OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [soft-fp/] [op-1.h] - Blame information for rev 192

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Software floating-point emulation.
2
   Basic one-word fraction declaration and manipulation.
3
   Copyright (C) 1997,1998,1999,2006 Free Software Foundation, Inc.
4
   This file is part of the GNU C Library.
5
   Contributed by Richard Henderson (rth@cygnus.com),
6
                  Jakub Jelinek (jj@ultra.linux.cz),
7
                  David S. Miller (davem@redhat.com) and
8
                  Peter Maydell (pmaydell@chiark.greenend.org.uk).
9
 
10
   The GNU C Library is free software; you can redistribute it and/or
11
   modify it under the terms of the GNU Lesser General Public
12
   License as published by the Free Software Foundation; either
13
   version 2.1 of the License, or (at your option) any later version.
14
 
15
   In addition to the permissions in the GNU Lesser General Public
16
   License, the Free Software Foundation gives you unlimited
17
   permission to link the compiled version of this file into
18
   combinations with other programs, and to distribute those
19
   combinations without any restriction coming from the use of this
20
   file.  (The Lesser General Public License restrictions do apply in
21
   other respects; for example, they cover modification of the file,
22
   and distribution when not linked into a combine executable.)
23
 
24
   The GNU C Library is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   Lesser General Public License for more details.
28
 
29
   You should have received a copy of the GNU Lesser General Public
30
   License along with the GNU C Library; if not, write to the Free
31
   Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
32
   MA 02110-1301, USA.  */
33
 
34
#define _FP_FRAC_DECL_1(X)      _FP_W_TYPE X##_f
35
#define _FP_FRAC_COPY_1(D,S)    (D##_f = S##_f)
36
#define _FP_FRAC_SET_1(X,I)     (X##_f = I)
37
#define _FP_FRAC_HIGH_1(X)      (X##_f)
38
#define _FP_FRAC_LOW_1(X)       (X##_f)
39
#define _FP_FRAC_WORD_1(X,w)    (X##_f)
40
 
41
#define _FP_FRAC_ADDI_1(X,I)    (X##_f += I)
42
#define _FP_FRAC_SLL_1(X,N)                     \
43
  do {                                          \
44
    if (__builtin_constant_p(N) && (N) == 1)    \
45
      X##_f += X##_f;                           \
46
    else                                        \
47
      X##_f <<= (N);                            \
48
  } while (0)
49
#define _FP_FRAC_SRL_1(X,N)     (X##_f >>= N)
50
 
51
/* Right shift with sticky-lsb.  */
52
#define _FP_FRAC_SRST_1(X,S,N,sz)       __FP_FRAC_SRST_1(X##_f, S, N, sz)
53
#define _FP_FRAC_SRS_1(X,N,sz)  __FP_FRAC_SRS_1(X##_f, N, sz)
54
 
55
#define __FP_FRAC_SRST_1(X,S,N,sz)                      \
56
do {                                                    \
57
  S = (__builtin_constant_p(N) && (N) == 1              \
58
       ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0);   \
59
  X = X >> (N);                                         \
60
} while (0)
61
 
62
#define __FP_FRAC_SRS_1(X,N,sz)                                         \
63
   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1                \
64
                     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
65
 
66
#define _FP_FRAC_ADD_1(R,X,Y)   (R##_f = X##_f + Y##_f)
67
#define _FP_FRAC_SUB_1(R,X,Y)   (R##_f = X##_f - Y##_f)
68
#define _FP_FRAC_DEC_1(X,Y)     (X##_f -= Y##_f)
69
#define _FP_FRAC_CLZ_1(z, X)    __FP_CLZ(z, X##_f)
70
 
71
/* Predicates */
72
#define _FP_FRAC_NEGP_1(X)      ((_FP_WS_TYPE)X##_f < 0)
73
#define _FP_FRAC_ZEROP_1(X)     (X##_f == 0)
74
#define _FP_FRAC_OVERP_1(fs,X)  (X##_f & _FP_OVERFLOW_##fs)
75
#define _FP_FRAC_CLEAR_OVERP_1(fs,X)    (X##_f &= ~_FP_OVERFLOW_##fs)
76
#define _FP_FRAC_EQ_1(X, Y)     (X##_f == Y##_f)
77
#define _FP_FRAC_GE_1(X, Y)     (X##_f >= Y##_f)
78
#define _FP_FRAC_GT_1(X, Y)     (X##_f > Y##_f)
79
 
