1 |
38 |
julius |
/* Convert tree expression to rtl instructions, for GNU compiler.
|
2 |
|
|
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
3 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "machmode.h"
|
27 |
|
|
#include "real.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "tree.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "regs.h"
|
32 |
|
|
#include "hard-reg-set.h"
|
33 |
|
|
#include "except.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "insn-config.h"
|
36 |
|
|
#include "insn-attr.h"
|
37 |
|
|
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
|
38 |
|
|
#include "expr.h"
|
39 |
|
|
#include "optabs.h"
|
40 |
|
|
#include "libfuncs.h"
|
41 |
|
|
#include "recog.h"
|
42 |
|
|
#include "reload.h"
|
43 |
|
|
#include "output.h"
|
44 |
|
|
#include "typeclass.h"
|
45 |
|
|
#include "toplev.h"
|
46 |
|
|
#include "ggc.h"
|
47 |
|
|
#include "langhooks.h"
|
48 |
|
|
#include "intl.h"
|
49 |
|
|
#include "tm_p.h"
|
50 |
|
|
#include "tree-iterator.h"
|
51 |
|
|
#include "tree-pass.h"
|
52 |
|
|
#include "tree-flow.h"
|
53 |
|
|
#include "target.h"
|
54 |
|
|
#include "timevar.h"
|
55 |
|
|
|
56 |
|
|
/* Decide whether a function's arguments should be processed
|
57 |
|
|
from first to last or from last to first.
|
58 |
|
|
|
59 |
|
|
They should if the stack and args grow in opposite directions, but
|
60 |
|
|
only if we have push insns. */
|
61 |
|
|
|
62 |
|
|
#ifdef PUSH_ROUNDING
|
63 |
|
|
|
64 |
|
|
#ifndef PUSH_ARGS_REVERSED
|
65 |
|
|
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
|
66 |
|
|
#define PUSH_ARGS_REVERSED /* If it's last to first. */
|
67 |
|
|
#endif
|
68 |
|
|
#endif
|
69 |
|
|
|
70 |
|
|
#endif
|
71 |
|
|
|
72 |
|
|
#ifndef STACK_PUSH_CODE
|
73 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
74 |
|
|
#define STACK_PUSH_CODE PRE_DEC
|
75 |
|
|
#else
|
76 |
|
|
#define STACK_PUSH_CODE PRE_INC
|
77 |
|
|
#endif
|
78 |
|
|
#endif
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
/* If this is nonzero, we do not bother generating VOLATILE
|
82 |
|
|
around volatile memory references, and we are willing to
|
83 |
|
|
output indirect addresses. If cse is to follow, we reject
|
84 |
|
|
indirect addresses so a useful potential cse is generated;
|
85 |
|
|
if it is used only once, instruction combination will produce
|
86 |
|
|
the same indirect address eventually. */
|
87 |
|
|
int cse_not_expected;
|
88 |
|
|
|
89 |
|
|
/* This structure is used by move_by_pieces to describe the move to
|
90 |
|
|
be performed. */
|
91 |
|
|
struct move_by_pieces
|
92 |
|
|
{
|
93 |
|
|
rtx to;
|
94 |
|
|
rtx to_addr;
|
95 |
|
|
int autinc_to;
|
96 |
|
|
int explicit_inc_to;
|
97 |
|
|
rtx from;
|
98 |
|
|
rtx from_addr;
|
99 |
|
|
int autinc_from;
|
100 |
|
|
int explicit_inc_from;
|
101 |
|
|
unsigned HOST_WIDE_INT len;
|
102 |
|
|
HOST_WIDE_INT offset;
|
103 |
|
|
int reverse;
|
104 |
|
|
};
|
105 |
|
|
|
106 |
|
|
/* This structure is used by store_by_pieces to describe the clear to
|
107 |
|
|
be performed. */
|
108 |
|
|
|
109 |
|
|
struct store_by_pieces
|
110 |
|
|
{
|
111 |
|
|
rtx to;
|
112 |
|
|
rtx to_addr;
|
113 |
|
|
int autinc_to;
|
114 |
|
|
int explicit_inc_to;
|
115 |
|
|
unsigned HOST_WIDE_INT len;
|
116 |
|
|
HOST_WIDE_INT offset;
|
117 |
|
|
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
|
118 |
|
|
void *constfundata;
|
119 |
|
|
int reverse;
|
120 |
|
|
};
|
121 |
|
|
|
122 |
|
|
static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
|
123 |
|
|
unsigned int,
|
124 |
|
|
unsigned int);
|
125 |
|
|
static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
|
126 |
|
|
struct move_by_pieces *);
|
127 |
|
|
static bool block_move_libcall_safe_for_call_parm (void);
|
128 |
|
|
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
|
129 |
|
|
static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
|
130 |
|
|
static tree emit_block_move_libcall_fn (int);
|
131 |
|
|
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
|
132 |
|
|
static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
|
133 |
|
|
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
|
134 |
|
|
static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
|
135 |
|
|
static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
|
136 |
|
|
struct store_by_pieces *);
|
137 |
|
|
static rtx clear_storage_via_libcall (rtx, rtx, bool);
|
138 |
|
|
static tree clear_storage_libcall_fn (int);
|
139 |
|
|
static rtx compress_float_constant (rtx, rtx);
|
140 |
|
|
static rtx get_subtarget (rtx);
|
141 |
|
|
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
|
142 |
|
|
HOST_WIDE_INT, enum machine_mode,
|
143 |
|
|
tree, tree, int, int);
|
144 |
|
|
static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
|
145 |
|
|
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
|
146 |
|
|
tree, tree, int);
|
147 |
|
|
|
148 |
|
|
static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
|
149 |
|
|
|
150 |
|
|
static int is_aligning_offset (tree, tree);
|
151 |
|
|
static void expand_operands (tree, tree, rtx, rtx*, rtx*,
|
152 |
|
|
enum expand_modifier);
|
153 |
|
|
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
|
154 |
|
|
static rtx do_store_flag (tree, rtx, enum machine_mode, int);
|
155 |
|
|
#ifdef PUSH_ROUNDING
|
156 |
|
|
static void emit_single_push_insn (enum machine_mode, rtx, tree);
|
157 |
|
|
#endif
|
158 |
|
|
static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
|
159 |
|
|
static rtx const_vector_from_tree (tree);
|
160 |
|
|
static void write_complex_part (rtx, rtx, bool);
|
161 |
|
|
|
162 |
|
|
/* Record for each mode whether we can move a register directly to or
|
163 |
|
|
from an object of that mode in memory. If we can't, we won't try
|
164 |
|
|
to use that mode directly when accessing a field of that mode. */
|
165 |
|
|
|
166 |
|
|
static char direct_load[NUM_MACHINE_MODES];
|
167 |
|
|
static char direct_store[NUM_MACHINE_MODES];
|
168 |
|
|
|
169 |
|
|
/* Record for each mode whether we can float-extend from memory. */
|
170 |
|
|
|
171 |
|
|
static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
|
172 |
|
|
|
173 |
|
|
/* This macro is used to determine whether move_by_pieces should be called
|
174 |
|
|
to perform a structure copy. */
|
175 |
|
|
#ifndef MOVE_BY_PIECES_P
|
176 |
|
|
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
|
177 |
|
|
(move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
|
178 |
|
|
< (unsigned int) MOVE_RATIO)
|
179 |
|
|
#endif
|
180 |
|
|
|
181 |
|
|
/* This macro is used to determine whether clear_by_pieces should be
|
182 |
|
|
called to clear storage. */
|
183 |
|
|
#ifndef CLEAR_BY_PIECES_P
|
184 |
|
|
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
|
185 |
|
|
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
|
186 |
|
|
< (unsigned int) CLEAR_RATIO)
|
187 |
|
|
#endif
|
188 |
|
|
|
189 |
|
|
/* This macro is used to determine whether store_by_pieces should be
|
190 |
|
|
called to "memset" storage with byte values other than zero, or
|
191 |
|
|
to "memcpy" storage when the source is a constant string. */
|
192 |
|
|
#ifndef STORE_BY_PIECES_P
|
193 |
|
|
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
|
194 |
|
|
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
|
195 |
|
|
< (unsigned int) MOVE_RATIO)
|
196 |
|
|
#endif
|
197 |
|
|
|
198 |
|
|
/* This array records the insn_code of insns to perform block moves. */
|
199 |
|
|
enum insn_code movmem_optab[NUM_MACHINE_MODES];
|
200 |
|
|
|
201 |
|
|
/* This array records the insn_code of insns to perform block sets. */
|
202 |
|
|
enum insn_code setmem_optab[NUM_MACHINE_MODES];
|
203 |
|
|
|
204 |
|
|
/* These arrays record the insn_code of three different kinds of insns
|
205 |
|
|
to perform block compares. */
|
206 |
|
|
enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
|
207 |
|
|
enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
|
208 |
|
|
enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
|
209 |
|
|
|
210 |
|
|
/* Synchronization primitives. */
|
211 |
|
|
enum insn_code sync_add_optab[NUM_MACHINE_MODES];
|
212 |
|
|
enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
|
213 |
|
|
enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
|
214 |
|
|
enum insn_code sync_and_optab[NUM_MACHINE_MODES];
|
215 |
|
|
enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
|
216 |
|
|
enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
|
217 |
|
|
enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
|
218 |
|
|
enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
|
219 |
|
|
enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
|
220 |
|
|
enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
|
221 |
|
|
enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
|
222 |
|
|
enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
|
223 |
|
|
enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
|
224 |
|
|
enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
|
225 |
|
|
enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
|
226 |
|
|
enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
|
227 |
|
|
enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
|
228 |
|
|
enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
|
229 |
|
|
enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
|
230 |
|
|
enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
|
231 |
|
|
enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
|
232 |
|
|
enum insn_code sync_lock_release[NUM_MACHINE_MODES];
|
233 |
|
|
|
234 |
|
|
/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
|
235 |
|
|
|
236 |
|
|
#ifndef SLOW_UNALIGNED_ACCESS
|
237 |
|
|
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
|
238 |
|
|
#endif
|
239 |
|
|
|
240 |
|
|
/* This is run once per compilation to set up which modes can be used
|
241 |
|
|
directly in memory and to initialize the block move optab. */
|
242 |
|
|
|
243 |
|
|
void
|
244 |
|
|
init_expr_once (void)
|
245 |
|
|
{
|
246 |
|
|
rtx insn, pat;
|
247 |
|
|
enum machine_mode mode;
|
248 |
|
|
int num_clobbers;
|
249 |
|
|
rtx mem, mem1;
|
250 |
|
|
rtx reg;
|
251 |
|
|
|
252 |
|
|
/* Try indexing by frame ptr and try by stack ptr.
|
253 |
|
|
It is known that on the Convex the stack ptr isn't a valid index.
