1 |
38 |
julius |
/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
|
2 |
|
|
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Get Xtensa configuration settings */
|
23 |
|
|
#include "xtensa-config.h"
|
24 |
|
|
|
25 |
|
|
/* Standard GCC variables that we reference. */
|
26 |
|
|
extern int current_function_calls_alloca;
|
27 |
|
|
extern int optimize;
|
28 |
|
|
|
29 |
|
|
/* External variables defined in xtensa.c. */
|
30 |
|
|
|
31 |
|
|
/* comparison type */
|
32 |
|
|
enum cmp_type {
|
33 |
|
|
CMP_SI, /* four byte integers */
|
34 |
|
|
CMP_DI, /* eight byte integers */
|
35 |
|
|
CMP_SF, /* single precision floats */
|
36 |
|
|
CMP_DF, /* double precision floats */
|
37 |
|
|
CMP_MAX /* max comparison type */
|
38 |
|
|
};
|
39 |
|
|
|
40 |
|
|
extern struct rtx_def * branch_cmp[2]; /* operands for compare */
|
41 |
|
|
extern enum cmp_type branch_type; /* what type of branch to use */
|
42 |
|
|
extern unsigned xtensa_current_frame_size;
|
43 |
|
|
|
44 |
|
|
/* Macros used in the machine description to select various Xtensa
|
45 |
|
|
configuration options. */
|
46 |
|
|
#define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
|
47 |
|
|
#define TARGET_DENSITY XCHAL_HAVE_DENSITY
|
48 |
|
|
#define TARGET_MAC16 XCHAL_HAVE_MAC16
|
49 |
|
|
#define TARGET_MUL16 XCHAL_HAVE_MUL16
|
50 |
|
|
#define TARGET_MUL32 XCHAL_HAVE_MUL32
|
51 |
|
|
#define TARGET_DIV32 XCHAL_HAVE_DIV32
|
52 |
|
|
#define TARGET_NSA XCHAL_HAVE_NSA
|
53 |
|
|
#define TARGET_MINMAX XCHAL_HAVE_MINMAX
|
54 |
|
|
#define TARGET_SEXT XCHAL_HAVE_SEXT
|
55 |
|
|
#define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
|
56 |
|
|
#define TARGET_HARD_FLOAT XCHAL_HAVE_FP
|
57 |
|
|
#define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
|
58 |
|
|
#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
|
59 |
|
|
#define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
|
60 |
|
|
#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
|
61 |
|
|
#define TARGET_ABS XCHAL_HAVE_ABS
|
62 |
|
|
#define TARGET_ADDX XCHAL_HAVE_ADDX
|
63 |
|
|
|
64 |
|
|
#define TARGET_DEFAULT ( \
|
65 |
|
|
(XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
|
66 |
|
|
|
67 |
|
|
#define OVERRIDE_OPTIONS override_options ()
|
68 |
|
|
|
69 |
|
|
/* Reordering blocks for Xtensa is not a good idea unless the compiler
|
70 |
|
|
understands the range of conditional branches. Currently all branch
|
71 |
|
|
relaxation for Xtensa is handled in the assembler, so GCC cannot do a
|
72 |
|
|
good job of reordering blocks. Do not enable reordering unless it is
|
73 |
|
|
explicitly requested. */
|
74 |
|
|
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
|
75 |
|
|
do \
|
76 |
|
|
{ \
|
77 |
|
|
flag_reorder_blocks = 0; \
|
78 |
|
|
} \
|
79 |
|
|
while (0)
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
/* Target CPU builtins. */
|
83 |
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
84 |
|
|
do { \
|
85 |
|
|
builtin_assert ("cpu=xtensa"); \
|
86 |
|
|
builtin_assert ("machine=xtensa"); \
|
87 |
|
|
builtin_define ("__xtensa__"); \
|
88 |
|
|
builtin_define ("__XTENSA__"); \
|
89 |
|
|
builtin_define ("__XTENSA_WINDOWED_ABI__"); \
|
90 |
|
|
builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
|
91 |
|
|
if (!TARGET_HARD_FLOAT) \
|
92 |
|
|
builtin_define ("__XTENSA_SOFT_FLOAT__"); \
|
93 |
|
|
} while (0)
|
94 |
|
|
|
95 |
|
|
#define CPP_SPEC " %(subtarget_cpp_spec) "
|
96 |
|
|
|
97 |
|
|
#ifndef SUBTARGET_CPP_SPEC
|
98 |
|
|
#define SUBTARGET_CPP_SPEC ""
|
99 |
|
|
#endif
|
100 |
|
|
|
101 |
|
|
#define EXTRA_SPECS \
|
102 |
|
|
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
|
103 |
|
|
|
104 |
|
|
#ifdef __XTENSA_EB__
|
105 |
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
106 |
|
|
#else
|
107 |
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
108 |
|
|
#endif
|
109 |
|
|
|
110 |
|
|
/* Show we can debug even without a frame pointer. */
|
111 |
|
|
#define CAN_DEBUG_WITHOUT_FP
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
/* Target machine storage layout */
|
115 |
|
|
|
116 |
|
|
/* Define this if most significant bit is lowest numbered
|
117 |
|
|
in instructions that operate on numbered bit-fields. */
|
118 |
|
|
#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
119 |
|
|
|
120 |
|
|
/* Define this if most significant byte of a word is the lowest numbered. */
|
121 |
|
|
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
122 |
|
|
|
123 |
|
|
/* Define this if most significant word of a multiword number is the lowest. */
|
124 |
|
|
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
125 |
|
|
|
126 |
|
|
#define MAX_BITS_PER_WORD 32
|
127 |
|
|
|
128 |
|
|
/* Width of a word, in units (bytes). */
|
129 |
|
|
#define UNITS_PER_WORD 4
|
130 |
|
|
#define MIN_UNITS_PER_WORD 4
|
131 |
|
|
|
132 |
|
|
/* Width of a floating point register. */
|
133 |
|
|
#define UNITS_PER_FPREG 4
|
134 |
|
|
|
135 |
|
|
/* Size in bits of various types on the target machine. */
|
136 |
|
|
#define INT_TYPE_SIZE 32
|
137 |
|
|
#define SHORT_TYPE_SIZE 16
|
138 |
|
|
#define LONG_TYPE_SIZE 32
|
139 |
|
|
#define LONG_LONG_TYPE_SIZE 64
|
140 |
|
|
#define FLOAT_TYPE_SIZE 32
|
141 |
|
|
#define DOUBLE_TYPE_SIZE 64
|
142 |
|
|
#define LONG_DOUBLE_TYPE_SIZE 64
|
143 |
|
|
|
144 |
|
|
/* Allocation boundary (in *bits*) for storing pointers in memory. */
|
145 |
|
|
#define POINTER_BOUNDARY 32
|
146 |
|
|
|
147 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
148 |
|
|
#define PARM_BOUNDARY 32
|
149 |
|
|
|
150 |
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
151 |
|
|
#define FUNCTION_BOUNDARY 32
|
152 |
|
|
|
153 |
|
|
/* Alignment of field after 'int : 0' in a structure. */
|
154 |
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
155 |
|
|
|
156 |
|
|
/* Every structure's size must be a multiple of this. */
|
157 |
|
|
#define STRUCTURE_SIZE_BOUNDARY 8
|
158 |
|
|
|
159 |
|
|
/* There is no point aligning anything to a rounder boundary than this. */
|
160 |
|
|
#define BIGGEST_ALIGNMENT 128
|
161 |
|
|
|
162 |
|
|
/* Set this nonzero if move instructions will actually fail to work
|
163 |
|
|
when given unaligned data. */
|
164 |
|
|
#define STRICT_ALIGNMENT 1
|
165 |
|
|
|
166 |
|
|
/* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
|
167 |
|
|
for QImode, because there is no 8-bit load from memory with sign
|
168 |
|
|
extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
|
169 |
|
|
loads both with and without sign extension. */
|
170 |
|
|
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
171 |
|
|
do { \
|
172 |
|
|
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
173 |
|
|
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
174 |
|
|
{ \
|
175 |
|
|
if ((MODE) == QImode) \
|
176 |
|
|
(UNSIGNEDP) = 1; \
|
177 |
|
|
(MODE) = SImode; \
|
178 |
|
|
} \
|
179 |
|
|
} while (0)
|
180 |
|
|
|
181 |
|
|
/* Imitate the way many other C compilers handle alignment of
|
182 |
|
|
bitfields and the structures that contain them. */
|
183 |
|
|
#define PCC_BITFIELD_TYPE_MATTERS 1
|
184 |
|
|
|
185 |
|
|
/* Disable the use of word-sized or smaller complex modes for structures,
|
186 |
|
|
and for function arguments in particular, where they cause problems with
|
187 |
|
|
register a7. The xtensa_copy_incoming_a7 function assumes that there is
|
188 |
|
|
a single reference to an argument in a7, but with small complex modes the
|
189 |
|
|
real and imaginary components may be extracted separately, leading to two
|
190 |
|
|
uses of the register, only one of which would be replaced. */
|
191 |
|
|
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
|
192 |
|
|
((MODE) == CQImode || (MODE) == CHImode)
|
193 |
|
|
|
194 |
|
|
/* Align string constants and constructors to at least a word boundary.
