OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [sparc/] [sparc.h] - Blame information for rev 193

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions of target machine for GNU compiler, for Sun SPARC.
2
   Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
   Contributed by Michael Tiemann (tiemann@cygnus.com).
5
   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6
   at Cygnus Support.
7
 
8
This file is part of GCC.
9
 
10
GCC is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation; either version 3, or (at your option)
13
any later version.
14
 
15
GCC is distributed in the hope that it will be useful,
16
but WITHOUT ANY WARRANTY; without even the implied warranty of
17
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
GNU General Public License for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with GCC; see the file COPYING3.  If not see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
/* Note that some other tm.h files include this one and then override
25
   whatever definitions are necessary.  */
26
 
27
/* Define the specific costs for a given cpu */
28
 
29
struct processor_costs {
30
  /* Integer load */
31
  const int int_load;
32
 
33
  /* Integer signed load */
34
  const int int_sload;
35
 
36
  /* Integer zeroed load */
37
  const int int_zload;
38
 
39
  /* Float load */
40
  const int float_load;
41
 
42
  /* fmov, fneg, fabs */
43
  const int float_move;
44
 
45
  /* fadd, fsub */
46
  const int float_plusminus;
47
 
48
  /* fcmp */
49
  const int float_cmp;
50
 
51
  /* fmov, fmovr */
52
  const int float_cmove;
53
 
54
  /* fmul */
55
  const int float_mul;
56
 
57
  /* fdivs */
58
  const int float_div_sf;
59
 
60
  /* fdivd */
61
  const int float_div_df;
62
 
63
  /* fsqrts */
64
  const int float_sqrt_sf;
65
 
66
  /* fsqrtd */
67
  const int float_sqrt_df;
68
 
69
  /* umul/smul */
70
  const int int_mul;
71
 
72
  /* mulX */
73
  const int int_mulX;
74
 
75
  /* integer multiply cost for each bit set past the most
76
     significant 3, so the formula for multiply cost becomes:
77
 
78
        if (rs1 < 0)
79
          highest_bit = highest_clear_bit(rs1);
80
        else
81
          highest_bit = highest_set_bit(rs1);
82
        if (highest_bit < 3)
83
          highest_bit = 3;
84
        cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
85
 
86
     A value of zero indicates that the multiply costs is fixed,
87
     and not variable.  */
88
  const int int_mul_bit_factor;
89
 
90
  /* udiv/sdiv */
91
  const int int_div;
92
 
93
  /* divX */
94
  const int int_divX;
95
 
96
  /* movcc, movr */
97
  const int int_cmove;
98
 
99
  /* penalty for shifts, due to scheduling rules etc. */
100
  const int shift_penalty;
101
};
102
 
103
extern const struct processor_costs *sparc_costs;
104
 
105
/* Target CPU builtins.  FIXME: Defining sparc is for the benefit of
106
   Solaris only; otherwise just define __sparc__.  Sadly the headers
107
   are such a mess there is no Solaris-specific header.  */
108
#define TARGET_CPU_CPP_BUILTINS()               \
109
  do                                            \
110
    {                                           \
111
        builtin_define_std ("sparc");           \
112
        if (TARGET_64BIT)                       \
113
          {                                     \
114
            builtin_assert ("cpu=sparc64");     \
115
            builtin_assert ("machine=sparc64"); \
116
          }                                     \
117
        else                                    \
118
          {                                     \
119
            builtin_assert ("cpu=sparc");       \
120
            builtin_assert ("machine=sparc");   \
121
          }                                     \
122
    }                                           \
123
  while (0)
124
 
125
/* Specify this in a cover file to provide bi-architecture (32/64) support.  */
126
/* #define SPARC_BI_ARCH */
127
 
128
/* Macro used later in this file to determine default architecture.  */
129
#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
130
 
131
/* TARGET_ARCH{32,64} are the main macros to decide which of the two
132
   architectures to compile for.  We allow targets to choose compile time or
133
   runtime selection.  */
134
#ifdef IN_LIBGCC2
135
#if defined(__sparcv9) || defined(__arch64__)
136
#define TARGET_ARCH32 0
137
#else
138
#define TARGET_ARCH32 1
139
#endif /* sparc64 */
140
#else
141
#ifdef SPARC_BI_ARCH
142
#define TARGET_ARCH32 (! TARGET_64BIT)
143
#else
144
#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
145
#endif /* SPARC_BI_ARCH */
146
#endif /* IN_LIBGCC2 */
147
#define TARGET_ARCH64 (! TARGET_ARCH32)
148
 
149
/* Code model selection in 64-bit environment.
150
 
151
   The machine mode used for addresses is 32-bit wide:
152
 
153
   TARGET_CM_32:     32-bit address space.
154
                     It is the code model used when generating 32-bit code.
155
 
156
   The machine mode used for addresses is 64-bit wide:
157
 
158
   TARGET_CM_MEDLOW: 32-bit address space.
159
                     The executable must be in the low 32 bits of memory.
160
                     This avoids generating %uhi and %ulo terms.  Programs
161
                     can be statically or dynamically linked.
162
 
163
   TARGET_CM_MEDMID: 44-bit address space.
164
                     The executable must be in the low 44 bits of memory,
165
                     and the %[hml]44 terms are used.  The text and data
166
                     segments have a maximum size of 2GB (31-bit span).
167
                     The maximum offset from any instruction to the label
168
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
169
 
170
   TARGET_CM_MEDANY: 64-bit address space.
171
                     The text and data segments have a maximum size of 2GB
172
                     (31-bit span) and may be located anywhere in memory.
173
                     The maximum offset from any instruction to the label
174
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
175
 
176
   TARGET_CM_EMBMEDANY: 64-bit address space.
177
                     The text and data segments have a maximum size of 2GB
178
                     (31-bit span) and may be located anywhere in memory.
179
                     The global register %g4 contains the start address of
180
                     the data segment.  Programs are statically linked and
181
                     PIC is not supported.
182
 
183
   Different code models are not supported in 32-bit environment.  */
184
 
185
enum cmodel {
186
  CM_32,
187
  CM_MEDLOW,
188
  CM_MEDMID,
189
  CM_MEDANY,
190
  CM_EMBMEDANY
191
};
192
 
193
/* One of CM_FOO.  */
194
extern enum cmodel sparc_cmodel;
195
 
196
/* V9 code model selection.  */
197
#define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
198
#define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
199
#define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
200
#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
201
 
202
#define SPARC_DEFAULT_CMODEL CM_32
203
 
204
/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
205
   which requires the following macro to be true if enabled.  Prior to V9,
206
   there are no instructions to even talk about memory synchronization.
207
   Note that the UltraSPARC III processors don't implement RMO, unlike the
208
   UltraSPARC II processors.  Niagara does not implement RMO either.
209
 
210
   Default to false; for example, Solaris never enables RMO, only ever uses
211
   total memory ordering (TMO).  */
212
#define SPARC_RELAXED_ORDERING false
213
 
214
/* Do not use the .note.GNU-stack convention by default.  */
215
#define NEED_INDICATE_EXEC_STACK 0
216
 
217
/* This is call-clobbered in the normal ABI, but is reserved in the
218
   home grown (aka upward compatible) embedded ABI.  */
219
#define EMBMEDANY_BASE_REG "%g4"
220
 
221
/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
222
   and specified by the user via --with-cpu=foo.
223
   This specifies the cpu implementation, not the architecture size.  */
224
/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
225
   capable cpu's.  */
226
#define TARGET_CPU_sparc        0
227
#define TARGET_CPU_v7           0        /* alias for previous */
228
#define TARGET_CPU_sparclet     1
229
#define TARGET_CPU_sparclite    2
230
#define TARGET_CPU_v8           3       /* generic v8 implementation */
231
#define TARGET_CPU_supersparc   4
232
#define TARGET_CPU_hypersparc   5
233
#define TARGET_CPU_sparc86x     6
234
#define TARGET_CPU_sparclite86x 6
235
#define TARGET_CPU_v9           7       /* generic v9 implementation */
236
#define TARGET_CPU_sparcv9      7       /* alias */
237
#define TARGET_CPU_sparc64      7       /* alias */
238
#define TARGET_CPU_ultrasparc   8
239
#define TARGET_CPU_ultrasparc3  9
240
#define TARGET_CPU_niagara      10
241
 
242
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
243
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
244
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
245
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara
246
 
247
#define CPP_CPU32_DEFAULT_SPEC ""
248
#define ASM_CPU32_DEFAULT_SPEC ""
249
 
250
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
251
/* ??? What does Sun's CC pass?  */
252
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
253
/* ??? It's not clear how other assemblers will handle this, so by default
254
   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
255
   is handled in sol2.h.  */
256
#define ASM_CPU64_DEFAULT_SPEC "-Av9"
257
#endif
258
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
259
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
260
#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
261
#endif
262
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
263
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
264
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
265
#endif
266
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
267
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
268
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
269
#endif
270
 
271
#else
272
 
273
#define CPP_CPU64_DEFAULT_SPEC ""
274
#define ASM_CPU64_DEFAULT_SPEC ""
275
 
276
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
277
 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
278
#define CPP_CPU32_DEFAULT_SPEC ""
279
#define ASM_CPU32_DEFAULT_SPEC ""
280
#endif
281
 
282
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
283
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
284
#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
285
#endif
286
 
287
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
288
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
289
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
290
#endif
291
 
292
#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
293
#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
294
#define ASM_CPU32_DEFAULT_SPEC ""
295
#endif
296
 
297
#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
298
#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
299
#define ASM_CPU32_DEFAULT_SPEC ""
300
#endif
301
 
302
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
303
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
304
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
305
#endif
306
 
307
#endif
308
 
309
#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
310
 #error Unrecognized value in TARGET_CPU_DEFAULT.
311
#endif
312
 
313
#ifdef SPARC_BI_ARCH
314
 
315
#define CPP_CPU_DEFAULT_SPEC \
316
(DEFAULT_ARCH32_P ? "\
317
%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
318
%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
319
" : "\
320
%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
321
%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
322
")
323
#define ASM_CPU_DEFAULT_SPEC \
324
(DEFAULT_ARCH32_P ? "\
325
%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
326
%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
327
" : "\
328
%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
329
%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
330
")
331
 
332
#else /* !SPARC_BI_ARCH */
333
 
334
#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
335
#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
336
 
337
#endif /* !SPARC_BI_ARCH */
338
 
339
/* Define macros to distinguish architectures.  */
340
 
341
/* Common CPP definitions used by CPP_SPEC amongst the various targets
342
   for handling -mcpu=xxx switches.  */
343
#define CPP_CPU_SPEC "\
344
%{msoft-float:-D_SOFT_FLOAT} \
345
%{mcypress:} \
346
%{msparclite:-D__sparclite__} \
347
%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
348
%{mv8:-D__sparc_v8__} \
349
%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
350
%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
351
%{mcpu=sparclite:-D__sparclite__} \
352
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
353
%{mcpu=v8:-D__sparc_v8__} \
354
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
355
%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
356
%{mcpu=sparclite86x:-D__sparclite86x__} \
357
%{mcpu=v9:-D__sparc_v9__} \
358
%{mcpu=ultrasparc:-D__sparc_v9__} \
359
%{mcpu=ultrasparc3:-D__sparc_v9__} \
360
%{mcpu=niagara:-D__sparc_v9__} \
361
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
362
"
363
#define CPP_ARCH32_SPEC ""
364
#define CPP_ARCH64_SPEC "-D__arch64__"
365
 
366
#define CPP_ARCH_DEFAULT_SPEC \
367
(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
368
 
369
#define CPP_ARCH_SPEC "\
370
%{m32:%(cpp_arch32)} \
371
%{m64:%(cpp_arch64)} \
372
%{!m32:%{!m64:%(cpp_arch_default)}} \
373
"
374
 
375
/* Macros to distinguish endianness.  */
376
#define CPP_ENDIAN_SPEC "\
377
%{mlittle-endian:-D__LITTLE_ENDIAN__} \
378
%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
379
 
