1 |
38 |
julius |
@c Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
|
2 |
|
|
@c This is part of the GCC manual.
|
3 |
|
|
@c For copying conditions, see the file gcc.texi.
|
4 |
|
|
@c Contributed by Aldy Hernandez <aldy@quesejoda.com>
|
5 |
|
|
|
6 |
|
|
@node Libgcc
|
7 |
|
|
@chapter The GCC low-level runtime library
|
8 |
|
|
|
9 |
|
|
GCC provides a low-level runtime library, @file{libgcc.a} or
|
10 |
|
|
@file{libgcc_s.so.1} on some platforms. GCC generates calls to
|
11 |
|
|
routines in this library automatically, whenever it needs to perform
|
12 |
|
|
some operation that is too complicated to emit inline code for.
|
13 |
|
|
|
14 |
|
|
Most of the routines in @code{libgcc} handle arithmetic operations
|
15 |
|
|
that the target processor cannot perform directly. This includes
|
16 |
|
|
integer multiply and divide on some machines, and all floating-point
|
17 |
|
|
operations on other machines. @code{libgcc} also includes routines
|
18 |
|
|
for exception handling, and a handful of miscellaneous operations.
|
19 |
|
|
|
20 |
|
|
Some of these routines can be defined in mostly machine-independent C@.
|
21 |
|
|
Others must be hand-written in assembly language for each processor
|
22 |
|
|
that needs them.
|
23 |
|
|
|
24 |
|
|
GCC will also generate calls to C library routines, such as
|
25 |
|
|
@code{memcpy} and @code{memset}, in some cases. The set of routines
|
26 |
|
|
that GCC may possibly use is documented in @ref{Other
|
27 |
|
|
Builtins,,,gcc, Using the GNU Compiler Collection (GCC)}.
|
28 |
|
|
|
29 |
|
|
These routines take arguments and return values of a specific machine
|
30 |
|
|
mode, not a specific C type. @xref{Machine Modes}, for an explanation
|
31 |
|
|
of this concept. For illustrative purposes, in this chapter the
|
32 |
|
|
floating point type @code{float} is assumed to correspond to @code{SFmode};
|
33 |
|
|
@code{double} to @code{DFmode}; and @code{@w{long double}} to both
|
34 |
|
|
@code{TFmode} and @code{XFmode}. Similarly, the integer types @code{int}
|
35 |
|
|
and @code{@w{unsigned int}} correspond to @code{SImode}; @code{long} and
|
36 |
|
|
@code{@w{unsigned long}} to @code{DImode}; and @code{@w{long long}} and
|
37 |
|
|
@code{@w{unsigned long long}} to @code{TImode}.
|
38 |
|
|
|
39 |
|
|
@menu
|
40 |
|
|
* Integer library routines::
|
41 |
|
|
* Soft float library routines::
|
42 |
|
|
* Decimal float library routines::
|
43 |
|
|
* Exception handling routines::
|
44 |
|
|
* Miscellaneous routines::
|
45 |
|
|
@end menu
|
46 |
|
|
|
47 |
|
|
@node Integer library routines
|
48 |
|
|
@section Routines for integer arithmetic
|
49 |
|
|
|
50 |
|
|
The integer arithmetic routines are used on platforms that don't provide
|
51 |
|
|
hardware support for arithmetic operations on some modes.
|
52 |
|
|
|
53 |
|
|
@subsection Arithmetic functions
|
54 |
|
|
|
55 |
|
|
@deftypefn {Runtime Function} int __ashlsi3 (int @var{a}, int @var{b})
|
56 |
|
|
@deftypefnx {Runtime Function} long __ashldi3 (long @var{a}, int @var{b})
|
57 |
|
|
@deftypefnx {Runtime Function} {long long} __ashlti3 (long long @var{a}, int @var{b})
|
58 |
|
|
These functions return the result of shifting @var{a} left by @var{b} bits.
|
59 |
|
|
@end deftypefn
|
60 |
|
|
|
61 |
|
|
@deftypefn {Runtime Function} int __ashrsi3 (int @var{a}, int @var{b})
|
62 |
|
|
@deftypefnx {Runtime Function} long __ashrdi3 (long @var{a}, int @var{b})
|
63 |
|
|
@deftypefnx {Runtime Function} {long long} __ashrti3 (long long @var{a}, int @var{b})
|
64 |
|
|
These functions return the result of arithmetically shifting @var{a} right
|
65 |
|
|
by @var{b} bits.
|
66 |
|
|
@end deftypefn
|
67 |
|
|
|
68 |
|
|
@deftypefn {Runtime Function} int __divsi3 (int @var{a}, int @var{b})
|
69 |
|
|
@deftypefnx {Runtime Function} long __divdi3 (long @var{a}, long @var{b})
|
70 |
|
|
@deftypefnx {Runtime Function} {long long} __divti3 (long long @var{a}, long long @var{b})
|
71 |
|
|
These functions return the quotient of the signed division of @var{a} and
|
72 |
|
|
@var{b}.
|
73 |
|
|
@end deftypefn
|
74 |
|
|
|
75 |
|
|
@deftypefn {Runtime Function} int __lshrsi3 (int @var{a}, int @var{b})
|
76 |
|
|
@deftypefnx {Runtime Function} long __lshrdi3 (long @var{a}, int @var{b})
|
77 |
|
|
@deftypefnx {Runtime Function} {long long} __lshrti3 (long long @var{a}, int @var{b})
|
78 |
|
|
These functions return the result of logically shifting @var{a} right by
|
79 |
|
|
@var{b} bits.
|
80 |
|
|
@end deftypefn
|
81 |
|
|
|
82 |
|
|
@deftypefn {Runtime Function} int __modsi3 (int @var{a}, int @var{b})
|
83 |
|
|
@deftypefnx {Runtime Function} long __moddi3 (long @var{a}, long @var{b})
|
84 |
|
|
@deftypefnx {Runtime Function} {long long} __modti3 (long long @var{a}, long long @var{b})
|
85 |
|
|
These functions return the remainder of the signed division of @var{a}
|
86 |
|
|
and @var{b}.
|
87 |
|
|
@end deftypefn
|
88 |
|
|
|
89 |
|
|
@deftypefn {Runtime Function} int __mulsi3 (int @var{a}, int @var{b})
|
90 |
|
|
@deftypefnx {Runtime Function} long __muldi3 (long @var{a}, long @var{b})
|
91 |
|
|
@deftypefnx {Runtime Function} {long long} __multi3 (long long @var{a}, long long @var{b})
|
92 |
|
|
These functions return the product of @var{a} and @var{b}.
