OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [rs6000/] [rs6000.h] - Blame information for rev 154

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4
   Free Software Foundation, Inc.
5
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
 
7
   This file is part of GCC.
8
 
9
   GCC is free software; you can redistribute it and/or modify it
10
   under the terms of the GNU General Public License as published
11
   by the Free Software Foundation; either version 3, or (at your
12
   option) any later version.
13
 
14
   GCC is distributed in the hope that it will be useful, but WITHOUT
15
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
17
   License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with GCC; see the file COPYING3.  If not see
21
   <http://www.gnu.org/licenses/>.  */
22
 
23
/* Note that some other tm.h files include this one and then override
24
   many of the definitions.  */
25
 
26
/* Definitions for the object file format.  These are set at
27
   compile-time.  */
28
 
29
#define OBJECT_XCOFF 1
30
#define OBJECT_ELF 2
31
#define OBJECT_PEF 3
32
#define OBJECT_MACHO 4
33
 
34
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
38
 
39
#ifndef TARGET_AIX
40
#define TARGET_AIX 0
41
#endif
42
 
43
/* Control whether function entry points use a "dot" symbol when
44
   ABI_AIX.  */
45
#define DOT_SYMBOLS 1
46
 
47
/* Default string to use for cpu if not specified.  */
48
#ifndef TARGET_CPU_DEFAULT
49
#define TARGET_CPU_DEFAULT ((char *)0)
50
#endif
51
 
52
/* If configured for PPC405, support PPC405CR Erratum77.  */
53
#ifdef CONFIG_PPC405CR
54
#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
55
#else
56
#define PPC405_ERRATUM77 0
57
#endif
58
 
59
/* Common ASM definitions used by ASM_SPEC among the various targets
60
   for handling -mcpu=xxx switches.  */
61
#define ASM_CPU_SPEC \
62
"%{!mcpu*: \
63
  %{mpower: %{!mpower2: -mpwr}} \
64
  %{mpower2: -mpwrx} \
65
  %{mpowerpc64*: -mppc64} \
66
  %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
67
  %{mno-power: %{!mpowerpc*: -mcom}} \
68
  %{!mno-power: %{!mpower*: %(asm_default)}}} \
69
%{mcpu=common: -mcom} \
70
%{mcpu=power: -mpwr} \
71
%{mcpu=power2: -mpwrx} \
72
%{mcpu=power3: -mppc64} \
73
%{mcpu=power4: -mpower4} \
74
%{mcpu=power5: -mpower4} \
75
%{mcpu=power5+: -mpower4} \
76
%{mcpu=power6: -mpower4 -maltivec} \
77
%{mcpu=powerpc: -mppc} \
78
%{mcpu=rios: -mpwr} \
79
%{mcpu=rios1: -mpwr} \
80
%{mcpu=rios2: -mpwrx} \
81
%{mcpu=rsc: -mpwr} \
82
%{mcpu=rsc1: -mpwr} \
83
%{mcpu=rs64a: -mppc64} \
84
%{mcpu=401: -mppc} \
85
%{mcpu=403: -m403} \
86
%{mcpu=405: -m405} \
87
%{mcpu=405fp: -m405} \
88
%{mcpu=440: -m440} \
89
%{mcpu=440fp: -m440} \
90
%{mcpu=505: -mppc} \
91
%{mcpu=601: -m601} \
92
%{mcpu=602: -mppc} \
93
%{mcpu=603: -mppc} \
94
%{mcpu=603e: -mppc} \
95
%{mcpu=ec603e: -mppc} \
96
%{mcpu=604: -mppc} \
97
%{mcpu=604e: -mppc} \
98
%{mcpu=620: -mppc64} \
99
%{mcpu=630: -mppc64} \
100
%{mcpu=740: -mppc} \
101
%{mcpu=750: -mppc} \
102
%{mcpu=G3: -mppc} \
103
%{mcpu=7400: -mppc -maltivec} \
104
%{mcpu=7450: -mppc -maltivec} \
105
%{mcpu=G4: -mppc -maltivec} \
106
%{mcpu=801: -mppc} \
107
%{mcpu=821: -mppc} \
108
%{mcpu=823: -mppc} \
109
%{mcpu=860: -mppc} \
110
%{mcpu=970: -mpower4 -maltivec} \
111
%{mcpu=G5: -mpower4 -maltivec} \
112
%{mcpu=8540: -me500} \
113
%{maltivec: -maltivec} \
114
-many"
115
 
116
#define CPP_DEFAULT_SPEC ""
117
 
118
#define ASM_DEFAULT_SPEC ""
119
 
120
/* This macro defines names of additional specifications to put in the specs
121
   that can be used in various specifications like CC1_SPEC.  Its definition
122
   is an initializer with a subgrouping for each command option.
123
 
124
   Each subgrouping contains a string constant, that defines the
125
   specification name, and a string constant that used by the GCC driver
126
   program.
127
 
128
   Do not define this macro if it does not need to do anything.  */
129
 
130
#define SUBTARGET_EXTRA_SPECS
131
 
132
#define EXTRA_SPECS                                                     \
133
  { "cpp_default",              CPP_DEFAULT_SPEC },                     \
134
  { "asm_cpu",                  ASM_CPU_SPEC },                         \
135
  { "asm_default",              ASM_DEFAULT_SPEC },                     \
136
  SUBTARGET_EXTRA_SPECS
137
 
138
/* Architecture type.  */
139
 
140
/* Define TARGET_MFCRF if the target assembler does not support the
141
   optional field operand for mfcr.  */
142
 
143
#ifndef HAVE_AS_MFCRF
144
#undef  TARGET_MFCRF
145
#define TARGET_MFCRF 0
146
#endif
147
 
148
/* Define TARGET_POPCNTB if the target assembler does not support the
149
   popcount byte instruction.  */
150
 
151
#ifndef HAVE_AS_POPCNTB
152
#undef  TARGET_POPCNTB
153
#define TARGET_POPCNTB 0
154
#endif
155
 
156
/* Define TARGET_FPRND if the target assembler does not support the
157
   fp rounding instructions.  */
158
 
159
#ifndef HAVE_AS_FPRND
160
#undef  TARGET_FPRND
161
#define TARGET_FPRND 0
162
#endif
163
 
164
#ifndef TARGET_SECURE_PLT
165
#define TARGET_SECURE_PLT 0
166
#endif
167
 
168
#define TARGET_32BIT            (! TARGET_64BIT)
169
 
170
#ifndef HAVE_AS_TLS
171
#define HAVE_AS_TLS 0
172
#endif
173
 
174
/* Return 1 for a symbol ref for a thread-local storage symbol.  */
175
#define RS6000_SYMBOL_REF_TLS_P(RTX) \
176
  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
177
 
178
#ifdef IN_LIBGCC2
179
/* For libgcc2 we make sure this is a compile time constant */
180
#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
181
#undef TARGET_POWERPC64
182
#define TARGET_POWERPC64        1
183
#else
184
#undef TARGET_POWERPC64
185
#define TARGET_POWERPC64        0
186
#endif
187
#else
188
    /* The option machinery will define this.  */
189
#endif
190
 
191
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
192
 
193
/* Processor type.  Order must match cpu attribute in MD file.  */
194
enum processor_type
195
 {
196
   PROCESSOR_RIOS1,
197
   PROCESSOR_RIOS2,
198
   PROCESSOR_RS64A,
199
   PROCESSOR_MPCCORE,
200
   PROCESSOR_PPC403,
201
   PROCESSOR_PPC405,
202
   PROCESSOR_PPC440,
203
   PROCESSOR_PPC601,
204
   PROCESSOR_PPC603,
205
   PROCESSOR_PPC604,
206
   PROCESSOR_PPC604e,
207
   PROCESSOR_PPC620,
208
   PROCESSOR_PPC630,
209
   PROCESSOR_PPC750,
210
   PROCESSOR_PPC7400,
211
   PROCESSOR_PPC7450,
212
   PROCESSOR_PPC8540,
213
   PROCESSOR_POWER4,
214
   PROCESSOR_POWER5
215
};
216
 
217
extern enum processor_type rs6000_cpu;
218
 
219
/* Recast the processor type to the cpu attribute.  */
220
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
221
 
222
/* Define generic processor types based upon current deployment.  */
223
#define PROCESSOR_COMMON    PROCESSOR_PPC601
224
#define PROCESSOR_POWER     PROCESSOR_RIOS1
225
#define PROCESSOR_POWERPC   PROCESSOR_PPC604
226
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
227
 
228
/* Define the default processor.  This is overridden by other tm.h files.  */
229
#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
230
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
231
 
232
/* Specify the dialect of assembler to use.  New mnemonics is dialect one
233
   and the old mnemonics are dialect zero.  */
234
#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
235
 
236
/* Types of costly dependences.  */
237
enum rs6000_dependence_cost
238
 {
239
   max_dep_latency = 1000,
240
   no_dep_costly,
241
   all_deps_costly,
242
   true_store_to_load_dep_costly,
243
   store_to_load_dep_costly
244
 };
245
 
246
/* Types of nop insertion schemes in sched target hook sched_finish.  */
247
enum rs6000_nop_insertion
248
  {
249
    sched_finish_regroup_exact = 1000,
250
    sched_finish_pad_groups,
251
    sched_finish_none
252
  };
253
 
254
/* Dispatch group termination caused by an insn.  */
255
enum group_termination
256
  {
257
    current_group,
258
    previous_group
259
  };
260
 
261
/* Support for a compile-time default CPU, et cetera.  The rules are:
262
   --with-cpu is ignored if -mcpu is specified.
263
   --with-tune is ignored if -mtune is specified.
264
   --with-float is ignored if -mhard-float or -msoft-float are
265
    specified.  */
266
#define OPTION_DEFAULT_SPECS \
267
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
268
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
269
  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
270
 
271
/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
272
struct rs6000_cpu_select
273
{
274
  const char *string;
275
  const char *name;
276
  int set_tune_p;
277
  int set_arch_p;
278
};
279
 
280
extern struct rs6000_cpu_select rs6000_select[];
281
 
282
/* Debug support */
283
extern const char *rs6000_debug_name;   /* Name for -mdebug-xxxx option */
284
extern int rs6000_debug_stack;          /* debug stack applications */
285
extern int rs6000_debug_arg;            /* debug argument handling */
286
 
287
#define TARGET_DEBUG_STACK      rs6000_debug_stack
288
#define TARGET_DEBUG_ARG        rs6000_debug_arg
289
 
290
extern const char *rs6000_traceback_name; /* Type of traceback table.  */
291
 
292
/* These are separate from target_flags because we've run out of bits
293
   there.  */
294
extern int rs6000_long_double_type_size;
295
extern int rs6000_ieeequad;
296
extern int rs6000_altivec_abi;
297
extern int rs6000_spe_abi;
298
extern int rs6000_float_gprs;
299
extern int rs6000_alignment_flags;
300
extern const char *rs6000_sched_insert_nops_str;
301
extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
302
 
303
/* Alignment options for fields in structures for sub-targets following
304
   AIX-like ABI.
305
   ALIGN_POWER word-aligns FP doubles (default AIX ABI).
306
   ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
307
 
308
   Override the macro definitions when compiling libobjc to avoid undefined
309
   reference to rs6000_alignment_flags due to library's use of GCC alignment
310
   macros which use the macros below.  */
311
 
312
#ifndef IN_TARGET_LIBS
313
#define MASK_ALIGN_POWER   0x00000000
314
#define MASK_ALIGN_NATURAL 0x00000001
315
#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
316
#else
317
#define TARGET_ALIGN_NATURAL 0
318
#endif
319
 
320
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
321
#define TARGET_IEEEQUAD rs6000_ieeequad
322
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
323
 
324
#define TARGET_SPE_ABI 0
325
#define TARGET_SPE 0
326
#define TARGET_E500 0
327
#define TARGET_ISEL 0
328
#define TARGET_FPRS 1
329
#define TARGET_E500_SINGLE 0
330
#define TARGET_E500_DOUBLE 0
331
 
332
/* E500 processors only support plain "sync", not lwsync.  */
333
#define TARGET_NO_LWSYNC TARGET_E500
334
 
335
/* Sometimes certain combinations of command options do not make sense
336
   on a particular target machine.  You can define a macro
337
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
338
   defined, is executed once just after all the command options have
339
   been parsed.
340
 
341
   Do not use this macro to turn on various extra optimizations for
342
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
343
 
344
   On the RS/6000 this is used to define the target cpu type.  */
345
 
346
#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
347
 
348
/* Define this to change the optimizations performed by default.  */
349
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
350
 
351
/* Show we can debug even without a frame pointer.  */
352
#define CAN_DEBUG_WITHOUT_FP
353
 
354
/* Target pragma.  */
355
#define REGISTER_TARGET_PRAGMAS() do {                          \
356
  c_register_pragma (0, "longcall", rs6000_pragma_longcall);     \
357
  targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
358
} while (0)
359
 
360
/* Target #defines.  */
361
#define TARGET_CPU_CPP_BUILTINS() \
362
  rs6000_cpu_cpp_builtins (pfile)
363
 
364
/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
365
   we're compiling for.  Some configurations may need to override it.  */
366
#define RS6000_CPU_CPP_ENDIAN_BUILTINS()        \
367
  do                                            \
368
    {                                           \
369
      if (BYTES_BIG_ENDIAN)                     \
370
        {                                       \
371
          builtin_define ("__BIG_ENDIAN__");    \
372
          builtin_define ("_BIG_ENDIAN");       \
373
          builtin_assert ("machine=bigendian"); \
374
        }                                       \
375
      else                                      \
376
        {                                       \
377
          builtin_define ("__LITTLE_ENDIAN__"); \
378
          builtin_define ("_LITTLE_ENDIAN");    \
379
          builtin_assert ("machine=littleendian"); \
380
        }                                       \
381
    }                                           \
382
  while (0)
383
 
384
/* Target machine storage layout.  */
385
 
386
/* Define this macro if it is advisable to hold scalars in registers
387
   in a wider mode than that declared by the program.  In such cases,
388
   the value is constrained to be within the bounds of the declared
389
   type, but kept valid in the wider mode.  The signedness of the
390
   extension may differ from that of the type.  */
391
 
392
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)       \
393
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
394
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
395
    (MODE) = TARGET_32BIT ? SImode : DImode;
396
 
397
/* Define this if most significant bit is lowest numbered
398
   in instructions that operate on numbered bit-fields.  */
399
/* That is true on RS/6000.  */
400
#define BITS_BIG_ENDIAN 1
401
 
402
/* Define this if most significant byte of a word is the lowest numbered.  */
403
/* That is true on RS/6000.  */
404
#define BYTES_BIG_ENDIAN 1
405
 
406
/* Define this if most significant word of a multiword number is lowest
407
   numbered.
408
 
409
   For RS/6000 we can decide arbitrarily since there are no machine
410
   instructions for them.  Might as well be consistent with bits and bytes.  */
411
#define WORDS_BIG_ENDIAN 1
412
 
413
#define MAX_BITS_PER_WORD 64
414
 
415
/* Width of a word, in units (bytes).  */
416
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
417
#ifdef IN_LIBGCC2
418
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
419
#else
420
#define MIN_UNITS_PER_WORD 4
421
#endif
422
#define UNITS_PER_FP_WORD 8
423
#define UNITS_PER_ALTIVEC_WORD 16
424
#define UNITS_PER_SPE_WORD 8
425
 
426
/* Type used for ptrdiff_t, as a string used in a declaration.  */
427
#define PTRDIFF_TYPE "int"
428
 
429
/* Type used for size_t, as a string used in a declaration.  */
430
#define SIZE_TYPE "long unsigned int"
431
 
432
/* Type used for wchar_t, as a string used in a declaration.  */
433
#define WCHAR_TYPE "short unsigned int"
434
 
435
/* Width of wchar_t in bits.  */
436
#define WCHAR_TYPE_SIZE 16
437
 
438
/* A C expression for the size in bits of the type `short' on the
439
   target machine.  If you don't define this, the default is half a
440
   word.  (If this would be less than one storage unit, it is
441
   rounded up to one unit.)  */
442
#define SHORT_TYPE_SIZE 16
443
 
444
/* A C expression for the size in bits of the type `int' on the
445
   target machine.  If you don't define this, the default is one
446
   word.  */
447
#define INT_TYPE_SIZE 32
448
 
449
/* A C expression for the size in bits of the type `long' on the
450
   target machine.  If you don't define this, the default is one
451
   word.  */
452
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
453
 
454
/* A C expression for the size in bits of the type `long long' on the
455
   target machine.  If you don't define this, the default is two
456
   words.  */
457
#define LONG_LONG_TYPE_SIZE 64
458
 
459
/* A C expression for the size in bits of the type `float' on the
460
   target machine.  If you don't define this, the default is one
461
   word.  */
462
#define FLOAT_TYPE_SIZE 32
463
 
