn);
|
8492 |
|
|
insn = dump_constants_1 (c->mode, c->value, insn);
|
8493 |
|
|
|
8494 |
|
|
next = c->next;
|
8495 |
|
|
free (c);
|
8496 |
|
|
}
|
8497 |
|
|
|
8498 |
|
|
emit_barrier_after (insn);
|
8499 |
|
|
}
|
8500 |
|
|
|
8501 |
|
|
/* Return the length of instruction INSN. */
|
8502 |
|
|
|
8503 |
|
|
static int
|
8504 |
|
|
mips16_insn_length (rtx insn)
|
8505 |
|
|
{
|
8506 |
|
|
if (JUMP_P (insn))
|
8507 |
|
|
{
|
8508 |
|
|
rtx body = PATTERN (insn);
|
8509 |
|
|
if (GET_CODE (body) == ADDR_VEC)
|
8510 |
|
|
return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
|
8511 |
|
|
if (GET_CODE (body) == ADDR_DIFF_VEC)
|
8512 |
|
|
return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
|
8513 |
|
|
}
|
8514 |
|
|
return get_attr_length (insn);
|
8515 |
|
|
}
|
8516 |
|
|
|
8517 |
|
|
/* Rewrite *X so that constant pool references refer to the constant's
|
8518 |
|
|
label instead. DATA points to the constant pool structure. */
|
8519 |
|
|
|
8520 |
|
|
static int
|
8521 |
|
|
mips16_rewrite_pool_refs (rtx *x, void *data)
|
8522 |
|
|
{
|
8523 |
|
|
struct mips16_constant_pool *pool = data;
|
8524 |
|
|
if (GET_CODE (*x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (*x))
|
8525 |
|
|
*x = gen_rtx_LABEL_REF (Pmode, add_constant (pool,
|
8526 |
|
|
get_pool_constant (*x),
|
8527 |
|
|
get_pool_mode (*x)));
|
8528 |
|
|
return 0;
|
8529 |
|
|
}
|
8530 |
|
|
|
8531 |
|
|
/* Build MIPS16 constant pools. */
|
8532 |
|
|
|
8533 |
|
|
static void
|
8534 |
|
|
mips16_lay_out_constants (void)
|
8535 |
|
|
{
|
8536 |
|
|
struct mips16_constant_pool pool;
|
8537 |
|
|
rtx insn, barrier;
|
8538 |
|
|
|
8539 |
|
|
barrier = 0;
|
8540 |
|
|
memset (&pool, 0, sizeof (pool));
|
8541 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
8542 |
|
|
{
|
8543 |
|
|
/* Rewrite constant pool references in INSN. */
|
8544 |
|
|
if (INSN_P (insn))
|
8545 |
|
|
for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &pool);
|
8546 |
|
|
|
8547 |
|
|
pool.insn_address += mips16_insn_length (insn);
|
8548 |
|
|
|
8549 |
|
|
if (pool.first != NULL)
|
8550 |
|
|
{
|
8551 |
|
|
/* If there are no natural barriers between the first user of
|
8552 |
|
|
the pool and the highest acceptable address, we'll need to
|
8553 |
|
|
create a new instruction to jump around the constant pool.
|
8554 |
|
|
In the worst case, this instruction will be 4 bytes long.
|
8555 |
|
|
|
8556 |
|
|
If it's too late to do this transformation after INSN,
|
8557 |
|
|
do it immediately before INSN. */
|
8558 |
|
|
if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
|
8559 |
|
|
{
|
8560 |
|
|
rtx label, jump;
|
8561 |
|
|
|
8562 |
|
|
label = gen_label_rtx ();
|
8563 |
|
|
|
8564 |
|
|
jump = emit_jump_insn_before (gen_jump (label), insn);
|
8565 |
|
|
JUMP_LABEL (jump) = label;
|
8566 |
|
|
LABEL_NUSES (label) = 1;
|
8567 |
|
|
barrier = emit_barrier_after (jump);
|
8568 |
|
|
|
8569 |
|
|
emit_label_after (label, barrier);
|
8570 |
|
|
pool.insn_address += 4;
|
8571 |
|
|
}
|
8572 |
|
|
|
8573 |
|
|
/* See whether the constant pool is now out of range of the first
|
8574 |
|
|
user. If so, output the constants after the previous barrier.
|
8575 |
|
|
Note that any instructions between BARRIER and INSN (inclusive)
|
8576 |
|
|
will use negative offsets to refer to the pool. */
|
8577 |
|
|
if (pool.insn_address > pool.highest_address)
|
8578 |
|
|
{
|
8579 |
|
|
dump_constants (pool.first, barrier);
|
8580 |
|
|
pool.first = NULL;
|
8581 |
|
|
barrier = 0;
|
8582 |
|
|
}
|
8583 |
|
|
else if (BARRIER_P (insn))
|
8584 |
|
|
barrier = insn;
|
8585 |
|
|
}
|
8586 |
|
|
}
|
8587 |
|
|
dump_constants (pool.first, get_last_insn ());
|
8588 |
|
|
}
|
8589 |
|
|
|
8590 |
|
|
/* A temporary variable used by for_each_rtx callbacks, etc. */
|
8591 |
|
|
static rtx mips_sim_insn;
|
8592 |
|
|
|
8593 |
|
|
/* A structure representing the state of the processor pipeline.
|
8594 |
|
|
Used by the mips_sim_* family of functions. */
|
8595 |
|
|
struct mips_sim {
|
8596 |
|
|
/* The maximum number of instructions that can be issued in a cycle.
|
8597 |
|
|
(Caches mips_issue_rate.) */
|
8598 |
|
|
unsigned int issue_rate;
|
8599 |
|
|
|
8600 |
|
|
/* The current simulation time. */
|
8601 |
|
|
unsigned int time;
|
8602 |
|
|
|
8603 |
|
|
/* How many more instructions can be issued in the current cycle. */
|
8604 |
|
|
unsigned int insns_left;
|
8605 |
|
|
|
8606 |
|
|
/* LAST_SET[X].INSN is the last instruction to set register X.
|
8607 |
|
|
LAST_SET[X].TIME is the time at which that instruction was issued.
|
8608 |
|
|
INSN is null if no instruction has yet set register X. */
|
8609 |
|
|
struct {
|
8610 |
|
|
rtx insn;
|
8611 |
|
|
unsigned int time;
|
8612 |
|
|
} last_set[FIRST_PSEUDO_REGISTER];
|
8613 |
|
|
|
8614 |
|
|
/* The pipeline's current DFA state. */
|
8615 |
|
|
state_t dfa_state;
|
8616 |
|
|
};
|
8617 |
|
|
|
8618 |
|
|
/* Reset STATE to the initial simulation state. */
|
8619 |
|
|
|
8620 |
|
|
static void
|
8621 |
|
|
mips_sim_reset (struct mips_sim *state)
|
8622 |
|
|
{
|
8623 |
|
|
state->time = 0;
|
8624 |
|
|
state->insns_left = state->issue_rate;
|
8625 |
|
|
memset (&state->last_set, 0, sizeof (state->last_set));
|
8626 |
|
|
state_reset (state->dfa_state);
|
8627 |
|
|
}
|
8628 |
|
|
|
8629 |
|
|
/* Initialize STATE before its first use. DFA_STATE points to an
|
8630 |
|
|
allocated but uninitialized DFA state. */
|
8631 |
|
|
|
8632 |
|
|
static void
|
8633 |
|
|
mips_sim_init (struct mips_sim *state, state_t dfa_state)
|
8634 |
|
|
{
|
8635 |
|
|
state->issue_rate = mips_issue_rate ();
|
8636 |
|
|
state->dfa_state = dfa_state;
|
8637 |
|
|
mips_sim_reset (state);
|
8638 |
|
|
}
|
8639 |
|
|
|
8640 |
|
|
/* Advance STATE by one clock cycle. */
|
8641 |
|
|
|
8642 |
|
|
static void
|
8643 |
|
|
mips_sim_next_cycle (struct mips_sim *state)
|
8644 |
|
|
{
|
8645 |
|
|
state->time++;
|
8646 |
|
|
state->insns_left = state->issue_rate;
|
8647 |
|
|
state_transition (state->dfa_state, 0);
|
8648 |
|
|
}
|
8649 |
|
|
|
8650 |
|
|
/* Advance simulation state STATE until instruction INSN can read
|
8651 |
|
|
register REG. */
|
8652 |
|
|
|
8653 |
|
|
static void
|
8654 |
|
|
mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
|
8655 |
|
|
{
|
8656 |
|
|
unsigned int i;
|
8657 |
|
|
|
8658 |
|
|
for (i = 0; i < HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)); i++)
|
8659 |
|
|
if (state->last_set[REGNO (reg) + i].insn != 0)
|
8660 |
|
|
{
|
8661 |
|
|
unsigned int t;
|
8662 |
|
|
|
8663 |
|
|
t = state->last_set[REGNO (reg) + i].time;
|
8664 |
|
|
t += insn_latency (state->last_set[REGNO (reg) + i].insn, insn);
|
8665 |
|
|
while (state->time < t)
|
8666 |
|
|
mips_sim_next_cycle (state);
|
8667 |
|
|
}
|
8668 |
|
|
}
|
8669 |
|
|
|
8670 |
|
|
/* A for_each_rtx callback. If *X is a register, advance simulation state
|
8671 |
|
|
DATA until mips_sim_insn can read the register's value. */
|
8672 |
|
|
|
8673 |
|
|
static int
|
8674 |
|
|
mips_sim_wait_regs_2 (rtx *x, void *data)
|
8675 |
|
|
{
|
8676 |
|
|
if (REG_P (*x))
|
8677 |
|
|
mips_sim_wait_reg (data, mips_sim_insn, *x);
|
8678 |
|
|
return 0;
|
8679 |
|
|
}
|
8680 |
|
|
|
8681 |
|
|
/* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X. */
|
8682 |
|
|
|
8683 |
|
|
static void
|
8684 |
|
|
mips_sim_wait_regs_1 (rtx *x, void *data)
|
8685 |
|
|
{
|
8686 |
|
|
for_each_rtx (x, mips_sim_wait_regs_2, data);
|
8687 |
|
|
}
|
8688 |
|
|
|
8689 |
|
|
/* Advance simulation state STATE until all of INSN's register
|
8690 |
|
|
dependencies are satisfied. */
|
8691 |
|
|
|
8692 |
|
|
static void
|
8693 |
|
|
mips_sim_wait_regs (struct mips_sim *state, rtx insn)
|
8694 |
|
|
{
|
8695 |
|
|
mips_sim_insn = insn;
|
8696 |
|
|
note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
|
8697 |
|
|
}
|
8698 |
|
|
|
8699 |
|
|
/* Advance simulation state STATE until the units required by
|
8700 |
|
|
instruction INSN are available. */
|
8701 |
|
|
|
8702 |
|
|
static void
|
8703 |
|
|
mips_sim_wait_units (struct mips_sim *state, rtx insn)
|
8704 |
|
|
{
|
8705 |
|
|
state_t tmp_state;
|
8706 |
|
|
|
8707 |
|
|
tmp_state = alloca (state_size ());
|
8708 |
|
|
while (state->insns_left == 0
|
8709 |
|
|
|| (memcpy (tmp_state, state->dfa_state, state_size ()),
|
8710 |
|
|
state_transition (tmp_state, insn) >= 0))
|
8711 |
|
|
mips_sim_next_cycle (state);
|
8712 |
|
|
}
|
8713 |
|
|
|
8714 |
|
|
/* Advance simulation state STATE until INSN is ready to issue. */
|
8715 |
|
|
|
8716 |
|
|
static void
|
8717 |
|
|
mips_sim_wait_insn (struct mips_sim *state, rtx insn)
|
8718 |
|
|
{
|
8719 |
|
|
mips_sim_wait_regs (state, insn);
|
8720 |
|
|
mips_sim_wait_units (state, insn);
|
8721 |
|
|
}
|
8722 |
|
|
|
8723 |
|
|
/* mips_sim_insn has just set X. Update the LAST_SET array
|
8724 |
|
|
in simulation state DATA. */
|
8725 |
|
|
|
8726 |
|
|
static void
|
8727 |
|
|
mips_sim_record_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
|
8728 |
|
|
{
|
8729 |
|
|
struct mips_sim *state;
|
8730 |
|
|
unsigned int i;
|
8731 |
|
|
|
8732 |
|
|
state = data;
|
8733 |
|
|
if (REG_P (x))
|
8734 |
|
|
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
|
8735 |
|
|
{
|
8736 |
|
|
state->last_set[REGNO (x) + i].insn = mips_sim_insn;
|
8737 |
|
|
state->last_set[REGNO (x) + i].time = state->time;
|
8738 |
|
|
}
|
8739 |
|
|
}
|
8740 |
|
|
|
8741 |
|
|
/* Issue instruction INSN in scheduler state STATE. Assume that INSN
|
8742 |
|
|
can issue immediately (i.e., that mips_sim_wait_insn has already
|
8743 |
|
|
been called). */
|
8744 |
|
|
|
8745 |
|
|
static void
|
8746 |
|
|
mips_sim_issue_insn (struct mips_sim *state, rtx insn)
|
8747 |
|
|
{
|
8748 |
|
|
state_transition (state->dfa_state, insn);
|
8749 |
|
|
state->insns_left--;
|
8750 |
|
|
|
8751 |
|
|
mips_sim_insn = insn;
|
8752 |
|
|
note_stores (PATTERN (insn), mips_sim_record_set, state);
|
8753 |
|
|
}
|
8754 |
|
|
|
8755 |
|
|
/* Simulate issuing a NOP in state STATE. */
|
8756 |
|
|
|
8757 |
|
|
static void
|
8758 |
|
|
mips_sim_issue_nop (struct mips_sim *state)
|
8759 |
|
|
{
|
8760 |
|
|
if (state->insns_left == 0)
|
8761 |
|
|
mips_sim_next_cycle (state);
|
8762 |
|
|
state->insns_left--;
|
8763 |
|
|
}
|
8764 |
|
|
|
8765 |
|
|
/* Update simulation state STATE so that it's ready to accept the instruction
|
8766 |
|
|
after INSN. INSN should be part of the main rtl chain, not a member of a
|
8767 |
|
|
SEQUENCE. */
|
8768 |
|
|
|
8769 |
|
|
static void
|
8770 |
|
|
mips_sim_finish_insn (struct mips_sim *state, rtx insn)
|
8771 |
|
|
{
|
8772 |
|
|
/* If INSN is a jump with an implicit delay slot, simulate a nop. */
|
8773 |
|
|
if (JUMP_P (insn))
|
8774 |
|
|
mips_sim_issue_nop (state);
|
8775 |
|
|
|
8776 |
|
|
switch (GET_CODE (SEQ_BEGIN (insn)))
|
8777 |
|
|
{
|
8778 |
|
|
case CODE_LABEL:
|
8779 |
|
|
case CALL_INSN:
|
8780 |
|
|
/* We can't predict the processor state after a call or label. */
|
8781 |
|
|
mips_sim_reset (state);
|
8782 |
|
|
break;
|
8783 |
|
|
|
8784 |
|
|
case JUMP_INSN:
|
8785 |
|
|
/* The delay slots of branch likely instructions are only executed
|
8786 |
|
|
when the branch is taken. Therefore, if the caller has simulated
|
8787 |
|
|
the delay slot instruction, STATE does not really reflect the state
|
8788 |
|
|
of the pipeline for the instruction after the delay slot. Also,
|
8789 |
|
|
branch likely instructions tend to incur a penalty when not taken,
|
8790 |
|
|
so there will probably be an extra delay between the branch and
|
8791 |
|
|
the instruction after the delay slot. */
|
8792 |
|
|
if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
|
8793 |
|
|
mips_sim_reset (state);
|
8794 |
|
|
break;
|
8795 |
|
|
|
8796 |
|
|
default:
|
8797 |
|
|
break;
|
8798 |
|
|
}
|
8799 |
|
|
}
|
8800 |
|
|
|
8801 |
|
|
/* The VR4130 pipeline issues aligned pairs of instructions together,
|
8802 |
|
|
but it stalls the second instruction if it depends on the first.