|
195 |
|
|
The typical use of this macro is to increase alignment for string
|
196 |
|
|
constants to be word aligned so that 'strcpy' calls that copy
|
197 |
|
|
constants can be done inline. */
|
198 |
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
199 |
|
|
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
|
200 |
|
|
&& (ALIGN) < BITS_PER_WORD \
|
201 |
|
|
? BITS_PER_WORD \
|
202 |
|
|
: (ALIGN))
|
203 |
|
|
|
204 |
|
|
/* Align arrays, unions and records to at least a word boundary.
|
205 |
|
|
One use of this macro is to increase alignment of medium-size
|
206 |
|
|
data to make it all fit in fewer cache lines. Another is to
|
207 |
|
|
cause character arrays to be word-aligned so that 'strcpy' calls
|
208 |
|
|
that copy constants to character arrays can be done inline. */
|
209 |
|
|
#undef DATA_ALIGNMENT
|
210 |
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
211 |
|
|
((((ALIGN) < BITS_PER_WORD) \
|
212 |
|
|
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|
213 |
|
|
|| TREE_CODE (TYPE) == UNION_TYPE \
|
214 |
|
|
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
|
215 |
|
|
|
216 |
|
|
/* Operations between registers always perform the operation
|
217 |
|
|
on the full register even if a narrower mode is specified. */
|
218 |
|
|
#define WORD_REGISTER_OPERATIONS
|
219 |
|
|
|
220 |
|
|
/* Xtensa loads are zero-extended by default. */
|
221 |
|
|
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
222 |
|
|
|
223 |
|
|
/* Standard register usage. */
|
224 |
|
|
|
225 |
|
|
/* Number of actual hardware registers.
|
226 |
|
|
The hardware registers are assigned numbers for the compiler
|
227 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
228 |
|
|
All registers that the compiler knows about must be given numbers,
|
229 |
|
|
even those that are not normally considered general registers.
|
230 |
|
|
|
231 |
|
|
The fake frame pointer and argument pointer will never appear in
|
232 |
|
|
the generated code, since they will always be eliminated and replaced
|
233 |
|
|
by either the stack pointer or the hard frame pointer.
|
234 |
|
|
|
235 |
|
|
|
236 |
|
|
16 FRAME_POINTER (fake = initial sp)
|
237 |
|
|
17 ARG_POINTER (fake = initial sp + framesize)
|
238 |
|
|
18 BR[0] for floating-point CC
|
239 |
|
|
19 - 34 FR[0] - FR[15]
|
240 |
|
|
35 MAC16 accumulator */
|
241 |
|
|
|
242 |
|
|
#define FIRST_PSEUDO_REGISTER 36
|
243 |
|
|
|
244 |
|
|
/* Return the stabs register number to use for REGNO. */
|
245 |
|
|
#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
|
246 |
|
|
|
247 |
|
|
/* 1 for registers that have pervasive standard uses
|
248 |
|
|
and are not available for the register allocator. */
|
249 |
|
|
#define FIXED_REGISTERS \
|
250 |
|
|
{ \
|
251 |
|
|
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
252 |
|
|
1, 1, 0, \
|
253 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
254 |
|
|
0, \
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
/* 1 for registers not available across function calls.
|
258 |
|
|
These must include the FIXED_REGISTERS and also any
|
259 |
|
|
registers that can be used without being saved.
|
260 |
|
|
The latter must include the registers where values are returned
|
261 |
|
|
and the register where structure-value addresses are passed.
|
262 |
|
|
Aside from that, you can include as many other registers as you like. */
|
263 |
|
|
#define CALL_USED_REGISTERS \
|
264 |
|
|
{ \
|
265 |
|
|
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
|
266 |
|
|
1, 1, 1, \
|
267 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
268 |
|
|
1, \
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
/* For non-leaf procedures on Xtensa processors, the allocation order
|
272 |
|
|
is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
|
273 |
|
|
want to use the lowest numbered registers first to minimize
|
274 |
|
|
register window overflows. However, local-alloc is not smart
|
275 |
|
|
enough to consider conflicts with incoming arguments. If an
|
276 |
|
|
incoming argument in a2 is live throughout the function and
|
277 |
|
|
local-alloc decides to use a2, then the incoming argument must
|
278 |
|
|
either be spilled or copied to another register. To get around
|
279 |
|
|
this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
|
280 |
|
|
reg_alloc_order for leaf functions such that lowest numbered
|
281 |
|
|
registers are used first with the exception that the incoming
|
282 |
|
|
argument registers are not used until after other register choices
|
283 |
|
|
have been exhausted. */
|
284 |
|
|
|
285 |
|
|
#define REG_ALLOC_ORDER \
|
286 |
|
|
{ 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
|
287 |
|
|
18, \
|
288 |
|
|
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
|
289 |
|
|
0, 1, 16, 17, \
|
290 |
|
|
35, \
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
|
294 |
|
|
|
295 |
|
|
/* For Xtensa, the only point of this is to prevent GCC from otherwise
|
296 |
|
|
giving preference to call-used registers. To minimize window
|
297 |
|
|
overflows for the AR registers, we want to give preference to the
|
298 |
|
|
lower-numbered AR registers. For other register files, which are
|
299 |
|
|
not windowed, we still prefer call-used registers, if there are any. */
|
300 |
|
|
extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
|
301 |
|
|
#define LEAF_REGISTERS xtensa_leaf_regs
|
302 |
|
|
|
303 |
|
|
/* For Xtensa, no remapping is necessary, but this macro must be
|
304 |
|
|
defined if LEAF_REGISTERS is defined. */
|
305 |
|
|
#define LEAF_REG_REMAP(REGNO) (REGNO)
|
306 |
|
|
|
307 |
|
|
/* This must be declared if LEAF_REGISTERS is set. */
|
308 |
|
|
extern int leaf_function;
|
309 |
|
|
|
310 |
|
|
/* Internal macros to classify a register number. */
|
311 |
|
|
|
312 |
|
|
/* 16 address registers + fake registers */
|
313 |
|
|
#define GP_REG_FIRST 0
|
314 |
|
|
#define GP_REG_LAST 17
|
315 |
|
|
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
|
316 |
|
|
|
317 |
|
|
/* Coprocessor registers */
|
318 |
|
|
#define BR_REG_FIRST 18
|
319 |
|
|
#define BR_REG_LAST 18
|
320 |
|
|
#define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
|
321 |
|
|
|
322 |
|
|
/* 16 floating-point registers */
|
323 |
|
|
#define FP_REG_FIRST 19
|
324 |
|
|
#define FP_REG_LAST 34
|
325 |
|
|
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
|
326 |
|
|
|
327 |
|
|
/* MAC16 accumulator */
|
328 |
|
|
#define ACC_REG_FIRST 35
|
329 |
|
|
#define ACC_REG_LAST 35
|
330 |
|
|
#define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
|
331 |
|
|
|
332 |
|
|
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
|
333 |
|
|
#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
|
334 |
|
|
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
|
335 |
|
|
#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
|
336 |
|
|
|
337 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
338 |
|
|
to hold something of mode MODE. */
|
339 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
340 |
|
|
(FP_REG_P (REGNO) ? \
|
341 |
|
|
((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
|
342 |
|
|
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
343 |
|
|
|
344 |
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode
|
345 |
|
|
MODE. */
|
346 |
|
|
extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
|
347 |
|
|
|
348 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
349 |
|
|
xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
|
350 |
|
|
|
351 |
|
|
/* Value is 1 if it is a good idea to tie two pseudo registers
|
352 |
|
|
when one has mode MODE1 and one has mode MODE2.