|
93 |
|
|
@end deftypefn
|
94 |
|
|
|
95 |
|
|
@deftypefn {Runtime Function} long __negdi2 (long @var{a})
|
96 |
|
|
@deftypefnx {Runtime Function} {long long} __negti2 (long long @var{a})
|
97 |
|
|
These functions return the negation of @var{a}.
|
98 |
|
|
@end deftypefn
|
99 |
|
|
|
100 |
|
|
@deftypefn {Runtime Function} {unsigned int} __udivsi3 (unsigned int @var{a}, unsigned int @var{b})
|
101 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __udivdi3 (unsigned long @var{a}, unsigned long @var{b})
|
102 |
|
|
@deftypefnx {Runtime Function} {unsigned long long} __udivti3 (unsigned long long @var{a}, unsigned long long @var{b})
|
103 |
|
|
These functions return the quotient of the unsigned division of @var{a}
|
104 |
|
|
and @var{b}.
|
105 |
|
|
@end deftypefn
|
106 |
|
|
|
107 |
|
|
@deftypefn {Runtime Function} {unsigned long} __udivmoddi3 (unsigned long @var{a}, unsigned long @var{b}, unsigned long *@var{c})
|
108 |
|
|
@deftypefnx {Runtime Function} {unsigned long long} __udivti3 (unsigned long long @var{a}, unsigned long long @var{b}, unsigned long long *@var{c})
|
109 |
|
|
These functions calculate both the quotient and remainder of the unsigned
|
110 |
|
|
division of @var{a} and @var{b}. The return value is the quotient, and
|
111 |
|
|
the remainder is placed in variable pointed to by @var{c}.
|
112 |
|
|
@end deftypefn
|
113 |
|
|
|
114 |
|
|
@deftypefn {Runtime Function} {unsigned int} __umodsi3 (unsigned int @var{a}, unsigned int @var{b})
|
115 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __umoddi3 (unsigned long @var{a}, unsigned long @var{b})
|
116 |
|
|
@deftypefnx {Runtime Function} {unsigned long long} __umodti3 (unsigned long long @var{a}, unsigned long long @var{b})
|
117 |
|
|
These functions return the remainder of the unsigned division of @var{a}
|
118 |
|
|
and @var{b}.
|
119 |
|
|
@end deftypefn
|
120 |
|
|
|
121 |
|
|
@subsection Comparison functions
|
122 |
|
|
|
123 |
|
|
The following functions implement integral comparisons. These functions
|
124 |
|
|
implement a low-level compare, upon which the higher level comparison
|
125 |
|
|
operators (such as less than and greater than or equal to) can be
|
126 |
|
|
constructed. The returned values lie in the range zero to two, to allow
|
127 |
|
|
the high-level operators to be implemented by testing the returned
|
128 |
|
|
result using either signed or unsigned comparison.
|
129 |
|
|
|
130 |
|
|
@deftypefn {Runtime Function} int __cmpdi2 (long @var{a}, long @var{b})
|
131 |
|
|
@deftypefnx {Runtime Function} int __cmpti2 (long long @var{a}, long long @var{b})
|
132 |
|
|
These functions perform a signed comparison of @var{a} and @var{b}. If
|
133 |
|
|
@var{a} is less than @var{b}, they return 0; if @var{a} is greater than
|
134 |
|
|
@var{b}, they return 2; and if @var{a} and @var{b} are equal they return 1.
|
135 |
|
|
@end deftypefn
|
136 |
|
|
|
137 |
|
|
@deftypefn {Runtime Function} int __ucmpdi2 (unsigned long @var{a}, unsigned long @var{b})
|
138 |
|
|
@deftypefnx {Runtime Function} int __ucmpti2 (unsigned long long @var{a}, unsigned long long @var{b})
|
139 |
|
|
These functions perform an unsigned comparison of @var{a} and @var{b}.
|
140 |
|
|
If @var{a} is less than @var{b}, they return 0; if @var{a} is greater than
|
141 |
|
|
@var{b}, they return 2; and if @var{a} and @var{b} are equal they return 1.
|
142 |
|
|
@end deftypefn
|
143 |
|
|
|
144 |
|
|
@subsection Trapping arithmetic functions
|
145 |
|
|
|
146 |
|
|
The following functions implement trapping arithmetic. These functions
|
147 |
|
|
call the libc function @code{abort} upon signed arithmetic overflow.
|
148 |
|
|
|
149 |
|
|
@deftypefn {Runtime Function} int __absvsi2 (int @var{a})
|
150 |
|
|
@deftypefnx {Runtime Function} long __absvdi2 (long @var{a})
|
151 |
|
|
These functions return the absolute value of @var{a}.
|
152 |
|
|
@end deftypefn
|
153 |
|
|
|
154 |
|
|
@deftypefn {Runtime Function} int __addvsi3 (int @var{a}, int @var{b})
|
155 |
|
|
@deftypefnx {Runtime Function} long __addvdi3 (long @var{a}, long @var{b})
|
156 |
|
|
These functions return the sum of @var{a} and @var{b}; that is
|
157 |
|
|
@code{@var{a} + @var{b}}.
|
158 |
|
|
@end deftypefn
|
159 |
|
|
|
160 |
|
|
@deftypefn {Runtime Function} int __mulvsi3 (int @var{a}, int @var{b})
|
161 |
|
|
@deftypefnx {Runtime Function} long __mulvdi3 (long @var{a}, long @var{b})
|
162 |
|
|
The functions return the product of @var{a} and @var{b}; that is
|
163 |
|
|
@code{@var{a} * @var{b}}.
|
164 |
|
|
@end deftypefn
|
165 |
|
|
|
166 |
|
|
@deftypefn {Runtime Function} int __negvsi2 (int @var{a})
|
167 |
|
|
@deftypefnx {Runtime Function} long __negvdi2 (long @var{a})
|
168 |
|
|
These functions return the negation of @var{a}; that is @code{-@var{a}}.
|
169 |
|
|
@end deftypefn
|
170 |
|
|
|
171 |
|
|
@deftypefn {Runtime Function} int __subvsi3 (int @var{a}, int @var{b})
|
172 |
|
|
@deftypefnx {Runtime Function} long __subvdi3 (long @var{a}, long @var{b})
|
173 |
|
|
These functions return the difference between @var{b} and @var{a};
|
174 |
|
|
that is @code{@var{a} - @var{b}}.