|
8803 |
|
|
In order to cut down the amount of logic required, this dependence
|
8804 |
|
|
check is not based on a full instruction decode. Instead, any non-SPECIAL
|
8805 |
|
|
instruction is assumed to modify the register specified by bits 20-16
|
8806 |
|
|
(which is usually the "rt" field).
|
8807 |
|
|
|
8808 |
|
|
In beq, beql, bne and bnel instructions, the rt field is actually an
|
8809 |
|
|
input, so we can end up with a false dependence between the branch
|
8810 |
|
|
and its delay slot. If this situation occurs in instruction INSN,
|
8811 |
|
|
try to avoid it by swapping rs and rt. */
|
8812 |
|
|
|
8813 |
|
|
static void
|
8814 |
|
|
vr4130_avoid_branch_rt_conflict (rtx insn)
|
8815 |
|
|
{
|
8816 |
|
|
rtx first, second;
|
8817 |
|
|
|
8818 |
|
|
first = SEQ_BEGIN (insn);
|
8819 |
|
|
second = SEQ_END (insn);
|
8820 |
|
|
if (JUMP_P (first)
|
8821 |
|
|
&& NONJUMP_INSN_P (second)
|
8822 |
|
|
&& GET_CODE (PATTERN (first)) == SET
|
8823 |
|
|
&& GET_CODE (SET_DEST (PATTERN (first))) == PC
|
8824 |
|
|
&& GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
|
8825 |
|
|
{
|
8826 |
|
|
/* Check for the right kind of condition. */
|
8827 |
|
|
rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
|
8828 |
|
|
if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
|
8829 |
|
|
&& REG_P (XEXP (cond, 0))
|
8830 |
|
|
&& REG_P (XEXP (cond, 1))
|
8831 |
|
|
&& reg_referenced_p (XEXP (cond, 1), PATTERN (second))
|
8832 |
|
|
&& !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
|
8833 |
|
|
{
|
8834 |
|
|
/* SECOND mentions the rt register but not the rs register. */
|
8835 |
|
|
rtx tmp = XEXP (cond, 0);
|
8836 |
|
|
XEXP (cond, 0) = XEXP (cond, 1);
|
8837 |
|
|
XEXP (cond, 1) = tmp;
|
8838 |
|
|
}
|
8839 |
|
|
}
|
8840 |
|
|
}
|
8841 |
|
|
|
8842 |
|
|
/* Implement -mvr4130-align. Go through each basic block and simulate the
|
8843 |
|
|
processor pipeline. If we find that a pair of instructions could execute
|
8844 |
|
|
in parallel, and the first of those instruction is not 8-byte aligned,
|
8845 |
|
|
insert a nop to make it aligned. */
|
8846 |
|
|
|
8847 |
|
|
static void
|
8848 |
|
|
vr4130_align_insns (void)
|
8849 |
|
|
{
|
8850 |
|
|
struct mips_sim state;
|
8851 |
|
|
rtx insn, subinsn, last, last2, next;
|
8852 |
|
|
bool aligned_p;
|
8853 |
|
|
|
8854 |
|
|
dfa_start ();
|
8855 |
|
|
|
8856 |
|
|
/* LAST is the last instruction before INSN to have a nonzero length.
|
8857 |
|
|
LAST2 is the last such instruction before LAST. */
|
8858 |
|
|
last = 0;
|
8859 |
|
|
last2 = 0;
|
8860 |
|
|
|
8861 |
|
|
/* ALIGNED_P is true if INSN is known to be at an aligned address. */
|
8862 |
|
|
aligned_p = true;
|
8863 |
|
|
|
8864 |
|
|
mips_sim_init (&state, alloca (state_size ()));
|
8865 |
|
|
for (insn = get_insns (); insn != 0; insn = next)
|
8866 |
|
|
{
|
8867 |
|
|
unsigned int length;
|
8868 |
|
|
|
8869 |
|
|
next = NEXT_INSN (insn);
|
8870 |
|
|
|
8871 |
|
|
/* See the comment above vr4130_avoid_branch_rt_conflict for details.
|
8872 |
|
|
This isn't really related to the alignment pass, but we do it on
|
8873 |
|
|
the fly to avoid a separate instruction walk. */
|
8874 |
|
|
vr4130_avoid_branch_rt_conflict (insn);
|
8875 |
|
|
|
8876 |
|
|
if (USEFUL_INSN_P (insn))
|
8877 |
|
|
FOR_EACH_SUBINSN (subinsn, insn)
|
8878 |
|
|
{
|
8879 |
|
|
mips_sim_wait_insn (&state, subinsn);
|
8880 |
|
|
|
8881 |
|
|
/* If we want this instruction to issue in parallel with the
|
8882 |
|
|
previous one, make sure that the previous instruction is
|
8883 |
|
|
aligned. There are several reasons why this isn't worthwhile
|
8884 |
|
|
when the second instruction is a call:
|
8885 |
|
|
|
8886 |
|
|
- Calls are less likely to be performance critical,
|
8887 |
|
|
- There's a good chance that the delay slot can execute
|
8888 |
|
|
in parallel with the call.
|
8889 |
|
|
- The return address would then be unaligned.
|
8890 |
|
|
|
8891 |
|
|
In general, if we're going to insert a nop between instructions
|
8892 |
|
|
X and Y, it's better to insert it immediately after X. That
|
8893 |
|
|
way, if the nop makes Y aligned, it will also align any labels
|
8894 |
|
|
between X and Y. */
|
8895 |
|
|
if (state.insns_left != state.issue_rate
|
8896 |
|
|
&& !CALL_P (subinsn))
|
8897 |
|
|
{
|
8898 |
|
|
if (subinsn == SEQ_BEGIN (insn) && aligned_p)
|
8899 |
|
|
{
|
8900 |
|
|
/* SUBINSN is the first instruction in INSN and INSN is
|
8901 |
|
|
aligned. We want to align the previous instruction
|
8902 |
|
|
instead, so insert a nop between LAST2 and LAST.
|
8903 |
|
|
|
8904 |
|
|
Note that LAST could be either a single instruction
|
8905 |
|
|
or a branch with a delay slot. In the latter case,
|
8906 |
|
|
LAST, like INSN, is already aligned, but the delay
|
8907 |
|
|
slot must have some extra delay that stops it from
|
8908 |
|
|
issuing at the same time as the branch. We therefore
|
8909 |
|
|
insert a nop before the branch in order to align its
|
8910 |
|
|
delay slot. */
|
8911 |
|
|
emit_insn_after (gen_nop (), last2);
|
8912 |
|
|
aligned_p = false;
|
8913 |
|
|
}
|
8914 |
|
|
else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
|
8915 |
|
|
{
|
8916 |
|
|
/* SUBINSN is the delay slot of INSN, but INSN is
|
8917 |
|
|
currently unaligned. Insert a nop between
|
8918 |
|
|
LAST and INSN to align it. */
|
8919 |
|
|
emit_insn_after (gen_nop (), last);
|
8920 |
|
|
aligned_p = true;
|
8921 |
|
|
}
|
8922 |
|
|
}
|
8923 |
|
|
mips_sim_issue_insn (&state, subinsn);
|
8924 |
|
|
}
|
8925 |
|
|
mips_sim_finish_insn (&state, insn);
|
8926 |
|
|
|
8927 |
|
|
/* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
|
8928 |
|
|
length = get_attr_length (insn);
|
8929 |
|
|
if (length > 0)
|
8930 |
|
|
{
|
8931 |
|
|
/* If the instruction is an asm statement or multi-instruction
|
8932 |
|
|
mips.md patern, the length is only an estimate. Insert an
|
8933 |
|
|
8 byte alignment after it so that the following instructions
|
8934 |
|
|
can be handled correctly. */
|
8935 |
|
|
if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
|
8936 |
|
|
&& (recog_memoized (insn) < 0 || length >= 8))
|
8937 |
|
|
{
|
8938 |
|
|
next = emit_insn_after (gen_align (GEN_INT (3)), insn);
|
8939 |
|
|
next = NEXT_INSN (next);
|
8940 |
|
|
mips_sim_next_cycle (&state);
|
8941 |
|
|
aligned_p = true;
|
8942 |
|
|
}
|
8943 |
|
|
else if (length & 4)
|
8944 |
|
|
aligned_p = !aligned_p;
|
8945 |
|
|
last2 = last;
|
8946 |
|
|
last = insn;
|
8947 |
|
|
}
|
8948 |
|
|
|
8949 |
|
|
/* See whether INSN is an aligned label. */
|
8950 |
|
|
if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
|
8951 |
|
|
aligned_p = true;
|
8952 |
|
|
}
|
8953 |
|
|
dfa_finish ();
|
8954 |
|
|
}
|
8955 |
|
|
|
8956 |
|
|
/* Subroutine of mips_reorg. If there is a hazard between INSN
|
8957 |
|
|
and a previous instruction, avoid it by inserting nops after
|
8958 |
|
|
instruction AFTER.
|
8959 |
|
|
|
8960 |
|
|
*DELAYED_REG and *HILO_DELAY describe the hazards that apply at
|
8961 |
|
|
this point. If *DELAYED_REG is non-null, INSN must wait a cycle
|
8962 |
|
|
before using the value of that register. *HILO_DELAY counts the
|
8963 |
|
|
number of instructions since the last hilo hazard (that is,
|
8964 |
|
|
the number of instructions since the last mflo or mfhi).
|
8965 |
|
|
|
8966 |
|
|
After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
|
8967 |
|
|
for the next instruction.
|
8968 |
|
|
|
8969 |
|
|
LO_REG is an rtx for the LO register, used in dependence checking. */
|
8970 |
|
|
|
8971 |
|
|
static void
|
8972 |
|
|
mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
|
8973 |
|
|
rtx *delayed_reg, rtx lo_reg)
|
8974 |
|
|
{
|
8975 |
|
|
rtx pattern, set;
|
8976 |
|
|
int nops, ninsns;
|
8977 |
|
|
|
8978 |
|
|
if (!INSN_P (insn))
|
8979 |
|
|
return;
|
8980 |
|
|
|
8981 |
|
|
pattern = PATTERN (insn);
|
8982 |
|
|
|
8983 |
|
|
/* Do not put the whole function in .set noreorder if it contains
|
8984 |
|
|
an asm statement. We don't know whether there will be hazards
|
8985 |
|
|
between the asm statement and the gcc-generated code. */
|
8986 |
|
|
if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
|
8987 |
|
|
cfun->machine->all_noreorder_p = false;
|
8988 |
|
|
|
8989 |
|
|
/* Ignore zero-length instructions (barriers and the like). */
|
8990 |
|
|
ninsns = get_attr_length (insn) / 4;
|
8991 |
|
|
if (ninsns == 0)
|
8992 |
|
|
return;
|
8993 |
|
|
|
8994 |
|
|
/* Work out how many nops are needed. Note that we only care about
|
8995 |
|
|
registers that are explicitly mentioned in the instruction's pattern.
|
8996 |
|
|
It doesn't matter that calls use the argument registers or that they
|
8997 |
|
|
clobber hi and lo. */
|
8998 |
|
|
if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
|
8999 |
|
|
nops = 2 - *hilo_delay;
|
9000 |
|
|
else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
|
9001 |
|
|
nops = 1;
|
9002 |
|
|
else
|
9003 |
|
|
nops = 0;
|
9004 |
|
|
|
9005 |
|
|
/* Insert the nops between this instruction and the previous one.
|
9006 |
|
|
Each new nop takes us further from the last hilo hazard. */
|
9007 |
|
|
*hilo_delay += nops;
|
9008 |
|
|
while (nops-- > 0)
|
9009 |
|
|
emit_insn_after (gen_hazard_nop (), after);
|
9010 |
|
|
|
9011 |
|
|
/* Set up the state for the next instruction. */
|
9012 |
|
|
*hilo_delay += ninsns;
|
9013 |
|
|
*delayed_reg = 0;
|
9014 |
|
|
if (INSN_CODE (insn) >= 0)
|
9015 |
|
|
switch (get_attr_hazard (insn))
|
9016 |
|
|
{
|
9017 |
|
|
case HAZARD_NONE:
|
9018 |
|
|
break;
|
9019 |
|
|
|
9020 |
|
|
case HAZARD_HILO:
|
9021 |
|
|
*hilo_delay = 0;
|
9022 |
|
|
break;
|
9023 |
|
|
|
9024 |
|
|
case HAZARD_DELAY:
|
9025 |
|
|
set = single_set (insn);
|
9026 |
|
|
gcc_assert (set != 0);
|
9027 |
|
|
*delayed_reg = SET_DEST (set);
|
9028 |
|
|
break;
|
9029 |
|
|
}
|
9030 |
|
|
}
|
9031 |
|
|
|
9032 |
|
|
|
9033 |
|
|
/* Go through the instruction stream and insert nops where necessary.
|
9034 |
|
|
See if the whole function can then be put into .set noreorder &
|
9035 |
|
|
.set nomacro. */
|
9036 |
|
|
|
9037 |
|
|
static void
|
9038 |
|
|
mips_avoid_hazards (void)
|
9039 |
|
|
{
|
9040 |
|
|
rtx insn, last_insn, lo_reg, delayed_reg;
|
9041 |
|
|
int hilo_delay, i;
|
9042 |
|
|
|
9043 |
|
|
/* Force all instructions to be split into their final form. */
|
9044 |
|
|
split_all_insns_noflow ();
|
9045 |
|
|
|
9046 |
|
|
/* Recalculate instruction lengths without taking nops into account. */
|
9047 |
|
|
cfun->machine->ignore_hazard_length_p = true;
|
9048 |
|
|
shorten_branches (get_insns ());
|
9049 |
|
|
|
9050 |
|
|
cfun->machine->all_noreorder_p = true;
|
9051 |
|
|
|
9052 |
|
|
/* Profiled functions can't be all noreorder because the profiler
|
9053 |
|
|
support uses assembler macros. */
|
9054 |
|
|
if (current_function_profile)
|
9055 |
|
|
cfun->machine->all_noreorder_p = false;
|
9056 |
|
|
|
9057 |
|
|
/* Code compiled with -mfix-vr4120 can't be all noreorder because
|
9058 |
|
|
we rely on the assembler to work around some errata. */
|
9059 |
|
|
if (TARGET_FIX_VR4120)
|
9060 |
|
|
cfun->machine->all_noreorder_p = false;
|
9061 |
|
|
|
9062 |
|
|
/* The same is true for -mfix-vr4130 if we might generate mflo or
|
9063 |
|
|
mfhi instructions. Note that we avoid using mflo and mfhi if
|
9064 |
|
|
the VR4130 macc and dmacc instructions are available instead;
|
9065 |
|
|
see the *mfhilo_{si,di}_macc patterns. */
|
9066 |
|
|
if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
|
9067 |
|
|
cfun->machine->all_noreorder_p = false;
|
9068 |
|
|
|
9069 |
|
|
last_insn = 0;
|
9070 |
|
|
hilo_delay = 2;
|
9071 |
|
|
delayed_reg = 0;
|
9072 |
|
|
lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
|
9073 |
|
|
|
9074 |
|
|
for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
|
9075 |
|
|
if (INSN_P (insn))
|
9076 |
|
|
{
|
9077 |
|
|
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
9078 |
|
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
9079 |
|
|
mips_avoid_hazard (last_insn, XVECEXP (PATTERN (insn), 0, i),
|
9080 |
|
|
&hilo_delay, &delayed_reg, lo_reg);
|
9081 |
|
|
else
|
9082 |
|
|
mips_avoid_hazard (last_insn, insn, &hilo_delay,
|
9083 |
|
|
&delayed_reg, lo_reg);
|
9084 |
|
|
|
9085 |
|
|
last_insn = insn;
|
9086 |
|
|
}
|
9087 |
|
|
}
|
9088 |
|
|
|
9089 |
|
|
|
9090 |
|
|
/* Implement TARGET_MACHINE_DEPENDENT_REORG. */
|
9091 |
|
|
|
9092 |
|
|
static void
|
9093 |
|
|
mips_reorg (void)
|
9094 |
|
|
{
|
9095 |
|
|
if (TARGET_MIPS16)
|
9096 |
|
|
mips16_lay_out_constants ();
|
9097 |
|
|
else if (TARGET_EXPLICIT_RELOCS)
|
9098 |
|
|
{
|
9099 |
|
|
if (mips_flag_delayed_branch)
|
9100 |
|
|
dbr_schedule (get_insns ());
|
9101 |
|
|
mips_avoid_hazards ();
|
9102 |
|
|
if (TUNE_MIPS4130 && TARGET_VR4130_ALIGN)
|
9103 |
|
|
vr4130_align_insns ();
|
9104 |
|
|
}
|
9105 |
|
|
}
|
9106 |
|
|
|
9107 |
|
|
/* This function does three things:
|
9108 |
|
|
|
9109 |
|
|
- Register the special divsi3 and modsi3 functions if -mfix-vr4120.