|
353 |
|
|
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
354 |
|
|
for any hard reg, then this must be 0 for correct output. */
|
355 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
356 |
|
|
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
|
357 |
|
|
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
|
358 |
|
|
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
|
359 |
|
|
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
|
360 |
|
|
|
361 |
|
|
/* Register to use for pushing function arguments. */
|
362 |
|
|
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
|
363 |
|
|
|
364 |
|
|
/* Base register for access to local variables of the function. */
|
365 |
|
|
#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
|
366 |
|
|
|
367 |
|
|
/* The register number of the frame pointer register, which is used to
|
368 |
|
|
access automatic variables in the stack frame. For Xtensa, this
|
369 |
|
|
register never appears in the output. It is always eliminated to
|
370 |
|
|
either the stack pointer or the hard frame pointer. */
|
371 |
|
|
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
|
372 |
|
|
|
373 |
|
|
/* Value should be nonzero if functions must have frame pointers.
|
374 |
|
|
Zero means the frame pointer need not be set up (and parms
|
375 |
|
|
may be accessed via the stack pointer) in functions that seem suitable.
|
376 |
|
|
This is computed in 'reload', in reload1.c. */
|
377 |
|
|
#define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
|
378 |
|
|
|
379 |
|
|
/* Base register for access to arguments of the function. */
|
380 |
|
|
#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
|
381 |
|
|
|
382 |
|
|
/* If the static chain is passed in memory, these macros provide rtx
|
383 |
|
|
giving 'mem' expressions that denote where they are stored.
|
384 |
|
|
'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
|
385 |
|
|
seen by the calling and called functions, respectively. */
|
386 |
|
|
|
387 |
|
|
#define STATIC_CHAIN \
|
388 |
|
|
gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
|
389 |
|
|
|
390 |
|
|
#define STATIC_CHAIN_INCOMING \
|
391 |
|
|
gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
|
392 |
|
|
|
393 |
|
|
/* For now we don't try to use the full set of boolean registers. Without
|
394 |
|
|
software pipelining of FP operations, there's not much to gain and it's
|
395 |
|
|
a real pain to get them reloaded. */
|
396 |
|
|
#define FPCC_REGNUM (BR_REG_FIRST + 0)
|
397 |
|
|
|
398 |
|
|
/* It is as good or better to call a constant function address than to
|
399 |
|
|
call an address kept in a register. */
|
400 |
|
|
#define NO_FUNCTION_CSE 1
|
401 |
|
|
|
402 |
|
|
/* Xtensa processors have "register windows". GCC does not currently
|
403 |
|
|
take advantage of the possibility for variable-sized windows; instead,
|
404 |
|
|
we use a fixed window size of 8. */
|
405 |
|
|
|
406 |
|
|
#define INCOMING_REGNO(OUT) \
|
407 |
|
|
((GP_REG_P (OUT) && \
|
408 |
|
|
((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
|
409 |
|
|
(OUT) - WINDOW_SIZE : (OUT))
|
410 |
|
|
|
411 |
|
|
#define OUTGOING_REGNO(IN) \
|
412 |
|
|
((GP_REG_P (IN) && \
|
413 |
|
|
((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
|
414 |
|
|
(IN) + WINDOW_SIZE : (IN))
|
415 |
|
|
|
416 |
|
|
|
417 |
|
|
/* Define the classes of registers for register constraints in the
|
418 |
|
|
machine description. */
|
419 |
|
|
enum reg_class
|
420 |
|
|
{
|
421 |
|
|
NO_REGS, /* no registers in set */
|
422 |
|
|
BR_REGS, /* coprocessor boolean registers */
|
423 |
|
|
FP_REGS, /* floating point registers */
|
424 |
|
|
ACC_REG, /* MAC16 accumulator */
|
425 |
|
|
SP_REG, /* sp register (aka a1) */
|
426 |
|
|
RL_REGS, /* preferred reload regs (not sp or fp) */
|
427 |
|
|
GR_REGS, /* integer registers except sp */
|
428 |
|
|
AR_REGS, /* all integer registers */
|
429 |
|
|
ALL_REGS, /* all registers */
|
430 |
|
|
LIM_REG_CLASSES /* max value + 1 */
|
431 |
|
|
};
|
432 |
|
|
|
433 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
434 |
|
|
|
435 |
|
|
#define GENERAL_REGS AR_REGS
|
436 |
|
|
|
437 |
|
|
/* An initializer containing the names of the register classes as C
|
438 |
|
|
string constants. These names are used in writing some of the
|
439 |
|
|
debugging dumps. */
|
440 |
|
|
#define REG_CLASS_NAMES \
|
441 |
|
|
{ \
|
442 |
|
|
"NO_REGS", \
|
443 |
|
|
"BR_REGS", \
|
444 |
|
|
"FP_REGS", \
|
445 |
|
|
"ACC_REG", \
|
446 |
|
|
"SP_REG", \
|
447 |
|
|
"RL_REGS", \
|
448 |
|
|
"GR_REGS", \
|
449 |
|
|
"AR_REGS", \
|
450 |
|
|
"ALL_REGS" \
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
/* Contents of the register classes. The Nth integer specifies the
|
454 |
|
|
contents of class N. The way the integer MASK is interpreted is
|
455 |
|
|
that register R is in the class if 'MASK & (1 << R)' is 1. */
|
456 |
|
|
#define REG_CLASS_CONTENTS \
|
457 |
|
|
{ \
|
458 |
|
|
{ 0x00000000, 0x00000000 }, /* no registers */ \
|
459 |
|
|
{ 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
|
460 |
|
|
{ 0xfff80000, 0x00000007 }, /* floating-point registers */ \
|
461 |
|
|
{ 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
|
462 |
|
|
{ 0x00000002, 0x00000000 }, /* stack pointer register */ \
|
463 |
|
|
{ 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
|
464 |
|
|
{ 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
|
465 |
|
|
{ 0x0003ffff, 0x00000000 }, /* integer registers */ \
|
466 |
|
|
{ 0xffffffff, 0x0000000f } /* all registers */ \
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
/* A C expression whose value is a register class containing hard
|
470 |
|
|
register REGNO. In general there is more that one such class;
|
471 |
|
|
choose a class which is "minimal", meaning that no smaller class
|
472 |
|
|
also contains the register. */
|
473 |
|
|
extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
|
474 |
|
|
|
475 |
|
|
#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
|
476 |
|
|
|
477 |
|
|
/* Use the Xtensa AR register file for base registers.
|
478 |
|
|
No index registers. */
|
479 |
|
|
#define BASE_REG_CLASS AR_REGS
|
480 |
|
|
#define INDEX_REG_CLASS NO_REGS
|
481 |
|
|
|
482 |
|
|
/* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
|
483 |
|
|
16 AR registers may be explicitly used in the RTL, as either
|
484 |
|
|
incoming or outgoing arguments. */
|
485 |
|
|
#define SMALL_REGISTER_CLASSES 1
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
/* REGISTER AND CONSTANT CLASSES */
|
489 |
|
|
|
490 |
|
|
/* Get reg_class from a letter such as appears in the machine
|
491 |
|
|
description.
