OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [or32/] [or32.h] - Blame information for rev 38

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions of target machine for GNU compiler.  OpenRISC 1000 version.
2
   Copyright (C) 1987, 1988, 1992, 1995, 1996, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005 Free Software Foundation, Inc.
4
   Contributed by Damjan Lampret <damjanl@bsemi.com> in 1999.
5
   Major optimizations by Matjaz Breskvar <matjazb@bsemi.com> in 2005.
6
 
7
This file is part of GNU CC.
8
 
9
GNU CC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 1, or (at your option)
12
any later version.
13
 
14
GNU CC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GNU CC; see the file COPYING.  If not, write to
21
the Free Software Foundation, 59 Temple Place - Suite 330,
22
Boston, MA 02111-1307, USA.  */
23
 
24
#ifndef _OR32_H_
25
#define _OR32_H_
26
 
27
/* Target CPU builtins */
28
#define TARGET_CPU_CPP_BUILTINS()               \
29
  do                                            \
30
    {                                           \
31
      builtin_define_std ("OR32");              \
32
      builtin_define_std ("or32");              \
33
      builtin_assert ("cpu=or32");              \
34
      builtin_assert ("machine=or32");          \
35
    }                                           \
36
  while (0)
37
 
38
#if 0
39
 
40
/* Which library to get.  The only difference from the default is to get
41
   libsc.a if -sim is given to the driver.  Repeat -lc -lsysX
42
   {X=sim,linux}, because libsysX needs (at least) errno from libc, and
43
   then we want to resolve new unknowns in libc against libsysX, not
44
   libnosys.  */
45
/* Override previous definitions (linux.h).  */
46
#undef LIB_SPEC
47
#define LIB_SPEC \
48
 "%{sim*:-lc -lsyssim -lc -lsyssim}\
49
  %{!sim*:%{g*:-lg}\
50
    %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} -lbsp}\
51
  -lnosys"
52
#endif
53
 
54
#define TARGET_VERSION fprintf (stderr, " (OpenRISC 1000)");
55
 
56
/* Run-time compilation parameters selecting different hardware subsets.  */
57
 
58
extern int target_flags;
59
 
60
/* Default target_flags if no switches specified.  */
61
#ifndef TARGET_DEFAULT
62
#define TARGET_DEFAULT (MASK_HARD_MUL)
63
#endif
64
 
65
#undef TARGET_ASM_NAMED_SECTION
66
#define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
67
 
68
/* Target machine storage layout */
69
 
70
/* Define this if most significant bit is lowest numbered
71
   in instructions that operate on numbered bit-fields.
72
   This is not true on the or32.  */
73
#define BITS_BIG_ENDIAN 0
74
 
75
/* Define this if most significant byte of a word is the lowest numbered.  */
76
#define BYTES_BIG_ENDIAN 1
77
 
78
/* Define this if most significant word of a multiword number is numbered.  */
79
#define WORDS_BIG_ENDIAN 1
80
 
81
/* Number of bits in an addressable storage unit */
82
#define BITS_PER_UNIT 8
83
 
84
#define BITS_PER_WORD 32
85
#define SHORT_TYPE_SIZE 16
86
#define INT_TYPE_SIZE 32
87
#define LONG_TYPE_SIZE 32
88
#define LONG_LONG_TYPE_SIZE 64
89
#define FLOAT_TYPE_SIZE 32
90
#define DOUBLE_TYPE_SIZE 64
91
#define LONG_DOUBLE_TYPE_SIZE 64
92
 
93
/* Width of a word, in units (bytes).  */
94
#define UNITS_PER_WORD 4
95
 
96
/* Width in bits of a pointer.
97
   See also the macro `Pmode' defined below.  */
98
#define POINTER_SIZE 32
99
 
100
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
101
#define POINTER_BOUNDARY 32
102
 
103
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
104
#define PARM_BOUNDARY 32
105
 
106
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
107
#define STACK_BOUNDARY 32
108
 
109
/* Allocation boundary (in *bits*) for the code of a function.  */
110
#define FUNCTION_BOUNDARY 32
111
 
112
/* Alignment of field after `int : 0' in a structure.  */
113
#define EMPTY_FIELD_BOUNDARY 8
114
 
115
/* Every structure's size must be a multiple of this.  */
116
#define STRUCTURE_SIZE_BOUNDARY 32
117
 
118
/* A bitfield declared as `int' forces `int' alignment for the struct.  */
119
#define PCC_BITFIELD_TYPE_MATTERS 1
120
 
121
/* No data type wants to be aligned rounder than this.  */
122
#define BIGGEST_ALIGNMENT 32
123
 
124
/* The best alignment to use in cases where we have a choice.  */
125
#define FASTEST_ALIGNMENT 32
126
 
127
/* Make strings word-aligned so strcpy from constants will be faster.  */
128
/*
129
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
130
  ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR)    \
131
    && (ALIGN) < FASTEST_ALIGNMENT                                      \
132
   ? FASTEST_ALIGNMENT : (ALIGN))
133
*/
134
 
135
/* One use of this macro is to increase alignment of medium-size
136
   data to make it all fit in fewer cache lines.  Another is to
137
   cause character arrays to be word-aligned so that `strcpy' calls
138
   that copy constants to character arrays can be done inline.  */
139
/*
140
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
141
  ((((ALIGN) < FASTEST_ALIGNMENT)                                       \
142
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
143
        || TREE_CODE (TYPE) == UNION_TYPE                               \
144
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? FASTEST_ALIGNMENT : (ALIGN))
145
*/ /* CHECK - btw code gets bigger with this one */
146
 
147
/* Define this if move instructions will actually fail to work
148
   when given unaligned data.  */
149
#define STRICT_ALIGNMENT 1 /* CHECK */
150
 
151
/* Align an address */
152
#define OR32_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
153
 
154
/* Define if operations between registers always perform the operation
155
   on the full register even if a narrower mode is specified.  */
156
#define WORD_REGISTER_OPERATIONS  /* CHECK */
157
 
158
 
159
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
160
   will either zero-extend or sign-extend.  The value of this macro should
161
   be the code that says which one of the two operations is implicitly
162
   done, NIL if none.  */
163
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
164
 