|
9110 |
|
|
- Register the mips16 hardware floating point stubs.
|
9111 |
|
|
- Register the gofast functions if selected using --enable-gofast. */
|
9112 |
|
|
|
9113 |
|
|
#include "config/gofast.h"
|
9114 |
|
|
|
9115 |
|
|
static void
|
9116 |
|
|
mips_init_libfuncs (void)
|
9117 |
|
|
{
|
9118 |
|
|
if (TARGET_FIX_VR4120)
|
9119 |
|
|
{
|
9120 |
|
|
set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
|
9121 |
|
|
set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
|
9122 |
|
|
}
|
9123 |
|
|
|
9124 |
|
|
if (TARGET_MIPS16 && mips16_hard_float)
|
9125 |
|
|
{
|
9126 |
|
|
set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
|
9127 |
|
|
set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
|
9128 |
|
|
set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
|
9129 |
|
|
set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
|
9130 |
|
|
|
9131 |
|
|
set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
|
9132 |
|
|
set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
|
9133 |
|
|
set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
|
9134 |
|
|
set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
|
9135 |
|
|
set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
|
9136 |
|
|
set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
|
9137 |
|
|
|
9138 |
|
|
set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
|
9139 |
|
|
set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
|
9140 |
|
|
|
9141 |
|
|
if (TARGET_DOUBLE_FLOAT)
|
9142 |
|
|
{
|
9143 |
|
|
set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
|
9144 |
|
|
set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
|
9145 |
|
|
set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
|
9146 |
|
|
set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
|
9147 |
|
|
|
9148 |
|
|
set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
|
9149 |
|
|
set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
|
9150 |
|
|
set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
|
9151 |
|
|
set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
|
9152 |
|
|
set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
|
9153 |
|
|
set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
|
9154 |
|
|
|
9155 |
|
|
set_conv_libfunc (sext_optab, DFmode, SFmode, "__mips16_extendsfdf2");
|
9156 |
|
|
set_conv_libfunc (trunc_optab, SFmode, DFmode, "__mips16_truncdfsf2");
|
9157 |
|
|
|
9158 |
|
|
set_conv_libfunc (sfix_optab, SImode, DFmode, "__mips16_fix_truncdfsi");
|
9159 |
|
|
set_conv_libfunc (sfloat_optab, DFmode, SImode, "__mips16_floatsidf");
|
9160 |
|
|
}
|
9161 |
|
|
}
|
9162 |
|
|
else
|
9163 |
|
|
gofast_maybe_init_libfuncs ();
|
9164 |
|
|
}
|
9165 |
|
|
|
9166 |
|
|
/* Return a number assessing the cost of moving a register in class
|
9167 |
|
|
FROM to class TO. The classes are expressed using the enumeration
|
9168 |
|
|
values such as `GENERAL_REGS'. A value of 2 is the default; other
|
9169 |
|
|
values are interpreted relative to that.
|
9170 |
|
|
|
9171 |
|
|
It is not required that the cost always equal 2 when FROM is the
|
9172 |
|
|
same as TO; on some machines it is expensive to move between
|
9173 |
|
|
registers if they are not general registers.
|
9174 |
|
|
|
9175 |
|
|
If reload sees an insn consisting of a single `set' between two
|
9176 |
|
|
hard registers, and if `REGISTER_MOVE_COST' applied to their
|
9177 |
|
|
classes returns a value of 2, reload does not check to ensure that
|
9178 |
|
|
the constraints of the insn are met. Setting a cost of other than
|
9179 |
|
|
2 will allow reload to verify that the constraints are met. You
|
9180 |
|
|
should do this if the `movM' pattern's constraints do not allow
|
9181 |
|
|
such copying.
|
9182 |
|
|
|
9183 |
|
|
??? We make the cost of moving from HI/LO into general
|
9184 |
|
|
registers the same as for one of moving general registers to
|
9185 |
|
|
HI/LO for TARGET_MIPS16 in order to prevent allocating a
|
9186 |
|
|
pseudo to HI/LO. This might hurt optimizations though, it
|
9187 |
|
|
isn't clear if it is wise. And it might not work in all cases. We
|
9188 |
|
|
could solve the DImode LO reg problem by using a multiply, just
|
9189 |
|
|
like reload_{in,out}si. We could solve the SImode/HImode HI reg
|
9190 |
|
|
problem by using divide instructions. divu puts the remainder in
|
9191 |
|
|
the HI reg, so doing a divide by -1 will move the value in the HI
|
9192 |
|
|
reg for all values except -1. We could handle that case by using a
|
9193 |
|
|
signed divide, e.g. -1 / 2 (or maybe 1 / -2?). We'd have to emit
|
9194 |
|
|
a compare/branch to test the input value to see which instruction
|
9195 |
|
|
we need to use. This gets pretty messy, but it is feasible. */
|
9196 |
|
|
|
9197 |
|
|
int
|
9198 |
|
|
mips_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
|
9199 |
|
|
enum reg_class to, enum reg_class from)
|
9200 |
|
|
{
|
9201 |
|
|
if (from == M16_REGS && GR_REG_CLASS_P (to))
|
9202 |
|
|
return 2;
|
9203 |
|
|
else if (from == M16_NA_REGS && GR_REG_CLASS_P (to))
|
9204 |
|
|
return 2;
|
9205 |
|
|
else if (GR_REG_CLASS_P (from))
|
9206 |
|
|
{
|
9207 |
|
|
if (to == M16_REGS)
|
9208 |
|
|
return 2;
|
9209 |
|
|
else if (to == M16_NA_REGS)
|
9210 |
|
|
return 2;
|
9211 |
|
|
else if (GR_REG_CLASS_P (to))
|
9212 |
|
|
{
|
9213 |
|
|
if (TARGET_MIPS16)
|
9214 |
|
|
return 4;
|
9215 |
|
|
else
|
9216 |
|
|
return 2;
|
9217 |
|
|
}
|
9218 |
|
|
else if (to == FP_REGS)
|
9219 |
|
|
return 4;
|
9220 |
|
|
else if (reg_class_subset_p (to, ACC_REGS))
|
9221 |
|
|
{
|
9222 |
|
|
if (TARGET_MIPS16)
|
9223 |
|
|
return 12;
|
9224 |
|
|
else
|
9225 |
|
|
return 6;
|
9226 |
|
|
}
|
9227 |
|
|
else if (COP_REG_CLASS_P (to))
|
9228 |
|
|
{
|
9229 |
|
|
return 5;
|
9230 |
|
|
}
|
9231 |
|
|
}
|
9232 |
|
|
else if (from == FP_REGS)
|
9233 |
|
|
{
|
9234 |
|
|
if (GR_REG_CLASS_P (to))
|
9235 |
|
|
return 4;
|
9236 |
|
|
else if (to == FP_REGS)
|
9237 |
|
|
return 2;
|
9238 |
|
|
else if (to == ST_REGS)
|
9239 |
|
|
return 8;
|
9240 |
|
|
}
|
9241 |
|
|
else if (reg_class_subset_p (from, ACC_REGS))
|
9242 |
|
|
{
|
9243 |
|
|
if (GR_REG_CLASS_P (to))
|
9244 |
|
|
{
|
9245 |
|
|
if (TARGET_MIPS16)
|
9246 |
|
|
return 12;
|
9247 |
|
|
else
|
9248 |
|
|
return 6;
|
9249 |
|
|
}
|
9250 |
|
|
}
|
9251 |
|
|
else if (from == ST_REGS && GR_REG_CLASS_P (to))
|
9252 |
|
|
return 4;
|
9253 |
|
|
else if (COP_REG_CLASS_P (from))
|
9254 |
|
|
{
|
9255 |
|
|
return 5;
|
9256 |
|
|
}
|
9257 |
|
|
|
9258 |
|
|
/* Fall through.
|
9259 |
|
|
??? What cases are these? Shouldn't we return 2 here? */
|
9260 |
|
|
|
9261 |
|
|
return 12;
|
9262 |
|
|
}
|
9263 |
|
|
|
9264 |
|
|
/* Return the length of INSN. LENGTH is the initial length computed by
|
9265 |
|
|
attributes in the machine-description file. */
|
9266 |
|
|
|
9267 |
|
|
int
|
9268 |
|
|
mips_adjust_insn_length (rtx insn, int length)
|
9269 |
|
|
{
|
9270 |
|
|
/* A unconditional jump has an unfilled delay slot if it is not part
|
9271 |
|
|
of a sequence. A conditional jump normally has a delay slot, but
|
9272 |
|
|
does not on MIPS16. */
|
9273 |
|
|
if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
|
9274 |
|
|
length += 4;
|
9275 |
|
|
|
9276 |
|
|
/* See how many nops might be needed to avoid hardware hazards. */
|
9277 |
|
|
if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
|
9278 |
|
|
switch (get_attr_hazard (insn))
|
9279 |
|
|
{
|
9280 |
|
|
case HAZARD_NONE:
|
9281 |
|
|
break;
|
9282 |
|
|
|
9283 |
|
|
case HAZARD_DELAY:
|
9284 |
|
|
length += 4;
|
9285 |
|
|
break;
|
9286 |
|
|
|
9287 |
|
|
case HAZARD_HILO:
|
9288 |
|
|
length += 8;
|
9289 |
|
|
break;
|
9290 |
|
|
}
|
9291 |
|
|
|
9292 |
|
|
/* All MIPS16 instructions are a measly two bytes. */
|
9293 |
|
|
if (TARGET_MIPS16)
|
9294 |
|
|
length /= 2;
|
9295 |
|
|
|
9296 |
|
|
return length;
|
9297 |
|
|
}
|
9298 |
|
|
|
9299 |
|
|
|
9300 |
|
|
/* Return an asm sequence to start a noat block and load the address
|
9301 |
|
|
of a label into $1. */
|
9302 |
|
|
|
9303 |
|
|
const char *
|
9304 |
|
|
mips_output_load_label (void)
|
9305 |
|
|
{
|
9306 |
|
|
if (TARGET_EXPLICIT_RELOCS)
|
9307 |
|
|
switch (mips_abi)
|
9308 |
|
|
{
|
9309 |
|
|
case ABI_N32:
|
9310 |
|
|
return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
|
9311 |
|
|
|
9312 |
|
|
case ABI_64:
|
9313 |
|
|
return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
|
9314 |
|
|
|
9315 |
|
|
default:
|
9316 |
|
|
if (ISA_HAS_LOAD_DELAY)
|
9317 |
|
|
return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
|
9318 |
|
|
return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
|
9319 |
|
|
}
|
9320 |
|
|
else
|
9321 |
|
|
{
|
9322 |
|
|
if (Pmode == DImode)
|
9323 |
|
|
return "%[dla\t%@,%0";
|
9324 |
|
|
else
|
9325 |
|
|
return "%[la\t%@,%0";
|
9326 |
|
|
}
|
9327 |
|
|
}
|
9328 |
|
|
|
9329 |
|
|
/* Return the assembly code for INSN, which has the operands given by
|
9330 |
|
|
OPERANDS, and which branches to OPERANDS[1] if some condition is true.
|
9331 |
|
|
BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
|
9332 |
|
|
is in range of a direct branch. BRANCH_IF_FALSE is an inverted
|
9333 |
|
|
version of BRANCH_IF_TRUE. */
|
9334 |
|
|
|
9335 |
|
|
const char *
|
9336 |
|
|
mips_output_conditional_branch (rtx insn, rtx *operands,
|
9337 |
|
|
const char *branch_if_true,
|
9338 |
|
|
const char *branch_if_false)
|
9339 |
|
|
{
|
9340 |
|
|
unsigned int length;
|
9341 |
|
|
rtx taken, not_taken;
|
9342 |
|
|
|
9343 |
|
|
length = get_attr_length (insn);
|
9344 |
|
|
if (length <= 8)
|
9345 |
|
|
{
|
9346 |
|
|
/* Just a simple conditional branch. */
|
9347 |
|
|
mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
|
9348 |
|
|
return branch_if_true;
|
9349 |
|
|
}
|
9350 |
|
|
|
9351 |
|
|
/* Generate a reversed branch around a direct jump. This fallback does
|
9352 |
|
|
not use branch-likely instructions. */
|
9353 |
|
|
mips_branch_likely = false;
|
9354 |
|
|
not_taken = gen_label_rtx ();
|
9355 |
|
|
taken = operands[1];
|
9356 |
|
|
|
9357 |
|
|
/* Generate the reversed branch to NOT_TAKEN. */
|
9358 |
|
|
operands[1] = not_taken;
|
9359 |
|
|
output_asm_insn (branch_if_false, operands);
|
9360 |
|
|
|
9361 |
|
|
/* If INSN has a delay slot, we must provide delay slots for both the
|
9362 |
|
|
branch to NOT_TAKEN and the conditional jump. We must also ensure
|
9363 |
|
|
that INSN's delay slot is executed in the appropriate cases. */
|
9364 |
|
|
if (final_sequence)
|
9365 |
|
|
{
|
9366 |
|
|
/* This first delay slot will always be executed, so use INSN's
|
9367 |
|
|
delay slot if is not annulled. */
|
9368 |
|
|
if (!INSN_ANNULLED_BRANCH_P (insn))
|
9369 |
|
|
{
|
9370 |
|
|
final_scan_insn (XVECEXP (final_sequence, 0, 1),
|
9371 |
|
|
asm_out_file, optimize, 1, NULL);
|
9372 |
|
|
INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
|
9373 |
|
|
}
|
9374 |
|
|
else
|
9375 |
|
|
output_asm_insn ("nop", 0);
|
9376 |
|
|
fprintf (asm_out_file, "\n");
|
9377 |
|
|
}
|
9378 |
|
|
|
9379 |
|
|
/* Output the unconditional branch to TAKEN. */
|
9380 |
|
|
if (length <= 16)
|
9381 |
|
|
output_asm_insn ("j\t%0%/", &taken);
|
9382 |
|
|
else
|
9383 |
|
|
{
|
9384 |
|
|
output_asm_insn (mips_output_load_label (), &taken);
|
9385 |
|
|
output_asm_insn ("jr\t%@%]%/", 0);
|
9386 |
|
|
}
|
9387 |
|
|
|
9388 |
|
|
/* Now deal with its delay slot; see above. */
|
9389 |
|
|
if (final_sequence)
|
9390 |
|
|
{
|
9391 |
|
|
/* This delay slot will only be executed if the branch is taken.