|
254 |
|
|
With luck, one or the other is valid on any machine. */
|
255 |
|
|
mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
|
256 |
|
|
mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
|
257 |
|
|
|
258 |
|
|
/* A scratch register we can modify in-place below to avoid
|
259 |
|
|
useless RTL allocations. */
|
260 |
|
|
reg = gen_rtx_REG (VOIDmode, -1);
|
261 |
|
|
|
262 |
|
|
insn = rtx_alloc (INSN);
|
263 |
|
|
pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
|
264 |
|
|
PATTERN (insn) = pat;
|
265 |
|
|
|
266 |
|
|
for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
|
267 |
|
|
mode = (enum machine_mode) ((int) mode + 1))
|
268 |
|
|
{
|
269 |
|
|
int regno;
|
270 |
|
|
|
271 |
|
|
direct_load[(int) mode] = direct_store[(int) mode] = 0;
|
272 |
|
|
PUT_MODE (mem, mode);
|
273 |
|
|
PUT_MODE (mem1, mode);
|
274 |
|
|
PUT_MODE (reg, mode);
|
275 |
|
|
|
276 |
|
|
/* See if there is some register that can be used in this mode and
|
277 |
|
|
directly loaded or stored from memory. */
|
278 |
|
|
|
279 |
|
|
if (mode != VOIDmode && mode != BLKmode)
|
280 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER
|
281 |
|
|
&& (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
|
282 |
|
|
regno++)
|
283 |
|
|
{
|
284 |
|
|
if (! HARD_REGNO_MODE_OK (regno, mode))
|
285 |
|
|
continue;
|
286 |
|
|
|
287 |
|
|
REGNO (reg) = regno;
|
288 |
|
|
|
289 |
|
|
SET_SRC (pat) = mem;
|
290 |
|
|
SET_DEST (pat) = reg;
|
291 |
|
|
if (recog (pat, insn, &num_clobbers) >= 0)
|
292 |
|
|
direct_load[(int) mode] = 1;
|
293 |
|
|
|
294 |
|
|
SET_SRC (pat) = mem1;
|
295 |
|
|
SET_DEST (pat) = reg;
|
296 |
|
|
if (recog (pat, insn, &num_clobbers) >= 0)
|
297 |
|
|
direct_load[(int) mode] = 1;
|
298 |
|
|
|
299 |
|
|
SET_SRC (pat) = reg;
|
300 |
|
|
SET_DEST (pat) = mem;
|
301 |
|
|
if (recog (pat, insn, &num_clobbers) >= 0)
|
302 |
|
|
direct_store[(int) mode] = 1;
|
303 |
|
|
|
304 |
|
|
SET_SRC (pat) = reg;
|
305 |
|
|
SET_DEST (pat) = mem1;
|
306 |
|
|
if (recog (pat, insn, &num_clobbers) >= 0)
|
307 |
|
|
direct_store[(int) mode] = 1;
|
308 |
|
|
}
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
|
312 |
|
|
|
313 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
|
314 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
315 |
|
|
{
|
316 |
|
|
enum machine_mode srcmode;
|
317 |
|
|
for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
|
318 |
|
|
srcmode = GET_MODE_WIDER_MODE (srcmode))
|
319 |
|
|
{
|
320 |
|
|
enum insn_code ic;
|
321 |
|
|
|
322 |
|
|
ic = can_extend_p (mode, srcmode, 0);
|
323 |
|
|
if (ic == CODE_FOR_nothing)
|
324 |
|
|
continue;
|
325 |
|
|
|
326 |
|
|
PUT_MODE (mem, srcmode);
|
327 |
|
|
|
328 |
|
|
if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
|
329 |
|
|
float_extend_from_mem[mode][srcmode] = true;
|
330 |
|
|
}
|
331 |
|
|
}
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
/* This is run at the start of compiling a function. */
|
335 |
|
|
|
336 |
|
|
void
|
337 |
|
|
init_expr (void)
|
338 |
|
|
{
|
339 |
|
|
cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
/* Copy data from FROM to TO, where the machine modes are not the same.
|
343 |
|
|
Both modes may be integer, or both may be floating.
|
344 |
|
|
UNSIGNEDP should be nonzero if FROM is an unsigned type.
|
345 |
|
|
This causes zero-extension instead of sign-extension. */
|
346 |
|
|
|
347 |
|
|
void
|
348 |
|
|
convert_move (rtx to, rtx from, int unsignedp)
|
349 |
|
|
{
|
350 |
|
|
enum machine_mode to_mode = GET_MODE (to);
|
351 |
|
|
enum machine_mode from_mode = GET_MODE (from);
|
352 |
|
|
int to_real = SCALAR_FLOAT_MODE_P (to_mode);
|
353 |
|
|
int from_real = SCALAR_FLOAT_MODE_P (from_mode);
|
354 |
|
|
enum insn_code code;
|
355 |
|
|
rtx libcall;
|
356 |
|
|
|
357 |
|
|
/* rtx code for making an equivalent value. */
|
358 |
|
|
enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
|
359 |
|
|
: (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
|
360 |
|
|
|
361 |
|
|
|
362 |
|
|
gcc_assert (to_real == from_real);
|
363 |
|
|
|
364 |
|
|
/* If the source and destination are already the same, then there's
|
365 |
|
|
nothing to do. */
|
366 |
|
|
if (to == from)
|
367 |
|
|
return;
|
368 |
|
|
|
369 |
|
|
/* If FROM is a SUBREG that indicates that we have already done at least
|
370 |
|
|
the required extension, strip it. We don't handle such SUBREGs as
|
371 |
|
|
TO here. */
|
372 |
|
|
|
373 |
|
|
if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
|
374 |
|
|
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
|
375 |
|
|
>= GET_MODE_SIZE (to_mode))
|
376 |
|
|
&& SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
|
377 |
|
|
from = gen_lowpart (to_mode, from), from_mode = to_mode;
|
378 |
|
|
|
379 |
|
|
gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
|
380 |
|
|
|
381 |
|
|
if (to_mode == from_mode
|
382 |
|
|
|| (from_mode == VOIDmode && CONSTANT_P (from)))
|
383 |
|
|
{
|
384 |
|
|
emit_move_insn (to, from);
|
385 |
|
|
return;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
|
389 |
|
|
{
|
390 |
|
|
gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
|
391 |
|
|
|
392 |
|
|
if (VECTOR_MODE_P (to_mode))
|
393 |
|
|
from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
|
394 |
|
|
else
|
395 |
|
|
to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
|
396 |
|
|
|
397 |
|
|
emit_move_insn (to, from);
|
398 |
|
|
return;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
|
402 |
|
|
{
|
403 |
|
|
convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
|
404 |
|
|
convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
|
405 |
|
|
return;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
if (to_real)
|
409 |
|
|
{
|
410 |
|
|
rtx value, insns;
|
411 |
|
|
convert_optab tab;
|
412 |
|
|
|
413 |
|
|
gcc_assert ((GET_MODE_PRECISION (from_mode)
|
414 |
|
|
!= GET_MODE_PRECISION (to_mode))
|
415 |
|
|
|| (DECIMAL_FLOAT_MODE_P (from_mode)
|
416 |
|
|
!= DECIMAL_FLOAT_MODE_P (to_mode)));
|
417 |
|
|
|
418 |
|
|
if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
|
419 |
|
|
/* Conversion between decimal float and binary float, same size. */
|
420 |
|
|
tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
|
421 |
|
|
else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
|
422 |
|
|
tab = sext_optab;
|
423 |
|
|
else
|
424 |
|
|
tab = trunc_optab;
|
425 |
|
|
|
426 |
|
|
/* Try converting directly if the insn is supported. */
|
427 |
|
|
|
428 |
|
|
code = tab->handlers[to_mode][from_mode].insn_code;
|
429 |
|
|
if (code != CODE_FOR_nothing)
|
430 |
|
|
{
|
431 |
|
|
emit_unop_insn (code, to, from,
|
432 |
|
|
tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
|
433 |
|
|
return;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
/* Otherwise use a libcall. */
|
437 |
|
|
libcall = tab->handlers[to_mode][from_mode].libfunc;
|
438 |
|
|
|
439 |
|
|
/* Is this conversion implemented yet? */
|
440 |
|
|
gcc_assert (libcall);
|
441 |
|
|
|
442 |
|
|
start_sequence ();
|
443 |
|
|
value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
|
444 |
|
|
1, from, from_mode);
|
445 |
|
|
insns = get_insns ();
|
446 |
|
|
end_sequence ();
|
447 |
|
|
emit_libcall_block (insns, to, value,
|
448 |
|
|
tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
|
449 |
|
|
from)
|
450 |
|
|
: gen_rtx_FLOAT_EXTEND (to_mode, from));
|
451 |
|
|
return;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
/* Handle pointer conversion. */ /* SPEE 900220. */
|
455 |
|
|
/* Targets are expected to provide conversion insns between PxImode and
|
456 |
|
|
xImode for all MODE_PARTIAL_INT modes they use, but no others. */
|
457 |
|
|
if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
|
458 |
|
|
{
|
459 |
|
|
enum machine_mode full_mode
|
460 |
|
|
= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
|
461 |
|
|
|
462 |
|
|
gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
|
463 |
|
|
!= CODE_FOR_nothing);
|
464 |
|
|
|
465 |
|
|
if (full_mode != from_mode)
|
466 |
|
|
from = convert_to_mode (full_mode, from, unsignedp);
|
467 |
|
|
emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
|
468 |
|
|
to, from, UNKNOWN);
|
469 |
|
|
return;
|
470 |
|
|
}
|
471 |
|
|
if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
|
472 |
|
|
{
|
473 |
|
|
rtx new_from;
|
474 |
|
|
enum machine_mode full_mode
|
475 |
|
|
= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
|
476 |
|
|
|
477 |
|
|
gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
|
478 |
|
|
!= CODE_FOR_nothing);
|
479 |
|
|
|
480 |
|
|
if (to_mode == full_mode)
|
481 |
|
|
{
|
482 |
|
|
emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
|
483 |
|
|
to, from, UNKNOWN);
|
484 |
|
|
return;
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
new_from = gen_reg_rtx (full_mode);
|
488 |
|
|
emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
|
489 |
|
|
new_from, from, UNKNOWN);
|
490 |
|
|
|
491 |
|
|
/* else proceed to integer conversions below. */
|
492 |
|
|
from_mode = full_mode;
|
493 |
|
|
from = new_from;
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* Now both modes are integers. */
|
497 |
|
|
|
498 |
|
|
/* Handle expanding beyond a word. */
|
499 |
|
|
if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
|
500 |
|
|
&& GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
|
501 |
|
|
{
|
502 |
|
|
rtx insns;
|
503 |
|
|
rtx lowpart;
|
504 |
|
|
rtx fill_value;
|
505 |
|
|
rtx lowfrom;
|
506 |
|
|
int i;
|
507 |
|
|
enum machine_mode lowpart_mode;
|
508 |
|
|
int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
|
509 |
|
|
|
510 |
|
|
/* Try converting directly if the insn is supported. */
|
511 |
|
|
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
|
512 |
|
|
!= CODE_FOR_nothing)
|
513 |
|
|
{
|
514 |
|
|
/* If FROM is a SUBREG, put it into a register. Do this
|
515 |
|
|
so that we always generate the same set of insns for
|
516 |
|
|
better cse'ing; if an intermediate assignment occurred,
|
517 |
|
|
we won't be doing the operation directly on the SUBREG. */
|
518 |
|
|
if (optimize > 0 && GET_CODE (from) == SUBREG)
|
519 |
|
|
from = force_reg (from_mode, from);
|
520 |
|
|
emit_unop_insn (code, to, from, equiv_code);
|
521 |
|
|
return;
|
522 |
|
|
}
|
523 |
|
|
/* Next, try converting via full word. */
|
524 |
|
|
else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
|
525 |
|
|
&& ((code = can_extend_p (to_mode, word_mode, unsignedp))
|
526 |
|
|
!= CODE_FOR_nothing))
|
527 |
|
|
{
|
528 |
|
|
if (REG_P (to))
|
529 |
|
|
{
|
530 |
|
|
if (reg_overlap_mentioned_p (to, from))
|
531 |
|
|
from = force_reg (from_mode, from);
|
532 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
|
533 |
|
|
}
|
534 |
|
|
convert_move (gen_lowpart (word_mode, to), from, unsignedp);
|
535 |
|
|
emit_unop_insn (code, to,
|
536 |
|
|
gen_lowpart (word_mode, to), equiv_code);
|
537 |
|
|
return;
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* No special multiword conversion insn; do it by hand. */
|
541 |
|
|
start_sequence ();
|
542 |
|
|
|
543 |
|
|
/* Since we will turn this into a no conflict block, we must ensure
|
544 |
|
|
that the source does not overlap the target. */
|
545 |
|
|
|
546 |
|
|
if (reg_overlap_mentioned_p (to, from))
|
547 |
|
|
from = force_reg (from_mode, from);
|
548 |
|
|
|
549 |
|
|
/* Get a copy of FROM widened to a word, if necessary. */
|
550 |
|
|
if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
|
551 |
|
|
lowpart_mode = word_mode;
|
552 |
|
|
else
|
553 |
|
|
lowpart_mode = from_mode;
|
554 |
|
|
|
555 |
|
|
lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
|
556 |
|
|
|
557 |
|
|
lowpart = gen_lowpart (lowpart_mode, to);
|
558 |
|
|
emit_move_insn (lowpart, lowfrom);
|
559 |
|
|
|
560 |
|
|
/* Compute the value to put in each remaining word. */
|
561 |
|
|
if (unsignedp)
|
562 |
|
|
fill_value = const0_rtx;
|
563 |
|
|
else
|
564 |
|
|
{
|
565 |
|
|
#ifdef HAVE_slt
|
566 |
|
|
if (HAVE_slt
|
567 |
|
|
&& insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
