OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [config/] [xtensa/] [xtensa.h] - Blame information for rev 199

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3
   Free Software Foundation, Inc.
4
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
/* Get Xtensa configuration settings */
23
#include "xtensa-config.h"
24
 
25
/* Standard GCC variables that we reference.  */
26
extern int current_function_calls_alloca;
27
extern int optimize;
28
 
29
/* External variables defined in xtensa.c.  */
30
 
31
/* comparison type */
32
enum cmp_type {
33
  CMP_SI,                               /* four byte integers */
34
  CMP_DI,                               /* eight byte integers */
35
  CMP_SF,                               /* single precision floats */
36
  CMP_DF,                               /* double precision floats */
37
  CMP_MAX                               /* max comparison type */
38
};
39
 
40
extern struct rtx_def * branch_cmp[2];  /* operands for compare */
41
extern enum cmp_type branch_type;       /* what type of branch to use */
42
extern unsigned xtensa_current_frame_size;
43
 
44
/* Macros used in the machine description to select various Xtensa
45
   configuration options.  */
46
#define TARGET_BIG_ENDIAN       XCHAL_HAVE_BE
47
#define TARGET_DENSITY          XCHAL_HAVE_DENSITY
48
#define TARGET_MAC16            XCHAL_HAVE_MAC16
49
#define TARGET_MUL16            XCHAL_HAVE_MUL16
50
#define TARGET_MUL32            XCHAL_HAVE_MUL32
51
#define TARGET_DIV32            XCHAL_HAVE_DIV32
52
#define TARGET_NSA              XCHAL_HAVE_NSA
53
#define TARGET_MINMAX           XCHAL_HAVE_MINMAX
54
#define TARGET_SEXT             XCHAL_HAVE_SEXT
55
#define TARGET_BOOLEANS         XCHAL_HAVE_BOOLEANS
56
#define TARGET_HARD_FLOAT       XCHAL_HAVE_FP
57
#define TARGET_HARD_FLOAT_DIV   XCHAL_HAVE_FP_DIV
58
#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
59
#define TARGET_HARD_FLOAT_SQRT  XCHAL_HAVE_FP_SQRT
60
#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
61
#define TARGET_ABS              XCHAL_HAVE_ABS
62
#define TARGET_ADDX             XCHAL_HAVE_ADDX
63
 
64
#define TARGET_DEFAULT (                                                \
65
  (XCHAL_HAVE_L32R      ? 0 : MASK_CONST16))
66
 
67
#define OVERRIDE_OPTIONS override_options ()
68
 
69
/* Reordering blocks for Xtensa is not a good idea unless the compiler
70
   understands the range of conditional branches.  Currently all branch
71
   relaxation for Xtensa is handled in the assembler, so GCC cannot do a
72
   good job of reordering blocks.  Do not enable reordering unless it is
73
   explicitly requested.  */
74
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE)                               \
75
  do                                                                    \
76
    {                                                                   \
77
      flag_reorder_blocks = 0;                                           \
78
    }                                                                   \
79
  while (0)
80
 
81
 
82
/* Target CPU builtins.  */
83
#define TARGET_CPU_CPP_BUILTINS()                                       \
84
  do {                                                                  \
85
    builtin_assert ("cpu=xtensa");                                      \
86
    builtin_assert ("machine=xtensa");                                  \
87
    builtin_define ("__xtensa__");                                      \
88
    builtin_define ("__XTENSA__");                                      \
89
    builtin_define ("__XTENSA_WINDOWED_ABI__");                         \
90
    builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
91
    if (!TARGET_HARD_FLOAT)                                             \
92
      builtin_define ("__XTENSA_SOFT_FLOAT__");                         \
93
  } while (0)
94
 
95
#define CPP_SPEC " %(subtarget_cpp_spec) "
96
 
97
#ifndef SUBTARGET_CPP_SPEC
98
#define SUBTARGET_CPP_SPEC ""
99
#endif
100
 
101
#define EXTRA_SPECS                                                     \
102
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
103
 
104
#ifdef __XTENSA_EB__
105
#define LIBGCC2_WORDS_BIG_ENDIAN 1
106
#else
107
#define LIBGCC2_WORDS_BIG_ENDIAN 0
108
#endif
109
 
110
/* Show we can debug even without a frame pointer.  */
111
#define CAN_DEBUG_WITHOUT_FP
112
 
113
 
114
/* Target machine storage layout */
115
 
116
/* Define this if most significant bit is lowest numbered
117
   in instructions that operate on numbered bit-fields.  */
118
#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
119
 
120
/* Define this if most significant byte of a word is the lowest numbered.  */
121
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
122
 
123
/* Define this if most significant word of a multiword number is the lowest.  */
124
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
125
 
126
#define MAX_BITS_PER_WORD 32
127
 
128
/* Width of a word, in units (bytes).  */
129
#define UNITS_PER_WORD 4
130
#define MIN_UNITS_PER_WORD 4
131
 
132
/* Width of a floating point register.  */
133
#define UNITS_PER_FPREG 4
134
 
135
/* Size in bits of various types on the target machine.  */
136
#define INT_TYPE_SIZE 32
137
#define SHORT_TYPE_SIZE 16
138
#define LONG_TYPE_SIZE 32
139
#define LONG_LONG_TYPE_SIZE 64
140
#define FLOAT_TYPE_SIZE 32
141
#define DOUBLE_TYPE_SIZE 64
142
#define LONG_DOUBLE_TYPE_SIZE 64
143
 
144
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
145
#define POINTER_BOUNDARY 32
146
 
147
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
148
#define PARM_BOUNDARY 32
149
 
150
/* Allocation boundary (in *bits*) for the code of a function.  */
151
#define FUNCTION_BOUNDARY 32
152
 
153
/* Alignment of field after 'int : 0' in a structure.  */
154
#define EMPTY_FIELD_BOUNDARY 32
155
 
156
/* Every structure's size must be a multiple of this.  */
157
#define STRUCTURE_SIZE_BOUNDARY 8
158
 
159
/* There is no point aligning anything to a rounder boundary than this.  */
160
#define BIGGEST_ALIGNMENT 128
161
 
162
/* Set this nonzero if move instructions will actually fail to work
163
   when given unaligned data.  */
164
#define STRICT_ALIGNMENT 1
165
 