|
175 |
|
|
@end deftypefn
|
176 |
|
|
|
177 |
|
|
@subsection Bit operations
|
178 |
|
|
|
179 |
|
|
@deftypefn {Runtime Function} int __clzsi2 (int @var{a})
|
180 |
|
|
@deftypefnx {Runtime Function} int __clzdi2 (long @var{a})
|
181 |
|
|
@deftypefnx {Runtime Function} int __clzti2 (long long @var{a})
|
182 |
|
|
These functions return the number of leading 0-bits in @var{a}, starting
|
183 |
|
|
at the most significant bit position. If @var{a} is zero, the result is
|
184 |
|
|
undefined.
|
185 |
|
|
@end deftypefn
|
186 |
|
|
|
187 |
|
|
@deftypefn {Runtime Function} int __ctzsi2 (int @var{a})
|
188 |
|
|
@deftypefnx {Runtime Function} int __ctzdi2 (long @var{a})
|
189 |
|
|
@deftypefnx {Runtime Function} int __ctzti2 (long long @var{a})
|
190 |
|
|
These functions return the number of trailing 0-bits in @var{a}, starting
|
191 |
|
|
at the least significant bit position. If @var{a} is zero, the result is
|
192 |
|
|
undefined.
|
193 |
|
|
@end deftypefn
|
194 |
|
|
|
195 |
|
|
@deftypefn {Runtime Function} int __ffsdi2 (long @var{a})
|
196 |
|
|
@deftypefnx {Runtime Function} int __ffsti2 (long long @var{a})
|
197 |
|
|
These functions return the index of the least significant 1-bit in @var{a},
|
198 |
|
|
or the value zero if @var{a} is zero. The least significant bit is index
|
199 |
|
|
one.
|
200 |
|
|
@end deftypefn
|
201 |
|
|
|
202 |
|
|
@deftypefn {Runtime Function} int __paritysi2 (int @var{a})
|
203 |
|
|
@deftypefnx {Runtime Function} int __paritydi2 (long @var{a})
|
204 |
|
|
@deftypefnx {Runtime Function} int __parityti2 (long long @var{a})
|
205 |
|
|
These functions return the value zero if the number of bits set in
|
206 |
|
|
@var{a} is even, and the value one otherwise.
|
207 |
|
|
@end deftypefn
|
208 |
|
|
|
209 |
|
|
@deftypefn {Runtime Function} int __popcountsi2 (int @var{a})
|
210 |
|
|
@deftypefnx {Runtime Function} int __popcountdi2 (long @var{a})
|
211 |
|
|
@deftypefnx {Runtime Function} int __popcountti2 (long long @var{a})
|
212 |
|
|
These functions return the number of bits set in @var{a}.
|
213 |
|
|
@end deftypefn
|
214 |
|
|
|
215 |
|
|
@node Soft float library routines
|
216 |
|
|
@section Routines for floating point emulation
|
217 |
|
|
@cindex soft float library
|
218 |
|
|
@cindex arithmetic library
|
219 |
|
|
@cindex math library
|
220 |
|
|
@opindex msoft-float
|
221 |
|
|
|
222 |
|
|
The software floating point library is used on machines which do not
|
223 |
|
|
have hardware support for floating point. It is also used whenever
|
224 |
|
|
@option{-msoft-float} is used to disable generation of floating point
|
225 |
|
|
instructions. (Not all targets support this switch.)
|
226 |
|
|
|
227 |
|
|
For compatibility with other compilers, the floating point emulation
|
228 |
|
|
routines can be renamed with the @code{DECLARE_LIBRARY_RENAMES} macro
|
229 |
|
|
(@pxref{Library Calls}). In this section, the default names are used.
|
230 |
|
|
|
231 |
|
|
Presently the library does not support @code{XFmode}, which is used
|
232 |
|
|
for @code{long double} on some architectures.
|
233 |
|
|
|
234 |
|
|
@subsection Arithmetic functions
|
235 |
|
|
|
236 |
|
|
@deftypefn {Runtime Function} float __addsf3 (float @var{a}, float @var{b})
|
237 |
|
|
@deftypefnx {Runtime Function} double __adddf3 (double @var{a}, double @var{b})
|
238 |
|
|
@deftypefnx {Runtime Function} {long double} __addtf3 (long double @var{a}, long double @var{b})
|
239 |
|
|
@deftypefnx {Runtime Function} {long double} __addxf3 (long double @var{a}, long double @var{b})
|
240 |
|
|
These functions return the sum of @var{a} and @var{b}.
|
241 |
|
|
@end deftypefn
|
242 |
|
|
|
243 |
|
|
@deftypefn {Runtime Function} float __subsf3 (float @var{a}, float @var{b})
|
244 |
|
|
@deftypefnx {Runtime Function} double __subdf3 (double @var{a}, double @var{b})
|
245 |
|
|
@deftypefnx {Runtime Function} {long double} __subtf3 (long double @var{a}, long double @var{b})
|
246 |
|
|
@deftypefnx {Runtime Function} {long double} __subxf3 (long double @var{a}, long double @var{b})
|
247 |
|
|
These functions return the difference between @var{b} and @var{a};
|
248 |
|
|
that is, @w{@math{@var{a} - @var{b}}}.
|
249 |
|
|
@end deftypefn
|
250 |
|
|
|
251 |
|
|
@deftypefn {Runtime Function} float __mulsf3 (float @var{a}, float @var{b})
|
252 |
|
|
@deftypefnx {Runtime Function} double __muldf3 (double @var{a}, double @var{b})
|
253 |
|
|
@deftypefnx {Runtime Function} {long double} __multf3 (long double @var{a}, long double @var{b})
|
254 |
|
|
@deftypefnx {Runtime Function} {long double} __mulxf3 (long double @var{a}, long double @var{b})
|
255 |
|
|
These functions return the product of @var{a} and @var{b}.
|
256 |
|
|
@end deftypefn
|
257 |
|
|
|
258 |
|
|
@deftypefn {Runtime Function} float __divsf3 (float @var{a}, float @var{b})
|
259 |
|
|
@deftypefnx {Runtime Function} double __divdf3 (double @var{a}, double @var{b})
|
260 |
|
|
@deftypefnx {Runtime Function} {long double} __divtf3 (long double @var{a}, long double @var{b})
|
261 |
|
|
@deftypefnx {Runtime Function} {long double} __divxf3 (long double @var{a}, long double @var{b})
|
262 |
|
|
These functions return the quotient of @var{a} and @var{b}; that is,
|
263 |
|
|
@w{@math{@var{a} / @var{b}}}.