|
568 |
|
|
&& STORE_FLAG_VALUE == -1)
|
569 |
|
|
{
|
570 |
|
|
emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
|
571 |
|
|
lowpart_mode, 0);
|
572 |
|
|
fill_value = gen_reg_rtx (word_mode);
|
573 |
|
|
emit_insn (gen_slt (fill_value));
|
574 |
|
|
}
|
575 |
|
|
else
|
576 |
|
|
#endif
|
577 |
|
|
{
|
578 |
|
|
fill_value
|
579 |
|
|
= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
|
580 |
|
|
size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
|
581 |
|
|
NULL_RTX, 0);
|
582 |
|
|
fill_value = convert_to_mode (word_mode, fill_value, 1);
|
583 |
|
|
}
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
/* Fill the remaining words. */
|
587 |
|
|
for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
|
588 |
|
|
{
|
589 |
|
|
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
590 |
|
|
rtx subword = operand_subword (to, index, 1, to_mode);
|
591 |
|
|
|
592 |
|
|
gcc_assert (subword);
|
593 |
|
|
|
594 |
|
|
if (fill_value != subword)
|
595 |
|
|
emit_move_insn (subword, fill_value);
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
insns = get_insns ();
|
599 |
|
|
end_sequence ();
|
600 |
|
|
|
601 |
|
|
emit_no_conflict_block (insns, to, from, NULL_RTX,
|
602 |
|
|
gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
|
603 |
|
|
return;
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* Truncating multi-word to a word or less. */
|
607 |
|
|
if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
|
608 |
|
|
&& GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
|
609 |
|
|
{
|
610 |
|
|
if (!((MEM_P (from)
|
611 |
|
|
&& ! MEM_VOLATILE_P (from)
|
612 |
|
|
&& direct_load[(int) to_mode]
|
613 |
|
|
&& ! mode_dependent_address_p (XEXP (from, 0)))
|
614 |
|
|
|| REG_P (from)
|
615 |
|
|
|| GET_CODE (from) == SUBREG))
|
616 |
|
|
from = force_reg (from_mode, from);
|
617 |
|
|
convert_move (to, gen_lowpart (word_mode, from), 0);
|
618 |
|
|
return;
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
/* Now follow all the conversions between integers
|
622 |
|
|
no more than a word long. */
|
623 |
|
|
|
624 |
|
|
/* For truncation, usually we can just refer to FROM in a narrower mode. */
|
625 |
|
|
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
|
626 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
|
627 |
|
|
GET_MODE_BITSIZE (from_mode)))
|
628 |
|
|
{
|
629 |
|
|
if (!((MEM_P (from)
|
630 |
|
|
&& ! MEM_VOLATILE_P (from)
|
631 |
|
|
&& direct_load[(int) to_mode]
|
632 |
|
|
&& ! mode_dependent_address_p (XEXP (from, 0)))
|
633 |
|
|
|| REG_P (from)
|
634 |
|
|
|| GET_CODE (from) == SUBREG))
|
635 |
|
|
from = force_reg (from_mode, from);
|
636 |
|
|
if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
|
637 |
|
|
&& ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
|
638 |
|
|
from = copy_to_reg (from);
|
639 |
|
|
emit_move_insn (to, gen_lowpart (to_mode, from));
|
640 |
|
|
return;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* Handle extension. */
|
644 |
|
|
if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
|
645 |
|
|
{
|
646 |
|
|
/* Convert directly if that works. */
|
647 |
|
|
if ((code = can_extend_p (to_mode, from_mode, unsignedp))
|
648 |
|
|
!= CODE_FOR_nothing)
|
649 |
|
|
{
|
650 |
|
|
emit_unop_insn (code, to, from, equiv_code);
|
651 |
|
|
return;
|
652 |
|
|
}
|
653 |
|
|
else
|
654 |
|
|
{
|
655 |
|
|
enum machine_mode intermediate;
|
656 |
|
|
rtx tmp;
|
657 |
|
|
tree shift_amount;
|
658 |
|
|
|
659 |
|
|
/* Search for a mode to convert via. */
|
660 |
|
|
for (intermediate = from_mode; intermediate != VOIDmode;
|
661 |
|
|
intermediate = GET_MODE_WIDER_MODE (intermediate))
|
662 |
|
|
if (((can_extend_p (to_mode, intermediate, unsignedp)
|
663 |
|
|
!= CODE_FOR_nothing)
|
664 |
|
|
|| (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
|
665 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
|
666 |
|
|
GET_MODE_BITSIZE (intermediate))))
|
667 |
|
|
&& (can_extend_p (intermediate, from_mode, unsignedp)
|
668 |
|
|
!= CODE_FOR_nothing))
|
669 |
|
|
{
|
670 |
|
|
convert_move (to, convert_to_mode (intermediate, from,
|
671 |
|
|
unsignedp), unsignedp);
|
672 |
|
|
return;
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
/* No suitable intermediate mode.
|
676 |
|
|
Generate what we need with shifts. */
|
677 |
|
|
shift_amount = build_int_cst (NULL_TREE,
|
678 |
|
|
GET_MODE_BITSIZE (to_mode)
|
679 |
|
|
- GET_MODE_BITSIZE (from_mode));
|
680 |
|
|
from = gen_lowpart (to_mode, force_reg (from_mode, from));
|
681 |
|
|
tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
|
682 |
|
|
to, unsignedp);
|
683 |
|
|
tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
|
684 |
|
|
to, unsignedp);
|
685 |
|
|
if (tmp != to)
|
686 |
|
|
emit_move_insn (to, tmp);
|
687 |
|
|
return;
|
688 |
|
|
}
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
/* Support special truncate insns for certain modes. */
|
692 |
|
|
if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
|
693 |
|
|
{
|
694 |
|
|
emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
|
695 |
|
|
to, from, UNKNOWN);
|
696 |
|
|
return;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Handle truncation of volatile memrefs, and so on;
|
700 |
|
|
the things that couldn't be truncated directly,
|
701 |
|
|
and for which there was no special instruction.
|
702 |
|
|
|
703 |
|
|
??? Code above formerly short-circuited this, for most integer
|
704 |
|
|
mode pairs, with a force_reg in from_mode followed by a recursive
|
705 |
|
|
call to this routine. Appears always to have been wrong. */
|
706 |
|
|
if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
|
707 |
|
|
{
|
708 |
|
|
rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
|
709 |
|
|
emit_move_insn (to, temp);
|
710 |
|
|
return;
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
/* Mode combination is not recognized. */
|
714 |
|
|
gcc_unreachable ();
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
/* Return an rtx for a value that would result
|
718 |
|
|
from converting X to mode MODE.
|
719 |
|
|
Both X and MODE may be floating, or both integer.
|
720 |
|
|
UNSIGNEDP is nonzero if X is an unsigned value.
|
721 |
|
|
This can be done by referring to a part of X in place
|
722 |
|
|
or by copying to a new temporary with conversion. */
|
723 |
|
|
|
724 |
|
|
rtx
|
725 |
|
|
convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
|
726 |
|
|
{
|
727 |
|
|
return convert_modes (mode, VOIDmode, x, unsignedp);
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
/* Return an rtx for a value that would result
|
731 |
|
|
from converting X from mode OLDMODE to mode MODE.
|
732 |
|
|
Both modes may be floating, or both integer.
|
733 |
|
|
UNSIGNEDP is nonzero if X is an unsigned value.
|
734 |
|
|
|
735 |
|
|
This can be done by referring to a part of X in place
|
736 |
|
|
or by copying to a new temporary with conversion.
|
737 |
|
|
|
738 |
|
|
You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
|
739 |
|
|
|
740 |
|
|
rtx
|
741 |
|
|
convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
|
742 |
|
|
{
|
743 |
|
|
rtx temp;
|
744 |
|
|
|
745 |
|
|
/* If FROM is a SUBREG that indicates that we have already done at least
|
746 |
|
|
the required extension, strip it. */
|
747 |
|
|
|
748 |
|
|
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
|
749 |
|
|
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
|
750 |
|
|
&& SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
|
751 |
|
|
x = gen_lowpart (mode, x);
|
752 |
|
|
|
753 |
|
|
if (GET_MODE (x) != VOIDmode)
|
754 |
|
|
oldmode = GET_MODE (x);
|
755 |
|
|
|
756 |
|
|
if (mode == oldmode)
|
757 |
|
|
return x;
|
758 |
|
|
|
759 |
|
|
/* There is one case that we must handle specially: If we are converting
|
760 |
|
|
a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
|
761 |
|
|
we are to interpret the constant as unsigned, gen_lowpart will do
|
762 |
|
|
the wrong if the constant appears negative. What we want to do is
|
763 |
|
|
make the high-order word of the constant zero, not all ones. */
|
764 |
|
|
|
765 |
|
|
if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
|
766 |
|
|
&& GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
|
767 |
|
|
&& GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
|
768 |
|
|
{
|
769 |
|
|
HOST_WIDE_INT val = INTVAL (x);
|
770 |
|
|
|
771 |
|
|
if (oldmode != VOIDmode
|
772 |
|
|
&& HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
|
773 |
|
|
{
|
774 |
|
|
int width = GET_MODE_BITSIZE (oldmode);
|
775 |
|
|
|
776 |
|
|
/* We need to zero extend VAL. */
|
777 |
|
|
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
/* We can do this with a gen_lowpart if both desired and current modes
|
784 |
|
|
are integer, and this is either a constant integer, a register, or a
|
785 |
|
|
non-volatile MEM. Except for the constant case where MODE is no
|
786 |
|
|
wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
|
787 |
|
|
|
788 |
|
|
if ((GET_CODE (x) == CONST_INT
|
789 |
|
|
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
790 |
|
|
|| (GET_MODE_CLASS (mode) == MODE_INT
|
791 |
|
|
&& GET_MODE_CLASS (oldmode) == MODE_INT
|
792 |
|
|
&& (GET_CODE (x) == CONST_DOUBLE
|
793 |
|
|
|| (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
|
794 |
|
|
&& ((MEM_P (x) && ! MEM_VOLATILE_P (x)
|
795 |
|
|
&& direct_load[(int) mode])
|
796 |
|
|
|| (REG_P (x)
|
797 |
|
|
&& (! HARD_REGISTER_P (x)
|
798 |
|
|
|| HARD_REGNO_MODE_OK (REGNO (x), mode))
|
799 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
800 |
|
|
GET_MODE_BITSIZE (GET_MODE (x)))))))))
|
801 |
|
|
{
|
802 |
|
|
/* ?? If we don't know OLDMODE, we have to assume here that
|
803 |
|
|
X does not need sign- or zero-extension. This may not be
|
804 |
|
|
the case, but it's the best we can do. */
|
805 |
|
|
if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
|
806 |
|
|
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
|
807 |
|
|
{
|
808 |
|
|
HOST_WIDE_INT val = INTVAL (x);
|
809 |
|
|
int width = GET_MODE_BITSIZE (oldmode);
|
810 |
|
|
|
811 |
|
|
/* We must sign or zero-extend in this case. Start by
|
812 |
|
|
zero-extending, then sign extend if we need to. */
|
813 |
|
|
val &= ((HOST_WIDE_INT) 1 << width) - 1;
|
814 |
|
|
if (! unsignedp
|
815 |
|
|
&& (val & ((HOST_WIDE_INT) 1 << (width - 1))))
|
816 |
|
|
val |= (HOST_WIDE_INT) (-1) << width;
|
817 |
|
|
|
818 |
|
|
return gen_int_mode (val, mode);
|
819 |
|
|
}
|
820 |
|
|
|
821 |
|
|
return gen_lowpart (mode, x);
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
/* Converting from integer constant into mode is always equivalent to an
|
825 |
|
|
subreg operation. */
|
826 |
|
|
if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
|
827 |
|
|
{
|
828 |
|
|
gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
|
829 |
|
|
return simplify_gen_subreg (mode, x, oldmode, 0);
|
830 |
|
|
}
|
831 |
|
|
|
832 |
|
|
temp = gen_reg_rtx (mode);
|
833 |
|
|
convert_move (temp, x, unsignedp);
|
834 |
|
|
return temp;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* STORE_MAX_PIECES is the number of bytes at a time that we can
|
838 |
|
|
store efficiently. Due to internal GCC limitations, this is
|
839 |
|
|
MOVE_MAX_PIECES limited by the number of bytes GCC can represent
|
840 |
|
|
for an immediate constant. */
|
841 |
|
|
|
842 |
|
|
#define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
|
843 |
|
|
|
844 |
|
|
/* Determine whether the LEN bytes can be moved by using several move
|
845 |
|
|
instructions. Return nonzero if a call to move_by_pieces should
|
846 |
|
|
succeed. */
|
847 |
|
|
|
848 |
|
|
int
|
849 |
|
|
can_move_by_pieces (unsigned HOST_WIDE_INT len,
|
850 |
|
|
unsigned int align ATTRIBUTE_UNUSED)
|
851 |
|
|
{
|
852 |
|
|
return MOVE_BY_PIECES_P (len, align);
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
/* Generate several move instructions to copy LEN bytes from block FROM to
|
856 |
|
|
block TO. (These are MEM rtx's with BLKmode).
