1 |
38 |
julius |
/* Allocation for dataflow support routines.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Originally contributed by Michael P. Hayes
|
5 |
|
|
(m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
|
6 |
|
|
Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
|
7 |
|
|
and Kenneth Zadeck (zadeck@naturalbridge.com).
|
8 |
|
|
|
9 |
|
|
This file is part of GCC.
|
10 |
|
|
|
11 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
12 |
|
|
the terms of the GNU General Public License as published by the Free
|
13 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
14 |
|
|
version.
|
15 |
|
|
|
16 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
17 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
18 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
19 |
|
|
for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with GCC; see the file COPYING3. If not see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
/*
|
26 |
|
|
OVERVIEW:
|
27 |
|
|
|
28 |
|
|
The files in this collection (df*.c,df.h) provide a general framework
|
29 |
|
|
for solving dataflow problems. The global dataflow is performed using
|
30 |
|
|
a good implementation of iterative dataflow analysis.
|
31 |
|
|
|
32 |
|
|
The file df-problems.c provides problem instance for the most common
|
33 |
|
|
dataflow problems: reaching defs, upward exposed uses, live variables,
|
34 |
|
|
uninitialized variables, def-use chains, and use-def chains. However,
|
35 |
|
|
the interface allows other dataflow problems to be defined as well.
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
USAGE:
|
39 |
|
|
|
40 |
|
|
Here is an example of using the dataflow routines.
|
41 |
|
|
|
42 |
|
|
struct df *df;
|
43 |
|
|
|
44 |
|
|
df = df_init (init_flags);
|
45 |
|
|
|
46 |
|
|
df_add_problem (df, problem, flags);
|
47 |
|
|
|
48 |
|
|
df_set_blocks (df, blocks);
|
49 |
|
|
|
50 |
|
|
df_rescan_blocks (df, blocks);
|
51 |
|
|
|
52 |
|
|
df_analyze (df);
|
53 |
|
|
|
54 |
|
|
df_dump (df, stderr);
|
55 |
|
|
|
56 |
|
|
df_finish (df);
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
|
60 |
|
|
DF_INIT simply creates a poor man's object (df) that needs to be
|
61 |
|
|
passed to all the dataflow routines. df_finish destroys this object
|
62 |
|
|
and frees up any allocated memory.
|
63 |
|
|
|
64 |
|
|
There are three flags that can be passed to df_init, each of these
|
65 |
|
|
flags controls the scanning of the rtl:
|
66 |
|
|
|
67 |
|
|
DF_HARD_REGS means that the scanning is to build information about
|
68 |
|
|
both pseudo registers and hardware registers. Without this
|
69 |
|
|
information, the problems will be solved only on pseudo registers.
|
70 |
|
|
DF_EQUIV_NOTES marks the uses present in EQUIV/EQUAL notes.
|
71 |
|
|
DF_SUBREGS return subregs rather than the inner reg.
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
DF_ADD_PROBLEM adds a problem, defined by an instance to struct
|
75 |
|
|
df_problem, to the set of problems solved in this instance of df. All
|
76 |
|
|
calls to add a problem for a given instance of df must occur before
|
77 |
|
|
the first call to DF_RESCAN_BLOCKS, DF_SET_BLOCKS or DF_ANALYZE.
|
78 |
|
|
|
79 |
|
|
For all of the problems defined in df-problems.c, there are
|
80 |
|
|
convenience functions named DF_*_ADD_PROBLEM.
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
Problems can be dependent on other problems. For instance, solving
|
84 |
|
|
def-use or use-def chains is dependent on solving reaching
|
85 |
|
|
definitions. As long as these dependencies are listed in the problem
|
86 |
|
|
definition, the order of adding the problems is not material.
|
87 |
|
|
Otherwise, the problems will be solved in the order of calls to
|
88 |
|
|
df_add_problem. Note that it is not necessary to have a problem. In
|
89 |
|
|
that case, df will just be used to do the scanning.
|
90 |
|
|
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
DF_SET_BLOCKS is an optional call used to define a region of the
|
94 |
|
|
function on which the analysis will be performed. The normal case is
|
95 |
|
|
to analyze the entire function and no call to df_set_blocks is made.
|
96 |
|
|
|
97 |
|
|
When a subset is given, the analysis behaves as if the function only
|
98 |
|
|
contains those blocks and any edges that occur directly between the
|
99 |
|
|
blocks in the set. Care should be taken to call df_set_blocks right
|
100 |
|
|
before the call to analyze in order to eliminate the possibility that
|
101 |
|
|
optimizations that reorder blocks invalidate the bitvector.
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
DF_RESCAN_BLOCKS is an optional call that causes the scanner to be
|
106 |
|
|
(re)run over the set of blocks passed in. If blocks is NULL, the entire
|
107 |
|
|
function (or all of the blocks defined in df_set_blocks) is rescanned.
|
108 |
|
|
If blocks contains blocks that were not defined in the call to
|
109 |
|
|
df_set_blocks, these blocks are added to the set of blocks.
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
DF_ANALYZE causes all of the defined problems to be (re)solved. It
|
113 |
|
|
does not cause blocks to be (re)scanned at the rtl level unless no
|
114 |
|
|
prior call is made to df_rescan_blocks. When DF_ANALYZE is completes,
|
115 |
|
|
the IN and OUT sets for each basic block contain the computer
|
116 |
|
|
information. The DF_*_BB_INFO macros can be used to access these
|
117 |
|
|
bitvectors.
|
118 |
|
|
|
119 |
|
|
|
120 |
|
|
DF_DUMP can then be called to dump the information produce to some
|
121 |
|
|
file.
|
122 |
|
|
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
DF_FINISH causes all of the datastructures to be cleaned up and freed.
|
126 |
|
|
The df_instance is also freed and its pointer should be NULLed.
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
Scanning produces a `struct df_ref' data structure (ref) is allocated
|
132 |
|
|
for every register reference (def or use) and this records the insn
|
133 |
|
|
and bb the ref is found within. The refs are linked together in
|
134 |
|
|
chains of uses and defs for each insn and for each register. Each ref
|
135 |
|
|
also has a chain field that links all the use refs for a def or all
|
136 |
|
|
the def refs for a use. This is used to create use-def or def-use
|
137 |
|
|
chains.
|
138 |
|
|
|
139 |
|
|
Different optimizations have different needs. Ultimately, only
|
140 |
|
|
register allocation and schedulers should be using the bitmaps
|
141 |
|
|
produced for the live register and uninitialized register problems.
|
142 |
|
|
The rest of the backend should be upgraded to using and maintaining
|
143 |
|
|
the linked information such as def use or use def chains.
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
PHILOSOPHY:
|
148 |
|
|
|
149 |
|
|
While incremental bitmaps are not worthwhile to maintain, incremental
|
150 |
|
|
chains may be perfectly reasonable. The fastest way to build chains
|
151 |
|
|
from scratch or after significant modifications is to build reaching
|
152 |
|
|
definitions (RD) and build the chains from this.
|
153 |
|
|
|
154 |
|
|
However, general algorithms for maintaining use-def or def-use chains
|
155 |
|
|
are not practical. The amount of work to recompute the chain any
|
156 |
|
|
chain after an arbitrary change is large. However, with a modest
|
157 |
|
|
amount of work it is generally possible to have the application that
|
158 |
|
|
uses the chains keep them up to date. The high level knowledge of
|
159 |
|
|
what is really happening is essential to crafting efficient
|
160 |
|
|
incremental algorithms.
|
161 |
|
|
|
162 |
|
|
As for the bit vector problems, there is no interface to give a set of
|
163 |
|
|
blocks over with to resolve the iteration. In general, restarting a
|
164 |
|
|
dataflow iteration is difficult and expensive. Again, the best way to
|
165 |
|
|
keep the dataflow information up to data (if this is really what is
|
166 |
|
|
needed) it to formulate a problem specific solution.