|
264 |
|
|
@end deftypefn
|
265 |
|
|
|
266 |
|
|
@deftypefn {Runtime Function} float __negsf2 (float @var{a})
|
267 |
|
|
@deftypefnx {Runtime Function} double __negdf2 (double @var{a})
|
268 |
|
|
@deftypefnx {Runtime Function} {long double} __negtf2 (long double @var{a})
|
269 |
|
|
@deftypefnx {Runtime Function} {long double} __negxf2 (long double @var{a})
|
270 |
|
|
These functions return the negation of @var{a}. They simply flip the
|
271 |
|
|
sign bit, so they can produce negative zero and negative NaN@.
|
272 |
|
|
@end deftypefn
|
273 |
|
|
|
274 |
|
|
@subsection Conversion functions
|
275 |
|
|
|
276 |
|
|
@deftypefn {Runtime Function} double __extendsfdf2 (float @var{a})
|
277 |
|
|
@deftypefnx {Runtime Function} {long double} __extendsftf2 (float @var{a})
|
278 |
|
|
@deftypefnx {Runtime Function} {long double} __extendsfxf2 (float @var{a})
|
279 |
|
|
@deftypefnx {Runtime Function} {long double} __extenddftf2 (double @var{a})
|
280 |
|
|
@deftypefnx {Runtime Function} {long double} __extenddfxf2 (double @var{a})
|
281 |
|
|
These functions extend @var{a} to the wider mode of their return
|
282 |
|
|
type.
|
283 |
|
|
@end deftypefn
|
284 |
|
|
|
285 |
|
|
@deftypefn {Runtime Function} double __truncxfdf2 (long double @var{a})
|
286 |
|
|
@deftypefnx {Runtime Function} double __trunctfdf2 (long double @var{a})
|
287 |
|
|
@deftypefnx {Runtime Function} float __truncxfsf2 (long double @var{a})
|
288 |
|
|
@deftypefnx {Runtime Function} float __trunctfsf2 (long double @var{a})
|
289 |
|
|
@deftypefnx {Runtime Function} float __truncdfsf2 (double @var{a})
|
290 |
|
|
These functions truncate @var{a} to the narrower mode of their return
|
291 |
|
|
type, rounding toward zero.
|
292 |
|
|
@end deftypefn
|
293 |
|
|
|
294 |
|
|
@deftypefn {Runtime Function} int __fixsfsi (float @var{a})
|
295 |
|
|
@deftypefnx {Runtime Function} int __fixdfsi (double @var{a})
|
296 |
|
|
@deftypefnx {Runtime Function} int __fixtfsi (long double @var{a})
|
297 |
|
|
@deftypefnx {Runtime Function} int __fixxfsi (long double @var{a})
|
298 |
|
|
These functions convert @var{a} to a signed integer, rounding toward zero.
|
299 |
|
|
@end deftypefn
|
300 |
|
|
|
301 |
|
|
@deftypefn {Runtime Function} long __fixsfdi (float @var{a})
|
302 |
|
|
@deftypefnx {Runtime Function} long __fixdfdi (double @var{a})
|
303 |
|
|
@deftypefnx {Runtime Function} long __fixtfdi (long double @var{a})
|
304 |
|
|
@deftypefnx {Runtime Function} long __fixxfdi (long double @var{a})
|
305 |
|
|
These functions convert @var{a} to a signed long, rounding toward zero.
|
306 |
|
|
@end deftypefn
|
307 |
|
|
|
308 |
|
|
@deftypefn {Runtime Function} {long long} __fixsfti (float @var{a})
|
309 |
|
|
@deftypefnx {Runtime Function} {long long} __fixdfti (double @var{a})
|
310 |
|
|
@deftypefnx {Runtime Function} {long long} __fixtfti (long double @var{a})
|
311 |
|
|
@deftypefnx {Runtime Function} {long long} __fixxfti (long double @var{a})
|
312 |
|
|
These functions convert @var{a} to a signed long long, rounding toward zero.
|
313 |
|
|
@end deftypefn
|
314 |
|
|
|
315 |
|
|
@deftypefn {Runtime Function} {unsigned int} __fixunssfsi (float @var{a})
|
316 |
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunsdfsi (double @var{a})
|
317 |
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunstfsi (long double @var{a})
|
318 |
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunsxfsi (long double @var{a})
|
319 |
|
|
These functions convert @var{a} to an unsigned integer, rounding
|
320 |
|
|
toward zero. Negative values all become zero.
|
321 |
|
|
@end deftypefn
|
322 |
|
|
|
323 |
|
|
@deftypefn {Runtime Function} {unsigned long} __fixunssfdi (float @var{a})
|
324 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunsdfdi (double @var{a})
|
325 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunstfdi (long double @var{a})
|
326 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunsxfdi (long double @var{a})
|
327 |
|
|
These functions convert @var{a} to an unsigned long, rounding
|
328 |
|
|
toward zero. Negative values all become zero.
|
329 |
|
|
@end deftypefn
|
330 |
|
|
|
331 |
|
|
@deftypefn {Runtime Function} {unsigned long long} __fixunssfti (float @var{a})
|
332 |
|
|
@deftypefnx {Runtime Function} {unsigned long long} __fixunsdfti (double @var{a})
|
333 |
|
|
@deftypefnx {Runtime Function} {unsigned long long} __fixunstfti (long double @var{a})
|
334 |
|
|
@deftypefnx {Runtime Function} {unsigned long long} __fixunsxfti (long double @var{a})
|
335 |
|
|
These functions convert @var{a} to an unsigned long long, rounding
|
336 |
|
|
toward zero. Negative values all become zero.
|
337 |
|
|
@end deftypefn
|
338 |
|
|
|
339 |
|
|
@deftypefn {Runtime Function} float __floatsisf (int @var{i})
|
340 |
|
|
@deftypefnx {Runtime Function} double __floatsidf (int @var{i})
|
341 |
|
|
@deftypefnx {Runtime Function} {long double} __floatsitf (int @var{i})
|
342 |
|
|
@deftypefnx {Runtime Function} {long double} __floatsixf (int @var{i})
|
343 |
|
|
These functions convert @var{i}, a signed integer, to floating point.
|
344 |
|
|
@end deftypefn
|
345 |
|
|
|
346 |
|
|
@deftypefn {Runtime Function} float __floatdisf (long @var{i})
|
347 |
|
|
@deftypefnx {Runtime Function} double __floatdidf (long @var{i})
|
348 |
|
|
@deftypefnx {Runtime Function} {long double} __floatditf (long @var{i})
|
349 |
|
|
@deftypefnx {Runtime Function} {long double} __floatdixf (long @var{i})
|
350 |
|
|
These functions convert @var{i}, a signed long, to floating point.