165
/* Define this macro if it is advisable to hold scalars in registers
166
   in a wider mode than that declared by the program.  In such cases,
167
   the value is constrained to be within the bounds of the declared
168
   type, but kept valid in the wider mode.  The signedness of the
169
   extension may differ from that of the type. */
170
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
171
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
172
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
173
    (MODE) = SImode;
174
  /* CHECK */
175
 
176
/*
177
 * brings 0.4% improvment in static size for linux
178
 *
179
#define PROMOTE_FOR_CALL_ONLY
180
*/
181
 
182
/* Define this macro if it is as good or better to call a constant
183
   function address than to call an address kept in a register.  */
184
#define NO_FUNCTION_CSE 1 /* check */
185
 
186
/* Standard register usage.  */
187
 
188
/* Number of actual hardware registers.
189
   The hardware registers are assigned numbers for the compiler
190
   from 0 to just below FIRST_PSEUDO_REGISTER.
191
   All registers that the compiler knows about must be given numbers,
192
   even those that are not normally considered general registers.  */
193
#define FIRST_PSEUDO_REGISTER 33
194
#define LAST_INT_REG (FIRST_PSEUDO_REGISTER - 1)
195
 
196
/* 1 for registers that have pervasive standard uses
197
   and are not available for the register allocator.
198
   On the or32, these are r1 as stack pointer and
199
   r2 as frame/arg pointer.  r9 is link register, r0
200
   is zero, r10 is linux thread */
201
#define FIXED_REGISTERS { \
202
  1, 1, 1, 0, 0, 0, 0, 0, \
203
  0, 1, 1, 0, 0, 0, 0, 0, \
204
  0, 0, 0, 0, 0, 0, 0, 0, \
205
  0, 0, 0, 0, 0, 0, 0, 0, 1}
206
/* 1 for registers not available across function calls.
207
   These must include the FIXED_REGISTERS and also any
208
   registers that can be used without being saved.
209
   The latter must include the registers where values are returned
210
   and the register where structure-value addresses are passed.
211
   Aside from that, you can include as many other registers as you like.  */
212
#define CALL_USED_REGISTERS { \
213
  1, 1, 1, 1, 1, 1, 1, 1, \
214
  1, 1, 1, 1, 0, 1, 0, 1, \
215
  0, 1, 0, 1, 0, 1, 0, 1, \
216
  0, 1, 0, 1, 0, 1, 0, 1, 1}
217
 
218
/* stack pointer: must be FIXED and CALL_USED */
219
/* frame pointer: must be FIXED and CALL_USED */
220
 
221
/* Return number of consecutive hard regs needed starting at reg REGNO
222
   to hold something of mode MODE.
223
   This is ordinarily the length in words of a value of mode MODE
224
   but can be less for certain modes in special long registers.
225
   On the or32, all registers are one word long.  */
226
#define HARD_REGNO_NREGS(REGNO, MODE)   \
227
 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
228
 
229
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
230
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
231
 
232
/* Value is 1 if it is a good idea to tie two pseudo registers
233
   when one has mode MODE1 and one has mode MODE2.
234
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
235
   for any hard reg, then this must be 0 for correct output.  */
236
#define MODES_TIEABLE_P(MODE1, MODE2)  1
237
 
238
/* A C expression returning the cost of moving data from a register of class
239
   CLASS1 to one of CLASS2.  */
240
#define REGISTER_MOVE_COST or32_register_move_cost
241
 
242
/* A C expressions returning the cost of moving data of MODE from a register to
243
   or from memory.  */
244
#define MEMORY_MOVE_COST or32_memory_move_cost
245
 
246
/* Specify the cost of a branch insn; roughly the number of extra insns that
247
   should be added to avoid a branch. */
248
#define BRANCH_COST or32_branch_cost()
249
 
250
/* Specify the registers used for certain standard purposes.
251
   The values of these macros are register numbers.  */
252
 
253
/* Register to use for pushing function arguments.  */
254
#define STACK_POINTER_REGNUM 1
255
 
256
/* Base register for access to local variables of the function.  */
257
#define FRAME_POINTER_REGNUM 2
258
 
259
/* Link register. */
260
#define LINK_REGNUM 9
261
 
262
/* Value should be nonzero if functions must have frame pointers.
263
   Zero means the frame pointer need not be set up (and parms
264
   may be accessed via the stack pointer) in functions that seem suitable.
265
   This is computed in `reload', in reload1.c.  */
266
#define FRAME_POINTER_REQUIRED 0
267
 
268
/* De ne this macro if debugging can be performed even without a frame pointer.
269
   If this macro is de ned, GCC will turn on the `-fomit-frame-pointer' option
270
   whenever `-O' is specifed.
271
 */
272
/*
273
#define CAN_DEBUG_WITHOUT_FP
274
 */
275
 
276
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH)                                             \
277
{ int regno;                                                                            \
278
  int offset = 0;                                                                        \
279
  for( regno=0; regno < FIRST_PSEUDO_REGISTER;  regno++ )                                \
280
    if( regs_ever_live[regno] && !call_used_regs[regno] )                               \
281
      offset += 4;                                                                      \
282
  (DEPTH) = (!current_function_is_leaf || regs_ever_live[LINK_REGNUM] ? 4 : 0)   +       \
283
                (frame_pointer_needed ? 4 : 0)                                   +       \
284
                offset                                                          +       \
285
                OR32_ALIGN(current_function_outgoing_args_size,4)               +       \
286
                OR32_ALIGN(get_frame_size(),4);                                         \
287
}
288
 
289
/* Base register for access to arguments of the function.  */
290
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
291
 
292
/* Register in which static-chain is passed to a function.  */
293
#define STATIC_CHAIN_REGNUM 0
294
 
295
/* Register in which address to store a structure value
296
   is passed to a function.  */
297
/*#define STRUCT_VALUE_REGNUM 0*/
298
 
299
/* Pass address of result struct to callee as "invisible" first argument */
300
#define STRUCT_VALUE 0
301
 
302
/* -----------------------[ PHX start ]-------------------------------- */
303
 
304
/* Define the classes of registers for register constraints in the
305
   machine description.  Also define ranges of constants.
306
 
307
   One of the classes must always be named ALL_REGS and include all hard regs.
308
   If there is more than one class, another class must be named NO_REGS
309
   and contain no registers.
310
 
