1 |
38 |
julius |
/* Standard register usage. */
|
2 |
|
|
|
3 |
|
|
/* Number of actual hardware registers.
|
4 |
|
|
The hardware registers are assigned numbers for the compiler
|
5 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
6 |
|
|
All registers that the compiler knows about must be given numbers,
|
7 |
|
|
even those that are not normally considered general registers.
|
8 |
|
|
|
9 |
|
|
HP-PA 1.0 has 32 fullword registers and 16 floating point
|
10 |
|
|
registers. The floating point registers hold either word or double
|
11 |
|
|
word values.
|
12 |
|
|
|
13 |
|
|
16 additional registers are reserved.
|
14 |
|
|
|
15 |
|
|
HP-PA 1.1 has 32 fullword registers and 32 floating point
|
16 |
|
|
registers. However, the floating point registers behave
|
17 |
|
|
differently: the left and right halves of registers are addressable
|
18 |
|
|
as 32 bit registers. So, we will set things up like the 68k which
|
19 |
|
|
has different fp units: define separate register sets for the 1.0
|
20 |
|
|
and 1.1 fp units. */
|
21 |
|
|
|
22 |
|
|
#define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs +
|
23 |
|
|
+ 1 shift reg */
|
24 |
|
|
|
25 |
|
|
/* 1 for registers that have pervasive standard uses
|
26 |
|
|
and are not available for the register allocator.
|
27 |
|
|
|
28 |
|
|
On the HP-PA, these are:
|
29 |
|
|
Reg 0 = 0 (hardware). However, 0 is used for condition code,
|
30 |
|
|
so is not fixed.
|
31 |
|
|
Reg 1 = ADDIL target/Temporary (hardware).
|
32 |
|
|
Reg 2 = Return Pointer
|
33 |
|
|
Reg 3 = Frame Pointer
|
34 |
|
|
Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
|
35 |
|
|
Reg 4-18 = Preserved Registers
|
36 |
|
|
Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
|
37 |
|
|
Reg 20-22 = Temporary Registers
|
38 |
|
|
Reg 23-26 = Temporary/Parameter Registers
|
39 |
|
|
Reg 27 = Global Data Pointer (hp)
|
40 |
|
|
Reg 28 = Temporary/Return Value register
|
41 |
|
|
Reg 29 = Temporary/Static Chain/Return Value register #2
|
42 |
|
|
Reg 30 = stack pointer
|
43 |
|
|
Reg 31 = Temporary/Millicode Return Pointer (hp)
|
44 |
|
|
|
45 |
|
|
Freg 0-3 = Status Registers -- Not known to the compiler.
|
46 |
|
|
Freg 4-7 = Arguments/Return Value
|
47 |
|
|
Freg 8-11 = Temporary Registers
|
48 |
|
|
Freg 12-15 = Preserved Registers
|
49 |
|
|
|
50 |
|
|
Freg 16-31 = Reserved
|
51 |
|
|
|
52 |
|
|
On the Snake, fp regs are
|
53 |
|
|
|
54 |
|
|
Freg 0-3 = Status Registers -- Not known to the compiler.
|
55 |
|
|
Freg 4L-7R = Arguments/Return Value
|
56 |
|
|
Freg 8L-11R = Temporary Registers
|
57 |
|
|
Freg 12L-21R = Preserved Registers
|
58 |
|
|
Freg 22L-31R = Temporary Registers
|
59 |
|
|
|
60 |
|
|
*/
|
61 |
|
|
|
62 |
|
|
#define FIXED_REGISTERS \
|
63 |
|
|
{0, 0, 0, 0, 0, 0, 0, 0, \
|
64 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
65 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
66 |
|
|
0, 0, 0, 1, 0, 0, 1, 0, \
|
67 |
|
|
/* fp registers */ \
|
68 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
69 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
70 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
71 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
72 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
73 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
74 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
75 |
|
|
0}
|
76 |
|
|
|
77 |
|
|
/* 1 for registers not available across function calls.
|
78 |
|
|
These must include the FIXED_REGISTERS and also any
|
79 |
|
|
registers that can be used without being saved.
|
80 |
|
|
The latter must include the registers where values are returned
|
81 |
|
|
and the register where structure-value addresses are passed.