464
/* A C expression for the size in bits of the type `double' on the
465
   target machine.  If you don't define this, the default is two
466
   words.  */
467
#define DOUBLE_TYPE_SIZE 64
468
 
469
/* A C expression for the size in bits of the type `long double' on
470
   the target machine.  If you don't define this, the default is two
471
   words.  */
472
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
473
 
474
/* Define this to set long double type size to use in libgcc2.c, which can
475
   not depend on target_flags.  */
476
#ifdef __LONG_DOUBLE_128__
477
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
478
#else
479
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
480
#endif
481
 
482
/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
483
#define WIDEST_HARDWARE_FP_SIZE 64
484
 
485
/* Width in bits of a pointer.
486
   See also the macro `Pmode' defined below.  */
487
#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
488
 
489
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
490
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
491
 
492
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
493
#define STACK_BOUNDARY \
494
  ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
495
 
496
/* Allocation boundary (in *bits*) for the code of a function.  */
497
#define FUNCTION_BOUNDARY 32
498
 
499
/* No data type wants to be aligned rounder than this.  */
500
#define BIGGEST_ALIGNMENT 128
501
 
502
/* A C expression to compute the alignment for a variables in the
503
   local store.  TYPE is the data type, and ALIGN is the alignment
504
   that the object would ordinarily have.  */
505
#define LOCAL_ALIGNMENT(TYPE, ALIGN)                            \
506
  ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :  \
507
    (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
508
    (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
509
     && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) ? 64 : ALIGN)
510
 
511
/* Alignment of field after `int : 0' in a structure.  */
512
#define EMPTY_FIELD_BOUNDARY 32
513
 
514
/* Every structure's size must be a multiple of this.  */
515
#define STRUCTURE_SIZE_BOUNDARY 8
516
 
517
/* Return 1 if a structure or array containing FIELD should be
518
   accessed using `BLKMODE'.
519
 
520
   For the SPE, simd types are V2SI, and gcc can be tempted to put the
521
   entire thing in a DI and use subregs to access the internals.
522
   store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
523
   back-end.  Because a single GPR can hold a V2SI, but not a DI, the
524
   best thing to do is set structs to BLKmode and avoid Severe Tire
525
   Damage.
526
 
527
   On e500 v2, DF and DI modes suffer from the same anomaly.  DF can
528
   fit into 1, whereas DI still needs two.  */
529
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
530
  ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
531
   || (TARGET_E500_DOUBLE && (MODE) == DFmode))
532
 
533
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
534
#define PCC_BITFIELD_TYPE_MATTERS 1
535
 
536
/* Make strings word-aligned so strcpy from constants will be faster.
537
   Make vector constants quadword aligned.  */
538
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
539
  (TREE_CODE (EXP) == STRING_CST                                 \
540
   && (ALIGN) < BITS_PER_WORD                                    \
541
   ? BITS_PER_WORD                                               \
542
   : (ALIGN))
543
 
544
/* Make arrays of chars word-aligned for the same reasons.
545
   Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
546
   64 bits.  */
547
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
548
  (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)        \
549
   : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
550
   : TREE_CODE (TYPE) == ARRAY_TYPE             \
551
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
552
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
553
 
554
/* Nonzero if move instructions will actually fail to work
555
   when given unaligned data.  */
556
#define STRICT_ALIGNMENT 0
557
 
558
/* Define this macro to be the value 1 if unaligned accesses have a cost
559
   many times greater than aligned accesses, for example if they are
560
   emulated in a trap handler.  */
561
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)                              \
562
  (STRICT_ALIGNMENT                                                     \
563
   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode        \
564
        || (MODE) == DImode)                                            \
565
       && (ALIGN) < 32))
566
 
567
/* Standard register usage.  */
568
 
569
/* Number of actual hardware registers.
570
   The hardware registers are assigned numbers for the compiler
571
   from 0 to just below FIRST_PSEUDO_REGISTER.
572
   All registers that the compiler knows about must be given numbers,
573
   even those that are not normally considered general registers.
574
 
575
   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
576
   an MQ register, a count register, a link register, and 8 condition
577
   register fields, which we view here as separate registers.  AltiVec
578
   adds 32 vector registers and a VRsave register.
579
 
580
   In addition, the difference between the frame and argument pointers is
581
   a function of the number of registers saved, so we need to have a
582
   register for AP that will later be eliminated in favor of SP or FP.
583
   This is a normal register, but it is fixed.
584
 
585
   We also create a pseudo register for float/int conversions, that will
586
   really represent the memory location used.  It is represented here as
587
   a register, in order to work around problems in allocating stack storage
588
   in inline functions.
589
 
590
   Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
591
   pointer, which is eventually eliminated in favor of SP or FP.  */
592
 
593
#define FIRST_PSEUDO_REGISTER 114
594
 
595
/* This must be included for pre gcc 3.0 glibc compatibility.  */
596
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
597
 
598
/* Add 32 dwarf columns for synthetic SPE registers.  */
599
#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
600
 
601
/* The SPE has an additional 32 synthetic registers, with DWARF debug
602
   info numbering for these registers starting at 1200.  While eh_frame
603
   register numbering need not be the same as the debug info numbering,
604
   we choose to number these regs for eh_frame at 1200 too.  This allows
605
   future versions of the rs6000 backend to add hard registers and
606
   continue to use the gcc hard register numbering for eh_frame.  If the
607
   extra SPE registers in eh_frame were numbered starting from the
608
   current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
609
   changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
610
   avoid invalidating older SPE eh_frame info.
611
 
612
   We must map them here to avoid huge unwinder tables mostly consisting
613
   of unused space.  */
614
#define DWARF_REG_TO_UNWIND_COLUMN(r) \
615
  ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
616
 
617
/* Use standard DWARF numbering for DWARF debugging information.  */
618
#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
619
 
620
/* Use gcc hard register numbering for eh_frame.  */
621
#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
622
 
623
/* Map register numbers held in the call frame info that gcc has
624
   collected using DWARF_FRAME_REGNUM to those that should be output in
625
   .debug_frame and .eh_frame.  We continue to use gcc hard reg numbers
626
   for .eh_frame, but use the numbers mandated by the various ABIs for
627
   .debug_frame.  rs6000_emit_prologue has translated any combination of
628
   CR2, CR3, CR4 saves to a save of CR2.  The actual code emitted saves
629
   the whole of CR, so we map CR2_REGNO to the DWARF reg for CR.  */
630
#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)     \
631
  ((FOR_EH) ? (REGNO)                           \
632
   : (REGNO) == CR2_REGNO ? 64                  \
633
   : DBX_REGISTER_NUMBER (REGNO))
634
 
635
/* 1 for registers that have pervasive standard uses
636
   and are not available for the register allocator.
637
 
638
   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
639
   as a local register; for all other OS's r2 is the TOC pointer.
640
 
641
   cr5 is not supposed to be used.
642
 
643
   On System V implementations, r13 is fixed and not available for use.  */
644
 
645
#define FIXED_REGISTERS  \
646
  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
647
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
648
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
649
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
650
   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,    \
651
   /* AltiVec registers.  */                       \
652
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
653
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
654
   1, 1                                            \
655
   , 1, 1, 1                                       \
656
}
657
 
658
/* 1 for registers not available across function calls.
659
   These must include the FIXED_REGISTERS and also any
660
   registers that can be used without being saved.
661
   The latter must include the registers where values are returned
662
   and the register where structure-value addresses are passed.
663
   Aside from that, you can include as many other registers as you like.  */
664
 
665
#define CALL_USED_REGISTERS  \
666
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
667
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
668
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
669
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
670
   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,     \
671
   /* AltiVec registers.  */                       \
672
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
673
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
674
   1, 1                                            \
675
   , 1, 1, 1                                       \
676
}
677
 
678
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
679
   the entire set of `FIXED_REGISTERS' be included.
680
   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
681
   This macro is optional.  If not specified, it defaults to the value
682
   of `CALL_USED_REGISTERS'.  */
683
 
684
#define CALL_REALLY_USED_REGISTERS  \
685
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
686
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
687
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
688
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
689
   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,     \
690
   /* AltiVec registers.  */                       \
691
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
692
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
693
   0, 0                                              \
694
   , 0, 0, 0                                       \
695
}
696
 
697
#define MQ_REGNO     64
698
#define CR0_REGNO    68
699
#define CR1_REGNO    69
700
#define CR2_REGNO    70
701
#define CR3_REGNO    71
702
#define CR4_REGNO    72
703
#define MAX_CR_REGNO 75
704
#define XER_REGNO    76
705
#define FIRST_ALTIVEC_REGNO     77
706
#define LAST_ALTIVEC_REGNO      108
707
#define TOTAL_ALTIVEC_REGS      (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
708
#define VRSAVE_REGNO            109
709
#define VSCR_REGNO              110
710
#define SPE_ACC_REGNO           111
711
#define SPEFSCR_REGNO           112
712
 
713
#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
714
#define FIRST_SAVED_FP_REGNO    (14+32)
715
#define FIRST_SAVED_GP_REGNO 13
716
 
717
/* List the order in which to allocate registers.  Each register must be
718
   listed once, even those in FIXED_REGISTERS.
719
 
720
   We allocate in the following order:
721
        fp0             (not saved or used for anything)
722
        fp13 - fp2      (not saved; incoming fp arg registers)
723
        fp1             (not saved; return value)
724
        fp31 - fp14     (saved; order given to save least number)
725
        cr7, cr6        (not saved or special)
726
        cr1             (not saved, but used for FP operations)
727
        cr0             (not saved, but used for arithmetic operations)
728
        cr4, cr3, cr2   (saved)
729
        r0              (not saved; cannot be base reg)
730
        r9              (not saved; best for TImode)
731
        r11, r10, r8-r4 (not saved; highest used first to make less conflict)
732
        r3              (not saved; return value register)
733
        r31 - r13       (saved; order given to save least number)
734
        r12             (not saved; if used for DImode or DFmode would use r13)
735
        mq              (not saved; best to use it if we can)
736
        ctr             (not saved; when we have the choice ctr is better)
737
        lr              (saved)
738
        cr5, r1, r2, ap, xer (fixed)
739
        v0 - v1         (not saved or used for anything)
740
        v13 - v3        (not saved; incoming vector arg registers)
741
        v2              (not saved; incoming vector arg reg; return value)
742
        v19 - v14       (not saved or used for anything)
743
        v31 - v20       (saved; order given to save least number)
744
        vrsave, vscr    (fixed)
745
        spe_acc, spefscr (fixed)
746
        sfp             (fixed)
747
*/
748
 
749
#if FIXED_R2 == 1
750
#define MAYBE_R2_AVAILABLE
751
#define MAYBE_R2_FIXED 2,
752
#else
753
#define MAYBE_R2_AVAILABLE 2,
754
#define MAYBE_R2_FIXED
755
#endif
756
 
757
#define REG_ALLOC_ORDER                                         \
758
  {32,                                                          \
759
   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,              \
760
   33,                                                          \
761
   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,          \
762
   50, 49, 48, 47, 46,                                          \
763
   75, 74, 69, 68, 72, 71, 70,                                  \
764
   0, MAYBE_R2_AVAILABLE                                 \
765
   9, 11, 10, 8, 7, 6, 5, 4,                                    \
766
   3,                                                           \
767
   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,          \
768
   18, 17, 16, 15, 14, 13, 12,                                  \
769
   64, 66, 65,                                                  \
770
   73, 1, MAYBE_R2_FIXED 67, 76,                                \
771
   /* AltiVec registers.  */                                    \
772
   77, 78,                                                      \
773
   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,                  \
774
   79,                                                          \
775
   96, 95, 94, 93, 92, 91,                                      \
776
   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,     \
777
   109, 110,                                                    \
778
   111, 112, 113                                                \
779
}
780
 
781
/* True if register is floating-point.  */
782
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
783
 
784
/* True if register is a condition register.  */
785
#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
786
 
787
/* True if register is a condition register, but not cr0.  */
788
#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
789
 
790
/* True if register is an integer register.  */
791
#define INT_REGNO_P(N) \
792
  ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
793
 
794
/* SPE SIMD registers are just the GPRs.  */
795
#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
796
 
797
/* True if register is the XER register.  */
798
#define XER_REGNO_P(N) ((N) == XER_REGNO)
799
 
800
/* True if register is an AltiVec register.  */
801
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
802
 
803
/* Return number of consecutive hard regs needed starting at reg REGNO
804
   to hold something of mode MODE.  */
805
 
806
#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
807
 
808
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)     \
809
  ((TARGET_32BIT && TARGET_POWERPC64                    \
810
    && (GET_MODE_SIZE (MODE) > 4)  \
811
    && INT_REGNO_P (REGNO)) ? 1 : 0)
812
 
813
#define ALTIVEC_VECTOR_MODE(MODE)       \
814
         ((MODE) == V16QImode           \
815
          || (MODE) == V8HImode         \
816
          || (MODE) == V4SFmode         \
817
          || (MODE) == V4SImode)
818
 
819
#define SPE_VECTOR_MODE(MODE)           \
820
        ((MODE) == V4HImode             \
821
         || (MODE) == V2SFmode          \
822
         || (MODE) == V1DImode          \
823
         || (MODE) == V2SImode)
824
 
825
#define UNITS_PER_SIMD_WORD                                     \
826
        (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD                \
827
         : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
828
 
829
/* Value is TRUE if hard register REGNO can hold a value of
830
   machine-mode MODE.  */
831
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
832
  rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
833
 
834
/* Value is 1 if it is a good idea to tie two pseudo registers
835
   when one has mode MODE1 and one has mode MODE2.
836
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
837
   for any hard reg, then this must be 0 for correct output.  */
838
#define MODES_TIEABLE_P(MODE1, MODE2) \
839
  (SCALAR_FLOAT_MODE_P (MODE1)                  \
840
   ? SCALAR_FLOAT_MODE_P (MODE2)                \
841
   : SCALAR_FLOAT_MODE_P (MODE2)                \
842
   ? SCALAR_FLOAT_MODE_P (MODE1)                \
843
   : GET_MODE_CLASS (MODE1) == MODE_CC          \
844
   ? GET_MODE_CLASS (MODE2) == MODE_CC          \
845
   : GET_MODE_CLASS (MODE2) == MODE_CC          \
846
   ? GET_MODE_CLASS (MODE1) == MODE_CC          \
847
   : SPE_VECTOR_MODE (MODE1)                    \
848
   ? SPE_VECTOR_MODE (MODE2)                    \
849
   : SPE_VECTOR_MODE (MODE2)                    \
850
   ? SPE_VECTOR_MODE (MODE1)                    \
851
   : ALTIVEC_VECTOR_MODE (MODE1)                \
852
   ? ALTIVEC_VECTOR_MODE (MODE2)                \
853
   : ALTIVEC_VECTOR_MODE (MODE2)                \
854
   ? ALTIVEC_VECTOR_MODE (MODE1)                \
855
   : 1)
856
 
857
/* Post-reload, we can't use any new AltiVec registers, as we already
858
   emitted the vrsave mask.  */
859
 
860
#define HARD_REGNO_RENAME_OK(SRC, DST) \
861
  (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
862
 
863
/* A C expression returning the cost of moving data from a register of class
864
   CLASS1 to one of CLASS2.  */
865
 
866
#define REGISTER_MOVE_COST rs6000_register_move_cost
867
 
868
/* A C expressions returning the cost of moving data of MODE from a register to
869
   or from memory.  */
870
 
871
#define MEMORY_MOVE_COST rs6000_memory_move_cost
872
 
873
/* Specify the cost of a branch insn; roughly the number of extra insns that
874
   should be added to avoid a branch.
875
 
876
   Set this to 3 on the RS/6000 since that is roughly the average cost of an
877
   unscheduled conditional branch.  */
878
 
879
#define BRANCH_COST 3
880
 
881
/* Override BRANCH_COST heuristic which empirically produces worse
882
   performance for removing short circuiting from the logical ops.  */
883
 
884
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
885
 
886
/* A fixed register used at prologue and epilogue generation to fix
887
   addressing modes.  The SPE needs heavy addressing fixes at the last
888
   minute, and it's best to save a register for it.
889
 
890
   AltiVec also needs fixes, but we've gotten around using r11, which
891
   is actually wrong because when use_backchain_to_restore_sp is true,
892
   we end up clobbering r11.
893
 
894
   The AltiVec case needs to be fixed.  Dunno if we should break ABI
895
   compatibility and reserve a register for it as well..  */
896
 
897
#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
898
 
899
/* Define this macro to change register usage conditional on target
900
   flags.  */
901
 
902
#define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
903
 
904
/* Specify the registers used for certain standard purposes.
905
   The values of these macros are register numbers.  */
906
 
907
/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
908
/* #define PC_REGNUM  */
909
 
910
/* Register to use for pushing function arguments.  */
911
#define STACK_POINTER_REGNUM 1
912
 
913
/* Base register for access to local variables of the function.  */
914
#define HARD_FRAME_POINTER_REGNUM 31
915
 