380
/* Macros to distinguish the particular subtarget.  */
381
#define CPP_SUBTARGET_SPEC ""
382
 
383
#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
384
 
385
/* Prevent error on `-sun4' and `-target sun4' options.  */
386
/* This used to translate -dalign to -malign, but that is no good
387
   because it can't turn off the usual meaning of making debugging dumps.  */
388
/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
389
   ??? Delete support for -m<cpu> for 2.9.  */
390
 
391
#define CC1_SPEC "\
392
%{sun4:} %{target:} \
393
%{mcypress:-mcpu=cypress} \
394
%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
395
%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
396
"
397
 
398
/* Override in target specific files.  */
399
#define ASM_CPU_SPEC "\
400
%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
401
%{msparclite:-Asparclite} \
402
%{mf930:-Asparclite} %{mf934:-Asparclite} \
403
%{mcpu=sparclite:-Asparclite} \
404
%{mcpu=sparclite86x:-Asparclite} \
405
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
406
%{mv8plus:-Av8plus} \
407
%{mcpu=v9:-Av9} \
408
%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
409
%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
410
%{mcpu=niagara:%{!mv8plus:-Av9b}} \
411
%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
412
"
413
 
414
/* Word size selection, among other things.
415
   This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
416
 
417
#define ASM_ARCH32_SPEC "-32"
418
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
419
#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
420
#else
421
#define ASM_ARCH64_SPEC "-64"
422
#endif
423
#define ASM_ARCH_DEFAULT_SPEC \
424
(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
425
 
426
#define ASM_ARCH_SPEC "\
427
%{m32:%(asm_arch32)} \
428
%{m64:%(asm_arch64)} \
429
%{!m32:%{!m64:%(asm_arch_default)}} \
430
"
431
 
432
#ifdef HAVE_AS_RELAX_OPTION
433
#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
434
#else
435
#define ASM_RELAX_SPEC ""
436
#endif
437
 
438
/* Special flags to the Sun-4 assembler when using pipe for input.  */
439
 
440
#define ASM_SPEC "\
441
%{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
442
%(asm_cpu) %(asm_relax)"
443
 
444
#define AS_NEEDS_DASH_FOR_PIPED_INPUT
445
 
446
/* This macro defines names of additional specifications to put in the specs
447
   that can be used in various specifications like CC1_SPEC.  Its definition
448
   is an initializer with a subgrouping for each command option.
449
 
450
   Each subgrouping contains a string constant, that defines the
451
   specification name, and a string constant that used by the GCC driver
452
   program.
453
 
454
   Do not define this macro if it does not need to do anything.  */
455
 
456
#define EXTRA_SPECS \
457
  { "cpp_cpu",          CPP_CPU_SPEC },         \
458
  { "cpp_cpu_default",  CPP_CPU_DEFAULT_SPEC }, \
459
  { "cpp_arch32",       CPP_ARCH32_SPEC },      \
460
  { "cpp_arch64",       CPP_ARCH64_SPEC },      \
461
  { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
462
  { "cpp_arch",         CPP_ARCH_SPEC },        \
463
  { "cpp_endian",       CPP_ENDIAN_SPEC },      \
464
  { "cpp_subtarget",    CPP_SUBTARGET_SPEC },   \
465
  { "asm_cpu",          ASM_CPU_SPEC },         \
466
  { "asm_cpu_default",  ASM_CPU_DEFAULT_SPEC }, \
467
  { "asm_arch32",       ASM_ARCH32_SPEC },      \
468
  { "asm_arch64",       ASM_ARCH64_SPEC },      \
469
  { "asm_relax",        ASM_RELAX_SPEC },       \
470
  { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
471
  { "asm_arch",         ASM_ARCH_SPEC },        \
472
  SUBTARGET_EXTRA_SPECS
473
 
474
#define SUBTARGET_EXTRA_SPECS
475
 
476
/* Because libgcc can generate references back to libc (via .umul etc.) we have
477
   to list libc again after the second libgcc.  */
478
#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
479
 
480
 
481
#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
482
#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
483
 
484
/* ??? This should be 32 bits for v9 but what can we do?  */
485
#define WCHAR_TYPE "short unsigned int"
486
#define WCHAR_TYPE_SIZE 16
487
 
488
/* Show we can debug even without a frame pointer.  */
489
#define CAN_DEBUG_WITHOUT_FP
490
 
491
/* Option handling.  */
492
 
493
#define OVERRIDE_OPTIONS  sparc_override_options ()
494
 
495
/* Mask of all CPU selection flags.  */
496
#define MASK_ISA \
497
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
498
 
499
/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
500
   TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
501
   to get high 32 bits.  False in V8+ or V9 because multiply stores
502
   a 64 bit result in a register.  */
503
 
504
#define TARGET_HARD_MUL32                               \
505
  ((TARGET_V8 || TARGET_SPARCLITE                       \
506
    || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)   \
507
   && ! TARGET_V8PLUS && TARGET_ARCH32)
508
 
509
#define TARGET_HARD_MUL                                 \
510
  (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET     \
511
   || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
512
 
513
/* MASK_APP_REGS must always be the default because that's what
514
   FIXED_REGISTERS is set to and -ffixed- is processed before
515
   CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
516
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
517
 
518
/* Processor type.
519
   These must match the values for the cpu attribute in sparc.md.  */
520
enum processor_type {
521
  PROCESSOR_V7,
522
  PROCESSOR_CYPRESS,
523
  PROCESSOR_V8,
524
  PROCESSOR_SUPERSPARC,
525
  PROCESSOR_SPARCLITE,
526
  PROCESSOR_F930,
527
  PROCESSOR_F934,
528
  PROCESSOR_HYPERSPARC,
529
  PROCESSOR_SPARCLITE86X,
530
  PROCESSOR_SPARCLET,
531
  PROCESSOR_TSC701,
532
  PROCESSOR_V9,
533
  PROCESSOR_ULTRASPARC,
534
  PROCESSOR_ULTRASPARC3,
535
  PROCESSOR_NIAGARA
536
};
537
 
538
/* This is set from -m{cpu,tune}=xxx.  */
539
extern enum processor_type sparc_cpu;
540
 
541
/* Recast the cpu class to be the cpu attribute.
542
   Every file includes us, but not every file includes insn-attr.h.  */
543
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
544
 
545
/* Support for a compile-time default CPU, et cetera.  The rules are:
546
   --with-cpu is ignored if -mcpu is specified.
547
   --with-tune is ignored if -mtune is specified.
548
   --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
549
     are specified.  */
550
#define OPTION_DEFAULT_SPECS \
551
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
552
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
553
  {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
554
 
555
/* sparc_select[0] is reserved for the default cpu.  */
556
struct sparc_cpu_select
557
{
558
  const char *string;
559
  const char *const name;
560
  const int set_tune_p;
561
  const int set_arch_p;
562
};
563
 
564
extern struct sparc_cpu_select sparc_select[];
565
 
566
/* target machine storage layout */
567
 
568
/* Define this if most significant bit is lowest numbered
569
   in instructions that operate on numbered bit-fields.  */
570
#define BITS_BIG_ENDIAN 1
571
 
572
/* Define this if most significant byte of a word is the lowest numbered.  */
573
#define BYTES_BIG_ENDIAN 1
574
 
575
/* Define this if most significant word of a multiword number is the lowest
576
   numbered.  */
577
#define WORDS_BIG_ENDIAN 1
578
 
579
/* Define this to set the endianness to use in libgcc2.c, which can
580
   not depend on target_flags.  */
581
#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
582
#define LIBGCC2_WORDS_BIG_ENDIAN 0
583
#else
584
#define LIBGCC2_WORDS_BIG_ENDIAN 1
585
#endif
586
 
587
#define MAX_BITS_PER_WORD       64
588
 
589
/* Width of a word, in units (bytes).  */
590
#define UNITS_PER_WORD          (TARGET_ARCH64 ? 8 : 4)
591
#ifdef IN_LIBGCC2
592
#define MIN_UNITS_PER_WORD      UNITS_PER_WORD
593
#else
594
#define MIN_UNITS_PER_WORD      4
595
#endif
596
 
597
#define UNITS_PER_SIMD_WORD     (TARGET_VIS ? 8 : UNITS_PER_WORD)
598
 
599
/* Now define the sizes of the C data types.  */
600
 
601
#define SHORT_TYPE_SIZE         16
602
#define INT_TYPE_SIZE           32
603
#define LONG_TYPE_SIZE          (TARGET_ARCH64 ? 64 : 32)
604
#define LONG_LONG_TYPE_SIZE     64
605
#define FLOAT_TYPE_SIZE         32
606
#define DOUBLE_TYPE_SIZE        64
607
/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
608
   SPARC ABI says that it is 128-bit wide.  */
609
/* #define LONG_DOUBLE_TYPE_SIZE        128 */
610
 
611
/* Width in bits of a pointer.
612
   See also the macro `Pmode' defined below.  */
613
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
614
 
615
/* If we have to extend pointers (only when TARGET_ARCH64 and not
616
   TARGET_PTR64), we want to do it unsigned.   This macro does nothing
617
   if ptr_mode and Pmode are the same.  */
618
#define POINTERS_EXTEND_UNSIGNED 1
619
 
620
/* For TARGET_ARCH64 we need this, as we don't have instructions
621
   for arithmetic operations which do zero/sign extension at the same time,
622
   so without this we end up with a srl/sra after every assignment to an
623
   user variable,  which means very very bad code.  */
624
#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
625
if (TARGET_ARCH64                               \
626
    && GET_MODE_CLASS (MODE) == MODE_INT        \
627
    && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)   \
628
  (MODE) = word_mode;
629
 
630
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
631
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
632
 
633
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
634
/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
635
   then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
636
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
637
/* Temporary hack until the FIXME above is fixed.  */
638
#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
639
 
640
/* ALIGN FRAMES on double word boundaries */
641
 
642
#define SPARC_STACK_ALIGN(LOC) \
643
  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
644
 
645
/* Allocation boundary (in *bits*) for the code of a function.  */
646
#define FUNCTION_BOUNDARY 32
647
 
648
/* Alignment of field after `int : 0' in a structure.  */
649
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
650
 
651
/* Every structure's size must be a multiple of this.  */
652
#define STRUCTURE_SIZE_BOUNDARY 8
653
 
654
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
655
#define PCC_BITFIELD_TYPE_MATTERS 1
656
 
657
/* No data type wants to be aligned rounder than this.  */
658
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
659
 
660
/* The best alignment to use in cases where we have a choice.  */
661
#define FASTEST_ALIGNMENT 64
662
 
663
/* Define this macro as an expression for the alignment of a structure
664
   (given by STRUCT as a tree node) if the alignment computed in the
665
   usual way is COMPUTED and the alignment explicitly specified was
666
   SPECIFIED.
667
 
668
   The default is to use SPECIFIED if it is larger; otherwise, use
669
   the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
670
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)   \
671
 (TARGET_FASTER_STRUCTS ?                               \
672
  ((TREE_CODE (STRUCT) == RECORD_TYPE                   \
673
    || TREE_CODE (STRUCT) == UNION_TYPE                 \
674
    || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
675
   && TYPE_FIELDS (STRUCT) != 0                         \
676
     ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
677
     : MAX ((COMPUTED), (SPECIFIED)))                   \
678
   :  MAX ((COMPUTED), (SPECIFIED)))
679
 
680
/* Make strings word-aligned so strcpy from constants will be faster.  */
681
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
682
  ((TREE_CODE (EXP) == STRING_CST       \
683
    && (ALIGN) < FASTEST_ALIGNMENT)     \
684
   ? FASTEST_ALIGNMENT : (ALIGN))
685
 
686
/* Make arrays of chars word-aligned for the same reasons.  */
687
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
688
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
689
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
690
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
691
 
692
/* Set this nonzero if move instructions will actually fail to work
693
   when given unaligned data.  */
694
#define STRICT_ALIGNMENT 1
695
 