|
857 |
|
|
|
858 |
|
|
If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
|
859 |
|
|
used to push FROM to the stack.
|
860 |
|
|
|
861 |
|
|
ALIGN is maximum stack alignment we can assume.
|
862 |
|
|
|
863 |
|
|
If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
|
864 |
|
|
mempcpy, and if ENDP is 2 return memory the end minus one byte ala
|
865 |
|
|
stpcpy. */
|
866 |
|
|
|
867 |
|
|
rtx
|
868 |
|
|
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
|
869 |
|
|
unsigned int align, int endp)
|
870 |
|
|
{
|
871 |
|
|
struct move_by_pieces data;
|
872 |
|
|
rtx to_addr, from_addr = XEXP (from, 0);
|
873 |
|
|
unsigned int max_size = MOVE_MAX_PIECES + 1;
|
874 |
|
|
enum machine_mode mode = VOIDmode, tmode;
|
875 |
|
|
enum insn_code icode;
|
876 |
|
|
|
877 |
|
|
align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
|
878 |
|
|
|
879 |
|
|
data.offset = 0;
|
880 |
|
|
data.from_addr = from_addr;
|
881 |
|
|
if (to)
|
882 |
|
|
{
|
883 |
|
|
to_addr = XEXP (to, 0);
|
884 |
|
|
data.to = to;
|
885 |
|
|
data.autinc_to
|
886 |
|
|
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|
887 |
|
|
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
|
888 |
|
|
data.reverse
|
889 |
|
|
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
|
890 |
|
|
}
|
891 |
|
|
else
|
892 |
|
|
{
|
893 |
|
|
to_addr = NULL_RTX;
|
894 |
|
|
data.to = NULL_RTX;
|
895 |
|
|
data.autinc_to = 1;
|
896 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
897 |
|
|
data.reverse = 1;
|
898 |
|
|
#else
|
899 |
|
|
data.reverse = 0;
|
900 |
|
|
#endif
|
901 |
|
|
}
|
902 |
|
|
data.to_addr = to_addr;
|
903 |
|
|
data.from = from;
|
904 |
|
|
data.autinc_from
|
905 |
|
|
= (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
|
906 |
|
|
|| GET_CODE (from_addr) == POST_INC
|
907 |
|
|
|| GET_CODE (from_addr) == POST_DEC);
|
908 |
|
|
|
909 |
|
|
data.explicit_inc_from = 0;
|
910 |
|
|
data.explicit_inc_to = 0;
|
911 |
|
|
if (data.reverse) data.offset = len;
|
912 |
|
|
data.len = len;
|
913 |
|
|
|
914 |
|
|
/* If copying requires more than two move insns,
|
915 |
|
|
copy addresses to registers (to make displacements shorter)
|
916 |
|
|
and use post-increment if available. */
|
917 |
|
|
if (!(data.autinc_from && data.autinc_to)
|
918 |
|
|
&& move_by_pieces_ninsns (len, align, max_size) > 2)
|
919 |
|
|
{
|
920 |
|
|
/* Find the mode of the largest move... */
|
921 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
922 |
|
|
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
923 |
|
|
if (GET_MODE_SIZE (tmode) < max_size)
|
924 |
|
|
mode = tmode;
|
925 |
|
|
|
926 |
|
|
if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
|
927 |
|
|
{
|
928 |
|
|
data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
|
929 |
|
|
data.autinc_from = 1;
|
930 |
|
|
data.explicit_inc_from = -1;
|
931 |
|
|
}
|
932 |
|
|
if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
|
933 |
|
|
{
|
934 |
|
|
data.from_addr = copy_addr_to_reg (from_addr);
|
935 |
|
|
data.autinc_from = 1;
|
936 |
|
|
data.explicit_inc_from = 1;
|
937 |
|
|
}
|
938 |
|
|
if (!data.autinc_from && CONSTANT_P (from_addr))
|
939 |
|
|
data.from_addr = copy_addr_to_reg (from_addr);
|
940 |
|
|
if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
|
941 |
|
|
{
|
942 |
|
|
data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
|
943 |
|
|
data.autinc_to = 1;
|
944 |
|
|
data.explicit_inc_to = -1;
|
945 |
|
|
}
|
946 |
|
|
if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
|
947 |
|
|
{
|
948 |
|
|
data.to_addr = copy_addr_to_reg (to_addr);
|
949 |
|
|
data.autinc_to = 1;
|
950 |
|
|
data.explicit_inc_to = 1;
|
951 |
|
|
}
|
952 |
|
|
if (!data.autinc_to && CONSTANT_P (to_addr))
|
953 |
|
|
data.to_addr = copy_addr_to_reg (to_addr);
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
957 |
|
|
if (align >= GET_MODE_ALIGNMENT (tmode))
|
958 |
|
|
align = GET_MODE_ALIGNMENT (tmode);
|
959 |
|
|
else
|
960 |
|
|
{
|
961 |
|
|
enum machine_mode xmode;
|
962 |
|
|
|
963 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
964 |
|
|
tmode != VOIDmode;
|
965 |
|
|
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
966 |
|
|
if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
|
967 |
|
|
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
968 |
|
|
break;
|
969 |
|
|
|
970 |
|
|
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
/* First move what we can in the largest integer mode, then go to
|
974 |
|
|
successively smaller modes. */
|
975 |
|
|
|
976 |
|
|
while (max_size > 1)
|
977 |
|
|
{
|
978 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
979 |
|
|
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
980 |
|
|
if (GET_MODE_SIZE (tmode) < max_size)
|
981 |
|
|
mode = tmode;
|
982 |
|
|
|
983 |
|
|
if (mode == VOIDmode)
|
984 |
|
|
break;
|
985 |
|
|
|
986 |
|
|
icode = mov_optab->handlers[(int) mode].insn_code;
|
987 |
|
|
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
|
988 |
|
|
move_by_pieces_1 (GEN_FCN (icode), mode, &data);
|
989 |
|
|
|
990 |
|
|
max_size = GET_MODE_SIZE (mode);
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
/* The code above should have handled everything. */
|
994 |
|
|
gcc_assert (!data.len);
|
995 |
|
|
|
996 |
|
|
if (endp)
|
997 |
|
|
{
|
998 |
|
|
rtx to1;
|
999 |
|
|
|
1000 |
|
|
gcc_assert (!data.reverse);
|
1001 |
|
|
if (data.autinc_to)
|
1002 |
|
|
{
|
1003 |
|
|
if (endp == 2)
|
1004 |
|
|
{
|
1005 |
|
|
if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
|
1006 |
|
|
emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
|
1007 |
|
|
else
|
1008 |
|
|
data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
|
1009 |
|
|
-1));
|
1010 |
|
|
}
|
1011 |
|
|
to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
|
1012 |
|
|
data.offset);
|
1013 |
|
|
}
|
1014 |
|
|
else
|
1015 |
|
|
{
|
1016 |
|
|
if (endp == 2)
|
1017 |
|
|
--data.offset;
|
1018 |
|
|
to1 = adjust_address (data.to, QImode, data.offset);
|
1019 |
|
|
}
|
1020 |
|
|
return to1;
|
1021 |
|
|
}
|
1022 |
|
|
else
|
1023 |
|
|
return data.to;
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
/* Return number of insns required to move L bytes by pieces.
|
1027 |
|
|
ALIGN (in bits) is maximum alignment we can assume. */
|
1028 |
|
|
|
1029 |
|
|
static unsigned HOST_WIDE_INT
|
1030 |
|
|
move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
|
1031 |
|
|
unsigned int max_size)
|
1032 |
|
|
{
|
1033 |
|
|
unsigned HOST_WIDE_INT n_insns = 0;
|
1034 |
|
|
enum machine_mode tmode;
|
1035 |
|
|
|
1036 |
|
|
tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
1037 |
|
|
if (align >= GET_MODE_ALIGNMENT (tmode))
|
1038 |
|
|
align = GET_MODE_ALIGNMENT (tmode);
|
1039 |
|
|
else
|
1040 |
|
|
{
|
1041 |
|
|
enum machine_mode tmode, xmode;
|
1042 |
|
|
|
1043 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
1044 |
|
|
tmode != VOIDmode;
|
1045 |
|
|
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
1046 |
|
|
if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
|
1047 |
|
|
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
1048 |
|
|
break;
|
1049 |
|
|
|
1050 |
|
|
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
1051 |
|
|
}
|
1052 |
|
|
|
1053 |
|
|
while (max_size > 1)
|
1054 |
|
|
{
|
1055 |
|
|
enum machine_mode mode = VOIDmode;
|
1056 |
|
|
enum insn_code icode;
|
1057 |
|
|
|
1058 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
1059 |
|
|
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
1060 |
|
|
if (GET_MODE_SIZE (tmode) < max_size)
|
1061 |
|
|
mode = tmode;
|
1062 |
|
|
|
1063 |
|
|
if (mode == VOIDmode)
|
1064 |
|
|
break;
|
1065 |
|
|
|
1066 |
|
|
icode = mov_optab->handlers[(int) mode].insn_code;
|
1067 |
|
|
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
|
1068 |
|
|
n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
|
1069 |
|
|
|
1070 |
|
|
max_size = GET_MODE_SIZE (mode);
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
gcc_assert (!l);
|
1074 |
|
|
return n_insns;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Subroutine of move_by_pieces. Move as many bytes as appropriate
|
1078 |
|
|
with move instructions for mode MODE. GENFUN is the gen_... function
|
1079 |
|
|
to make a move insn for that mode. DATA has all the other info. */
|
1080 |
|
|
|
1081 |
|
|
static void
|
1082 |
|
|
move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
|
1083 |
|
|
struct move_by_pieces *data)
|
1084 |
|
|
{
|
1085 |
|
|
unsigned int size = GET_MODE_SIZE (mode);
|
1086 |
|
|
rtx to1 = NULL_RTX, from1;
|
1087 |
|
|
|
1088 |
|
|
while (data->len >= size)
|
1089 |
|
|
{
|
1090 |
|
|
if (data->reverse)
|
1091 |
|
|
data->offset -= size;
|
1092 |
|
|
|
1093 |
|
|
if (data->to)
|
1094 |
|
|
{
|
1095 |
|
|
if (data->autinc_to)
|
1096 |
|
|
to1 = adjust_automodify_address (data->to, mode, data->to_addr,
|
1097 |
|
|
data->offset);
|
1098 |
|
|
else
|
1099 |
|
|
to1 = adjust_address (data->to, mode, data->offset);
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
if (data->autinc_from)
|
1103 |
|
|
from1 = adjust_automodify_address (data->from, mode, data->from_addr,
|
1104 |
|
|
data->offset);
|
1105 |
|
|
else
|
1106 |
|
|
from1 = adjust_address (data->from, mode, data->offset);
|
1107 |
|
|
|
1108 |
|
|
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
|
1109 |
|
|
emit_insn (gen_add2_insn (data->to_addr,
|
1110 |
|
|
GEN_INT (-(HOST_WIDE_INT)size)));
|
1111 |
|
|
if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
|
1112 |
|
|
emit_insn (gen_add2_insn (data->from_addr,
|
1113 |
|
|
GEN_INT (-(HOST_WIDE_INT)size)));
|
1114 |
|
|
|
1115 |
|
|
if (data->to)
|
1116 |
|
|
emit_insn ((*genfun) (to1, from1));
|
1117 |
|
|
else
|
1118 |
|
|
{
|
1119 |
|
|
#ifdef PUSH_ROUNDING
|
1120 |
|
|
emit_single_push_insn (mode, from1, NULL);
|
1121 |
|
|
#else
|
1122 |
|
|
gcc_unreachable ();
|
1123 |
|
|
#endif
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
|
1127 |
|
|
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
|
1128 |
|
|
if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
|
1129 |
|
|
emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
|
1130 |
|
|
|
1131 |
|
|
if (! data->reverse)
|
1132 |
|
|
data->offset += size;
|
1133 |
|
|
|
1134 |
|
|
data->len -= size;
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* Emit code to move a block Y to a block X. This may be done with
|
1139 |
|
|
string-move instructions, with multiple scalar move instructions,
|
1140 |
|
|
or with a library call.
|
1141 |
|
|
|
1142 |
|
|
Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
|
1143 |
|
|
SIZE is an rtx that says how long they are.
|
1144 |
|
|
ALIGN is the maximum alignment we can assume they have.