|
9392 |
|
|
Use INSN's delay slot if is annulled. */
|
9393 |
|
|
if (INSN_ANNULLED_BRANCH_P (insn))
|
9394 |
|
|
{
|
9395 |
|
|
final_scan_insn (XVECEXP (final_sequence, 0, 1),
|
9396 |
|
|
asm_out_file, optimize, 1, NULL);
|
9397 |
|
|
INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
|
9398 |
|
|
}
|
9399 |
|
|
else
|
9400 |
|
|
output_asm_insn ("nop", 0);
|
9401 |
|
|
fprintf (asm_out_file, "\n");
|
9402 |
|
|
}
|
9403 |
|
|
|
9404 |
|
|
/* Output NOT_TAKEN. */
|
9405 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
9406 |
|
|
CODE_LABEL_NUMBER (not_taken));
|
9407 |
|
|
return "";
|
9408 |
|
|
}
|
9409 |
|
|
|
9410 |
|
|
/* Return the assembly code for INSN, which branches to OPERANDS[1]
|
9411 |
|
|
if some ordered condition is true. The condition is given by
|
9412 |
|
|
OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
|
9413 |
|
|
OPERANDS[0]. OPERANDS[2] is the comparison's first operand;
|
9414 |
|
|
its second is always zero. */
|
9415 |
|
|
|
9416 |
|
|
const char *
|
9417 |
|
|
mips_output_order_conditional_branch (rtx insn, rtx *operands, bool inverted_p)
|
9418 |
|
|
{
|
9419 |
|
|
const char *branch[2];
|
9420 |
|
|
|
9421 |
|
|
/* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
|
9422 |
|
|
Make BRANCH[0] branch on the inverse condition. */
|
9423 |
|
|
switch (GET_CODE (operands[0]))
|
9424 |
|
|
{
|
9425 |
|
|
/* These cases are equivalent to comparisons against zero. */
|
9426 |
|
|
case LEU:
|
9427 |
|
|
inverted_p = !inverted_p;
|
9428 |
|
|
/* Fall through. */
|
9429 |
|
|
case GTU:
|
9430 |
|
|
branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%1");
|
9431 |
|
|
branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%1");
|
9432 |
|
|
break;
|
9433 |
|
|
|
9434 |
|
|
/* These cases are always true or always false. */
|
9435 |
|
|
case LTU:
|
9436 |
|
|
inverted_p = !inverted_p;
|
9437 |
|
|
/* Fall through. */
|
9438 |
|
|
case GEU:
|
9439 |
|
|
branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%1");
|
9440 |
|
|
branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%1");
|
9441 |
|
|
break;
|
9442 |
|
|
|
9443 |
|
|
default:
|
9444 |
|
|
branch[!inverted_p] = MIPS_BRANCH ("b%C0z", "%2,%1");
|
9445 |
|
|
branch[inverted_p] = MIPS_BRANCH ("b%N0z", "%2,%1");
|
9446 |
|
|
break;
|
9447 |
|
|
}
|
9448 |
|
|
return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
|
9449 |
|
|
}
|
9450 |
|
|
|
9451 |
|
|
/* Used to output div or ddiv instruction DIVISION, which has the operands
|
9452 |
|
|
given by OPERANDS. Add in a divide-by-zero check if needed.
|
9453 |
|
|
|
9454 |
|
|
When working around R4000 and R4400 errata, we need to make sure that
|
9455 |
|
|
the division is not immediately followed by a shift[1][2]. We also
|
9456 |
|
|
need to stop the division from being put into a branch delay slot[3].
|
9457 |
|
|
The easiest way to avoid both problems is to add a nop after the
|
9458 |
|
|
division. When a divide-by-zero check is needed, this nop can be
|
9459 |
|
|
used to fill the branch delay slot.
|
9460 |
|
|
|
9461 |
|
|
[1] If a double-word or a variable shift executes immediately
|
9462 |
|
|
after starting an integer division, the shift may give an
|
9463 |
|
|
incorrect result. See quotations of errata #16 and #28 from
|
9464 |
|
|
"MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
|
9465 |
|
|
in mips.md for details.
|
9466 |
|
|
|
9467 |
|
|
[2] A similar bug to [1] exists for all revisions of the
|
9468 |
|
|
R4000 and the R4400 when run in an MC configuration.
|
9469 |
|
|
From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
|
9470 |
|
|
|
9471 |
|
|
"19. In this following sequence:
|
9472 |
|
|
|
9473 |
|
|
ddiv (or ddivu or div or divu)
|
9474 |
|
|
dsll32 (or dsrl32, dsra32)
|
9475 |
|
|
|
9476 |
|
|
if an MPT stall occurs, while the divide is slipping the cpu
|
9477 |
|
|
pipeline, then the following double shift would end up with an
|
9478 |
|
|
incorrect result.
|
9479 |
|
|
|
9480 |
|
|
Workaround: The compiler needs to avoid generating any
|
9481 |
|
|
sequence with divide followed by extended double shift."
|
9482 |
|
|
|
9483 |
|
|
This erratum is also present in "MIPS R4400MC Errata, Processor
|
9484 |
|
|
Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
|
9485 |
|
|
& 3.0" as errata #10 and #4, respectively.
|
9486 |
|
|
|
9487 |
|
|
[3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
|
9488 |
|
|
(also valid for MIPS R4000MC processors):
|
9489 |
|
|
|
9490 |
|
|
"52. R4000SC: This bug does not apply for the R4000PC.
|
9491 |
|
|
|
9492 |
|
|
There are two flavors of this bug:
|
9493 |
|
|
|
9494 |
|
|
1) If the instruction just after divide takes an RF exception
|
9495 |
|
|
(tlb-refill, tlb-invalid) and gets an instruction cache
|
9496 |
|
|
miss (both primary and secondary) and the line which is
|
9497 |
|
|
currently in secondary cache at this index had the first
|
9498 |
|
|
data word, where the bits 5..2 are set, then R4000 would
|
9499 |
|
|
get a wrong result for the div.
|
9500 |
|
|
|
9501 |
|
|
##1
|
9502 |
|
|
nop
|
9503 |
|
|
div r8, r9
|
9504 |
|
|
------------------- # end-of page. -tlb-refill
|
9505 |
|
|
nop
|
9506 |
|
|
##2
|
9507 |
|
|
nop
|
9508 |
|
|
div r8, r9
|
9509 |
|
|
------------------- # end-of page. -tlb-invalid
|
9510 |
|
|
nop
|
9511 |
|
|
|
9512 |
|
|
2) If the divide is in the taken branch delay slot, where the
|
9513 |
|
|
target takes RF exception and gets an I-cache miss for the
|
9514 |
|
|
exception vector or where I-cache miss occurs for the
|
9515 |
|
|
target address, under the above mentioned scenarios, the
|
9516 |
|
|
div would get wrong results.
|
9517 |
|
|
|
9518 |
|
|
##1
|
9519 |
|
|
j r2 # to next page mapped or unmapped
|
9520 |
|
|
div r8,r9 # this bug would be there as long
|
9521 |
|
|
# as there is an ICache miss and
|
9522 |
|
|
nop # the "data pattern" is present
|
9523 |
|
|
|
9524 |
|
|
##2
|
9525 |
|
|
beq r0, r0, NextPage # to Next page
|
9526 |
|
|
div r8,r9
|
9527 |
|
|
nop
|
9528 |
|
|
|
9529 |
|
|
This bug is present for div, divu, ddiv, and ddivu
|
9530 |
|
|
instructions.
|
9531 |
|
|
|
9532 |
|
|
Workaround: For item 1), OS could make sure that the next page
|
9533 |
|
|
after the divide instruction is also mapped. For item 2), the
|
9534 |
|
|
compiler could make sure that the divide instruction is not in
|
9535 |
|
|
the branch delay slot."
|
9536 |
|
|
|
9537 |
|
|
These processors have PRId values of 0x00004220 and 0x00004300 for
|
9538 |
|
|
the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
|
9539 |
|
|
|
9540 |
|
|
const char *
|
9541 |
|
|
mips_output_division (const char *division, rtx *operands)
|
9542 |
|
|
{
|
9543 |
|
|
const char *s;
|
9544 |
|
|
|
9545 |
|
|
s = division;
|
9546 |
|
|
if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
|
9547 |
|
|
{
|
9548 |
|
|
output_asm_insn (s, operands);
|
9549 |
|
|
s = "nop";
|
9550 |
|
|
}
|
9551 |
|
|
if (TARGET_CHECK_ZERO_DIV)
|
9552 |
|
|
{
|
9553 |
|
|
if (TARGET_MIPS16)
|
9554 |
|
|
{
|
9555 |
|
|
output_asm_insn (s, operands);
|
9556 |
|
|
s = "bnez\t%2,1f\n\tbreak\t7\n1:";
|
9557 |
|
|
}
|
9558 |
|
|
else if (GENERATE_DIVIDE_TRAPS)
|
9559 |
|
|
{
|
9560 |
|
|
output_asm_insn (s, operands);
|
9561 |
|
|
s = "teq\t%2,%.,7";
|
9562 |
|
|
}
|
9563 |
|
|
else
|
9564 |
|
|
{
|
9565 |
|
|
output_asm_insn ("%(bne\t%2,%.,1f", operands);
|
9566 |
|
|
output_asm_insn (s, operands);
|
9567 |
|
|
s = "break\t7%)\n1:";
|
9568 |
|
|
}
|
9569 |
|
|
}
|
9570 |
|
|
return s;
|
9571 |
|
|
}
|
9572 |
|
|
|
9573 |
|
|
/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
|
9574 |
|
|
with a final "000" replaced by "k". Ignore case.
|
9575 |
|
|
|
9576 |
|
|
Note: this function is shared between GCC and GAS. */
|
9577 |
|
|
|
9578 |
|
|
static bool
|
9579 |
|
|
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
|
9580 |
|
|
{
|
9581 |
|
|
while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
|
9582 |
|
|
given++, canonical++;
|
9583 |
|
|
|
9584 |
|
|
return ((*given == 0 && *canonical == 0)
|
9585 |
|
|
|| (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
|
9586 |
|
|
}
|
9587 |
|
|
|
9588 |
|
|
|
9589 |
|
|
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
|
9590 |
|
|
CPU name. We've traditionally allowed a lot of variation here.
|
9591 |
|
|
|
9592 |
|
|
Note: this function is shared between GCC and GAS. */
|
9593 |
|
|
|
9594 |
|
|
static bool
|
9595 |
|
|
mips_matching_cpu_name_p (const char *canonical, const char *given)
|
9596 |
|
|
{
|
9597 |
|
|
/* First see if the name matches exactly, or with a final "000"
|
9598 |
|
|
turned into "k". */
|
9599 |
|
|
if (mips_strict_matching_cpu_name_p (canonical, given))
|
9600 |
|
|
return true;
|
9601 |
|
|
|
9602 |
|
|
/* If not, try comparing based on numerical designation alone.
|
9603 |
|
|
See if GIVEN is an unadorned number, or 'r' followed by a number. */
|
9604 |
|
|
if (TOLOWER (*given) == 'r')
|
9605 |
|
|
given++;
|
9606 |
|
|
if (!ISDIGIT (*given))
|
9607 |
|
|
return false;
|
9608 |
|
|
|
9609 |
|
|
/* Skip over some well-known prefixes in the canonical name,
|
9610 |
|
|
hoping to find a number there too. */
|
9611 |
|
|
if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
|
9612 |
|
|
canonical += 2;
|
9613 |
|
|
else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
|
9614 |
|
|
canonical += 2;
|
9615 |
|
|
else if (TOLOWER (canonical[0]) == 'r')
|
9616 |
|
|
canonical += 1;
|
9617 |
|
|
|
9618 |
|
|
return mips_strict_matching_cpu_name_p (canonical, given);
|
9619 |
|
|
}
|
9620 |
|
|
|
9621 |
|
|
|
9622 |
|
|
/* Return the mips_cpu_info entry for the processor or ISA given
|
9623 |
|
|
by CPU_STRING. Return null if the string isn't recognized.
|
9624 |
|
|
|
9625 |
|
|
A similar function exists in GAS. */
|
9626 |
|
|
|
9627 |
|
|
static const struct mips_cpu_info *
|
9628 |
|
|
mips_parse_cpu (const char *cpu_string)
|
9629 |
|
|
{
|
9630 |
|
|
const struct mips_cpu_info *p;
|
9631 |
|
|
const char *s;
|
9632 |
|
|
|
9633 |
|
|
/* In the past, we allowed upper-case CPU names, but it doesn't
|
9634 |
|
|
work well with the multilib machinery. */
|
9635 |
|
|
for (s = cpu_string; *s != 0; s++)
|
9636 |
|
|
if (ISUPPER (*s))
|
9637 |
|
|
{
|
9638 |
|
|
warning (0, "the cpu name must be lower case");
|
9639 |
|
|
break;
|
9640 |
|
|
}
|
9641 |
|
|
|
9642 |
|
|
/* 'from-abi' selects the most compatible architecture for the given
|
9643 |
|
|
ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
|
9644 |
|
|
EABIs, we have to decide whether we're using the 32-bit or 64-bit
|
9645 |
|
|
version. Look first at the -mgp options, if given, otherwise base
|
9646 |
|
|
the choice on MASK_64BIT in TARGET_DEFAULT. */
|
9647 |
|
|
if (strcasecmp (cpu_string, "from-abi") == 0)
|
9648 |
|
|
return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
|
9649 |
|
|
: ABI_NEEDS_64BIT_REGS ? 3
|
9650 |
|
|
: (TARGET_64BIT ? 3 : 1));
|
9651 |
|
|
|
9652 |
|
|
/* 'default' has traditionally been a no-op. Probably not very useful. */
|
9653 |
|
|
if (strcasecmp (cpu_string, "default") == 0)
|
9654 |
|
|
return 0;
|
9655 |
|
|
|
9656 |
|
|
for (p = mips_cpu_info_table; p->name != 0; p++)
|
9657 |
|
|
if (mips_matching_cpu_name_p (p->name, cpu_string))
|
9658 |
|
|
return p;
|
9659 |
|
|
|
9660 |
|
|
return 0;
|
9661 |
|
|
}
|
9662 |
|
|
|
9663 |
|
|
|
9664 |
|
|
/* Return the processor associated with the given ISA level, or null
|
9665 |
|
|
if the ISA isn't valid. */
|
9666 |
|
|
|
9667 |
|
|
static const struct mips_cpu_info *
|
9668 |
|
|
mips_cpu_info_from_isa (int isa)
|
9669 |
|
|
{
|
9670 |
|
|
const struct mips_cpu_info *p;
|
9671 |
|
|
|
9672 |
|
|
for (p = mips_cpu_info_table; p->name != 0; p++)
|
9673 |
|
|
if (p->isa == isa)
|
9674 |
|
|
return p;
|
9675 |
|
|
|
9676 |
|
|
return 0;
|
9677 |
|
|
}
|
9678 |
|
|
|
9679 |
|
|
/* Implement HARD_REGNO_NREGS. The size of FP registers is controlled
|
9680 |
|
|
by UNITS_PER_FPREG. The size of FP status registers is always 4, because
|
9681 |
|
|
they only hold condition code modes, and CCmode is always considered to
|
9682 |
|
|
be 4 bytes wide. All other registers are word sized. */
|
9683 |
|
|
|
9684 |
|
|
unsigned int
|
9685 |
|
|
mips_hard_regno_nregs (int regno, enum machine_mode mode)
|
9686 |
|
|
{
|
9687 |
|
|
if (ST_REG_P (regno))
|
9688 |
|
|
return ((GET_MODE_SIZE (mode) + 3) / 4);
|
9689 |
|
|
else if (! FP_REG_P (regno))
|
9690 |
|
|
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
|
9691 |
|
|
else
|
9692 |
|
|
return ((GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG);
|
9693 |
|
|
}
|
9694 |
|
|
|
9695 |
|
|
/* Implement TARGET_RETURN_IN_MEMORY. Under the old (i.e., 32 and O64 ABIs)
|
9696 |
|
|
all BLKmode objects are returned in memory. Under the new (N32 and
|
9697 |
|
|
64-bit MIPS ABIs) small structures are returned in a register.