696
/* Things that must be doubleword aligned cannot go in the text section,
697
   because the linker fails to align the text section enough!
698
   Put them in the data section.  This macro is only used in this file.  */
699
#define MAX_TEXT_ALIGN 32
700
 
701
/* Standard register usage.  */
702
 
703
/* Number of actual hardware registers.
704
   The hardware registers are assigned numbers for the compiler
705
   from 0 to just below FIRST_PSEUDO_REGISTER.
706
   All registers that the compiler knows about must be given numbers,
707
   even those that are not normally considered general registers.
708
 
709
   SPARC has 32 integer registers and 32 floating point registers.
710
   64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
711
   accessible.  We still account for them to simplify register computations
712
   (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
713
   32+32+32+4 == 100.
714
   Register 100 is used as the integer condition code register.
715
   Register 101 is used as the soft frame pointer register.  */
716
 
717
#define FIRST_PSEUDO_REGISTER 102
718
 
719
#define SPARC_FIRST_FP_REG     32
720
/* Additional V9 fp regs.  */
721
#define SPARC_FIRST_V9_FP_REG  64
722
#define SPARC_LAST_V9_FP_REG   95
723
/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
724
#define SPARC_FIRST_V9_FCC_REG 96
725
#define SPARC_LAST_V9_FCC_REG  99
726
/* V8 fcc reg.  */
727
#define SPARC_FCC_REG 96
728
/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
729
#define SPARC_ICC_REG 100
730
 
731
/* Nonzero if REGNO is an fp reg.  */
732
#define SPARC_FP_REG_P(REGNO) \
733
((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
734
 
735
/* Argument passing regs.  */
736
#define SPARC_OUTGOING_INT_ARG_FIRST 8
737
#define SPARC_INCOMING_INT_ARG_FIRST 24
738
#define SPARC_FP_ARG_FIRST           32
739
 
740
/* 1 for registers that have pervasive standard uses
741
   and are not available for the register allocator.
742
 
743
   On non-v9 systems:
744
   g1 is free to use as temporary.
745
   g2-g4 are reserved for applications.  Gcc normally uses them as
746
   temporaries, but this can be disabled via the -mno-app-regs option.
747
   g5 through g7 are reserved for the operating system.
748
 
749
   On v9 systems:
750
   g1,g5 are free to use as temporaries, and are free to use between calls
751
   if the call is to an external function via the PLT.
752
   g4 is free to use as a temporary in the non-embedded case.
753
   g4 is reserved in the embedded case.
754
   g2-g3 are reserved for applications.  Gcc normally uses them as
755
   temporaries, but this can be disabled via the -mno-app-regs option.
756
   g6-g7 are reserved for the operating system (or application in
757
   embedded case).
758
   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
759
   currently be a fixed register until this pattern is rewritten.
760
   Register 1 is also used when restoring call-preserved registers in large
761
   stack frames.
762
 
763
   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
764
   CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
765
*/
766
 
767
#define FIXED_REGISTERS  \
768
 {1, 0, 2, 2, 2, 2, 1, 1,       \
769
  0, 0, 0, 0, 0, 0, 1, 0,       \
770
  0, 0, 0, 0, 0, 0, 0, 0,       \
771
  0, 0, 0, 0, 0, 0, 1, 1,       \
772
                                \
773
  0, 0, 0, 0, 0, 0, 0, 0,       \
774
  0, 0, 0, 0, 0, 0, 0, 0,       \
775
  0, 0, 0, 0, 0, 0, 0, 0,       \
776
  0, 0, 0, 0, 0, 0, 0, 0,       \
777
                                \
778
  0, 0, 0, 0, 0, 0, 0, 0,       \
779
  0, 0, 0, 0, 0, 0, 0, 0,       \
780
  0, 0, 0, 0, 0, 0, 0, 0,       \
781
  0, 0, 0, 0, 0, 0, 0, 0,       \
782
                                \
783
  0, 0, 0, 0, 0, 1}
784
 
785
/* 1 for registers not available across function calls.
786
   These must include the FIXED_REGISTERS and also any
787
   registers that can be used without being saved.
788
   The latter must include the registers where values are returned
789
   and the register where structure-value addresses are passed.
790
   Aside from that, you can include as many other registers as you like.  */
791
 
792
#define CALL_USED_REGISTERS  \
793
 {1, 1, 1, 1, 1, 1, 1, 1,       \
794
  1, 1, 1, 1, 1, 1, 1, 1,       \
795
  0, 0, 0, 0, 0, 0, 0, 0,       \
796
  0, 0, 0, 0, 0, 0, 1, 1,       \
797
                                \
798
  1, 1, 1, 1, 1, 1, 1, 1,       \
799
  1, 1, 1, 1, 1, 1, 1, 1,       \
800
  1, 1, 1, 1, 1, 1, 1, 1,       \
801
  1, 1, 1, 1, 1, 1, 1, 1,       \
802
                                \
803
  1, 1, 1, 1, 1, 1, 1, 1,       \
804
  1, 1, 1, 1, 1, 1, 1, 1,       \
805
  1, 1, 1, 1, 1, 1, 1, 1,       \
806
  1, 1, 1, 1, 1, 1, 1, 1,       \
807
                                \
808
  1, 1, 1, 1, 1, 1}
809
 
810
/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
811
   they won't be allocated.  */
812
 
813
#define CONDITIONAL_REGISTER_USAGE                              \
814
do                                                              \
815
  {                                                             \
816
    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)              \
817
      {                                                         \
818
        fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                \
819
        call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;            \
820
      }                                                         \
821
    /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
822
    /* then honor it.  */                                       \
823
    if (TARGET_ARCH32 && fixed_regs[5])                         \
824
      fixed_regs[5] = 1;                                        \
825
    else if (TARGET_ARCH64 && fixed_regs[5] == 2)               \
826
      fixed_regs[5] = 0;                                        \
827
    if (! TARGET_V9)                                            \
828
      {                                                         \
829
        int regno;                                              \
830
        for (regno = SPARC_FIRST_V9_FP_REG;                     \
831
             regno <= SPARC_LAST_V9_FP_REG;                     \
832
             regno++)                                           \
833
          fixed_regs[regno] = 1;                                \
834
        /* %fcc0 is used by v8 and v9.  */                      \
835
        for (regno = SPARC_FIRST_V9_FCC_REG + 1;                \
836
             regno <= SPARC_LAST_V9_FCC_REG;                    \
837
             regno++)                                           \
838
          fixed_regs[regno] = 1;                                \
839
      }                                                         \
840
    if (! TARGET_FPU)                                           \
841
      {                                                         \
842
        int regno;                                              \
843
        for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
844
          fixed_regs[regno] = 1;                                \
845
      }                                                         \
846
    /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
847
    /* then honor it.  Likewise with g3 and g4.  */             \
848
    if (fixed_regs[2] == 2)                                     \
849
      fixed_regs[2] = ! TARGET_APP_REGS;                        \
850
    if (fixed_regs[3] == 2)                                     \
851
      fixed_regs[3] = ! TARGET_APP_REGS;                        \
852
    if (TARGET_ARCH32 && fixed_regs[4] == 2)                    \
853
      fixed_regs[4] = ! TARGET_APP_REGS;                        \
854
    else if (TARGET_CM_EMBMEDANY)                               \
855
      fixed_regs[4] = 1;                                        \
856
    else if (fixed_regs[4] == 2)                                \
857
      fixed_regs[4] = 0;                                        \
858
  }                                                             \
859
while (0)
860
 
861
/* Return number of consecutive hard regs needed starting at reg REGNO
862
   to hold something of mode MODE.
863
   This is ordinarily the length in words of a value of mode MODE
864
   but can be less for certain modes in special long registers.
865
 
866
   On SPARC, ordinary registers hold 32 bits worth;
867
   this means both integer and floating point registers.
868
   On v9, integer regs hold 64 bits worth; floating point regs hold
869
   32 bits worth (this includes the new fp regs as even the odd ones are
870
   included in the hard register count).  */
871
 
872
#define HARD_REGNO_NREGS(REGNO, MODE) \
873
  (TARGET_ARCH64                                                        \
874
   ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM                   \
875
      ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD    \
876
      : (GET_MODE_SIZE (MODE) + 3) / 4)                                 \
877
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
878
 
879
/* Due to the ARCH64 discrepancy above we must override this next
880
   macro too.  */
881
#define REGMODE_NATURAL_SIZE(MODE) \
882
  ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
883
 
884
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
885
   See sparc.c for how we initialize this.  */
886
extern const int *hard_regno_mode_classes;
887
extern int sparc_mode_class[];
888
 
889
/* ??? Because of the funny way we pass parameters we should allow certain
890
   ??? types of float/complex values to be in integer registers during
891
   ??? RTL generation.  This only matters on arch32.  */
892
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
893
  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
894
 
895
/* Value is 1 if it is OK to rename a hard register FROM to another hard
896
   register TO.  We cannot rename %g1 as it may be used before the save
897
   register window instruction in the prologue.  */
898
#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
899
 
900
/* Value is 1 if it is a good idea to tie two pseudo registers
901
   when one has mode MODE1 and one has mode MODE2.
902
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
903
   for any hard reg, then this must be 0 for correct output.
904
 
905
   For V9: SFmode can't be combined with other float modes, because they can't
906
   be allocated to the %d registers.  Also, DFmode won't fit in odd %f
907
   registers, but SFmode will.  */
908
#define MODES_TIEABLE_P(MODE1, MODE2) \
909
  ((MODE1) == (MODE2)                                           \
910
   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)         \
911
       && (! TARGET_V9                                          \
912
           || (GET_MODE_CLASS (MODE1) != MODE_FLOAT             \
913
               || (MODE1 != SFmode && MODE2 != SFmode)))))
914
 
915
/* Specify the registers used for certain standard purposes.
916
   The values of these macros are register numbers.  */
917
 
918
/* Register to use for pushing function arguments.  */
919
#define STACK_POINTER_REGNUM 14
920
 
921
/* The stack bias (amount by which the hardware register is offset by).  */
922
#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
923
 
924
/* Actual top-of-stack address is 92/176 greater than the contents of the
925
   stack pointer register for !v9/v9.  That is:
926
   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
927
     address, and 6*4 bytes for the 6 register parameters.
928
   - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
929
     parameter regs.  */
930
#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
931
 
932
/* Base register for access to local variables of the function.  */
933
#define HARD_FRAME_POINTER_REGNUM 30
934
 
935
/* The soft frame pointer does not have the stack bias applied.  */
936
#define FRAME_POINTER_REGNUM 101
937
 
938
/* Given the stack bias, the stack pointer isn't actually aligned.  */
939
#define INIT_EXPANDERS                                                   \
940
  do {                                                                   \
941
    if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS)     \
942
      {                                                                  \
943
        REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;      \
944
        REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
945
      }                                                                  \
946
  } while (0)
947
 
948
/* Value should be nonzero if functions must have frame pointers.
949
   Zero means the frame pointer need not be set up (and parms
950
   may be accessed via the stack pointer) in functions that seem suitable.
951
   Used in flow.c, global.c, ra.c and reload1.c.  */
952
#define FRAME_POINTER_REQUIRED  \
953
  (! (leaf_function_p () && only_leaf_regs_used ()))
954
 
955
/* Base register for access to arguments of the function.  */
956
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
957
 
958
/* Register in which static-chain is passed to a function.  This must
959
   not be a register used by the prologue.  */
960
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
961
 
962
/* Register which holds offset table for position-independent
963
   data references.  */
964
 
965
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
966
 
967
/* Pick a default value we can notice from override_options:
968
   !v9: Default is on.
969
   v9: Default is off.  */
970
 
971
#define DEFAULT_PCC_STRUCT_RETURN -1
972
 
973
/* Functions which return large structures get the address
974
   to place the wanted value at offset 64 from the frame.
975
   Must reserve 64 bytes for the in and local registers.
976
   v9: Functions which return large structures get the address to place the
977
   wanted value from an invisible first argument.  */
978
#define STRUCT_VALUE_OFFSET 64
979
 