80
#define _FP_ZEROFRAC_1          0
81
#define _FP_MINFRAC_1           1
82
#define _FP_MAXFRAC_1           (~(_FP_WS_TYPE)0)
83
 
84
/*
85
 * Unpack the raw bits of a native fp value.  Do not classify or
86
 * normalize the data.
87
 */
88
 
89
#define _FP_UNPACK_RAW_1(fs, X, val)                            \
90
  do {                                                          \
91
    union _FP_UNION_##fs _flo; _flo.flt = (val);                \
92
                                                                \
93
    X##_f = _flo.bits.frac;                                     \
94
    X##_e = _flo.bits.exp;                                      \
95
    X##_s = _flo.bits.sign;                                     \
96
  } while (0)
97
 
98
#define _FP_UNPACK_RAW_1_P(fs, X, val)                          \
99
  do {                                                          \
100
    union _FP_UNION_##fs *_flo =                                \
101
      (union _FP_UNION_##fs *)(val);                            \
102
                                                                \
103
    X##_f = _flo->bits.frac;                                    \
104
    X##_e = _flo->bits.exp;                                     \
105
    X##_s = _flo->bits.sign;                                    \
106
  } while (0)
107
 
108
/*
109
 * Repack the raw bits of a native fp value.
110
 */
111
 
112
#define _FP_PACK_RAW_1(fs, val, X)                              \
113
  do {                                                          \
114
    union _FP_UNION_##fs _flo;                                  \
115
                                                                \
116
    _flo.bits.frac = X##_f;                                     \
117
    _flo.bits.exp  = X##_e;                                     \
118
    _flo.bits.sign = X##_s;                                     \
119
                                                                \
120
    (val) = _flo.flt;                                           \
121
  } while (0)
122
 
123
#define _FP_PACK_RAW_1_P(fs, val, X)                            \
124
  do {                                                          \
125
    union _FP_UNION_##fs *_flo =                                \
126
      (union _FP_UNION_##fs *)(val);                            \
127
                                                                \
128
    _flo->bits.frac = X##_f;                                    \
129
    _flo->bits.exp  = X##_e;                                    \
130
    _flo->bits.sign = X##_s;                                    \
131
  } while (0)
132
 
133
 
134
/*
135
 * Multiplication algorithms:
136
 */
137
 
138
/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
139
   multiplication immediately.  */
140
 
141
#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)                          \
142
  do {                                                                  \
143
    R##_f = X##_f * Y##_f;                                              \
144
    /* Normalize since we know where the msb of the multiplicands       \
145
       were (bit B), we know that the msb of the of the product is      \
146
       at either 2B or 2B-1.  */                                        \
147
    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);                        \
148
  } while (0)
149
 
150
/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
151
 
152
#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)                   \
153
  do {                                                                  \
154
    _FP_W_TYPE _Z_f0, _Z_f1;                                            \
155
    doit(_Z_f1, _Z_f0, X##_f, Y##_f);                                   \
156
    /* Normalize since we know where the msb of the multiplicands       \
157
       were (bit B), we know that the msb of the of the product is      \
158
       at either 2B or 2B-1.  */                                        \
159
    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);                       \
160
    R##_f = _Z_f0;                                                      \
161
  } while (0)
162
 
163
/* Finally, a simple widening multiply algorithm.  What fun!  */
164
 
165
#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)                         \
166
  do {                                                                  \
167
    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;          \
168
                                                                        \
169
    /* split the words in half */                                       \
170
    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);                                 \
171
    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
172
    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);                                 \
173
    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
174
                                                                        \
175
    /* multiply the pieces */                                           \
176
    _z_f0 = _xl * _yl;                                                  \
177
    _a_f0 = _xh * _yl;                                                  \
178
    _a_f1 = _xl * _yh;                                                  \
179
    _z_f1 = _xh * _yh;                                                  \
180
                                                                        \
181
    /* reassemble into two full words */                                \
182
    if ((_a_f0 += _a_f1) < _a_f1)                                       \
183
      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);                    \
184
    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);                               \
185
    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);                               \
186
    _FP_FRAC_ADD_2(_z, _z, _a);                                         \
187
                                                                        \
188
    /* normalize */                                                     \
189
    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);                     \
190
    R##_f = _z_f0;                                                      \
191
  } while (0)
192
 