916
/* Base register for access to local variables of the function.  */
917
#define FRAME_POINTER_REGNUM 113
918
 
919
/* Value should be nonzero if functions must have frame pointers.
920
   Zero means the frame pointer need not be set up (and parms
921
   may be accessed via the stack pointer) in functions that seem suitable.
922
   This is computed in `reload', in reload1.c.  */
923
#define FRAME_POINTER_REQUIRED 0
924
 
925
/* Base register for access to arguments of the function.  */
926
#define ARG_POINTER_REGNUM 67
927
 
928
/* Place to put static chain when calling a function that requires it.  */
929
#define STATIC_CHAIN_REGNUM 11
930
 
931
/* Link register number.  */
932
#define LINK_REGISTER_REGNUM 65
933
 
934
/* Count register number.  */
935
#define COUNT_REGISTER_REGNUM 66
936
 
937
/* Define the classes of registers for register constraints in the
938
   machine description.  Also define ranges of constants.
939
 
940
   One of the classes must always be named ALL_REGS and include all hard regs.
941
   If there is more than one class, another class must be named NO_REGS
942
   and contain no registers.
943
 
944
   The name GENERAL_REGS must be the name of a class (or an alias for
945
   another name such as ALL_REGS).  This is the class of registers
946
   that is allowed by "g" or "r" in a register constraint.
947
   Also, registers outside this class are allocated only when
948
   instructions express preferences for them.
949
 
950
   The classes must be numbered in nondecreasing order; that is,
951
   a larger-numbered class must never be contained completely
952
   in a smaller-numbered class.
953
 
954
   For any two classes, it is very desirable that there be another
955
   class that represents their union.  */
956
 
957
/* The RS/6000 has three types of registers, fixed-point, floating-point,
958
   and condition registers, plus three special registers, MQ, CTR, and the
959
   link register.  AltiVec adds a vector register class.
960
 
961
   However, r0 is special in that it cannot be used as a base register.
962
   So make a class for registers valid as base registers.
963
 
964
   Also, cr0 is the only condition code register that can be used in
965
   arithmetic insns, so make a separate class for it.  */
966
 
967
enum reg_class
968
{
969
  NO_REGS,
970
  BASE_REGS,
971
  GENERAL_REGS,
972
  FLOAT_REGS,
973
  ALTIVEC_REGS,
974
  VRSAVE_REGS,
975
  VSCR_REGS,
976
  SPE_ACC_REGS,
977
  SPEFSCR_REGS,
978
  NON_SPECIAL_REGS,
979
  MQ_REGS,
980
  LINK_REGS,
981
  CTR_REGS,
982
  LINK_OR_CTR_REGS,
983
  SPECIAL_REGS,
984
  SPEC_OR_GEN_REGS,
985
  CR0_REGS,
986
  CR_REGS,
987
  NON_FLOAT_REGS,
988
  XER_REGS,
989
  ALL_REGS,
990
  LIM_REG_CLASSES
991
};
992
 
993
#define N_REG_CLASSES (int) LIM_REG_CLASSES
994
 
995
/* Give names of register classes as strings for dump file.  */
996
 
997
#define REG_CLASS_NAMES                                                 \
998
{                                                                       \
999
  "NO_REGS",                                                            \
1000
  "BASE_REGS",                                                          \
1001
  "GENERAL_REGS",                                                       \
1002
  "FLOAT_REGS",                                                         \
1003
  "ALTIVEC_REGS",                                                       \
1004
  "VRSAVE_REGS",                                                        \
1005
  "VSCR_REGS",                                                          \
1006
  "SPE_ACC_REGS",                                                       \
1007
  "SPEFSCR_REGS",                                                       \
1008
  "NON_SPECIAL_REGS",                                                   \
1009
  "MQ_REGS",                                                            \
1010
  "LINK_REGS",                                                          \
1011
  "CTR_REGS",                                                           \
1012
  "LINK_OR_CTR_REGS",                                                   \
1013
  "SPECIAL_REGS",                                                       \
1014
  "SPEC_OR_GEN_REGS",                                                   \
1015
  "CR0_REGS",                                                           \
1016
  "CR_REGS",                                                            \
1017
  "NON_FLOAT_REGS",                                                     \
1018
  "XER_REGS",                                                           \
1019
  "ALL_REGS"                                                            \
1020
}
1021
 
1022
/* Define which registers fit in which classes.
1023
   This is an initializer for a vector of HARD_REG_SET
1024
   of length N_REG_CLASSES.  */
1025
 
1026
#define REG_CLASS_CONTENTS                                                   \
1027
{                                                                            \
1028
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */          \
1029
  { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */        \
1030
  { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */     \
1031
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1032
  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1033
  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */      \
1034
  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */        \
1035
  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1036
  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1037
  { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1038
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */          \
1039
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */        \
1040
  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */         \
1041
  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1042
  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1043
  { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1044
  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */         \
1045
  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */          \
1046
  { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */   \
1047
  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */         \
1048
  { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff }  /* ALL_REGS */         \
1049
}
1050
 
1051
/* The same information, inverted:
1052
   Return the class number of the smallest class containing
1053
   reg number REGNO.  This could be a conditional expression
1054
   or could index an array.  */
1055
 
1056
#define REGNO_REG_CLASS(REGNO)                  \
1057
 ((REGNO) == 0 ? GENERAL_REGS                    \
1058
  : (REGNO) < 32 ? BASE_REGS                    \
1059
  : FP_REGNO_P (REGNO) ? FLOAT_REGS             \
1060
  : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS      \
1061
  : (REGNO) == CR0_REGNO ? CR0_REGS             \
1062
  : CR_REGNO_P (REGNO) ? CR_REGS                \
1063
  : (REGNO) == MQ_REGNO ? MQ_REGS               \
1064
  : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1065
  : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1066
  : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS   \
1067
  : (REGNO) == XER_REGNO ? XER_REGS             \
1068
  : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS       \
1069
  : (REGNO) == VSCR_REGNO ? VRSAVE_REGS         \
1070
  : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS     \
1071
  : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS     \
1072
  : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1073
  : NO_REGS)
1074
 
1075
/* The class value for index registers, and the one for base regs.  */
1076
#define INDEX_REG_CLASS GENERAL_REGS
1077
#define BASE_REG_CLASS BASE_REGS
1078
 
1079
/* Given an rtx X being reloaded into a reg required to be
1080
   in class CLASS, return the class of reg to actually use.
1081
   In general this is just CLASS; but on some machines
1082
   in some cases it is preferable to use a more restrictive class.
1083
 
1084
   On the RS/6000, we have to return NO_REGS when we want to reload a
1085
   floating-point CONST_DOUBLE to force it to be copied to memory.
1086
 
1087
   We also don't want to reload integer values into floating-point
1088
   registers if we can at all help it.  In fact, this can
1089
   cause reload to die, if it tries to generate a reload of CTR
1090
   into a FP register and discovers it doesn't have the memory location
1091
   required.
1092
 
1093
   ??? Would it be a good idea to have reload do the converse, that is
1094
   try to reload floating modes into FP registers if possible?
1095
 */
1096
 
1097
#define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
1098
  ((CONSTANT_P (X)                                      \
1099
    && reg_classes_intersect_p ((CLASS), FLOAT_REGS))   \
1100
   ? NO_REGS                                            \
1101
   : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT         \
1102
      && (CLASS) == NON_SPECIAL_REGS)                   \
1103
   ? GENERAL_REGS                                       \
1104
   : (CLASS))
1105
 
1106
/* Return the register class of a scratch register needed to copy IN into
1107
   or out of a register in CLASS in MODE.  If it can be done directly,
1108
   NO_REGS is returned.  */
1109
 
1110
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1111
  rs6000_secondary_reload_class (CLASS, MODE, IN)
1112
 
1113
/* If we are copying between FP or AltiVec registers and anything
1114
   else, we need a memory location.  */
1115
 
1116
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE)             \
1117
 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS               \
1118
                           || (CLASS2) == FLOAT_REGS            \
1119
                           || (CLASS1) == ALTIVEC_REGS          \
1120
                           || (CLASS2) == ALTIVEC_REGS))
1121
 
1122
/* Return the maximum number of consecutive registers
1123
   needed to represent mode MODE in a register of class CLASS.
1124
 
1125
   On RS/6000, this is the size of MODE in words,
1126
   except in the FP regs, where a single reg is enough for two words.  */
1127
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
1128
 (((CLASS) == FLOAT_REGS)                                               \
1129
  ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1130
  : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1131
  ? 1                                                                   \
1132
  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1133
 
1134
/* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1135
 
1136
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                       \
1137
  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                           \
1138
   ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8               \
1139
       || TARGET_IEEEQUAD)                                              \
1140
      && reg_classes_intersect_p (FLOAT_REGS, CLASS))                   \
1141
   : (((TARGET_E500_DOUBLE                                              \
1142
        && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1                \
1143
            || (((TO) == DImode) + ((FROM) == DImode)) == 1))           \
1144
       || (TARGET_SPE                                                   \
1145
           && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1))    \
1146
      && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1147
 
1148
/* Stack layout; function entry, exit and calling.  */
1149
 
1150
/* Enumeration to give which calling sequence to use.  */
1151
enum rs6000_abi {
1152
  ABI_NONE,
1153
  ABI_AIX,                      /* IBM's AIX */
1154
  ABI_V4,                       /* System V.4/eabi */
1155
  ABI_DARWIN                    /* Apple's Darwin (OS X kernel) */
1156
};
1157
 
1158
extern enum rs6000_abi rs6000_current_abi;      /* available for use by subtarget */
1159
 
1160
/* Define this if pushing a word on the stack
1161
   makes the stack pointer a smaller address.  */
1162
#define STACK_GROWS_DOWNWARD
1163
 
1164
/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1165
#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1166
 
1167
/* Define this to nonzero if the nominal address of the stack frame
1168
   is at the high-address end of the local variables;
1169
   that is, each additional local variable allocated
1170
   goes at a more negative offset in the frame.
1171
 
1172
   On the RS/6000, we grow upwards, from the area after the outgoing
1173
   arguments.  */
1174
#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1175
 
1176
/* Size of the outgoing register save area */
1177
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX                        \
1178
                          || DEFAULT_ABI == ABI_DARWIN)                 \
1179
                         ? (TARGET_64BIT ? 64 : 32)                     \
1180
                         : 0)
1181
 
1182
/* Size of the fixed area on the stack */
1183
#define RS6000_SAVE_AREA \
1184
  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)     \
1185
   << (TARGET_64BIT ? 1 : 0))
1186
 
1187
/* MEM representing address to save the TOC register */
1188
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1189
                                     plus_constant (stack_pointer_rtx, \
1190
                                                    (TARGET_32BIT ? 20 : 40)))
1191
 
1192
/* Align an address */
1193
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1194
 
1195
/* Offset within stack frame to start allocating local variables at.
1196
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1197
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1198
   of the first local allocated.
1199
 
1200
   On the RS/6000, the frame pointer is the same as the stack pointer,
1201
   except for dynamic allocations.  So we start after the fixed area and
1202
   outgoing parameter area.  */
1203
 
1204
#define STARTING_FRAME_OFFSET                                           \
1205
  (FRAME_GROWS_DOWNWARD                                                 \
1206
   ? 0                                                                   \
1207
   : (RS6000_ALIGN (current_function_outgoing_args_size,                \
1208
                    TARGET_ALTIVEC ? 16 : 8)                            \
1209
      + RS6000_SAVE_AREA))
1210
 
1211
/* Offset from the stack pointer register to an item dynamically
1212
   allocated on the stack, e.g., by `alloca'.
1213
 
1214
   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1215
   length of the outgoing arguments.  The default is correct for most
1216
   machines.  See `function.c' for details.  */
1217
#define STACK_DYNAMIC_OFFSET(FUNDECL)                                   \
1218
  (RS6000_ALIGN (current_function_outgoing_args_size,                   \
1219
                 TARGET_ALTIVEC ? 16 : 8)                               \
1220
   + (STACK_POINTER_OFFSET))
1221
 
1222
/* If we generate an insn to push BYTES bytes,
1223
   this says how many the stack pointer really advances by.
1224
   On RS/6000, don't define this because there are no push insns.  */
1225
/*  #define PUSH_ROUNDING(BYTES) */
1226
 
1227
/* Offset of first parameter from the argument pointer register value.
1228
   On the RS/6000, we define the argument pointer to the start of the fixed
1229
   area.  */
1230
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1231
 
1232
/* Offset from the argument pointer register value to the top of
1233
   stack.  This is different from FIRST_PARM_OFFSET because of the
1234
   register save area.  */
1235
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1236
 
1237
/* Define this if stack space is still allocated for a parameter passed
1238
   in a register.  The value is the number of bytes allocated to this
1239
   area.  */
1240
#define REG_PARM_STACK_SPACE(FNDECL)    RS6000_REG_SAVE
1241
 
1242
/* Define this if the above stack space is to be considered part of the
1243
   space allocated by the caller.  */
1244
#define OUTGOING_REG_PARM_STACK_SPACE
1245
 
1246
/* This is the difference between the logical top of stack and the actual sp.
1247
 
1248
   For the RS/6000, sp points past the fixed area.  */
1249
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1250
 
1251
/* Define this if the maximum size of all the outgoing args is to be
1252
   accumulated and pushed during the prologue.  The amount can be
1253
   found in the variable current_function_outgoing_args_size.  */
1254
#define ACCUMULATE_OUTGOING_ARGS 1
1255
 
1256
/* Value is the number of bytes of arguments automatically
1257
   popped when returning from a subroutine call.
1258
   FUNDECL is the declaration node of the function (as a tree),
1259
   FUNTYPE is the data type of the function (as a tree),
1260
   or for a library call it is an identifier node for the subroutine name.
1261
   SIZE is the number of bytes of arguments passed on the stack.  */
1262
 
1263
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1264
 
1265
/* Define how to find the value returned by a function.
1266
   VALTYPE is the data type of the value (as a tree).
1267
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1268
   otherwise, FUNC is 0.  */
1269
 
1270
#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1271
 
1272
/* Define how to find the value returned by a library function
1273
   assuming the value has mode MODE.  */
1274
 
1275
#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1276
 
1277
/* DRAFT_V4_STRUCT_RET defaults off.  */
1278
#define DRAFT_V4_STRUCT_RET 0
1279
 
1280
/* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1281
#define DEFAULT_PCC_STRUCT_RETURN 0
1282
 
1283
/* Mode of stack savearea.
1284
   FUNCTION is VOIDmode because calling convention maintains SP.
1285
   BLOCK needs Pmode for SP.
1286
   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1287
#define STACK_SAVEAREA_MODE(LEVEL)      \
1288
  (LEVEL == SAVE_FUNCTION ? VOIDmode    \
1289
  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1290
 
1291
/* Minimum and maximum general purpose registers used to hold arguments.  */
1292
#define GP_ARG_MIN_REG 3
1293
#define GP_ARG_MAX_REG 10
1294
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1295
 
1296
/* Minimum and maximum floating point registers used to hold arguments.  */
1297
#define FP_ARG_MIN_REG 33
1298
#define FP_ARG_AIX_MAX_REG 45
1299
#define FP_ARG_V4_MAX_REG  40
1300
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX                         \
1301
                         || DEFAULT_ABI == ABI_DARWIN)                  \
1302
                        ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1303
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1304
 
1305
/* Minimum and maximum AltiVec registers used to hold arguments.  */
1306
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1307
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1308
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1309
 
1310
/* Return registers */
1311
#define GP_ARG_RETURN GP_ARG_MIN_REG
1312
#define FP_ARG_RETURN FP_ARG_MIN_REG
1313
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1314
 
1315
/* Flags for the call/call_value rtl operations set up by function_arg */
1316
#define CALL_NORMAL             0x00000000      /* no special processing */
1317
/* Bits in 0x00000001 are unused.  */
1318
#define CALL_V4_CLEAR_FP_ARGS   0x00000002      /* V.4, no FP args passed */
1319
#define CALL_V4_SET_FP_ARGS     0x00000004      /* V.4, FP args were passed */
1320
#define CALL_LONG               0x00000008      /* always call indirect */
1321
#define CALL_LIBCALL            0x00000010      /* libcall */
1322
 
1323
/* We don't have prologue and epilogue functions to save/restore
1324
   everything for most ABIs.  */
1325
#define WORLD_SAVE_P(INFO) 0
1326
 
1327
/* 1 if N is a possible register number for a function value
1328
   as seen by the caller.
1329
 
1330
   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1331
#define FUNCTION_VALUE_REGNO_P(N)                                       \
1332
  ((N) == GP_ARG_RETURN                                                 \
1333
   || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS)        \
1334
   || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1335
 