|
492 |
|
|
|
493 |
|
|
Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
|
494 |
|
|
|
495 |
|
|
DEFINED REGISTER CLASSES:
|
496 |
|
|
|
497 |
|
|
'a' general-purpose registers except sp
|
498 |
|
|
'q' sp (aka a1)
|
499 |
|
|
'D' general-purpose registers (only if density option enabled)
|
500 |
|
|
'd' general-purpose registers, including sp (only if density enabled)
|
501 |
|
|
'A' MAC16 accumulator (only if MAC16 option enabled)
|
502 |
|
|
'B' general-purpose registers (only if sext instruction enabled)
|
503 |
|
|
'C' general-purpose registers (only if mul16 option enabled)
|
504 |
|
|
'W' general-purpose registers (only if const16 option enabled)
|
505 |
|
|
'b' coprocessor boolean registers
|
506 |
|
|
'f' floating-point registers
|
507 |
|
|
*/
|
508 |
|
|
|
509 |
|
|
extern enum reg_class xtensa_char_to_class[256];
|
510 |
|
|
|
511 |
|
|
#define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
|
512 |
|
|
|
513 |
|
|
/* The letters I, J, K, L, M, N, O, and P in a register constraint
|
514 |
|
|
string can be used to stand for particular ranges of immediate
|
515 |
|
|
operands. This macro defines what the ranges are. C is the
|
516 |
|
|
letter, and VALUE is a constant value. Return 1 if VALUE is
|
517 |
|
|
in the range specified by C.
|
518 |
|
|
|
519 |
|
|
For Xtensa:
|
520 |
|
|
|
521 |
|
|
I = 12-bit signed immediate for MOVI
|
522 |
|
|
J = 8-bit signed immediate for ADDI
|
523 |
|
|
K = 4-bit value in (b4const U {0})
|
524 |
|
|
L = 4-bit value in b4constu
|
525 |
|
|
M = 7-bit immediate value for MOVI.N
|
526 |
|
|
N = 8-bit unsigned immediate shifted left by 8 bits for ADDMI
|
527 |
|
|
O = 4-bit immediate for ADDI.N
|
528 |
|
|
P = valid immediate mask value for EXTUI */
|
529 |
|
|
|
530 |
|
|
#define CONST_OK_FOR_LETTER_P xtensa_const_ok_for_letter_p
|
531 |
|
|
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
|
532 |
|
|
|
533 |
|
|
|
534 |
|
|
/* Other letters can be defined in a machine-dependent fashion to
|
535 |
|
|
stand for particular classes of registers or other arbitrary
|
536 |
|
|
operand types.
|
537 |
|
|
|
538 |
|
|
R = memory that can be accessed with a 4-bit unsigned offset
|
539 |
|
|
T = memory in a constant pool (addressable with a pc-relative load)
|
540 |
|
|
U = memory *NOT* in a constant pool
|
541 |
|
|
|
542 |
|
|
The offset range should not be checked here (except to distinguish
|
543 |
|
|
denser versions of the instructions for which more general versions
|
544 |
|
|
are available). Doing so leads to problems in reloading: an
|
545 |
|
|
argptr-relative address may become invalid when the phony argptr is
|
546 |
|
|
eliminated in favor of the stack pointer (the offset becomes too
|
547 |
|
|
large to fit in the instruction's immediate field); a reload is
|
548 |
|
|
generated to fix this but the RTL is not immediately updated; in
|
549 |
|
|
the meantime, the constraints are checked and none match. The
|
550 |
|
|
solution seems to be to simply skip the offset check here. The
|
551 |
|
|
address will be checked anyway because of the code in
|
552 |
|
|
GO_IF_LEGITIMATE_ADDRESS. */
|
553 |
|
|
|
554 |
|
|
#define EXTRA_CONSTRAINT xtensa_extra_constraint
|
555 |
|
|
|
556 |
|
|
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
557 |
|
|
xtensa_preferred_reload_class (X, CLASS, 0)
|
558 |
|
|
|
559 |
|
|
#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
|
560 |
|
|
xtensa_preferred_reload_class (X, CLASS, 1)
|
561 |
|
|
|
562 |
|
|
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
563 |
|
|
xtensa_secondary_reload_class (CLASS, MODE, X, 0)
|
564 |
|
|
|
565 |
|
|
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
566 |
|
|
xtensa_secondary_reload_class (CLASS, MODE, X, 1)
|
567 |
|
|
|
568 |
|
|
/* Return the maximum number of consecutive registers
|
569 |
|
|
needed to represent mode MODE in a register of class CLASS. */
|
570 |
|
|
#define CLASS_UNITS(mode, size) \
|
571 |
|
|
((GET_MODE_SIZE (mode) + (size) - 1) / (size))
|
572 |
|
|
|
573 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
574 |
|
|
(CLASS_UNITS (MODE, UNITS_PER_WORD))
|
575 |
|
|
|
576 |
|
|
|
577 |
|
|
/* Stack layout; function entry, exit and calling. */
|
578 |
|
|
|
579 |
|
|
#define STACK_GROWS_DOWNWARD
|
580 |
|
|
|
581 |
|
|
/* Offset within stack frame to start allocating local variables at. */
|
582 |
|
|
#define STARTING_FRAME_OFFSET \
|
583 |
|
|
current_function_outgoing_args_size
|
584 |
|
|
|
585 |
|
|
/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
|
586 |
|
|
they are eliminated to either the stack pointer or hard frame pointer. */
|
587 |
|
|
#define ELIMINABLE_REGS \
|
588 |
|
|
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
589 |
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
590 |
|
|
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
591 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
|
592 |
|
|
|
593 |
|
|
#define CAN_ELIMINATE(FROM, TO) 1
|
594 |
|
|
|
595 |
|
|
/* Specify the initial difference between the specified pair of registers. */
|
596 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
597 |
|
|
do { \
|
598 |
|
|
compute_frame_size (get_frame_size ()); \
|
599 |
|
|
switch (FROM) \
|
600 |
|
|
{ \
|
601 |
|
|
case FRAME_POINTER_REGNUM: \
|
602 |
|
|
(OFFSET) = 0; \
|
603 |
|
|
break; \
|
604 |
|
|
case ARG_POINTER_REGNUM: \
|
605 |
|
|
(OFFSET) = xtensa_current_frame_size; \
|
606 |
|
|
break; \
|
607 |
|
|
default: \
|
608 |
|
|
gcc_unreachable (); \
|
609 |
|
|
} \
|
610 |
|
|
} while (0)
|
611 |
|
|
|
612 |
|
|
/* If defined, the maximum amount of space required for outgoing
|
613 |
|
|
arguments will be computed and placed into the variable
|
614 |
|
|
'current_function_outgoing_args_size'. No space will be pushed
|
615 |
|
|
onto the stack for each call; instead, the function prologue
|
616 |
|
|
should increase the stack frame size by this amount. */
|
617 |
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
618 |
|
|
|
619 |
|
|
/* Offset from the argument pointer register to the first argument's
|
620 |
|
|
address. On some machines it may depend on the data type of the
|
621 |
|
|
function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
|
622 |
|
|
location above the first argument's address. */
|
623 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
624 |
|
|
|
625 |
|
|
/* Align stack frames on 128 bits for Xtensa. This is necessary for
|
626 |
|
|
128-bit datatypes defined in TIE (e.g., for Vectra). */
|
627 |
|
|
#define STACK_BOUNDARY 128
|
628 |
|
|
|
629 |
|
|
/* Functions do not pop arguments off the stack. */
|
630 |
|
|
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
|
631 |
|
|
|
632 |
|
|
/* Use a fixed register window size of 8. */
|
633 |
|
|
#define WINDOW_SIZE 8
|
634 |
|
|
|
635 |
|
|
/* Symbolic macros for the registers used to return integer, floating
|
636 |
|
|
point, and values of coprocessor and user-defined modes. */
|
637 |
|
|
#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
|
638 |
|
|
#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
|
639 |
|
|
|
640 |
|
|
/* Symbolic macros for the first/last argument registers. */
|
641 |
|
|
#define GP_ARG_FIRST (GP_REG_FIRST + 2)
|
642 |
|
|
#define GP_ARG_LAST (GP_REG_FIRST + 7)
|
643 |
|
|
#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
|
644 |
|
|
#define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
|
645 |
|
|
|
646 |
|
|
#define MAX_ARGS_IN_REGISTERS 6
|
647 |
|
|
|
648 |
|
|
/* Don't worry about compatibility with PCC. */
|
649 |
|
|
#define DEFAULT_PCC_STRUCT_RETURN 0
|
650 |
|
|
|
651 |
|
|
/* Define how to find the value returned by a library function
|
652 |
|
|
assuming the value has mode MODE. Because we have defined
|
653 |
|
|
TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
|
654 |
|
|
perform the same promotions as PROMOTE_MODE. */
|
655 |
|
|
#define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
|
656 |
|
|
gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
|
657 |
|
|
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
658 |
|
|
? SImode : (MODE), \
|
659 |
|
|
OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
|
660 |
|
|
|
661 |
|
|
#define LIBCALL_VALUE(MODE) \
|
662 |
|
|
XTENSA_LIBCALL_VALUE ((MODE), 0)
|
663 |
|
|
|
664 |
|
|
#define LIBCALL_OUTGOING_VALUE(MODE) \
|
665 |
|
|
XTENSA_LIBCALL_VALUE ((MODE), 1)
|
666 |
|
|
|
667 |
|
|
/* Define how to find the value returned by a function.