|
167 |
|
|
|
168 |
|
|
There are fine grained calls for creating and deleting references from
|
169 |
|
|
instructions in df-scan.c. However, these are not currently connected
|
170 |
|
|
to the engine that resolves the dataflow equations.
|
171 |
|
|
|
172 |
|
|
|
173 |
|
|
DATA STRUCTURES:
|
174 |
|
|
|
175 |
|
|
The basic object is a DF_REF (reference) and this may either be a
|
176 |
|
|
DEF (definition) or a USE of a register.
|
177 |
|
|
|
178 |
|
|
These are linked into a variety of lists; namely reg-def, reg-use,
|
179 |
|
|
insn-def, insn-use, def-use, and use-def lists. For example, the
|
180 |
|
|
reg-def lists contain all the locations that define a given register
|
181 |
|
|
while the insn-use lists contain all the locations that use a
|
182 |
|
|
register.
|
183 |
|
|
|
184 |
|
|
Note that the reg-def and reg-use chains are generally short for
|
185 |
|
|
pseudos and long for the hard registers.
|
186 |
|
|
|
187 |
|
|
ACCESSING REFS:
|
188 |
|
|
|
189 |
|
|
There are 4 ways to obtain access to refs:
|
190 |
|
|
|
191 |
|
|
1) References are divided into two categories, REAL and ARTIFICIAL.
|
192 |
|
|
|
193 |
|
|
REAL refs are associated with instructions. They are linked into
|
194 |
|
|
either in the insn's defs list (accessed by the DF_INSN_DEFS or
|
195 |
|
|
DF_INSN_UID_DEFS macros) or the insn's uses list (accessed by the
|
196 |
|
|
DF_INSN_USES or DF_INSN_UID_USES macros). These macros produce a
|
197 |
|
|
ref (or NULL), the rest of the list can be obtained by traversal of
|
198 |
|
|
the NEXT_REF field (accessed by the DF_REF_NEXT_REF macro.) There
|
199 |
|
|
is no significance to the ordering of the uses or refs in an
|
200 |
|
|
instruction.
|
201 |
|
|
|
202 |
|
|
ARTIFICIAL refs are associated with basic blocks. The heads of
|
203 |
|
|
these lists can be accessed by calling get_artificial_defs or
|
204 |
|
|
get_artificial_uses for the particular basic block. Artificial
|
205 |
|
|
defs and uses are only there if DF_HARD_REGS was specified when the
|
206 |
|
|
df instance was created.
|
207 |
|
|
|
208 |
|
|
Artificial defs and uses occur both at the beginning and ends of blocks.
|
209 |
|
|
|
210 |
|
|
For blocks that area at the destination of eh edges, the
|
211 |
|
|
artificial uses and defs occur at the beginning. The defs relate
|
212 |
|
|
to the registers specified in EH_RETURN_DATA_REGNO and the uses
|
213 |
|
|
relate to the registers specified in ED_USES. Logically these
|
214 |
|
|
defs and uses should really occur along the eh edge, but there is
|
215 |
|
|
no convenient way to do this. Artificial edges that occur at the
|
216 |
|
|
beginning of the block have the DF_REF_AT_TOP flag set.
|
217 |
|
|
|
218 |
|
|
Artificial uses occur at the end of all blocks. These arise from
|
219 |
|
|
the hard registers that are always live, such as the stack
|
220 |
|
|
register and are put there to keep the code from forgetting about
|
221 |
|
|
them.
|
222 |
|
|
|
223 |
|
|
Artificial defs occur at the end of the entry block. These arise
|
224 |
|
|
from registers that are live at entry to the function.
|
225 |
|
|
|
226 |
|
|
2) All of the uses and defs associated with each pseudo or hard
|
227 |
|
|
register are linked in a bidirectional chain. These are called
|
228 |
|
|
reg-use or reg_def chains.
|
229 |
|
|
|
230 |
|
|
The first use (or def) for a register can be obtained using the
|
231 |
|
|
DF_REG_USE_GET macro (or DF_REG_DEF_GET macro). Subsequent uses
|
232 |
|
|
for the same regno can be obtained by following the next_reg field
|
233 |
|
|
of the ref.
|
234 |
|
|
|
235 |
|
|
In previous versions of this code, these chains were ordered. It
|
236 |
|
|
has not been practical to continue this practice.
|
237 |
|
|
|
238 |
|
|
3) If def-use or use-def chains are built, these can be traversed to
|
239 |
|
|
get to other refs.
|
240 |
|
|
|
241 |
|
|
4) An array of all of the uses (and an array of all of the defs) can
|
242 |
|
|
be built. These arrays are indexed by the value in the id
|
243 |
|
|
structure. These arrays are only lazily kept up to date, and that
|
244 |
|
|
process can be expensive. To have these arrays built, call
|
245 |
|
|
df_reorganize_refs. Note that the values in the id field of a ref
|
246 |
|
|
may change across calls to df_analyze or df_reorganize refs.
|
247 |
|
|
|
248 |
|
|
If the only use of this array is to find all of the refs, it is
|
249 |
|
|
better to traverse all of the registers and then traverse all of
|
250 |
|
|
reg-use or reg-def chains.
|
251 |
|
|
|
252 |
|
|
|
253 |
|
|
|
254 |
|
|
NOTES:
|
255 |
|
|
|
256 |
|
|
Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
|
257 |
|
|
both a use and a def. These are both marked read/write to show that they
|
258 |
|
|
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
|
259 |
|
|
will generate a use of reg 42 followed by a def of reg 42 (both marked
|
260 |
|
|
read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
|
261 |
|
|
generates a use of reg 41 then a def of reg 41 (both marked read/write),
|
262 |
|
|
even though reg 41 is decremented before it is used for the memory
|
263 |
|
|
address in this second example.
|
264 |
|
|
|
265 |
|
|
A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
|
266 |
|
|
for which the number of word_mode units covered by the outer mode is
|
267 |
|
|
smaller than that covered by the inner mode, invokes a read-modify-write.
|
268 |
|
|
operation. We generate both a use and a def and again mark them
|
269 |
|
|
read/write.
|
270 |
|
|
|
271 |
|
|
Paradoxical subreg writes do not leave a trace of the old content, so they
|
272 |
|
|
are write-only operations.
|
273 |
|
|
*/
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
#include "config.h"
|
277 |
|
|
#include "system.h"
|
278 |
|
|
#include "coretypes.h"
|
279 |
|
|
#include "tm.h"
|
280 |
|
|
#include "rtl.h"
|
281 |
|
|
#include "tm_p.h"
|
282 |
|
|
#include "insn-config.h"
|
283 |
|
|
#include "recog.h"
|
284 |
|
|
#include "function.h"
|
285 |
|
|
#include "regs.h"
|
286 |
|
|
#include "output.h"
|
287 |
|
|
#include "alloc-pool.h"
|
288 |
|
|
#include "flags.h"
|
289 |
|
|
#include "hard-reg-set.h"
|
290 |
|
|
#include "basic-block.h"
|
291 |
|
|
#include "sbitmap.h"
|
292 |
|
|
#include "bitmap.h"
|
293 |
|
|
#include "timevar.h"
|
294 |
|
|
#include "df.h"
|
295 |
|
|
#include "tree-pass.h"
|
296 |
|
|
|
297 |
|
|
static struct df *ddf = NULL;
|
298 |
|
|
struct df *shared_df = NULL;
|
299 |
|
|
|
300 |
|
|
static void *df_get_bb_info (struct dataflow *, unsigned int);
|
301 |
|
|
static void df_set_bb_info (struct dataflow *, unsigned int, void *);
|
302 |
|
|
/*----------------------------------------------------------------------------
|
303 |
|
|
Functions to create, destroy and manipulate an instance of df.