311
   The name GENERAL_REGS must be the name of a class (or an alias for
312
   another name such as ALL_REGS).  This is the class of registers
313
   that is allowed by "g" or "r" in a register constraint.
314
   Also, registers outside this class are allocated only when
315
   instructions express preferences for them.
316
 
317
   GENERAL_REGS and BASE_REGS classess are the same on or32.
318
 
319
   The classes must be numbered in nondecreasing order; that is,
320
   a larger-numbered class must never be contained completely
321
   in a smaller-numbered class.
322
 
323
   For any two classes, it is very desirable that there be another
324
   class that represents their union.  */
325
 
326
/* The or32 has only one kind of registers, so NO_REGS, GENERAL_REGS
327
   and ALL_REGS are the only classes.  */
328
 
329
enum reg_class
330
{
331
  NO_REGS,
332
  GENERAL_REGS,
333
  CR_REGS,
334
  ALL_REGS,
335
  LIM_REG_CLASSES
336
};
337
 
338
#define N_REG_CLASSES (int) LIM_REG_CLASSES
339
 
340
/* Give names of register classes as strings for dump file.   */
341
 
342
#define REG_CLASS_NAMES                                                 \
343
{                                                                       \
344
  "NO_REGS",                                                            \
345
  "GENERAL_REGS",                                                       \
346
  "ALL_REGS"                                                            \
347
}
348
 
349
 
350
/* Define which registers fit in which classes.
351
   This is an initializer for a vector of HARD_REG_SET
352
   of length N_REG_CLASSES.  */
353
 
354
/* An initializer containing the contents of the register classes,
355
   as integers which are bit masks.  The Nth integer specifies the
356
   contents of class N.  The way the integer MASK is interpreted is
357
   that register R is in the class if `MASK & (1 << R)' is 1.
358
 
359
   When the machine has more than 32 registers, an integer does not
360
   suffice.  Then the integers are replaced by sub-initializers,
361
   braced groupings containing several integers.  Each
362
   sub-initializer must be suitable as an initializer for the type
363
   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
364
 
365
#define REG_CLASS_CONTENTS                           \
366
{                                                    \
367
  { 0x00000000, 0x00000000 }, /* NO_REGS */          \
368
  { 0xffffffff, 0x00000001 }, /* GENERAL_REGS */     \
369
  { 0xffffffff, 0x00000000 }  /* ALL_REGS */         \
370
}
371
 
372
/* The same information, inverted:
373
   Return the class number of the smallest class containing
374
   reg number REGNO.  This could be a conditional expression
375
   or could index an array.  */
376
 
377
#define REGNO_REG_CLASS(REGNO)                  \
378
 ((REGNO) < 32 ? GENERAL_REGS                   \
379
  : NO_REGS)
380
 
381
/* The class value for index registers, and the one for base regs.  */
382
#define INDEX_REG_CLASS GENERAL_REGS
383
#define BASE_REG_CLASS GENERAL_REGS
384
 
385
/* Get reg_class from a letter such as appears in the machine description.  */
386
 
387
#define REG_CLASS_FROM_LETTER(C) NO_REGS
388
 
389
#if 1
390
/* The letters I, J, K, L and M in a register constraint string
391
   can be used to stand for particular ranges of immediate operands.
392
   This macro defines what the ranges are.
393
   C is the letter, and VALUE is a constant value.
394
   Return 1 if VALUE is in the range specified by C.  */
395
 
396
#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
397
    (  (C) == 'I' ? ((VALUE) >=-32768 && (VALUE) <=32767) \
398
     : (C) == 'J' ? ((VALUE) >=0 && (VALUE) <=0) \
399
     : (C) == 'K' ? ((VALUE) >=0 && (VALUE) <=65535) \
400
     : (C) == 'L' ? ((VALUE) >=0 && (VALUE) <=31) \
401
     : (C) == 'M' ? (((VALUE) & 0xffff) == 0 )           \
402
     : (C) == 'N' ? ((VALUE) >=-33554432 && (VALUE) <=33554431) \
403
     : (C) == 'O' ? ((VALUE) >=0 && (VALUE) <=0) \
404
     : 0 )
405
#else
406
 
407
/* The letters I, J, K, L, M, N, and P in a register constraint string
408
   can be used to stand for particular ranges of immediate operands.
409
   This macro defines what the ranges are.
410
   C is the letter, and VALUE is a constant value.
411
   Return 1 if VALUE is in the range specified by C.
412
 
413
   `I' is a signed 16-bit constant
414
   `J' is a constant with only the high-order 16 bits nonzero
415
   `K' is a constant with only the low-order 16 bits nonzero
416
   `L' is a signed 16-bit constant shifted left 16 bits
417
   `M' is a constant that is greater than 31
418
   `N' is a positive constant that is an exact power of two
419
   `O' is the constant zero
420
   `P' is a constant whose negation is a signed 16-bit constant */
421
 
422
#define CONST_OK_FOR_LETTER_P(VALUE, C)                                 \
423
   ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
424
   : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
425
   : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0            \
426
   : (C) == 'L' ? (((VALUE) & 0xffff) == 0                               \
427
                   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))       \
428
   : (C) == 'M' ? (VALUE) > 31                                          \
429
   : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0          \
430
   : (C) == 'O' ? (VALUE) == 0                                           \
431
   : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
432
   : 0)
433
#endif
434
 
435
/* -----------------------[ PHX stop ]-------------------------------- */
436
 
437
/* Similar, but for floating constants, and defining letters G and H.
438
   Here VALUE is the CONST_DOUBLE rtx itself.  */
439
 
440
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
441
 
442
/* Given an rtx X being reloaded into a reg required to be
443
   in class CLASS, return the class of reg to actually use.
444
   In general this is just CLASS; but on some machines
445
   in some cases it is preferable to use a more restrictive class.  */
446
 
447
#define PREFERRED_RELOAD_CLASS(X,CLASS)  (CLASS)
448
 
449
/* Return the maximum number of consecutive registers
450
   needed to represent mode MODE in a register of class CLASS.  */
451
/* On the or32, this is always the size of MODE in words,
452
   since all registers are the same size.  */
453
#define CLASS_MAX_NREGS(CLASS, MODE)    \
454
 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
455
 