193
 
194
/*
195
 * Division algorithms:
196
 */
197
 
198
/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
199
   division immediately.  Give this macro either _FP_DIV_HELP_imm for
200
   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
201
   choose will depend on what the compiler does with divrem4.  */
202
 
203
#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)           \
204
  do {                                                  \
205
    _FP_W_TYPE _q, _r;                                  \
206
    X##_f <<= (X##_f < Y##_f                            \
207
               ? R##_e--, _FP_WFRACBITS_##fs            \
208
               : _FP_WFRACBITS_##fs - 1);               \
209
    doit(_q, _r, X##_f, Y##_f);                         \
210
    R##_f = _q | (_r != 0);                             \
211
  } while (0)
212
 
213
/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
214
   that may be useful in this situation.  This first is for a primitive
215
   that requires normalization, the second for one that does not.  Look
216
   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
217
 
218
#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)                           \
219
  do {                                                                  \
220
    _FP_W_TYPE _nh, _nl, _q, _r, _y;                                    \
221
                                                                        \
222
    /* Normalize Y -- i.e. make the most significant bit set.  */       \
223
    _y = Y##_f << _FP_WFRACXBITS_##fs;                                  \
224
                                                                        \
225
    /* Shift X op correspondingly high, that is, up one full word.  */  \
226
    if (X##_f < Y##_f)                                                  \
227
      {                                                                 \
228
        R##_e--;                                                        \
229
        _nl = 0;                                                 \
230
        _nh = X##_f;                                                    \
231
      }                                                                 \
232
    else                                                                \
233
      {                                                                 \
234
        _nl = X##_f << (_FP_W_TYPE_SIZE - 1);                           \
235
        _nh = X##_f >> 1;                                               \
236
      }                                                                 \
237
                                                                        \
238
    udiv_qrnnd(_q, _r, _nh, _nl, _y);                                   \
239
    R##_f = _q | (_r != 0);                                             \
240
  } while (0)
241
 
242
#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)                \
243
  do {                                                  \
244
    _FP_W_TYPE _nh, _nl, _q, _r;                        \
245
    if (X##_f < Y##_f)                                  \
246
      {                                                 \
247
        R##_e--;                                        \
248
        _nl = X##_f << _FP_WFRACBITS_##fs;              \
249
        _nh = X##_f >> _FP_WFRACXBITS_##fs;             \
250
      }                                                 \
251
    else                                                \
252
      {                                                 \
253
        _nl = X##_f << (_FP_WFRACBITS_##fs - 1);        \
254
        _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);       \
255
      }                                                 \
256
    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);                \
257
    R##_f = _q | (_r != 0);                             \
258
  } while (0)
259
 
260
 
261
/*
262
 * Square root algorithms:
263
 * We have just one right now, maybe Newton approximation
264
 * should be added for those machines where division is fast.
265
 */
266
 
267
#define _FP_SQRT_MEAT_1(R, S, T, X, q)                  \
268
  do {                                                  \
269
    while (q != _FP_WORK_ROUND)                         \
270
      {                                                 \
271
        T##_f = S##_f + q;                              \
272
        if (T##_f <= X##_f)                             \
273
          {                                             \
274
            S##_f = T##_f + q;                          \
275
            X##_f -= T##_f;                             \
276
            R##_f += q;                                 \
277
          }                                             \
278
        _FP_FRAC_SLL_1(X, 1);                           \
279
        q >>= 1;                                        \
280
      }                                                 \
281
    if (X##_f)                                          \
282
      {                                                 \
283
        if (S##_f < X##_f)                              \
284
          R##_f |= _FP_WORK_ROUND;                      \
285
        R##_f |= _FP_WORK_STICKY;                       \
286
      }                                                 \
287
  } while (0)
288
 
289
/*
290
 * Assembly/disassembly for converting to/from integral types.
291
 * No shifting or overflow handled here.
292
 */
293
 
294
#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)        (r = X##_f)
295
#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)     (X##_f = r)
296
 
297
 
298
/*
299
 * Convert FP values between word sizes
300
 */
301
 
302
#define _FP_FRAC_COPY_1_1(D, S)         (D##_f = S##_f)

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.