|
304 |
|
|
----------------------------------------------------------------------------*/
|
305 |
|
|
|
306 |
|
|
|
307 |
|
|
/* Initialize dataflow analysis and allocate and initialize dataflow
|
308 |
|
|
memory. */
|
309 |
|
|
|
310 |
|
|
struct df *
|
311 |
|
|
df_init (int flags)
|
312 |
|
|
{
|
313 |
|
|
struct df *df = XCNEW (struct df);
|
314 |
|
|
|
315 |
|
|
/* This is executed once per compilation to initialize platform
|
316 |
|
|
specific data structures. */
|
317 |
|
|
df_hard_reg_init ();
|
318 |
|
|
|
319 |
|
|
/* All df instance must define the scanning problem. */
|
320 |
|
|
df_scan_add_problem (df, flags);
|
321 |
|
|
ddf = df;
|
322 |
|
|
return df;
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
/* Add PROBLEM to the DF instance. */
|
326 |
|
|
|
327 |
|
|
struct dataflow *
|
328 |
|
|
df_add_problem (struct df *df, struct df_problem *problem, int flags)
|
329 |
|
|
{
|
330 |
|
|
struct dataflow *dflow;
|
331 |
|
|
|
332 |
|
|
/* First try to add the dependent problem. */
|
333 |
|
|
if (problem->dependent_problem_fun)
|
334 |
|
|
(problem->dependent_problem_fun) (df, 0);
|
335 |
|
|
|
336 |
|
|
/* Check to see if this problem has already been defined. If it
|
337 |
|
|
has, just return that instance, if not, add it to the end of the
|
338 |
|
|
vector. */
|
339 |
|
|
dflow = df->problems_by_index[problem->id];
|
340 |
|
|
if (dflow)
|
341 |
|
|
return dflow;
|
342 |
|
|
|
343 |
|
|
/* Make a new one and add it to the end. */
|
344 |
|
|
dflow = XCNEW (struct dataflow);
|
345 |
|
|
dflow->flags = flags;
|
346 |
|
|
dflow->df = df;
|
347 |
|
|
dflow->problem = problem;
|
348 |
|
|
df->problems_in_order[df->num_problems_defined++] = dflow;
|
349 |
|
|
df->problems_by_index[dflow->problem->id] = dflow;
|
350 |
|
|
|
351 |
|
|
return dflow;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
|
355 |
|
|
/* Set the MASK flags in the DFLOW problem. The old flags are
|
356 |
|
|
returned. If a flag is not allowed to be changed this will fail if
|
357 |
|
|
checking is enabled. */
|
358 |
|
|
int
|
359 |
|
|
df_set_flags (struct dataflow *dflow, int mask)
|
360 |
|
|
{
|
361 |
|
|
int old_flags = dflow->flags;
|
362 |
|
|
|
363 |
|
|
gcc_assert (!(mask & (~dflow->problem->changeable_flags)));
|
364 |
|
|
|
365 |
|
|
dflow->flags |= mask;
|
366 |
|
|
|
367 |
|
|
return old_flags;
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
/* Clear the MASK flags in the DFLOW problem. The old flags are
|
371 |
|
|
returned. If a flag is not allowed to be changed this will fail if
|
372 |
|
|
checking is enabled. */
|
373 |
|
|
int
|
374 |
|
|
df_clear_flags (struct dataflow *dflow, int mask)
|
375 |
|
|
{
|
376 |
|
|
int old_flags = dflow->flags;
|
377 |
|
|
|
378 |
|
|
gcc_assert (!(mask & (~dflow->problem->changeable_flags)));
|
379 |
|
|
|
380 |
|
|
dflow->flags &= !mask;
|
381 |
|
|
|
382 |
|
|
return old_flags;
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/* Set the blocks that are to be considered for analysis. If this is
|
386 |
|
|
not called or is called with null, the entire function in
|
387 |
|
|
analyzed. */
|
388 |
|
|
|
389 |
|
|
void
|
390 |
|
|
df_set_blocks (struct df *df, bitmap blocks)
|
391 |
|
|
{
|
392 |
|
|
if (blocks)
|
393 |
|
|
{
|
394 |
|
|
if (df->blocks_to_analyze)
|
395 |
|
|
{
|
396 |
|
|
int p;
|
397 |
|
|
bitmap diff = BITMAP_ALLOC (NULL);
|
398 |
|
|
bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
|
399 |
|
|
for (p = df->num_problems_defined - 1; p >= 0 ;p--)
|
400 |
|
|
{
|
401 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
402 |
|
|
if (dflow->problem->reset_fun)
|
403 |
|
|
dflow->problem->reset_fun (dflow, df->blocks_to_analyze);
|
404 |
|
|
else if (dflow->problem->free_bb_fun)
|
405 |
|
|
{
|
406 |
|
|
bitmap_iterator bi;
|
407 |
|
|
unsigned int bb_index;
|
408 |
|
|
|
409 |
|
|
EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
|
410 |
|
|
{
|
411 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
412 |
|
|
if (bb)
|
413 |
|
|
{
|
414 |
|
|
dflow->problem->free_bb_fun
|
415 |
|
|
(dflow, bb, df_get_bb_info (dflow, bb_index));
|
416 |
|
|
df_set_bb_info (dflow, bb_index, NULL);
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
BITMAP_FREE (diff);
|
423 |
|
|
}
|
424 |
|
|
else
|
425 |
|
|
{
|
426 |
|
|
/* If we have not actually run scanning before, do not try
|
427 |
|
|
to clear anything. */
|
428 |
|
|
struct dataflow *scan_dflow = df->problems_by_index [DF_SCAN];
|
429 |
|
|
if (scan_dflow->problem_data)
|
430 |
|
|
{
|
431 |
|
|
bitmap blocks_to_reset = NULL;
|
432 |
|
|
int p;
|
433 |
|
|
for (p = df->num_problems_defined - 1; p >= 0 ;p--)
|
434 |
|
|
{
|
435 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
436 |
|
|
if (dflow->problem->reset_fun)
|
437 |
|
|
{
|
438 |
|
|
if (!blocks_to_reset)
|
439 |
|
|
{
|
440 |
|
|
basic_block bb;
|
441 |
|
|
blocks_to_reset = BITMAP_ALLOC (NULL);
|
442 |
|
|
FOR_ALL_BB(bb)
|
443 |
|
|
{
|
444 |
|
|
bitmap_set_bit (blocks_to_reset, bb->index);
|
445 |
|
|
}
|
446 |
|
|
}
|
447 |
|
|
dflow->problem->reset_fun (dflow, blocks_to_reset);
|
448 |
|
|
}
|
449 |
|
|
}
|
450 |
|
|
if (blocks_to_reset)
|
451 |
|
|
BITMAP_FREE (blocks_to_reset);
|
452 |
|
|
}
|
453 |
|
|
df->blocks_to_analyze = BITMAP_ALLOC (NULL);
|
454 |
|
|
}
|
455 |
|
|
bitmap_copy (df->blocks_to_analyze, blocks);
|
456 |
|
|
}
|
457 |
|
|
else
|
458 |
|
|
{
|
459 |
|
|
if (df->blocks_to_analyze)
|
460 |
|
|
{
|
461 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
462 |
|
|
df->blocks_to_analyze = NULL;
|
463 |
|
|
}
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
|
468 |
|
|
/* Free all of the per basic block dataflow from all of the problems.