166
/* Promote integer modes smaller than a word to SImode.  Set UNSIGNEDP
167
   for QImode, because there is no 8-bit load from memory with sign
168
   extension.  Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
169
   loads both with and without sign extension.  */
170
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)                             \
171
  do {                                                                  \
172
    if (GET_MODE_CLASS (MODE) == MODE_INT                               \
173
        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                       \
174
      {                                                                 \
175
        if ((MODE) == QImode)                                           \
176
          (UNSIGNEDP) = 1;                                              \
177
        (MODE) = SImode;                                                \
178
      }                                                                 \
179
  } while (0)
180
 
181
/* Imitate the way many other C compilers handle alignment of
182
   bitfields and the structures that contain them.  */
183
#define PCC_BITFIELD_TYPE_MATTERS 1
184
 
185
/* Disable the use of word-sized or smaller complex modes for structures,
186
   and for function arguments in particular, where they cause problems with
187
   register a7.  The xtensa_copy_incoming_a7 function assumes that there is
188
   a single reference to an argument in a7, but with small complex modes the
189
   real and imaginary components may be extracted separately, leading to two
190
   uses of the register, only one of which would be replaced.  */
191
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
192
  ((MODE) == CQImode || (MODE) == CHImode)
193
 
194
/* Align string constants and constructors to at least a word boundary.
195
   The typical use of this macro is to increase alignment for string
196
   constants to be word aligned so that 'strcpy' calls that copy
197
   constants can be done inline.  */
198
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
199
  ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR)    \
200
   && (ALIGN) < BITS_PER_WORD                                           \
201
        ? BITS_PER_WORD                                                 \
202
        : (ALIGN))
203
 
204
/* Align arrays, unions and records to at least a word boundary.
205
   One use of this macro is to increase alignment of medium-size
206
   data to make it all fit in fewer cache lines.  Another is to
207
   cause character arrays to be word-aligned so that 'strcpy' calls
208
   that copy constants to character arrays can be done inline.  */
209
#undef DATA_ALIGNMENT
210
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
211
  ((((ALIGN) < BITS_PER_WORD)                                           \
212
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
213
        || TREE_CODE (TYPE) == UNION_TYPE                               \
214
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
215
 
216
/* Operations between registers always perform the operation
217
   on the full register even if a narrower mode is specified.  */
218
#define WORD_REGISTER_OPERATIONS
219
 
220
/* Xtensa loads are zero-extended by default.  */
221
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
222
 
223
/* Standard register usage.  */
224
 
225
/* Number of actual hardware registers.
226
   The hardware registers are assigned numbers for the compiler
227
   from 0 to just below FIRST_PSEUDO_REGISTER.
228
   All registers that the compiler knows about must be given numbers,
229
   even those that are not normally considered general registers.
230
 
231
   The fake frame pointer and argument pointer will never appear in
232
   the generated code, since they will always be eliminated and replaced
233
   by either the stack pointer or the hard frame pointer.
234
 
235
 
236
   16           FRAME_POINTER (fake = initial sp)
237
   17           ARG_POINTER (fake = initial sp + framesize)
238
   18           BR[0] for floating-point CC
239
   19 - 34      FR[0] - FR[15]
240
   35           MAC16 accumulator */
241
 
242
#define FIRST_PSEUDO_REGISTER 36
243
 
244
/* Return the stabs register number to use for REGNO.  */
245
#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
246
 
247
/* 1 for registers that have pervasive standard uses
248
   and are not available for the register allocator.  */
249
#define FIXED_REGISTERS                                                 \
250
{                                                                       \
251
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                     \
252
  1, 1, 0,                                                               \
253
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
254
  0,                                                                     \
255
}
256
 
257
/* 1 for registers not available across function calls.
258
   These must include the FIXED_REGISTERS and also any
259
   registers that can be used without being saved.
260
   The latter must include the registers where values are returned
261
   and the register where structure-value addresses are passed.
262
   Aside from that, you can include as many other registers as you like.  */
263
#define CALL_USED_REGISTERS                                             \
264
{                                                                       \
265
  1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,                     \
266
  1, 1, 1,                                                              \
267
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
268
  1,                                                                    \
269
}
270
 
271
/* For non-leaf procedures on Xtensa processors, the allocation order
272
   is as specified below by REG_ALLOC_ORDER.  For leaf procedures, we
273
   want to use the lowest numbered registers first to minimize
274
   register window overflows.  However, local-alloc is not smart
275
   enough to consider conflicts with incoming arguments.  If an
276
   incoming argument in a2 is live throughout the function and
277
   local-alloc decides to use a2, then the incoming argument must
278
   either be spilled or copied to another register.  To get around
279
   this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
280
   reg_alloc_order for leaf functions such that lowest numbered
281
   registers are used first with the exception that the incoming
282
   argument registers are not used until after other register choices
283
   have been exhausted.  */
284
 
285
#define REG_ALLOC_ORDER \
286
{  8,  9, 10, 11, 12, 13, 14, 15,  7,  6,  5,  4,  3,  2, \
287
  18, \
288
  19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
289
   0,  1, 16, 17, \
290
  35, \
291
}
292
 
293
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
294
 
295
/* For Xtensa, the only point of this is to prevent GCC from otherwise
296
   giving preference to call-used registers.  To minimize window
297
   overflows for the AR registers, we want to give preference to the
298
   lower-numbered AR registers.  For other register files, which are
299
   not windowed, we still prefer call-used registers, if there are any.  */
300
extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
301
#define LEAF_REGISTERS xtensa_leaf_regs
302
 
303
/* For Xtensa, no remapping is necessary, but this macro must be
304
   defined if LEAF_REGISTERS is defined.  */
305
#define LEAF_REG_REMAP(REGNO) (REGNO)
306
 
307
/* This must be declared if LEAF_REGISTERS is set.  */
308
extern int leaf_function;
309
 
310
/* Internal macros to classify a register number.  */
311
 
312
/* 16 address registers + fake registers */
313
#define GP_REG_FIRST 0
314
#define GP_REG_LAST  17
315
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
316
 
317
/* Coprocessor registers */
318
#define BR_REG_FIRST 18
319
#define BR_REG_LAST  18 
320
#define BR_REG_NUM   (BR_REG_LAST - BR_REG_FIRST + 1)
321
 
322
/* 16 floating-point registers */
323
#define FP_REG_FIRST 19
324
#define FP_REG_LAST  34
325
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
326
 