1336
/* 1 if N is a possible register number for function argument passing.
1337
   On RS/6000, these are r3-r10 and fp1-fp13.
1338
   On AltiVec, v2 - v13 are used for passing vectors.  */
1339
#define FUNCTION_ARG_REGNO_P(N)                                         \
1340
  ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG                     \
1341
   || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG       \
1342
       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)                         \
1343
   || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG                 \
1344
       && TARGET_HARD_FLOAT && TARGET_FPRS))
1345
 
1346
/* Define a data type for recording info about an argument list
1347
   during the scan of that argument list.  This data type should
1348
   hold all necessary information about the function itself
1349
   and about the args processed so far, enough to enable macros
1350
   such as FUNCTION_ARG to determine where the next arg should go.
1351
 
1352
   On the RS/6000, this is a structure.  The first element is the number of
1353
   total argument words, the second is used to store the next
1354
   floating-point register number, and the third says how many more args we
1355
   have prototype types for.
1356
 
1357
   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1358
   the next available GP register, `fregno' is the next available FP
1359
   register, and `words' is the number of words used on the stack.
1360
 
1361
   The varargs/stdarg support requires that this structure's size
1362
   be a multiple of sizeof(int).  */
1363
 
1364
typedef struct rs6000_args
1365
{
1366
  int words;                    /* # words used for passing GP registers */
1367
  int fregno;                   /* next available FP register */
1368
  int vregno;                   /* next available AltiVec register */
1369
  int nargs_prototype;          /* # args left in the current prototype */
1370
  int prototype;                /* Whether a prototype was defined */
1371
  int stdarg;                   /* Whether function is a stdarg function.  */
1372
  int call_cookie;              /* Do special things for this call */
1373
  int sysv_gregno;              /* next available GP register */
1374
  int intoffset;                /* running offset in struct (darwin64) */
1375
  int use_stack;                /* any part of struct on stack (darwin64) */
1376
  int named;                    /* false for varargs params */
1377
} CUMULATIVE_ARGS;
1378
 
1379
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1380
   for a call to a function whose data type is FNTYPE.
1381
   For a library call, FNTYPE is 0.  */
1382
 
1383
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1384
  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1385
 
1386
/* Similar, but when scanning the definition of a procedure.  We always
1387
   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1388
 
1389
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1390
  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1391
 
1392
/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1393
 
1394
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1395
  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1396
 
1397
/* Update the data in CUM to advance over an argument
1398
   of mode MODE and data type TYPE.
1399
   (TYPE is null for libcalls where that information may not be available.)  */
1400
 
1401
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
1402
  function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1403
 
1404
/* Determine where to put an argument to a function.
1405
   Value is zero to push the argument on the stack,
1406
   or a hard register in which to store the argument.
1407
 
1408
   MODE is the argument's machine mode.
1409
   TYPE is the data type of the argument (as a tree).
1410
    This is null for libcalls where that information may
1411
    not be available.
1412
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1413
    the preceding args and about the function being called.
1414
   NAMED is nonzero if this argument is a named parameter
1415
    (otherwise it is an extra parameter matching an ellipsis).
1416
 
1417
   On RS/6000 the first eight words of non-FP are normally in registers
1418
   and the rest are pushed.  The first 13 FP args are in registers.
1419
 
1420
   If this is floating-point and no prototype is specified, we use
1421
   both an FP and integer register (or possibly FP reg and stack).  Library
1422
   functions (when TYPE is zero) always have the proper types for args,
1423
   so we can pass the FP value just in one register.  emit_library_function
1424
   doesn't support EXPR_LIST anyway.  */
1425
 
1426
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1427
  function_arg (&CUM, MODE, TYPE, NAMED)
1428
 
1429
/* If defined, a C expression which determines whether, and in which
1430
   direction, to pad out an argument with extra space.  The value
1431
   should be of type `enum direction': either `upward' to pad above
1432
   the argument, `downward' to pad below, or `none' to inhibit
1433
   padding.  */
1434
 
1435
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1436
 
1437
/* If defined, a C expression that gives the alignment boundary, in bits,
1438
   of an argument with the specified mode and type.  If it is not defined,
1439
   PARM_BOUNDARY is used for all arguments.  */
1440
 
1441
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1442
  function_arg_boundary (MODE, TYPE)
1443
 
1444
/* Implement `va_start' for varargs and stdarg.  */
1445
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1446
  rs6000_va_start (valist, nextarg)
1447
 
1448
#define PAD_VARARGS_DOWN \
1449
   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1450
 
1451
/* Output assembler code to FILE to increment profiler label # LABELNO
1452
   for profiling a function entry.  */
1453
 
1454
#define FUNCTION_PROFILER(FILE, LABELNO)        \
1455
  output_function_profiler ((FILE), (LABELNO));
1456
 
1457
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1458
   the stack pointer does not matter. No definition is equivalent to
1459
   always zero.
1460
 
1461
   On the RS/6000, this is nonzero because we can restore the stack from
1462
   its backpointer, which we maintain.  */
1463
#define EXIT_IGNORE_STACK       1
1464
 
1465
/* Define this macro as a C expression that is nonzero for registers
1466
   that are used by the epilogue or the return' pattern.  The stack
1467
   and frame pointer registers are already be assumed to be used as
1468
   needed.  */
1469
 
1470
#define EPILOGUE_USES(REGNO)                                    \
1471
  ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)        \
1472
   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)               \
1473
   || (current_function_calls_eh_return                         \
1474
       && TARGET_AIX                                            \
1475
       && (REGNO) == 2))
1476
 
1477
 
1478
/* TRAMPOLINE_TEMPLATE deleted */
1479
 
1480
/* Length in units of the trampoline for entering a nested function.  */
1481
 
1482
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1483
 
1484
/* Emit RTL insns to initialize the variable parts of a trampoline.
1485
   FNADDR is an RTX for the address of the function's pure code.
1486
   CXT is an RTX for the static chain value for the function.  */
1487
 
1488
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)                \
1489
  rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1490
 
1491
/* Definitions for __builtin_return_address and __builtin_frame_address.
1492
   __builtin_return_address (0) should give link register (65), enable
1493
   this.  */
1494
/* This should be uncommented, so that the link register is used, but
1495
   currently this would result in unmatched insns and spilling fixed
1496
   registers so we'll leave it for another day.  When these problems are
1497
   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1498
   (mrs) */
1499
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1500
 
1501
/* Number of bytes into the frame return addresses can be found.  See
1502
   rs6000_stack_info in rs6000.c for more information on how the different
1503
   abi's store the return address.  */
1504
#define RETURN_ADDRESS_OFFSET                                           \
1505
 ((DEFAULT_ABI == ABI_AIX                                               \
1506
   || DEFAULT_ABI == ABI_DARWIN)        ? (TARGET_32BIT ? 8 : 16) :     \
1507
  (DEFAULT_ABI == ABI_V4)               ? 4 :                           \
1508
  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1509
 
1510
/* The current return address is in link register (65).  The return address
1511
   of anything farther back is accessed normally at an offset of 8 from the
1512
   frame pointer.  */
1513
#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1514
  (rs6000_return_addr (COUNT, FRAME))
1515
 
1516
 
1517
/* Definitions for register eliminations.
1518
 
1519
   We have two registers that can be eliminated on the RS/6000.  First, the
1520
   frame pointer register can often be eliminated in favor of the stack
1521
   pointer register.  Secondly, the argument pointer register can always be
1522
   eliminated; it is replaced with either the stack or frame pointer.
1523
 
1524
   In addition, we use the elimination mechanism to see if r30 is needed
1525
   Initially we assume that it isn't.  If it is, we spill it.  This is done
1526
   by making it an eliminable register.  We replace it with itself so that
1527
   if it isn't needed, then existing uses won't be modified.  */
1528
 
1529
/* This is an array of structures.  Each structure initializes one pair
1530
   of eliminable registers.  The "from" register number is given first,
1531
   followed by "to".  Eliminations of the same "from" register are listed
1532
   in order of preference.  */
1533
#define ELIMINABLE_REGS                                 \
1534
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},    \
1535
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
1536
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},    \
1537
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
1538
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
1539
 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1540
 
1541
/* Given FROM and TO register numbers, say whether this elimination is allowed.
1542
   Frame pointer elimination is automatically handled.
1543
 
1544
   For the RS/6000, if frame pointer elimination is being done, we would like
1545
   to convert ap into fp, not sp.
1546
 
1547
   We need r30 if -mminimal-toc was specified, and there are constant pool
1548
   references.  */
1549
 
1550
#define CAN_ELIMINATE(FROM, TO)                                         \
1551
 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM          \
1552
  ? ! frame_pointer_needed                                              \
1553
  : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM                            \
1554
  ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0       \
1555
  : 1)
1556
 
1557
/* Define the offset between two registers, one to be eliminated, and the other
1558
   its replacement, at the start of a routine.  */
1559
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1560
  ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1561
 
1562
/* Addressing modes, and classification of registers for them.  */
1563
 
1564
#define HAVE_PRE_DECREMENT 1
1565
#define HAVE_PRE_INCREMENT 1
1566
 
1567
/* Macros to check register numbers against specific register classes.  */
1568
 
1569
/* These assume that REGNO is a hard or pseudo reg number.
1570
   They give nonzero only if REGNO is a hard reg of the suitable class
1571
   or a pseudo reg currently allocated to a suitable hard reg.
1572
   Since they use reg_renumber, they are safe only once reg_renumber
1573
   has been allocated, which happens in local-alloc.c.  */
1574
 
1575
#define REGNO_OK_FOR_INDEX_P(REGNO)                             \
1576
((REGNO) < FIRST_PSEUDO_REGISTER                                \
1577
 ? (REGNO) <= 31 || (REGNO) == 67                               \
1578
   || (REGNO) == FRAME_POINTER_REGNUM                           \
1579
 : (reg_renumber[REGNO] >= 0                                     \
1580
    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67  \
1581
        || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1582
 
1583
#define REGNO_OK_FOR_BASE_P(REGNO)                              \
1584
((REGNO) < FIRST_PSEUDO_REGISTER                                \
1585
 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67               \
1586
   || (REGNO) == FRAME_POINTER_REGNUM                           \
1587
 : (reg_renumber[REGNO] > 0                                      \
1588
    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67  \
1589
        || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1590
 
1591
/* Maximum number of registers that can appear in a valid memory address.  */
1592
 
1593
#define MAX_REGS_PER_ADDRESS 2
1594
 
1595
/* Recognize any constant value that is a valid address.  */
1596
 
1597
#define CONSTANT_ADDRESS_P(X)   \
1598
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF              \
1599
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
1600
   || GET_CODE (X) == HIGH)
1601
 
1602
/* Nonzero if the constant value X is a legitimate general operand.
1603
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1604
 
1605
   On the RS/6000, all integer constants are acceptable, most won't be valid
1606
   for particular insns, though.  Only easy FP constants are
1607
   acceptable.  */
1608
 
1609
#define LEGITIMATE_CONSTANT_P(X)                                \
1610
  (((GET_CODE (X) != CONST_DOUBLE                               \
1611
     && GET_CODE (X) != CONST_VECTOR)                           \
1612
    || GET_MODE (X) == VOIDmode                                 \
1613
    || (TARGET_POWERPC64 && GET_MODE (X) == DImode)             \
1614
    || easy_fp_constant (X, GET_MODE (X))                       \
1615
    || easy_vector_constant (X, GET_MODE (X)))                  \
1616
   && !rs6000_tls_referenced_p (X))
1617
 
1618
#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1619
#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))        \
1620
                                    && EASY_VECTOR_15((n) >> 1) \
1621
                                    && ((n) & 1) == 0)
1622
 
1623
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1624
   and check its validity for a certain class.
1625
   We have two alternate definitions for each of them.
1626
   The usual definition accepts all pseudo regs; the other rejects
1627
   them unless they have been allocated suitable hard regs.
1628
   The symbol REG_OK_STRICT causes the latter definition to be used.
1629
 
1630
   Most source files want to accept pseudo regs in the hope that
1631
   they will get allocated to the class that the insn wants them to be in.
1632
   Source files for reload pass need to be strict.
1633
   After reload, it makes no difference, since pseudo regs have
1634
   been eliminated by then.  */
1635
 
1636
#ifdef REG_OK_STRICT
1637
# define REG_OK_STRICT_FLAG 1
1638
#else
1639
# define REG_OK_STRICT_FLAG 0
1640
#endif
1641
 
1642
/* Nonzero if X is a hard reg that can be used as an index
1643
   or if it is a pseudo reg in the non-strict case.  */
1644
#define INT_REG_OK_FOR_INDEX_P(X, STRICT)                       \
1645
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)            \
1646
   || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1647
 
1648
/* Nonzero if X is a hard reg that can be used as a base reg
1649
   or if it is a pseudo reg in the non-strict case.  */
1650
#define INT_REG_OK_FOR_BASE_P(X, STRICT)                        \
1651
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)            \
1652
   || REGNO_OK_FOR_BASE_P (REGNO (X)))
1653
 
1654
#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1655
#define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1656
 
1657
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1658
   that is a valid memory address for an instruction.
1659
   The MODE argument is the machine mode for the MEM expression
1660
   that wants to use this address.
1661
 
1662
   On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1663
   refers to a constant pool entry of an address (or the sum of it
1664
   plus a constant), a short (16-bit signed) constant plus a register,
1665
   the sum of two registers, or a register indirect, possibly with an
1666
   auto-increment.  For DFmode and DImode with a constant plus register,
1667
   we must ensure that both words are addressable or PowerPC64 with offset
1668
   word aligned.
1669
 
1670
   For modes spanning multiple registers (DFmode in 32-bit GPRs,
1671
   32-bit DImode, TImode), indexed addressing cannot be used because
1672
   adjacent memory cells are accessed by adding word-sized offsets
1673
   during assembly output.  */
1674
 
1675
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                 \
1676
{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))  \
1677
    goto ADDR;                                                  \
1678
}
1679
 
1680
/* Try machine-dependent ways of modifying an illegitimate address
1681
   to be legitimate.  If we find one, return the new, valid address.
1682
   This macro is used in only one place: `memory_address' in explow.c.
1683
 
1684
   OLDX is the address as it was before break_out_memory_refs was called.
1685
   In some cases it is useful to look at this to decide what needs to be done.
1686
 
1687
   MODE and WIN are passed so that this macro can use
1688
   GO_IF_LEGITIMATE_ADDRESS.
1689
 
1690
   It is always safe for this macro to do nothing.  It exists to recognize
1691
   opportunities to optimize the output.
1692
 
1693
   On RS/6000, first check for the sum of a register with a constant
1694
   integer that is out of range.  If so, generate code to add the
1695
   constant with the low-order 16 bits masked to the register and force
1696
   this result into another register (this can be done with `cau').
1697
   Then generate an address of REG+(CONST&0xffff), allowing for the
1698
   possibility of bit 16 being a one.
1699
 
1700
   Then check for the sum of a register and something not constant, try to
1701
   load the other things into a register and return the sum.  */
1702
 
1703
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
1704
{  rtx result = rs6000_legitimize_address (X, OLDX, MODE);      \
1705
   if (result != NULL_RTX)                                      \
1706
     {                                                          \
1707
       (X) = result;                                            \
1708
       goto WIN;                                                \
1709
     }                                                          \
1710
}
1711
 
1712
/* Try a machine-dependent way of reloading an illegitimate address
1713
   operand.  If we find one, push the reload and jump to WIN.  This
1714
   macro is used in only one place: `find_reloads_address' in reload.c.
1715
 
1716
   Implemented on rs6000 by rs6000_legitimize_reload_address.
1717
   Note that (X) is evaluated twice; this is safe in current usage.  */
1718
 
1719
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)          \
1720
do {                                                                         \
1721
  int win;                                                                   \
1722
  (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),              \
1723
                        (int)(TYPE), (IND_LEVELS), &win);                    \
1724
  if ( win )                                                                 \
1725
    goto WIN;                                                                \
1726
} while (0)
1727
 
1728
/* Go to LABEL if ADDR (a legitimate address expression)
1729
   has an effect that depends on the machine mode it is used for.  */
1730
 
1731
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)                \
1732
do {                                                            \
1733
  if (rs6000_mode_dependent_address (ADDR))                     \
1734
    goto LABEL;                                                 \
1735
} while (0)
1736
 
1737
/* The register number of the register used to address a table of
1738
   static data addresses in memory.  In some cases this register is
1739
   defined by a processor's "application binary interface" (ABI).
1740
   When this macro is defined, RTL is generated for this register
1741
   once, as with the stack pointer and frame pointer registers.  If
1742
   this macro is not defined, it is up to the machine-dependent files
1743
   to allocate such a register (if necessary).  */
1744
 
1745
#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1746
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1747
 
1748
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1749
 
1750
/* Define this macro if the register defined by
1751
   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1752
   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1753
 