|
469 |
|
|
This is typically called before a basic block is deleted and the
|
470 |
|
|
problem will be reanalyzed. */
|
471 |
|
|
|
472 |
|
|
void
|
473 |
|
|
df_delete_basic_block (struct df *df, int bb_index)
|
474 |
|
|
{
|
475 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
476 |
|
|
int i;
|
477 |
|
|
|
478 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
479 |
|
|
{
|
480 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
481 |
|
|
if (dflow->problem->free_bb_fun)
|
482 |
|
|
dflow->problem->free_bb_fun
|
483 |
|
|
(dflow, bb, df_get_bb_info (dflow, bb_index));
|
484 |
|
|
}
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
/* Free all the dataflow info and the DF structure. This should be
|
489 |
|
|
called from the df_finish macro which also NULLs the parm. */
|
490 |
|
|
|
491 |
|
|
void
|
492 |
|
|
df_finish1 (struct df *df)
|
493 |
|
|
{
|
494 |
|
|
int i;
|
495 |
|
|
|
496 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
497 |
|
|
df->problems_in_order[i]->problem->free_fun (df->problems_in_order[i]);
|
498 |
|
|
|
499 |
|
|
free (df);
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
|
503 |
|
|
/*----------------------------------------------------------------------------
|
504 |
|
|
The general data flow analysis engine.
|
505 |
|
|
----------------------------------------------------------------------------*/
|
506 |
|
|
|
507 |
|
|
|
508 |
|
|
/* Hybrid search algorithm from "Implementation Techniques for
|
509 |
|
|
Efficient Data-Flow Analysis of Large Programs". */
|
510 |
|
|
|
511 |
|
|
static void
|
512 |
|
|
df_hybrid_search_forward (basic_block bb,
|
513 |
|
|
struct dataflow *dataflow,
|
514 |
|
|
bool single_pass)
|
515 |
|
|
{
|
516 |
|
|
int result_changed;
|
517 |
|
|
int i = bb->index;
|
518 |
|
|
edge e;
|
519 |
|
|
edge_iterator ei;
|
520 |
|
|
|
521 |
|
|
SET_BIT (dataflow->visited, bb->index);
|
522 |
|
|
gcc_assert (TEST_BIT (dataflow->pending, bb->index));
|
523 |
|
|
RESET_BIT (dataflow->pending, i);
|
524 |
|
|
|
525 |
|
|
/* Calculate <conf_op> of predecessor_outs. */
|
526 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
527 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
528 |
|
|
{
|
529 |
|
|
if (!TEST_BIT (dataflow->considered, e->src->index))
|
530 |
|
|
continue;
|
531 |
|
|
|
532 |
|
|
dataflow->problem->con_fun_n (dataflow, e);
|
533 |
|
|
}
|
534 |
|
|
else if (dataflow->problem->con_fun_0)
|
535 |
|
|
dataflow->problem->con_fun_0 (dataflow, bb);
|
536 |
|
|
|
537 |
|
|
result_changed = dataflow->problem->trans_fun (dataflow, i);
|
538 |
|
|
|
539 |
|
|
if (!result_changed || single_pass)
|
540 |
|
|
return;
|
541 |
|
|
|
542 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
543 |
|
|
{
|
544 |
|
|
if (e->dest->index == i)
|
545 |
|
|
continue;
|
546 |
|
|
if (!TEST_BIT (dataflow->considered, e->dest->index))
|
547 |
|
|
continue;
|
548 |
|
|
SET_BIT (dataflow->pending, e->dest->index);
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
552 |
|
|
{
|
553 |
|
|
if (e->dest->index == i)
|
554 |
|
|
continue;
|
555 |
|
|
|
556 |
|
|
if (!TEST_BIT (dataflow->considered, e->dest->index))
|
557 |
|
|
continue;
|
558 |
|
|
if (!TEST_BIT (dataflow->visited, e->dest->index))
|
559 |
|
|
df_hybrid_search_forward (e->dest, dataflow, single_pass);
|
560 |
|
|
}
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
static void
|
564 |
|
|
df_hybrid_search_backward (basic_block bb,
|
565 |
|
|
struct dataflow *dataflow,
|
566 |
|
|
bool single_pass)
|
567 |
|
|
{
|
568 |
|
|
int result_changed;
|
569 |
|
|
int i = bb->index;
|
570 |
|
|
edge e;
|
571 |
|
|
edge_iterator ei;
|
572 |
|
|
|
573 |
|
|
SET_BIT (dataflow->visited, bb->index);
|
574 |
|
|
gcc_assert (TEST_BIT (dataflow->pending, bb->index));
|
575 |
|
|
RESET_BIT (dataflow->pending, i);
|
576 |
|
|
|
577 |
|
|
/* Calculate <conf_op> of predecessor_outs. */
|
578 |
|
|
if (EDGE_COUNT (bb->succs) > 0)
|
579 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
580 |
|
|
{
|
581 |
|
|
if (!TEST_BIT (dataflow->considered, e->dest->index))
|
582 |
|
|
continue;
|
583 |
|
|
|
584 |
|
|
dataflow->problem->con_fun_n (dataflow, e);
|
585 |
|
|
}
|
586 |
|
|
else if (dataflow->problem->con_fun_0)
|
587 |
|
|
dataflow->problem->con_fun_0 (dataflow, bb);
|
588 |
|
|
|
589 |
|
|
result_changed = dataflow->problem->trans_fun (dataflow, i);
|
590 |
|
|
|
591 |
|
|
if (!result_changed || single_pass)
|
592 |
|
|
return;
|
593 |
|
|
|
594 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
595 |
|
|
{
|
596 |
|
|
if (e->src->index == i)
|
597 |
|
|
continue;
|
598 |
|
|
|
599 |
|
|
if (!TEST_BIT (dataflow->considered, e->src->index))
|
600 |
|
|
continue;
|
601 |
|
|
|
602 |
|
|
SET_BIT (dataflow->pending, e->src->index);
|
603 |
|
|
}
|
604 |
|
|
|
605 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
606 |
|
|
{
|
607 |
|
|
if (e->src->index == i)
|
608 |
|
|
continue;
|
609 |
|
|
|
610 |
|
|
if (!TEST_BIT (dataflow->considered, e->src->index))
|
611 |
|
|
continue;
|
612 |
|
|
|
613 |
|
|
if (!TEST_BIT (dataflow->visited, e->src->index))
|
614 |
|
|
df_hybrid_search_backward (e->src, dataflow, single_pass);
|
615 |
|
|
}
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
|
619 |
|
|
/* This function will perform iterative bitvector dataflow described
|
620 |
|
|
by DATAFLOW, producing the in and out sets. Only the part of the
|
621 |
|
|
cfg induced by blocks in DATAFLOW->order is taken into account.
|
622 |
|
|
|
623 |
|
|
SINGLE_PASS is true if you just want to make one pass over the
|
624 |
|
|
blocks. */
|
625 |
|
|
|
626 |
|
|
void
|
627 |
|
|
df_iterative_dataflow (struct dataflow *dataflow,
|
628 |
|
|
bitmap blocks_to_consider, bitmap blocks_to_init,
|
629 |
|
|
int *blocks_in_postorder, int n_blocks,
|
630 |
|
|
bool single_pass)
|
631 |
|
|
{
|
632 |
|
|
unsigned int idx;
|
633 |
|
|
int i;
|
634 |
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
635 |
|
|
sbitmap pending = sbitmap_alloc (last_basic_block);
|
636 |
|
|
sbitmap considered = sbitmap_alloc (last_basic_block);
|
637 |
|
|
bitmap_iterator bi;
|
638 |
|
|
|
639 |
|
|
dataflow->visited = visited;
|
640 |
|
|
dataflow->pending = pending;
|
641 |
|
|
dataflow->considered = considered;
|
642 |
|
|
|
643 |
|
|
sbitmap_zero (visited);
|
644 |
|
|
sbitmap_zero (pending);
|
645 |
|
|
sbitmap_zero (considered);
|
646 |
|
|
|
647 |
|
|
gcc_assert (dataflow->problem->dir);
|
648 |
|
|
|
649 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, idx, bi)
|
650 |
|
|
{
|
651 |
|
|
SET_BIT (considered, idx);
|
652 |
|
|
}
|
653 |
|
|
|
654 |
|
|
for (i = 0; i < n_blocks; i++)
|
655 |
|
|
{
|
656 |
|
|
idx = blocks_in_postorder[i];
|
657 |
|
|
SET_BIT (pending, idx);
|
658 |
|
|
};
|
659 |
|
|
|
660 |
|
|
dataflow->problem->init_fun (dataflow, blocks_to_init);
|
661 |
|
|
|
662 |
|
|
while (1)
|
663 |
|
|
{
|
664 |
|
|
|
665 |
|
|
/* For forward problems, you want to pass in reverse postorder
|
666 |
|
|
and for backward problems you want postorder. This has been
|
667 |
|
|
shown to be as good as you can do by several people, the
|
668 |
|
|
first being Mathew Hecht in his phd dissertation.