|
668 |
|
|
VALTYPE is the data type of the value (as a tree).
|
669 |
|
|
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
670 |
|
|
otherwise, FUNC is 0. */
|
671 |
|
|
#define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
|
672 |
|
|
gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
|
673 |
|
|
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
|
674 |
|
|
? SImode: TYPE_MODE (VALTYPE), \
|
675 |
|
|
OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
|
676 |
|
|
|
677 |
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
678 |
|
|
XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
|
679 |
|
|
|
680 |
|
|
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
|
681 |
|
|
XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
|
682 |
|
|
|
683 |
|
|
/* A C expression that is nonzero if REGNO is the number of a hard
|
684 |
|
|
register in which the values of called function may come back. A
|
685 |
|
|
register whose use for returning values is limited to serving as
|
686 |
|
|
the second of a pair (for a value of type 'double', say) need not
|
687 |
|
|
be recognized by this macro. If the machine has register windows,
|
688 |
|
|
so that the caller and the called function use different registers
|
689 |
|
|
for the return value, this macro should recognize only the caller's
|
690 |
|
|
register numbers. */
|
691 |
|
|
#define FUNCTION_VALUE_REGNO_P(N) \
|
692 |
|
|
((N) == GP_RETURN)
|
693 |
|
|
|
694 |
|
|
/* A C expression that is nonzero if REGNO is the number of a hard
|
695 |
|
|
register in which function arguments are sometimes passed. This
|
696 |
|
|
does *not* include implicit arguments such as the static chain and
|
697 |
|
|
the structure-value address. On many machines, no registers can be
|
698 |
|
|
used for this purpose since all function arguments are pushed on
|
699 |
|
|
the stack. */
|
700 |
|
|
#define FUNCTION_ARG_REGNO_P(N) \
|
701 |
|
|
((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
|
702 |
|
|
|
703 |
|
|
/* Record the number of argument words seen so far, along with a flag to
|
704 |
|
|
indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
|
705 |
|
|
is used for both incoming and outgoing args, so a separate flag is
|
706 |
|
|
needed. */
|
707 |
|
|
typedef struct xtensa_args
|
708 |
|
|
{
|
709 |
|
|
int arg_words;
|
710 |
|
|
int incoming;
|
711 |
|
|
} CUMULATIVE_ARGS;
|
712 |
|
|
|
713 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
714 |
|
|
init_cumulative_args (&CUM, 0)
|
715 |
|
|
|
716 |
|
|
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
|
717 |
|
|
init_cumulative_args (&CUM, 1)
|
718 |
|
|
|
719 |
|
|
/* Update the data in CUM to advance over an argument
|
720 |
|
|
of mode MODE and data type TYPE.
|
721 |
|
|
(TYPE is null for libcalls where that information may not be available.) */
|
722 |
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
723 |
|
|
function_arg_advance (&CUM, MODE, TYPE)
|
724 |
|
|
|
725 |
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
726 |
|
|
function_arg (&CUM, MODE, TYPE, FALSE)
|
727 |
|
|
|
728 |
|
|
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
729 |
|
|
function_arg (&CUM, MODE, TYPE, TRUE)
|
730 |
|
|
|
731 |
|
|
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
|
732 |
|
|
|
733 |
|
|
/* Profiling Xtensa code is typically done with the built-in profiling
|
734 |
|
|
feature of Tensilica's instruction set simulator, which does not
|
735 |
|
|
require any compiler support. Profiling code on a real (i.e.,
|
736 |
|
|
non-simulated) Xtensa processor is currently only supported by
|
737 |
|
|
GNU/Linux with glibc. The glibc version of _mcount doesn't require
|
738 |
|
|
counter variables. The _mcount function needs the current PC and
|
739 |
|
|
the current return address to identify an arc in the call graph.
|
740 |
|
|
Pass the current return address as the first argument; the current
|
741 |
|
|
PC is available as a0 in _mcount's register window. Both of these
|
742 |
|
|
values contain window size information in the two most significant
|
743 |
|
|
bits; we assume that _mcount will mask off those bits. The call to
|
744 |
|
|
_mcount uses a window size of 8 to make sure that it doesn't clobber
|
745 |
|
|
any incoming argument values. */
|
746 |
|
|
|
747 |
|
|
#define NO_PROFILE_COUNTERS 1
|
748 |
|
|
|
749 |
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
750 |
|
|
do { \
|
751 |
|
|
fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
|
752 |
|
|
if (flag_pic) \
|
753 |
|
|
{ \
|
754 |
|
|
fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
|
755 |
|
|
fprintf (FILE, "\tcallx8\ta8\n"); \
|
756 |
|
|
} \
|
757 |
|
|
else \
|
758 |
|
|
fprintf (FILE, "\tcall8\t_mcount\n"); \
|
759 |
|
|
} while (0)
|
760 |
|
|
|
761 |
|
|
/* Stack pointer value doesn't matter at exit. */
|
762 |
|
|
#define EXIT_IGNORE_STACK 1
|
763 |
|
|
|
764 |
|
|
/* A C statement to output, on the stream FILE, assembler code for a
|
765 |
|
|
block of data that contains the constant parts of a trampoline.
|
766 |
|
|
This code should not include a label--the label is taken care of
|
767 |
|
|
automatically.