327
/* MAC16 accumulator */
328
#define ACC_REG_FIRST 35
329
#define ACC_REG_LAST 35
330
#define ACC_REG_NUM  (ACC_REG_LAST - ACC_REG_FIRST + 1)
331
 
332
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
333
#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
334
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
335
#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
336
 
337
/* Return number of consecutive hard regs needed starting at reg REGNO
338
   to hold something of mode MODE.  */
339
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
340
  (FP_REG_P (REGNO) ?                                                   \
341
        ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
342
        ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
343
 
344
/* Value is 1 if hard register REGNO can hold a value of machine-mode
345
   MODE.  */
346
extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
347
 
348
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
349
  xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
350
 
351
/* Value is 1 if it is a good idea to tie two pseudo registers
352
   when one has mode MODE1 and one has mode MODE2.
353
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
354
   for any hard reg, then this must be 0 for correct output.  */
355
#define MODES_TIEABLE_P(MODE1, MODE2)                                   \
356
  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||                             \
357
    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)                       \
358
   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||                          \
359
       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
360
 
361
/* Register to use for pushing function arguments.  */
362
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
363
 
364
/* Base register for access to local variables of the function.  */
365
#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
366
 
367
/* The register number of the frame pointer register, which is used to
368
   access automatic variables in the stack frame.  For Xtensa, this
369
   register never appears in the output.  It is always eliminated to
370
   either the stack pointer or the hard frame pointer.  */
371
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
372
 
373
/* Value should be nonzero if functions must have frame pointers.
374
   Zero means the frame pointer need not be set up (and parms
375
   may be accessed via the stack pointer) in functions that seem suitable.
376
   This is computed in 'reload', in reload1.c.  */
377
#define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
378
 
379
/* Base register for access to arguments of the function.  */
380
#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
381
 
382
/* If the static chain is passed in memory, these macros provide rtx
383
   giving 'mem' expressions that denote where they are stored.
384
   'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
385
   seen by the calling and called functions, respectively.  */
386
 
387
#define STATIC_CHAIN                                                    \
388
  gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
389
 
390
#define STATIC_CHAIN_INCOMING                                           \
391
  gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
392
 
393
/* For now we don't try to use the full set of boolean registers.  Without
394
   software pipelining of FP operations, there's not much to gain and it's
395
   a real pain to get them reloaded.  */
396
#define FPCC_REGNUM (BR_REG_FIRST + 0)
397
 
398
/* It is as good or better to call a constant function address than to
399
   call an address kept in a register.  */
400
#define NO_FUNCTION_CSE 1
401
 
402
/* Xtensa processors have "register windows".  GCC does not currently
403
   take advantage of the possibility for variable-sized windows; instead,
404
   we use a fixed window size of 8.  */
405
 
406
#define INCOMING_REGNO(OUT)                                             \
407
  ((GP_REG_P (OUT) &&                                                   \
408
    ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ?               \
409
   (OUT) - WINDOW_SIZE : (OUT))
410
 
411
#define OUTGOING_REGNO(IN)                                              \
412
  ((GP_REG_P (IN) &&                                                    \
413
    ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ?                 \
414
   (IN) + WINDOW_SIZE : (IN))
415
 
416
 
417
/* Define the classes of registers for register constraints in the
418
   machine description.  */
419
enum reg_class
420
{
421
  NO_REGS,                      /* no registers in set */
422
  BR_REGS,                      /* coprocessor boolean registers */
423
  FP_REGS,                      /* floating point registers */
424
  ACC_REG,                      /* MAC16 accumulator */
425
  SP_REG,                       /* sp register (aka a1) */
426
  RL_REGS,                      /* preferred reload regs (not sp or fp) */
427
  GR_REGS,                      /* integer registers except sp */
428
  AR_REGS,                      /* all integer registers */
429
  ALL_REGS,                     /* all registers */
430
  LIM_REG_CLASSES               /* max value + 1 */
431
};
432
 
433
#define N_REG_CLASSES (int) LIM_REG_CLASSES
434
 
435
#define GENERAL_REGS AR_REGS
436
 
437
/* An initializer containing the names of the register classes as C
438
   string constants.  These names are used in writing some of the
439
   debugging dumps.  */
440
#define REG_CLASS_NAMES                                                 \
441
{                                                                       \
442
  "NO_REGS",                                                            \
443
  "BR_REGS",                                                            \
444
  "FP_REGS",                                                            \
445
  "ACC_REG",                                                            \
446
  "SP_REG",                                                             \
447
  "RL_REGS",                                                            \
448
  "GR_REGS",                                                            \
449
  "AR_REGS",                                                            \
450
  "ALL_REGS"                                                            \
451
}
452
 
453
/* Contents of the register classes.  The Nth integer specifies the
454
   contents of class N.  The way the integer MASK is interpreted is
455
   that register R is in the class if 'MASK & (1 << R)' is 1.  */
456
#define REG_CLASS_CONTENTS \
457
{ \
458
  { 0x00000000, 0x00000000 }, /* no registers */ \
459
  { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
460
  { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
461
  { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
462
  { 0x00000002, 0x00000000 }, /* stack pointer register */ \
463
  { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
464
  { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
465
  { 0x0003ffff, 0x00000000 }, /* integer registers */ \
466
  { 0xffffffff, 0x0000000f }  /* all registers */ \
467
}
468
 
469
/* A C expression whose value is a register class containing hard
470
   register REGNO.  In general there is more that one such class;
471
   choose a class which is "minimal", meaning that no smaller class
472
   also contains the register.  */
473
extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
474
 
475
#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
476
 
477
/* Use the Xtensa AR register file for base registers.
478
   No index registers.  */
479
#define BASE_REG_CLASS AR_REGS
480
#define INDEX_REG_CLASS NO_REGS
481
 
482
/* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
483
   16 AR registers may be explicitly used in the RTL, as either
484
   incoming or outgoing arguments.  */
485
#define SMALL_REGISTER_CLASSES 1
486
 
487
 
488
/* REGISTER AND CONSTANT CLASSES */
489
 
490
/* Get reg_class from a letter such as appears in the machine
491
   description.
492
 