|
669 |
|
|
|
670 |
|
|
The nodes are passed into this function in postorder. */
|
671 |
|
|
|
672 |
|
|
if (dataflow->problem->dir == DF_FORWARD)
|
673 |
|
|
{
|
674 |
|
|
for (i = n_blocks - 1 ; i >= 0 ; i--)
|
675 |
|
|
{
|
676 |
|
|
idx = blocks_in_postorder[i];
|
677 |
|
|
|
678 |
|
|
if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
|
679 |
|
|
df_hybrid_search_forward (BASIC_BLOCK (idx), dataflow, single_pass);
|
680 |
|
|
}
|
681 |
|
|
}
|
682 |
|
|
else
|
683 |
|
|
{
|
684 |
|
|
for (i = 0; i < n_blocks; i++)
|
685 |
|
|
{
|
686 |
|
|
idx = blocks_in_postorder[i];
|
687 |
|
|
|
688 |
|
|
if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
|
689 |
|
|
df_hybrid_search_backward (BASIC_BLOCK (idx), dataflow, single_pass);
|
690 |
|
|
}
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
if (sbitmap_first_set_bit (pending) == -1)
|
694 |
|
|
break;
|
695 |
|
|
|
696 |
|
|
sbitmap_zero (visited);
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
sbitmap_free (pending);
|
700 |
|
|
sbitmap_free (visited);
|
701 |
|
|
sbitmap_free (considered);
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
|
705 |
|
|
/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
|
706 |
|
|
the order of the remaining entries. Returns the length of the resulting
|
707 |
|
|
list. */
|
708 |
|
|
|
709 |
|
|
static unsigned
|
710 |
|
|
df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
|
711 |
|
|
{
|
712 |
|
|
unsigned act, last;
|
713 |
|
|
|
714 |
|
|
for (act = 0, last = 0; act < len; act++)
|
715 |
|
|
if (bitmap_bit_p (blocks, list[act]))
|
716 |
|
|
list[last++] = list[act];
|
717 |
|
|
|
718 |
|
|
return last;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
|
722 |
|
|
/* Execute dataflow analysis on a single dataflow problem.
|
723 |
|
|
|
724 |
|
|
There are three sets of blocks passed in:
|
725 |
|
|
|
726 |
|
|
BLOCKS_TO_CONSIDER are the blocks whose solution can either be
|
727 |
|
|
examined or will be computed. For calls from DF_ANALYZE, this is
|
728 |
|
|
the set of blocks that has been passed to DF_SET_BLOCKS. For calls
|
729 |
|
|
from DF_ANALYZE_SIMPLE_CHANGE_SOME_BLOCKS, this is the set of
|
730 |
|
|
blocks in the fringe (the set of blocks passed in plus the set of
|
731 |
|
|
immed preds and succs of those blocks).
|
732 |
|
|
|
733 |
|
|
BLOCKS_TO_INIT are the blocks whose solution will be changed by
|
734 |
|
|
this iteration. For calls from DF_ANALYZE, this is the set of
|
735 |
|
|
blocks that has been passed to DF_SET_BLOCKS. For calls from
|
736 |
|
|
DF_ANALYZE_SIMPLE_CHANGE_SOME_BLOCKS, this is the set of blocks
|
737 |
|
|
passed in.
|
738 |
|
|
|
739 |
|
|
BLOCKS_TO_SCAN are the set of blocks that need to be rescanned.
|
740 |
|
|
For calls from DF_ANALYZE, this is the accumulated set of blocks
|
741 |
|
|
that has been passed to DF_RESCAN_BLOCKS since the last call to
|
742 |
|
|
DF_ANALYZE. For calls from DF_ANALYZE_SIMPLE_CHANGE_SOME_BLOCKS,
|
743 |
|
|
this is the set of blocks passed in.
|
744 |
|
|
|
745 |
|
|
blocks_to_consider blocks_to_init blocks_to_scan
|
746 |
|
|
full redo all all all
|
747 |
|
|
partial redo all all sub
|
748 |
|
|
small fixup fringe sub sub
|
749 |
|
|
*/
|
750 |
|
|
|
751 |
|
|
void
|
752 |
|
|
df_analyze_problem (struct dataflow *dflow,
|
753 |
|
|
bitmap blocks_to_consider,
|
754 |
|
|
bitmap blocks_to_init,
|
755 |
|
|
bitmap blocks_to_scan,
|
756 |
|
|
int *postorder, int n_blocks, bool single_pass)
|
757 |
|
|
{
|
758 |
|
|
/* (Re)Allocate the datastructures necessary to solve the problem. */
|
759 |
|
|
if (dflow->problem->alloc_fun)
|
760 |
|
|
dflow->problem->alloc_fun (dflow, blocks_to_scan, blocks_to_init);
|
761 |
|
|
|
762 |
|
|
/* Set up the problem and compute the local information. This
|
763 |
|
|
function is passed both the blocks_to_consider and the
|
764 |
|
|
blocks_to_scan because the RD and RU problems require the entire
|
765 |
|
|
function to be rescanned if they are going to be updated. */
|
766 |
|
|
if (dflow->problem->local_compute_fun)
|
767 |
|
|
dflow->problem->local_compute_fun (dflow, blocks_to_consider, blocks_to_scan);
|
768 |
|
|
|
769 |
|
|
/* Solve the equations. */
|
770 |
|
|
if (dflow->problem->dataflow_fun)
|
771 |
|
|
dflow->problem->dataflow_fun (dflow, blocks_to_consider, blocks_to_init,
|
772 |
|
|
postorder, n_blocks, single_pass);
|
773 |
|
|
|
774 |
|
|
/* Massage the solution. */
|
775 |
|
|
if (dflow->problem->finalize_fun)
|
776 |
|
|
dflow->problem->finalize_fun (dflow, blocks_to_consider);
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
|
780 |
|
|
/* Analyze dataflow info for the basic blocks specified by the bitmap
|
781 |
|
|
BLOCKS, or for the whole CFG if BLOCKS is zero. */
|
782 |
|
|
|
783 |
|
|
void
|
784 |
|
|
df_analyze (struct df *df)
|
785 |
|
|
{
|
786 |
|
|
int *postorder = XNEWVEC (int, last_basic_block);
|
787 |
|
|
bitmap current_all_blocks = BITMAP_ALLOC (NULL);
|
788 |
|
|
int n_blocks;
|
789 |
|
|
int i;
|
790 |
|
|
bool everything;
|
791 |
|
|
|
792 |
|
|
n_blocks = post_order_compute (postorder, true);
|
793 |
|
|
|
794 |
|
|
if (n_blocks != n_basic_blocks)
|
795 |
|
|
delete_unreachable_blocks ();
|
796 |
|
|
|
797 |
|
|
for (i = 0; i < n_blocks; i++)
|
798 |
|
|
bitmap_set_bit (current_all_blocks, postorder[i]);
|
799 |
|
|
|
800 |
|
|
/* No one called df_rescan_blocks, so do it. */
|
801 |
|
|
if (!df->blocks_to_scan)
|
802 |
|
|
df_rescan_blocks (df, NULL);
|
803 |
|
|
|
804 |
|
|
/* Make sure that we have pruned any unreachable blocks from these
|
805 |
|
|
sets. */
|
806 |
|
|
bitmap_and_into (df->blocks_to_scan, current_all_blocks);
|
807 |
|
|
|
808 |
|
|
if (df->blocks_to_analyze)
|
809 |
|
|
{
|
810 |
|
|
everything = false;
|
811 |
|
|
bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
|
812 |
|
|
n_blocks = df_prune_to_subcfg (postorder, n_blocks, df->blocks_to_analyze);
|
813 |
|
|
BITMAP_FREE (current_all_blocks);
|
814 |
|
|
}
|
815 |
|
|
else
|
816 |
|
|
{
|
817 |
|
|
everything = true;
|
818 |
|
|
df->blocks_to_analyze = current_all_blocks;
|
819 |
|
|
current_all_blocks = NULL;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
/* Skip over the DF_SCAN problem. */
|
823 |
|
|
for (i = 1; i < df->num_problems_defined; i++)
|
824 |
|
|
df_analyze_problem (df->problems_in_order[i],
|
825 |
|
|
df->blocks_to_analyze, df->blocks_to_analyze,
|
826 |
|
|
df->blocks_to_scan,
|
827 |
|
|
postorder, n_blocks, false);
|
828 |
|
|
|
829 |
|
|
if (everything)
|
830 |
|
|
{
|
831 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
832 |
|
|
df->blocks_to_analyze = NULL;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
BITMAP_FREE (df->blocks_to_scan);
|
836 |
|
|
df->blocks_to_scan = NULL;
|
837 |
|
|
free (postorder);
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
|
841 |
|
|
|
842 |
|
|
/*----------------------------------------------------------------------------
|
843 |
|
|
Functions to support limited incremental change.