|
1145 |
|
|
METHOD describes what kind of copy this is, and what mechanisms may be used.
|
1146 |
|
|
|
1147 |
|
|
Return the address of the new block, if memcpy is called and returns it,
|
1148 |
|
|
|
1149 |
|
|
|
1150 |
|
|
rtx
|
1151 |
|
|
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
|
1152 |
|
|
{
|
1153 |
|
|
bool may_use_call;
|
1154 |
|
|
rtx retval = 0;
|
1155 |
|
|
unsigned int align;
|
1156 |
|
|
|
1157 |
|
|
switch (method)
|
1158 |
|
|
{
|
1159 |
|
|
case BLOCK_OP_NORMAL:
|
1160 |
|
|
case BLOCK_OP_TAILCALL:
|
1161 |
|
|
may_use_call = true;
|
1162 |
|
|
break;
|
1163 |
|
|
|
1164 |
|
|
case BLOCK_OP_CALL_PARM:
|
1165 |
|
|
may_use_call = block_move_libcall_safe_for_call_parm ();
|
1166 |
|
|
|
1167 |
|
|
/* Make inhibit_defer_pop nonzero around the library call
|
1168 |
|
|
to force it to pop the arguments right away. */
|
1169 |
|
|
NO_DEFER_POP;
|
1170 |
|
|
break;
|
1171 |
|
|
|
1172 |
|
|
case BLOCK_OP_NO_LIBCALL:
|
1173 |
|
|
may_use_call = false;
|
1174 |
|
|
break;
|
1175 |
|
|
|
1176 |
|
|
default:
|
1177 |
|
|
gcc_unreachable ();
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
|
1181 |
|
|
|
1182 |
|
|
gcc_assert (MEM_P (x));
|
1183 |
|
|
gcc_assert (MEM_P (y));
|
1184 |
|
|
gcc_assert (size);
|
1185 |
|
|
|
1186 |
|
|
/* Make sure we've got BLKmode addresses; store_one_arg can decide that
|
1187 |
|
|
block copy is more efficient for other large modes, e.g. DCmode. */
|
1188 |
|
|
x = adjust_address (x, BLKmode, 0);
|
1189 |
|
|
y = adjust_address (y, BLKmode, 0);
|
1190 |
|
|
|
1191 |
|
|
/* Set MEM_SIZE as appropriate for this block copy. The main place this
|
1192 |
|
|
can be incorrect is coming from __builtin_memcpy. */
|
1193 |
|
|
if (GET_CODE (size) == CONST_INT)
|
1194 |
|
|
{
|
1195 |
|
|
if (INTVAL (size) == 0)
|
1196 |
|
|
return 0;
|
1197 |
|
|
|
1198 |
|
|
x = shallow_copy_rtx (x);
|
1199 |
|
|
y = shallow_copy_rtx (y);
|
1200 |
|
|
set_mem_size (x, size);
|
1201 |
|
|
set_mem_size (y, size);
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
|
1205 |
|
|
move_by_pieces (x, y, INTVAL (size), align, 0);
|
1206 |
|
|
else if (emit_block_move_via_movmem (x, y, size, align))
|
1207 |
|
|
;
|
1208 |
|
|
else if (may_use_call)
|
1209 |
|
|
retval = emit_block_move_via_libcall (x, y, size,
|
1210 |
|
|
method == BLOCK_OP_TAILCALL);
|
1211 |
|
|
else
|
1212 |
|
|
emit_block_move_via_loop (x, y, size, align);
|
1213 |
|
|
|
1214 |
|
|
if (method == BLOCK_OP_CALL_PARM)
|
1215 |
|
|
OK_DEFER_POP;
|
1216 |
|
|
|
1217 |
|
|
return retval;
|
1218 |
|
|
}
|
1219 |
|
|
|
1220 |
|
|
/* A subroutine of emit_block_move. Returns true if calling the
|
1221 |
|
|
block move libcall will not clobber any parameters which may have
|
1222 |
|
|
already been placed on the stack. */
|
1223 |
|
|
|
1224 |
|
|
static bool
|
1225 |
|
|
block_move_libcall_safe_for_call_parm (void)
|
1226 |
|
|
{
|
1227 |
|
|
/* If arguments are pushed on the stack, then they're safe. */
|
1228 |
|
|
if (PUSH_ARGS)
|
1229 |
|
|
return true;
|
1230 |
|
|
|
1231 |
|
|
/* If registers go on the stack anyway, any argument is sure to clobber
|
1232 |
|
|
an outgoing argument. */
|
1233 |
|
|
#if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
|
1234 |
|
|
{
|
1235 |
|
|
tree fn = emit_block_move_libcall_fn (false);
|
1236 |
|
|
(void) fn;
|
1237 |
|
|
if (REG_PARM_STACK_SPACE (fn) != 0)
|
1238 |
|
|
return false;
|
1239 |
|
|
}
|
1240 |
|
|
#endif
|
1241 |
|
|
|
1242 |
|
|
/* If any argument goes in memory, then it might clobber an outgoing
|
1243 |
|
|
argument. */
|
1244 |
|
|
{
|
1245 |
|
|
CUMULATIVE_ARGS args_so_far;
|
1246 |
|
|
tree fn, arg;
|
1247 |
|
|
|
1248 |
|
|
fn = emit_block_move_libcall_fn (false);
|
1249 |
|
|
INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
|
1250 |
|
|
|
1251 |
|
|
arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
1252 |
|
|
for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
|
1253 |
|
|
{
|
1254 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
|
1255 |
|
|
rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
|
1256 |
|
|
if (!tmp || !REG_P (tmp))
|
1257 |
|
|
return false;
|
1258 |
|
|
if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
|
1259 |
|
|
return false;
|
1260 |
|
|
FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
|
1261 |
|
|
}
|
1262 |
|
|
}
|
1263 |
|
|
return true;
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
/* A subroutine of emit_block_move. Expand a movmem pattern;
|
1267 |
|
|
return true if successful. */
|
1268 |
|
|
|
1269 |
|
|
static bool
|
1270 |
|
|
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
|
1271 |
|
|
{
|
1272 |
|
|
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
|
1273 |
|
|
int save_volatile_ok = volatile_ok;
|
1274 |
|
|
enum machine_mode mode;
|
1275 |
|
|
|
1276 |
|
|
/* Since this is a move insn, we don't care about volatility. */
|
1277 |
|
|
volatile_ok = 1;
|
1278 |
|
|
|
1279 |
|
|
/* Try the most limited insn first, because there's no point
|
1280 |
|
|
including more than one in the machine description unless
|
1281 |
|
|
the more limited one has some advantage. */
|
1282 |
|
|
|
1283 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
1284 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
1285 |
|
|
{
|
1286 |
|
|
enum insn_code code = movmem_optab[(int) mode];
|
1287 |
|
|
insn_operand_predicate_fn pred;
|
1288 |
|
|
|
1289 |
|
|
if (code != CODE_FOR_nothing
|
1290 |
|
|
/* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
|
1291 |
|
|
here because if SIZE is less than the mode mask, as it is
|
1292 |
|
|
returned by the macro, it will definitely be less than the
|
1293 |
|
|
actual mode mask. */
|
1294 |
|
|
&& ((GET_CODE (size) == CONST_INT
|
1295 |
|
|
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
1296 |
|
|
<= (GET_MODE_MASK (mode) >> 1)))
|
1297 |
|
|
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
1298 |
|
|
&& ((pred = insn_data[(int) code].operand[0].predicate) == 0
|
1299 |
|
|
|| (*pred) (x, BLKmode))
|
1300 |
|
|
&& ((pred = insn_data[(int) code].operand[1].predicate) == 0
|
1301 |
|
|
|| (*pred) (y, BLKmode))
|
1302 |
|
|
&& ((pred = insn_data[(int) code].operand[3].predicate) == 0
|
1303 |
|
|
|| (*pred) (opalign, VOIDmode)))
|
1304 |
|
|
{
|
1305 |
|
|
rtx op2;
|
1306 |
|
|
rtx last = get_last_insn ();
|
1307 |
|
|
rtx pat;
|
1308 |
|
|
|
1309 |
|
|
op2 = convert_to_mode (mode, size, 1);
|
1310 |
|
|
pred = insn_data[(int) code].operand[2].predicate;
|
1311 |
|
|
if (pred != 0 && ! (*pred) (op2, mode))
|
1312 |
|
|
op2 = copy_to_mode_reg (mode, op2);
|
1313 |
|
|
|
1314 |
|
|
/* ??? When called via emit_block_move_for_call, it'd be
|
1315 |
|
|
nice if there were some way to inform the backend, so
|
1316 |
|
|
that it doesn't fail the expansion because it thinks
|
1317 |
|
|
emitting the libcall would be more efficient. */
|
1318 |
|
|
|
1319 |
|
|
pat = GEN_FCN ((int) code) (x, y, op2, opalign);
|
1320 |
|
|
if (pat)
|
1321 |
|
|
{
|
1322 |
|
|
emit_insn (pat);
|
1323 |
|
|
volatile_ok = save_volatile_ok;
|
1324 |
|
|
return true;
|
1325 |
|
|
}
|
1326 |
|
|
else
|
1327 |
|
|
delete_insns_since (last);
|
1328 |
|
|
}
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
volatile_ok = save_volatile_ok;
|
1332 |
|
|
return false;
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
/* A subroutine of emit_block_move. Expand a call to memcpy.