456
/* Stack layout; function entry, exit and calling.  */
457
 
458
/* Define this if pushing a word on the stack
459
   makes the stack pointer a smaller address.  */
460
#define STACK_GROWS_DOWNWARD 1
461
 
462
/* Define this if the nominal address of the stack frame
463
   is at the high-address end of the local variables;
464
   that is, each additional local variable allocated
465
   goes at a more negative offset in the frame.  */
466
#define FRAME_GROWS_DOWNWARD 1
467
 
468
/* Offset within stack frame to start allocating local variables at.
469
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
470
   first local allocated.  Otherwise, it is the offset to the BEGINNING
471
   of the first local allocated.  */
472
#define STARTING_FRAME_OFFSET 0
473
 
474
/* Offset of first parameter from the argument pointer register value.  */
475
#define FIRST_PARM_OFFSET(FNDECL) 0
476
 
477
/* Define this if stack space is still allocated for a parameter passed
478
   in a register.  The value is the number of bytes allocated to this
479
   area.  */
480
/*
481
#define REG_PARM_STACK_SPACE(FNDECL) (UNITS_PER_WORD * GP_ARG_NUM_REG)
482
*/
483
/* Define this if the above stack space is to be considered part of the
484
   space allocated by the caller.  */
485
/*
486
#define OUTGOING_REG_PARM_STACK_SPACE
487
*/
488
/* Define this macro if `REG_PARM_STACK_SPACE' is defined, but the
489
   stack parameters don't skip the area specified by it. */
490
/*
491
#define STACK_PARMS_IN_REG_PARM_AREA
492
*/
493
/* Define this if the maximum size of all the outgoing args is to be
494
   accumulated and pushed during the prologue.  The amount can be
495
   found in the variable current_function_outgoing_args_size.  */
496
#define ACCUMULATE_OUTGOING_ARGS 1
497
 
498
/* Value is 1 if returning from a function call automatically
499
   pops the arguments described by the number-of-args field in the call.
500
   FUNDECL is the declaration node of the function (as a tree),
501
   FUNTYPE is the data type of the function (as a tree),
502
   or for a library call it is an identifier node for the subroutine name.
503
 
504
   On the Vax, the RET insn always pops all the args for any function.  */
505
/* SIMON */
506
/*#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)*/
507
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
508
 
509
/* Minimum and maximum general purpose registers used to hold arguments.  */
510
#define GP_ARG_MIN_REG 3
511
#define GP_ARG_MAX_REG 8
512
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) 
513
 
514
/* Return registers */
515
#define GP_ARG_RETURN 11 
516
 
517
/* Define how to find the value returned by a function.
518
   VALTYPE is the data type of the value (as a tree).
519
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
520
   otherwise, FUNC is 0.  */
521
 
522
/* Return value is in R11.  */
523
#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
524
 
525
/* Define how to find the value returned by a library function
526
   assuming the value has mode MODE.  */
527
 
528
/* Return value is in R11.  */
529
 
530
#define LIBCALL_VALUE(MODE)                                             \
531
  gen_rtx_REG(                                                          \
532
           ((GET_MODE_CLASS (MODE) != MODE_INT                          \
533
             || GET_MODE_SIZE (MODE) >= 4)                              \
534
            ? (MODE)                                                    \
535
            : SImode),                                                  \
536
            GP_ARG_RETURN)
537
 
538
/* Define this if PCC uses the nonreentrant convention for returning
539
   structure and union values.  */
540
 
541
/*#define PCC_STATIC_STRUCT_RETURN */
542
 
543
/* 1 if N is a possible register number for a function value.
544
   R3 to R8 are possible (set to 1 in CALL_USED_REGISTERS)  */
545
 
546
#define FUNCTION_VALUE_REGNO_P(N)  ((N) == GP_ARG_RETURN)
547
 
548
/* 1 if N is a possible register number for function argument passing. */
549
 
550
#define FUNCTION_ARG_REGNO_P(N) \
551
   ((N) >= GP_ARG_MIN_REG && (N) <= GP_ARG_MAX_REG)
552
 
553
/* A code distinguishing the floating point format of the target
554
   machine.  There are three defined values: IEEE_FLOAT_FORMAT,
555
   VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT.  */
556
 
557
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
558
#define FLOAT_WORDS_BIG_ENDIAN 1
559
 
560
/* Define a data type for recording info about an argument list
561
   during the scan of that argument list.  This data type should
562
   hold all necessary information about the function itself
563
   and about the args processed so far, enough to enable macros
564
   such as FUNCTION_ARG to determine where the next arg should go.
565
 
566
   On the vax, this is a single integer, which is a number of bytes
567
   of arguments scanned so far.  */
568
 
569
#define CUMULATIVE_ARGS int
570
 
571
/* Initialize a variable CUM of type CUMULATIVE_ARGS
572
   for a call to a function whose data type is FNTYPE.
573
   For a library call, FNTYPE is 0.
574
 
575
   On the vax, the offset starts at 0.  */
576
 
577
/* The regs member is an integer, the number of arguments got into
578
   registers so far.  */
579
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
580
 (CUM = 0)
581
 
582
/* Define intermediate macro to compute the size (in registers) of an argument
583
   for the or32.  */
584
 
585
/* The ROUND_ADVANCE* macros are local to this file.  */
586
/* Round SIZE up to a word boundary.  */
587
#define ROUND_ADVANCE(SIZE) \
588
(((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
589
 
590
/* Round arg MODE/TYPE up to the next word boundary.  */
591
#define ROUND_ADVANCE_ARG(MODE, TYPE) \
592
((MODE) == BLKmode                              \
593
 ? ROUND_ADVANCE (int_size_in_bytes (TYPE))     \
594
 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
595
 
596
/* Round CUM up to the necessary point for argument MODE/TYPE.  */
597
/* This is either rounded to nearest reg or nearest double-reg boundary */
598
#define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
599
((((MODE) == BLKmode ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) \
600
  > BITS_PER_WORD)      \
601
 ? (((CUM) + 1) & ~1)   \
602
 : (CUM))
603
 