|
768 |
|
|
|
769 |
|
|
For Xtensa, the trampoline must perform an entry instruction with a
|
770 |
|
|
minimal stack frame in order to get some free registers. Once the
|
771 |
|
|
actual call target is known, the proper stack frame size is extracted
|
772 |
|
|
from the entry instruction at the target and the current frame is
|
773 |
|
|
adjusted to match. The trampoline then transfers control to the
|
774 |
|
|
instruction following the entry at the target. Note: this assumes
|
775 |
|
|
that the target begins with an entry instruction. */
|
776 |
|
|
|
777 |
|
|
/* minimum frame = reg save area (4 words) plus static chain (1 word)
|
778 |
|
|
and the total number of words must be a multiple of 128 bits */
|
779 |
|
|
#define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
|
780 |
|
|
|
781 |
|
|
#define TRAMPOLINE_TEMPLATE(STREAM) \
|
782 |
|
|
do { \
|
783 |
|
|
fprintf (STREAM, "\t.begin no-transform\n"); \
|
784 |
|
|
fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
|
785 |
|
|
\
|
786 |
|
|
/* save the return address */ \
|
787 |
|
|
fprintf (STREAM, "\tmov\ta10, a0\n"); \
|
788 |
|
|
\
|
789 |
|
|
/* Use a CALL0 instruction to skip past the constants and in the \
|
790 |
|
|
process get the PC into A0. This allows PC-relative access to \
|
791 |
|
|
the constants without relying on L32R, which may not always be \
|
792 |
|
|
available. */ \
|
793 |
|
|
\
|
794 |
|
|
fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
|
795 |
|
|
fprintf (STREAM, "\t.align\t4\n"); \
|
796 |
|
|
fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
|
797 |
|
|
fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
|
798 |
|
|
fprintf (STREAM, ".Lskipconsts:\n"); \
|
799 |
|
|
\
|
800 |
|
|
/* store the static chain */ \
|
801 |
|
|
fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
|
802 |
|
|
fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
|
803 |
|
|
fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
|
804 |
|
|
\
|
805 |
|
|
/* set the proper stack pointer value */ \
|
806 |
|
|
fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
|
807 |
|
|
fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
|
808 |
|
|
fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
|
809 |
|
|
TARGET_BIG_ENDIAN ? 8 : 12); \
|
810 |
|
|
fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
|
811 |
|
|
fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
|
812 |
|
|
fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
|
813 |
|
|
fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
|
814 |
|
|
\
|
815 |
|
|
/* restore the return address */ \
|
816 |
|
|
fprintf (STREAM, "\tmov\ta0, a10\n"); \
|
817 |
|
|
\
|
818 |
|
|
/* jump to the instruction following the entry */ \
|
819 |
|
|
fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
|
820 |
|
|
fprintf (STREAM, "\tjx\ta8\n"); \
|
821 |
|
|
fprintf (STREAM, "\t.byte\t0\n"); \
|
822 |
|
|
fprintf (STREAM, "\t.end no-transform\n"); \
|
823 |
|
|
} while (0)
|
824 |
|
|
|
825 |
|
|
/* Size in bytes of the trampoline, as an integer. Make sure this is
|
826 |
|
|
a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
|
827 |
|
|
#define TRAMPOLINE_SIZE 60
|
828 |
|
|
|
829 |
|
|
/* Alignment required for trampolines, in bits. */
|
830 |
|
|
#define TRAMPOLINE_ALIGNMENT (32)
|
831 |
|
|
|
832 |
|
|
/* A C statement to initialize the variable parts of a trampoline. */
|
833 |
|
|
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
|
834 |
|
|
do { \
|
835 |
|
|
rtx addr = ADDR; \
|
836 |
|
|
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
|
837 |
|
|
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
|
838 |
|
|
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
|
839 |
|
|
0, VOIDmode, 1, addr, Pmode); \
|
840 |
|
|
} while (0)
|
841 |
|
|
|
842 |
|
|
/* Implement `va_start' for varargs and stdarg. */
|
843 |
|
|
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
|
844 |
|
|
xtensa_va_start (valist, nextarg)
|
845 |
|
|
|
846 |
|
|
/* If defined, a C expression that produces the machine-specific code
|
847 |
|
|
to setup the stack so that arbitrary frames can be accessed.
|
848 |
|
|
|
849 |
|
|
On Xtensa, a stack back-trace must always begin from the stack pointer,
|
850 |
|
|
so that the register overflow save area can be located. However, the
|
851 |
|
|
stack-walking code in GCC always begins from the hard_frame_pointer
|
852 |
|
|
register, not the stack pointer. The frame pointer is usually equal
|
853 |
|
|
to the stack pointer, but the __builtin_return_address and
|
854 |
|
|
__builtin_frame_address functions will not work if count > 0 and
|
855 |
|
|
they are called from a routine that uses alloca. These functions
|
856 |
|
|
are not guaranteed to work at all if count > 0 so maybe that is OK.
|
857 |
|
|
|
858 |
|
|
A nicer solution would be to allow the architecture-specific files to
|
859 |
|
|
specify whether to start from the stack pointer or frame pointer. That
|
860 |
|
|
would also allow us to skip the machine->accesses_prev_frame stuff that
|
861 |
|
|
we currently need to ensure that there is a frame pointer when these
|
862 |
|
|
builtin functions are used. */
|
863 |
|
|
|
864 |
|
|
#define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
|
865 |
|
|
|
866 |
|
|
/* A C expression whose value is RTL representing the address in a
|
867 |
|
|
stack frame where the pointer to the caller's frame is stored.
|
868 |
|
|
Assume that FRAMEADDR is an RTL expression for the address of the
|
869 |
|
|
stack frame itself.
|
870 |
|
|
|
871 |
|
|
For Xtensa, there is no easy way to get the frame pointer if it is
|
872 |
|
|
not equivalent to the stack pointer. Moreover, the result of this
|
873 |
|
|
macro is used for continuing to walk back up the stack, so it must
|
874 |
|
|
return the stack pointer address. Thus, there is some inconsistency
|
875 |
|
|
here in that __builtin_frame_address will return the frame pointer
|
876 |
|
|
when count == 0 and the stack pointer when count > 0. */
|
877 |
|
|
|
878 |
|
|
#define DYNAMIC_CHAIN_ADDRESS(frame) \
|
879 |
|
|
gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
|
880 |
|
|
|
881 |
|
|
/* Define this if the return address of a particular stack frame is
|
882 |
|
|
accessed from the frame pointer of the previous stack frame. */
|
883 |
|
|
#define RETURN_ADDR_IN_PREVIOUS_FRAME
|
884 |
|
|
|
885 |
|
|
/* A C expression whose value is RTL representing the value of the
|
886 |
|
|
return address for the frame COUNT steps up from the current
|
887 |
|
|
frame, after the prologue. */
|
888 |
|
|
#define RETURN_ADDR_RTX xtensa_return_addr
|
889 |
|
|
|
890 |
|
|
/* Addressing modes, and classification of registers for them. */
|
891 |
|
|
|
892 |
|
|
/* C expressions which are nonzero if register number NUM is suitable
|
893 |
|
|
for use as a base or index register in operand addresses. It may
|
894 |
|
|
be either a suitable hard register or a pseudo register that has
|
895 |
|
|
been allocated such a hard register. The difference between an
|
896 |
|
|
index register and a base register is that the index register may
|
897 |
|
|
be scaled. */
|
898 |
|
|
|
899 |
|
|
#define REGNO_OK_FOR_BASE_P(NUM) \
|
900 |
|
|
(GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
|
901 |