|
1336 |
|
|
Return the return value from memcpy, 0 otherwise. */
|
1337 |
|
|
|
1338 |
|
|
static rtx
|
1339 |
|
|
emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
|
1340 |
|
|
{
|
1341 |
|
|
rtx dst_addr, src_addr;
|
1342 |
|
|
tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
|
1343 |
|
|
enum machine_mode size_mode;
|
1344 |
|
|
rtx retval;
|
1345 |
|
|
|
1346 |
|
|
/* Emit code to copy the addresses of DST and SRC and SIZE into new
|
1347 |
|
|
pseudos. We can then place those new pseudos into a VAR_DECL and
|
1348 |
|
|
use them later. */
|
1349 |
|
|
|
1350 |
|
|
dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
|
1351 |
|
|
src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
|
1352 |
|
|
|
1353 |
|
|
dst_addr = convert_memory_address (ptr_mode, dst_addr);
|
1354 |
|
|
src_addr = convert_memory_address (ptr_mode, src_addr);
|
1355 |
|
|
|
1356 |
|
|
dst_tree = make_tree (ptr_type_node, dst_addr);
|
1357 |
|
|
src_tree = make_tree (ptr_type_node, src_addr);
|
1358 |
|
|
|
1359 |
|
|
size_mode = TYPE_MODE (sizetype);
|
1360 |
|
|
|
1361 |
|
|
size = convert_to_mode (size_mode, size, 1);
|
1362 |
|
|
size = copy_to_mode_reg (size_mode, size);
|
1363 |
|
|
|
1364 |
|
|
/* It is incorrect to use the libcall calling conventions to call
|
1365 |
|
|
memcpy in this context. This could be a user call to memcpy and
|
1366 |
|
|
the user may wish to examine the return value from memcpy. For
|
1367 |
|
|
targets where libcalls and normal calls have different conventions
|
1368 |
|
|
for returning pointers, we could end up generating incorrect code. */
|
1369 |
|
|
|
1370 |
|
|
size_tree = make_tree (sizetype, size);
|
1371 |
|
|
|
1372 |
|
|
fn = emit_block_move_libcall_fn (true);
|
1373 |
|
|
arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
|
1374 |
|
|
arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
|
1375 |
|
|
arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
|
1376 |
|
|
|
1377 |
|
|
/* Now we have to build up the CALL_EXPR itself. */
|
1378 |
|
|
call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
1379 |
|
|
call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
|
1380 |
|
|
call_expr, arg_list, NULL_TREE);
|
1381 |
|
|
CALL_EXPR_TAILCALL (call_expr) = tailcall;
|
1382 |
|
|
|
1383 |
|
|
retval = expand_normal (call_expr);
|
1384 |
|
|
|
1385 |
|
|
return retval;
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
/* A subroutine of emit_block_move_via_libcall. Create the tree node
|
1389 |
|
|
for the function we use for block copies. The first time FOR_CALL
|
1390 |
|
|
is true, we call assemble_external. */
|
1391 |
|
|
|
1392 |
|
|
static GTY(()) tree block_move_fn;
|
1393 |
|
|
|
1394 |
|
|
void
|
1395 |
|
|
init_block_move_fn (const char *asmspec)
|
1396 |
|
|
{
|
1397 |
|
|
if (!block_move_fn)
|
1398 |
|
|
{
|
1399 |
|
|
tree args, fn;
|
1400 |
|
|
|
1401 |
|
|
fn = get_identifier ("memcpy");
|
1402 |
|
|
args = build_function_type_list (ptr_type_node, ptr_type_node,
|
1403 |
|
|
const_ptr_type_node, sizetype,
|
1404 |
|
|
NULL_TREE);
|
1405 |
|
|
|
1406 |
|
|
fn = build_decl (FUNCTION_DECL, fn, args);
|
1407 |
|
|
DECL_EXTERNAL (fn) = 1;
|
1408 |
|
|
TREE_PUBLIC (fn) = 1;
|
1409 |
|
|
DECL_ARTIFICIAL (fn) = 1;
|
1410 |
|
|
TREE_NOTHROW (fn) = 1;
|
1411 |
|
|
DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
|
1412 |
|
|
DECL_VISIBILITY_SPECIFIED (fn) = 1;
|
1413 |
|
|
|
1414 |
|
|
block_move_fn = fn;
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
if (asmspec)
|
1418 |
|
|
set_user_assembler_name (block_move_fn, asmspec);
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
static tree
|
1422 |
|
|
emit_block_move_libcall_fn (int for_call)
|
1423 |
|
|
{
|
1424 |
|
|
static bool emitted_extern;
|
1425 |
|
|
|
1426 |
|
|
if (!block_move_fn)
|
1427 |
|
|
init_block_move_fn (NULL);
|
1428 |
|
|
|
1429 |
|
|
if (for_call && !emitted_extern)
|
1430 |
|
|
{
|
1431 |
|
|
emitted_extern = true;
|
1432 |
|
|
make_decl_rtl (block_move_fn);
|
1433 |
|
|
assemble_external (block_move_fn);
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
return block_move_fn;
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
/* A subroutine of emit_block_move. Copy the data via an explicit
|
1440 |
|
|
loop. This is used only when libcalls are forbidden. */
|
1441 |
|
|
/* ??? It'd be nice to copy in hunks larger than QImode. */
|
1442 |
|
|
|
1443 |
|
|
static void
|
1444 |
|
|
emit_block_move_via_loop (rtx x, rtx y, rtx size,
|
1445 |
|
|
unsigned int align ATTRIBUTE_UNUSED)
|
1446 |
|
|
{
|
1447 |
|
|
rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
|
1448 |
|
|
enum machine_mode iter_mode;
|
1449 |
|
|
|
1450 |
|
|
iter_mode = GET_MODE (size);
|
1451 |
|
|
if (iter_mode == VOIDmode)
|
1452 |
|
|
iter_mode = word_mode;
|
1453 |
|
|
|
1454 |
|
|
top_label = gen_label_rtx ();
|
1455 |
|
|
cmp_label = gen_label_rtx ();
|
1456 |
|
|
iter = gen_reg_rtx (iter_mode);
|
1457 |
|
|
|
1458 |
|
|
emit_move_insn (iter, const0_rtx);
|
1459 |
|
|
|
1460 |
|
|
x_addr = force_operand (XEXP (x, 0), NULL_RTX);
|
1461 |
|
|
y_addr = force_operand (XEXP (y, 0), NULL_RTX);
|
1462 |
|
|
do_pending_stack_adjust ();
|
1463 |
|
|
|
1464 |
|
|
emit_jump (cmp_label);
|
1465 |
|
|
emit_label (top_label);
|
1466 |
|
|
|
1467 |
|
|
tmp = convert_modes (Pmode, iter_mode, iter, true);
|
1468 |
|
|
x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
|
1469 |
|
|
y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
|
1470 |
|
|
x = change_address (x, QImode, x_addr);
|
1471 |
|
|
y = change_address (y, QImode, y_addr);
|
1472 |
|
|
|
1473 |
|
|
emit_move_insn (x, y);
|
1474 |
|
|
|
1475 |
|
|
tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
|
1476 |
|
|
true, OPTAB_LIB_WIDEN);
|
1477 |
|
|
if (tmp != iter)
|
1478 |
|
|
emit_move_insn (iter, tmp);
|
1479 |
|
|
|
1480 |
|
|
emit_label (cmp_label);
|
1481 |
|
|
|
1482 |
|
|
emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
|
1483 |
|
|
true, top_label);
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/* Copy all or part of a value X into registers starting at REGNO.
|
1487 |
|
|
The number of registers to be filled is NREGS. */
|
1488 |
|
|
|
1489 |
|
|
void
|
1490 |
|
|
move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
|
1491 |
|
|
{
|
1492 |
|
|
int i;
|
1493 |
|
|
#ifdef HAVE_load_multiple
|
1494 |
|
|
rtx pat;
|
1495 |
|
|
rtx last;
|
1496 |
|
|
#endif
|
1497 |
|
|
|
1498 |
|
|
if (nregs == 0)
|
1499 |
|
|
return;
|
1500 |
|
|
|
1501 |
|
|
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
|
1502 |
|
|
x = validize_mem (force_const_mem (mode, x));
|
1503 |
|
|
|
1504 |
|
|
/* See if the machine can do this with a load multiple insn. */
|
1505 |
|
|
#ifdef HAVE_load_multiple
|
1506 |
|
|
if (HAVE_load_multiple)
|
1507 |
|
|
{
|
1508 |
|
|
last = get_last_insn ();
|
1509 |
|
|
pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
|
1510 |
|
|
GEN_INT (nregs));
|
1511 |
|
|
if (pat)
|
1512 |
|
|
{
|
1513 |
|
|
emit_insn (pat);
|
1514 |
|
|
return;
|
1515 |
|
|
}
|
1516 |
|
|
else
|
1517 |
|
|
delete_insns_since (last);
|
1518 |
|
|
}
|
1519 |
|
|
#endif
|
1520 |
|
|
|
1521 |
|
|
for (i = 0; i < nregs; i++)
|
1522 |
|
|
emit_move_insn (gen_rtx_REG (word_mode, regno + i),
|
1523 |
|
|
operand_subword_force (x, i, mode));
|
1524 |
|
|
}
|
1525 |
|
|
|
1526 |
|
|
/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
|
1527 |
|
|
The number of registers to be filled is NREGS. */
|
1528 |
|
|
|
1529 |
|
|
void
|
1530 |
|
|
move_block_from_reg (int regno, rtx x, int nregs)
|
1531 |
|
|
{
|
1532 |
|
|
int i;
|
1533 |
|
|
|
1534 |
|
|
if (nregs == 0)
|
1535 |
|
|
return;
|
1536 |
|
|
|
1537 |
|
|
/* See if the machine can do this with a store multiple insn. */
|
1538 |
|
|
#ifdef HAVE_store_multiple
|
1539 |
|
|
if (HAVE_store_multiple)
|
1540 |
|
|
{
|
1541 |
|
|
rtx last = get_last_insn ();
|
1542 |
|
|
rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
|
1543 |
|
|
GEN_INT (nregs));
|
1544 |
|
|
if (pat)
|
1545 |
|
|
{
|
1546 |
|
|
emit_insn (pat);
|
1547 |
|
|
return;
|
1548 |
|
|
}
|
1549 |
|
|
else
|
1550 |
|
|
delete_insns_since (last);
|
1551 |
|
|
}
|
1552 |
|
|
#endif
|
1553 |
|
|
|
1554 |
|
|
for (i = 0; i < nregs; i++)
|
1555 |
|
|
{
|
1556 |
|
|
rtx tem = operand_subword (x, i, 1, BLKmode);
|
1557 |
|
|
|
1558 |
|
|
gcc_assert (tem);
|
1559 |
|
|
|
1560 |
|
|
emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
|
1565 |
|
|
ORIG, where ORIG is a non-consecutive group of registers represented by
|
1566 |
|
|
a PARALLEL. The clone is identical to the original except in that the
|
1567 |
|
|
original set of registers is replaced by a new set of pseudo registers.
|
1568 |
|
|
The new set has the same modes as the original set. */
|
1569 |
|
|
|
1570 |
|
|
rtx
|
1571 |
|
|
gen_group_rtx (rtx orig)
|
1572 |
|
|
{
|
1573 |
|
|
int i, length;
|
1574 |
|
|
rtx *tmps;
|
1575 |
|
|
|
1576 |
|
|
gcc_assert (GET_CODE (orig) == PARALLEL);
|
1577 |
|
|
|
1578 |
|
|
length = XVECLEN (orig, 0);
|
1579 |
|
|
tmps = alloca (sizeof (rtx) * length);
|
1580 |
|
|
|
1581 |
|
|
/* Skip a NULL entry in first slot. */
|
1582 |
|
|
i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
|
1583 |
|
|
|
1584 |
|
|
if (i)
|
1585 |
|
|
tmps[0] = 0;
|
1586 |
|
|
|
1587 |
|
|
for (; i < length; i++)
|
1588 |
|
|
{
|
1589 |
|
|
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
|
1590 |
|
|
rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
|
1591 |
|
|
|
1592 |
|
|
tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
|
1593 |
|
|
}
|
1594 |
|
|
|
1595 |
|
|
return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
/* A subroutine of emit_group_load. Arguments as for emit_group_load,
|
1599 |
|
|
except that values are placed in TMPS[i], and must later be moved
|
1600 |
|
|
into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
|
1601 |
|
|
|
1602 |
|
|
static void
|
1603 |
|
|
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
|
1604 |
|
|
{
|
1605 |
|
|
rtx src;
|
1606 |
|
|
int start, i;
|
1607 |
|
|
enum machine_mode m = GET_MODE (orig_src);
|
1608 |
|
|
|
1609 |
|
|
gcc_assert (GET_CODE (dst) == PARALLEL);
|
1610 |
|
|
|
1611 |
|
|
if (m != VOIDmode
|
1612 |
|
|
&& !SCALAR_INT_MODE_P (m)
|
1613 |
|
|
&& !MEM_P (orig_src)
|
1614 |
|
|
&& GET_CODE (orig_src) != CONCAT)
|
1615 |
|
|
{
|
1616 |
|
|
enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
|
1617 |
|
|
if (imode == BLKmode)
|
1618 |
|
|
src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
|
1619 |
|
|
else
|
1620 |
|
|
src = gen_reg_rtx (imode);
|
1621 |
|
|
if (imode != BLKmode)
|
1622 |
|
|
src = gen_lowpart (GET_MODE (orig_src), src);
|
1623 |
|
|
emit_move_insn (src, orig_src);
|
1624 |
|
|
/* ...and back again. */
|
1625 |
|
|
if (imode != BLKmode)
|
1626 |
|
|
src = gen_lowpart (imode, src);
|
1627 |
|
|
emit_group_load_1 (tmps, dst, src, type, ssize);
|
1628 |
|
|
return;
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
/* Check for a NULL entry, used to indicate that the parameter goes
|
1632 |
|
|
both on the stack and in registers. */
|
1633 |
|
|
if (XEXP (XVECEXP (dst, 0, 0), 0))
|
1634 |
|
|
start = 0;
|
1635 |
|
|
else
|
1636 |
|
|
start = 1;
|
1637 |
|
|
|
1638 |
|
|
/* Process the pieces. */
|
1639 |
|
|
for (i = start; i < XVECLEN (dst, 0); i++)
|
1640 |
|
|
{
|
1641 |
|
|
enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
|
1642 |
|
|
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
|
1643 |
|
|
unsigned int bytelen = GET_MODE_SIZE (mode);
|
1644 |
|
|
int shift = 0;
|
1645 |
|
|
|
1646 |
|
|
/* Handle trailing fragments that run over the size of the struct. */
|
1647 |
|
|
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
|
1648 |
|
|
{
|
1649 |
|
|
/* Arrange to shift the fragment to where it belongs.