604
/* Update the data in CUM to advance over an argument
605
   of mode MODE and data type TYPE.
606
   (TYPE is null for libcalls where that information may not be available.)  */
607
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
608
((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
609
          + ROUND_ADVANCE_ARG ((MODE), (TYPE))))
610
 
611
/* Return boolean indicating arg of type TYPE and mode MODE will be passed in
612
   a reg.  This includes arguments that have to be passed by reference as the
613
   pointer to them is passed in a reg if one is available (and that is what
614
   we're given).
615
   When passing arguments NAMED is always 1.  When receiving arguments NAMED
616
   is 1 for each argument except the last in a stdarg/varargs function.  In
617
   a stdarg function we want to treat the last named arg as named.  In a
618
   varargs function we want to treat the last named arg (which is
619
   `__builtin_va_alist') as unnamed.
620
   This macro is only used in this file.  */
621
#define PASS_IN_REG_P(CUM, MODE, TYPE, NAMED) \
622
((NAMED)                                                                \
623
 && ((ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))                         \
624
      + ROUND_ADVANCE_ARG ((MODE), (TYPE))                              \
625
      <= GP_ARG_NUM_REG)))
626
 
627
/* Determine where to put an argument to a function.
628
   Value is zero to push the argument on the stack,
629
   or a hard register in which to store the argument.
630
 
631
   MODE is the argument's machine mode.
632
   TYPE is the data type of the argument (as a tree).
633
    This is null for libcalls where that information may
634
    not be available.
635
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
636
    the preceding args and about the function being called.
637
   NAMED is nonzero if this argument is a named parameter
638
    (otherwise it is an extra parameter matching an ellipsis).  */
639
/* On the ARC the first MAX_ARC_PARM_REGS args are normally in registers
640
   and the rest are pushed.  */
641
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
642
(PASS_IN_REG_P ((CUM), (MODE), (TYPE), (NAMED))                         \
643
 ? gen_rtx_REG ((MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) + GP_ARG_MIN_REG)     \
644
 : 0)
645
 
646
/* Output assembler code to FILE to increment profiler label # LABELNO
647
   for profiling a function entry.  */
648
 
649
#define FUNCTION_PROFILER(FILE, LABELNO)  \
650
   fprintf (FILE, "\tl.load32u\tr0,LP%d\n\tcall\tmcount\n", (LABELNO));
651
 
652
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
653
   the stack pointer does not matter.  The value is tested only in
654
   functions that have frame pointers.
655
   No definition is equivalent to always zero.  */
656
 
657
#define EXIT_IGNORE_STACK 0
658
 
659
/* If the memory address ADDR is relative to the frame pointer,
660
   correct it to be relative to the stack pointer instead.
661
   This is for when we don't use a frame pointer.
662
   ADDR should be a variable name.  */
663
 
664
#define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
665
{ int offset = -1;                                                      \
666
  rtx regs = stack_pointer_rtx;                                         \
667
  if (ADDR == frame_pointer_rtx)                                        \
668
    offset = 0;                                                          \
669
  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx \
670
           && GET_CODE (XEXP (ADDR, 0)) == CONST_INT)                    \
671
    offset = INTVAL (XEXP (ADDR, 0));                                    \
672
  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
673
           && GET_CODE (XEXP (ADDR, 1)) == CONST_INT)                   \
674
    offset = INTVAL (XEXP (ADDR, 1));                                   \
675
  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
676
    { rtx other_reg = XEXP (ADDR, 1);                                   \
677
      offset = 0;                                                        \
678
      regs = gen_rtx_PLUS( Pmode, stack_pointer_rtx, other_reg); }      \
679
  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
680
    { rtx other_reg = XEXP (ADDR, 0);                                    \
681
      offset = 0;                                                        \
682
      regs = gen_rtx_PLUS( Pmode, stack_pointer_rtx, other_reg); }      \
683
  if (offset >= 0)                                                       \
684
    { int regno;                                                        \
685
      extern char call_used_regs[];                                     \
686
      offset += 4; /* I don't know why??? */                            \
687
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)            \
688
        if (regs_ever_live[regno] && ! call_used_regs[regno])           \
689
          offset += 4;                                                  \
690
      ADDR = plus_constant (regs, offset + (DEPTH)); } }
691
 
692
 
693
/* Addressing modes, and classification of registers for them.  */
694
 
695
/* #define HAVE_POST_INCREMENT */
696
/* #define HAVE_POST_DECREMENT */
697
 
698
/* #define HAVE_PRE_DECREMENT */
699
/* #define HAVE_PRE_INCREMENT */
700
 
701
/* Macros to check register numbers against specific register classes.  */
702
 
703
#define MAX_REGS_PER_ADDRESS 1
704
 
705
/* True if X is an rtx for a constant that is a valid address.  */
706
#define CONSTANT_ADDRESS_P(X)                                           \
707
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF              \
708
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
709
   || GET_CODE (X) == HIGH)
710
 
711
#define REGNO_OK_FOR_BASE_P(REGNO)                                          \
712
((REGNO) < FIRST_PSEUDO_REGISTER ? ((REGNO) > 0 && (REGNO) <= LAST_INT_REG) \
713
 : (reg_renumber[REGNO] > 0 && (reg_renumber[REGNO] <= LAST_INT_REG )))
714
 
715
#ifdef REG_OK_STRICT
716
/* Strict version, used in reload pass. This should not
717
 * accept pseudo registers.
718
 */
719
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P(REGNO(X))
720
#else
721
/* Accept an int register or a pseudo reg. */
722
#define REG_OK_FOR_BASE_P(X) (REGNO(X) <= LAST_INT_REG || \
723
                              REGNO(X) >= FIRST_PSEUDO_REGISTER)
724
#endif
725
 
726
/*
727
 * OR32 doesn't have any indexed addressing.
728
 */
729
#define REG_OK_FOR_INDEX_P(X) 0
730
#define REGNO_OK_FOR_INDEX_P(X) 0
731
 
732
#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET)          \
733
 (GET_CODE (X) == CONST_INT && SMALL_INT(X))
734
 
735
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X)             \
736
 (GET_CODE (X) == PLUS                                  \
737
  && GET_CODE (XEXP (X, 0)) == REG                      \
738
  && REG_OK_FOR_BASE_P (XEXP (X, 0))                    \
739
  && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0)      \
740
  && (((MODE) != DFmode && (MODE) != DImode)            \
741
      || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
742
 