|
351 |
|
|
@end deftypefn
|
352 |
|
|
|
353 |
|
|
@deftypefn {Runtime Function} float __floattisf (long long @var{i})
|
354 |
|
|
@deftypefnx {Runtime Function} double __floattidf (long long @var{i})
|
355 |
|
|
@deftypefnx {Runtime Function} {long double} __floattitf (long long @var{i})
|
356 |
|
|
@deftypefnx {Runtime Function} {long double} __floattixf (long long @var{i})
|
357 |
|
|
These functions convert @var{i}, a signed long long, to floating point.
|
358 |
|
|
@end deftypefn
|
359 |
|
|
|
360 |
|
|
@deftypefn {Runtime Function} float __floatunsisf (unsigned int @var{i})
|
361 |
|
|
@deftypefnx {Runtime Function} double __floatunsidf (unsigned int @var{i})
|
362 |
|
|
@deftypefnx {Runtime Function} {long double} __floatunsitf (unsigned int @var{i})
|
363 |
|
|
@deftypefnx {Runtime Function} {long double} __floatunsixf (unsigned int @var{i})
|
364 |
|
|
These functions convert @var{i}, an unsigned integer, to floating point.
|
365 |
|
|
@end deftypefn
|
366 |
|
|
|
367 |
|
|
@deftypefn {Runtime Function} float __floatundisf (unsigned long @var{i})
|
368 |
|
|
@deftypefnx {Runtime Function} double __floatundidf (unsigned long @var{i})
|
369 |
|
|
@deftypefnx {Runtime Function} {long double} __floatunditf (unsigned long @var{i})
|
370 |
|
|
@deftypefnx {Runtime Function} {long double} __floatundixf (unsigned long @var{i})
|
371 |
|
|
These functions convert @var{i}, an unsigned long, to floating point.
|
372 |
|
|
@end deftypefn
|
373 |
|
|
|
374 |
|
|
@deftypefn {Runtime Function} float __floatuntisf (unsigned long long @var{i})
|
375 |
|
|
@deftypefnx {Runtime Function} double __floatuntidf (unsigned long long @var{i})
|
376 |
|
|
@deftypefnx {Runtime Function} {long double} __floatuntitf (unsigned long long @var{i})
|
377 |
|
|
@deftypefnx {Runtime Function} {long double} __floatuntixf (unsigned long long @var{i})
|
378 |
|
|
These functions convert @var{i}, an unsigned long long, to floating point.
|
379 |
|
|
@end deftypefn
|
380 |
|
|
|
381 |
|
|
@subsection Comparison functions
|
382 |
|
|
|
383 |
|
|
There are two sets of basic comparison functions.
|
384 |
|
|
|
385 |
|
|
@deftypefn {Runtime Function} int __cmpsf2 (float @var{a}, float @var{b})
|
386 |
|
|
@deftypefnx {Runtime Function} int __cmpdf2 (double @var{a}, double @var{b})
|
387 |
|
|
@deftypefnx {Runtime Function} int __cmptf2 (long double @var{a}, long double @var{b})
|
388 |
|
|
These functions calculate @math{a <=> b}. That is, if @var{a} is less
|
389 |
|
|
than @var{b}, they return @minus{}1; if @var{a} is greater than @var{b}, they
|
390 |
|
|
return 1; and if @var{a} and @var{b} are equal they return 0. If
|
391 |
|
|
either argument is NaN they return 1, but you should not rely on this;
|
392 |
|
|
if NaN is a possibility, use one of the higher-level comparison
|
393 |
|
|
functions.
|
394 |
|
|
@end deftypefn
|
395 |
|
|
|
396 |
|
|
@deftypefn {Runtime Function} int __unordsf2 (float @var{a}, float @var{b})
|
397 |
|
|
@deftypefnx {Runtime Function} int __unorddf2 (double @var{a}, double @var{b})
|
398 |
|
|
@deftypefnx {Runtime Function} int __unordtf2 (long double @var{a}, long double @var{b})
|
399 |
|
|
These functions return a nonzero value if either argument is NaN, otherwise 0.
|
400 |
|
|
@end deftypefn
|
401 |
|
|
|
402 |
|
|
There is also a complete group of higher level functions which
|
403 |
|
|
correspond directly to comparison operators. They implement the ISO C
|
404 |
|
|
semantics for floating-point comparisons, taking NaN into account.
|
405 |
|
|
Pay careful attention to the return values defined for each set.
|
406 |
|
|
Under the hood, all of these routines are implemented as
|
407 |
|
|
|
408 |
|
|
@smallexample
|
409 |
|
|
if (__unord@var{X}f2 (a, b))
|
410 |
|
|
return @var{E};
|
411 |
|
|
return __cmp@var{X}f2 (a, b);
|
412 |
|
|
@end smallexample
|
413 |
|
|
|
414 |
|
|
@noindent
|
415 |
|
|
where @var{E} is a constant chosen to give the proper behavior for
|
416 |
|
|
NaN@. Thus, the meaning of the return value is different for each set.
|
417 |
|
|
Do not rely on this implementation; only the semantics documented
|
418 |
|
|
below are guaranteed.
|
419 |
|
|
|
420 |
|
|
@deftypefn {Runtime Function} int __eqsf2 (float @var{a}, float @var{b})
|
421 |
|
|
@deftypefnx {Runtime Function} int __eqdf2 (double @var{a}, double @var{b})
|
422 |
|
|
@deftypefnx {Runtime Function} int __eqtf2 (long double @var{a}, long double @var{b})
|
423 |
|
|
These functions return zero if neither argument is NaN, and @var{a} and
|
424 |
|
|
@var{b} are equal.
|
425 |
|
|
@end deftypefn
|
426 |
|
|
|
427 |
|
|
@deftypefn {Runtime Function} int __nesf2 (float @var{a}, float @var{b})
|
428 |
|
|
@deftypefnx {Runtime Function} int __nedf2 (double @var{a}, double @var{b})
|
429 |
|
|
@deftypefnx {Runtime Function} int __netf2 (long double @var{a}, long double @var{b})
|
430 |
|
|
These functions return a nonzero value if either argument is NaN, or
|
431 |
|
|
if @var{a} and @var{b} are unequal.
|
432 |
|
|
@end deftypefn
|
433 |
|
|
|
434 |
|
|
@deftypefn {Runtime Function} int __gesf2 (float @var{a}, float @var{b})
|
435 |
|
|
@deftypefnx {Runtime Function} int __gedf2 (double @var{a}, double @var{b})
|
436 |
|
|
@deftypefnx {Runtime Function} int __getf2 (long double @var{a}, long double @var{b})
|
437 |
|
|
These functions return a value greater than or equal to zero if
|
438 |
|
|
neither argument is NaN, and @var{a} is greater than or equal to
|
439 |
|
|
@var{b}.