980
/* Define the classes of registers for register constraints in the
981
   machine description.  Also define ranges of constants.
982
 
983
   One of the classes must always be named ALL_REGS and include all hard regs.
984
   If there is more than one class, another class must be named NO_REGS
985
   and contain no registers.
986
 
987
   The name GENERAL_REGS must be the name of a class (or an alias for
988
   another name such as ALL_REGS).  This is the class of registers
989
   that is allowed by "g" or "r" in a register constraint.
990
   Also, registers outside this class are allocated only when
991
   instructions express preferences for them.
992
 
993
   The classes must be numbered in nondecreasing order; that is,
994
   a larger-numbered class must never be contained completely
995
   in a smaller-numbered class.
996
 
997
   For any two classes, it is very desirable that there be another
998
   class that represents their union.  */
999
 
1000
/* The SPARC has various kinds of registers: general, floating point,
1001
   and condition codes [well, it has others as well, but none that we
1002
   care directly about].
1003
 
1004
   For v9 we must distinguish between the upper and lower floating point
1005
   registers because the upper ones can't hold SFmode values.
1006
   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1007
   satisfying a group need for a class will also satisfy a single need for
1008
   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1009
   regs.
1010
 
1011
   It is important that one class contains all the general and all the standard
1012
   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
1013
   because reg_class_record() will bias the selection in favor of fp regs,
1014
   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1015
   because FP_REGS > GENERAL_REGS.
1016
 
1017
   It is also important that one class contain all the general and all
1018
   the fp regs.  Otherwise when spilling a DFmode reg, it may be from
1019
   EXTRA_FP_REGS but find_reloads() may use class
1020
   GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1021
   because the compiler thinks it doesn't have a spill reg when in
1022
   fact it does.
1023
 
1024
   v9 also has 4 floating point condition code registers.  Since we don't
1025
   have a class that is the union of FPCC_REGS with either of the others,
1026
   it is important that it appear first.  Otherwise the compiler will die
1027
   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1028
   constraints.
1029
 
1030
   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
1031
   may try to use it to hold an SImode value.  See register_operand.
1032
   ??? Should %fcc[0123] be handled similarly?
1033
*/
1034
 
1035
enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1036
                 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1037
                 ALL_REGS, LIM_REG_CLASSES };
1038
 
1039
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1040
 
1041
/* Give names of register classes as strings for dump file.  */
1042
 
1043
#define REG_CLASS_NAMES \
1044
  { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",      \
1045
     "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1046
     "ALL_REGS" }
1047
 
1048
/* Define which registers fit in which classes.
1049
   This is an initializer for a vector of HARD_REG_SET
1050
   of length N_REG_CLASSES.  */
1051
 
1052
#define REG_CLASS_CONTENTS                              \
1053
  {{0, 0, 0, 0},        /* NO_REGS */                   \
1054
   {0, 0, 0, 0xf},      /* FPCC_REGS */                 \
1055
   {0xffff, 0, 0, 0},   /* I64_REGS */                  \
1056
   {-1, 0, 0, 0x20},    /* GENERAL_REGS */              \
1057
   {0, -1, 0, 0},       /* FP_REGS */                   \
1058
   {0, -1, -1, 0},      /* EXTRA_FP_REGS */             \
1059
   {-1, -1, 0, 0x20},   /* GENERAL_OR_FP_REGS */        \
1060
   {-1, -1, -1, 0x20},  /* GENERAL_OR_EXTRA_FP_REGS */  \
1061
   {-1, -1, -1, 0x3f}}  /* ALL_REGS */
1062
 
1063
/* Defines invalid mode changes.  Borrowed from pa64-regs.h.
1064
 
1065
   SImode loads to floating-point registers are not zero-extended.
1066
   The definition for LOAD_EXTEND_OP specifies that integer loads
1067
   narrower than BITS_PER_WORD will be zero-extended.  As a result,
1068
   we inhibit changes from SImode unless they are to a mode that is
1069
   identical in size.  */
1070
 
1071
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
1072
  (TARGET_ARCH64                                                \
1073
   && (FROM) == SImode                                          \
1074
   && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                \
1075
   ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1076
 
1077
/* The same information, inverted:
1078
   Return the class number of the smallest class containing
1079
   reg number REGNO.  This could be a conditional expression
1080
   or could index an array.  */
1081
 
1082
extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1083
 
1084
#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1085
 
1086
/* This is the order in which to allocate registers normally.
1087
 
1088
   We put %f0-%f7 last among the float registers, so as to make it more
1089
   likely that a pseudo-register which dies in the float return register
1090
   area will get allocated to the float return register, thus saving a move
1091
   instruction at the end of the function.
1092
 
1093
   Similarly for integer return value registers.
1094
 
1095
   We know in this case that we will not end up with a leaf function.
1096
 
1097
   The register allocator is given the global and out registers first
1098
   because these registers are call clobbered and thus less useful to
1099
   global register allocation.
1100
 
1101
   Next we list the local and in registers.  They are not call clobbered
1102
   and thus very useful for global register allocation.  We list the input
1103
   registers before the locals so that it is more likely the incoming
1104
   arguments received in those registers can just stay there and not be
1105
   reloaded.  */
1106
 
1107
#define REG_ALLOC_ORDER \
1108
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1109
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1110
  15,                                   /* %o7 */       \
1111
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1112
  29, 28, 27, 26, 25, 24, 31,           /* %i5-%i0,%i7 */\
1113
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1114
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1115
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1116
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1117
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1118
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1119
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1120
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1121
  96, 97, 98, 99,                       /* %fcc0-3 */   \
1122
  100, 0, 14, 30, 101}                  /* %icc, %g0, %o6, %i6, %sfp */
1123
 
1124
/* This is the order in which to allocate registers for
1125
   leaf functions.  If all registers can fit in the global and
1126
   output registers, then we have the possibility of having a leaf
1127
   function.
1128
 
1129
   The macro actually mentioned the input registers first,
1130
   because they get renumbered into the output registers once
1131
   we know really do have a leaf function.
1132
 
1133
   To be more precise, this register allocation order is used
1134
   when %o7 is found to not be clobbered right before register
1135
   allocation.  Normally, the reason %o7 would be clobbered is
1136
   due to a call which could not be transformed into a sibling
1137
   call.
1138
 
1139
   As a consequence, it is possible to use the leaf register
1140
   allocation order and not end up with a leaf function.  We will
1141
   not get suboptimal register allocation in that case because by
1142
   definition of being potentially leaf, there were no function
1143
   calls.  Therefore, allocation order within the local register
1144
   window is not critical like it is when we do have function calls.  */
1145
 
1146
#define REG_LEAF_ALLOC_ORDER \
1147
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1148
  29, 28, 27, 26, 25, 24,               /* %i5-%i0 */   \
1149
  15,                                   /* %o7 */       \
1150
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1151
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1152
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1153
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1154
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1155
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1156
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1157
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1158
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1159
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1160
  96, 97, 98, 99,                       /* %fcc0-3 */   \
1161
  100, 0, 14, 30, 31, 101}              /* %icc, %g0, %o6, %i6, %i7, %sfp */
1162
 
1163
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1164
 
1165
extern char sparc_leaf_regs[];
1166
#define LEAF_REGISTERS sparc_leaf_regs
1167
 
1168
extern char leaf_reg_remap[];
1169
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1170
 
1171
/* The class value for index registers, and the one for base regs.  */
1172
#define INDEX_REG_CLASS GENERAL_REGS
1173
#define BASE_REG_CLASS GENERAL_REGS
1174
 
1175
/* Local macro to handle the two v9 classes of FP regs.  */
1176
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1177
 
1178
/* Get reg_class from a letter such as appears in the machine description.
1179
   In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1180
   .md file for v8 and v9.
1181
   'd' and 'b' are used for single and double precision VIS operations,
1182
   if TARGET_VIS.
1183
   'h' is used for V8+ 64 bit global and out registers.  */
1184
 
1185
#define REG_CLASS_FROM_LETTER(C)                \
1186
(TARGET_V9                                      \
1187
 ? ((C) == 'f' ? FP_REGS                        \
1188
    : (C) == 'e' ? EXTRA_FP_REGS                \
1189
    : (C) == 'c' ? FPCC_REGS                    \
1190
    : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1191
    : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1192
    : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1193
    : NO_REGS)                                  \
1194
 : ((C) == 'f' ? FP_REGS                        \
1195
    : (C) == 'e' ? FP_REGS                      \
1196
    : (C) == 'c' ? FPCC_REGS                    \
1197
    : NO_REGS))
1198
 
1199
/* The letters I, J, K, L, M, N, O, P in a register constraint string
1200
   can be used to stand for particular ranges of CONST_INTs.
1201
   This macro defines what the ranges are.
1202
   C is the letter, and VALUE is a constant value.
1203
   Return 1 if VALUE is in the range specified by C.
1204
 
1205
   `I' is used for the range of constants an insn can actually contain.
1206
   `J' is used for the range which is just zero (since that is R0).
1207
   `K' is used for constants which can be loaded with a single sethi insn.
1208
   `L' is used for the range of constants supported by the movcc insns.
1209
   `M' is used for the range of constants supported by the movrcc insns.
1210
   `N' is like K, but for constants wider than 32 bits.
1211
   `O' is used for the range which is just 4096.
1212
   `P' is free.  */
1213
 
1214
/* Predicates for 10-bit, 11-bit and 13-bit signed constants.  */
1215
#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1216
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1217
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1218
 
1219
/* 10- and 11-bit immediates are only used for a few specific insns.
1220
   SMALL_INT is used throughout the port so we continue to use it.  */
1221
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1222
 
1223
/* Predicate for constants that can be loaded with a sethi instruction.
1224
   This is the general, 64-bit aware, bitwise version that ensures that
1225
   only constants whose representation fits in the mask
1226
 
1227
     0x00000000fffffc00
1228
 
1229
   are accepted.  It will reject, for example, negative SImode constants
1230
   on 64-bit hosts, so correct handling is to mask the value beforehand
1231
   according to the mode of the instruction.  */
1232
#define SPARC_SETHI_P(X) \
1233
  (((unsigned HOST_WIDE_INT) (X) \
1234
    & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1235
 
1236
/* Version of the above predicate for SImode constants and below.  */
1237
#define SPARC_SETHI32_P(X) \
1238
  (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1239
 
1240
#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
1241
  ((C) == 'I' ? SPARC_SIMM13_P (VALUE)                  \
1242
   : (C) == 'J' ? (VALUE) == 0                          \
1243
   : (C) == 'K' ? SPARC_SETHI32_P (VALUE)               \
1244
   : (C) == 'L' ? SPARC_SIMM11_P (VALUE)                \
1245
   : (C) == 'M' ? SPARC_SIMM10_P (VALUE)                \
1246
   : (C) == 'N' ? SPARC_SETHI_P (VALUE)                 \
1247
   : (C) == 'O' ? (VALUE) == 4096                       \
1248
   : 0)
1249
 
1250
/* Similar, but for CONST_DOUBLEs, and defining letters G and H.
1251
   Here VALUE is the CONST_DOUBLE rtx itself.  */
1252
 
1253
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1254
  ((C) == 'G' ? const_zero_operand (VALUE, GET_MODE (VALUE))    \
1255
   : (C) == 'H' ? arith_double_operand (VALUE, DImode)          \
1256
   : 0)
1257
 
1258
/* Given an rtx X being reloaded into a reg required to be
1259
   in class CLASS, return the class of reg to actually use.
1260
   In general this is just CLASS; but on some machines
1261
   in some cases it is preferable to use a more restrictive class.  */
1262
/* - We can't load constants into FP registers.
1263
   - We can't load FP constants into integer registers when soft-float,
1264
     because there is no soft-float pattern with a r/F constraint.
1265
   - We can't load FP constants into integer registers for TFmode unless
1266
     it is 0.0L, because there is no movtf pattern with a r/F constraint.
1267
   - Try and reload integer constants (symbolic or otherwise) back into
1268
     registers directly, rather than having them dumped to memory.  */
1269
 