493
   Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
494
 
495
   DEFINED REGISTER CLASSES:
496
 
497
   'a'  general-purpose registers except sp
498
   'q'  sp (aka a1)
499
   'D'  general-purpose registers (only if density option enabled)
500
   'd'  general-purpose registers, including sp (only if density enabled)
501
   'A'  MAC16 accumulator (only if MAC16 option enabled)
502
   'B'  general-purpose registers (only if sext instruction enabled)
503
   'C'  general-purpose registers (only if mul16 option enabled)
504
   'W'  general-purpose registers (only if const16 option enabled)
505
   'b'  coprocessor boolean registers
506
   'f'  floating-point registers
507
*/
508
 
509
extern enum reg_class xtensa_char_to_class[256];
510
 
511
#define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
512
 
513
/* The letters I, J, K, L, M, N, O, and P in a register constraint
514
   string can be used to stand for particular ranges of immediate
515
   operands.  This macro defines what the ranges are.  C is the
516
   letter, and VALUE is a constant value.  Return 1 if VALUE is
517
   in the range specified by C.
518
 
519
   For Xtensa:
520
 
521
   I = 12-bit signed immediate for MOVI
522
   J = 8-bit signed immediate for ADDI
523
   K = 4-bit value in (b4const U {0})
524
   L = 4-bit value in b4constu
525
   M = 7-bit immediate value for MOVI.N
526
   N = 8-bit unsigned immediate shifted left by 8 bits for ADDMI
527
   O = 4-bit immediate for ADDI.N
528
   P = valid immediate mask value for EXTUI */
529
 
530
#define CONST_OK_FOR_LETTER_P  xtensa_const_ok_for_letter_p
531
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
532
 
533
 
534
/* Other letters can be defined in a machine-dependent fashion to
535
   stand for particular classes of registers or other arbitrary
536
   operand types.
537
 
538
   R = memory that can be accessed with a 4-bit unsigned offset
539
   T = memory in a constant pool (addressable with a pc-relative load)
540
   U = memory *NOT* in a constant pool
541
 
542
   The offset range should not be checked here (except to distinguish
543
   denser versions of the instructions for which more general versions
544
   are available).  Doing so leads to problems in reloading: an
545
   argptr-relative address may become invalid when the phony argptr is
546
   eliminated in favor of the stack pointer (the offset becomes too
547
   large to fit in the instruction's immediate field); a reload is
548
   generated to fix this but the RTL is not immediately updated; in
549
   the meantime, the constraints are checked and none match.  The
550
   solution seems to be to simply skip the offset check here.  The
551
   address will be checked anyway because of the code in
552
   GO_IF_LEGITIMATE_ADDRESS.  */
553
 
554
#define EXTRA_CONSTRAINT  xtensa_extra_constraint
555
 
556
#define PREFERRED_RELOAD_CLASS(X, CLASS)                                \
557
  xtensa_preferred_reload_class (X, CLASS, 0)
558
 
559
#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS)                         \
560
  xtensa_preferred_reload_class (X, CLASS, 1)
561
 
562
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)                    \
563
  xtensa_secondary_reload_class (CLASS, MODE, X, 0)
564
 
565
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)                   \
566
  xtensa_secondary_reload_class (CLASS, MODE, X, 1)
567
 
568
/* Return the maximum number of consecutive registers
569
   needed to represent mode MODE in a register of class CLASS.  */
570
#define CLASS_UNITS(mode, size)                                         \
571
  ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
572
 
573
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
574
  (CLASS_UNITS (MODE, UNITS_PER_WORD))
575
 
576
 
577
/* Stack layout; function entry, exit and calling.  */
578
 
579
#define STACK_GROWS_DOWNWARD
580
 
581
/* Offset within stack frame to start allocating local variables at.  */
582
#define STARTING_FRAME_OFFSET                                           \
583
  current_function_outgoing_args_size
584
 
585
/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
586
   they are eliminated to either the stack pointer or hard frame pointer.  */
587
#define ELIMINABLE_REGS                                                 \
588
{{ ARG_POINTER_REGNUM,          STACK_POINTER_REGNUM},                  \
589
 { ARG_POINTER_REGNUM,          HARD_FRAME_POINTER_REGNUM},             \
590
 { FRAME_POINTER_REGNUM,        STACK_POINTER_REGNUM},                  \
591
 { FRAME_POINTER_REGNUM,        HARD_FRAME_POINTER_REGNUM}}
592
 
593
#define CAN_ELIMINATE(FROM, TO) 1
594
 
595
/* Specify the initial difference between the specified pair of registers.  */
596
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
597
  do {                                                                  \
598
    compute_frame_size (get_frame_size ());                             \
599
    switch (FROM)                                                       \
600
      {                                                                 \
601
      case FRAME_POINTER_REGNUM:                                        \
602
        (OFFSET) = 0;                                                    \
603
        break;                                                          \
604
      case ARG_POINTER_REGNUM:                                          \
605
        (OFFSET) = xtensa_current_frame_size;                           \
606
        break;                                                          \
607
      default:                                                          \
608
        gcc_unreachable ();                                             \
609
      }                                                                 \
610
  } while (0)
611
 
612
/* If defined, the maximum amount of space required for outgoing
613
   arguments will be computed and placed into the variable
614
   'current_function_outgoing_args_size'.  No space will be pushed
615
   onto the stack for each call; instead, the function prologue
616
   should increase the stack frame size by this amount.  */
617
#define ACCUMULATE_OUTGOING_ARGS 1
618
 
619
/* Offset from the argument pointer register to the first argument's
620
   address.  On some machines it may depend on the data type of the
621
   function.  If 'ARGS_GROW_DOWNWARD', this is the offset to the
622
   location above the first argument's address.  */
623
#define FIRST_PARM_OFFSET(FNDECL) 0
624
 
625
/* Align stack frames on 128 bits for Xtensa.  This is necessary for
626
   128-bit datatypes defined in TIE (e.g., for Vectra).  */
627
#define STACK_BOUNDARY 128
628
 
629
/* Functions do not pop arguments off the stack.  */
630
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
631
 
632
/* Use a fixed register window size of 8.  */
633
#define WINDOW_SIZE 8
634
 
635
/* Symbolic macros for the registers used to return integer, floating
636
   point, and values of coprocessor and user-defined modes.  */
637
#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
638
#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
639
 
640
/* Symbolic macros for the first/last argument registers.  */
641
#define GP_ARG_FIRST (GP_REG_FIRST + 2)
642
#define GP_ARG_LAST  (GP_REG_FIRST + 7)
643
#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
644
#define GP_OUTGOING_ARG_LAST  (GP_REG_FIRST + 7 + WINDOW_SIZE)
645
 