|
82 |
|
|
Aside from that, you can include as many other registers as you like. */
|
83 |
|
|
#define CALL_USED_REGISTERS \
|
84 |
|
|
{1, 1, 1, 0, 0, 0, 0, 0, \
|
85 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
86 |
|
|
0, 0, 0, 1, 1, 1, 1, 1, \
|
87 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
88 |
|
|
/* fp registers */ \
|
89 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
90 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
91 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
92 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
93 |
|
|
0, 0, 0, 0, 1, 1, 1, 1, \
|
94 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
95 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
96 |
|
|
1}
|
97 |
|
|
|
98 |
|
|
#define CONDITIONAL_REGISTER_USAGE \
|
99 |
|
|
{ \
|
100 |
|
|
int i; \
|
101 |
|
|
if (!TARGET_PA_11) \
|
102 |
|
|
{ \
|
103 |
|
|
for (i = 56; i < 88; i++) \
|
104 |
|
|
fixed_regs[i] = call_used_regs[i] = 1; \
|
105 |
|
|
for (i = 33; i < 88; i += 2) \
|
106 |
|
|
fixed_regs[i] = call_used_regs[i] = 1; \
|
107 |
|
|
} \
|
108 |
|
|
if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
|
109 |
|
|
{ \
|
110 |
|
|
for (i = 32; i < 88; i++) \
|
111 |
|
|
fixed_regs[i] = call_used_regs[i] = 1; \
|
112 |
|
|
} \
|
113 |
|
|
if (flag_pic) \
|
114 |
|
|
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
/* Allocate the call used registers first. This should minimize
|
118 |
|
|
the number of registers that need to be saved (as call used
|
119 |
|
|
registers will generally not be allocated across a call).
|
120 |
|
|
|
121 |
|
|
Experimentation has shown slightly better results by allocating
|
122 |
|
|
FP registers first. We allocate the caller-saved registers more
|
123 |
|
|
or less in reverse order to their allocation as arguments.
|
124 |
|
|
|
125 |
|
|
FP registers are ordered so that all L registers are selected before
|
126 |
|
|
R registers. This works around a false dependency interlock on the
|
127 |
|
|
PA8000 when accessing the high and low parts of an FP register
|
128 |
|
|
independently. */
|
129 |
|
|
|
130 |
|
|
#define REG_ALLOC_ORDER \
|
131 |
|
|
{ \
|
132 |
|
|
/* caller-saved fp regs. */ \
|
133 |
|
|
68, 70, 72, 74, 76, 78, 80, 82, \
|
134 |
|
|
84, 86, 40, 42, 44, 46, 38, 36, \
|
135 |
|
|
34, 32, \
|
136 |
|
|
69, 71, 73, 75, 77, 79, 81, 83, \
|
137 |
|
|
85, 87, 41, 43, 45, 47, 39, 37, \
|
138 |
|
|
35, 33, \
|
139 |
|
|
/* caller-saved general regs. */ \
|
140 |
|
|
28, 19, 20, 21, 22, 31, 27, 29, \
|
141 |
|
|
23, 24, 25, 26, 2, \
|
142 |
|
|
/* callee-saved fp regs. */ \
|
143 |
|
|
48, 50, 52, 54, 56, 58, 60, 62, \
|
144 |
|
|
64, 66, \
|
145 |
|
|
49, 51, 53, 55, 57, 59, 61, 63, \
|
146 |
|
|
65, 67, \
|
147 |
|
|
/* callee-saved general regs. */ \
|
148 |
|
|
3, 4, 5, 6, 7, 8, 9, 10, \
|
149 |
|
|
11, 12, 13, 14, 15, 16, 17, 18, \
|
150 |
|
|
/* special registers. */ \
|
151 |
|
|
1, 30, 0, 88}
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
155 |
|
|
to hold something of mode MODE.
|
156 |
|
|
This is ordinarily the length in words of a value of mode MODE
|
157 |
|
|
but can be less for certain modes in special long registers.
|
158 |
|
|
|
159 |
|
|
On the HP-PA, general registers are 32 bits wide. The floating
|
160 |
|
|
point registers are 64 bits wide. Snake fp regs are treated as
|
161 |
|
|
32 bits wide since the left and right parts are independently
|
162 |
|
|
accessible. */
|
163 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
164 |
|
|
(FP_REGNO_P (REGNO) \
|
165 |
|
|
? (!TARGET_PA_11 \
|
166 |
|
|
? COMPLEX_MODE_P (MODE) ? 2 : 1 \
|
167 |
|
|
: (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
|
168 |
|
|
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
169 |
|
|
|
170 |
|
|
/* There are no instructions that use DImode in PA 1.0, so we only
|
171 |
|
|
allow it in PA 1.1 and later. */
|
172 |
|
|
#define VALID_FP_MODE_P(MODE) \
|
173 |
|
|
((MODE) == SFmode || (MODE) == DFmode \
|
174 |
|
|
|| (MODE) == SCmode || (MODE) == DCmode \
|
175 |
|
|
|| (MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
|
176 |
|
|
|| (TARGET_PA_11 && (MODE) == DImode))
|
177 |
|
|
|
178 |
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
179 |
|
|
|
180 |
|
|
On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
|
181 |
|
|
For the 64-bit modes, we choose a set of non-overlapping general registers
|
182 |
|
|
that includes the incoming arguments and the return value. We specify a
|
183 |
|
|
set with no overlaps so that we don't have to specify that the destination
|
184 |
|
|
register is an early clobber in patterns using this mode. Except for the
|
185 |
|
|
return value, the starting registers are odd. For 128 and 256 bit modes,
|
186 |
|
|
we similarly specify non-overlapping sets of cpu registers. However,
|
187 |
|
|
there aren't any patterns defined for modes larger than 64 bits at the
|
188 |
|
|
moment.