1270
#define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
1271
  (CONSTANT_P (X)                                       \
1272
   ? ((FP_REG_CLASS_P (CLASS)                           \
1273
       || (CLASS) == GENERAL_OR_FP_REGS                 \
1274
       || (CLASS) == GENERAL_OR_EXTRA_FP_REGS           \
1275
       || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT  \
1276
           && ! TARGET_FPU)                             \
1277
       || (GET_MODE (X) == TFmode                       \
1278
           && ! const_zero_operand (X, TFmode)))        \
1279
      ? NO_REGS                                         \
1280
      : (!FP_REG_CLASS_P (CLASS)                        \
1281
         && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)  \
1282
      ? GENERAL_REGS                                    \
1283
      : (CLASS))                                        \
1284
   : (CLASS))
1285
 
1286
/* Return the register class of a scratch register needed to load IN into
1287
   a register of class CLASS in MODE.
1288
 
1289
   We need a temporary when loading/storing a HImode/QImode value
1290
   between memory and the FPU registers.  This can happen when combine puts
1291
   a paradoxical subreg in a float/fix conversion insn.
1292
 
1293
   We need a temporary when loading/storing a DFmode value between
1294
   unaligned memory and the upper FPU registers.  */
1295
 
1296
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)           \
1297
  ((FP_REG_CLASS_P (CLASS)                                      \
1298
    && ((MODE) == HImode || (MODE) == QImode)                   \
1299
    && (GET_CODE (IN) == MEM                                    \
1300
        || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)   \
1301
            && true_regnum (IN) == -1)))                        \
1302
   ? GENERAL_REGS                                               \
1303
   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode              \
1304
      && GET_CODE (IN) == MEM && TARGET_ARCH32                  \
1305
      && ! mem_min_alignment ((IN), 8))                         \
1306
     ? FP_REGS                                                  \
1307
     : (((TARGET_CM_MEDANY                                      \
1308
          && symbolic_operand ((IN), (MODE)))                   \
1309
         || (TARGET_CM_EMBMEDANY                                \
1310
             && text_segment_operand ((IN), (MODE))))           \
1311
        && !flag_pic)                                           \
1312
       ? GENERAL_REGS                                           \
1313
       : NO_REGS)
1314
 
1315
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)          \
1316
  ((FP_REG_CLASS_P (CLASS)                                      \
1317
     && ((MODE) == HImode || (MODE) == QImode)                  \
1318
     && (GET_CODE (IN) == MEM                                   \
1319
         || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)  \
1320
             && true_regnum (IN) == -1)))                       \
1321
   ? GENERAL_REGS                                               \
1322
   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode              \
1323
      && GET_CODE (IN) == MEM && TARGET_ARCH32                  \
1324
      && ! mem_min_alignment ((IN), 8))                         \
1325
     ? FP_REGS                                                  \
1326
     : (((TARGET_CM_MEDANY                                      \
1327
          && symbolic_operand ((IN), (MODE)))                   \
1328
         || (TARGET_CM_EMBMEDANY                                \
1329
             && text_segment_operand ((IN), (MODE))))           \
1330
        && !flag_pic)                                           \
1331
       ? GENERAL_REGS                                           \
1332
       : NO_REGS)
1333
 
1334
/* On SPARC it is not possible to directly move data between
1335
   GENERAL_REGS and FP_REGS.  */
1336
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1337
  (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1338
 
1339
/* Return the stack location to use for secondary memory needed reloads.
1340
   We want to use the reserved location just below the frame pointer.
1341
   However, we must ensure that there is a frame, so use assign_stack_local
1342
   if the frame size is zero.  */
1343
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1344
  (get_frame_size () == 0                                               \
1345
   ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0)                 \
1346
   : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx,               \
1347
                                       STARTING_FRAME_OFFSET)))
1348
 
1349
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1350
   because the movsi and movsf patterns don't handle r/f moves.
1351
   For v8 we copy the default definition.  */
1352
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1353
  (TARGET_ARCH64                                                \
1354
   ? (GET_MODE_BITSIZE (MODE) < 32                              \
1355
      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)            \
1356
      : MODE)                                                   \
1357
   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD                   \
1358
      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1359
      : MODE))
1360
 
1361
/* Return the maximum number of consecutive registers
1362
   needed to represent mode MODE in a register of class CLASS.  */
1363
/* On SPARC, this is the size of MODE in words.  */
1364
#define CLASS_MAX_NREGS(CLASS, MODE)    \
1365
  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1366
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1367
 
1368
/* Stack layout; function entry, exit and calling.  */
1369
 
1370
/* Define this if pushing a word on the stack
1371
   makes the stack pointer a smaller address.  */
1372
#define STACK_GROWS_DOWNWARD
1373
 
1374
/* Define this to nonzero if the nominal address of the stack frame
1375
   is at the high-address end of the local variables;
1376
   that is, each additional local variable allocated
1377
   goes at a more negative offset in the frame.  */
1378
#define FRAME_GROWS_DOWNWARD 1
1379
 
1380
/* Offset within stack frame to start allocating local variables at.
1381
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1382
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1383
   of the first local allocated.  */
1384
/* This allows space for one TFmode floating point value, which is used
1385
   by SECONDARY_MEMORY_NEEDED_RTX.  */
1386
#define STARTING_FRAME_OFFSET \
1387
  (TARGET_ARCH64 ? -16 \
1388
   : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1389
 
1390
/* Offset of first parameter from the argument pointer register value.
1391
   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1392
   even if this function isn't going to use it.
1393
   v9: This is 128 for the ins and locals.  */
1394
#define FIRST_PARM_OFFSET(FNDECL) \
1395
  (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1396
 
1397
/* Offset from the argument pointer register value to the CFA.
1398
   This is different from FIRST_PARM_OFFSET because the register window
1399
   comes between the CFA and the arguments.  */
1400
#define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1401
 
1402
/* When a parameter is passed in a register, stack space is still
1403
   allocated for it.
1404
   !v9: All 6 possible integer registers have backing store allocated.
1405
   v9: Only space for the arguments passed is allocated.  */
1406
/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1407
   meaning to the backend.  Further, we need to be able to detect if a
1408
   varargs/unprototyped function is called, as they may want to spill more
1409
   registers than we've provided space.  Ugly, ugly.  So for now we retain
1410
   all 6 slots even for v9.  */
1411
#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1412
 
1413
/* Definitions for register elimination.  */
1414
 
1415
#define ELIMINABLE_REGS \
1416
  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1417
   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1418
 
1419
/* The way this is structured, we can't eliminate SFP in favor of SP
1420
   if the frame pointer is required: we want to use the SFP->HFP elimination
1421
   in that case.  But the test in update_eliminables doesn't know we are
1422
   assuming below that we only do the former elimination.  */
1423
#define CAN_ELIMINATE(FROM, TO) \
1424
  ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1425
 
1426
/* We always pretend that this is a leaf function because if it's not,
1427
   there's no point in trying to eliminate the frame pointer.  If it
1428
   is a leaf function, we guessed right!  */
1429
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
1430
  do {                                                                  \
1431
    if ((TO) == STACK_POINTER_REGNUM)                                   \
1432
      (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1);       \
1433
    else                                                                \
1434
      (OFFSET) = 0;                                                     \
1435
    (OFFSET) += SPARC_STACK_BIAS;                                       \
1436
  } while (0)
1437
 
1438
/* Keep the stack pointer constant throughout the function.
1439
   This is both an optimization and a necessity: longjmp
1440
   doesn't behave itself when the stack pointer moves within
1441
   the function!  */
1442
#define ACCUMULATE_OUTGOING_ARGS 1
1443
 
1444
/* Value is the number of bytes of arguments automatically
1445
   popped when returning from a subroutine call.
1446
   FUNDECL is the declaration node of the function (as a tree),
1447
   FUNTYPE is the data type of the function (as a tree),
1448
   or for a library call it is an identifier node for the subroutine name.
1449
   SIZE is the number of bytes of arguments passed on the stack.  */
1450
 
1451
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1452
 
1453
/* Define this macro if the target machine has "register windows".  This
1454
   C expression returns the register number as seen by the called function
1455
   corresponding to register number OUT as seen by the calling function.
1456
   Return OUT if register number OUT is not an outbound register.  */
1457
 
1458
#define INCOMING_REGNO(OUT) \
1459
 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1460
 
1461
/* Define this macro if the target machine has "register windows".  This
1462
   C expression returns the register number as seen by the calling function
1463
   corresponding to register number IN as seen by the called function.
1464
   Return IN if register number IN is not an inbound register.  */
1465
 
1466
#define OUTGOING_REGNO(IN) \
1467
 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1468
 
1469
/* Define this macro if the target machine has register windows.  This
1470
   C expression returns true if the register is call-saved but is in the
1471
   register window.  */
1472
 
1473
#define LOCAL_REGNO(REGNO) \
1474
  ((REGNO) >= 16 && (REGNO) <= 31)
1475
 
1476
/* Define how to find the value returned by a function.
1477
   VALTYPE is the data type of the value (as a tree).
1478
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1479
   otherwise, FUNC is 0.  */
1480
 
1481
/* On SPARC the value is found in the first "output" register.  */
1482
 
1483
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1484
  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1485
 
1486
/* But the called function leaves it in the first "input" register.  */
1487
 
1488
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1489
  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1490
 
1491
/* Define how to find the value returned by a library function
1492
   assuming the value has mode MODE.  */
1493
 
1494
#define LIBCALL_VALUE(MODE) \
1495
  function_value (NULL_TREE, (MODE), 1)
1496
 
1497
/* 1 if N is a possible register number for a function value
1498
   as seen by the caller.
1499
   On SPARC, the first "output" reg is used for integer values,
1500
   and the first floating point register is used for floating point values.  */
1501
 
1502
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1503
 
1504
/* Define the size of space to allocate for the return value of an
1505
   untyped_call.  */
1506
 
1507
#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1508
 
1509
/* 1 if N is a possible register number for function argument passing.
1510
   On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1511
 
1512
#define FUNCTION_ARG_REGNO_P(N) \
1513
(TARGET_ARCH64 \
1514
 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1515
 : ((N) >= 8 && (N) <= 13))
1516
 
1517
/* Define a data type for recording info about an argument list
1518
   during the scan of that argument list.  This data type should
1519
   hold all necessary information about the function itself
1520
   and about the args processed so far, enough to enable macros
1521
   such as FUNCTION_ARG to determine where the next arg should go.
1522
 
1523
   On SPARC (!v9), this is a single integer, which is a number of words
1524
   of arguments scanned so far (including the invisible argument,
1525
   if any, which holds the structure-value-address).
1526
   Thus 7 or more means all following args should go on the stack.
1527
 
1528
   For v9, we also need to know whether a prototype is present.  */
1529
 
1530
struct sparc_args {
1531
  int words;       /* number of words passed so far */
1532
  int prototype_p; /* nonzero if a prototype is present */
1533
  int libcall_p;   /* nonzero if a library call */
1534
};
1535
#define CUMULATIVE_ARGS struct sparc_args
1536
 
1537
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1538
   for a call to a function whose data type is FNTYPE.
1539
   For a library call, FNTYPE is 0.  */
1540
 
1541
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1542
init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1543
 
1544
/* Update the data in CUM to advance over an argument
1545
   of mode MODE and data type TYPE.
1546
   TYPE is null for libcalls where that information may not be available.  */
1547
 
1548
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1549
function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1550
 
1551
/* Determine where to put an argument to a function.
1552
   Value is zero to push the argument on the stack,
1553
   or a hard register in which to store the argument.
1554
 