646
#define MAX_ARGS_IN_REGISTERS 6
647
 
648
/* Don't worry about compatibility with PCC.  */
649
#define DEFAULT_PCC_STRUCT_RETURN 0
650
 
651
/* Define how to find the value returned by a library function
652
   assuming the value has mode MODE.  Because we have defined
653
   TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
654
   perform the same promotions as PROMOTE_MODE.  */
655
#define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP)                           \
656
  gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT                       \
657
                && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)               \
658
               ? SImode : (MODE),                                       \
659
               OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
660
 
661
#define LIBCALL_VALUE(MODE)                                             \
662
  XTENSA_LIBCALL_VALUE ((MODE), 0)
663
 
664
#define LIBCALL_OUTGOING_VALUE(MODE)                                    \
665
  XTENSA_LIBCALL_VALUE ((MODE), 1)
666
 
667
/* Define how to find the value returned by a function.
668
   VALTYPE is the data type of the value (as a tree).
669
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
670
   otherwise, FUNC is 0.  */
671
#define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP)                 \
672
  gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE)                               \
673
                && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)            \
674
               ? SImode: TYPE_MODE (VALTYPE),                           \
675
               OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
676
 
677
#define FUNCTION_VALUE(VALTYPE, FUNC)                                   \
678
  XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
679
 
680
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC)                          \
681
  XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
682
 
683
/* A C expression that is nonzero if REGNO is the number of a hard
684
   register in which the values of called function may come back.  A
685
   register whose use for returning values is limited to serving as
686
   the second of a pair (for a value of type 'double', say) need not
687
   be recognized by this macro.  If the machine has register windows,
688
   so that the caller and the called function use different registers
689
   for the return value, this macro should recognize only the caller's
690
   register numbers.  */
691
#define FUNCTION_VALUE_REGNO_P(N)                                       \
692
  ((N) == GP_RETURN)
693
 
694
/* A C expression that is nonzero if REGNO is the number of a hard
695
   register in which function arguments are sometimes passed.  This
696
   does *not* include implicit arguments such as the static chain and
697
   the structure-value address.  On many machines, no registers can be
698
   used for this purpose since all function arguments are pushed on
699
   the stack.  */
700
#define FUNCTION_ARG_REGNO_P(N)                                         \
701
  ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
702
 
703
/* Record the number of argument words seen so far, along with a flag to
704
   indicate whether these are incoming arguments.  (FUNCTION_INCOMING_ARG
705
   is used for both incoming and outgoing args, so a separate flag is
706
   needed.  */
707
typedef struct xtensa_args
708
{
709
  int arg_words;
710
  int incoming;
711
} CUMULATIVE_ARGS;
712
 
713
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
714
  init_cumulative_args (&CUM, 0)
715
 
716
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME)             \
717
  init_cumulative_args (&CUM, 1)
718
 
719
/* Update the data in CUM to advance over an argument
720
   of mode MODE and data type TYPE.
721
   (TYPE is null for libcalls where that information may not be available.)  */
722
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
723
  function_arg_advance (&CUM, MODE, TYPE)
724
 
725
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
726
  function_arg (&CUM, MODE, TYPE, FALSE)
727
 
728
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
729
  function_arg (&CUM, MODE, TYPE, TRUE)
730
 
731
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
732
 
733
/* Profiling Xtensa code is typically done with the built-in profiling
734
   feature of Tensilica's instruction set simulator, which does not
735
   require any compiler support.  Profiling code on a real (i.e.,
736
   non-simulated) Xtensa processor is currently only supported by
737
   GNU/Linux with glibc.  The glibc version of _mcount doesn't require
738
   counter variables.  The _mcount function needs the current PC and
739
   the current return address to identify an arc in the call graph.
740
   Pass the current return address as the first argument; the current
741
   PC is available as a0 in _mcount's register window.  Both of these
742
   values contain window size information in the two most significant
743
   bits; we assume that _mcount will mask off those bits.  The call to
744
   _mcount uses a window size of 8 to make sure that it doesn't clobber
745
   any incoming argument values.  */
746
 
747
#define NO_PROFILE_COUNTERS     1
748
 
749
#define FUNCTION_PROFILER(FILE, LABELNO) \
750
  do {                                                                  \
751
    fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
752
    if (flag_pic)                                                       \
753
      {                                                                 \
754
        fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n");                    \
755
        fprintf (FILE, "\tcallx8\ta8\n");                               \
756
      }                                                                 \
757
    else                                                                \
758
      fprintf (FILE, "\tcall8\t_mcount\n");                             \
759
  } while (0)
760
 
761
/* Stack pointer value doesn't matter at exit.  */
762
#define EXIT_IGNORE_STACK 1
763
 
764
/* A C statement to output, on the stream FILE, assembler code for a
765
   block of data that contains the constant parts of a trampoline.
766
   This code should not include a label--the label is taken care of
767
   automatically.
768
 
769
   For Xtensa, the trampoline must perform an entry instruction with a
770
   minimal stack frame in order to get some free registers.  Once the
771
   actual call target is known, the proper stack frame size is extracted
772
   from the entry instruction at the target and the current frame is
773
   adjusted to match.  The trampoline then transfers control to the
774
   instruction following the entry at the target.  Note: this assumes
775
   that the target begins with an entry instruction.  */
776
 
777
/* minimum frame = reg save area (4 words) plus static chain (1 word)
778
   and the total number of words must be a multiple of 128 bits */
779
#define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
780
 