743
#define LEGITIMATE_NONOFFSET_ADDRESS_P(MODE,X)          \
744
             (GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X))
745
/*
746
 * OR32 only has one addressing mode:
747
 * register + 16 bit signed offset.
748
 */
749
#define GO_IF_LEGITIMATE_ADDRESS(MODE,X,ADDR)           \
750
  if(LEGITIMATE_OFFSET_ADDRESS_P(MODE,X)) goto ADDR;    \
751
  if(LEGITIMATE_NONOFFSET_ADDRESS_P(MODE,X)) goto ADDR;
752
 
753
/*
754
  if(GET_CODE(X) == SYMBOL_REF) goto ADDR;  */ /* If used, smaller code */
755
 
756
/* Alternative */
757
#if 0
758
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)  \
759
{                                                                       \
760
  if (GET_CODE (X) == REG) goto ADDR;                                   \
761
  if (GET_CODE (X) == SYMBOL_REF) goto ADDR;                            \
762
  if (CONSTANT_ADDRESS_P (X)) goto ADDR;                                \
763
  if (GET_CODE (X) == PLUS)                                             \
764
    {                                                                   \
765
      /* Handle [index]<address> represented with index-sum outermost */\
766
      if (GET_CODE (XEXP (X, 0)) == REG                                 \
767
          && REG_OK_FOR_BASE_P (XEXP (X, 0))                            \
768
          && GET_CODE (XEXP (X, 1)) == CONST_INT)                       \
769
        goto ADDR;                                                      \
770
      if (GET_CODE (XEXP (X, 1)) == REG                                 \
771
          && REG_OK_FOR_BASE_P (XEXP (X, 0))                            \
772
          && GET_CODE (XEXP (X, 0)) == CONST_INT)                       \
773
        goto ADDR;                                                      \
774
    }                                                                   \
775
 }
776
#endif
777
/*
778
 * We have to force symbol_ref's into registers here
779
 * because nobody else seems to want to do that!
780
 */
781
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
782
/*
783
{ if (GET_CODE (x) == SYMBOL_REF)                               \
784
    (X) = copy_to_reg (X);                                      \
785
  if (memory_address_p (MODE, X))                               \
786
    goto WIN;                                                   \
787
}
788
*/
789
 
790
/*
791
 * OR32 addresses do not depend on the machine mode they are
792
 * being used in.
793
 */
794
#define GO_IF_MODE_DEPENDENT_ADDRESS(addr,label)
795
 
796
/* OR32 has 16 bit immediates.
797
 */
798
#define SMALL_INT(X) (INTVAL(X) >= -32768 && INTVAL(X) <= 32767)
799
 
800
#define LEGITIMATE_CONSTANT_P(x) (GET_CODE(x) != CONST_DOUBLE)
801
 
802
/* Specify the machine mode that this machine uses
803
   for the index in the tablejump instruction.  */
804
#define CASE_VECTOR_MODE SImode
805
 
806
/* Define as C expression which evaluates to nonzero if the tablejump
807
   instruction expects the table to contain offsets from the address of the
808
   table.
809
   Do not define this if the table should contain absolute addresses. */
810
/* #define CASE_VECTOR_PC_RELATIVE 1 */
811
 
812
/* Define this as 1 if `char' should by default be signed; else as 0.  */
813
#define DEFAULT_SIGNED_CHAR 1
814
 
815
/* This flag, if defined, says the same insns that convert to a signed fixnum
816
   also convert validly to an unsigned one.  */
817
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
818
 
819
/* Max number of bytes we can move from memory to memory
820
   in one reasonably fast instruction.  */
821
#define MOVE_MAX 4
822
 
823
/* Define this if zero-extension is slow (more than one real instruction).  */
824
/* #define SLOW_ZERO_EXTEND */
825
 
826
/* Nonzero if access to memory by bytes is slow and undesirable.
827
   For RISC chips, it means that access to memory by bytes is no
828
   better than access by words when possible, so grab a whole word
829
   and maybe make use of that.  */
830
#define SLOW_BYTE_ACCESS 1
831
 
832
/* Define if shifts truncate the shift count
833
   which implies one can omit a sign-extension or zero-extension
834
   of a shift count.  */
835
/* #define SHIFT_COUNT_TRUNCATED */
836
 
837
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
838
   is done just by pretending it is already truncated.  */
839
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
840
 
841
/* Specify the machine mode that pointers have.
842
   After generation of rtl, the compiler makes no further distinction
843
   between pointers and any other objects of this machine mode.  */
844
#define Pmode SImode
845
 
846
/* A function address in a call instruction
847
   is a byte address (for indexing purposes)
848
   so give the MEM rtx a byte's mode.  */
849
#define FUNCTION_MODE SImode
850
 
851
/* Compute the cost of computing a constant rtl expression RTX
852
   whose rtx-code is CODE.  The body of this macro is a portion
853
   of a switch statement.  If the code is computed here,
854
   return it with a return statement.  Otherwise, break from the switch.  */
855
#if 0
856
__PHX__ cleanup
857
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
858
  case CONST_INT:                                               \
859
    /* Constant zero is super cheap due to clr instruction.  */ \
860
    if (RTX == const0_rtx) return 0;                             \
861
    if ((unsigned) INTVAL (RTX) < 077) return 1;                \
862
  case CONST:                                                   \
863
  case LABEL_REF:                                               \
864
  case SYMBOL_REF:                                              \
865
    return 3;                                                   \
866
  case CONST_DOUBLE:                                            \
867
    return 5;
868
#endif
869
 
870
 
871
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
872
   COMPARE, return the mode to be used for the comparison.
873
*/
874
 
875
#define SELECT_CC_MODE(OP, X, Y) or32_cc_mode ((OP), (X), (Y))
876
 
877
/* Can the condition code MODE be safely reversed?  This is safe in
878
   all cases on this port, because at present it doesn't use the
879
   trapping FP comparisons (fcmpo).  */
880
#define REVERSIBLE_CC_MODE(MODE) 1
881
 
882
/* Given a condition code and a mode, return the inverse condition.  */
883
#define REVERSE_CONDITION(CODE, MODE) or32_reverse_condition (MODE, CODE)
884
 