|
440 |
|
|
@end deftypefn
|
441 |
|
|
|
442 |
|
|
@deftypefn {Runtime Function} int __ltsf2 (float @var{a}, float @var{b})
|
443 |
|
|
@deftypefnx {Runtime Function} int __ltdf2 (double @var{a}, double @var{b})
|
444 |
|
|
@deftypefnx {Runtime Function} int __lttf2 (long double @var{a}, long double @var{b})
|
445 |
|
|
These functions return a value less than zero if neither argument is
|
446 |
|
|
NaN, and @var{a} is strictly less than @var{b}.
|
447 |
|
|
@end deftypefn
|
448 |
|
|
|
449 |
|
|
@deftypefn {Runtime Function} int __lesf2 (float @var{a}, float @var{b})
|
450 |
|
|
@deftypefnx {Runtime Function} int __ledf2 (double @var{a}, double @var{b})
|
451 |
|
|
@deftypefnx {Runtime Function} int __letf2 (long double @var{a}, long double @var{b})
|
452 |
|
|
These functions return a value less than or equal to zero if neither
|
453 |
|
|
argument is NaN, and @var{a} is less than or equal to @var{b}.
|
454 |
|
|
@end deftypefn
|
455 |
|
|
|
456 |
|
|
@deftypefn {Runtime Function} int __gtsf2 (float @var{a}, float @var{b})
|
457 |
|
|
@deftypefnx {Runtime Function} int __gtdf2 (double @var{a}, double @var{b})
|
458 |
|
|
@deftypefnx {Runtime Function} int __gttf2 (long double @var{a}, long double @var{b})
|
459 |
|
|
These functions return a value greater than zero if neither argument
|
460 |
|
|
is NaN, and @var{a} is strictly greater than @var{b}.
|
461 |
|
|
@end deftypefn
|
462 |
|
|
|
463 |
|
|
@subsection Other floating-point functions
|
464 |
|
|
|
465 |
|
|
@deftypefn {Runtime Function} float __powisf2 (float @var{a}, int @var{b})
|
466 |
|
|
@deftypefnx {Runtime Function} double __powidf2 (double @var{a}, int @var{b})
|
467 |
|
|
@deftypefnx {Runtime Function} {long double} __powitf2 (long double @var{a}, int @var{b})
|
468 |
|
|
@deftypefnx {Runtime Function} {long double} __powixf2 (long double @var{a}, int @var{b})
|
469 |
|
|
These functions convert raise @var{a} to the power @var{b}.
|
470 |
|
|
@end deftypefn
|
471 |
|
|
|
472 |
|
|
@deftypefn {Runtime Function} {complex float} __mulsc3 (float @var{a}, float @var{b}, float @var{c}, float @var{d})
|
473 |
|
|
@deftypefnx {Runtime Function} {complex double} __muldc3 (double @var{a}, double @var{b}, double @var{c}, double @var{d})
|
474 |
|
|
@deftypefnx {Runtime Function} {complex long double} __multc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
|
475 |
|
|
@deftypefnx {Runtime Function} {complex long double} __mulxc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
|
476 |
|
|
These functions return the product of @math{@var{a} + i@var{b}} and
|
477 |
|
|
@math{@var{c} + i@var{d}}, following the rules of C99 Annex G@.
|
478 |
|
|
@end deftypefn
|
479 |
|
|
|
480 |
|
|
@deftypefn {Runtime Function} {complex float} __divsc3 (float @var{a}, float @var{b}, float @var{c}, float @var{d})
|
481 |
|
|
@deftypefnx {Runtime Function} {complex double} __divdc3 (double @var{a}, double @var{b}, double @var{c}, double @var{d})
|
482 |
|
|
@deftypefnx {Runtime Function} {complex long double} __divtc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
|
483 |
|
|
@deftypefnx {Runtime Function} {complex long double} __divxc3 (long double @var{a}, long double @var{b}, long double @var{c}, long double @var{d})
|
484 |
|
|
These functions return the quotient of @math{@var{a} + i@var{b}} and
|
485 |
|
|
@math{@var{c} + i@var{d}} (i.e., @math{(@var{a} + i@var{b}) / (@var{c}
|
486 |
|
|
+ i@var{d})}), following the rules of C99 Annex G@.
|
487 |
|
|
@end deftypefn
|
488 |
|
|
|
489 |
|
|
@node Decimal float library routines
|
490 |
|
|
@section Routines for decimal floating point emulation
|
491 |
|
|
@cindex decimal float library
|
492 |
|
|
@cindex IEEE-754R
|
493 |
|
|
|
494 |
|
|
The software decimal floating point library implements IEEE 754R
|
495 |
|
|
decimal floating point arithmetic and is only activated on selected
|
496 |
|
|
targets.
|
497 |
|
|
|
498 |
|
|
@subsection Arithmetic functions
|
499 |
|
|
|
500 |
|
|
@deftypefn {Runtime Function} _Decimal32 __addsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
501 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __adddd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
502 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __addtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
503 |
|
|
These functions return the sum of @var{a} and @var{b}.
|
504 |
|
|
@end deftypefn
|
505 |
|
|
|
506 |
|
|
@deftypefn {Runtime Function} _Decimal32 __subsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
507 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __subdd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
508 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __subtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
509 |
|
|
These functions return the difference between @var{b} and @var{a};
|
510 |
|
|
that is, @w{@math{@var{a} - @var{b}}}.
|
511 |
|
|
@end deftypefn
|
512 |
|
|
|
513 |
|
|
@deftypefn {Runtime Function} _Decimal32 __mulsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
514 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __muldd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
515 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __multd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
516 |
|
|
These functions return the product of @var{a} and @var{b}.
|
517 |
|
|
@end deftypefn
|
518 |
|
|
|
519 |
|
|
@deftypefn {Runtime Function} _Decimal32 __divsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
520 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __divdd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
521 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __divtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
522 |
|
|
These functions return the quotient of @var{a} and @var{b}; that is,
|
523 |
|
|
@w{@math{@var{a} / @var{b}}}.
|
524 |
|
|
@end deftypefn
|
525 |
|
|
|
526 |
|
|
@deftypefn {Runtime Function} _Decimal32 __negsd2 (_Decimal32 @var{a})
|
527 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __negdd2 (_Decimal64 @var{a})
|
528 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __negtd2 (_Decimal128 @var{a})
|
529 |
|
|
These functions return the negation of @var{a}. They simply flip the
|
530 |
|
|
sign bit, so they can produce negative zero and negative NaN@.