781
#define TRAMPOLINE_TEMPLATE(STREAM)                                     \
782
  do {                                                                  \
783
    fprintf (STREAM, "\t.begin no-transform\n");                        \
784
    fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE);              \
785
                                                                        \
786
    /* save the return address */                                       \
787
    fprintf (STREAM, "\tmov\ta10, a0\n");                               \
788
                                                                        \
789
    /* Use a CALL0 instruction to skip past the constants and in the    \
790
       process get the PC into A0.  This allows PC-relative access to   \
791
       the constants without relying on L32R, which may not always be   \
792
       available.  */                                                   \
793
                                                                        \
794
    fprintf (STREAM, "\tcall0\t.Lskipconsts\n");                        \
795
    fprintf (STREAM, "\t.align\t4\n");                                  \
796
    fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));     \
797
    fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));       \
798
    fprintf (STREAM, ".Lskipconsts:\n");                                \
799
                                                                        \
800
    /* store the static chain */                                        \
801
    fprintf (STREAM, "\taddi\ta0, a0, 3\n");                            \
802
    fprintf (STREAM, "\tl32i\ta8, a0, 0\n");                            \
803
    fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20);      \
804
                                                                        \
805
    /* set the proper stack pointer value */                            \
806
    fprintf (STREAM, "\tl32i\ta8, a0, 4\n");                            \
807
    fprintf (STREAM, "\tl32i\ta9, a8, 0\n");                            \
808
    fprintf (STREAM, "\textui\ta9, a9, %d, 12\n",                       \
809
             TARGET_BIG_ENDIAN ? 8 : 12);                               \
810
    fprintf (STREAM, "\tslli\ta9, a9, 3\n");                            \
811
    fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE);          \
812
    fprintf (STREAM, "\tsub\ta9, sp, a9\n");                            \
813
    fprintf (STREAM, "\tmovsp\tsp, a9\n");                              \
814
                                                                        \
815
    /* restore the return address */                                    \
816
    fprintf (STREAM, "\tmov\ta0, a10\n");                               \
817
                                                                        \
818
    /* jump to the instruction following the entry */                   \
819
    fprintf (STREAM, "\taddi\ta8, a8, 3\n");                            \
820
    fprintf (STREAM, "\tjx\ta8\n");                                     \
821
    fprintf (STREAM, "\t.byte\t0\n");                                    \
822
    fprintf (STREAM, "\t.end no-transform\n");                          \
823
  } while (0)
824
 
825
/* Size in bytes of the trampoline, as an integer.  Make sure this is
826
   a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings.  */
827
#define TRAMPOLINE_SIZE 60
828
 
829
/* Alignment required for trampolines, in bits.  */
830
#define TRAMPOLINE_ALIGNMENT (32)
831
 
832
/* A C statement to initialize the variable parts of a trampoline.  */
833
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)                        \
834
  do {                                                                  \
835
    rtx addr = ADDR;                                                    \
836
    emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
837
    emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
838
    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
839
                       0, VOIDmode, 1, addr, Pmode);                     \
840
  } while (0)
841
 
842
/* Implement `va_start' for varargs and stdarg.  */
843
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
844
  xtensa_va_start (valist, nextarg)
845
 
846
/* If defined, a C expression that produces the machine-specific code
847
   to setup the stack so that arbitrary frames can be accessed.
848
 
849
   On Xtensa, a stack back-trace must always begin from the stack pointer,
850
   so that the register overflow save area can be located.  However, the
851
   stack-walking code in GCC always begins from the hard_frame_pointer
852
   register, not the stack pointer.  The frame pointer is usually equal
853
   to the stack pointer, but the __builtin_return_address and
854
   __builtin_frame_address functions will not work if count > 0 and
855
   they are called from a routine that uses alloca.  These functions
856
   are not guaranteed to work at all if count > 0 so maybe that is OK.
857
 
858
   A nicer solution would be to allow the architecture-specific files to
859
   specify whether to start from the stack pointer or frame pointer.  That
860
   would also allow us to skip the machine->accesses_prev_frame stuff that
861
   we currently need to ensure that there is a frame pointer when these
862
   builtin functions are used.  */
863
 
864
#define SETUP_FRAME_ADDRESSES  xtensa_setup_frame_addresses
865
 
866
/* A C expression whose value is RTL representing the address in a
867
   stack frame where the pointer to the caller's frame is stored.
868
   Assume that FRAMEADDR is an RTL expression for the address of the
869
   stack frame itself.
870
 
871
   For Xtensa, there is no easy way to get the frame pointer if it is
872
   not equivalent to the stack pointer.  Moreover, the result of this
873
   macro is used for continuing to walk back up the stack, so it must
874
   return the stack pointer address.  Thus, there is some inconsistency
875
   here in that __builtin_frame_address will return the frame pointer
876
   when count == 0 and the stack pointer when count > 0.  */
877
 
878
#define DYNAMIC_CHAIN_ADDRESS(frame)                                    \
879
  gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
880
 
881
/* Define this if the return address of a particular stack frame is
882
   accessed from the frame pointer of the previous stack frame.  */
883
#define RETURN_ADDR_IN_PREVIOUS_FRAME
884
 
885
/* A C expression whose value is RTL representing the value of the
886
   return address for the frame COUNT steps up from the current
887
   frame, after the prologue.  */
888
#define RETURN_ADDR_RTX  xtensa_return_addr
889
 
890
/* Addressing modes, and classification of registers for them.  */
891
 
892
/* C expressions which are nonzero if register number NUM is suitable
893
   for use as a base or index register in operand addresses.  It may
894
   be either a suitable hard register or a pseudo register that has
895
   been allocated such a hard register. The difference between an
896
   index register and a base register is that the index register may
897
   be scaled.  */
898
 
899
#define REGNO_OK_FOR_BASE_P(NUM) \
900
  (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
901
 
902
#define REGNO_OK_FOR_INDEX_P(NUM) 0
903
 
904
/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
905
   valid for use as a base or index register.  For hard registers, it
906
   should always accept those which the hardware permits and reject
907
   the others.  Whether the macro accepts or rejects pseudo registers
908
   must be controlled by `REG_OK_STRICT'.  This usually requires two
909
   variant definitions, of which `REG_OK_STRICT' controls the one
910
   actually used. The difference between an index register and a base
911
   register is that the index register may be scaled.  */
912
 
913
#ifdef REG_OK_STRICT
914
 
915
#define REG_OK_FOR_INDEX_P(X) 0
916
#define REG_OK_FOR_BASE_P(X) \
917
  REGNO_OK_FOR_BASE_P (REGNO (X))
918
 
919
#else /* !REG_OK_STRICT */
920
 
921
#define REG_OK_FOR_INDEX_P(X) 0
922
#define REG_OK_FOR_BASE_P(X) \
923
  ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
924
 
925
#endif /* !REG_OK_STRICT */
926
 
927
/* Maximum number of registers that can appear in a valid memory address.  */
928
#define MAX_REGS_PER_ADDRESS 1
929
 