885
 
886
/* Control the assembler format that we output.  */
887
 
888
/* A C string constant describing how to begin a comment in the target
889
   assembler language.  The compiler assumes that the comment will end at
890
   the end of the line.  */
891
#define ASM_COMMENT_START "#"
892
 
893
/* Output at beginning of assembler file.  */
894
/*
895
__PHX__ clenup
896
#ifndef ASM_FILE_START
897
#define ASM_FILE_START(FILE) do {\
898
fprintf (FILE, "%s file %s\n", ASM_COMMENT_START, main_input_filename);\
899
fprintf (FILE, ".file\t");   \
900
  output_quoted_string (FILE, main_input_filename);\
901
  fputc ('\n', FILE);} while (0)
902
#endif
903
*/
904
/* Output to assembler file text saying following lines
905
   may contain character constants, extra white space, comments, etc.  */
906
 
907
#define ASM_APP_ON ""
908
 
909
/* Output to assembler file text saying following lines
910
   no longer contain unusual constructs.  */
911
 
912
#define ASM_APP_OFF ""
913
 
914
/* Switch to the text or data segment.  */
915
 
916
/* Output before read-only data.  */
917
#define TEXT_SECTION_ASM_OP ".section .text"
918
 
919
/* Output before writable data.  */
920
#define DATA_SECTION_ASM_OP ".section .data"
921
 
922
/* Output before uninitialized data. */
923
#define BSS_SECTION_ASM_OP  ".section .bss"
924
 
925
/* How to refer to registers in assembler output.
926
   This sequence is indexed by compiler's hard-register-number (see above).  */
927
 
928
#define REGISTER_NAMES \
929
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" \
930
, "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "cc-flag"}
931
 
932
 
933
/* Define this to be the delimiter between SDB sub-sections.  The default
934
   is ";".  */
935
#define SDB_DELIM       "\n"
936
 
937
/* Do not break .stabs pseudos into continuations.  */
938
#define DBX_CONTIN_LENGTH 0
939
 
940
/* Don't try to use the  type-cross-reference character in DBX data.
941
   Also has the consequence of putting each struct, union or enum
942
   into a separate .stabs, containing only cross-refs to the others.  */
943
#define DBX_NO_XREFS
944
 
945
/* How to renumber registers for dbx and gdb.
946
   Vax needs no change in the numeration.  */
947
 
948
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
949
 
950
/* This is the char to use for continuation (in case we need to turn
951
   continuation back on).  */
952
 
953
#define DBX_CONTIN_CHAR '?'
954
 
955
 
956
 
957
 
958
 
959
/* Node: Label Output */
960
 
961
/* Globalizing directive for a label.  */
962
#define GLOBAL_ASM_OP "\t.global "
963
 
964
#define SUPPORTS_WEAK 1
965
 
966
/* This is how to output the definition of a user-level label named NAME,
967
   such as the label on a static function or variable NAME.  */
968
 
969
#define ASM_OUTPUT_LABEL(FILE,NAME)     \
970
 { assemble_name (FILE, NAME); fputs (":\n", FILE); }
971
#if 0
972
/* This is how to output a command to make the user-level label named NAME
973
   defined for reference from other files.  */
974
/*
975
 __PHX__ CLEANUP
976
#define ASM_GLOBALIZE_LABEL(FILE,NAME)  \
977
 { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE); }
978
*/
979
 
980
/* SIMON */
981
/*#define ASM_OUTPUT_LABELREF(stream,name)                \
982
 { fputc('_',stream); fputs(name,stream); }
983
*/
984
#define ASM_OUTPUT_LABELREF(stream,name)                \
985
{if(name[0] == '*')                                      \
986
   fputs(name,stream);                                  \
987
else {                                                  \
988
   fputc('_',stream); fputs(name,stream);               \
989
}}
990
#endif
991
 
992
/* The prefix to add to user-visible assembler symbols. */
993
 
994
/* Remove any previous definition (elfos.h).  */
995
/* We use -fno-leading-underscore to remove it, when necessary.  */
996
#undef  USER_LABEL_PREFIX
997
#define USER_LABEL_PREFIX "_"
998
 
999
/* Remove any previous definition (elfos.h).  */
1000
#ifndef ASM_GENERATE_INTERNAL_LABEL
1001
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1002
  sprintf (LABEL, "*%s%d", PREFIX, NUM)
1003
#endif
1004
 
1005
/* This is how to output an assembler line defining an `int' constant.  */
1006
 
1007
#define ASM_OUTPUT_INT(FILE,VALUE)      \
1008
(                                       \
1009
        fprintf (FILE, "\t.word "),     \
1010
  output_addr_const (FILE, (VALUE)),    \
1011
  fprintf (FILE, "\n"))
1012
 
1013
#define ASM_OUTPUT_FLOAT(stream,value) \
1014
   { long l;                                 \
1015
      REAL_VALUE_TO_TARGET_SINGLE(value,l); \
1016
      fprintf(stream,"\t.word 0x%08x\t\n# float %26.7e\n",l,value); }
1017
 
1018
#define ASM_OUTPUT_DOUBLE(stream,value)                         \
1019
   { long l[2];                                                 \
1020
      REAL_VALUE_TO_TARGET_DOUBLE(value,&l[0]);                 \
1021
      fprintf(stream,"\t.word 0x%08x,0x%08x\t\n# float %26.16le\n",  \
1022
              l[0],l[1],value); }
1023
 
1024
#define ASM_OUTPUT_LONG_DOUBLE(stream,value) \
1025
   { long l[4];                                 \
1026
      REAL_VALUE_TO_TARGET_DOUBLE(value,&l[0]); \
1027
      fprintf(stream,"\t.word 0x%08x,0x%08x,0x%08x,0x%08x\t\n# float %26.18lle\n", \
1028
              l[0],l[1],l[2],l[3],value); }
1029
 
1030
/* Likewise for `char' and `short' constants.  */
1031
 
1032
#define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1033
( fprintf (FILE, "\t.half "),                   \
1034
  output_addr_const (FILE, (VALUE)),            \
1035
  fprintf (FILE, "\n"))
1036
 