|
189 |
|
|
|
190 |
|
|
We limit the modes allowed in the floating point registers to the
|
191 |
|
|
set of modes used in the machine definition. In addition, we allow
|
192 |
|
|
the complex modes SCmode and DCmode. The real and imaginary parts
|
193 |
|
|
of complex modes are allocated to separate registers. This might
|
194 |
|
|
allow patterns to be defined in the future to operate on these values.
|
195 |
|
|
|
196 |
|
|
The PA 2.0 architecture specifies that quad-precision floating-point
|
197 |
|
|
values should start on an even floating point register. Thus, we
|
198 |
|
|
choose non-overlapping sets of registers starting on even register
|
199 |
|
|
boundaries for large modes. However, there is currently no support
|
200 |
|
|
in the machine definition for modes larger than 64 bits. TFmode is
|
201 |
|
|
supported under HP-UX using libcalls. Since TFmode values are passed
|
202 |
|
|
by reference, they never need to be loaded into the floating-point
|
203 |
|
|
registers. */
|
204 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
205 |
|
|
((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
|
206 |
|
|
: !TARGET_PA_11 && FP_REGNO_P (REGNO) \
|
207 |
|
|
? (VALID_FP_MODE_P (MODE) \
|
208 |
|
|
&& (GET_MODE_SIZE (MODE) <= 8 \
|
209 |
|
|
|| (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0))) \
|
210 |
|
|
: FP_REGNO_P (REGNO) \
|
211 |
|
|
? (VALID_FP_MODE_P (MODE) \
|
212 |
|
|
&& (GET_MODE_SIZE (MODE) <= 4 \
|
213 |
|
|
|| (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0) \
|
214 |
|
|
|| (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0) \
|
215 |
|
|
|| (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0))) \
|
216 |
|
|
: (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
|
217 |
|
|
|| (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \
|
218 |
|
|
&& ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \
|
219 |
|
|
|| (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \
|
220 |
|
|
&& ((REGNO) & 3) == 3 && (REGNO) <= 23) \
|
221 |
|
|
|| (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD \
|
222 |
|
|
&& ((REGNO) & 7) == 3 && (REGNO) <= 19)))
|
223 |
|
|
|
224 |
|
|
/* How to renumber registers for dbx and gdb.
|
225 |
|
|
|
226 |
|
|
Registers 0 - 31 remain unchanged.
|
227 |
|
|
|
228 |
|
|
Registers 32 - 87 are mapped to 72 - 127
|
229 |
|
|
|
230 |
|
|
Register 88 is mapped to 32. */
|
231 |
|
|
|
232 |
|
|
#define DBX_REGISTER_NUMBER(REGNO) \
|
233 |
|
|
((REGNO) <= 31 ? (REGNO) : \
|
234 |
|
|
((REGNO) <= 87 ? (REGNO) + 40 : 32))
|
235 |
|
|
|
236 |
|
|
/* We must not use the DBX register numbers for the DWARF 2 CFA column
|
237 |
|
|
numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
|
238 |
|
|
Instead use the identity mapping. */
|
239 |
|
|
#define DWARF_FRAME_REGNUM(REG) REG
|
240 |
|
|
|
241 |
|
|
/* Define the classes of registers for register constraints in the
|
242 |
|
|
machine description. Also define ranges of constants.
|
243 |
|
|
|
244 |
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
245 |
|
|
If there is more than one class, another class must be named NO_REGS
|
246 |
|
|
and contain no registers.
|
247 |
|
|
|
248 |
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
249 |
|
|
another name such as ALL_REGS). This is the class of registers
|
250 |
|
|
that is allowed by "g" or "r" in a register constraint.
|
251 |
|
|
Also, registers outside this class are allocated only when
|
252 |
|
|
instructions express preferences for them.
|
253 |
|
|
|
254 |
|
|
The classes must be numbered in nondecreasing order; that is,
|
255 |
|
|
a larger-numbered class must never be contained completely
|
256 |
|
|
in a smaller-numbered class.