930
/* Identify valid Xtensa addresses.  */
931
#define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL)                     \
932
  do {                                                                  \
933
    rtx xinsn = (ADDR);                                                 \
934
                                                                        \
935
    /* allow constant pool addresses */                                 \
936
    if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD     \
937
        && !TARGET_CONST16 && constantpool_address_p (xinsn))           \
938
      goto LABEL;                                                       \
939
                                                                        \
940
    while (GET_CODE (xinsn) == SUBREG)                                  \
941
      xinsn = SUBREG_REG (xinsn);                                       \
942
                                                                        \
943
    /* allow base registers */                                          \
944
    if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn))           \
945
      goto LABEL;                                                       \
946
                                                                        \
947
    /* check for "register + offset" addressing */                      \
948
    if (GET_CODE (xinsn) == PLUS)                                       \
949
      {                                                                 \
950
        rtx xplus0 = XEXP (xinsn, 0);                                    \
951
        rtx xplus1 = XEXP (xinsn, 1);                                   \
952
        enum rtx_code code0;                                            \
953
        enum rtx_code code1;                                            \
954
                                                                        \
955
        while (GET_CODE (xplus0) == SUBREG)                             \
956
          xplus0 = SUBREG_REG (xplus0);                                 \
957
        code0 = GET_CODE (xplus0);                                      \
958
                                                                        \
959
        while (GET_CODE (xplus1) == SUBREG)                             \
960
          xplus1 = SUBREG_REG (xplus1);                                 \
961
        code1 = GET_CODE (xplus1);                                      \
962
                                                                        \
963
        /* swap operands if necessary so the register is first */       \
964
        if (code0 != REG && code1 == REG)                               \
965
          {                                                             \
966
            xplus0 = XEXP (xinsn, 1);                                   \
967
            xplus1 = XEXP (xinsn, 0);                                    \
968
            code0 = GET_CODE (xplus0);                                  \
969
            code1 = GET_CODE (xplus1);                                  \
970
          }                                                             \
971
                                                                        \
972
        if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)                  \
973
            && code1 == CONST_INT                                       \
974
            && xtensa_mem_offset (INTVAL (xplus1), (MODE)))             \
975
          {                                                             \
976
            goto LABEL;                                                 \
977
          }                                                             \
978
      }                                                                 \
979
  } while (0)
980
 
981
/* A C expression that is 1 if the RTX X is a constant which is a
982
   valid address.  This is defined to be the same as 'CONSTANT_P (X)',
983
   but rejecting CONST_DOUBLE.  */
984
#define CONSTANT_ADDRESS_P(X)                                           \
985
  ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF             \
986
    || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH                \
987
    || (GET_CODE (X) == CONST)))
988
 
989
/* Nonzero if the constant value X is a legitimate general operand.
990
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
991
#define LEGITIMATE_CONSTANT_P(X) 1
992
 
993
/* A C expression that is nonzero if X is a legitimate immediate
994
   operand on the target machine when generating position independent
995
   code.  */
996
#define LEGITIMATE_PIC_OPERAND_P(X)                                     \
997
  ((GET_CODE (X) != SYMBOL_REF                                          \
998
    || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X)))          \
999
   && GET_CODE (X) != LABEL_REF                                         \
1000
   && GET_CODE (X) != CONST)
1001
 
1002
/* Tell GCC how to use ADDMI to generate addresses.  */
1003
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)                          \
1004
  do {                                                                  \
1005
    rtx xinsn = (X);                                                    \
1006
    if (GET_CODE (xinsn) == PLUS)                                       \
1007
      {                                                                 \
1008
        rtx plus0 = XEXP (xinsn, 0);                                     \
1009
        rtx plus1 = XEXP (xinsn, 1);                                    \
1010
                                                                        \
1011
        if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)         \
1012
          {                                                             \
1013
            plus0 = XEXP (xinsn, 1);                                    \
1014
            plus1 = XEXP (xinsn, 0);                                     \
1015
          }                                                             \
1016
                                                                        \
1017
        if (GET_CODE (plus0) == REG                                     \
1018
            && GET_CODE (plus1) == CONST_INT                            \
1019
            && !xtensa_mem_offset (INTVAL (plus1), MODE)                \
1020
            && !xtensa_simm8 (INTVAL (plus1))                           \
1021
            && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE)          \
1022
            && xtensa_simm8x256 (INTVAL (plus1) & ~0xff))               \
1023
          {                                                             \
1024
            rtx temp = gen_reg_rtx (Pmode);                             \
1025
            emit_insn (gen_rtx_SET (Pmode, temp,                        \
1026
                                gen_rtx_PLUS (Pmode, plus0,             \
1027
                                         GEN_INT (INTVAL (plus1) & ~0xff)))); \
1028
            (X) = gen_rtx_PLUS (Pmode, temp,                            \
1029
                           GEN_INT (INTVAL (plus1) & 0xff));            \
1030
            goto WIN;                                                   \
1031
          }                                                             \
1032
      }                                                                 \
1033
  } while (0)
1034
 
1035
 
1036
/* Treat constant-pool references as "mode dependent" since they can
1037
   only be accessed with SImode loads.  This works around a bug in the
1038
   combiner where a constant pool reference is temporarily converted
1039
   to an HImode load, which is then assumed to zero-extend based on
1040
   our definition of LOAD_EXTEND_OP.  This is wrong because the high
1041
   bits of a 16-bit value in the constant pool are now sign-extended
1042
   by default.  */
1043
 
1044
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)                       \
1045
  do {                                                                  \
1046
    if (constantpool_address_p (ADDR))                                  \
1047
      goto LABEL;                                                       \
1048
  } while (0)
1049
 
1050
/* Specify the machine mode that this machine uses
1051
   for the index in the tablejump instruction.  */
1052
#define CASE_VECTOR_MODE (SImode)
1053
 
1054
/* Define this as 1 if 'char' should by default be signed; else as 0.  */
1055
#define DEFAULT_SIGNED_CHAR 0
1056
 
1057
/* Max number of bytes we can move from memory to memory
1058
   in one reasonably fast instruction.  */
1059
#define MOVE_MAX 4
1060
#define MAX_MOVE_MAX 4
1061
 
1062
/* Prefer word-sized loads.  */
1063
#define SLOW_BYTE_ACCESS 1
1064
 
1065
/* Shift instructions ignore all but the low-order few bits.  */
1066
#define SHIFT_COUNT_TRUNCATED 1
1067
 
1068
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1069
   is done just by pretending it is already truncated.  */
1070
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1071
 