|
9698 |
|
|
Objects with varying size must still be returned in memory, of
|
9699 |
|
|
course. */
|
9700 |
|
|
|
9701 |
|
|
static bool
|
9702 |
|
|
mips_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
|
9703 |
|
|
{
|
9704 |
|
|
if (TARGET_OLDABI)
|
9705 |
|
|
return (TYPE_MODE (type) == BLKmode);
|
9706 |
|
|
else
|
9707 |
|
|
return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
|
9708 |
|
|
|| (int_size_in_bytes (type) == -1));
|
9709 |
|
|
}
|
9710 |
|
|
|
9711 |
|
|
static bool
|
9712 |
|
|
mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
|
9713 |
|
|
{
|
9714 |
|
|
return !TARGET_OLDABI;
|
9715 |
|
|
}
|
9716 |
|
|
|
9717 |
|
|
/* Return true if INSN is a multiply-add or multiply-subtract
|
9718 |
|
|
instruction and PREV assigns to the accumulator operand. */
|
9719 |
|
|
|
9720 |
|
|
bool
|
9721 |
|
|
mips_linked_madd_p (rtx prev, rtx insn)
|
9722 |
|
|
{
|
9723 |
|
|
rtx x;
|
9724 |
|
|
|
9725 |
|
|
x = single_set (insn);
|
9726 |
|
|
if (x == 0)
|
9727 |
|
|
return false;
|
9728 |
|
|
|
9729 |
|
|
x = SET_SRC (x);
|
9730 |
|
|
|
9731 |
|
|
if (GET_CODE (x) == PLUS
|
9732 |
|
|
&& GET_CODE (XEXP (x, 0)) == MULT
|
9733 |
|
|
&& reg_set_p (XEXP (x, 1), prev))
|
9734 |
|
|
return true;
|
9735 |
|
|
|
9736 |
|
|
if (GET_CODE (x) == MINUS
|
9737 |
|
|
&& GET_CODE (XEXP (x, 1)) == MULT
|
9738 |
|
|
&& reg_set_p (XEXP (x, 0), prev))
|
9739 |
|
|
return true;
|
9740 |
|
|
|
9741 |
|
|
return false;
|
9742 |
|
|
}
|
9743 |
|
|
|
9744 |
|
|
/* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
|
9745 |
|
|
that may clobber hi or lo. */
|
9746 |
|
|
|
9747 |
|
|
static rtx mips_macc_chains_last_hilo;
|
9748 |
|
|
|
9749 |
|
|
/* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
|
9750 |
|
|
been scheduled, updating mips_macc_chains_last_hilo appropriately. */
|
9751 |
|
|
|
9752 |
|
|
static void
|
9753 |
|
|
mips_macc_chains_record (rtx insn)
|
9754 |
|
|
{
|
9755 |
|
|
if (get_attr_may_clobber_hilo (insn))
|
9756 |
|
|
mips_macc_chains_last_hilo = insn;
|
9757 |
|
|
}
|
9758 |
|
|
|
9759 |
|
|
/* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
|
9760 |
|
|
has NREADY elements, looking for a multiply-add or multiply-subtract
|
9761 |
|
|
instruction that is cumulative with mips_macc_chains_last_hilo.
|
9762 |
|
|
If there is one, promote it ahead of anything else that might
|
9763 |
|
|
clobber hi or lo. */
|
9764 |
|
|
|
9765 |
|
|
static void
|
9766 |
|
|
mips_macc_chains_reorder (rtx *ready, int nready)
|
9767 |
|
|
{
|
9768 |
|
|
int i, j;
|
9769 |
|
|
|
9770 |
|
|
if (mips_macc_chains_last_hilo != 0)
|
9771 |
|
|
for (i = nready - 1; i >= 0; i--)
|
9772 |
|
|
if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
|
9773 |
|
|
{
|
9774 |
|
|
for (j = nready - 1; j > i; j--)
|
9775 |
|
|
if (recog_memoized (ready[j]) >= 0
|
9776 |
|
|
&& get_attr_may_clobber_hilo (ready[j]))
|
9777 |
|
|
{
|
9778 |
|
|
mips_promote_ready (ready, i, j);
|
9779 |
|
|
break;
|
9780 |
|
|
}
|
9781 |
|
|
break;
|
9782 |
|
|
}
|
9783 |
|
|
}
|
9784 |
|
|
|
9785 |
|
|
/* The last instruction to be scheduled. */
|
9786 |
|
|
|
9787 |
|
|
static rtx vr4130_last_insn;
|
9788 |
|
|
|
9789 |
|
|
/* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
|
9790 |
|
|
points to an rtx that is initially an instruction. Nullify the rtx
|
9791 |
|
|
if the instruction uses the value of register X. */
|
9792 |
|
|
|
9793 |
|
|
static void
|
9794 |
|
|
vr4130_true_reg_dependence_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
|
9795 |
|
|
{
|
9796 |
|
|
rtx *insn_ptr = data;
|
9797 |
|
|
if (REG_P (x)
|
9798 |
|
|
&& *insn_ptr != 0
|
9799 |
|
|
&& reg_referenced_p (x, PATTERN (*insn_ptr)))
|
9800 |
|
|
*insn_ptr = 0;
|
9801 |
|
|
}
|
9802 |
|
|
|
9803 |
|
|
/* Return true if there is true register dependence between vr4130_last_insn
|
9804 |
|
|
and INSN. */
|
9805 |
|
|
|
9806 |
|
|
static bool
|
9807 |
|
|
vr4130_true_reg_dependence_p (rtx insn)
|
9808 |
|
|
{
|
9809 |
|
|
note_stores (PATTERN (vr4130_last_insn),
|
9810 |
|
|
vr4130_true_reg_dependence_p_1, &insn);
|
9811 |
|
|
return insn == 0;
|
9812 |
|
|
}
|
9813 |
|
|
|
9814 |
|
|
/* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
|
9815 |
|
|
the ready queue and that INSN2 is the instruction after it, return
|
9816 |
|
|
true if it is worth promoting INSN2 ahead of INSN1. Look for cases
|
9817 |
|
|
in which INSN1 and INSN2 can probably issue in parallel, but for
|
9818 |
|
|
which (INSN2, INSN1) should be less sensitive to instruction
|
9819 |
|
|
alignment than (INSN1, INSN2). See 4130.md for more details. */
|
9820 |
|
|
|
9821 |
|
|
static bool
|
9822 |
|
|
vr4130_swap_insns_p (rtx insn1, rtx insn2)
|
9823 |
|
|
{
|
9824 |
|
|
rtx dep;
|
9825 |
|
|
|
9826 |
|
|
/* Check for the following case:
|
9827 |
|
|
|
9828 |
|
|
1) there is some other instruction X with an anti dependence on INSN1;
|
9829 |
|
|
2) X has a higher priority than INSN2; and
|
9830 |
|
|
3) X is an arithmetic instruction (and thus has no unit restrictions).
|
9831 |
|
|
|
9832 |
|
|
If INSN1 is the last instruction blocking X, it would better to
|
9833 |
|
|
choose (INSN1, X) over (INSN2, INSN1). */
|
9834 |
|
|
for (dep = INSN_DEPEND (insn1); dep != 0; dep = XEXP (dep, 1))
|
9835 |
|
|
if (REG_NOTE_KIND (dep) == REG_DEP_ANTI
|
9836 |
|
|
&& INSN_PRIORITY (XEXP (dep, 0)) > INSN_PRIORITY (insn2)
|
9837 |
|
|
&& recog_memoized (XEXP (dep, 0)) >= 0
|
9838 |
|
|
&& get_attr_vr4130_class (XEXP (dep, 0)) == VR4130_CLASS_ALU)
|
9839 |
|
|
return false;
|
9840 |
|
|
|
9841 |
|
|
if (vr4130_last_insn != 0
|
9842 |
|
|
&& recog_memoized (insn1) >= 0
|
9843 |
|
|
&& recog_memoized (insn2) >= 0)
|
9844 |
|
|
{
|
9845 |
|
|
/* See whether INSN1 and INSN2 use different execution units,
|
9846 |
|
|
or if they are both ALU-type instructions. If so, they can
|
9847 |
|
|
probably execute in parallel. */
|
9848 |
|
|
enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
|
9849 |
|
|
enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
|
9850 |
|
|
if (class1 != class2 || class1 == VR4130_CLASS_ALU)
|
9851 |
|
|
{
|
9852 |
|
|
/* If only one of the instructions has a dependence on
|
9853 |
|
|
vr4130_last_insn, prefer to schedule the other one first. */
|
9854 |
|
|
bool dep1 = vr4130_true_reg_dependence_p (insn1);
|
9855 |
|
|
bool dep2 = vr4130_true_reg_dependence_p (insn2);
|
9856 |
|
|
if (dep1 != dep2)
|
9857 |
|
|
return dep1;
|
9858 |
|
|
|
9859 |
|
|
/* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
|
9860 |
|
|
is not an ALU-type instruction and if INSN1 uses the same
|
9861 |
|
|
execution unit. (Note that if this condition holds, we already
|
9862 |
|
|
know that INSN2 uses a different execution unit.) */
|
9863 |
|
|
if (class1 != VR4130_CLASS_ALU
|
9864 |
|
|
&& recog_memoized (vr4130_last_insn) >= 0
|
9865 |
|
|
&& class1 == get_attr_vr4130_class (vr4130_last_insn))
|
9866 |
|
|
return true;
|
9867 |
|
|
}
|
9868 |
|
|
}
|
9869 |
|
|
return false;
|
9870 |
|
|
}
|
9871 |
|
|
|
9872 |
|
|
/* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
|
9873 |
|
|
queue with at least two instructions. Swap the first two if
|
9874 |
|
|
vr4130_swap_insns_p says that it could be worthwhile. */
|
9875 |
|
|
|
9876 |
|
|
static void
|
9877 |
|
|
vr4130_reorder (rtx *ready, int nready)
|
9878 |
|
|
{
|
9879 |
|
|
if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
|
9880 |
|
|
mips_promote_ready (ready, nready - 2, nready - 1);
|
9881 |
|
|
}
|
9882 |
|
|
|
9883 |
|
|
/* Remove the instruction at index LOWER from ready queue READY and
|
9884 |
|
|
reinsert it in front of the instruction at index HIGHER. LOWER must
|
9885 |
|
|
be <= HIGHER. */
|
9886 |
|
|
|
9887 |
|
|
static void
|
9888 |
|
|
mips_promote_ready (rtx *ready, int lower, int higher)
|
9889 |
|
|
{
|
9890 |
|
|
rtx new_head;
|
9891 |
|
|
int i;
|
9892 |
|
|
|
9893 |
|
|
new_head = ready[lower];
|
9894 |
|
|
for (i = lower; i < higher; i++)
|
9895 |
|
|
ready[i] = ready[i + 1];
|
9896 |
|
|
ready[i] = new_head;
|
9897 |
|
|
}
|
9898 |
|
|
|
9899 |
|
|
/* Implement TARGET_SCHED_REORDER. */
|
9900 |
|
|
|
9901 |
|
|
static int
|
9902 |
|
|
mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
|
9903 |
|
|
rtx *ready, int *nreadyp, int cycle)
|
9904 |
|
|
{
|
9905 |
|
|
if (!reload_completed && TUNE_MACC_CHAINS)
|
9906 |
|
|
{
|
9907 |
|
|
if (cycle == 0)
|
9908 |
|
|
mips_macc_chains_last_hilo = 0;
|
9909 |
|
|
if (*nreadyp > 0)
|
9910 |
|
|
mips_macc_chains_reorder (ready, *nreadyp);
|
9911 |
|
|
}
|
9912 |
|
|
if (reload_completed && TUNE_MIPS4130 && !TARGET_VR4130_ALIGN)
|
9913 |
|
|
{
|
9914 |
|
|
if (cycle == 0)
|
9915 |
|
|
vr4130_last_insn = 0;
|
9916 |
|
|
if (*nreadyp > 1)
|
9917 |
|
|
vr4130_reorder (ready, *nreadyp);
|
9918 |
|
|
}
|
9919 |
|
|
return mips_issue_rate ();
|
9920 |
|
|
}
|
9921 |
|
|
|
9922 |
|
|
/* Implement TARGET_SCHED_VARIABLE_ISSUE. */
|
9923 |
|
|
|
9924 |
|
|
static int
|
9925 |
|
|
mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
|
9926 |
|
|
rtx insn, int more)
|
9927 |
|
|
{
|
9928 |
|
|
switch (GET_CODE (PATTERN (insn)))
|
9929 |
|
|
{
|
9930 |
|
|
case USE:
|
9931 |
|
|
case CLOBBER:
|
9932 |
|
|
/* Don't count USEs and CLOBBERs against the issue rate. */
|
9933 |
|
|
break;
|
9934 |
|
|
|
9935 |
|
|
default:
|
9936 |
|
|
more--;
|
9937 |
|
|
if (!reload_completed && TUNE_MACC_CHAINS)
|
9938 |
|
|
mips_macc_chains_record (insn);
|
9939 |
|
|
vr4130_last_insn = insn;
|
9940 |
|
|
break;
|
9941 |
|
|
}
|
9942 |
|
|
return more;
|
9943 |
|
|
}
|
9944 |
|
|
|
9945 |
|
|
/* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
|
9946 |
|
|
dependencies have no cost. */
|
9947 |
|
|
|
9948 |
|
|
static int
|
9949 |
|
|
mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
|
9950 |
|
|
rtx dep ATTRIBUTE_UNUSED, int cost)
|
9951 |
|
|
{
|
9952 |
|
|
if (REG_NOTE_KIND (link) != 0)
|
9953 |
|
|
return 0;
|
9954 |
|
|
return cost;
|
9955 |
|
|
}
|
9956 |
|
|
|
9957 |
|
|
/* Return the number of instructions that can be issued per cycle. */
|
9958 |
|
|
|
9959 |
|
|
static int
|
9960 |
|
|
mips_issue_rate (void)
|
9961 |
|
|
{
|
9962 |
|
|
switch (mips_tune)
|
9963 |
|
|
{
|
9964 |
|
|
case PROCESSOR_R4130:
|
9965 |
|
|
case PROCESSOR_R5400:
|
9966 |
|
|
case PROCESSOR_R5500:
|
9967 |
|
|
case PROCESSOR_R7000:
|
9968 |
|
|
case PROCESSOR_R9000:
|
9969 |
|
|
return 2;
|
9970 |
|
|
|
9971 |
|
|
case PROCESSOR_SB1:
|
9972 |
|
|
case PROCESSOR_SB1A:
|
9973 |
|
|
/* This is actually 4, but we get better performance if we claim 3.