1754
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1755
 
1756
/* A C expression that is nonzero if X is a legitimate immediate
1757
   operand on the target machine when generating position independent
1758
   code.  You can assume that X satisfies `CONSTANT_P', so you need
1759
   not check this.  You can also assume FLAG_PIC is true, so you need
1760
   not check it either.  You need not define this macro if all
1761
   constants (including `SYMBOL_REF') can be immediate operands when
1762
   generating position independent code.  */
1763
 
1764
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1765
 
1766
/* Define this if some processing needs to be done immediately before
1767
   emitting code for an insn.  */
1768
 
1769
/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1770
 
1771
/* Specify the machine mode that this machine uses
1772
   for the index in the tablejump instruction.  */
1773
#define CASE_VECTOR_MODE SImode
1774
 
1775
/* Define as C expression which evaluates to nonzero if the tablejump
1776
   instruction expects the table to contain offsets from the address of the
1777
   table.
1778
   Do not define this if the table should contain absolute addresses.  */
1779
#define CASE_VECTOR_PC_RELATIVE 1
1780
 
1781
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1782
#define DEFAULT_SIGNED_CHAR 0
1783
 
1784
/* This flag, if defined, says the same insns that convert to a signed fixnum
1785
   also convert validly to an unsigned one.  */
1786
 
1787
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1788
 
1789
/* An integer expression for the size in bits of the largest integer machine
1790
   mode that should actually be used.  */
1791
 
1792
/* Allow pairs of registers to be used, which is the intent of the default.  */
1793
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1794
 
1795
/* Max number of bytes we can move from memory to memory
1796
   in one reasonably fast instruction.  */
1797
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1798
#define MAX_MOVE_MAX 8
1799
 
1800
/* Nonzero if access to memory by bytes is no faster than for words.
1801
   Also nonzero if doing byte operations (specifically shifts) in registers
1802
   is undesirable.  */
1803
#define SLOW_BYTE_ACCESS 1
1804
 
1805
/* Define if operations between registers always perform the operation
1806
   on the full register even if a narrower mode is specified.  */
1807
#define WORD_REGISTER_OPERATIONS
1808
 
1809
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1810
   will either zero-extend or sign-extend.  The value of this macro should
1811
   be the code that says which one of the two operations is implicitly
1812
   done, UNKNOWN if none.  */
1813
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1814
 
1815
/* Define if loading short immediate values into registers sign extends.  */
1816
#define SHORT_IMMEDIATES_SIGN_EXTEND
1817
 
1818
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1819
   is done just by pretending it is already truncated.  */
1820
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1821
 
1822
/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1823
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1824
  ((VALUE) = ((MODE) == SImode ? 32 : 64))
1825
 
1826
/* The CTZ patterns return -1 for input of zero.  */
1827
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1828
 
1829
/* Specify the machine mode that pointers have.
1830
   After generation of rtl, the compiler makes no further distinction
1831
   between pointers and any other objects of this machine mode.  */
1832
#define Pmode (TARGET_32BIT ? SImode : DImode)
1833
 
1834
/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1835
#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1836
 
1837
/* Mode of a function address in a call instruction (for indexing purposes).
1838
   Doesn't matter on RS/6000.  */
1839
#define FUNCTION_MODE SImode
1840
 
1841
/* Define this if addresses of constant functions
1842
   shouldn't be put through pseudo regs where they can be cse'd.
1843
   Desirable on machines where ordinary constants are expensive
1844
   but a CALL with constant address is cheap.  */
1845
#define NO_FUNCTION_CSE
1846
 
1847
/* Define this to be nonzero if shift instructions ignore all but the low-order
1848
   few bits.
1849
 
1850
   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1851
   have been dropped from the PowerPC architecture.  */
1852
 
1853
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1854
 
1855
/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1856
   should be adjusted to reflect any required changes.  This macro is used when
1857
   there is some systematic length adjustment required that would be difficult
1858
   to express in the length attribute.  */
1859
 
1860
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1861
 
1862
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
1863
   COMPARE, return the mode to be used for the comparison.  For
1864
   floating-point, CCFPmode should be used.  CCUNSmode should be used
1865
   for unsigned comparisons.  CCEQmode should be used when we are
1866
   doing an inequality comparison on the result of a
1867
   comparison.  CCmode should be used in all other cases.  */
1868
 
1869
#define SELECT_CC_MODE(OP,X,Y) \
1870
  (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode        \
1871
   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1872
   : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)                      \
1873
      ? CCEQmode : CCmode))
1874
 
1875
/* Can the condition code MODE be safely reversed?  This is safe in
1876
   all cases on this port, because at present it doesn't use the
1877
   trapping FP comparisons (fcmpo).  */
1878
#define REVERSIBLE_CC_MODE(MODE) 1
1879
 
1880
/* Given a condition code and a mode, return the inverse condition.  */
1881
#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1882
 
1883
/* Define the information needed to generate branch and scc insns.  This is
1884
   stored from the compare operation.  */
1885
 
1886
extern GTY(()) rtx rs6000_compare_op0;
1887
extern GTY(()) rtx rs6000_compare_op1;
1888
extern int rs6000_compare_fp_p;
1889
 
1890
/* Control the assembler format that we output.  */
1891
 
1892
/* A C string constant describing how to begin a comment in the target
1893
   assembler language.  The compiler assumes that the comment will end at
1894
   the end of the line.  */
1895
#define ASM_COMMENT_START " #"
1896
 
1897
/* Flag to say the TOC is initialized */
1898
extern int toc_initialized;
1899
 
1900
/* Macro to output a special constant pool entry.  Go to WIN if we output
1901
   it.  Otherwise, it is written the usual way.
1902
 
1903
   On the RS/6000, toc entries are handled this way.  */
1904
 
1905
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1906
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))                          \
1907
    {                                                                     \
1908
      output_toc (FILE, X, LABELNO, MODE);                                \
1909
      goto WIN;                                                           \
1910
    }                                                                     \
1911
}
1912
 
1913
#ifdef HAVE_GAS_WEAK
1914
#define RS6000_WEAK 1
1915
#else
1916
#define RS6000_WEAK 0
1917
#endif
1918
 
1919
#if RS6000_WEAK
1920
/* Used in lieu of ASM_WEAKEN_LABEL.  */
1921
#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)                          \
1922
  do                                                                    \
1923
    {                                                                   \
1924
      fputs ("\t.weak\t", (FILE));                                      \
1925
      RS6000_OUTPUT_BASENAME ((FILE), (NAME));                          \
1926
      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL                   \
1927
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
1928
        {                                                               \
1929
          if (TARGET_XCOFF)                                             \
1930
            fputs ("[DS]", (FILE));                                     \
1931
          fputs ("\n\t.weak\t.", (FILE));                               \
1932
          RS6000_OUTPUT_BASENAME ((FILE), (NAME));                      \
1933
        }                                                               \
1934
      fputc ('\n', (FILE));                                             \
1935
      if (VAL)                                                          \
1936
        {                                                               \
1937
          ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));                       \
1938
          if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL               \
1939
              && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                 \
1940
            {                                                           \
1941
              fputs ("\t.set\t.", (FILE));                              \
1942
              RS6000_OUTPUT_BASENAME ((FILE), (NAME));                  \
1943
              fputs (",.", (FILE));                                     \
1944
              RS6000_OUTPUT_BASENAME ((FILE), (VAL));                   \
1945
              fputc ('\n', (FILE));                                     \
1946
            }                                                           \
1947
        }                                                               \
1948
    }                                                                   \
1949
  while (0)
1950
#endif
1951
 
1952
#if HAVE_GAS_WEAKREF
1953
#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)                     \
1954
  do                                                                    \
1955
    {                                                                   \
1956
      fputs ("\t.weakref\t", (FILE));                                   \
1957
      RS6000_OUTPUT_BASENAME ((FILE), (NAME));                          \
1958
      fputs (", ", (FILE));                                             \
1959
      RS6000_OUTPUT_BASENAME ((FILE), (VALUE));                         \
1960
      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL                   \
1961
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
1962
        {                                                               \
1963
          fputs ("\n\t.weakref\t.", (FILE));                            \
1964
          RS6000_OUTPUT_BASENAME ((FILE), (NAME));                      \
1965
          fputs (", .", (FILE));                                        \
1966
          RS6000_OUTPUT_BASENAME ((FILE), (VALUE));                     \
1967
        }                                                               \
1968
      fputc ('\n', (FILE));                                             \
1969
    } while (0)
1970
#endif
1971
 
1972
/* This implements the `alias' attribute.  */
1973
#undef  ASM_OUTPUT_DEF_FROM_DECLS
1974
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)                   \
1975
  do                                                                    \
1976
    {                                                                   \
1977
      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);            \
1978
      const char *name = IDENTIFIER_POINTER (TARGET);                   \
1979
      if (TREE_CODE (DECL) == FUNCTION_DECL                             \
1980
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
1981
        {                                                               \
1982
          if (TREE_PUBLIC (DECL))                                       \
1983
            {                                                           \
1984
              if (!RS6000_WEAK || !DECL_WEAK (DECL))                    \
1985
                {                                                       \
1986
                  fputs ("\t.globl\t.", FILE);                          \
1987
                  RS6000_OUTPUT_BASENAME (FILE, alias);                 \
1988
                  putc ('\n', FILE);                                    \
1989
                }                                                       \
1990
            }                                                           \
1991
          else if (TARGET_XCOFF)                                        \
1992
            {                                                           \
1993
              fputs ("\t.lglobl\t.", FILE);                             \
1994
              RS6000_OUTPUT_BASENAME (FILE, alias);                     \
1995
              putc ('\n', FILE);                                        \
1996
            }                                                           \
1997
          fputs ("\t.set\t.", FILE);                                    \
1998
          RS6000_OUTPUT_BASENAME (FILE, alias);                         \
1999
          fputs (",.", FILE);                                           \
2000
          RS6000_OUTPUT_BASENAME (FILE, name);                          \
2001
          fputc ('\n', FILE);                                           \
2002
        }                                                               \
2003
      ASM_OUTPUT_DEF (FILE, alias, name);                               \
2004
    }                                                                   \
2005
   while (0)
2006
 
2007
#define TARGET_ASM_FILE_START rs6000_file_start
2008
 
2009
/* Output to assembler file text saying following lines
2010
   may contain character constants, extra white space, comments, etc.  */
2011
 
2012
#define ASM_APP_ON ""
2013
 
2014
/* Output to assembler file text saying following lines
2015
   no longer contain unusual constructs.  */
2016
 
2017
#define ASM_APP_OFF ""
2018
 
2019
/* How to refer to registers in assembler output.
2020
   This sequence is indexed by compiler's hard-register-number (see above).  */
2021
 
2022
extern char rs6000_reg_names[][8];      /* register names (0 vs. %r0).  */
2023
 
2024
#define REGISTER_NAMES                                                  \
2025
{                                                                       \
2026
  &rs6000_reg_names[ 0][0],       /* r0   */                              \
2027
  &rs6000_reg_names[ 1][0],      /* r1   */                              \
2028
  &rs6000_reg_names[ 2][0],     /* r2    */                              \
2029
  &rs6000_reg_names[ 3][0],      /* r3   */                              \
2030
  &rs6000_reg_names[ 4][0],      /* r4   */                              \
2031
  &rs6000_reg_names[ 5][0],      /* r5   */                              \
2032
  &rs6000_reg_names[ 6][0],      /* r6   */                              \
2033
  &rs6000_reg_names[ 7][0],      /* r7   */                              \
2034
  &rs6000_reg_names[ 8][0],      /* r8   */                              \
2035
  &rs6000_reg_names[ 9][0],      /* r9   */                              \
2036
  &rs6000_reg_names[10][0],      /* r10  */                              \
2037
  &rs6000_reg_names[11][0],      /* r11  */                              \
2038
  &rs6000_reg_names[12][0],      /* r12  */                              \
2039
  &rs6000_reg_names[13][0],      /* r13  */                              \
2040
  &rs6000_reg_names[14][0],      /* r14  */                              \
2041
  &rs6000_reg_names[15][0],      /* r15  */                              \
2042
  &rs6000_reg_names[16][0],      /* r16  */                              \
2043
  &rs6000_reg_names[17][0],      /* r17  */                              \
2044
  &rs6000_reg_names[18][0],      /* r18  */                              \
2045
  &rs6000_reg_names[19][0],      /* r19  */                              \
2046
  &rs6000_reg_names[20][0],      /* r20  */                              \
2047
  &rs6000_reg_names[21][0],      /* r21  */                              \
2048
  &rs6000_reg_names[22][0],      /* r22  */                              \
2049
  &rs6000_reg_names[23][0],      /* r23  */                              \
2050
  &rs6000_reg_names[24][0],      /* r24  */                              \
2051
  &rs6000_reg_names[25][0],      /* r25  */                              \
2052
  &rs6000_reg_names[26][0],      /* r26  */                              \
2053
  &rs6000_reg_names[27][0],      /* r27  */                              \
2054
  &rs6000_reg_names[28][0],      /* r28  */                              \
2055
  &rs6000_reg_names[29][0],      /* r29  */                              \
2056
  &rs6000_reg_names[30][0],      /* r30  */                              \
2057
  &rs6000_reg_names[31][0],      /* r31  */                              \
2058
                                                                        \
2059
  &rs6000_reg_names[32][0],     /* fr0  */                               \
2060
  &rs6000_reg_names[33][0],      /* fr1  */                              \
2061
  &rs6000_reg_names[34][0],      /* fr2  */                              \
2062
  &rs6000_reg_names[35][0],      /* fr3  */                              \
2063
  &rs6000_reg_names[36][0],      /* fr4  */                              \
2064
  &rs6000_reg_names[37][0],      /* fr5  */                              \
2065
  &rs6000_reg_names[38][0],      /* fr6  */                              \
2066
  &rs6000_reg_names[39][0],      /* fr7  */                              \
2067
  &rs6000_reg_names[40][0],      /* fr8  */                              \
2068
  &rs6000_reg_names[41][0],      /* fr9  */                              \
2069
  &rs6000_reg_names[42][0],      /* fr10 */                              \
2070
  &rs6000_reg_names[43][0],      /* fr11 */                              \
2071
  &rs6000_reg_names[44][0],      /* fr12 */                              \
2072
  &rs6000_reg_names[45][0],      /* fr13 */                              \
2073
  &rs6000_reg_names[46][0],      /* fr14 */                              \
2074
  &rs6000_reg_names[47][0],      /* fr15 */                              \
2075
  &rs6000_reg_names[48][0],      /* fr16 */                              \
2076
  &rs6000_reg_names[49][0],      /* fr17 */                              \
2077
  &rs6000_reg_names[50][0],      /* fr18 */                              \
2078
  &rs6000_reg_names[51][0],      /* fr19 */                              \
2079
  &rs6000_reg_names[52][0],      /* fr20 */                              \
2080
  &rs6000_reg_names[53][0],      /* fr21 */                              \
2081
  &rs6000_reg_names[54][0],      /* fr22 */                              \
2082
  &rs6000_reg_names[55][0],      /* fr23 */                              \
2083
  &rs6000_reg_names[56][0],      /* fr24 */                              \
2084
  &rs6000_reg_names[57][0],      /* fr25 */                              \
2085
  &rs6000_reg_names[58][0],      /* fr26 */                              \
2086
  &rs6000_reg_names[59][0],      /* fr27 */                              \
2087
  &rs6000_reg_names[60][0],      /* fr28 */                              \
2088
  &rs6000_reg_names[61][0],      /* fr29 */                              \
2089
  &rs6000_reg_names[62][0],      /* fr30 */                              \
2090
  &rs6000_reg_names[63][0],      /* fr31 */                              \
2091
                                                                        \
2092
  &rs6000_reg_names[64][0],     /* mq   */                               \
2093
  &rs6000_reg_names[65][0],      /* lr   */                              \
2094
  &rs6000_reg_names[66][0],      /* ctr  */                              \
2095
  &rs6000_reg_names[67][0],      /* ap   */                              \
2096
                                                                        \
2097
  &rs6000_reg_names[68][0],      /* cr0  */                              \
2098
  &rs6000_reg_names[69][0],      /* cr1  */                              \
2099
  &rs6000_reg_names[70][0],      /* cr2  */                              \
2100
  &rs6000_reg_names[71][0],      /* cr3  */                              \
2101
  &rs6000_reg_names[72][0],      /* cr4  */                              \
2102
  &rs6000_reg_names[73][0],      /* cr5  */                              \
2103
  &rs6000_reg_names[74][0],      /* cr6  */                              \
2104
  &rs6000_reg_names[75][0],      /* cr7  */                              \
2105
                                                                        \
2106
  &rs6000_reg_names[76][0],      /* xer  */                              \
2107
                                                                        \
2108
  &rs6000_reg_names[77][0],      /* v0  */                               \
2109
  &rs6000_reg_names[78][0],      /* v1  */                               \
2110
  &rs6000_reg_names[79][0],      /* v2  */                               \
2111
  &rs6000_reg_names[80][0],      /* v3  */                               \
2112
  &rs6000_reg_names[81][0],      /* v4  */                               \
2113
  &rs6000_reg_names[82][0],      /* v5  */                               \
2114
  &rs6000_reg_names[83][0],      /* v6  */                               \
2115
  &rs6000_reg_names[84][0],      /* v7  */                               \
2116
  &rs6000_reg_names[85][0],      /* v8  */                               \
2117
  &rs6000_reg_names[86][0],      /* v9  */                               \
2118
  &rs6000_reg_names[87][0],      /* v10  */                              \
2119
  &rs6000_reg_names[88][0],      /* v11  */                              \
2120
  &rs6000_reg_names[89][0],      /* v12  */                              \
2121
  &rs6000_reg_names[90][0],      /* v13  */                              \
2122
  &rs6000_reg_names[91][0],      /* v14  */                              \
2123
  &rs6000_reg_names[92][0],      /* v15  */                              \
2124
  &rs6000_reg_names[93][0],      /* v16  */                              \
2125
  &rs6000_reg_names[94][0],      /* v17  */                              \
2126
  &rs6000_reg_names[95][0],      /* v18  */                              \
2127
  &rs6000_reg_names[96][0],      /* v19  */                              \
2128
  &rs6000_reg_names[97][0],      /* v20  */                              \
2129
  &rs6000_reg_names[98][0],      /* v21  */                              \
2130
  &rs6000_reg_names[99][0],      /* v22  */                              \
2131
  &rs6000_reg_names[100][0],     /* v23  */                              \
2132
  &rs6000_reg_names[101][0],     /* v24  */                              \
2133
  &rs6000_reg_names[102][0],     /* v25  */                              \
2134
  &rs6000_reg_names[103][0],     /* v26  */                              \
2135
  &rs6000_reg_names[104][0],     /* v27  */                              \
2136
  &rs6000_reg_names[105][0],     /* v28  */                              \
2137
  &rs6000_reg_names[106][0],     /* v29  */                              \
2138
  &rs6000_reg_names[107][0],     /* v30  */                              \
2139
  &rs6000_reg_names[108][0],     /* v31  */                              \
2140
  &rs6000_reg_names[109][0],     /* vrsave  */                           \
2141
  &rs6000_reg_names[110][0],     /* vscr  */                             \
2142
  &rs6000_reg_names[111][0],     /* spe_acc */                           \
2143
  &rs6000_reg_names[112][0],     /* spefscr */                           \
2144
  &rs6000_reg_names[113][0],     /* sfp  */                              \
2145
}
2146
 