1037
#define ASM_OUTPUT_CHAR(FILE,VALUE)  \
1038
( fprintf (FILE, "\t.byte "),                   \
1039
  output_addr_const (FILE, (VALUE)),            \
1040
  fprintf (FILE, "\n"))
1041
 
1042
/* This is how to output an assembler line for a numeric constant byte.  */
1043
 
1044
#define ASM_OUTPUT_BYTE(FILE,VALUE)  \
1045
  fprintf (FILE, "\t.byte 0x%02x\n", (VALUE))
1046
 
1047
/* This is how to output an insn to push a register on the stack.
1048
   It need not be very fast code.  */
1049
 
1050
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1051
  fprintf (FILE, "\tl.sub   \tr1,4\n\tl.sw    \t0(r1),%s\n", reg_names[REGNO])
1052
 
1053
/* This is how to output an insn to pop a register from the stack.
1054
   It need not be very fast code.  */
1055
 
1056
#define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1057
  fprintf (FILE, "\tl.lwz   \t%s,0(r1)\n\tl.addi   \tr1,4\n", reg_names[REGNO])
1058
 
1059
/* This is how to output an element of a case-vector that is absolute.
1060
   (The Vax does not use such vectors,
1061
   but we must define this macro anyway.)  */
1062
 
1063
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1064
  fprintf (FILE, "\t.word .L%d\n", VALUE)
1065
 
1066
/* This is how to output an element of a case-vector that is relative.  */
1067
 
1068
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1069
  fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
1070
 
1071
/* This is how to output an assembler line
1072
   that says to advance the location counter
1073
   to a multiple of 2**LOG bytes.  */
1074
 
1075
#define ASM_OUTPUT_ALIGN(FILE,LOG)  \
1076
  if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG))
1077
 
1078
/* This is how to output an assembler line
1079
   that says to advance the location counter by SIZE bytes.  */
1080
 
1081
#ifndef ASM_OUTPUT_SKIP
1082
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1083
  fprintf (FILE, "\t.space %d\n", (SIZE))
1084
#endif
1085
 
1086
/* Need to split up .ascii directives to avoid breaking
1087
   the linker. */
1088
 
1089
/* This is how to output a string.  */
1090
#undef  ASM_OUTPUT_ASCII
1091
#define ASM_OUTPUT_ASCII(STREAM, PTR, LEN)  \
1092
  output_ascii_pseudo_op (STREAM, (const unsigned char *) (PTR), LEN)
1093
 
1094
/* Invoked just before function output. */
1095
#define ASM_OUTPUT_FUNCTION_PREFIX(stream, fnname)              \
1096
  fputs(".proc ",stream); assemble_name(stream,fnname);         \
1097
  fputs("\n",stream);
1098
 
1099
/* This says how to output an assembler line
1100
   to define a global common symbol.  */
1101
#define ASM_OUTPUT_COMMON(stream,name,size,rounded)             \
1102
{ data_section();                                               \
1103
  fputs(".global\t",stream); assemble_name(stream,name);        \
1104
  fputs("\n",stream); assemble_name(stream,name);               \
1105
  fprintf(stream,":\n\t.space %d\n",rounded); }
1106
 
1107
/* This says how to output an assembler line
1108
   to define a local common symbol.  */
1109
 
1110
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1111
( fputs (".bss ", (FILE)),                      \
1112
  assemble_name ((FILE), (NAME)),               \
1113
  fprintf ((FILE), ",%d,%d\n", (SIZE),(ROUNDED)))
1114
 
1115
/* This says how to output an assembler line to define a global common symbol
1116
   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1117
#ifndef ASM_OUTPUT_ALIGNED_COMMON
1118
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)      \
1119
{ data_section();                                               \
1120
  if ((ALIGN) > 8)                                              \
1121
        fprintf(FILE, "\t.align %d\n", ((ALIGN) / BITS_PER_UNIT)); \
1122
  fputs(".global\t", FILE); assemble_name(FILE, NAME);          \
1123
  fputs("\n", FILE);                                            \
1124
  assemble_name(FILE, NAME);                                    \
1125
  fprintf(FILE, ":\n\t.space %d\n", SIZE);                      \
1126
}
1127
#endif /* ASM_OUTPUT_ALIGNED_COMMON */
1128
 
1129
/* This says how to output an assembler line to define a local common symbol
1130
   with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1131
 
1132
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
1133
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1134
{ data_section();                                               \
1135
  if ((ALIGN) > 8)                                              \
1136
        fprintf(FILE, "\t.align %d\n", ((ALIGN) / BITS_PER_UNIT)); \
1137
  assemble_name(FILE, NAME);                                    \
1138
  fprintf(FILE, ":\n\t.space %d\n", SIZE);                      \
1139
}
1140
#endif /* ASM_OUTPUT_ALIGNED_LOCAL */
1141
 
1142
/* Store in OUTPUT a string (made with alloca) containing
1143
   an assembler-name for a local static variable named NAME.
1144
   LABELNO is an integer which is different for each call.  */
1145
 
1146
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)  \
1147
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),    \
1148
  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1149
 
1150
/* Macro for %code validation. Returns nonzero if valid. */
1151
#define PRINT_OPERAND_PUNCT_VALID_P(code) or32_print_operand_punct_valid_p(code)
1152
 
1153
/* Print an instruction operand X on file FILE.
1154
   CODE is the code from the %-spec that requested printing this operand;
1155
   if `%z3' was used to print operand 3, then CODE is 'z'.  */
1156
 
1157
#define PRINT_OPERAND(FILE, X, CODE) or32_print_operand(FILE, X, CODE)
1158
 
1159
/* Print a memory operand whose address is X, on file FILE.
1160
   This uses a function in output-vax.c.  */
1161
 
1162
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) or32_print_operand_address (FILE, ADDR)
1163
 
1164
/* These are stubs, and have yet to bee written. */
1165
 
1166
#define TRAMPOLINE_SIZE 26
1167
#define TRAMPOLINE_TEMPLATE(FILE)
1168
#define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT)
1169
 
1170
extern GTY(()) rtx or32_compare_op0;
1171
extern GTY(()) rtx or32_compare_op1;
1172
 
1173
/* We don't use libg.a */
1174
#undef LIB_SPEC 
1175
#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
1176
 
1177
#endif /* _OR32_H_ */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.