|
|
|
902 |
|
|
#define REGNO_OK_FOR_INDEX_P(NUM) 0
|
903 |
|
|
|
904 |
|
|
/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
|
905 |
|
|
valid for use as a base or index register. For hard registers, it
|
906 |
|
|
should always accept those which the hardware permits and reject
|
907 |
|
|
the others. Whether the macro accepts or rejects pseudo registers
|
908 |
|
|
must be controlled by `REG_OK_STRICT'. This usually requires two
|
909 |
|
|
variant definitions, of which `REG_OK_STRICT' controls the one
|
910 |
|
|
actually used. The difference between an index register and a base
|
911 |
|
|
register is that the index register may be scaled. */
|
912 |
|
|
|
913 |
|
|
#ifdef REG_OK_STRICT
|
914 |
|
|
|
915 |
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
916 |
|
|
#define REG_OK_FOR_BASE_P(X) \
|
917 |
|
|
REGNO_OK_FOR_BASE_P (REGNO (X))
|
918 |
|
|
|
919 |
|
|
#else /* !REG_OK_STRICT */
|
920 |
|
|
|
921 |
|
|
#define REG_OK_FOR_INDEX_P(X) 0
|
922 |
|
|
#define REG_OK_FOR_BASE_P(X) \
|
923 |
|
|
((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
|
924 |
|
|
|
925 |
|
|
#endif /* !REG_OK_STRICT */
|
926 |
|
|
|
927 |
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
928 |
|
|
#define MAX_REGS_PER_ADDRESS 1
|
929 |
|
|
|
930 |
|
|
/* Identify valid Xtensa addresses. */
|
931 |
|
|
#define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
|
932 |
|
|
do { \
|
933 |
|
|
rtx xinsn = (ADDR); \
|
934 |
|
|
\
|
935 |
|
|
/* allow constant pool addresses */ \
|
936 |
|
|
if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
|
937 |
|
|
&& !TARGET_CONST16 && constantpool_address_p (xinsn)) \
|
938 |
|
|
goto LABEL; \
|
939 |
|
|
\
|
940 |
|
|
while (GET_CODE (xinsn) == SUBREG) \
|
941 |
|
|
xinsn = SUBREG_REG (xinsn); \
|
942 |
|
|
\
|
943 |
|
|
/* allow base registers */ \
|
944 |
|
|
if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
|
945 |
|
|
goto LABEL; \
|
946 |
|
|
\
|
947 |
|
|
/* check for "register + offset" addressing */ \
|
948 |
|
|
if (GET_CODE (xinsn) == PLUS) \
|
949 |
|
|
{ \
|
950 |
|
|
rtx xplus0 = XEXP (xinsn, 0); \
|
951 |
|
|
rtx xplus1 = XEXP (xinsn, 1); \
|
952 |
|
|
enum rtx_code code0; \
|
953 |
|
|
enum rtx_code code1; \
|
954 |
|
|
\
|
955 |
|
|
while (GET_CODE (xplus0) == SUBREG) \
|
956 |
|
|
xplus0 = SUBREG_REG (xplus0); \
|
957 |
|
|
code0 = GET_CODE (xplus0); \
|
958 |
|
|
\
|
959 |
|
|
while (GET_CODE (xplus1) == SUBREG) \
|
960 |
|
|
xplus1 = SUBREG_REG (xplus1); \
|
961 |
|
|
code1 = GET_CODE (xplus1); \
|
962 |
|
|
\
|
963 |
|
|
/* swap operands if necessary so the register is first */ \
|
964 |
|
|
if (code0 != REG && code1 == REG) \
|
965 |
|
|
{ \
|
966 |
|
|
xplus0 = XEXP (xinsn, 1); \
|
967 |
|
|
xplus1 = XEXP (xinsn, 0); \
|
968 |
|
|
code0 = GET_CODE (xplus0); \
|
969 |
|
|
code1 = GET_CODE (xplus1); \
|
970 |
|
|
} \
|
971 |
|
|
\
|
972 |
|
|
if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
|
973 |
|
|
&& code1 == CONST_INT \
|
974 |
|
|
&& xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
|
975 |
|
|
{ \
|
976 |
|
|
goto LABEL; \
|
977 |
|
|
} \
|
978 |
|
|
} \
|
979 |
|
|
} while (0)
|
980 |
|
|
|
981 |
|
|
/* A C expression that is 1 if the RTX X is a constant which is a
|
982 |
|
|
valid address. This is defined to be the same as 'CONSTANT_P (X)',
|
983 |
|
|
but rejecting CONST_DOUBLE. */
|
984 |
|
|
#define CONSTANT_ADDRESS_P(X) \
|
985 |
|
|
((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
986 |
|
|
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|
987 |
|
|
|| (GET_CODE (X) == CONST)))
|
988 |
|
|
|
989 |
|
|
/* Nonzero if the constant value X is a legitimate general operand.
|
990 |
|
|
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
991 |
|
|
#define LEGITIMATE_CONSTANT_P(X) 1
|
992 |
|
|
|
993 |
|
|
/* A C expression that is nonzero if X is a legitimate immediate
|
994 |
|
|
operand on the target machine when generating position independent
|
995 |
|
|
code. */
|
996 |
|
|
#define LEGITIMATE_PIC_OPERAND_P(X) \
|
997 |
|
|
((GET_CODE (X) != SYMBOL_REF \
|
998 |
|
|
|| (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
|
999 |
|
|
&& GET_CODE (X) != LABEL_REF \
|
1000 |
|
|
&& GET_CODE (X) != CONST)
|
1001 |
|
|
|
1002 |
|
|
/* Tell GCC how to use ADDMI to generate addresses. */
|
1003 |
|
|
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
1004 |
|
|
do { \
|
1005 |
|
|
rtx xinsn = (X); \
|
1006 |
|
|
if (GET_CODE (xinsn) == PLUS) \
|
1007 |
|
|
{ \
|
1008 |
|
|
rtx plus0 = XEXP (xinsn, 0); \
|
1009 |
|
|
rtx plus1 = XEXP (xinsn, 1); \
|
1010 |
|
|
\
|
1011 |
|
|
if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
|
1012 |
|
|
{ \
|
1013 |
|
|
plus0 = XEXP (xinsn, 1); \
|
1014 |
|
|
plus1 = XEXP (xinsn, 0); \
|
1015 |
|
|
} \
|
1016 |
|
|
\
|
1017 |
|
|
if (GET_CODE (plus0) == REG \
|
1018 |
|
|
&& GET_CODE (plus1) == CONST_INT \
|
1019 |
|
|
&& !xtensa_mem_offset (INTVAL (plus1), MODE) \
|
1020 |
|
|
&& !xtensa_simm8 (INTVAL (plus1)) \
|
1021 |
|
|
&& xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
|
1022 |
|
|
&& xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
|
1023 |
|
|
{ \
|
1024 |
|
|
rtx temp = gen_reg_rtx (Pmode); \
|
1025 |
|
|
emit_insn (gen_rtx_SET (Pmode, temp, \
|
1026 |
|
|
gen_rtx_PLUS (Pmode, plus0, \
|
1027 |
|
|
GEN_INT (INTVAL (plus1) & ~0xff)))); \
|
1028 |
|
|
(X) = gen_rtx_PLUS (Pmode, temp, \
|
1029 |
|
|
GEN_INT (INTVAL (plus1) & 0xff)); \
|
1030 |
|
|
goto WIN; \
|
1031 |
|
|
} \
|
1032 |
|
|
} \
|
1033 |
|
|
} while (0)
|
1034 |
|
|
|
1035 |
|
|
|
1036 |
|
|
/* Treat constant-pool references as "mode dependent" since they can
|
1037 |
|
|
only be accessed with SImode loads. This works around a bug in the
|
1038 |
|
|
combiner where a constant pool reference is temporarily converted
|
1039 |
|
|
to an HImode load, which is then assumed to zero-extend based on
|
1040 |
|
|
our definition of LOAD_EXTEND_OP. This is wrong because the high
|
1041 |
|
|
bits of a 16-bit value in the constant pool are now sign-extended
|
1042 |
|
|
by default. */
|
1043 |
|
|
|
1044 |
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
1045 |
|
|
do { \
|
1046 |
|
|
if (constantpool_address_p (ADDR)) \
|
1047 |
|
|
goto LABEL; \
|
1048 |
|
|
} while (0)
|
1049 |
|
|
|
1050 |
|
|
/* Specify the machine mode that this machine uses
|
1051 |
|
|
for the index in the tablejump instruction. */
|
1052 |
|
|
#define CASE_VECTOR_MODE (SImode)
|
1053 |
|
|
|
1054 |
|
|
/* Define this as 1 if 'char' should by default be signed; else as 0. */
|
1055 |
|
|
#define DEFAULT_SIGNED_CHAR 0
|
1056 |
|
|
|
1057 |
|
|
/* Max number of bytes we can move from memory to memory
|
1058 |
|
|
in one reasonably fast instruction. */
|
1059 |
|
|
#define MOVE_MAX 4
|
1060 |
|
|
#define MAX_MOVE_MAX 4
|
1061 |
|
|
|
1062 |
|
|
/* Prefer word-sized loads. */
|
1063 |
|
|
#define SLOW_BYTE_ACCESS 1
|
1064 |
|
|
|
1065 |
|
|
/* Shift instructions ignore all but the low-order few bits. */
|
1066 |
|
|
#define SHIFT_COUNT_TRUNCATED 1
|
1067 |
|
|
|
1068 |
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
1069 |
|
|
is done just by pretending it is already truncated. */
|
1070 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
1071 |
|
|
|
1072 |
|
|
/* Specify the machine mode that pointers have.