2147
/* Table of additional register names to use in user input.  */
2148
 
2149
#define ADDITIONAL_REGISTER_NAMES \
2150
 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},        \
2151
  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},       \
2152
  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},       \
2153
  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},       \
2154
  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},       \
2155
  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},       \
2156
  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},       \
2157
  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},       \
2158
  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},       \
2159
  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},       \
2160
  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},       \
2161
  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},       \
2162
  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},       \
2163
  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},       \
2164
  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},       \
2165
  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},       \
2166
  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2167
  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2168
  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2169
  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2170
  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2171
  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},      \
2172
  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2173
  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2174
  {"vrsave", 109}, {"vscr", 110},                               \
2175
  {"spe_acc", 111}, {"spefscr", 112},                           \
2176
  /* no additional names for: mq, lr, ctr, ap */                \
2177
  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},       \
2178
  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},       \
2179
  {"cc",   68}, {"sp",    1}, {"toc",   2} }
2180
 
2181
/* Text to write out after a CALL that may be replaced by glue code by
2182
   the loader.  This depends on the AIX version.  */
2183
#define RS6000_CALL_GLUE "cror 31,31,31"
2184
 
2185
/* This is how to output an element of a case-vector that is relative.  */
2186
 
2187
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2188
  do { char buf[100];                                   \
2189
       fputs ("\t.long ", FILE);                        \
2190
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);   \
2191
       assemble_name (FILE, buf);                       \
2192
       putc ('-', FILE);                                \
2193
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);     \
2194
       assemble_name (FILE, buf);                       \
2195
       putc ('\n', FILE);                               \
2196
     } while (0)
2197
 
2198
/* This is how to output an assembler line
2199
   that says to advance the location counter
2200
   to a multiple of 2**LOG bytes.  */
2201
 
2202
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2203
  if ((LOG) != 0)                        \
2204
    fprintf (FILE, "\t.align %d\n", (LOG))
2205
 
2206
/* Pick up the return address upon entry to a procedure. Used for
2207
   dwarf2 unwind information.  This also enables the table driven
2208
   mechanism.  */
2209
 
2210
#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2211
#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2212
 
2213
/* Describe how we implement __builtin_eh_return.  */
2214
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2215
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2216
 
2217
/* Print operand X (an rtx) in assembler syntax to file FILE.
2218
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2219
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2220
 
2221
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2222
 
2223
/* Define which CODE values are valid.  */
2224
 
2225
#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2226
  ((CODE) == '.' || (CODE) == '&')
2227
 
2228
/* Print a memory address as an operand to reference that memory location.  */
2229
 
2230
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2231
 
2232
/* uncomment for disabling the corresponding default options */
2233
/* #define  MACHINE_no_sched_interblock */
2234
/* #define  MACHINE_no_sched_speculative */
2235
/* #define  MACHINE_no_sched_speculative_load */
2236
 
2237
/* General flags.  */
2238
extern int flag_pic;
2239
extern int optimize;
2240
extern int flag_expensive_optimizations;
2241
extern int frame_pointer_needed;
2242
 
2243
enum rs6000_builtins
2244
{
2245
  /* AltiVec builtins.  */
2246
  ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2247
  ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2248
  ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2249
  ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2250
  ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2251
  ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2252
  ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2253
  ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2254
  ALTIVEC_BUILTIN_VADDUBM,
2255
  ALTIVEC_BUILTIN_VADDUHM,
2256
  ALTIVEC_BUILTIN_VADDUWM,
2257
  ALTIVEC_BUILTIN_VADDFP,
2258
  ALTIVEC_BUILTIN_VADDCUW,
2259
  ALTIVEC_BUILTIN_VADDUBS,
2260
  ALTIVEC_BUILTIN_VADDSBS,
2261
  ALTIVEC_BUILTIN_VADDUHS,
2262
  ALTIVEC_BUILTIN_VADDSHS,
2263
  ALTIVEC_BUILTIN_VADDUWS,
2264
  ALTIVEC_BUILTIN_VADDSWS,
2265
  ALTIVEC_BUILTIN_VAND,
2266
  ALTIVEC_BUILTIN_VANDC,
2267
  ALTIVEC_BUILTIN_VAVGUB,
2268
  ALTIVEC_BUILTIN_VAVGSB,
2269
  ALTIVEC_BUILTIN_VAVGUH,
2270
  ALTIVEC_BUILTIN_VAVGSH,
2271
  ALTIVEC_BUILTIN_VAVGUW,
2272
  ALTIVEC_BUILTIN_VAVGSW,
2273
  ALTIVEC_BUILTIN_VCFUX,
2274
  ALTIVEC_BUILTIN_VCFSX,
2275
  ALTIVEC_BUILTIN_VCTSXS,
2276
  ALTIVEC_BUILTIN_VCTUXS,
2277
  ALTIVEC_BUILTIN_VCMPBFP,
2278
  ALTIVEC_BUILTIN_VCMPEQUB,
2279
  ALTIVEC_BUILTIN_VCMPEQUH,
2280
  ALTIVEC_BUILTIN_VCMPEQUW,
2281
  ALTIVEC_BUILTIN_VCMPEQFP,
2282
  ALTIVEC_BUILTIN_VCMPGEFP,
2283
  ALTIVEC_BUILTIN_VCMPGTUB,
2284
  ALTIVEC_BUILTIN_VCMPGTSB,
2285
  ALTIVEC_BUILTIN_VCMPGTUH,
2286
  ALTIVEC_BUILTIN_VCMPGTSH,
2287
  ALTIVEC_BUILTIN_VCMPGTUW,
2288
  ALTIVEC_BUILTIN_VCMPGTSW,
2289
  ALTIVEC_BUILTIN_VCMPGTFP,
2290
  ALTIVEC_BUILTIN_VEXPTEFP,
2291
  ALTIVEC_BUILTIN_VLOGEFP,
2292
  ALTIVEC_BUILTIN_VMADDFP,
2293
  ALTIVEC_BUILTIN_VMAXUB,
2294
  ALTIVEC_BUILTIN_VMAXSB,
2295
  ALTIVEC_BUILTIN_VMAXUH,
2296
  ALTIVEC_BUILTIN_VMAXSH,
2297
  ALTIVEC_BUILTIN_VMAXUW,
2298
  ALTIVEC_BUILTIN_VMAXSW,
2299
  ALTIVEC_BUILTIN_VMAXFP,
2300
  ALTIVEC_BUILTIN_VMHADDSHS,
2301
  ALTIVEC_BUILTIN_VMHRADDSHS,
2302
  ALTIVEC_BUILTIN_VMLADDUHM,
2303
  ALTIVEC_BUILTIN_VMRGHB,
2304
  ALTIVEC_BUILTIN_VMRGHH,
2305
  ALTIVEC_BUILTIN_VMRGHW,
2306
  ALTIVEC_BUILTIN_VMRGLB,
2307
  ALTIVEC_BUILTIN_VMRGLH,
2308
  ALTIVEC_BUILTIN_VMRGLW,
2309
  ALTIVEC_BUILTIN_VMSUMUBM,
2310
  ALTIVEC_BUILTIN_VMSUMMBM,
2311
  ALTIVEC_BUILTIN_VMSUMUHM,
2312
  ALTIVEC_BUILTIN_VMSUMSHM,
2313
  ALTIVEC_BUILTIN_VMSUMUHS,
2314
  ALTIVEC_BUILTIN_VMSUMSHS,
2315
  ALTIVEC_BUILTIN_VMINUB,
2316
  ALTIVEC_BUILTIN_VMINSB,
2317
  ALTIVEC_BUILTIN_VMINUH,
2318
  ALTIVEC_BUILTIN_VMINSH,
2319
  ALTIVEC_BUILTIN_VMINUW,
2320
  ALTIVEC_BUILTIN_VMINSW,
2321
  ALTIVEC_BUILTIN_VMINFP,
2322
  ALTIVEC_BUILTIN_VMULEUB,
2323
  ALTIVEC_BUILTIN_VMULESB,
2324
  ALTIVEC_BUILTIN_VMULEUH,
2325
  ALTIVEC_BUILTIN_VMULESH,
2326
  ALTIVEC_BUILTIN_VMULOUB,
2327
  ALTIVEC_BUILTIN_VMULOSB,
2328
  ALTIVEC_BUILTIN_VMULOUH,
2329
  ALTIVEC_BUILTIN_VMULOSH,
2330
  ALTIVEC_BUILTIN_VNMSUBFP,
2331
  ALTIVEC_BUILTIN_VNOR,
2332
  ALTIVEC_BUILTIN_VOR,
2333
  ALTIVEC_BUILTIN_VSEL_4SI,
2334
  ALTIVEC_BUILTIN_VSEL_4SF,
2335
  ALTIVEC_BUILTIN_VSEL_8HI,
2336
  ALTIVEC_BUILTIN_VSEL_16QI,
2337
  ALTIVEC_BUILTIN_VPERM_4SI,
2338
  ALTIVEC_BUILTIN_VPERM_4SF,
2339
  ALTIVEC_BUILTIN_VPERM_8HI,
2340
  ALTIVEC_BUILTIN_VPERM_16QI,
2341
  ALTIVEC_BUILTIN_VPKUHUM,
2342
  ALTIVEC_BUILTIN_VPKUWUM,
2343
  ALTIVEC_BUILTIN_VPKPX,
2344
  ALTIVEC_BUILTIN_VPKUHSS,
2345
  ALTIVEC_BUILTIN_VPKSHSS,
2346
  ALTIVEC_BUILTIN_VPKUWSS,
2347
  ALTIVEC_BUILTIN_VPKSWSS,
2348
  ALTIVEC_BUILTIN_VPKUHUS,
2349
  ALTIVEC_BUILTIN_VPKSHUS,
2350
  ALTIVEC_BUILTIN_VPKUWUS,
2351
  ALTIVEC_BUILTIN_VPKSWUS,
2352
  ALTIVEC_BUILTIN_VREFP,
2353
  ALTIVEC_BUILTIN_VRFIM,
2354
  ALTIVEC_BUILTIN_VRFIN,
2355
  ALTIVEC_BUILTIN_VRFIP,
2356
  ALTIVEC_BUILTIN_VRFIZ,
2357
  ALTIVEC_BUILTIN_VRLB,
2358
  ALTIVEC_BUILTIN_VRLH,
2359
  ALTIVEC_BUILTIN_VRLW,
2360
  ALTIVEC_BUILTIN_VRSQRTEFP,
2361
  ALTIVEC_BUILTIN_VSLB,
2362
  ALTIVEC_BUILTIN_VSLH,
2363
  ALTIVEC_BUILTIN_VSLW,
2364
  ALTIVEC_BUILTIN_VSL,
2365
  ALTIVEC_BUILTIN_VSLO,
2366
  ALTIVEC_BUILTIN_VSPLTB,
2367
  ALTIVEC_BUILTIN_VSPLTH,
2368
  ALTIVEC_BUILTIN_VSPLTW,
2369
  ALTIVEC_BUILTIN_VSPLTISB,
2370
  ALTIVEC_BUILTIN_VSPLTISH,
2371
  ALTIVEC_BUILTIN_VSPLTISW,
2372
  ALTIVEC_BUILTIN_VSRB,
2373
  ALTIVEC_BUILTIN_VSRH,
2374
  ALTIVEC_BUILTIN_VSRW,
2375
  ALTIVEC_BUILTIN_VSRAB,
2376
  ALTIVEC_BUILTIN_VSRAH,
2377
  ALTIVEC_BUILTIN_VSRAW,
2378
  ALTIVEC_BUILTIN_VSR,
2379
  ALTIVEC_BUILTIN_VSRO,
2380
  ALTIVEC_BUILTIN_VSUBUBM,
2381
  ALTIVEC_BUILTIN_VSUBUHM,
2382
  ALTIVEC_BUILTIN_VSUBUWM,
2383
  ALTIVEC_BUILTIN_VSUBFP,
2384
  ALTIVEC_BUILTIN_VSUBCUW,
2385
  ALTIVEC_BUILTIN_VSUBUBS,
2386
  ALTIVEC_BUILTIN_VSUBSBS,
2387
  ALTIVEC_BUILTIN_VSUBUHS,
2388
  ALTIVEC_BUILTIN_VSUBSHS,
2389
  ALTIVEC_BUILTIN_VSUBUWS,
2390
  ALTIVEC_BUILTIN_VSUBSWS,
2391
  ALTIVEC_BUILTIN_VSUM4UBS,
2392
  ALTIVEC_BUILTIN_VSUM4SBS,
2393
  ALTIVEC_BUILTIN_VSUM4SHS,
2394
  ALTIVEC_BUILTIN_VSUM2SWS,
2395
  ALTIVEC_BUILTIN_VSUMSWS,
2396
  ALTIVEC_BUILTIN_VXOR,
2397
  ALTIVEC_BUILTIN_VSLDOI_16QI,
2398
  ALTIVEC_BUILTIN_VSLDOI_8HI,
2399
  ALTIVEC_BUILTIN_VSLDOI_4SI,
2400
  ALTIVEC_BUILTIN_VSLDOI_4SF,
2401
  ALTIVEC_BUILTIN_VUPKHSB,
2402
  ALTIVEC_BUILTIN_VUPKHPX,
2403
  ALTIVEC_BUILTIN_VUPKHSH,
2404
  ALTIVEC_BUILTIN_VUPKLSB,
2405
  ALTIVEC_BUILTIN_VUPKLPX,
2406
  ALTIVEC_BUILTIN_VUPKLSH,
2407
  ALTIVEC_BUILTIN_MTVSCR,
2408
  ALTIVEC_BUILTIN_MFVSCR,
2409
  ALTIVEC_BUILTIN_DSSALL,
2410
  ALTIVEC_BUILTIN_DSS,
2411
  ALTIVEC_BUILTIN_LVSL,
2412
  ALTIVEC_BUILTIN_LVSR,
2413
  ALTIVEC_BUILTIN_DSTT,
2414
  ALTIVEC_BUILTIN_DSTST,
2415
  ALTIVEC_BUILTIN_DSTSTT,
2416
  ALTIVEC_BUILTIN_DST,
2417
  ALTIVEC_BUILTIN_LVEBX,
2418
  ALTIVEC_BUILTIN_LVEHX,
2419
  ALTIVEC_BUILTIN_LVEWX,
2420
  ALTIVEC_BUILTIN_LVXL,
2421
  ALTIVEC_BUILTIN_LVX,
2422
  ALTIVEC_BUILTIN_STVX,
2423
  ALTIVEC_BUILTIN_STVEBX,
2424
  ALTIVEC_BUILTIN_STVEHX,
2425
  ALTIVEC_BUILTIN_STVEWX,
2426
  ALTIVEC_BUILTIN_STVXL,
2427
  ALTIVEC_BUILTIN_VCMPBFP_P,
2428
  ALTIVEC_BUILTIN_VCMPEQFP_P,
2429
  ALTIVEC_BUILTIN_VCMPEQUB_P,
2430
  ALTIVEC_BUILTIN_VCMPEQUH_P,
2431
  ALTIVEC_BUILTIN_VCMPEQUW_P,
2432
  ALTIVEC_BUILTIN_VCMPGEFP_P,
2433
  ALTIVEC_BUILTIN_VCMPGTFP_P,
2434
  ALTIVEC_BUILTIN_VCMPGTSB_P,
2435
  ALTIVEC_BUILTIN_VCMPGTSH_P,
2436
  ALTIVEC_BUILTIN_VCMPGTSW_P,
2437
  ALTIVEC_BUILTIN_VCMPGTUB_P,
2438
  ALTIVEC_BUILTIN_VCMPGTUH_P,
2439
  ALTIVEC_BUILTIN_VCMPGTUW_P,
2440
  ALTIVEC_BUILTIN_ABSS_V4SI,
2441
  ALTIVEC_BUILTIN_ABSS_V8HI,
2442
  ALTIVEC_BUILTIN_ABSS_V16QI,
2443
  ALTIVEC_BUILTIN_ABS_V4SI,
2444
  ALTIVEC_BUILTIN_ABS_V4SF,
2445
  ALTIVEC_BUILTIN_ABS_V8HI,
2446
  ALTIVEC_BUILTIN_ABS_V16QI,
2447
  ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2448
  ALTIVEC_BUILTIN_MASK_FOR_STORE,
2449
  ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2450
  ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2451
  ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2452
  ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2453
  ALTIVEC_BUILTIN_VEC_SET_V4SI,
2454
  ALTIVEC_BUILTIN_VEC_SET_V8HI,
2455
  ALTIVEC_BUILTIN_VEC_SET_V16QI,
2456
  ALTIVEC_BUILTIN_VEC_SET_V4SF,
2457
  ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2458
  ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2459
  ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2460
  ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2461
 