|
9974 |
|
|
This is partly because of unwanted speculative code motion with the
|
9975 |
|
|
larger number, and partly because in most common cases we can't
|
9976 |
|
|
reach the theoretical max of 4. */
|
9977 |
|
|
return 3;
|
9978 |
|
|
|
9979 |
|
|
default:
|
9980 |
|
|
return 1;
|
9981 |
|
|
}
|
9982 |
|
|
}
|
9983 |
|
|
|
9984 |
|
|
/* Implements TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
|
9985 |
|
|
be as wide as the scheduling freedom in the DFA. */
|
9986 |
|
|
|
9987 |
|
|
static int
|
9988 |
|
|
mips_multipass_dfa_lookahead (void)
|
9989 |
|
|
{
|
9990 |
|
|
/* Can schedule up to 4 of the 6 function units in any one cycle. */
|
9991 |
|
|
if (TUNE_SB1)
|
9992 |
|
|
return 4;
|
9993 |
|
|
|
9994 |
|
|
return 0;
|
9995 |
|
|
}
|
9996 |
|
|
|
9997 |
|
|
/* Implements a store data bypass check. We need this because the cprestore
|
9998 |
|
|
pattern is type store, but defined using an UNSPEC. This UNSPEC causes the
|
9999 |
|
|
default routine to abort. We just return false for that case. */
|
10000 |
|
|
/* ??? Should try to give a better result here than assuming false. */
|
10001 |
|
|
|
10002 |
|
|
int
|
10003 |
|
|
mips_store_data_bypass_p (rtx out_insn, rtx in_insn)
|
10004 |
|
|
{
|
10005 |
|
|
if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
|
10006 |
|
|
return false;
|
10007 |
|
|
|
10008 |
|
|
return ! store_data_bypass_p (out_insn, in_insn);
|
10009 |
|
|
}
|
10010 |
|
|
|
10011 |
|
|
/* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
|
10012 |
|
|
return the first operand of the associated "pref" or "prefx" insn. */
|
10013 |
|
|
|
10014 |
|
|
rtx
|
10015 |
|
|
mips_prefetch_cookie (rtx write, rtx locality)
|
10016 |
|
|
{
|
10017 |
|
|
/* store_streamed / load_streamed. */
|
10018 |
|
|
if (INTVAL (locality) <= 0)
|
10019 |
|
|
return GEN_INT (INTVAL (write) + 4);
|
10020 |
|
|
|
10021 |
|
|
/* store / load. */
|
10022 |
|
|
if (INTVAL (locality) <= 2)
|
10023 |
|
|
return write;
|
10024 |
|
|
|
10025 |
|
|
/* store_retained / load_retained. */
|
10026 |
|
|
return GEN_INT (INTVAL (write) + 6);
|
10027 |
|
|
}
|
10028 |
|
|
|
10029 |
|
|
/* MIPS builtin function support. */
|
10030 |
|
|
|
10031 |
|
|
struct builtin_description
|
10032 |
|
|
{
|
10033 |
|
|
/* The code of the main .md file instruction. See mips_builtin_type
|
10034 |
|
|
for more information. */
|
10035 |
|
|
enum insn_code icode;
|
10036 |
|
|
|
10037 |
|
|
/* The floating-point comparison code to use with ICODE, if any. */
|
10038 |
|
|
enum mips_fp_condition cond;
|
10039 |
|
|
|
10040 |
|
|
/* The name of the builtin function. */
|
10041 |
|
|
const char *name;
|
10042 |
|
|
|
10043 |
|
|
/* Specifies how the function should be expanded. */
|
10044 |
|
|
enum mips_builtin_type builtin_type;
|
10045 |
|
|
|
10046 |
|
|
/* The function's prototype. */
|
10047 |
|
|
enum mips_function_type function_type;
|
10048 |
|
|
|
10049 |
|
|
/* The target flags required for this function. */
|
10050 |
|
|
int target_flags;
|
10051 |
|
|
};
|
10052 |
|
|
|
10053 |
|
|
/* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
|
10054 |
|
|
FUNCTION_TYPE and TARGET_FLAGS are builtin_description fields. */
|
10055 |
|
|
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
|
10056 |
|
|
{ CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
|
10057 |
|
|
MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }
|
10058 |
|
|
|
10059 |
|
|
/* Define __builtin_mips_<INSN>_<COND>_{s,d}, both of which require
|
10060 |
|
|
TARGET_FLAGS. */
|
10061 |
|
|
#define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS) \
|
10062 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND, \
|
10063 |
|
|
"__builtin_mips_" #INSN "_" #COND "_s", \
|
10064 |
|
|
MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS }, \
|
10065 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND, \
|
10066 |
|
|
"__builtin_mips_" #INSN "_" #COND "_d", \
|
10067 |
|
|
MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }
|
10068 |
|
|
|
10069 |
|
|
/* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
|
10070 |
|
|
The lower and upper forms require TARGET_FLAGS while the any and all
|
10071 |
|
|
forms require MASK_MIPS3D. */
|
10072 |
|
|
#define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS) \
|
10073 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
|
10074 |
|
|
"__builtin_mips_any_" #INSN "_" #COND "_ps", \
|
10075 |
|
|
MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
|
10076 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
|
10077 |
|
|
"__builtin_mips_all_" #INSN "_" #COND "_ps", \
|
10078 |
|
|
MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
|
10079 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
|
10080 |
|
|
"__builtin_mips_lower_" #INSN "_" #COND "_ps", \
|
10081 |
|
|
MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }, \
|
10082 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
|
10083 |
|
|
"__builtin_mips_upper_" #INSN "_" #COND "_ps", \
|
10084 |
|
|
MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }
|
10085 |
|
|
|
10086 |
|
|
/* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
|
10087 |
|
|
require MASK_MIPS3D. */
|
10088 |
|
|
#define CMP_4S_BUILTINS(INSN, COND) \
|
10089 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
|
10090 |
|
|
"__builtin_mips_any_" #INSN "_" #COND "_4s", \
|
10091 |
|
|
MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
|
10092 |
|
|
MASK_MIPS3D }, \
|
10093 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
|
10094 |
|
|
"__builtin_mips_all_" #INSN "_" #COND "_4s", \
|
10095 |
|
|
MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
|
10096 |
|
|
MASK_MIPS3D }
|
10097 |
|
|
|
10098 |
|
|
/* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
|
10099 |
|
|
instruction requires TARGET_FLAGS. */
|
10100 |
|
|
#define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS) \
|
10101 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
|
10102 |
|
|
"__builtin_mips_movt_" #INSN "_" #COND "_ps", \
|
10103 |
|
|
MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
|
10104 |
|
|
TARGET_FLAGS }, \
|
10105 |
|
|
{ CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
|
10106 |
|
|
"__builtin_mips_movf_" #INSN "_" #COND "_ps", \
|
10107 |
|
|
MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
|
10108 |
|
|
TARGET_FLAGS }
|
10109 |
|
|
|
10110 |
|
|
/* Define all the builtins related to c.cond.fmt condition COND. */
|
10111 |
|
|
#define CMP_BUILTINS(COND) \
|
10112 |
|
|
MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
|
10113 |
|
|
MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D), \
|
10114 |
|
|
CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D), \
|
10115 |
|
|
CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
|
10116 |
|
|
CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D), \
|
10117 |
|
|
CMP_4S_BUILTINS (c, COND), \
|
10118 |
|
|
CMP_4S_BUILTINS (cabs, COND)
|
10119 |
|
|
|
10120 |
|
|
static const struct builtin_description mips_bdesc[] =
|
10121 |
|
|
{
|
10122 |
|
|
DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10123 |
|
|
DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10124 |
|
|
DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10125 |
|
|
DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10126 |
|
|
DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, MASK_PAIRED_SINGLE_FLOAT),
|
10127 |
|
|
DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10128 |
|
|
DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10129 |
|
|
DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
|
10130 |
|
|
|
10131 |
|
|
DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
|
10132 |
|
|
MASK_PAIRED_SINGLE_FLOAT),
|
10133 |
|
|
DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
|
10134 |
|
|
DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
|
10135 |
|
|
DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
|
10136 |
|
|
DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
|
10137 |
|
|
|
10138 |
|
|
DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
|
10139 |
|
|
DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
|
10140 |
|
|
DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
|
10141 |
|
|
DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
|
10142 |
|
|
DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
|
10143 |
|
|
DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
|
10144 |
|
|
|
10145 |
|
|
DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
|
10146 |
|
|
DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
|
10147 |
|
|
DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
|
10148 |
|
|
DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
|
10149 |
|
|
DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
|
10150 |
|
|
DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
|
10151 |
|
|
|
10152 |
|
|
MIPS_FP_CONDITIONS (CMP_BUILTINS)
|
10153 |
|
|
};
|
10154 |
|
|
|
10155 |
|
|
/* Builtin functions for the SB-1 processor. */
|
10156 |
|
|
|
10157 |
|
|
#define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
|
10158 |
|
|
|
10159 |
|
|
static const struct builtin_description sb1_bdesc[] =
|
10160 |
|
|
{
|
10161 |
|
|
DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT)
|
10162 |
|
|
};
|
10163 |
|
|
|
10164 |
|
|
/* Builtin functions for DSP ASE. */
|
10165 |
|
|
|
10166 |
|
|
#define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
|
10167 |
|
|
#define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
|
10168 |
|
|
#define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
|
10169 |
|
|
#define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
|
10170 |
|
|
|
10171 |
|
|
/* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
|
10172 |
|
|
CODE_FOR_mips_<INSN>. FUNCTION_TYPE and TARGET_FLAGS are
|
10173 |
|
|
builtin_description fields. */
|
10174 |
|
|
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
|
10175 |
|
|
{ CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
|
10176 |
|
|
MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }
|
10177 |
|
|
|
10178 |
|
|
/* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
|
10179 |
|
|
branch instruction. TARGET_FLAGS is a builtin_description field. */
|
10180 |
|
|
#define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS) \
|
10181 |
|
|
{ CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE, \
|
10182 |
|
|
MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }
|
10183 |
|
|
|
10184 |
|
|
static const struct builtin_description dsp_bdesc[] =
|
10185 |
|
|
{
|
10186 |
|
|
DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10187 |
|
|
DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10188 |
|
|
DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10189 |
|
|
DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10190 |
|
|
DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10191 |
|
|
DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10192 |
|
|
DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10193 |
|
|
DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10194 |
|
|
DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10195 |
|
|
DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10196 |
|
|
DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10197 |
|
|
DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10198 |
|
|
DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10199 |
|
|
DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, MASK_DSP),
|
10200 |
|
|
DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, MASK_DSP),
|
10201 |
|
|
DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, MASK_DSP),
|
10202 |
|
|
DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10203 |
|
|
DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
|
10204 |
|
|
DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
|
10205 |
|
|
DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10206 |
|
|
DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, MASK_DSP),
|
10207 |
|
|
DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, MASK_DSP),
|
10208 |
|
|
DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10209 |
|
|
DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10210 |
|
|
DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10211 |
|
|
DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10212 |
|
|
DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10213 |
|
|
DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10214 |
|
|
DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10215 |
|
|
DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
|
10216 |
|
|
DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
|
10217 |
|
|
DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
|
10218 |
|
|
DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
|
10219 |
|
|
DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10220 |
|
|
DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
|
10221 |
|
|
DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
|
10222 |
|
|
DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
|
10223 |
|
|
DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10224 |
|
|
DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
|
10225 |
|
|
DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
|
10226 |
|
|
DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10227 |
|
|
DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10228 |
|
|
DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10229 |
|
|
DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
|
10230 |
|
|
DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
|
10231 |
|
|
DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
|
10232 |
|
|
DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
|
10233 |
|
|
DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10234 |
|
|
DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10235 |
|
|
DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10236 |
|
|
DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
|
10237 |
|
|
DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
|
10238 |
|
|
DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10239 |
|
|
DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10240 |
|
|
DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10241 |
|
|
DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
|
10242 |
|
|
DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, MASK_DSP),
|
10243 |
|
|
DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
|
10244 |
|
|
DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, MASK_DSP),
|
10245 |
|
|
DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, MASK_DSP),
|
10246 |
|
|
DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
|
10247 |
|
|
DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
|
10248 |
|
|
DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
|
10249 |
|
|
DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10250 |
|
|
DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10251 |
|
|
DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10252 |
|
|
DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
|
10253 |
|
|
DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
|
10254 |
|
|
DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
|
10255 |
|
|
DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
|
10256 |
|
|
DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10257 |
|
|
DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
|
10258 |
|
|
DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
|
10259 |
|
|
DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
|
10260 |
|
|
DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
|
10261 |
|
|
DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
|
10262 |
|
|
DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
|
10263 |
|
|
DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
|
10264 |
|
|
DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
|
10265 |
|
|
DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
|
10266 |
|
|
DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, MASK_DSP),
|
10267 |
|
|
DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, MASK_DSP),
|
10268 |
|
|
DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
|
10269 |
|
|
DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
|
10270 |
|
|
DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
|
10271 |
|
|
BPOSGE_BUILTIN (32, MASK_DSP)
|
10272 |
|
|
};
|
10273 |
|
|
|
10274 |
|
|
/* This helps provide a mapping from builtin function codes to bdesc
|
10275 |
|
|
arrays. */
|
10276 |
|
|
|
10277 |
|
|
struct bdesc_map
|
10278 |
|
|
{
|
10279 |
|
|
/* The builtin function table that this entry describes. */
|
10280 |
|
|
const struct builtin_description *bdesc;
|
10281 |
|
|
|
10282 |
|
|
/* The number of entries in the builtin function table. */
|
10283 |
|
|
unsigned int size;
|
10284 |
|
|
|
10285 |
|
|
/* The target processor that supports these builtin functions.