|
1650 |
|
|
extract_bit_field loads to the lsb of the reg. */
|
1651 |
|
|
if (
|
1652 |
|
|
#ifdef BLOCK_REG_PADDING
|
1653 |
|
|
BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
|
1654 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)
|
1655 |
|
|
#else
|
1656 |
|
|
BYTES_BIG_ENDIAN
|
1657 |
|
|
#endif
|
1658 |
|
|
)
|
1659 |
|
|
shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
|
1660 |
|
|
bytelen = ssize - bytepos;
|
1661 |
|
|
gcc_assert (bytelen > 0);
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
/* If we won't be loading directly from memory, protect the real source
|
1665 |
|
|
from strange tricks we might play; but make sure that the source can
|
1666 |
|
|
be loaded directly into the destination. */
|
1667 |
|
|
src = orig_src;
|
1668 |
|
|
if (!MEM_P (orig_src)
|
1669 |
|
|
&& (!CONSTANT_P (orig_src)
|
1670 |
|
|
|| (GET_MODE (orig_src) != mode
|
1671 |
|
|
&& GET_MODE (orig_src) != VOIDmode)))
|
1672 |
|
|
{
|
1673 |
|
|
if (GET_MODE (orig_src) == VOIDmode)
|
1674 |
|
|
src = gen_reg_rtx (mode);
|
1675 |
|
|
else
|
1676 |
|
|
src = gen_reg_rtx (GET_MODE (orig_src));
|
1677 |
|
|
|
1678 |
|
|
emit_move_insn (src, orig_src);
|
1679 |
|
|
}
|
1680 |
|
|
|
1681 |
|
|
/* Optimize the access just a bit. */
|
1682 |
|
|
if (MEM_P (src)
|
1683 |
|
|
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
|
1684 |
|
|
|| MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
|
1685 |
|
|
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
|
1686 |
|
|
&& bytelen == GET_MODE_SIZE (mode))
|
1687 |
|
|
{
|
1688 |
|
|
tmps[i] = gen_reg_rtx (mode);
|
1689 |
|
|
emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
|
1690 |
|
|
}
|
1691 |
|
|
else if (COMPLEX_MODE_P (mode)
|
1692 |
|
|
&& GET_MODE (src) == mode
|
1693 |
|
|
&& bytelen == GET_MODE_SIZE (mode))
|
1694 |
|
|
/* Let emit_move_complex do the bulk of the work. */
|
1695 |
|
|
tmps[i] = src;
|
1696 |
|
|
else if (GET_CODE (src) == CONCAT)
|
1697 |
|
|
{
|
1698 |
|
|
unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
|
1699 |
|
|
unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
|
1700 |
|
|
|
1701 |
|
|
if ((bytepos == 0 && bytelen == slen0)
|
1702 |
|
|
|| (bytepos != 0 && bytepos + bytelen <= slen))
|
1703 |
|
|
{
|
1704 |
|
|
/* The following assumes that the concatenated objects all
|
1705 |
|
|
have the same size. In this case, a simple calculation
|
1706 |
|
|
can be used to determine the object and the bit field
|
1707 |
|
|
to be extracted. */
|
1708 |
|
|
tmps[i] = XEXP (src, bytepos / slen0);
|
1709 |
|
|
if (! CONSTANT_P (tmps[i])
|
1710 |
|
|
&& (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
|
1711 |
|
|
tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
|
1712 |
|
|
(bytepos % slen0) * BITS_PER_UNIT,
|
1713 |
|
|
1, NULL_RTX, mode, mode);
|
1714 |
|
|
}
|
1715 |
|
|
else
|
1716 |
|
|
{
|
1717 |
|
|
rtx mem;
|
1718 |
|
|
|
1719 |
|
|
gcc_assert (!bytepos);
|
1720 |
|
|
mem = assign_stack_temp (GET_MODE (src), slen, 0);
|
1721 |
|
|
emit_move_insn (mem, src);
|
1722 |
|
|
tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
|
1723 |
|
|
0, 1, NULL_RTX, mode, mode);
|
1724 |
|
|
}
|
1725 |
|
|
}
|
1726 |
|
|
/* FIXME: A SIMD parallel will eventually lead to a subreg of a
|
1727 |
|
|
SIMD register, which is currently broken. While we get GCC
|
1728 |
|
|
to emit proper RTL for these cases, let's dump to memory. */
|
1729 |
|
|
else if (VECTOR_MODE_P (GET_MODE (dst))
|
1730 |
|
|
&& REG_P (src))
|
1731 |
|
|
{
|
1732 |
|
|
int slen = GET_MODE_SIZE (GET_MODE (src));
|
1733 |
|
|
rtx mem;
|
1734 |
|
|
|
1735 |
|
|
mem = assign_stack_temp (GET_MODE (src), slen, 0);
|
1736 |
|
|
emit_move_insn (mem, src);
|
1737 |
|
|
tmps[i] = adjust_address (mem, mode, (int) bytepos);
|
1738 |
|
|
}
|
1739 |
|
|
else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
|
1740 |
|
|
&& XVECLEN (dst, 0) > 1)
|
1741 |
|
|
tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
|
1742 |
|
|
else if (CONSTANT_P (src)
|
1743 |
|
|
|| (REG_P (src) && GET_MODE (src) == mode))
|
1744 |
|
|
tmps[i] = src;
|
1745 |
|
|
else
|
1746 |
|
|
tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
|
1747 |
|
|
bytepos * BITS_PER_UNIT, 1, NULL_RTX,
|
1748 |
|
|
mode, mode);
|
1749 |
|
|
|
1750 |
|
|
if (shift)
|
1751 |
|
|
tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
|
1752 |
|
|
build_int_cst (NULL_TREE, shift), tmps[i], 0);
|
1753 |
|
|
}
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
/* Emit code to move a block SRC of type TYPE to a block DST,
|
1757 |
|
|
where DST is non-consecutive registers represented by a PARALLEL.
|
1758 |
|
|
SSIZE represents the total size of block ORIG_SRC in bytes, or -1
|
1759 |
|
|
if not known. */
|
1760 |
|
|
|
1761 |
|
|
void
|
1762 |
|
|
emit_group_load (rtx dst, rtx src, tree type, int ssize)
|
1763 |
|
|
{
|
1764 |
|
|
rtx *tmps;
|
1765 |
|
|
int i;
|
1766 |
|
|
|
1767 |
|
|
tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
|
1768 |
|
|
emit_group_load_1 (tmps, dst, src, type, ssize);
|
1769 |
|
|
|
1770 |
|
|
/* Copy the extracted pieces into the proper (probable) hard regs. */
|
1771 |
|
|
for (i = 0; i < XVECLEN (dst, 0); i++)
|
1772 |
|
|
{
|
1773 |
|
|
rtx d = XEXP (XVECEXP (dst, 0, i), 0);
|
1774 |
|
|
if (d == NULL)
|
1775 |
|
|
continue;
|
1776 |
|
|
emit_move_insn (d, tmps[i]);
|
1777 |
|
|
}
|
1778 |
|
|
}
|
1779 |
|
|
|
1780 |
|
|
/* Similar, but load SRC into new pseudos in a format that looks like
|
1781 |
|
|
PARALLEL. This can later be fed to emit_group_move to get things
|
1782 |
|
|
in the right place. */
|
1783 |
|
|
|
1784 |
|
|
rtx
|
1785 |
|
|
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
|
1786 |
|
|
{
|
1787 |
|
|
rtvec vec;
|
1788 |
|
|
int i;
|
1789 |
|
|
|
1790 |
|
|
vec = rtvec_alloc (XVECLEN (parallel, 0));
|
1791 |
|
|
emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
|
1792 |
|
|
|
1793 |
|
|
/* Convert the vector to look just like the original PARALLEL, except
|
1794 |
|
|
with the computed values. */
|
1795 |
|
|
for (i = 0; i < XVECLEN (parallel, 0); i++)
|
1796 |
|
|
{
|
1797 |
|
|
rtx e = XVECEXP (parallel, 0, i);
|
1798 |
|
|
rtx d = XEXP (e, 0);
|
1799 |
|
|
|
1800 |
|
|
if (d)
|
1801 |
|
|
{
|
1802 |
|
|
d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
|
1803 |
|
|
e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
|
1804 |
|
|
}
|
1805 |
|
|
RTVEC_ELT (vec, i) = e;
|
1806 |
|
|
}
|
1807 |
|
|
|
1808 |
|
|
return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
|
1809 |
|
|
}
|
1810 |
|
|
|
1811 |
|
|
/* Emit code to move a block SRC to block DST, where SRC and DST are
|
1812 |
|
|
non-consecutive groups of registers, each represented by a PARALLEL. */
|
1813 |
|
|
|
1814 |
|
|
void
|
1815 |
|
|
emit_group_move (rtx dst, rtx src)
|
1816 |
|
|
{
|
1817 |
|
|
int i;
|
1818 |
|
|
|
1819 |
|
|
gcc_assert (GET_CODE (src) == PARALLEL
|
1820 |
|
|
&& GET_CODE (dst) == PARALLEL
|
1821 |
|
|
&& XVECLEN (src, 0) == XVECLEN (dst, 0));
|
1822 |
|
|
|
1823 |
|
|
/* Skip first entry if NULL. */
|
1824 |
|
|
for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
|
1825 |
|
|
emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
|
1826 |
|
|
XEXP (XVECEXP (src, 0, i), 0));
|
1827 |
|
|
}
|
1828 |
|
|
|
1829 |
|
|
/* Move a group of registers represented by a PARALLEL into pseudos. */
|
1830 |
|
|
|
1831 |
|
|
rtx
|
1832 |
|
|
emit_group_move_into_temps (rtx src)
|
1833 |
|
|
{
|
1834 |
|
|
rtvec vec = rtvec_alloc (XVECLEN (src, 0));
|
1835 |
|
|
int i;
|
1836 |
|
|
|
1837 |
|
|
for (i = 0; i < XVECLEN (src, 0); i++)
|
1838 |
|
|
{
|
1839 |
|
|
rtx e = XVECEXP (src, 0, i);
|
1840 |
|
|
rtx d = XEXP (e, 0);
|
1841 |
|
|
|
1842 |
|
|
if (d)
|
1843 |
|
|
e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
|
1844 |
|
|
RTVEC_ELT (vec, i) = e;
|
1845 |
|
|
}
|
1846 |
|
|
|
1847 |
|
|
return gen_rtx_PARALLEL (GET_MODE (src), vec);
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
|
1851 |
|
|
where SRC is non-consecutive registers represented by a PARALLEL.