|
844 |
|
|
----------------------------------------------------------------------------*/
|
845 |
|
|
|
846 |
|
|
|
847 |
|
|
/* Get basic block info. */
|
848 |
|
|
|
849 |
|
|
static void *
|
850 |
|
|
df_get_bb_info (struct dataflow *dflow, unsigned int index)
|
851 |
|
|
{
|
852 |
|
|
return (struct df_scan_bb_info *) dflow->block_info[index];
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
|
856 |
|
|
/* Set basic block info. */
|
857 |
|
|
|
858 |
|
|
static void
|
859 |
|
|
df_set_bb_info (struct dataflow *dflow, unsigned int index,
|
860 |
|
|
void *bb_info)
|
861 |
|
|
{
|
862 |
|
|
dflow->block_info[index] = bb_info;
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
|
866 |
|
|
/* Called from the rtl_compact_blocks to reorganize the problems basic
|
867 |
|
|
block info. */
|
868 |
|
|
|
869 |
|
|
void
|
870 |
|
|
df_compact_blocks (struct df *df)
|
871 |
|
|
{
|
872 |
|
|
int i, p;
|
873 |
|
|
basic_block bb;
|
874 |
|
|
void **problem_temps;
|
875 |
|
|
int size = last_basic_block *sizeof (void *);
|
876 |
|
|
problem_temps = xmalloc (size);
|
877 |
|
|
|
878 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
879 |
|
|
{
|
880 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
881 |
|
|
if (dflow->problem->free_bb_fun)
|
882 |
|
|
{
|
883 |
|
|
df_grow_bb_info (dflow);
|
884 |
|
|
memcpy (problem_temps, dflow->block_info, size);
|
885 |
|
|
|
886 |
|
|
/* Copy the bb info from the problem tmps to the proper
|
887 |
|
|
place in the block_info vector. Null out the copied
|
888 |
|
|
item. */
|
889 |
|
|
i = NUM_FIXED_BLOCKS;
|
890 |
|
|
FOR_EACH_BB (bb)
|
891 |
|
|
{
|
892 |
|
|
df_set_bb_info (dflow, i, problem_temps[bb->index]);
|
893 |
|
|
problem_temps[bb->index] = NULL;
|
894 |
|
|
i++;
|
895 |
|
|
}
|
896 |
|
|
memset (dflow->block_info + i, 0,
|
897 |
|
|
(last_basic_block - i) *sizeof (void *));
|
898 |
|
|
|
899 |
|
|
/* Free any block infos that were not copied (and NULLed).
|
900 |
|
|
These are from orphaned blocks. */
|
901 |
|
|
for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
|
902 |
|
|
{
|
903 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
904 |
|
|
if (problem_temps[i] && bb)
|
905 |
|
|
dflow->problem->free_bb_fun
|
906 |
|
|
(dflow, bb, problem_temps[i]);
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
free (problem_temps);
|
912 |
|
|
|
913 |
|
|
i = NUM_FIXED_BLOCKS;
|
914 |
|
|
FOR_EACH_BB (bb)
|
915 |
|
|
{
|
916 |
|
|
SET_BASIC_BLOCK (i, bb);
|
917 |
|
|
bb->index = i;
|
918 |
|
|
i++;
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
gcc_assert (i == n_basic_blocks);
|
922 |
|
|
|
923 |
|
|
for (; i < last_basic_block; i++)
|
924 |
|
|
SET_BASIC_BLOCK (i, NULL);
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
|
928 |
|
|
/* Shove NEW_BLOCK in at OLD_INDEX. Called from if-cvt to hack a
|
929 |
|
|
block. There is no excuse for people to do this kind of thing. */
|
930 |
|
|
|
931 |
|
|
void
|
932 |
|
|
df_bb_replace (struct df *df, int old_index, basic_block new_block)
|
933 |
|
|
{
|
934 |
|
|
int p;
|
935 |
|
|
|
936 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
937 |
|
|
{
|
938 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
939 |
|
|
if (dflow->block_info)
|
940 |
|
|
{
|
941 |
|
|
void *temp;
|
942 |
|
|
|
943 |
|
|
df_grow_bb_info (dflow);
|
944 |
|
|
|
945 |
|
|
/* The old switcheroo. */
|
946 |
|
|
|
947 |
|
|
temp = df_get_bb_info (dflow, old_index);
|
948 |
|
|
df_set_bb_info (dflow, old_index,
|
949 |
|
|
df_get_bb_info (dflow, new_block->index));
|
950 |
|
|
df_set_bb_info (dflow, new_block->index, temp);
|
951 |
|
|
}
|
952 |
|
|
}
|
953 |
|
|
|
954 |
|
|
SET_BASIC_BLOCK (old_index, new_block);
|
955 |
|
|
new_block->index = old_index;
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
/*----------------------------------------------------------------------------
|
959 |
|
|
PUBLIC INTERFACES TO QUERY INFORMATION.