|
10286 |
|
|
PROCESSOR_MAX means we enable them for all processors. */
|
10287 |
|
|
enum processor_type proc;
|
10288 |
|
|
};
|
10289 |
|
|
|
10290 |
|
|
static const struct bdesc_map bdesc_arrays[] =
|
10291 |
|
|
{
|
10292 |
|
|
{ mips_bdesc, ARRAY_SIZE (mips_bdesc), PROCESSOR_MAX },
|
10293 |
|
|
{ sb1_bdesc, ARRAY_SIZE (sb1_bdesc), PROCESSOR_SB1 },
|
10294 |
|
|
{ dsp_bdesc, ARRAY_SIZE (dsp_bdesc), PROCESSOR_MAX }
|
10295 |
|
|
};
|
10296 |
|
|
|
10297 |
|
|
/* Take the head of argument list *ARGLIST and convert it into a form
|
10298 |
|
|
suitable for input operand OP of instruction ICODE. Return the value
|
10299 |
|
|
and point *ARGLIST at the next element of the list. */
|
10300 |
|
|
|
10301 |
|
|
static rtx
|
10302 |
|
|
mips_prepare_builtin_arg (enum insn_code icode,
|
10303 |
|
|
unsigned int op, tree *arglist)
|
10304 |
|
|
{
|
10305 |
|
|
rtx value;
|
10306 |
|
|
enum machine_mode mode;
|
10307 |
|
|
|
10308 |
|
|
value = expand_normal (TREE_VALUE (*arglist));
|
10309 |
|
|
mode = insn_data[icode].operand[op].mode;
|
10310 |
|
|
if (!insn_data[icode].operand[op].predicate (value, mode))
|
10311 |
|
|
{
|
10312 |
|
|
value = copy_to_mode_reg (mode, value);
|
10313 |
|
|
/* Check the predicate again. */
|
10314 |
|
|
if (!insn_data[icode].operand[op].predicate (value, mode))
|
10315 |
|
|
{
|
10316 |
|
|
error ("invalid argument to builtin function");
|
10317 |
|
|
return const0_rtx;
|
10318 |
|
|
}
|
10319 |
|
|
}
|
10320 |
|
|
|
10321 |
|
|
*arglist = TREE_CHAIN (*arglist);
|
10322 |
|
|
return value;
|
10323 |
|
|
}
|
10324 |
|
|
|
10325 |
|
|
/* Return an rtx suitable for output operand OP of instruction ICODE.
|
10326 |
|
|
If TARGET is non-null, try to use it where possible. */
|
10327 |
|
|
|
10328 |
|
|
static rtx
|
10329 |
|
|
mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
|
10330 |
|
|
{
|
10331 |
|
|
enum machine_mode mode;
|
10332 |
|
|
|
10333 |
|
|
mode = insn_data[icode].operand[op].mode;
|
10334 |
|
|
if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
|
10335 |
|
|
target = gen_reg_rtx (mode);
|
10336 |
|
|
|
10337 |
|
|
return target;
|
10338 |
|
|
}
|
10339 |
|
|
|
10340 |
|
|
/* Expand builtin functions. This is called from TARGET_EXPAND_BUILTIN. */
|
10341 |
|
|
|
10342 |
|
|
rtx
|
10343 |
|
|
mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|
10344 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
10345 |
|
|
int ignore ATTRIBUTE_UNUSED)
|
10346 |
|
|
{
|
10347 |
|
|
enum insn_code icode;
|
10348 |
|
|
enum mips_builtin_type type;
|
10349 |
|
|
tree fndecl, arglist;
|
10350 |
|
|
unsigned int fcode;
|
10351 |
|
|
const struct builtin_description *bdesc;
|
10352 |
|
|
const struct bdesc_map *m;
|
10353 |
|
|
|
10354 |
|
|
fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
10355 |
|
|
arglist = TREE_OPERAND (exp, 1);
|
10356 |
|
|
fcode = DECL_FUNCTION_CODE (fndecl);
|
10357 |
|
|
|
10358 |
|
|
bdesc = NULL;
|
10359 |
|
|
for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
|
10360 |
|
|
{
|
10361 |
|
|
if (fcode < m->size)
|
10362 |
|
|
{
|
10363 |
|
|
bdesc = m->bdesc;
|
10364 |
|
|
icode = bdesc[fcode].icode;
|
10365 |
|
|
type = bdesc[fcode].builtin_type;
|
10366 |
|
|
break;
|
10367 |
|
|
}
|
10368 |
|
|
fcode -= m->size;
|
10369 |
|
|
}
|
10370 |
|
|
if (bdesc == NULL)
|
10371 |
|
|
return 0;
|
10372 |
|
|
|
10373 |
|
|
switch (type)
|
10374 |
|
|
{
|
10375 |
|
|
case MIPS_BUILTIN_DIRECT:
|
10376 |
|
|
return mips_expand_builtin_direct (icode, target, arglist, true);
|
10377 |
|
|
|
10378 |
|
|
case MIPS_BUILTIN_DIRECT_NO_TARGET:
|
10379 |
|
|
return mips_expand_builtin_direct (icode, target, arglist, false);
|
10380 |
|
|
|
10381 |
|
|
case MIPS_BUILTIN_MOVT:
|
10382 |
|
|
case MIPS_BUILTIN_MOVF:
|
10383 |
|
|
return mips_expand_builtin_movtf (type, icode, bdesc[fcode].cond,
|
10384 |
|
|
target, arglist);
|
10385 |
|
|
|
10386 |
|
|
case MIPS_BUILTIN_CMP_ANY:
|
10387 |
|
|
case MIPS_BUILTIN_CMP_ALL:
|
10388 |
|
|
case MIPS_BUILTIN_CMP_UPPER:
|
10389 |
|
|
case MIPS_BUILTIN_CMP_LOWER:
|
10390 |
|
|
case MIPS_BUILTIN_CMP_SINGLE:
|
10391 |
|
|
return mips_expand_builtin_compare (type, icode, bdesc[fcode].cond,
|
10392 |
|
|
target, arglist);
|
10393 |
|
|
|
10394 |
|
|
case MIPS_BUILTIN_BPOSGE32:
|
10395 |
|
|
return mips_expand_builtin_bposge (type, target);
|
10396 |
|
|
|
10397 |
|
|
default:
|
10398 |
|
|
return 0;
|
10399 |
|
|
}
|
10400 |
|
|
}
|
10401 |
|
|
|
10402 |
|
|
/* Init builtin functions. This is called from TARGET_INIT_BUILTIN. */
|
10403 |
|
|
|
10404 |
|
|
void
|
10405 |
|
|
mips_init_builtins (void)
|
10406 |
|
|
{
|
10407 |
|
|
const struct builtin_description *d;
|
10408 |
|
|
const struct bdesc_map *m;
|
10409 |
|
|
tree types[(int) MIPS_MAX_FTYPE_MAX];
|
10410 |
|
|
tree V2SF_type_node;
|
10411 |
|
|
tree V2HI_type_node;
|
10412 |
|
|
tree V4QI_type_node;
|
10413 |
|
|
unsigned int offset;
|
10414 |
|
|
|
10415 |
|
|
/* We have only builtins for -mpaired-single, -mips3d and -mdsp. */
|
10416 |
|
|
if (!TARGET_PAIRED_SINGLE_FLOAT && !TARGET_DSP)
|
10417 |
|
|
return;
|
10418 |
|
|
|
10419 |
|
|
if (TARGET_PAIRED_SINGLE_FLOAT)
|
10420 |
|
|
{
|
10421 |
|
|
V2SF_type_node = build_vector_type_for_mode (float_type_node, V2SFmode);
|
10422 |
|
|
|
10423 |
|
|
types[MIPS_V2SF_FTYPE_V2SF]
|
10424 |
|
|
= build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE);
|
10425 |
|
|
|
10426 |
|
|
types[MIPS_V2SF_FTYPE_V2SF_V2SF]
|
10427 |
|
|
= build_function_type_list (V2SF_type_node,
|
10428 |
|
|
V2SF_type_node, V2SF_type_node, NULL_TREE);
|
10429 |
|
|
|
10430 |
|
|
types[MIPS_V2SF_FTYPE_V2SF_V2SF_INT]
|
10431 |
|
|
= build_function_type_list (V2SF_type_node,
|
10432 |
|
|
V2SF_type_node, V2SF_type_node,
|
10433 |
|
|
integer_type_node, NULL_TREE);
|
10434 |
|
|
|
10435 |
|
|
types[MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF]
|
10436 |
|
|
= build_function_type_list (V2SF_type_node,
|
10437 |
|
|
V2SF_type_node, V2SF_type_node,
|
10438 |
|
|
V2SF_type_node, V2SF_type_node, NULL_TREE);
|
10439 |
|
|
|
10440 |
|
|
types[MIPS_V2SF_FTYPE_SF_SF]
|
10441 |
|
|
= build_function_type_list (V2SF_type_node,
|
10442 |
|
|
float_type_node, float_type_node, NULL_TREE);
|
10443 |
|
|
|
10444 |
|
|
types[MIPS_INT_FTYPE_V2SF_V2SF]
|
10445 |
|
|
= build_function_type_list (integer_type_node,
|
10446 |
|
|
V2SF_type_node, V2SF_type_node, NULL_TREE);
|
10447 |
|
|
|
10448 |
|
|
types[MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF]
|
10449 |
|
|
= build_function_type_list (integer_type_node,
|
10450 |
|
|
V2SF_type_node, V2SF_type_node,
|
10451 |
|
|
V2SF_type_node, V2SF_type_node, NULL_TREE);
|
10452 |
|
|
|
10453 |
|
|
types[MIPS_INT_FTYPE_SF_SF]
|
10454 |
|
|
= build_function_type_list (integer_type_node,
|
10455 |
|
|
float_type_node, float_type_node, NULL_TREE);
|
10456 |
|
|
|
10457 |
|
|
types[MIPS_INT_FTYPE_DF_DF]
|
10458 |
|
|
= build_function_type_list (integer_type_node,
|
10459 |
|
|
double_type_node, double_type_node, NULL_TREE);
|
10460 |
|
|
|
10461 |
|
|
types[MIPS_SF_FTYPE_V2SF]
|
10462 |
|
|
= build_function_type_list (float_type_node, V2SF_type_node, NULL_TREE);
|
10463 |
|
|
|
10464 |
|
|
types[MIPS_SF_FTYPE_SF]
|
10465 |
|
|
= build_function_type_list (float_type_node,
|
10466 |
|
|
float_type_node, NULL_TREE);
|
10467 |
|
|
|
10468 |
|
|
types[MIPS_SF_FTYPE_SF_SF]
|
10469 |
|
|
= build_function_type_list (float_type_node,
|
10470 |
|
|
float_type_node, float_type_node, NULL_TREE);
|
10471 |
|
|
|
10472 |
|
|
types[MIPS_DF_FTYPE_DF]
|
10473 |
|
|
= build_function_type_list (double_type_node,
|
10474 |
|
|
double_type_node, NULL_TREE);
|
10475 |
|
|
|
10476 |
|
|
types[MIPS_DF_FTYPE_DF_DF]
|
10477 |
|
|
= build_function_type_list (double_type_node,
|
10478 |
|
|
double_type_node, double_type_node, NULL_TREE);
|
10479 |
|
|
}
|
10480 |
|
|
|
10481 |
|
|
if (TARGET_DSP)
|
10482 |
|
|
{
|
10483 |
|
|
V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
|
10484 |
|
|
V4QI_type_node = build_vector_type_for_mode (intQI_type_node, V4QImode);
|
10485 |
|
|
|
10486 |
|
|
types[MIPS_V2HI_FTYPE_V2HI_V2HI]
|
10487 |
|
|
= build_function_type_list (V2HI_type_node,
|
10488 |
|
|
V2HI_type_node, V2HI_type_node,
|
10489 |
|
|
NULL_TREE);
|
10490 |
|
|
|
10491 |
|
|
types[MIPS_SI_FTYPE_SI_SI]
|
10492 |
|
|
= build_function_type_list (intSI_type_node,
|
10493 |
|
|
intSI_type_node, intSI_type_node,
|
10494 |
|
|
NULL_TREE);
|
10495 |
|
|
|
10496 |
|
|
types[MIPS_V4QI_FTYPE_V4QI_V4QI]
|
10497 |
|
|
= build_function_type_list (V4QI_type_node,
|
10498 |
|
|
V4QI_type_node, V4QI_type_node,
|
10499 |
|
|
NULL_TREE);
|
10500 |
|
|
|
10501 |
|
|
types[MIPS_SI_FTYPE_V4QI]
|
10502 |
|
|
= build_function_type_list (intSI_type_node,
|
10503 |
|
|
V4QI_type_node,
|
10504 |
|
|
NULL_TREE);
|
10505 |
|
|
|
10506 |
|
|
types[MIPS_V2HI_FTYPE_V2HI]
|
10507 |
|
|
= build_function_type_list (V2HI_type_node,
|
10508 |
|
|
V2HI_type_node,
|
10509 |
|
|
NULL_TREE);
|
10510 |
|
|
|
10511 |
|
|
types[MIPS_SI_FTYPE_SI]
|
10512 |
|
|
= build_function_type_list (intSI_type_node,
|
10513 |
|
|
intSI_type_node,
|
10514 |
|
|
NULL_TREE);
|
10515 |
|
|
|
10516 |
|
|
types[MIPS_V4QI_FTYPE_V2HI_V2HI]
|
10517 |
|
|
= build_function_type_list (V4QI_type_node,
|
10518 |
|
|
V2HI_type_node, V2HI_type_node,
|
10519 |
|
|
NULL_TREE);
|
10520 |
|
|
|
10521 |
|
|
types[MIPS_V2HI_FTYPE_SI_SI]
|
10522 |
|
|
= build_function_type_list (V2HI_type_node,
|
10523 |
|
|
intSI_type_node, intSI_type_node,
|
10524 |
|
|
NULL_TREE);
|
10525 |
|
|
|
10526 |
|
|
types[MIPS_SI_FTYPE_V2HI]
|
10527 |
|
|
= build_function_type_list (intSI_type_node,
|
10528 |
|
|
V2HI_type_node,
|
10529 |
|
|
NULL_TREE);
|
10530 |
|
|
|
10531 |
|
|
types[MIPS_V2HI_FTYPE_V4QI]
|
10532 |
|
|
= build_function_type_list (V2HI_type_node,
|
10533 |
|
|
V4QI_type_node,
|
10534 |
|
|
NULL_TREE);
|
10535 |
|
|
|
10536 |
|
|
types[MIPS_V4QI_FTYPE_V4QI_SI]
|
10537 |
|
|
= build_function_type_list (V4QI_type_node,
|
10538 |
|
|
V4QI_type_node, intSI_type_node,
|
10539 |
|
|
NULL_TREE);
|
10540 |
|
|
|
10541 |
|
|
types[MIPS_V2HI_FTYPE_V2HI_SI]
|
10542 |
|
|
= build_function_type_list (V2HI_type_node,
|
10543 |
|
|
V2HI_type_node, intSI_type_node,
|
10544 |
|
|
NULL_TREE);
|
10545 |
|
|
|
10546 |
|
|
types[MIPS_V2HI_FTYPE_V4QI_V2HI]
|
10547 |
|
|
= build_function_type_list (V2HI_type_node,
|
10548 |
|
|
V4QI_type_node, V2HI_type_node,
|
10549 |
|
|
NULL_TREE);
|
10550 |
|
|
|
10551 |
|
|
types[MIPS_SI_FTYPE_V2HI_V2HI]
|
10552 |
|
|
= build_function_type_list (intSI_type_node,
|
10553 |
|
|
V2HI_type_node, V2HI_type_node,
|
10554 |
|
|
NULL_TREE);
|
10555 |
|
|
|
10556 |
|
|
types[MIPS_DI_FTYPE_DI_V4QI_V4QI]
|
10557 |
|
|
= build_function_type_list (intDI_type_node,
|
10558 |
|
|
intDI_type_node, V4QI_type_node, V4QI_type_node,
|
10559 |
|
|
NULL_TREE);
|
10560 |
|
|
|
10561 |
|
|
types[MIPS_DI_FTYPE_DI_V2HI_V2HI]
|
10562 |
|
|
= build_function_type_list (intDI_type_node,
|
10563 |
|
|
intDI_type_node, V2HI_type_node, V2HI_type_node,
|
10564 |
|
|
NULL_TREE);
|
10565 |
|
|
|
10566 |
|
|
types[MIPS_DI_FTYPE_DI_SI_SI]
|
10567 |
|
|
= build_function_type_list (intDI_type_node,
|
10568 |
|
|
intDI_type_node, intSI_type_node, intSI_type_node,
|
10569 |
|
|
NULL_TREE);
|
10570 |
|
|
|
10571 |
|
|
types[MIPS_V4QI_FTYPE_SI]
|
10572 |
|
|
= build_function_type_list (V4QI_type_node,
|
10573 |
|
|
intSI_type_node,
|
10574 |
|
|
NULL_TREE);
|
10575 |
|
|
|
10576 |
|
|
types[MIPS_V2HI_FTYPE_SI]
|
10577 |
|
|
= build_function_type_list (V2HI_type_node,
|
10578 |
|
|
intSI_type_node,
|
10579 |
|
|
NULL_TREE);
|
10580 |
|
|
|
10581 |
|
|
types[MIPS_VOID_FTYPE_V4QI_V4QI]
|
10582 |
|
|
= build_function_type_list (void_type_node,
|
10583 |
|
|
V4QI_type_node, V4QI_type_node,
|
10584 |
|
|
NULL_TREE);
|
10585 |
|
|
|
10586 |
|
|
types[MIPS_SI_FTYPE_V4QI_V4QI]
|
10587 |
|
|
= build_function_type_list (intSI_type_node,
|
10588 |
|
|
V4QI_type_node, V4QI_type_node,
|
10589 |
|
|
NULL_TREE);
|
10590 |
|
|
|
10591 |
|
|
types[MIPS_VOID_FTYPE_V2HI_V2HI]
|
10592 |
|
|
= build_function_type_list (void_type_node,
|
10593 |
|
|
V2HI_type_node, V2HI_type_node,
|
10594 |
|
|
NULL_TREE);
|
10595 |
|
|
|
10596 |
|
|
types[MIPS_SI_FTYPE_DI_SI]
|
10597 |
|
|
= build_function_type_list (intSI_type_node,
|
10598 |
|
|
intDI_type_node, intSI_type_node,
|
10599 |
|
|
NULL_TREE);
|
10600 |
|
|
|
10601 |
|
|
types[MIPS_DI_FTYPE_DI_SI]
|
10602 |
|
|
= build_function_type_list (intDI_type_node,
|
10603 |
|
|
intDI_type_node, intSI_type_node,
|
10604 |
|
|
NULL_TREE);
|
10605 |
|
|
|
10606 |
|
|
types[MIPS_VOID_FTYPE_SI_SI]
|
10607 |
|
|
= build_function_type_list (void_type_node,
|
10608 |
|
|
intSI_type_node, intSI_type_node,
|
10609 |
|
|
NULL_TREE);
|
10610 |
|
|
|
10611 |
|
|
types[MIPS_SI_FTYPE_PTR_SI]
|
10612 |
|
|
= build_function_type_list (intSI_type_node,
|
10613 |
|
|
ptr_type_node, intSI_type_node,
|
10614 |
|
|
NULL_TREE);
|
10615 |
|
|
|
10616 |
|
|
types[MIPS_SI_FTYPE_VOID]
|
10617 |
|
|
= build_function_type (intSI_type_node, void_list_node);
|
10618 |
|
|
}
|
10619 |
|
|
|
10620 |
|
|
/* Iterate through all of the bdesc arrays, initializing all of the
|
10621 |
|
|
builtin functions. */
|
10622 |
|
|
|
10623 |
|
|
offset = 0;
|
10624 |
|
|
for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
|
10625 |
|
|
{
|
10626 |
|
|
if (m->proc == PROCESSOR_MAX || (m->proc == mips_arch))
|
10627 |
|
|
for (d = m->bdesc; d < &m->bdesc[m->size]; d++)
|
10628 |
|
|
if ((d->target_flags & target_flags) == d->target_flags)
|
10629 |
|
|
lang_hooks.builtin_function (d->name, types[d->function_type],
|
10630 |
|
|
d - m->bdesc + offset,
|
10631 |
|
|
BUILT_IN_MD, NULL, NULL);
|
10632 |
|
|
offset += m->size;
|
10633 |
|
|
}
|
10634 |
|
|
}
|
10635 |
|
|
|
10636 |
|
|
/* Expand a MIPS_BUILTIN_DIRECT function. ICODE is the code of the
|
10637 |
|
|
.md pattern and ARGLIST is the list of function arguments. TARGET,
|
10638 |
|
|
if nonnull, suggests a good place to put the result.