|
531 |
|
|
@end deftypefn
|
532 |
|
|
|
533 |
|
|
@subsection Conversion functions
|
534 |
|
|
|
535 |
|
|
@c DFP/DFP conversions
|
536 |
|
|
@deftypefn {Runtime Function} _Decimal64 __extendsddd2 (_Decimal32 @var{a})
|
537 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __extendsdtd2 (_Decimal32 @var{a})
|
538 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __extendddtd2 (_Decimal64 @var{a})
|
539 |
|
|
@c DFP/binary FP conversions
|
540 |
|
|
@deftypefnx {Runtime Function} _Decimal32 __extendsfsd (float @var{a})
|
541 |
|
|
@deftypefnx {Runtime Function} double __extendsddf (_Decimal32 @var{a})
|
542 |
|
|
@deftypefnx {Runtime Function} {long double} __extendsdxf (_Decimal32 @var{a})
|
543 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __extendsfdd (float @var{a})
|
544 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __extenddfdd (double @var{a})
|
545 |
|
|
@deftypefnx {Runtime Function} {long double} __extendddxf (_Decimal64 @var{a})
|
546 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __extendsftd (float @var{a})
|
547 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __extenddftd (double @var{a})
|
548 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __extendxftd ({long double} @var{a})
|
549 |
|
|
These functions extend @var{a} to the wider mode of their return type.
|
550 |
|
|
@end deftypefn
|
551 |
|
|
|
552 |
|
|
@c DFP/DFP conversions
|
553 |
|
|
@deftypefn {Runtime Function} _Decimal32 __truncddsd2 (_Decimal64 @var{a})
|
554 |
|
|
@deftypefnx {Runtime Function} _Decimal32 __trunctdsd2 (_Decimal128 @var{a})
|
555 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __trunctddd2 (_Decimal128 @var{a})
|
556 |
|
|
@c DFP/binary FP conversions
|
557 |
|
|
@deftypefnx {Runtime Function} float __truncsdsf (_Decimal32 @var{a})
|
558 |
|
|
@deftypefnx {Runtime Function} _Decimal32 __truncdfsd (double @var{a})
|
559 |
|
|
@deftypefnx {Runtime Function} _Decimal32 __truncxfsd ({long double} @var{a})
|
560 |
|
|
@deftypefnx {Runtime Function} float __truncddsf (_Decimal64 @var{a})
|
561 |
|
|
@deftypefnx {Runtime Function} double __truncdddf (_Decimal64 @var{a})
|
562 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __truncxfdd ({long double} @var{a})
|
563 |
|
|
@deftypefnx {Runtime Function} float __trunctdsf (_Decimal128 @var{a})
|
564 |
|
|
@deftypefnx {Runtime Function} double __trunctddf (_Decimal128 @var{a})
|
565 |
|
|
@deftypefnx {Runtime Function} {long double} __trunctdxf (_Decimal128 @var{a})
|
566 |
|
|
These functions truncate @var{a} to the narrower mode of their return
|
567 |
|
|
type.
|
568 |
|
|
@end deftypefn
|
569 |
|
|
|
570 |
|
|
@deftypefn {Runtime Function} int __fixsdsi (_Decimal32 @var{a})
|
571 |
|
|
@deftypefnx {Runtime Function} int __fixddsi (_Decimal64 @var{a})
|
572 |
|
|
@deftypefnx {Runtime Function} int __fixtdsi (_Decimal128 @var{a})
|
573 |
|
|
These functions convert @var{a} to a signed integer.
|
574 |
|
|
@end deftypefn
|
575 |
|
|
|
576 |
|
|
@deftypefn {Runtime Function} long __fixsddi (_Decimal32 @var{a})
|
577 |
|
|
@deftypefnx {Runtime Function} long __fixdddi (_Decimal64 @var{a})
|
578 |
|
|
@deftypefnx {Runtime Function} long __fixtddi (_Decimal128 @var{a})
|
579 |
|
|
These functions convert @var{a} to a signed long.
|
580 |
|
|
@end deftypefn
|
581 |
|
|
|
582 |
|
|
@deftypefn {Runtime Function} {unsigned int} __fixunssdsi (_Decimal32 @var{a})
|
583 |
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunsddsi (_Decimal64 @var{a})
|
584 |
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunstdsi (_Decimal128 @var{a})
|
585 |
|
|
These functions convert @var{a} to an unsigned integer. Negative values all become zero.
|
586 |
|
|
@end deftypefn
|
587 |
|
|
|
588 |
|
|
@deftypefn {Runtime Function} {unsigned long} __fixunssddi (_Decimal32 @var{a})
|
589 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunsdddi (_Decimal64 @var{a})
|
590 |
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunstddi (_Decimal128 @var{a})
|
591 |
|
|
These functions convert @var{a} to an unsigned long. Negative values
|
592 |
|
|
all become zero.
|
593 |
|
|
@end deftypefn
|
594 |
|
|
|
595 |
|
|
@deftypefn {Runtime Function} _Decimal32 __floatsisd (int @var{i})
|
596 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __floatsidd (int @var{i})
|
597 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __floatsitd (int @var{i})
|
598 |
|
|
These functions convert @var{i}, a signed integer, to decimal floating point.
|
599 |
|
|
@end deftypefn
|
600 |
|
|
|
601 |
|
|
@deftypefn {Runtime Function} _Decimal32 __floatdisd (long @var{i})
|
602 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __floatdidd (long @var{i})
|
603 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __floatditd (long @var{i})
|
604 |
|
|
These functions convert @var{i}, a signed long, to decimal floating point.
|
605 |
|
|
@end deftypefn
|
606 |
|
|
|
607 |
|
|
@deftypefn {Runtime Function} _Decimal32 __floatunssisd (unsigned int @var{i})
|
608 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __floatunssidd (unsigned int @var{i})
|
609 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __floatunssitd (unsigned int @var{i})
|
610 |
|
|
These functions convert @var{i}, an unsigned integer, to decimal floating point.
|
611 |
|
|
@end deftypefn
|
612 |
|
|
|
613 |
|
|
@deftypefn {Runtime Function} _Decimal32 __floatunsdisd (unsigned long @var{i})
|
614 |
|
|
@deftypefnx {Runtime Function} _Decimal64 __floatunsdidd (unsigned long @var{i})
|
615 |
|
|
@deftypefnx {Runtime Function} _Decimal128 __floatunsditd (unsigned long @var{i})
|
616 |
|
|
These functions convert @var{i}, an unsigned long, to decimal floating point.