|
960 |
|
|
----------------------------------------------------------------------------*/
|
961 |
|
|
|
962 |
|
|
|
963 |
|
|
/* Return last use of REGNO within BB. */
|
964 |
|
|
|
965 |
|
|
struct df_ref *
|
966 |
|
|
df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
|
967 |
|
|
{
|
968 |
|
|
rtx insn;
|
969 |
|
|
struct df_ref *use;
|
970 |
|
|
unsigned int uid;
|
971 |
|
|
|
972 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
973 |
|
|
{
|
974 |
|
|
if (!INSN_P (insn))
|
975 |
|
|
continue;
|
976 |
|
|
|
977 |
|
|
uid = INSN_UID (insn);
|
978 |
|
|
for (use = DF_INSN_UID_GET (df, uid)->uses; use; use = use->next_ref)
|
979 |
|
|
if (DF_REF_REGNO (use) == regno)
|
980 |
|
|
return use;
|
981 |
|
|
}
|
982 |
|
|
return NULL;
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
|
986 |
|
|
/* Return first def of REGNO within BB. */
|
987 |
|
|
|
988 |
|
|
struct df_ref *
|
989 |
|
|
df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
|
990 |
|
|
{
|
991 |
|
|
rtx insn;
|
992 |
|
|
struct df_ref *def;
|
993 |
|
|
unsigned int uid;
|
994 |
|
|
|
995 |
|
|
FOR_BB_INSNS (bb, insn)
|
996 |
|
|
{
|
997 |
|
|
if (!INSN_P (insn))
|
998 |
|
|
continue;
|
999 |
|
|
|
1000 |
|
|
uid = INSN_UID (insn);
|
1001 |
|
|
for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
|
1002 |
|
|
if (DF_REF_REGNO (def) == regno)
|
1003 |
|
|
return def;
|
1004 |
|
|
}
|
1005 |
|
|
return NULL;
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
|
1009 |
|
|
/* Return last def of REGNO within BB. */
|
1010 |
|
|
|
1011 |
|
|
struct df_ref *
|
1012 |
|
|
df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
|
1013 |
|
|
{
|
1014 |
|
|
rtx insn;
|
1015 |
|
|
struct df_ref *def;
|
1016 |
|
|
unsigned int uid;
|
1017 |
|
|
|
1018 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
1019 |
|
|
{
|
1020 |
|
|
if (!INSN_P (insn))
|
1021 |
|
|
continue;
|
1022 |
|
|
|
1023 |
|
|
uid = INSN_UID (insn);
|
1024 |
|
|
for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
|
1025 |
|
|
if (DF_REF_REGNO (def) == regno)
|
1026 |
|
|
return def;
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
return NULL;
|
1030 |
|
|
}
|
1031 |
|
|
|
1032 |
|
|
/* Return true if INSN defines REGNO. */
|
1033 |
|
|
|
1034 |
|
|
bool
|
1035 |
|
|
df_insn_regno_def_p (struct df *df, rtx insn, unsigned int regno)
|
1036 |
|
|
{
|
1037 |
|
|
unsigned int uid;
|
1038 |
|
|
struct df_ref *def;
|
1039 |
|
|
|
1040 |
|
|
uid = INSN_UID (insn);
|
1041 |
|
|
for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
|
1042 |
|
|
if (DF_REF_REGNO (def) == regno)
|
1043 |
|
|
return true;
|
1044 |
|
|
|
1045 |
|
|
return false;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
|
1049 |
|
|
/* Finds the reference corresponding to the definition of REG in INSN.
|
1050 |
|
|
DF is the dataflow object. */
|
1051 |
|
|
|
1052 |
|
|
struct df_ref *
|
1053 |
|
|
df_find_def (struct df *df, rtx insn, rtx reg)
|
1054 |
|
|
{
|
1055 |
|
|
unsigned int uid;
|
1056 |
|
|
struct df_ref *def;
|
1057 |
|
|
|
1058 |
|
|
if (GET_CODE (reg) == SUBREG)
|
1059 |
|
|
reg = SUBREG_REG (reg);
|
1060 |
|
|
gcc_assert (REG_P (reg));
|
1061 |
|
|
|
1062 |
|
|
uid = INSN_UID (insn);
|
1063 |
|
|
for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
|
1064 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
|
1065 |
|
|
return def;
|
1066 |
|
|
|
1067 |
|
|
return NULL;
|
1068 |
|
|
}
|
1069 |
|
|
|
1070 |
|
|
|
1071 |
|
|
/* Return true if REG is defined in INSN, zero otherwise. */
|
1072 |
|
|
|
1073 |
|
|
bool
|
1074 |
|
|
df_reg_defined (struct df *df, rtx insn, rtx reg)
|
1075 |
|
|
{
|
1076 |
|
|
return df_find_def (df, insn, reg) != NULL;
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
|
1080 |
|
|
/* Finds the reference corresponding to the use of REG in INSN.
|
1081 |
|
|
DF is the dataflow object. */
|
1082 |
|
|
|
1083 |
|
|
struct df_ref *
|
1084 |
|
|
df_find_use (struct df *df, rtx insn, rtx reg)
|
1085 |
|
|
{
|
1086 |
|
|
unsigned int uid;
|
1087 |
|
|
struct df_ref *use;
|
1088 |
|
|
|
1089 |
|
|
if (GET_CODE (reg) == SUBREG)
|
1090 |
|
|
reg = SUBREG_REG (reg);
|
1091 |
|
|
gcc_assert (REG_P (reg));
|
1092 |
|
|
|
1093 |
|
|
uid = INSN_UID (insn);
|
1094 |
|
|
for (use = DF_INSN_UID_GET (df, uid)->uses; use; use = use->next_ref)
|
1095 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
|
1096 |
|
|
return use;
|
1097 |
|
|
|
1098 |
|
|
return NULL;
|
1099 |
|
|
}
|
1100 |
|
|
|
1101 |
|
|
|
1102 |
|
|
/* Return true if REG is referenced in INSN, zero otherwise. */
|
1103 |
|
|
|
1104 |
|
|
bool
|
1105 |
|
|
df_reg_used (struct df *df, rtx insn, rtx reg)
|
1106 |
|
|
{
|
1107 |
|
|
return df_find_use (df, insn, reg) != NULL;
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
|
1111 |
|
|
/*----------------------------------------------------------------------------
|
1112 |
|
|
Debugging and printing functions.
|
1113 |
|
|
----------------------------------------------------------------------------*/
|
1114 |
|
|
|
1115 |
|
|
/* Dump dataflow info. */
|
1116 |
|
|
void
|
1117 |
|
|
df_dump (struct df *df, FILE *file)
|
1118 |
|
|
{
|
1119 |
|
|
int i;
|
1120 |
|
|
|
1121 |
|
|
if (!df || !file)
|
1122 |
|
|
return;
|
1123 |
|
|
|
1124 |
|
|
fprintf (file, "\n\n%s\n", current_function_name ());
|
1125 |
|
|
fprintf (file, "\nDataflow summary:\n");
|
1126 |
|
|
fprintf (file, "def_info->bitmap_size = %d, use_info->bitmap_size = %d\n",
|
1127 |
|
|
df->def_info.bitmap_size, df->use_info.bitmap_size);
|
1128 |
|
|
|
1129 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
1130 |
|
|
df->problems_in_order[i]->problem->dump_fun (df->problems_in_order[i], file);
|
1131 |
|
|
|
1132 |
|
|
fprintf (file, "\n");
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
|
1136 |
|
|
void
|
1137 |
|
|
df_refs_chain_dump (struct df_ref *ref, bool follow_chain, FILE *file)
|
1138 |
|
|
{
|
1139 |
|
|
fprintf (file, "{ ");
|
1140 |
|
|
while (ref)
|
1141 |
|
|
{
|
1142 |
|
|
fprintf (file, "%c%d(%d) ",
|
1143 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
|
1144 |
|
|
DF_REF_ID (ref),
|
1145 |
|
|
DF_REF_REGNO (ref));
|
1146 |
|
|
if (follow_chain)
|
1147 |