|
10639 |
|
|
HAS_TARGET indicates the function must return something. */
|
10640 |
|
|
|
10641 |
|
|
static rtx
|
10642 |
|
|
mips_expand_builtin_direct (enum insn_code icode, rtx target, tree arglist,
|
10643 |
|
|
bool has_target)
|
10644 |
|
|
{
|
10645 |
|
|
rtx ops[MAX_RECOG_OPERANDS];
|
10646 |
|
|
int i = 0;
|
10647 |
|
|
|
10648 |
|
|
if (has_target)
|
10649 |
|
|
{
|
10650 |
|
|
/* We save target to ops[0]. */
|
10651 |
|
|
ops[0] = mips_prepare_builtin_target (icode, 0, target);
|
10652 |
|
|
i = 1;
|
10653 |
|
|
}
|
10654 |
|
|
|
10655 |
|
|
/* We need to test if arglist is not zero. Some instructions have extra
|
10656 |
|
|
clobber registers. */
|
10657 |
|
|
for (; i < insn_data[icode].n_operands && arglist != 0; i++)
|
10658 |
|
|
ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);
|
10659 |
|
|
|
10660 |
|
|
switch (i)
|
10661 |
|
|
{
|
10662 |
|
|
case 2:
|
10663 |
|
|
emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
|
10664 |
|
|
break;
|
10665 |
|
|
|
10666 |
|
|
case 3:
|
10667 |
|
|
emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
|
10668 |
|
|
break;
|
10669 |
|
|
|
10670 |
|
|
case 4:
|
10671 |
|
|
emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
|
10672 |
|
|
break;
|
10673 |
|
|
|
10674 |
|
|
default:
|
10675 |
|
|
gcc_unreachable ();
|
10676 |
|
|
}
|
10677 |
|
|
return target;
|
10678 |
|
|
}
|
10679 |
|
|
|
10680 |
|
|
/* Expand a __builtin_mips_movt_*_ps() or __builtin_mips_movf_*_ps()
|
10681 |
|
|
function (TYPE says which). ARGLIST is the list of arguments to the
|
10682 |
|
|
function, ICODE is the instruction that should be used to compare
|
10683 |
|
|
the first two arguments, and COND is the condition it should test.
|
10684 |
|
|
TARGET, if nonnull, suggests a good place to put the result. */
|
10685 |
|
|
|
10686 |
|
|
static rtx
|
10687 |
|
|
mips_expand_builtin_movtf (enum mips_builtin_type type,
|
10688 |
|
|
enum insn_code icode, enum mips_fp_condition cond,
|
10689 |
|
|
rtx target, tree arglist)
|
10690 |
|
|
{
|
10691 |
|
|
rtx cmp_result, op0, op1;
|
10692 |
|
|
|
10693 |
|
|
cmp_result = mips_prepare_builtin_target (icode, 0, 0);
|
10694 |
|
|
op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
|
10695 |
|
|
op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
|
10696 |
|
|
emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));
|
10697 |
|
|
|
10698 |
|
|
icode = CODE_FOR_mips_cond_move_tf_ps;
|
10699 |
|
|
target = mips_prepare_builtin_target (icode, 0, target);
|
10700 |
|
|
if (type == MIPS_BUILTIN_MOVT)
|
10701 |
|
|
{
|
10702 |
|
|
op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
|
10703 |
|
|
op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
|
10704 |
|
|
}
|
10705 |
|
|
else
|
10706 |
|
|
{
|
10707 |
|
|
op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
|
10708 |
|
|
op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
|
10709 |
|
|
}
|
10710 |
|
|
emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
|
10711 |
|
|
return target;
|
10712 |
|
|
}
|
10713 |
|
|
|
10714 |
|
|
/* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
|
10715 |
|
|
into TARGET otherwise. Return TARGET. */
|
10716 |
|
|
|
10717 |
|
|
static rtx
|
10718 |
|
|
mips_builtin_branch_and_move (rtx condition, rtx target,
|
10719 |
|
|
rtx value_if_true, rtx value_if_false)
|
10720 |
|
|
{
|
10721 |
|
|
rtx true_label, done_label;
|
10722 |
|
|
|
10723 |
|
|
true_label = gen_label_rtx ();
|
10724 |
|
|
done_label = gen_label_rtx ();
|
10725 |
|
|
|
10726 |
|
|
/* First assume that CONDITION is false. */
|
10727 |
|
|
emit_move_insn (target, value_if_false);
|
10728 |
|
|
|
10729 |
|
|
/* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
|
10730 |
|
|
emit_jump_insn (gen_condjump (condition, true_label));
|
10731 |
|
|
emit_jump_insn (gen_jump (done_label));
|
10732 |
|
|
emit_barrier ();
|
10733 |
|
|
|
10734 |
|
|
/* Fix TARGET if CONDITION is true. */
|
10735 |
|
|
emit_label (true_label);
|
10736 |
|
|
emit_move_insn (target, value_if_true);
|
10737 |
|
|
|
10738 |
|
|
emit_label (done_label);
|
10739 |
|
|
return target;
|
10740 |
|
|
}
|
10741 |
|
|
|
10742 |
|
|
/* Expand a comparison builtin of type BUILTIN_TYPE. ICODE is the code
|
10743 |
|
|
of the comparison instruction and COND is the condition it should test.
|
10744 |
|
|
ARGLIST is the list of function arguments and TARGET, if nonnull,
|
10745 |
|
|
suggests a good place to put the boolean result. */
|
10746 |
|
|
|
10747 |
|
|
static rtx
|
10748 |
|
|
mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
|
10749 |
|
|
enum insn_code icode, enum mips_fp_condition cond,
|
10750 |
|
|
rtx target, tree arglist)
|
10751 |
|
|
{
|
10752 |
|
|
rtx offset, condition, cmp_result, ops[MAX_RECOG_OPERANDS];
|
10753 |
|
|
int i;
|
10754 |
|
|
|
10755 |
|
|
if (target == 0 || GET_MODE (target) != SImode)
|
10756 |
|
|
target = gen_reg_rtx (SImode);
|
10757 |
|
|
|
10758 |
|
|
/* Prepare the operands to the comparison. */
|
10759 |
|
|
cmp_result = mips_prepare_builtin_target (icode, 0, 0);
|
10760 |
|
|
for (i = 1; i < insn_data[icode].n_operands - 1; i++)
|
10761 |
|
|
ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);
|
10762 |
|
|
|
10763 |
|
|
switch (insn_data[icode].n_operands)
|
10764 |
|
|
{
|
10765 |
|
|
case 4:
|
10766 |
|
|
emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2], GEN_INT (cond)));
|
10767 |
|
|
break;
|
10768 |
|
|
|
10769 |
|
|
case 6:
|
10770 |
|
|
emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2],
|
10771 |
|
|
ops[3], ops[4], GEN_INT (cond)));
|
10772 |
|
|
break;
|
10773 |
|
|
|
10774 |
|
|
default:
|
10775 |
|
|
gcc_unreachable ();
|
10776 |
|
|
}
|
10777 |
|
|
|
10778 |
|
|
/* If the comparison sets more than one register, we define the result
|
10779 |
|
|
to be 0 if all registers are false and -1 if all registers are true.
|
10780 |
|
|
The value of the complete result is indeterminate otherwise. */
|
10781 |
|
|
switch (builtin_type)
|
10782 |
|
|
{
|
10783 |
|
|
case MIPS_BUILTIN_CMP_ALL:
|
10784 |
|
|
condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
|
10785 |
|
|
return mips_builtin_branch_and_move (condition, target,
|
10786 |
|
|
const0_rtx, const1_rtx);
|
10787 |
|
|
|
10788 |
|
|
case MIPS_BUILTIN_CMP_UPPER:
|
10789 |
|
|
case MIPS_BUILTIN_CMP_LOWER:
|
10790 |
|
|
offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
|
10791 |
|
|
condition = gen_single_cc (cmp_result, offset);
|
10792 |
|
|
return mips_builtin_branch_and_move (condition, target,
|
10793 |
|
|
const1_rtx, const0_rtx);
|
10794 |
|
|
|
10795 |
|
|
default:
|
10796 |
|
|
condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
|
10797 |
|
|
return mips_builtin_branch_and_move (condition, target,
|
10798 |
|
|
const1_rtx, const0_rtx);
|
10799 |
|
|
}
|
10800 |
|
|
}
|
10801 |
|
|
|
10802 |
|
|
/* Expand a bposge builtin of type BUILTIN_TYPE. TARGET, if nonnull,
|
10803 |
|
|
suggests a good place to put the boolean result. */
|
10804 |
|
|
|
10805 |
|
|
static rtx
|
10806 |
|
|
mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
|
10807 |
|
|
{
|
10808 |
|
|
rtx condition, cmp_result;
|
10809 |
|
|
int cmp_value;
|
10810 |
|
|
|
10811 |
|
|
if (target == 0 || GET_MODE (target) != SImode)
|
10812 |
|
|
target = gen_reg_rtx (SImode);
|
10813 |
|
|
|
10814 |
|
|
cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
|
10815 |
|
|
|
10816 |
|
|
if (builtin_type == MIPS_BUILTIN_BPOSGE32)
|
10817 |
|
|
cmp_value = 32;
|
10818 |
|
|
else
|
10819 |
|
|
gcc_assert (0);
|
10820 |
|
|
|
10821 |
|
|
condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
|
10822 |
|
|
return mips_builtin_branch_and_move (condition, target,
|
10823 |
|
|
const1_rtx, const0_rtx);
|
10824 |
|
|
}
|
10825 |
|
|
|
10826 |
|
|
/* Set SYMBOL_REF_FLAGS for the SYMBOL_REF inside RTL, which belongs to DECL.
|
10827 |
|
|
FIRST is true if this is the first time handling this decl. */
|
10828 |
|
|
|
10829 |
|
|
static void
|
10830 |
|
|
mips_encode_section_info (tree decl, rtx rtl, int first)
|
10831 |
|
|
{
|
10832 |
|
|
default_encode_section_info (decl, rtl, first);
|
10833 |
|
|
|
10834 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL
|
10835 |
|
|
&& lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
|
10836 |
|
|
{
|
10837 |
|
|
rtx symbol = XEXP (rtl, 0);
|
10838 |
|
|
SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
|
10839 |
|
|
}
|
10840 |
|
|
}
|
10841 |
|
|
|
10842 |
|
|
/* Implement TARGET_EXTRA_LIVE_ON_ENTRY. PIC_FUNCTION_ADDR_REGNUM is live
|
10843 |
|
|
on entry to a function when generating -mshared abicalls code. */
|
10844 |
|
|
|
10845 |
|
|
static void
|
10846 |
|
|
mips_extra_live_on_entry (bitmap regs)
|
10847 |
|
|
{
|
10848 |
|
|
if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
|
10849 |
|
|
bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
|
10850 |
|
|
}
|
10851 |
|
|
|
10852 |
|
|
/* SImode values are represented as sign-extended to DImode. */
|
10853 |
|
|
|
10854 |
|
|
int
|
10855 |
|
|
mips_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
|
10856 |
|
|
{
|
10857 |
|
|
if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
|
10858 |
|
|
return SIGN_EXTEND;
|
10859 |
|
|
|
10860 |
|
|
return UNKNOWN;
|
10861 |
|
|
}
|
10862 |
|
|
|
10863 |
|
|
#include "gt-mips.h"
|