1555
   MODE is the argument's machine mode.
1556
   TYPE is the data type of the argument (as a tree).
1557
    This is null for libcalls where that information may
1558
    not be available.
1559
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1560
    the preceding args and about the function being called.
1561
   NAMED is nonzero if this argument is a named parameter
1562
    (otherwise it is an extra parameter matching an ellipsis).  */
1563
 
1564
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1565
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1566
 
1567
/* Define where a function finds its arguments.
1568
   This is different from FUNCTION_ARG because of register windows.  */
1569
 
1570
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1571
function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1572
 
1573
/* If defined, a C expression which determines whether, and in which direction,
1574
   to pad out an argument with extra space.  The value should be of type
1575
   `enum direction': either `upward' to pad above the argument,
1576
   `downward' to pad below, or `none' to inhibit padding.  */
1577
 
1578
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1579
function_arg_padding ((MODE), (TYPE))
1580
 
1581
/* If defined, a C expression that gives the alignment boundary, in bits,
1582
   of an argument with the specified mode and type.  If it is not defined,
1583
   PARM_BOUNDARY is used for all arguments.
1584
   For sparc64, objects requiring 16 byte alignment are passed that way.  */
1585
 
1586
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1587
((TARGET_ARCH64                                 \
1588
  && (GET_MODE_ALIGNMENT (MODE) == 128          \
1589
      || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1590
 ? 128 : PARM_BOUNDARY)
1591
 
1592
/* Define the information needed to generate branch and scc insns.  This is
1593
   stored from the compare operation.  Note that we can't use "rtx" here
1594
   since it hasn't been defined!  */
1595
 
1596
extern GTY(()) rtx sparc_compare_op0;
1597
extern GTY(()) rtx sparc_compare_op1;
1598
extern GTY(()) rtx sparc_compare_emitted;
1599
 
1600
 
1601
/* Generate the special assembly code needed to tell the assembler whatever
1602
   it might need to know about the return value of a function.
1603
 
1604
   For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1605
   information to the assembler relating to peephole optimization (done in
1606
   the assembler).  */
1607
 
1608
#define ASM_DECLARE_RESULT(FILE, RESULT) \
1609
  fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1610
 
1611
/* Output the special assembly code needed to tell the assembler some
1612
   register is used as global register variable.
1613
 
1614
   SPARC 64bit psABI declares registers %g2 and %g3 as application
1615
   registers and %g6 and %g7 as OS registers.  Any object using them
1616
   should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1617
   and how they are used (scratch or some global variable).
1618
   Linker will then refuse to link together objects which use those
1619
   registers incompatibly.
1620
 
1621
   Unless the registers are used for scratch, two different global
1622
   registers cannot be declared to the same name, so in the unlikely
1623
   case of a global register variable occupying more than one register
1624
   we prefix the second and following registers with .gnu.part1. etc.  */
1625
 
1626
extern GTY(()) char sparc_hard_reg_printed[8];
1627
 
1628
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1629
#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)            \
1630
do {                                                                    \
1631
  if (TARGET_ARCH64)                                                    \
1632
    {                                                                   \
1633
      int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1634
      int reg;                                                          \
1635
      for (reg = (REGNO); reg < 8 && reg < end; reg++)                  \
1636
        if ((reg & ~1) == 2 || (reg & ~1) == 6)                         \
1637
          {                                                             \
1638
            if (reg == (REGNO))                                         \
1639
              fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1640
            else                                                        \
1641
              fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",  \
1642
                       reg, reg - (REGNO), (NAME));                     \
1643
            sparc_hard_reg_printed[reg] = 1;                            \
1644
          }                                                             \
1645
    }                                                                   \
1646
} while (0)
1647
#endif
1648
 
1649
 
1650
/* Emit rtl for profiling.  */
1651
#define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1652
 
1653
/* All the work done in PROFILE_HOOK, but still required.  */
1654
#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1655
 
1656
/* Set the name of the mcount function for the system.  */
1657
#define MCOUNT_FUNCTION "*mcount"
1658
 
1659
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1660
   the stack pointer does not matter.  The value is tested only in
1661
   functions that have frame pointers.
1662
   No definition is equivalent to always zero.  */
1663
 
1664
#define EXIT_IGNORE_STACK       \
1665
 (get_frame_size () != 0        \
1666
  || current_function_calls_alloca || current_function_outgoing_args_size)
1667
 
1668
/* Define registers used by the epilogue and return instruction.  */
1669
#define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1670
  || (current_function_calls_eh_return && (REGNO) == 1))
1671
 
1672
/* Length in units of the trampoline for entering a nested function.  */
1673
 
1674
#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1675
 
1676
#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1677
 
1678
/* Emit RTL insns to initialize the variable parts of a trampoline.
1679
   FNADDR is an RTX for the address of the function's pure code.
1680
   CXT is an RTX for the static chain value for the function.  */
1681
 
1682
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1683
    if (TARGET_ARCH64)                                          \
1684
      sparc64_initialize_trampoline (TRAMP, FNADDR, CXT);       \
1685
    else                                                        \
1686
      sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1687
 
1688
/* Implement `va_start' for varargs and stdarg.  */
1689
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1690
  sparc_va_start (valist, nextarg)
1691
 
1692
/* Generate RTL to flush the register windows so as to make arbitrary frames
1693
   available.  */
1694
#define SETUP_FRAME_ADDRESSES()         \
1695
  emit_insn (gen_flush_register_windows ())
1696
 
1697
/* Given an rtx for the address of a frame,
1698
   return an rtx for the address of the word in the frame
1699
   that holds the dynamic chain--the previous frame's address.  */
1700
#define DYNAMIC_CHAIN_ADDRESS(frame)    \
1701
  plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1702
 
1703
/* Given an rtx for the frame pointer,
1704
   return an rtx for the address of the frame.  */
1705
#define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1706
 
1707
/* The return address isn't on the stack, it is in a register, so we can't
1708
   access it from the current frame pointer.  We can access it from the
1709
   previous frame pointer though by reading a value from the register window
1710
   save area.  */
1711
#define RETURN_ADDR_IN_PREVIOUS_FRAME
1712
 
1713
/* This is the offset of the return address to the true next instruction to be
1714
   executed for the current function.  */
1715
#define RETURN_ADDR_OFFSET \
1716
  (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1717
 
1718
/* The current return address is in %i7.  The return address of anything
1719
   farther back is in the register window save area at [%fp+60].  */
1720
/* ??? This ignores the fact that the actual return address is +8 for normal
1721
   returns, and +12 for structure returns.  */
1722
#define RETURN_ADDR_RTX(count, frame)           \
1723
  ((count == -1)                                \
1724
   ? gen_rtx_REG (Pmode, 31)                    \
1725
   : gen_rtx_MEM (Pmode,                        \
1726
                  memory_address (Pmode, plus_constant (frame, \
1727
                                                        15 * UNITS_PER_WORD \
1728
                                                        + SPARC_STACK_BIAS))))
1729
 
1730
/* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1731
   +12, but always using +8 is close enough for frame unwind purposes.
1732
   Actually, just using %o7 is close enough for unwinding, but %o7+8
1733
   is something you can return to.  */
1734
#define INCOMING_RETURN_ADDR_RTX \
1735
  plus_constant (gen_rtx_REG (word_mode, 15), 8)
1736
#define DWARF_FRAME_RETURN_COLUMN       DWARF_FRAME_REGNUM (15)
1737
 
1738
/* The offset from the incoming value of %sp to the top of the stack frame
1739
   for the current function.  On sparc64, we have to account for the stack
1740
   bias if present.  */
1741
#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1742
 
1743
/* Describe how we implement __builtin_eh_return.  */
1744
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1745
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 1)  /* %g1 */
1746
#define EH_RETURN_HANDLER_RTX   gen_rtx_REG (Pmode, 31) /* %i7 */
1747
 
1748
/* Select a format to encode pointers in exception handling data.  CODE
1749
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1750
   true if the symbol may be affected by dynamic relocations.
1751
 
1752
   If assembler and linker properly support .uaword %r_disp32(foo),
1753
   then use PC relative 32-bit relocations instead of absolute relocs
1754
   for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1755
   for binaries, to save memory.
1756
 
1757
   binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1758
   symbol %r_disp32() is against was not local, but .hidden.  In that
1759
   case, we have to use DW_EH_PE_absptr for pic personality.  */
1760
#ifdef HAVE_AS_SPARC_UA_PCREL
1761
#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1762
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1763
  (flag_pic                                                             \
1764
   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1765
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1766
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1767
      : DW_EH_PE_absptr))
1768
#else
1769
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1770
  (flag_pic                                                             \
1771
   ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))    \
1772
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1773
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1774
      : DW_EH_PE_absptr))
1775
#endif
1776
 
1777
/* Emit a PC-relative relocation.  */
1778
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1779
  do {                                                  \
1780
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1781
    fprintf (FILE, "%%r_disp%d(", SIZE * 8);            \
1782
    assemble_name (FILE, LABEL);                        \
1783
    fputc (')', FILE);                                  \
1784
  } while (0)
1785
#endif
1786
 
1787
/* Addressing modes, and classification of registers for them.  */
1788
 
1789
/* Macros to check register numbers against specific register classes.  */
1790
 
1791
/* These assume that REGNO is a hard or pseudo reg number.
1792
   They give nonzero only if REGNO is a hard reg of the suitable class
1793
   or a pseudo reg currently allocated to a suitable hard reg.
1794
   Since they use reg_renumber, they are safe only once reg_renumber
1795
   has been allocated, which happens in local-alloc.c.  */
1796
 
1797
#define REGNO_OK_FOR_INDEX_P(REGNO) \
1798
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32  \
1799
 || (REGNO) == FRAME_POINTER_REGNUM                             \
1800
 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1801
 
1802
#define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1803
 
1804
#define REGNO_OK_FOR_FP_P(REGNO) \
1805
  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1806
   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1807
#define REGNO_OK_FOR_CCFP_P(REGNO) \
1808
 (TARGET_V9 \
1809
  && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1810
      || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1811
 
1812
/* Now macros that check whether X is a register and also,
1813
   strictly, whether it is in a specified class.
1814
 
1815
   These macros are specific to the SPARC, and may be used only
1816
   in code for printing assembler insns and in conditions for
1817
   define_optimization.  */
1818
 
1819
/* 1 if X is an fp register.  */
1820
 
1821
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1822
 
1823
/* Is X, a REG, an in or global register?  i.e. is regno 0..7 or 24..31 */
1824
#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1825
 
1826
/* Maximum number of registers that can appear in a valid memory address.  */
1827
 
1828
#define MAX_REGS_PER_ADDRESS 2
1829
 
1830
/* Recognize any constant value that is a valid address.
1831
   When PIC, we do not accept an address that would require a scratch reg
1832
   to load into a register.  */
1833
 
1834
#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1835
 
1836
/* Define this, so that when PIC, reload won't try to reload invalid
1837
   addresses which require two reload registers.  */
1838
 
1839
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1840
 
1841
/* Nonzero if the constant value X is a legitimate general operand.
1842
   Anything can be made to work except floating point constants.
1843
   If TARGET_VIS, 0.0 can be made to work as well.  */
1844
 
1845
#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1846
 
1847
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1848
   and check its validity for a certain class.
1849
   We have two alternate definitions for each of them.
1850
   The usual definition accepts all pseudo regs; the other rejects
1851
   them unless they have been allocated suitable hard regs.
1852
   The symbol REG_OK_STRICT causes the latter definition to be used.
1853
 
1854
   Most source files want to accept pseudo regs in the hope that
1855
   they will get allocated to the class that the insn wants them to be in.
1856
   Source files for reload pass need to be strict.
1857
   After reload, it makes no difference, since pseudo regs have
1858
   been eliminated by then.  */
1859
 
1860
/* Optional extra constraints for this machine.
1861
 
1862
   'Q' handles floating point constants which can be moved into
1863
       an integer register with a single sethi instruction.
1864
 
1865
   'R' handles floating point constants which can be moved into
1866
       an integer register with a single mov instruction.
1867
 