|
257 |
|
|
|
258 |
|
|
For any two classes, it is very desirable that there be another
|
259 |
|
|
class that represents their union. */
|
260 |
|
|
|
261 |
|
|
/* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
|
262 |
|
|
1.1 fp regs, and the high 1.1 fp regs, to which the operands of
|
263 |
|
|
fmpyadd and fmpysub are restricted. */
|
264 |
|
|
|
265 |
|
|
enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
|
266 |
|
|
GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
|
267 |
|
|
|
268 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
269 |
|
|
|
270 |
|
|
/* Give names of register classes as strings for dump file. */
|
271 |
|
|
|
272 |
|
|
#define REG_CLASS_NAMES \
|
273 |
|
|
{"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
|
274 |
|
|
"GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
|
275 |
|
|
|
276 |
|
|
/* Define which registers fit in which classes.
|
277 |
|
|
This is an initializer for a vector of HARD_REG_SET
|
278 |
|
|
of length N_REG_CLASSES. Register 0, the "condition code" register,
|
279 |
|
|
is in no class. */
|
280 |
|
|
|
281 |
|
|
#define REG_CLASS_CONTENTS \
|
282 |
|
|
{{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \
|
283 |
|
|
{0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \
|
284 |
|
|
{0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \
|
285 |
|
|
{0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \
|
286 |
|
|
{0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \
|
287 |
|
|
{0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \
|
288 |
|
|
{0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \
|
289 |
|
|
{0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */
|
290 |
|
|
|
291 |
|
|
/* Return the class number of the smallest class containing
|
292 |
|
|
reg number REGNO. This could be a conditional expression
|
293 |
|
|
or could index an array. */
|
294 |
|
|
|
295 |
|
|
#define REGNO_REG_CLASS(REGNO) \
|
296 |
|
|
((REGNO) == 0 ? NO_REGS \
|
297 |
|
|
: (REGNO) == 1 ? R1_REGS \
|
298 |
|
|
: (REGNO) < 32 ? GENERAL_REGS \
|
299 |
|
|
: (REGNO) < 56 ? FP_REGS \
|
300 |
|
|
: (REGNO) < 88 ? FPUPPER_REGS \
|
301 |
|
|
: SHIFT_REGS)
|
302 |
|
|
|
303 |
|
|
/* Get reg_class from a letter such as appears in the machine description. */
|
304 |
|
|
/* Keep 'x' for backward compatibility with user asm. */
|
305 |
|
|
#define REG_CLASS_FROM_LETTER(C) \
|
306 |
|
|
((C) == 'f' ? FP_REGS : \
|
307 |
|
|
(C) == 'y' ? FPUPPER_REGS : \
|
308 |
|
|
(C) == 'x' ? FP_REGS : \
|
309 |
|
|
(C) == 'q' ? SHIFT_REGS : \
|
310 |
|
|
(C) == 'a' ? R1_REGS : \
|
311 |
|
|
(C) == 'Z' ? ALL_REGS : NO_REGS)
|
312 |
|
|
|
313 |
|
|
/* Return the maximum number of consecutive registers
|
314 |
|
|
needed to represent mode MODE in a register of class CLASS. */
|
315 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
316 |
|
|
((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \
|
317 |
|
|
? (!TARGET_PA_11 \
|
318 |
|
|
? COMPLEX_MODE_P (MODE) ? 2 : 1 \
|
319 |
|
|
: (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
|
320 |
|
|
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
321 |
|
|
|
322 |
|
|
/* 1 if N is a possible register number for function argument passing. */
|
323 |
|
|
|
324 |
|
|
#define FUNCTION_ARG_REGNO_P(N) \
|
325 |
|
|
(((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
|
326 |
|
|
|
327 |
|
|
/* How to refer to registers in assembler output.
|
328 |
|
|
This sequence is indexed by compiler's hard-register-number (see above). */
|
329 |
|
|
|
330 |
|
|
#define REGISTER_NAMES \
|
331 |
|
|
{"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
|
332 |
|
|
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
|
333 |
|
|
"%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
|
334 |
|
|
"%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
|
335 |
|
|
"%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
|
336 |
|
|
"%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \
|
337 |
|
|
"%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
|
338 |
|
|
"%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
|
339 |
|
|
"%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
|
340 |
|
|
"%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
|
341 |
|
|
"%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
|
342 |
|
|
"SAR"}
|
343 |
|
|
|
344 |
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
345 |
|
|
{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \
|
346 |
|
|
{"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \
|
347 |
|
|
{"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \
|
348 |
|
|
{"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \
|
349 |
|
|
{"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \
|
350 |
|
|
{"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \
|
351 |
|
|
{"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \
|
352 |
|
|
{"%cr11",88}}
|
353 |
|
|
|
354 |
|
|
#define FP_SAVED_REG_LAST 66
|
355 |
|
|
#define FP_SAVED_REG_FIRST 48
|
356 |
|
|
#define FP_REG_STEP 2
|
357 |
|
|
#define FP_REG_FIRST 32
|
358 |
|
|
#define FP_REG_LAST 87
|