2462
  /* Altivec overloaded builtins.  */
2463
  ALTIVEC_BUILTIN_VCMPEQ_P,
2464
  ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2465
  ALTIVEC_BUILTIN_VCMPGT_P,
2466
  ALTIVEC_BUILTIN_VCMPGE_P,
2467
  ALTIVEC_BUILTIN_VEC_ABS,
2468
  ALTIVEC_BUILTIN_VEC_ABSS,
2469
  ALTIVEC_BUILTIN_VEC_ADD,
2470
  ALTIVEC_BUILTIN_VEC_ADDC,
2471
  ALTIVEC_BUILTIN_VEC_ADDS,
2472
  ALTIVEC_BUILTIN_VEC_AND,
2473
  ALTIVEC_BUILTIN_VEC_ANDC,
2474
  ALTIVEC_BUILTIN_VEC_AVG,
2475
  ALTIVEC_BUILTIN_VEC_CEIL,
2476
  ALTIVEC_BUILTIN_VEC_CMPB,
2477
  ALTIVEC_BUILTIN_VEC_CMPEQ,
2478
  ALTIVEC_BUILTIN_VEC_CMPEQUB,
2479
  ALTIVEC_BUILTIN_VEC_CMPEQUH,
2480
  ALTIVEC_BUILTIN_VEC_CMPEQUW,
2481
  ALTIVEC_BUILTIN_VEC_CMPGE,
2482
  ALTIVEC_BUILTIN_VEC_CMPGT,
2483
  ALTIVEC_BUILTIN_VEC_CMPLE,
2484
  ALTIVEC_BUILTIN_VEC_CMPLT,
2485
  ALTIVEC_BUILTIN_VEC_CTF,
2486
  ALTIVEC_BUILTIN_VEC_CTS,
2487
  ALTIVEC_BUILTIN_VEC_CTU,
2488
  ALTIVEC_BUILTIN_VEC_DST,
2489
  ALTIVEC_BUILTIN_VEC_DSTST,
2490
  ALTIVEC_BUILTIN_VEC_DSTSTT,
2491
  ALTIVEC_BUILTIN_VEC_DSTT,
2492
  ALTIVEC_BUILTIN_VEC_EXPTE,
2493
  ALTIVEC_BUILTIN_VEC_FLOOR,
2494
  ALTIVEC_BUILTIN_VEC_LD,
2495
  ALTIVEC_BUILTIN_VEC_LDE,
2496
  ALTIVEC_BUILTIN_VEC_LDL,
2497
  ALTIVEC_BUILTIN_VEC_LOGE,
2498
  ALTIVEC_BUILTIN_VEC_LVEBX,
2499
  ALTIVEC_BUILTIN_VEC_LVEHX,
2500
  ALTIVEC_BUILTIN_VEC_LVEWX,
2501
  ALTIVEC_BUILTIN_VEC_LVSL,
2502
  ALTIVEC_BUILTIN_VEC_LVSR,
2503
  ALTIVEC_BUILTIN_VEC_MADD,
2504
  ALTIVEC_BUILTIN_VEC_MADDS,
2505
  ALTIVEC_BUILTIN_VEC_MAX,
2506
  ALTIVEC_BUILTIN_VEC_MERGEH,
2507
  ALTIVEC_BUILTIN_VEC_MERGEL,
2508
  ALTIVEC_BUILTIN_VEC_MIN,
2509
  ALTIVEC_BUILTIN_VEC_MLADD,
2510
  ALTIVEC_BUILTIN_VEC_MPERM,
2511
  ALTIVEC_BUILTIN_VEC_MRADDS,
2512
  ALTIVEC_BUILTIN_VEC_MRGHB,
2513
  ALTIVEC_BUILTIN_VEC_MRGHH,
2514
  ALTIVEC_BUILTIN_VEC_MRGHW,
2515
  ALTIVEC_BUILTIN_VEC_MRGLB,
2516
  ALTIVEC_BUILTIN_VEC_MRGLH,
2517
  ALTIVEC_BUILTIN_VEC_MRGLW,
2518
  ALTIVEC_BUILTIN_VEC_MSUM,
2519
  ALTIVEC_BUILTIN_VEC_MSUMS,
2520
  ALTIVEC_BUILTIN_VEC_MTVSCR,
2521
  ALTIVEC_BUILTIN_VEC_MULE,
2522
  ALTIVEC_BUILTIN_VEC_MULO,
2523
  ALTIVEC_BUILTIN_VEC_NMSUB,
2524
  ALTIVEC_BUILTIN_VEC_NOR,
2525
  ALTIVEC_BUILTIN_VEC_OR,
2526
  ALTIVEC_BUILTIN_VEC_PACK,
2527
  ALTIVEC_BUILTIN_VEC_PACKPX,
2528
  ALTIVEC_BUILTIN_VEC_PACKS,
2529
  ALTIVEC_BUILTIN_VEC_PACKSU,
2530
  ALTIVEC_BUILTIN_VEC_PERM,
2531
  ALTIVEC_BUILTIN_VEC_RE,
2532
  ALTIVEC_BUILTIN_VEC_RL,
2533
  ALTIVEC_BUILTIN_VEC_ROUND,
2534
  ALTIVEC_BUILTIN_VEC_RSQRTE,
2535
  ALTIVEC_BUILTIN_VEC_SEL,
2536
  ALTIVEC_BUILTIN_VEC_SL,
2537
  ALTIVEC_BUILTIN_VEC_SLD,
2538
  ALTIVEC_BUILTIN_VEC_SLL,
2539
  ALTIVEC_BUILTIN_VEC_SLO,
2540
  ALTIVEC_BUILTIN_VEC_SPLAT,
2541
  ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2542
  ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2543
  ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2544
  ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2545
  ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2546
  ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2547
  ALTIVEC_BUILTIN_VEC_SPLTB,
2548
  ALTIVEC_BUILTIN_VEC_SPLTH,
2549
  ALTIVEC_BUILTIN_VEC_SPLTW,
2550
  ALTIVEC_BUILTIN_VEC_SR,
2551
  ALTIVEC_BUILTIN_VEC_SRA,
2552
  ALTIVEC_BUILTIN_VEC_SRL,
2553
  ALTIVEC_BUILTIN_VEC_SRO,
2554
  ALTIVEC_BUILTIN_VEC_ST,
2555
  ALTIVEC_BUILTIN_VEC_STE,
2556
  ALTIVEC_BUILTIN_VEC_STL,
2557
  ALTIVEC_BUILTIN_VEC_STVEBX,
2558
  ALTIVEC_BUILTIN_VEC_STVEHX,
2559
  ALTIVEC_BUILTIN_VEC_STVEWX,
2560
  ALTIVEC_BUILTIN_VEC_SUB,
2561
  ALTIVEC_BUILTIN_VEC_SUBC,
2562
  ALTIVEC_BUILTIN_VEC_SUBS,
2563
  ALTIVEC_BUILTIN_VEC_SUM2S,
2564
  ALTIVEC_BUILTIN_VEC_SUM4S,
2565
  ALTIVEC_BUILTIN_VEC_SUMS,
2566
  ALTIVEC_BUILTIN_VEC_TRUNC,
2567
  ALTIVEC_BUILTIN_VEC_UNPACKH,
2568
  ALTIVEC_BUILTIN_VEC_UNPACKL,
2569
  ALTIVEC_BUILTIN_VEC_VADDFP,
2570
  ALTIVEC_BUILTIN_VEC_VADDSBS,
2571
  ALTIVEC_BUILTIN_VEC_VADDSHS,
2572
  ALTIVEC_BUILTIN_VEC_VADDSWS,
2573
  ALTIVEC_BUILTIN_VEC_VADDUBM,
2574
  ALTIVEC_BUILTIN_VEC_VADDUBS,
2575
  ALTIVEC_BUILTIN_VEC_VADDUHM,
2576
  ALTIVEC_BUILTIN_VEC_VADDUHS,
2577
  ALTIVEC_BUILTIN_VEC_VADDUWM,
2578
  ALTIVEC_BUILTIN_VEC_VADDUWS,
2579
  ALTIVEC_BUILTIN_VEC_VAVGSB,
2580
  ALTIVEC_BUILTIN_VEC_VAVGSH,
2581
  ALTIVEC_BUILTIN_VEC_VAVGSW,
2582
  ALTIVEC_BUILTIN_VEC_VAVGUB,
2583
  ALTIVEC_BUILTIN_VEC_VAVGUH,
2584
  ALTIVEC_BUILTIN_VEC_VAVGUW,
2585
  ALTIVEC_BUILTIN_VEC_VCFSX,
2586
  ALTIVEC_BUILTIN_VEC_VCFUX,
2587
  ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2588
  ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2589
  ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2590
  ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2591
  ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2592
  ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2593
  ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2594
  ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2595
  ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2596
  ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2597
  ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2598
  ALTIVEC_BUILTIN_VEC_VMAXFP,
2599
  ALTIVEC_BUILTIN_VEC_VMAXSB,
2600
  ALTIVEC_BUILTIN_VEC_VMAXSH,
2601
  ALTIVEC_BUILTIN_VEC_VMAXSW,
2602
  ALTIVEC_BUILTIN_VEC_VMAXUB,
2603
  ALTIVEC_BUILTIN_VEC_VMAXUH,
2604
  ALTIVEC_BUILTIN_VEC_VMAXUW,
2605
  ALTIVEC_BUILTIN_VEC_VMINFP,
2606
  ALTIVEC_BUILTIN_VEC_VMINSB,
2607
  ALTIVEC_BUILTIN_VEC_VMINSH,
2608
  ALTIVEC_BUILTIN_VEC_VMINSW,
2609
  ALTIVEC_BUILTIN_VEC_VMINUB,
2610
  ALTIVEC_BUILTIN_VEC_VMINUH,
2611
  ALTIVEC_BUILTIN_VEC_VMINUW,
2612
  ALTIVEC_BUILTIN_VEC_VMRGHB,
2613
  ALTIVEC_BUILTIN_VEC_VMRGHH,
2614
  ALTIVEC_BUILTIN_VEC_VMRGHW,
2615
  ALTIVEC_BUILTIN_VEC_VMRGLB,
2616
  ALTIVEC_BUILTIN_VEC_VMRGLH,
2617
  ALTIVEC_BUILTIN_VEC_VMRGLW,
2618
  ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2619
  ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2620
  ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2621
  ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2622
  ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2623
  ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2624
  ALTIVEC_BUILTIN_VEC_VMULESB,
2625
  ALTIVEC_BUILTIN_VEC_VMULESH,
2626
  ALTIVEC_BUILTIN_VEC_VMULEUB,
2627
  ALTIVEC_BUILTIN_VEC_VMULEUH,
2628
  ALTIVEC_BUILTIN_VEC_VMULOSB,
2629
  ALTIVEC_BUILTIN_VEC_VMULOSH,
2630
  ALTIVEC_BUILTIN_VEC_VMULOUB,
2631
  ALTIVEC_BUILTIN_VEC_VMULOUH,
2632
  ALTIVEC_BUILTIN_VEC_VPKSHSS,
2633
  ALTIVEC_BUILTIN_VEC_VPKSHUS,
2634
  ALTIVEC_BUILTIN_VEC_VPKSWSS,
2635
  ALTIVEC_BUILTIN_VEC_VPKSWUS,
2636
  ALTIVEC_BUILTIN_VEC_VPKUHUM,
2637
  ALTIVEC_BUILTIN_VEC_VPKUHUS,
2638
  ALTIVEC_BUILTIN_VEC_VPKUWUM,
2639
  ALTIVEC_BUILTIN_VEC_VPKUWUS,
2640
  ALTIVEC_BUILTIN_VEC_VRLB,
2641
  ALTIVEC_BUILTIN_VEC_VRLH,
2642
  ALTIVEC_BUILTIN_VEC_VRLW,
2643
  ALTIVEC_BUILTIN_VEC_VSLB,
2644
  ALTIVEC_BUILTIN_VEC_VSLH,
2645
  ALTIVEC_BUILTIN_VEC_VSLW,
2646
  ALTIVEC_BUILTIN_VEC_VSPLTB,
2647
  ALTIVEC_BUILTIN_VEC_VSPLTH,
2648
  ALTIVEC_BUILTIN_VEC_VSPLTW,
2649
  ALTIVEC_BUILTIN_VEC_VSRAB,
2650
  ALTIVEC_BUILTIN_VEC_VSRAH,
2651
  ALTIVEC_BUILTIN_VEC_VSRAW,
2652
  ALTIVEC_BUILTIN_VEC_VSRB,
2653
  ALTIVEC_BUILTIN_VEC_VSRH,
2654
  ALTIVEC_BUILTIN_VEC_VSRW,
2655
  ALTIVEC_BUILTIN_VEC_VSUBFP,
2656
  ALTIVEC_BUILTIN_VEC_VSUBSBS,
2657
  ALTIVEC_BUILTIN_VEC_VSUBSHS,
2658
  ALTIVEC_BUILTIN_VEC_VSUBSWS,
2659
  ALTIVEC_BUILTIN_VEC_VSUBUBM,
2660
  ALTIVEC_BUILTIN_VEC_VSUBUBS,
2661
  ALTIVEC_BUILTIN_VEC_VSUBUHM,
2662
  ALTIVEC_BUILTIN_VEC_VSUBUHS,
2663
  ALTIVEC_BUILTIN_VEC_VSUBUWM,
2664
  ALTIVEC_BUILTIN_VEC_VSUBUWS,
2665
  ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2666
  ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2667
  ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2668
  ALTIVEC_BUILTIN_VEC_VUPKHPX,
2669
  ALTIVEC_BUILTIN_VEC_VUPKHSB,
2670
  ALTIVEC_BUILTIN_VEC_VUPKHSH,
2671
  ALTIVEC_BUILTIN_VEC_VUPKLPX,
2672
  ALTIVEC_BUILTIN_VEC_VUPKLSB,
2673
  ALTIVEC_BUILTIN_VEC_VUPKLSH,
2674
  ALTIVEC_BUILTIN_VEC_XOR,
2675
  ALTIVEC_BUILTIN_VEC_STEP,
2676
  ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2677
 