1868
   'S' handles floating point constants which can be moved into
1869
       an integer register using a high/lo_sum sequence.
1870
 
1871
   'T' handles memory addresses where the alignment is known to
1872
       be at least 8 bytes.
1873
 
1874
   `U' handles all pseudo registers or a hard even numbered
1875
       integer register, needed for ldd/std instructions.
1876
 
1877
   'W' handles the memory operand when moving operands in/out
1878
       of 'e' constraint floating point registers.
1879
 
1880
   'Y' handles the zero vector constant.  */
1881
 
1882
#ifndef REG_OK_STRICT
1883
 
1884
/* Nonzero if X is a hard reg that can be used as an index
1885
   or if it is a pseudo reg.  */
1886
#define REG_OK_FOR_INDEX_P(X) \
1887
  (REGNO (X) < 32                               \
1888
   || REGNO (X) == FRAME_POINTER_REGNUM         \
1889
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1890
 
1891
/* Nonzero if X is a hard reg that can be used as a base reg
1892
   or if it is a pseudo reg.  */
1893
#define REG_OK_FOR_BASE_P(X)  REG_OK_FOR_INDEX_P (X)
1894
 
1895
/* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
1896
   'W' is like 'T' but is assumed true on arch64.
1897
 
1898
   Remember to accept pseudo-registers for memory constraints if reload is
1899
   in progress.  */
1900
 
1901
#define EXTRA_CONSTRAINT(OP, C) \
1902
        sparc_extra_constraint_check(OP, C, 0)
1903
 
1904
#else
1905
 
1906
/* Nonzero if X is a hard reg that can be used as an index.  */
1907
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1908
/* Nonzero if X is a hard reg that can be used as a base reg.  */
1909
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1910
 
1911
#define EXTRA_CONSTRAINT(OP, C) \
1912
        sparc_extra_constraint_check(OP, C, 1)
1913
 
1914
#endif
1915
 
1916
/* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1917
 
1918
#ifdef HAVE_AS_OFFSETABLE_LO10
1919
#define USE_AS_OFFSETABLE_LO10 1
1920
#else
1921
#define USE_AS_OFFSETABLE_LO10 0
1922
#endif
1923
 
1924
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1925
   that is a valid memory address for an instruction.
1926
   The MODE argument is the machine mode for the MEM expression
1927
   that wants to use this address.
1928
 
1929
   On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1930
   ordinarily.  This changes a bit when generating PIC.
1931
 
1932
   If you change this, execute "rm explow.o recog.o reload.o".  */
1933
 
1934
#define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1935
 
1936
#define RTX_OK_FOR_BASE_P(X)                                            \
1937
  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))                       \
1938
  || (GET_CODE (X) == SUBREG                                            \
1939
      && GET_CODE (SUBREG_REG (X)) == REG                               \
1940
      && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1941
 
1942
#define RTX_OK_FOR_INDEX_P(X)                                           \
1943
  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))                      \
1944
  || (GET_CODE (X) == SUBREG                                            \
1945
      && GET_CODE (SUBREG_REG (X)) == REG                               \
1946
      && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1947
 
1948
#define RTX_OK_FOR_OFFSET_P(X)                                          \
1949
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1950
 
1951
#define RTX_OK_FOR_OLO10_P(X)                                           \
1952
  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1953
 
1954
#ifdef REG_OK_STRICT
1955
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)         \
1956
{                                                       \
1957
  if (legitimate_address_p (MODE, X, 1))                \
1958
    goto ADDR;                                          \
1959
}
1960
#else
1961
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)         \
1962
{                                                       \
1963
  if (legitimate_address_p (MODE, X, 0))                \
1964
    goto ADDR;                                          \
1965
}
1966
#endif
1967
 
1968
/* Go to LABEL if ADDR (a legitimate address expression)
1969
   has an effect that depends on the machine mode it is used for.
1970
 
1971
   In PIC mode,
1972
 
1973
      (mem:HI [%l7+a])
1974
 
1975
   is not equivalent to
1976
 
1977
      (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1978
 
1979
   because [%l7+a+1] is interpreted as the address of (a+1).  */
1980
 
1981
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)       \
1982
{                                                       \
1983
  if (flag_pic == 1)                                    \
1984
    {                                                   \
1985
      if (GET_CODE (ADDR) == PLUS)                      \
1986
        {                                               \
1987
          rtx op0 = XEXP (ADDR, 0);                     \
1988
          rtx op1 = XEXP (ADDR, 1);                     \
1989
          if (op0 == pic_offset_table_rtx               \
1990
              && SYMBOLIC_CONST (op1))                  \
1991
            goto LABEL;                                 \
1992
        }                                               \
1993
    }                                                   \
1994
}
1995
 
1996
/* Try machine-dependent ways of modifying an illegitimate address
1997
   to be legitimate.  If we find one, return the new, valid address.
1998
   This macro is used in only one place: `memory_address' in explow.c.
1999
 
2000
   OLDX is the address as it was before break_out_memory_refs was called.
2001
   In some cases it is useful to look at this to decide what needs to be done.
2002
 
2003
   MODE and WIN are passed so that this macro can use
2004
   GO_IF_LEGITIMATE_ADDRESS.
2005
 
2006
   It is always safe for this macro to do nothing.  It exists to recognize
2007
   opportunities to optimize the output.  */
2008
 
2009
/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
2010
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)     \
2011
{                                               \
2012
  (X) = legitimize_address (X, OLDX, MODE);     \
2013
  if (memory_address_p (MODE, X))               \
2014
    goto WIN;                                   \
2015
}
2016
 
2017
/* Try a machine-dependent way of reloading an illegitimate address
2018
   operand.  If we find one, push the reload and jump to WIN.  This
2019
   macro is used in only one place: `find_reloads_address' in reload.c.
2020
 
2021
   For SPARC 32, we wish to handle addresses by splitting them into
2022
   HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2023
   This cuts the number of extra insns by one.
2024
 
2025
   Do nothing when generating PIC code and the address is a
2026
   symbolic operand or requires a scratch register.  */
2027
 
2028
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2029
do {                                                                    \
2030
  /* Decompose SImode constants into hi+lo_sum.  We do have to          \
2031
     rerecognize what we produce, so be careful.  */                    \
2032
  if (CONSTANT_P (X)                                                    \
2033
      && (MODE != TFmode || TARGET_ARCH64)                              \
2034
      && GET_MODE (X) == SImode                                         \
2035
      && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH                 \
2036
      && ! (flag_pic                                                    \
2037
            && (symbolic_operand (X, Pmode)                             \
2038
                || pic_address_needs_scratch (X)))                      \
2039
      && sparc_cmodel <= CM_MEDLOW)                                     \
2040
    {                                                                   \
2041
      X = gen_rtx_LO_SUM (GET_MODE (X),                                 \
2042
                          gen_rtx_HIGH (GET_MODE (X), X), X);           \
2043
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
2044
                   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
2045
                   OPNUM, TYPE);                                        \
2046
      goto WIN;                                                         \
2047
    }                                                                   \
2048
  /* ??? 64-bit reloads.  */                                            \
2049
} while (0)
2050
 
2051
/* Specify the machine mode that this machine uses
2052
   for the index in the tablejump instruction.  */
2053
/* If we ever implement any of the full models (such as CM_FULLANY),
2054
   this has to be DImode in that case */
2055
#ifdef HAVE_GAS_SUBSECTION_ORDERING
2056
#define CASE_VECTOR_MODE \
2057
(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2058
#else
2059
/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2060
   we have to sign extend which slows things down.  */
2061
#define CASE_VECTOR_MODE \
2062
(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2063
#endif
2064
 
2065
/* Define this as 1 if `char' should by default be signed; else as 0.  */
2066
#define DEFAULT_SIGNED_CHAR 1
2067
 
2068
/* Max number of bytes we can move from memory to memory
2069
   in one reasonably fast instruction.  */
2070
#define MOVE_MAX 8
2071
 
2072
/* If a memory-to-memory move would take MOVE_RATIO or more simple
2073
   move-instruction pairs, we will do a movmem or libcall instead.  */
2074
 
2075
#define MOVE_RATIO (optimize_size ? 3 : 8)
2076
 
2077
/* Define if operations between registers always perform the operation
2078
   on the full register even if a narrower mode is specified.  */
2079
#define WORD_REGISTER_OPERATIONS
2080
 
2081
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2082
   will either zero-extend or sign-extend.  The value of this macro should
2083
   be the code that says which one of the two operations is implicitly
2084
   done, UNKNOWN if none.  */
2085
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2086
 
2087
/* Nonzero if access to memory by bytes is slow and undesirable.
2088
   For RISC chips, it means that access to memory by bytes is no
2089
   better than access by words when possible, so grab a whole word
2090
   and maybe make use of that.  */
2091
#define SLOW_BYTE_ACCESS 1
2092
 
2093
/* Define this to be nonzero if shift instructions ignore all but the low-order
2094
   few bits.  */
2095
#define SHIFT_COUNT_TRUNCATED 1
2096
 
2097
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2098
   is done just by pretending it is already truncated.  */
2099
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2100
 
2101
/* Specify the machine mode used for addresses.  */
2102
#define Pmode (TARGET_ARCH64 ? DImode : SImode)
2103
 
2104
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2105
   return the mode to be used for the comparison.  For floating-point,
2106
   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
2107
   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
2108
   processing is needed.  */
2109
#define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
2110
 
2111
/* Return nonzero if MODE implies a floating point inequality can be
2112
   reversed.  For SPARC this is always true because we have a full
2113
   compliment of ordered and unordered comparisons, but until generic
2114
   code knows how to reverse it correctly we keep the old definition.  */
2115
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2116
 
2117
/* A function address in a call instruction for indexing purposes.  */
2118
#define FUNCTION_MODE Pmode
2119
 
2120
/* Define this if addresses of constant functions
2121
   shouldn't be put through pseudo regs where they can be cse'd.
2122
   Desirable on machines where ordinary constants are expensive
2123
   but a CALL with constant address is cheap.  */
2124
#define NO_FUNCTION_CSE
2125
 
2126
/* alloca should avoid clobbering the old register save area.  */
2127
#define SETJMP_VIA_SAVE_AREA
2128
 
2129
/* The _Q_* comparison libcalls return booleans.  */
2130
#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2131
 
2132
/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2133
   that the inputs are fully consumed before the output memory is clobbered.  */
2134
 
2135
#define TARGET_BUGGY_QP_LIB     0
2136
 
2137
/* Assume by default that we do not have the Solaris-specific conversion
2138
   routines nor 64-bit integer multiply and divide routines.  */
2139
 
2140
#define SUN_CONVERSION_LIBFUNCS         0
2141
#define DITF_CONVERSION_LIBFUNCS        0
2142
#define SUN_INTEGER_MULTIPLY_64         0
2143
 
2144
/* Compute extra cost of moving data between one register class
2145
   and another.  */
2146
#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2147
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                \
2148
  (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2149
    || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2150
    || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS)          \
2151
   ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2152
       || sparc_cpu == PROCESSOR_ULTRASPARC3 \
2153
       || sparc_cpu == PROCESSOR_NIAGARA) ? 12 : 6) : 2)
2154
 
2155
/* Provide the cost of a branch.  For pre-v9 processors we use
2156
   a value of 3 to take into account the potential annulling of
2157
   the delay slot (which ends up being a bubble in the pipeline slot)
2158
   plus a cycle to take into consideration the instruction cache
2159
   effects.
2160
 
2161
   On v9 and later, which have branch prediction facilities, we set
2162
   it to the depth of the pipeline as that is the cost of a
2163
   mispredicted branch.
2164
 
2165
   On Niagara, normal branches insert 3 bubbles into the pipe
2166
   and annulled branches insert 4 bubbles.  */
2167
 