|
|
df_chain_dump (DF_REF_CHAIN (ref), file);
|
1148 |
|
|
ref = ref->next_ref;
|
1149 |
|
|
}
|
1150 |
|
|
fprintf (file, "}");
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
|
1154 |
|
|
/* Dump either a ref-def or reg-use chain. */
|
1155 |
|
|
|
1156 |
|
|
void
|
1157 |
|
|
df_regs_chain_dump (struct df *df ATTRIBUTE_UNUSED, struct df_ref *ref, FILE *file)
|
1158 |
|
|
{
|
1159 |
|
|
fprintf (file, "{ ");
|
1160 |
|
|
while (ref)
|
1161 |
|
|
{
|
1162 |
|
|
fprintf (file, "%c%d(%d) ",
|
1163 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
|
1164 |
|
|
DF_REF_ID (ref),
|
1165 |
|
|
DF_REF_REGNO (ref));
|
1166 |
|
|
ref = ref->next_reg;
|
1167 |
|
|
}
|
1168 |
|
|
fprintf (file, "}");
|
1169 |
|
|
}
|
1170 |
|
|
|
1171 |
|
|
|
1172 |
|
|
static void
|
1173 |
|
|
df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
|
1174 |
|
|
{
|
1175 |
|
|
while (mws)
|
1176 |
|
|
{
|
1177 |
|
|
struct df_link *regs = mws->regs;
|
1178 |
|
|
fprintf (file, "%c%d(",
|
1179 |
|
|
(mws->type == DF_REF_REG_DEF) ? 'd' : 'u',
|
1180 |
|
|
DF_REF_REGNO (regs->ref));
|
1181 |
|
|
while (regs)
|
1182 |
|
|
{
|
1183 |
|
|
fprintf (file, "%d ", DF_REF_REGNO (regs->ref));
|
1184 |
|
|
regs = regs->next;
|
1185 |
|
|
}
|
1186 |
|
|
|
1187 |
|
|
fprintf (file, ") ");
|
1188 |
|
|
mws = mws->next;
|
1189 |
|
|
}
|
1190 |
|
|
}
|
1191 |
|
|
|
1192 |
|
|
|
1193 |
|
|
static void
|
1194 |
|
|
df_insn_uid_debug (struct df *df, unsigned int uid,
|
1195 |
|
|
bool follow_chain, FILE *file)
|
1196 |
|
|
{
|
1197 |
|
|
int bbi;
|
1198 |
|
|
|
1199 |
|
|
if (DF_INSN_UID_DEFS (df, uid))
|
1200 |
|
|
bbi = DF_REF_BBNO (DF_INSN_UID_DEFS (df, uid));
|
1201 |
|
|
else if (DF_INSN_UID_USES(df, uid))
|
1202 |
|
|
bbi = DF_REF_BBNO (DF_INSN_UID_USES (df, uid));
|
1203 |
|
|
else
|
1204 |
|
|
bbi = -1;
|
1205 |
|
|
|
1206 |
|
|
fprintf (file, "insn %d bb %d luid %d",
|
1207 |
|
|
uid, bbi, DF_INSN_UID_LUID (df, uid));
|
1208 |
|
|
|
1209 |
|
|
if (DF_INSN_UID_DEFS (df, uid))
|
1210 |
|
|
{
|
1211 |
|
|
fprintf (file, " defs ");
|
1212 |
|
|
df_refs_chain_dump (DF_INSN_UID_DEFS (df, uid), follow_chain, file);
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
if (DF_INSN_UID_USES (df, uid))
|
1216 |
|
|
{
|
1217 |
|
|
fprintf (file, " uses ");
|
1218 |
|
|
df_refs_chain_dump (DF_INSN_UID_USES (df, uid), follow_chain, file);
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
if (DF_INSN_UID_MWS (df, uid))
|
1222 |
|
|
{
|
1223 |
|
|
fprintf (file, " mws ");
|
1224 |
|
|
df_mws_dump (DF_INSN_UID_MWS (df, uid), file);
|
1225 |
|
|
}
|
1226 |
|
|
fprintf (file, "\n");
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
|
1230 |
|
|
void
|
1231 |
|
|
df_insn_debug (struct df *df, rtx insn, bool follow_chain, FILE *file)
|
1232 |
|
|
{
|
1233 |
|
|
df_insn_uid_debug (df, INSN_UID (insn), follow_chain, file);
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
void
|
1237 |
|
|
df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
|
1238 |
|
|
{
|
1239 |
|
|
unsigned int uid;
|
1240 |
|
|
int bbi;
|
1241 |
|
|
|
1242 |
|
|
uid = INSN_UID (insn);
|
1243 |
|
|
if (DF_INSN_UID_DEFS (df, uid))
|
1244 |
|
|
bbi = DF_REF_BBNO (DF_INSN_UID_DEFS (df, uid));
|
1245 |
|
|
else if (DF_INSN_UID_USES(df, uid))
|
1246 |
|
|
bbi = DF_REF_BBNO (DF_INSN_UID_USES (df, uid));
|
1247 |
|
|
else
|
1248 |
|
|
bbi = -1;
|
1249 |
|
|
|
1250 |
|
|
fprintf (file, "insn %d bb %d luid %d defs ",
|
1251 |
|
|
uid, bbi, DF_INSN_LUID (df, insn));
|
1252 |
|
|
df_regs_chain_dump (df, DF_INSN_UID_DEFS (df, uid), file);
|
1253 |
|
|
|
1254 |
|
|
fprintf (file, " uses ");
|
1255 |
|
|
df_regs_chain_dump (df, DF_INSN_UID_USES (df, uid), file);
|
1256 |
|
|
fprintf (file, "\n");
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
void
|
1260 |
|
|
df_regno_debug (struct df *df, unsigned int regno, FILE *file)
|
1261 |
|
|
{
|
1262 |
|
|
fprintf (file, "reg %d defs ", regno);
|
1263 |
|
|
df_regs_chain_dump (df, DF_REG_DEF_GET (df, regno)->reg_chain, file);
|
1264 |
|
|
fprintf (file, " uses ");
|
1265 |
|
|
df_regs_chain_dump (df, DF_REG_USE_GET (df, regno)->reg_chain, file);
|
1266 |
|
|
fprintf (file, "\n");
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
|
1270 |
|
|
void
|
1271 |
|
|
df_ref_debug (struct df_ref *ref, FILE *file)
|
1272 |
|
|
{
|
1273 |
|
|
fprintf (file, "%c%d ",
|
1274 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
|
1275 |
|
|
DF_REF_ID (ref));
|
1276 |
|
|
fprintf (file, "reg %d bb %d insn %d flag %x chain ",
|
1277 |
|
|
DF_REF_REGNO (ref),
|
1278 |
|
|
DF_REF_BBNO (ref),
|
1279 |
|
|
DF_REF_INSN (ref) ? INSN_UID (DF_REF_INSN (ref)) : -1,
|
1280 |
|
|
DF_REF_FLAGS (ref));
|
1281 |
|
|
df_chain_dump (DF_REF_CHAIN (ref), file);
|
1282 |
|
|
fprintf (file, "\n");
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
/* Functions for debugging from GDB. */
|
1286 |
|
|
|
1287 |
|
|
void
|
1288 |
|
|
debug_df_insn (rtx insn)
|
1289 |
|
|
{
|
1290 |
|
|
df_insn_debug (ddf, insn, true, stderr);
|
1291 |
|
|
debug_rtx (insn);
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
|
1295 |
|
|
void
|
1296 |
|
|
debug_df_reg (rtx reg)
|
1297 |
|
|
{
|
1298 |
|
|
df_regno_debug (ddf, REGNO (reg), stderr);
|
1299 |
|
|
}
|
1300 |
|
|
|
1301 |
|
|
|
1302 |
|
|
void
|
1303 |
|
|
debug_df_regno (unsigned int regno)
|
1304 |
|
|
{
|
1305 |
|
|
df_regno_debug (ddf, regno, stderr);
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
|
1309 |
|
|
void
|
1310 |
|
|
debug_df_ref (struct df_ref *ref)
|
1311 |
|
|
{
|
1312 |
|
|
df_ref_debug (ref, stderr);
|
1313 |
|
|
}
|
1314 |
|
|
|
1315 |
|
|
|
1316 |
|
|
void
|
1317 |
|
|
debug_df_defno (unsigned int defno)
|
1318 |
|
|
{
|
1319 |
|
|
df_ref_debug (DF_DEFS_GET (ddf, defno), stderr);
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
|
1323 |
|
|
void
|
1324 |
|
|
debug_df_useno (unsigned int defno)
|
1325 |
|
|
{
|
1326 |
|
|
df_ref_debug (DF_USES_GET (ddf, defno), stderr);
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
|
1330 |
|
|
void
|
1331 |
|
|
debug_df_chain (struct df_link *link)
|
1332 |
|
|
{
|
1333 |
|
|
df_chain_dump (link, stderr);
|
1334 |
|
|
fputc ('\n', stderr);
|
1335 |
|
|
}
|