1072
/* Specify the machine mode that pointers have.
1073
   After generation of rtl, the compiler makes no further distinction
1074
   between pointers and any other objects of this machine mode.  */
1075
#define Pmode SImode
1076
 
1077
/* A function address in a call instruction is a word address (for
1078
   indexing purposes) so give the MEM rtx a words's mode.  */
1079
#define FUNCTION_MODE SImode
1080
 
1081
/* A C expression for the cost of moving data from a register in
1082
   class FROM to one in class TO.  The classes are expressed using
1083
   the enumeration values such as 'GENERAL_REGS'.  A value of 2 is
1084
   the default; other values are interpreted relative to that.  */
1085
#define REGISTER_MOVE_COST(MODE, FROM, TO)                              \
1086
  (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS)             \
1087
   ? 2                                                                  \
1088
   : (reg_class_subset_p ((FROM), AR_REGS)                              \
1089
      && reg_class_subset_p ((TO), AR_REGS)                             \
1090
      ? 2                                                               \
1091
      : (reg_class_subset_p ((FROM), AR_REGS)                           \
1092
         && (TO) == ACC_REG                                             \
1093
         ? 3                                                            \
1094
         : ((FROM) == ACC_REG                                           \
1095
            && reg_class_subset_p ((TO), AR_REGS)                       \
1096
            ? 3                                                         \
1097
            : 10))))
1098
 
1099
#define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1100
 
1101
#define BRANCH_COST 3
1102
 
1103
/* How to refer to registers in assembler output.
1104
   This sequence is indexed by compiler's hard-register-number (see above).  */
1105
#define REGISTER_NAMES                                                  \
1106
{                                                                       \
1107
  "a0",   "sp",   "a2",   "a3",   "a4",   "a5",   "a6",   "a7",         \
1108
  "a8",   "a9",   "a10",  "a11",  "a12",  "a13",  "a14",  "a15",        \
1109
  "fp",   "argp", "b0",                                                 \
1110
  "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",         \
1111
  "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",        \
1112
  "acc"                                                                 \
1113
}
1114
 
1115
/* If defined, a C initializer for an array of structures containing a
1116
   name and a register number.  This macro defines additional names
1117
   for hard registers, thus allowing the 'asm' option in declarations
1118
   to refer to registers using alternate names.  */
1119
#define ADDITIONAL_REGISTER_NAMES                                       \
1120
{                                                                       \
1121
  { "a1",        1 + GP_REG_FIRST }                                     \
1122
}
1123
 
1124
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1125
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1126
 
1127
/* Recognize machine-specific patterns that may appear within
1128
   constants.  Used for PIC-specific UNSPECs.  */
1129
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL)                        \
1130
  do {                                                                  \
1131
    if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1)     \
1132
      {                                                                 \
1133
        switch (XINT ((X), 1))                                          \
1134
          {                                                             \
1135
          case UNSPEC_PLT:                                              \
1136
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
1137
            fputs ("@PLT", (STREAM));                                   \
1138
            break;                                                      \
1139
          default:                                                      \
1140
            goto FAIL;                                                  \
1141
          }                                                             \
1142
        break;                                                          \
1143
      }                                                                 \
1144
    else                                                                \
1145
      goto FAIL;                                                        \
1146
  } while (0)
1147
 
1148
/* Globalizing directive for a label.  */
1149
#define GLOBAL_ASM_OP "\t.global\t"
1150
 
1151
/* Declare an uninitialized external linkage data object.  */
1152
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1153
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1154
 
1155
/* This is how to output an element of a case-vector that is absolute.  */
1156
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)                          \
1157
  fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE),               \
1158
           LOCAL_LABEL_PREFIX, VALUE)
1159
 
1160
/* This is how to output an element of a case-vector that is relative.
1161
   This is used for pc-relative code.  */
1162
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)              \
1163
  do {                                                                  \
1164
    fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE),       \
1165
             LOCAL_LABEL_PREFIX, (VALUE),                               \
1166
             LOCAL_LABEL_PREFIX, (REL));                                \
1167
  } while (0)
1168
 
1169
/* This is how to output an assembler line that says to advance the
1170
   location counter to a multiple of 2**LOG bytes.  */
1171
#define ASM_OUTPUT_ALIGN(STREAM, LOG)                                   \
1172
  do {                                                                  \
1173
    if ((LOG) != 0)                                                      \
1174
      fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG));                   \
1175
  } while (0)
1176
 
1177
/* Indicate that jump tables go in the text section.  This is
1178
   necessary when compiling PIC code.  */
1179
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1180
 
1181
 
1182
/* Define the strings to put out for each section in the object file.  */
1183
#define TEXT_SECTION_ASM_OP     "\t.text"
1184
#define DATA_SECTION_ASM_OP     "\t.data"
1185
#define BSS_SECTION_ASM_OP      "\t.section\t.bss"
1186
 
1187
 
1188
/* Define output to appear before the constant pool.  */
1189
#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE)          \
1190
  do {                                                                  \
1191
    if ((SIZE) > 0)                                                      \
1192
      {                                                                 \
1193
        resolve_unique_section ((FUNDECL), 0, flag_function_sections);   \
1194
        switch_to_section (function_section (FUNDECL));                 \
1195
        fprintf (FILE, "\t.literal_position\n");                        \
1196
      }                                                                 \
1197
  } while (0)
1198
 
1199
 
1200
/* A C statement (with or without semicolon) to output a constant in
1201
   the constant pool, if it needs special treatment.  */
1202
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1203
  do {                                                                  \
1204
    xtensa_output_literal (FILE, X, MODE, LABELNO);                     \
1205
    goto JUMPTO;                                                        \
1206
  } while (0)
1207
 
1208
/* How to start an assembler comment.  */
1209
#define ASM_COMMENT_START "#"
1210
 
1211
/* Exception handling TODO!! */
1212
#define DWARF_UNWIND_INFO 0
1213
 
1214
/* Xtensa constant pool breaks the devices in crtstuff.c to control
1215
   section in where code resides.  We have to write it as asm code.  Use
1216
   a MOVI and let the assembler relax it -- for the .init and .fini
1217
   sections, the assembler knows to put the literal in the right
1218
   place.  */
1219
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1220
    asm (SECTION_OP "\n\
1221
        movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1222
        callx8\ta8\n" \
1223
        TEXT_SECTION_ASM_OP);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.