|
617 |
|
|
@end deftypefn
|
618 |
|
|
|
619 |
|
|
@subsection Comparison functions
|
620 |
|
|
|
621 |
|
|
@deftypefn {Runtime Function} int __unordsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
622 |
|
|
@deftypefnx {Runtime Function} int __unorddd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
623 |
|
|
@deftypefnx {Runtime Function} int __unordtd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
624 |
|
|
These functions return a nonzero value if either argument is NaN, otherwise 0.
|
625 |
|
|
@end deftypefn
|
626 |
|
|
|
627 |
|
|
There is also a complete group of higher level functions which
|
628 |
|
|
correspond directly to comparison operators. They implement the ISO C
|
629 |
|
|
semantics for floating-point comparisons, taking NaN into account.
|
630 |
|
|
Pay careful attention to the return values defined for each set.
|
631 |
|
|
Under the hood, all of these routines are implemented as
|
632 |
|
|
|
633 |
|
|
@smallexample
|
634 |
|
|
if (__unord@var{X}d2 (a, b))
|
635 |
|
|
return @var{E};
|
636 |
|
|
return __cmp@var{X}d2 (a, b);
|
637 |
|
|
@end smallexample
|
638 |
|
|
|
639 |
|
|
@noindent
|
640 |
|
|
where @var{E} is a constant chosen to give the proper behavior for
|
641 |
|
|
NaN@. Thus, the meaning of the return value is different for each set.
|
642 |
|
|
Do not rely on this implementation; only the semantics documented
|
643 |
|
|
below are guaranteed.
|
644 |
|
|
|
645 |
|
|
@deftypefn {Runtime Function} int __eqsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
646 |
|
|
@deftypefnx {Runtime Function} int __eqdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
647 |
|
|
@deftypefnx {Runtime Function} int __eqtd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
648 |
|
|
These functions return zero if neither argument is NaN, and @var{a} and
|
649 |
|
|
@var{b} are equal.
|
650 |
|
|
@end deftypefn
|
651 |
|
|
|
652 |
|
|
@deftypefn {Runtime Function} int __nesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
653 |
|
|
@deftypefnx {Runtime Function} int __nedd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
654 |
|
|
@deftypefnx {Runtime Function} int __netd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
655 |
|
|
These functions return a nonzero value if either argument is NaN, or
|
656 |
|
|
if @var{a} and @var{b} are unequal.
|
657 |
|
|
@end deftypefn
|
658 |
|
|
|
659 |
|
|
@deftypefn {Runtime Function} int __gesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
660 |
|
|
@deftypefnx {Runtime Function} int __gedd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
661 |
|
|
@deftypefnx {Runtime Function} int __getd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
662 |
|
|
These functions return a value greater than or equal to zero if
|
663 |
|
|
neither argument is NaN, and @var{a} is greater than or equal to
|
664 |
|
|
@var{b}.
|
665 |
|
|
@end deftypefn
|
666 |
|
|
|
667 |
|
|
@deftypefn {Runtime Function} int __ltsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
668 |
|
|
@deftypefnx {Runtime Function} int __ltdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
669 |
|
|
@deftypefnx {Runtime Function} int __lttd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
670 |
|
|
These functions return a value less than zero if neither argument is
|
671 |
|
|
NaN, and @var{a} is strictly less than @var{b}.
|
672 |
|
|
@end deftypefn
|
673 |
|
|
|
674 |
|
|
@deftypefn {Runtime Function} int __lesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
675 |
|
|
@deftypefnx {Runtime Function} int __ledd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
676 |
|
|
@deftypefnx {Runtime Function} int __letd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
677 |
|
|
These functions return a value less than or equal to zero if neither
|
678 |
|
|
argument is NaN, and @var{a} is less than or equal to @var{b}.
|
679 |
|
|
@end deftypefn
|
680 |
|
|
|
681 |
|
|
@deftypefn {Runtime Function} int __gtsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
|
682 |
|
|
@deftypefnx {Runtime Function} int __gtdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
|
683 |
|
|
@deftypefnx {Runtime Function} int __gttd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
|
684 |
|
|
These functions return a value greater than zero if neither argument
|
685 |
|
|
is NaN, and @var{a} is strictly greater than @var{b}.
|
686 |
|
|
@end deftypefn
|
687 |
|
|
|
688 |
|
|
@node Exception handling routines
|
689 |
|
|
@section Language-independent routines for exception handling
|
690 |
|
|
|
691 |
|
|
document me!
|
692 |
|
|
|
693 |
|
|
@smallexample
|
694 |
|
|
_Unwind_DeleteException
|
695 |
|
|
_Unwind_Find_FDE
|
696 |
|
|
_Unwind_ForcedUnwind
|
697 |
|
|
_Unwind_GetGR
|
698 |
|
|
_Unwind_GetIP
|
699 |
|
|
_Unwind_GetLanguageSpecificData
|
700 |
|
|
_Unwind_GetRegionStart
|
701 |
|
|
_Unwind_GetTextRelBase
|
702 |
|
|
_Unwind_GetDataRelBase
|
703 |
|
|
_Unwind_RaiseException
|
704 |
|
|
_Unwind_Resume
|
705 |
|
|
_Unwind_SetGR
|
706 |
|
|
_Unwind_SetIP
|
707 |
|
|
_Unwind_FindEnclosingFunction
|
708 |
|
|
_Unwind_SjLj_Register
|
709 |
|
|
_Unwind_SjLj_Unregister
|
710 |
|
|
_Unwind_SjLj_RaiseException
|
711 |
|
|
_Unwind_SjLj_ForcedUnwind
|
712 |
|
|
_Unwind_SjLj_Resume
|
713 |
|
|
__deregister_frame
|
714 |
|
|
__deregister_frame_info
|
715 |
|
|
__deregister_frame_info_bases
|
716 |
|
|
__register_frame
|
717 |
|
|
__register_frame_info
|
718 |
|
|
__register_frame_info_bases
|
719 |
|
|
__register_frame_info_table
|
720 |
|
|
__register_frame_info_table_bases
|
721 |
|
|
__register_frame_table
|
722 |
|
|
@end smallexample
|
723 |
|
|
|
724 |
|
|
@node Miscellaneous routines
|
725 |
|
|
@section Miscellaneous runtime library routines
|
726 |
|
|
|
727 |
|
|
@subsection Cache control functions
|
728 |
|
|
@deftypefn {Runtime Function} void __clear_cache (char *@var{beg}, char *@var{end})
|
729 |
|
|
This function clears the instruction cache between @var{beg} and @var{end}.
|
730 |
|
|
@end deftypefn
|
731 |
|
|
|