|
1073 |
|
|
After generation of rtl, the compiler makes no further distinction
|
1074 |
|
|
between pointers and any other objects of this machine mode. */
|
1075 |
|
|
#define Pmode SImode
|
1076 |
|
|
|
1077 |
|
|
/* A function address in a call instruction is a word address (for
|
1078 |
|
|
indexing purposes) so give the MEM rtx a words's mode. */
|
1079 |
|
|
#define FUNCTION_MODE SImode
|
1080 |
|
|
|
1081 |
|
|
/* A C expression for the cost of moving data from a register in
|
1082 |
|
|
class FROM to one in class TO. The classes are expressed using
|
1083 |
|
|
the enumeration values such as 'GENERAL_REGS'. A value of 2 is
|
1084 |
|
|
the default; other values are interpreted relative to that. */
|
1085 |
|
|
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
|
1086 |
|
|
(((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
|
1087 |
|
|
? 2 \
|
1088 |
|
|
: (reg_class_subset_p ((FROM), AR_REGS) \
|
1089 |
|
|
&& reg_class_subset_p ((TO), AR_REGS) \
|
1090 |
|
|
? 2 \
|
1091 |
|
|
: (reg_class_subset_p ((FROM), AR_REGS) \
|
1092 |
|
|
&& (TO) == ACC_REG \
|
1093 |
|
|
? 3 \
|
1094 |
|
|
: ((FROM) == ACC_REG \
|
1095 |
|
|
&& reg_class_subset_p ((TO), AR_REGS) \
|
1096 |
|
|
? 3 \
|
1097 |
|
|
: 10))))
|
1098 |
|
|
|
1099 |
|
|
#define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
|
1100 |
|
|
|
1101 |
|
|
#define BRANCH_COST 3
|
1102 |
|
|
|
1103 |
|
|
/* How to refer to registers in assembler output.
|
1104 |
|
|
This sequence is indexed by compiler's hard-register-number (see above). */
|
1105 |
|
|
#define REGISTER_NAMES \
|
1106 |
|
|
{ \
|
1107 |
|
|
"a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
|
1108 |
|
|
"a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
|
1109 |
|
|
"fp", "argp", "b0", \
|
1110 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
1111 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
|
1112 |
|
|
"acc" \
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
/* If defined, a C initializer for an array of structures containing a
|
1116 |
|
|
name and a register number. This macro defines additional names
|
1117 |
|
|
for hard registers, thus allowing the 'asm' option in declarations
|
1118 |
|
|
to refer to registers using alternate names. */
|
1119 |
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
1120 |
|
|
{ \
|
1121 |
|
|
{ "a1", 1 + GP_REG_FIRST } \
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
1125 |
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
1126 |
|
|
|
1127 |
|
|
/* Recognize machine-specific patterns that may appear within
|
1128 |
|
|
constants. Used for PIC-specific UNSPECs. */
|
1129 |
|
|
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
|
1130 |
|
|
do { \
|
1131 |
|
|
if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
|
1132 |
|
|
{ \
|
1133 |
|
|
switch (XINT ((X), 1)) \
|
1134 |
|
|
{ \
|
1135 |
|
|
case UNSPEC_PLT: \
|
1136 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
1137 |
|
|
fputs ("@PLT", (STREAM)); \
|
1138 |
|
|
break; \
|
1139 |
|
|
default: \
|
1140 |
|
|
goto FAIL; \
|
1141 |
|
|
} \
|
1142 |
|
|
break; \
|
1143 |
|
|
} \
|
1144 |
|
|
else \
|
1145 |
|
|
goto FAIL; \
|
1146 |
|
|
} while (0)
|
1147 |
|
|
|
1148 |
|
|
/* Globalizing directive for a label. */
|
1149 |
|
|
#define GLOBAL_ASM_OP "\t.global\t"
|
1150 |
|
|
|
1151 |
|
|
/* Declare an uninitialized external linkage data object. */
|
1152 |
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
1153 |
|
|
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
1154 |
|
|
|
1155 |
|
|
/* This is how to output an element of a case-vector that is absolute. */
|
1156 |
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
|
1157 |
|
|
fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
|
1158 |
|
|
LOCAL_LABEL_PREFIX, VALUE)
|
1159 |
|
|
|
1160 |
|
|
/* This is how to output an element of a case-vector that is relative.
|
1161 |
|
|
This is used for pc-relative code. */
|
1162 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
|
1163 |
|
|
do { \
|
1164 |
|
|
fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
|
1165 |
|
|
LOCAL_LABEL_PREFIX, (VALUE), \
|
1166 |
|
|
LOCAL_LABEL_PREFIX, (REL)); \
|
1167 |
|
|
} while (0)
|
1168 |
|
|
|
1169 |
|
|
/* This is how to output an assembler line that says to advance the
|
1170 |
|
|
location counter to a multiple of 2**LOG bytes. */
|
1171 |
|
|
#define ASM_OUTPUT_ALIGN(STREAM, LOG) \
|
1172 |
|
|
do { \
|
1173 |
|
|
if ((LOG) != 0) \
|
1174 |
|
|
fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
|
1175 |
|
|
} while (0)
|
1176 |
|
|
|
1177 |
|
|
/* Indicate that jump tables go in the text section. This is
|
1178 |
|
|
necessary when compiling PIC code. */
|
1179 |
|
|
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
|
1180 |
|
|
|
1181 |
|
|
|
1182 |
|
|
/* Define the strings to put out for each section in the object file. */
|
1183 |
|
|
#define TEXT_SECTION_ASM_OP "\t.text"
|
1184 |
|
|
#define DATA_SECTION_ASM_OP "\t.data"
|
1185 |
|
|
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
|
1186 |
|
|
|
1187 |
|
|
|
1188 |
|
|
/* Define output to appear before the constant pool. */
|
1189 |
|
|
#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
|
1190 |
|
|
do { \
|
1191 |
|
|
if ((SIZE) > 0) \
|
1192 |
|
|
{ \
|
1193 |
|
|
resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
|
1194 |
|
|
switch_to_section (function_section (FUNDECL)); \
|
1195 |
|
|
fprintf (FILE, "\t.literal_position\n"); \
|
1196 |
|
|
} \
|
1197 |
|
|
} while (0)
|
1198 |
|
|
|
1199 |
|
|
|
1200 |
|
|
/* A C statement (with or without semicolon) to output a constant in
|
1201 |
|
|
the constant pool, if it needs special treatment. */
|
1202 |
|
|
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
|
1203 |
|
|
do { \
|
1204 |
|
|
xtensa_output_literal (FILE, X, MODE, LABELNO); \
|
1205 |
|
|
goto JUMPTO; \
|
1206 |
|
|
} while (0)
|
1207 |
|
|
|
1208 |
|
|
/* How to start an assembler comment. */
|
1209 |
|
|
#define ASM_COMMENT_START "#"
|
1210 |
|
|
|
1211 |
|
|
/* Exception handling TODO!! */
|
1212 |
|
|
#define DWARF_UNWIND_INFO 0
|
1213 |
|
|
|
1214 |
|
|
/* Xtensa constant pool breaks the devices in crtstuff.c to control
|
1215 |
|
|
section in where code resides. We have to write it as asm code. Use
|
1216 |
|
|
a MOVI and let the assembler relax it -- for the .init and .fini
|
1217 |
|
|
sections, the assembler knows to put the literal in the right
|
1218 |
|
|
place. */
|
1219 |
|
|
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
1220 |
|
|
asm (SECTION_OP "\n\
|
1221 |
|
|
movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
|
1222 |
|
|
callx8\ta8\n" \
|
1223 |
|
|
TEXT_SECTION_ASM_OP);
|