2168
#define BRANCH_COST \
2169
        ((sparc_cpu == PROCESSOR_V9 \
2170
          || sparc_cpu == PROCESSOR_ULTRASPARC) \
2171
         ? 7 \
2172
         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2173
            ? 9 \
2174
         : (sparc_cpu == PROCESSOR_NIAGARA \
2175
            ? 4 \
2176
         : 3)))
2177
 
2178
#define PREFETCH_BLOCK \
2179
        ((sparc_cpu == PROCESSOR_ULTRASPARC \
2180
          || sparc_cpu == PROCESSOR_ULTRASPARC3 \
2181
          || sparc_cpu == PROCESSOR_NIAGARA) \
2182
         ? 64 : 32)
2183
 
2184
#define SIMULTANEOUS_PREFETCHES \
2185
        ((sparc_cpu == PROCESSOR_ULTRASPARC \
2186
          || sparc_cpu == PROCESSOR_NIAGARA) \
2187
         ? 2 \
2188
         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2189
            ? 8 : 3))
2190
 
2191
/* Control the assembler format that we output.  */
2192
 
2193
/* A C string constant describing how to begin a comment in the target
2194
   assembler language.  The compiler assumes that the comment will end at
2195
   the end of the line.  */
2196
 
2197
#define ASM_COMMENT_START "!"
2198
 
2199
/* Output to assembler file text saying following lines
2200
   may contain character constants, extra white space, comments, etc.  */
2201
 
2202
#define ASM_APP_ON ""
2203
 
2204
/* Output to assembler file text saying following lines
2205
   no longer contain unusual constructs.  */
2206
 
2207
#define ASM_APP_OFF ""
2208
 
2209
/* How to refer to registers in assembler output.
2210
   This sequence is indexed by compiler's hard-register-number (see above).  */
2211
 
2212
#define REGISTER_NAMES \
2213
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",                \
2214
 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",                \
2215
 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",                \
2216
 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",                \
2217
 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",                \
2218
 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",          \
2219
 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",        \
2220
 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",        \
2221
 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",        \
2222
 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",        \
2223
 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",        \
2224
 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",        \
2225
 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2226
 
2227
/* Define additional names for use in asm clobbers and asm declarations.  */
2228
 
2229
#define ADDITIONAL_REGISTER_NAMES \
2230
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2231
 
2232
/* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
2233
   can run past this up to a continuation point.  Once we used 1500, but
2234
   a single entry in C++ can run more than 500 bytes, due to the length of
2235
   mangled symbol names.  dbxout.c should really be fixed to do
2236
   continuations when they are actually needed instead of trying to
2237
   guess...  */
2238
#define DBX_CONTIN_LENGTH 1000
2239
 
2240
/* This is how to output a command to make the user-level label named NAME
2241
   defined for reference from other files.  */
2242
 
2243
/* Globalizing directive for a label.  */
2244
#define GLOBAL_ASM_OP "\t.global "
2245
 
2246
/* The prefix to add to user-visible assembler symbols.  */
2247
 
2248
#define USER_LABEL_PREFIX "_"
2249
 
2250
/* This is how to store into the string LABEL
2251
   the symbol_ref name of an internal numbered label where
2252
   PREFIX is the class of label and NUM is the number within the class.
2253
   This is suitable for output with `assemble_name'.  */
2254
 
2255
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
2256
  sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2257
 
2258
/* This is how we hook in and defer the case-vector until the end of
2259
   the function.  */
2260
#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2261
  sparc_defer_case_vector ((LAB),(VEC), 0)
2262
 
2263
#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2264
  sparc_defer_case_vector ((LAB),(VEC), 1)
2265
 
2266
/* This is how to output an element of a case-vector that is absolute.  */
2267
 
2268
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2269
do {                                                                    \
2270
  char label[30];                                                       \
2271
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);                      \
2272
  if (CASE_VECTOR_MODE == SImode)                                       \
2273
    fprintf (FILE, "\t.word\t");                                        \
2274
  else                                                                  \
2275
    fprintf (FILE, "\t.xword\t");                                       \
2276
  assemble_name (FILE, label);                                          \
2277
  fputc ('\n', FILE);                                                   \
2278
} while (0)
2279
 
2280
/* This is how to output an element of a case-vector that is relative.
2281
   (SPARC uses such vectors only when generating PIC.)  */
2282
 
2283
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
2284
do {                                                                    \
2285
  char label[30];                                                       \
2286
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));                    \
2287
  if (CASE_VECTOR_MODE == SImode)                                       \
2288
    fprintf (FILE, "\t.word\t");                                        \
2289
  else                                                                  \
2290
    fprintf (FILE, "\t.xword\t");                                       \
2291
  assemble_name (FILE, label);                                          \
2292
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));                      \
2293
  fputc ('-', FILE);                                                    \
2294
  assemble_name (FILE, label);                                          \
2295
  fputc ('\n', FILE);                                                   \
2296
} while (0)
2297
 
2298
/* This is what to output before and after case-vector (both
2299
   relative and absolute).  If .subsection -1 works, we put case-vectors
2300
   at the beginning of the current section.  */
2301
 
2302
#ifdef HAVE_GAS_SUBSECTION_ORDERING
2303
 
2304
#define ASM_OUTPUT_ADDR_VEC_START(FILE)                                 \
2305
  fprintf(FILE, "\t.subsection\t-1\n")
2306
 
2307
#define ASM_OUTPUT_ADDR_VEC_END(FILE)                                   \
2308
  fprintf(FILE, "\t.previous\n")
2309
 
2310
#endif
2311
 
2312
/* This is how to output an assembler line
2313
   that says to advance the location counter
2314
   to a multiple of 2**LOG bytes.  */
2315
 
2316
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2317
  if ((LOG) != 0)                       \
2318
    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2319
 
2320
/* This is how to output an assembler line that says to advance
2321
   the location counter to a multiple of 2**LOG bytes using the
2322
   "nop" instruction as padding.  */
2323
#define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG)   \
2324
  if ((LOG) != 0)                             \
2325
    fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2326
 
2327
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2328
  fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2329
 
2330
/* This says how to output an assembler line
2331
   to define a global common symbol.  */
2332
 
2333
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
2334
( fputs ("\t.common ", (FILE)),         \
2335
  assemble_name ((FILE), (NAME)),               \
2336
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2337
 
2338
/* This says how to output an assembler line to define a local common
2339
   symbol.  */
2340
 
2341
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)             \
2342
( fputs ("\t.reserve ", (FILE)),                                        \
2343
  assemble_name ((FILE), (NAME)),                                       \
2344
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",      \
2345
           (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2346
 
2347
/* A C statement (sans semicolon) to output to the stdio stream
2348
   FILE the assembler definition of uninitialized global DECL named
2349
   NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2350
   Try to use asm_output_aligned_bss to implement this macro.  */
2351
 
2352
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
2353
  do {                                                          \
2354
    ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);         \
2355
  } while (0)
2356
 
2357
#define IDENT_ASM_OP "\t.ident\t"
2358
 
2359
/* Output #ident as a .ident.  */
2360
 
2361
#define ASM_OUTPUT_IDENT(FILE, NAME) \
2362
  fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2363
 
2364
/* Prettify the assembly.  */
2365
 
2366
extern int sparc_indent_opcode;
2367
 
2368
#define ASM_OUTPUT_OPCODE(FILE, PTR)    \
2369
  do {                                  \
2370
    if (sparc_indent_opcode)            \
2371
      {                                 \
2372
        putc (' ', FILE);               \
2373
        sparc_indent_opcode = 0; \
2374
      }                                 \
2375
  } while (0)
2376
 
2377
#define SPARC_SYMBOL_REF_TLS_P(RTX) \
2378
  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
2379
 
2380
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2381
  ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '('              \
2382
   || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2383
 
2384
/* Print operand X (an rtx) in assembler syntax to file FILE.
2385
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2386
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2387
 
2388
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2389
 
2390
/* Print a memory address as an operand to reference that memory location.  */
2391
 
2392
#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2393
{ register rtx base, index = 0;                                  \
2394
  int offset = 0;                                                \
2395
  register rtx addr = ADDR;                                     \
2396
  if (GET_CODE (addr) == REG)                                   \
2397
    fputs (reg_names[REGNO (addr)], FILE);                      \
2398
  else if (GET_CODE (addr) == PLUS)                             \
2399
    {                                                           \
2400
      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)                \
2401
        offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2402
      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)          \
2403
        offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2404
      else                                                      \
2405
        base = XEXP (addr, 0), index = XEXP (addr, 1);           \
2406
      if (GET_CODE (base) == LO_SUM)                            \
2407
        {                                                       \
2408
          gcc_assert (USE_AS_OFFSETABLE_LO10                    \
2409
                      && TARGET_ARCH64                          \
2410
                      && ! TARGET_CM_MEDMID);                   \
2411
          output_operand (XEXP (base, 0), 0);                     \
2412
          fputs ("+%lo(", FILE);                                \
2413
          output_address (XEXP (base, 1));                      \
2414
          fprintf (FILE, ")+%d", offset);                       \
2415
        }                                                       \
2416
      else                                                      \
2417
        {                                                       \
2418
          fputs (reg_names[REGNO (base)], FILE);                \
2419
          if (index == 0)                                        \
2420
            fprintf (FILE, "%+d", offset);                      \
2421
          else if (GET_CODE (index) == REG)                     \
2422
            fprintf (FILE, "+%s", reg_names[REGNO (index)]);    \
2423
          else if (GET_CODE (index) == SYMBOL_REF               \
2424
                   || GET_CODE (index) == CONST)                \
2425
            fputc ('+', FILE), output_addr_const (FILE, index); \
2426
          else gcc_unreachable ();                              \
2427
        }                                                       \
2428
    }                                                           \
2429
  else if (GET_CODE (addr) == MINUS                             \
2430
           && GET_CODE (XEXP (addr, 1)) == LABEL_REF)           \
2431
    {                                                           \
2432
      output_addr_const (FILE, XEXP (addr, 0));                  \
2433
      fputs ("-(", FILE);                                       \
2434
      output_addr_const (FILE, XEXP (addr, 1));                 \
2435
      fputs ("-.)", FILE);                                      \
2436
    }                                                           \
2437
  else if (GET_CODE (addr) == LO_SUM)                           \
2438
    {                                                           \
2439
      output_operand (XEXP (addr, 0), 0);                 \
2440
      if (TARGET_CM_MEDMID)                                     \
2441
        fputs ("+%l44(", FILE);                                 \
2442
      else                                                      \
2443
        fputs ("+%lo(", FILE);                                  \
2444
      output_address (XEXP (addr, 1));                          \
2445
      fputc (')', FILE);                                        \
2446
    }                                                           \
2447
  else if (flag_pic && GET_CODE (addr) == CONST                 \
2448
           && GET_CODE (XEXP (addr, 0)) == MINUS         \
2449
           && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST       \
2450
           && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS      \
2451
           && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)     \
2452
    {                                                           \
2453
      addr = XEXP (addr, 0);                                     \
2454
      output_addr_const (FILE, XEXP (addr, 0));                  \
2455
      /* Group the args of the second CONST in parenthesis.  */ \
2456
      fputs ("-(", FILE);                                       \
2457
      /* Skip past the second CONST--it does nothing for us.  */\
2458
      output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));        \
2459
      /* Close the parenthesis.  */                             \
2460
      fputc (')', FILE);                                        \
2461
    }                                                           \
2462
  else                                                          \
2463
    {                                                           \
2464
      output_addr_const (FILE, addr);                           \
2465
    }                                                           \
2466
}
2467
 
2468
/* TLS support defaulting to original Sun flavor.  GNU extensions
2469
   must be activated in separate configuration files.  */
2470
#ifdef HAVE_AS_TLS
2471
#define TARGET_TLS 1
2472
#else
2473
#define TARGET_TLS 0
2474
#endif
2475
 
2476
#define TARGET_SUN_TLS TARGET_TLS
2477
#define TARGET_GNU_TLS 0
2478
 
2479
/* The number of Pmode words for the setjmp buffer.  */
2480
#define JMP_BUF_SIZE 12

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.