2678
  /* SPE builtins.  */
2679
  SPE_BUILTIN_EVADDW,
2680
  SPE_BUILTIN_EVAND,
2681
  SPE_BUILTIN_EVANDC,
2682
  SPE_BUILTIN_EVDIVWS,
2683
  SPE_BUILTIN_EVDIVWU,
2684
  SPE_BUILTIN_EVEQV,
2685
  SPE_BUILTIN_EVFSADD,
2686
  SPE_BUILTIN_EVFSDIV,
2687
  SPE_BUILTIN_EVFSMUL,
2688
  SPE_BUILTIN_EVFSSUB,
2689
  SPE_BUILTIN_EVLDDX,
2690
  SPE_BUILTIN_EVLDHX,
2691
  SPE_BUILTIN_EVLDWX,
2692
  SPE_BUILTIN_EVLHHESPLATX,
2693
  SPE_BUILTIN_EVLHHOSSPLATX,
2694
  SPE_BUILTIN_EVLHHOUSPLATX,
2695
  SPE_BUILTIN_EVLWHEX,
2696
  SPE_BUILTIN_EVLWHOSX,
2697
  SPE_BUILTIN_EVLWHOUX,
2698
  SPE_BUILTIN_EVLWHSPLATX,
2699
  SPE_BUILTIN_EVLWWSPLATX,
2700
  SPE_BUILTIN_EVMERGEHI,
2701
  SPE_BUILTIN_EVMERGEHILO,
2702
  SPE_BUILTIN_EVMERGELO,
2703
  SPE_BUILTIN_EVMERGELOHI,
2704
  SPE_BUILTIN_EVMHEGSMFAA,
2705
  SPE_BUILTIN_EVMHEGSMFAN,
2706
  SPE_BUILTIN_EVMHEGSMIAA,
2707
  SPE_BUILTIN_EVMHEGSMIAN,
2708
  SPE_BUILTIN_EVMHEGUMIAA,
2709
  SPE_BUILTIN_EVMHEGUMIAN,
2710
  SPE_BUILTIN_EVMHESMF,
2711
  SPE_BUILTIN_EVMHESMFA,
2712
  SPE_BUILTIN_EVMHESMFAAW,
2713
  SPE_BUILTIN_EVMHESMFANW,
2714
  SPE_BUILTIN_EVMHESMI,
2715
  SPE_BUILTIN_EVMHESMIA,
2716
  SPE_BUILTIN_EVMHESMIAAW,
2717
  SPE_BUILTIN_EVMHESMIANW,
2718
  SPE_BUILTIN_EVMHESSF,
2719
  SPE_BUILTIN_EVMHESSFA,
2720
  SPE_BUILTIN_EVMHESSFAAW,
2721
  SPE_BUILTIN_EVMHESSFANW,
2722
  SPE_BUILTIN_EVMHESSIAAW,
2723
  SPE_BUILTIN_EVMHESSIANW,
2724
  SPE_BUILTIN_EVMHEUMI,
2725
  SPE_BUILTIN_EVMHEUMIA,
2726
  SPE_BUILTIN_EVMHEUMIAAW,
2727
  SPE_BUILTIN_EVMHEUMIANW,
2728
  SPE_BUILTIN_EVMHEUSIAAW,
2729
  SPE_BUILTIN_EVMHEUSIANW,
2730
  SPE_BUILTIN_EVMHOGSMFAA,
2731
  SPE_BUILTIN_EVMHOGSMFAN,
2732
  SPE_BUILTIN_EVMHOGSMIAA,
2733
  SPE_BUILTIN_EVMHOGSMIAN,
2734
  SPE_BUILTIN_EVMHOGUMIAA,
2735
  SPE_BUILTIN_EVMHOGUMIAN,
2736
  SPE_BUILTIN_EVMHOSMF,
2737
  SPE_BUILTIN_EVMHOSMFA,
2738
  SPE_BUILTIN_EVMHOSMFAAW,
2739
  SPE_BUILTIN_EVMHOSMFANW,
2740
  SPE_BUILTIN_EVMHOSMI,
2741
  SPE_BUILTIN_EVMHOSMIA,
2742
  SPE_BUILTIN_EVMHOSMIAAW,
2743
  SPE_BUILTIN_EVMHOSMIANW,
2744
  SPE_BUILTIN_EVMHOSSF,
2745
  SPE_BUILTIN_EVMHOSSFA,
2746
  SPE_BUILTIN_EVMHOSSFAAW,
2747
  SPE_BUILTIN_EVMHOSSFANW,
2748
  SPE_BUILTIN_EVMHOSSIAAW,
2749
  SPE_BUILTIN_EVMHOSSIANW,
2750
  SPE_BUILTIN_EVMHOUMI,
2751
  SPE_BUILTIN_EVMHOUMIA,
2752
  SPE_BUILTIN_EVMHOUMIAAW,
2753
  SPE_BUILTIN_EVMHOUMIANW,
2754
  SPE_BUILTIN_EVMHOUSIAAW,
2755
  SPE_BUILTIN_EVMHOUSIANW,
2756
  SPE_BUILTIN_EVMWHSMF,
2757
  SPE_BUILTIN_EVMWHSMFA,
2758
  SPE_BUILTIN_EVMWHSMI,
2759
  SPE_BUILTIN_EVMWHSMIA,
2760
  SPE_BUILTIN_EVMWHSSF,
2761
  SPE_BUILTIN_EVMWHSSFA,
2762
  SPE_BUILTIN_EVMWHUMI,
2763
  SPE_BUILTIN_EVMWHUMIA,
2764
  SPE_BUILTIN_EVMWLSMIAAW,
2765
  SPE_BUILTIN_EVMWLSMIANW,
2766
  SPE_BUILTIN_EVMWLSSIAAW,
2767
  SPE_BUILTIN_EVMWLSSIANW,
2768
  SPE_BUILTIN_EVMWLUMI,
2769
  SPE_BUILTIN_EVMWLUMIA,
2770
  SPE_BUILTIN_EVMWLUMIAAW,
2771
  SPE_BUILTIN_EVMWLUMIANW,
2772
  SPE_BUILTIN_EVMWLUSIAAW,
2773
  SPE_BUILTIN_EVMWLUSIANW,
2774
  SPE_BUILTIN_EVMWSMF,
2775
  SPE_BUILTIN_EVMWSMFA,
2776
  SPE_BUILTIN_EVMWSMFAA,
2777
  SPE_BUILTIN_EVMWSMFAN,
2778
  SPE_BUILTIN_EVMWSMI,
2779
  SPE_BUILTIN_EVMWSMIA,
2780
  SPE_BUILTIN_EVMWSMIAA,
2781
  SPE_BUILTIN_EVMWSMIAN,
2782
  SPE_BUILTIN_EVMWHSSFAA,
2783
  SPE_BUILTIN_EVMWSSF,
2784
  SPE_BUILTIN_EVMWSSFA,
2785
  SPE_BUILTIN_EVMWSSFAA,
2786
  SPE_BUILTIN_EVMWSSFAN,
2787
  SPE_BUILTIN_EVMWUMI,
2788
  SPE_BUILTIN_EVMWUMIA,
2789
  SPE_BUILTIN_EVMWUMIAA,
2790
  SPE_BUILTIN_EVMWUMIAN,
2791
  SPE_BUILTIN_EVNAND,
2792
  SPE_BUILTIN_EVNOR,
2793
  SPE_BUILTIN_EVOR,
2794
  SPE_BUILTIN_EVORC,
2795
  SPE_BUILTIN_EVRLW,
2796
  SPE_BUILTIN_EVSLW,
2797
  SPE_BUILTIN_EVSRWS,
2798
  SPE_BUILTIN_EVSRWU,
2799
  SPE_BUILTIN_EVSTDDX,
2800
  SPE_BUILTIN_EVSTDHX,
2801
  SPE_BUILTIN_EVSTDWX,
2802
  SPE_BUILTIN_EVSTWHEX,
2803
  SPE_BUILTIN_EVSTWHOX,
2804
  SPE_BUILTIN_EVSTWWEX,
2805
  SPE_BUILTIN_EVSTWWOX,
2806
  SPE_BUILTIN_EVSUBFW,
2807
  SPE_BUILTIN_EVXOR,
2808
  SPE_BUILTIN_EVABS,
2809
  SPE_BUILTIN_EVADDSMIAAW,
2810
  SPE_BUILTIN_EVADDSSIAAW,
2811
  SPE_BUILTIN_EVADDUMIAAW,
2812
  SPE_BUILTIN_EVADDUSIAAW,
2813
  SPE_BUILTIN_EVCNTLSW,
2814
  SPE_BUILTIN_EVCNTLZW,
2815
  SPE_BUILTIN_EVEXTSB,
2816
  SPE_BUILTIN_EVEXTSH,
2817
  SPE_BUILTIN_EVFSABS,
2818
  SPE_BUILTIN_EVFSCFSF,
2819
  SPE_BUILTIN_EVFSCFSI,
2820
  SPE_BUILTIN_EVFSCFUF,
2821
  SPE_BUILTIN_EVFSCFUI,
2822
  SPE_BUILTIN_EVFSCTSF,
2823
  SPE_BUILTIN_EVFSCTSI,
2824
  SPE_BUILTIN_EVFSCTSIZ,
2825
  SPE_BUILTIN_EVFSCTUF,
2826
  SPE_BUILTIN_EVFSCTUI,
2827
  SPE_BUILTIN_EVFSCTUIZ,
2828
  SPE_BUILTIN_EVFSNABS,
2829
  SPE_BUILTIN_EVFSNEG,
2830
  SPE_BUILTIN_EVMRA,
2831
  SPE_BUILTIN_EVNEG,
2832
  SPE_BUILTIN_EVRNDW,
2833
  SPE_BUILTIN_EVSUBFSMIAAW,
2834
  SPE_BUILTIN_EVSUBFSSIAAW,
2835
  SPE_BUILTIN_EVSUBFUMIAAW,
2836
  SPE_BUILTIN_EVSUBFUSIAAW,
2837
  SPE_BUILTIN_EVADDIW,
2838
  SPE_BUILTIN_EVLDD,
2839
  SPE_BUILTIN_EVLDH,
2840
  SPE_BUILTIN_EVLDW,
2841
  SPE_BUILTIN_EVLHHESPLAT,
2842
  SPE_BUILTIN_EVLHHOSSPLAT,
2843
  SPE_BUILTIN_EVLHHOUSPLAT,
2844
  SPE_BUILTIN_EVLWHE,
2845
  SPE_BUILTIN_EVLWHOS,
2846
  SPE_BUILTIN_EVLWHOU,
2847
  SPE_BUILTIN_EVLWHSPLAT,
2848
  SPE_BUILTIN_EVLWWSPLAT,
2849
  SPE_BUILTIN_EVRLWI,
2850
  SPE_BUILTIN_EVSLWI,
2851
  SPE_BUILTIN_EVSRWIS,
2852
  SPE_BUILTIN_EVSRWIU,
2853
  SPE_BUILTIN_EVSTDD,
2854
  SPE_BUILTIN_EVSTDH,
2855
  SPE_BUILTIN_EVSTDW,
2856
  SPE_BUILTIN_EVSTWHE,
2857
  SPE_BUILTIN_EVSTWHO,
2858
  SPE_BUILTIN_EVSTWWE,
2859
  SPE_BUILTIN_EVSTWWO,
2860
  SPE_BUILTIN_EVSUBIFW,
2861
 
2862
  /* Compares.  */
2863
  SPE_BUILTIN_EVCMPEQ,
2864
  SPE_BUILTIN_EVCMPGTS,
2865
  SPE_BUILTIN_EVCMPGTU,
2866
  SPE_BUILTIN_EVCMPLTS,
2867
  SPE_BUILTIN_EVCMPLTU,
2868
  SPE_BUILTIN_EVFSCMPEQ,
2869
  SPE_BUILTIN_EVFSCMPGT,
2870
  SPE_BUILTIN_EVFSCMPLT,
2871
  SPE_BUILTIN_EVFSTSTEQ,
2872
  SPE_BUILTIN_EVFSTSTGT,
2873
  SPE_BUILTIN_EVFSTSTLT,
2874
 
2875
  /* EVSEL compares.  */
2876
  SPE_BUILTIN_EVSEL_CMPEQ,
2877
  SPE_BUILTIN_EVSEL_CMPGTS,
2878
  SPE_BUILTIN_EVSEL_CMPGTU,
2879
  SPE_BUILTIN_EVSEL_CMPLTS,
2880
  SPE_BUILTIN_EVSEL_CMPLTU,
2881
  SPE_BUILTIN_EVSEL_FSCMPEQ,
2882
  SPE_BUILTIN_EVSEL_FSCMPGT,
2883
  SPE_BUILTIN_EVSEL_FSCMPLT,
2884
  SPE_BUILTIN_EVSEL_FSTSTEQ,
2885
  SPE_BUILTIN_EVSEL_FSTSTGT,
2886
  SPE_BUILTIN_EVSEL_FSTSTLT,
2887
 
2888
  SPE_BUILTIN_EVSPLATFI,
2889
  SPE_BUILTIN_EVSPLATI,
2890
  SPE_BUILTIN_EVMWHSSMAA,
2891
  SPE_BUILTIN_EVMWHSMFAA,
2892
  SPE_BUILTIN_EVMWHSMIAA,
2893
  SPE_BUILTIN_EVMWHUSIAA,
2894
  SPE_BUILTIN_EVMWHUMIAA,
2895
  SPE_BUILTIN_EVMWHSSFAN,
2896
  SPE_BUILTIN_EVMWHSSIAN,
2897
  SPE_BUILTIN_EVMWHSMFAN,
2898
  SPE_BUILTIN_EVMWHSMIAN,
2899
  SPE_BUILTIN_EVMWHUSIAN,
2900
  SPE_BUILTIN_EVMWHUMIAN,
2901
  SPE_BUILTIN_EVMWHGSSFAA,
2902
  SPE_BUILTIN_EVMWHGSMFAA,
2903
  SPE_BUILTIN_EVMWHGSMIAA,
2904
  SPE_BUILTIN_EVMWHGUMIAA,
2905
  SPE_BUILTIN_EVMWHGSSFAN,
2906
  SPE_BUILTIN_EVMWHGSMFAN,
2907
  SPE_BUILTIN_EVMWHGSMIAN,
2908
  SPE_BUILTIN_EVMWHGUMIAN,
2909
  SPE_BUILTIN_MTSPEFSCR,
2910
  SPE_BUILTIN_MFSPEFSCR,
2911
  SPE_BUILTIN_BRINC,
2912
 
2913
  RS6000_BUILTIN_COUNT
2914
};
2915
 
2916
enum rs6000_builtin_type_index
2917
{
2918
  RS6000_BTI_NOT_OPAQUE,
2919
  RS6000_BTI_opaque_V2SI,
2920
  RS6000_BTI_opaque_V2SF,
2921
  RS6000_BTI_opaque_p_V2SI,
2922
  RS6000_BTI_opaque_V4SI,
2923
  RS6000_BTI_V16QI,
2924
  RS6000_BTI_V2SI,
2925
  RS6000_BTI_V2SF,
2926
  RS6000_BTI_V4HI,
2927
  RS6000_BTI_V4SI,
2928
  RS6000_BTI_V4SF,
2929
  RS6000_BTI_V8HI,
2930
  RS6000_BTI_unsigned_V16QI,
2931
  RS6000_BTI_unsigned_V8HI,
2932
  RS6000_BTI_unsigned_V4SI,
2933
  RS6000_BTI_bool_char,          /* __bool char */
2934
  RS6000_BTI_bool_short,         /* __bool short */
2935
  RS6000_BTI_bool_int,           /* __bool int */
2936
  RS6000_BTI_pixel,              /* __pixel */
2937
  RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2938
  RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2939
  RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2940
  RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2941
  RS6000_BTI_long,               /* long_integer_type_node */
2942
  RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2943
  RS6000_BTI_INTQI,              /* intQI_type_node */
2944
  RS6000_BTI_UINTQI,             /* unsigned_intQI_type_node */
2945
  RS6000_BTI_INTHI,              /* intHI_type_node */
2946
  RS6000_BTI_UINTHI,             /* unsigned_intHI_type_node */
2947
  RS6000_BTI_INTSI,              /* intSI_type_node */
2948
  RS6000_BTI_UINTSI,             /* unsigned_intSI_type_node */
2949
  RS6000_BTI_float,              /* float_type_node */
2950
  RS6000_BTI_void,               /* void_type_node */
2951
  RS6000_BTI_MAX
2952
};
2953
 
2954
 
2955
#define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2956
#define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2957
#define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2958
#define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2959
#define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2960
#define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2961
#define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2962
#define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2963
#define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2964
#define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2965
#define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2966
#define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2967
#define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2968
#define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2969
#define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2970
#define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2971
#define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2972
#define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2973
#define bool_V16QI_type_node          (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2974
#define bool_V8HI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2975
#define bool_V4SI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2976
#define pixel_V8HI_type_node          (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2977
 
2978
#define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2979
#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2980
#define intQI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTQI])
2981
#define uintQI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTQI])
2982
#define intHI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTHI])
2983
#define uintHI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTHI])
2984
#define intSI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTSI])
2985
#define uintSI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTSI])
2986
#define float_type_internal_node         (rs6000_builtin_types[RS6000_BTI_float])
2987
#define void_type_internal_node          (rs6000_builtin_types[RS6000_BTI_void])
2988
 
2989
extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2990
extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2991
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.