|
1852 |
|
|
SSIZE represents the total size of block ORIG_DST, or -1 if not
|
1853 |
|
|
known. */
|
1854 |
|
|
|
1855 |
|
|
void
|
1856 |
|
|
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
|
1857 |
|
|
{
|
1858 |
|
|
rtx *tmps, dst;
|
1859 |
|
|
int start, finish, i;
|
1860 |
|
|
enum machine_mode m = GET_MODE (orig_dst);
|
1861 |
|
|
|
1862 |
|
|
gcc_assert (GET_CODE (src) == PARALLEL);
|
1863 |
|
|
|
1864 |
|
|
if (!SCALAR_INT_MODE_P (m)
|
1865 |
|
|
&& !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
|
1866 |
|
|
{
|
1867 |
|
|
enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
|
1868 |
|
|
if (imode == BLKmode)
|
1869 |
|
|
dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
|
1870 |
|
|
else
|
1871 |
|
|
dst = gen_reg_rtx (imode);
|
1872 |
|
|
emit_group_store (dst, src, type, ssize);
|
1873 |
|
|
if (imode != BLKmode)
|
1874 |
|
|
dst = gen_lowpart (GET_MODE (orig_dst), dst);
|
1875 |
|
|
emit_move_insn (orig_dst, dst);
|
1876 |
|
|
return;
|
1877 |
|
|
}
|
1878 |
|
|
|
1879 |
|
|
/* Check for a NULL entry, used to indicate that the parameter goes
|
1880 |
|
|
both on the stack and in registers. */
|
1881 |
|
|
if (XEXP (XVECEXP (src, 0, 0), 0))
|
1882 |
|
|
start = 0;
|
1883 |
|
|
else
|
1884 |
|
|
start = 1;
|
1885 |
|
|
finish = XVECLEN (src, 0);
|
1886 |
|
|
|
1887 |
|
|
tmps = alloca (sizeof (rtx) * finish);
|
1888 |
|
|
|
1889 |
|
|
/* Copy the (probable) hard regs into pseudos. */
|
1890 |
|
|
for (i = start; i < finish; i++)
|
1891 |
|
|
{
|
1892 |
|
|
rtx reg = XEXP (XVECEXP (src, 0, i), 0);
|
1893 |
|
|
if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
1894 |
|
|
{
|
1895 |
|
|
tmps[i] = gen_reg_rtx (GET_MODE (reg));
|
1896 |
|
|
emit_move_insn (tmps[i], reg);
|
1897 |
|
|
}
|
1898 |
|
|
else
|
1899 |
|
|
tmps[i] = reg;
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
/* If we won't be storing directly into memory, protect the real destination
|
1903 |
|
|
from strange tricks we might play. */
|
1904 |
|
|
dst = orig_dst;
|
1905 |
|
|
if (GET_CODE (dst) == PARALLEL)
|
1906 |
|
|
{
|
1907 |
|
|
rtx temp;
|
1908 |
|
|
|
1909 |
|
|
/* We can get a PARALLEL dst if there is a conditional expression in
|
1910 |
|
|
a return statement. In that case, the dst and src are the same,
|
1911 |
|
|
so no action is necessary. */
|
1912 |
|
|
if (rtx_equal_p (dst, src))
|
1913 |
|
|
return;
|
1914 |
|
|
|
1915 |
|
|
/* It is unclear if we can ever reach here, but we may as well handle
|
1916 |
|
|
it. Allocate a temporary, and split this into a store/load to/from
|
1917 |
|
|
the temporary. */
|
1918 |
|
|
|
1919 |
|
|
temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
|
1920 |
|
|
emit_group_store (temp, src, type, ssize);
|
1921 |
|
|
emit_group_load (dst, temp, type, ssize);
|
1922 |
|
|
return;
|
1923 |
|
|
}
|
1924 |
|
|
else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
|
1925 |
|
|
{
|
1926 |
|
|
enum machine_mode outer = GET_MODE (dst);
|
1927 |
|
|
enum machine_mode inner;
|
1928 |
|
|
HOST_WIDE_INT bytepos;
|
1929 |
|
|
bool done = false;
|
1930 |
|
|
rtx temp;
|
1931 |
|
|
|
1932 |
|
|
if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
|
1933 |
|
|
dst = gen_reg_rtx (outer);
|
1934 |
|
|
|
1935 |
|
|
/* Make life a bit easier for combine. */
|
1936 |
|
|
/* If the first element of the vector is the low part
|
1937 |
|
|
of the destination mode, use a paradoxical subreg to
|
1938 |
|
|
initialize the destination. */
|
1939 |
|
|
if (start < finish)
|
1940 |
|
|
{
|
1941 |
|
|
inner = GET_MODE (tmps[start]);
|
1942 |
|
|
bytepos = subreg_lowpart_offset (inner, outer);
|
1943 |
|
|
if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
|
1944 |
|
|
{
|
1945 |
|
|
temp = simplify_gen_subreg (outer, tmps[start],
|
1946 |
|
|
inner, 0);
|
1947 |
|
|
if (temp)
|
1948 |
|
|
{
|
1949 |
|
|
emit_move_insn (dst, temp);
|
1950 |
|
|
done = true;
|
1951 |
|
|
start++;
|
1952 |
|
|
}
|
1953 |
|
|
}
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
/* If the first element wasn't the low part, try the last. */
|
1957 |
|
|
if (!done
|
1958 |
|
|
&& start < finish - 1)
|
1959 |
|
|
{
|
1960 |
|
|
inner = GET_MODE (tmps[finish - 1]);
|
1961 |
|
|
bytepos = subreg_lowpart_offset (inner, outer);
|
1962 |
|
|
if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
|
1963 |
|
|
{
|
1964 |
|
|
temp = simplify_gen_subreg (outer, tmps[finish - 1],
|
1965 |
|
|
inner, 0);
|
1966 |
|
|
if (temp)
|
1967 |
|
|
{
|
1968 |
|
|
emit_move_insn (dst, temp);
|
1969 |
|
|
done = true;
|
1970 |
|
|
finish--;
|
1971 |
|
|
}
|
1972 |
|
|
}
|
1973 |
|
|
}
|
1974 |
|
|
|
1975 |
|
|
/* Otherwise, simply initialize the result to zero. */
|
1976 |
|
|
if (!done)
|
1977 |
|
|
emit_move_insn (dst, CONST0_RTX (outer));
|
1978 |
|
|
}
|
1979 |
|
|
|
1980 |
|
|
/* Process the pieces. */
|
1981 |
|
|
for (i = start; i < finish; i++)
|
1982 |
|
|
{
|
1983 |
|
|
HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
|
1984 |
|
|
enum machine_mode mode = GET_MODE (tmps[i]);
|
1985 |
|
|
unsigned int bytelen = GET_MODE_SIZE (mode);
|
1986 |
|
|
rtx dest = dst;
|
1987 |
|
|
|
1988 |
|
|
/* Handle trailing fragments that run over the size of the struct. */
|
1989 |
|
|
if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
|
1990 |
|
|
{
|
1991 |
|
|
/* store_bit_field always takes its value from the lsb.
|
1992 |
|
|
Move the fragment to the lsb if it's not already there. */
|
1993 |
|
|
if (
|
1994 |
|
|
#ifdef BLOCK_REG_PADDING
|
1995 |
|
|
BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
|
1996 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)
|
1997 |
|
|
#else
|
1998 |
|
|
BYTES_BIG_ENDIAN
|
1999 |
|
|
#endif
|
2000 |
|
|
)
|
2001 |
|
|
{
|
2002 |
|
|
int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
|
2003 |
|
|
tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
|
2004 |
|
|
build_int_cst (NULL_TREE, shift),
|
2005 |
|
|
tmps[i], 0);
|
2006 |
|
|
}
|
2007 |
|
|
bytelen = ssize - bytepos;
|
2008 |
|
|
}
|
2009 |
|
|
|
2010 |
|
|
if (GET_CODE (dst) == CONCAT)
|
2011 |
|
|
{
|
2012 |
|
|
if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
|
2013 |
|
|
dest = XEXP (dst, 0);
|
2014 |
|
|
else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
|
2015 |
|
|
{
|
2016 |
|
|
bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
|
2017 |
|
|
dest = XEXP (dst, 1);
|
2018 |
|
|
}
|
2019 |
|
|
else
|
2020 |
|
|
{
|
2021 |
|
|
gcc_assert (bytepos == 0 && XVECLEN (src, 0));
|
2022 |
|
|
dest = assign_stack_temp (GET_MODE (dest),
|
2023 |
|
|
GET_MODE_SIZE (GET_MODE (dest)), 0);
|
2024 |
|
|
emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
|
2025 |
|
|
tmps[i]);
|
2026 |
|
|
dst = dest;
|
2027 |
|
|
break;
|
2028 |
|
|
}
|
2029 |
|
|
}
|
2030 |
|
|
|
2031 |
|
|
/* Optimize the access just a bit. */
|
2032 |
|
|
if (MEM_P (dest)
|
2033 |
|
|
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
|
2034 |
|
|
|| MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
|
2035 |
|
|
&& bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
|
2036 |
|
|
&& bytelen == GET_MODE_SIZE (mode))
|
2037 |
|
|
emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
|
2038 |
|
|
else
|
2039 |
|
|
store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
|
2040 |
|
|
mode, tmps[i]);
|
2041 |
|
|
}
|
2042 |
|
|
|
2043 |
|
|
/* Copy from the pseudo into the (probable) hard reg. */
|
2044 |
|
|
if (orig_dst != dst)
|
2045 |
|
|
emit_move_insn (orig_dst, dst);
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
/* Generate code to copy a BLKmode object of TYPE out of a
|
2049 |
|
|
set of registers starting with SRCREG into TGTBLK. If TGTBLK
|
2050 |
|
|
is null, a stack temporary is created. TGTBLK is returned.
|
2051 |
|
|
|
2052 |
|
|
The purpose of this routine is to handle functions that return
|
2053 |
|
|
BLKmode structures in registers. Some machines (the PA for example)
|
2054 |
|
|
want to return all small structures in registers regardless of the
|
2055 |
|
|
structure's alignment. */
|
2056 |
|
|
|
2057 |
|
|
rtx
|
2058 |
|
|
copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
|
2059 |
|
|
{
|
2060 |
|
|
unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
|
2061 |
|
|
rtx src = NULL, dst = NULL;
|
2062 |
|
|
unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
|
2063 |
|
|
unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
|
2064 |
|
|
|
2065 |
|
|
if (tgtblk == 0)
|
2066 |
|
|
{
|
2067 |
|
|
tgtblk = assign_temp (build_qualified_type (type,
|
2068 |
|
|
(TYPE_QUALS (type)
|
2069 |
|
|
| TYPE_QUAL_CONST)),
|
2070 |
|
|
0, 1, 1);
|
2071 |
|
|
preserve_temp_slots (tgtblk);
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
/* This code assumes srcreg is at least a full word. If it isn't, copy it
|
2075 |
|
|
into a new pseudo which is a full word. */
|
2076 |
|
|
|
2077 |
|
|
if (GET_MODE (srcreg) != BLKmode
|
2078 |
|
|
&& GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
|
2079 |
|
|
srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
|
2080 |
|
|
|
2081 |
|
|
/* If the structure doesn't take up a whole number of words, see whether
|
2082 |
|
|
SRCREG is padded on the left or on the right. If it's on the left,
|
2083 |
|
|
set PADDING_CORRECTION to the number of bits to skip.
|
2084 |
|
|
|
2085 |
|
|
In most ABIs, the structure will be returned at the least end of
|
2086 |
|
|
the register, which translates to right padding on little-endian
|
2087 |
|
|
targets and left padding on big-endian targets. The opposite
|
2088 |
|
|
holds if the structure is returned at the most significant
|
2089 |
|
|
end of the register. */
|
2090 |
|
|
if (bytes % UNITS_PER_WORD != 0
|
2091 |
|
|
&& (targetm.calls.return_in_msb (type)
|
2092 |
|
|
? !BYTES_BIG_ENDIAN
|
2093 |
|
|
: BYTES_BIG_ENDIAN))
|
2094 |
|
|
padding_correction
|
2095 |
|
|
= (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
|
2096 |
|
|
|
2097 |
|
|
/* Copy the structure BITSIZE bites at a time.
|
2098 |
|
|
|
2099 |
|
|
We could probably emit more efficient code for machines which do not use
|
2100 |
|
|
strict alignment, but it doesn't seem worth the effort at the current
|
2101 |
|
|
time. */
|
2102 |
|
|
for (bitpos = 0, xbitpos = padding_correction;
|
2103 |
|
|
bitpos < bytes * BITS_PER_UNIT;
|
2104 |
|
|
bitpos += bitsize, xbitpos += bitsize)
|
2105 |
|
|
{
|
2106 |
|
|
/* We need a new source operand each time xbitpos is on a
|
2107 |
|
|
word boundary and when xbitpos == padding_correction
|
2108 |
|
|
(the first time through). */
|
2109 |
|
|
if (xbitpos % BITS_PER_WORD == 0
|
2110 |
|
|
|| xbitpos == padding_correction)
|
2111 |
|
|
src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
|
2112 |
|
|
GET_MODE (srcreg));
|
2113 |
|
|
|
2114 |
|
|
/* We need a new destination operand each time bitpos is on
|
2115 |
|
|
a word boundary. */
|
2116 |
|
|
if (bitpos % BITS_PER_WORD == 0)
|
2117 |
|
|
dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
|
2118 |
|
|
|
2119 |
|
|
/* Use xbitpos for the source extraction (right justified) and
|
2120 |
|
|
xbitpos for the destination store (left justified). */
|
2121 |
|
|
store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
|
2122 |
|
|
extract_bit_field (src, bitsize,
|
2123 |
|
|
xbitpos % BITS_PER_WORD, 1,
|
2124 |
|
|
NULL_RTX, word_mode, word_mode));
|
2125 |
|
|
}
|
2126 |
|
|
|
2127 |
|
|
return tgtblk;
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
/* Add a USE expression for REG to the (possibly empty) list pointed
|
2131 |
|
|
to by CALL_FUSAGE. REG must denote a hard register. */
|
2132 |
|
|
|
2133 |
|
|
void
|
2134 |
|
|
use_reg (rtx *call_fusage, rtx reg)
|
2135 |
|
|
{
|
2136 |
|
|
gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
|
2137 |
|
|
|
2138 |
|
|
*call_fusage
|
2139 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode,
|
2140 |
|
|
gen_rtx_USE (VOIDmode, reg), *call_fusage);
|
2141 |
|
|
}
|
2142 |
|
|
|
2143 |
|
|
/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
|
2144 |
|
|
starting at REGNO. All of these registers must be hard registers. */
|
2145 |
|
|
|
2146 |
|
|
void
|
2147 |
|
|
use_regs (rtx *call_fusage, int regno, int nregs)
|
2148 |
|
|
{
|
2149 |
|
|
int i;
|
2150 |
|
|
|
2151 |
|
|
gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
|
2152 |
|
|
|
2153 |
|
|
for (i = 0; i < nregs; i++)
|
2154 |
|
|
use_reg (call_fusage, regno_reg_rtx[regno + i]);
|
2155 |
|
|
}
|
2156 |
|
|
|
2157 |
|
|
/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
|
2158 |
|
|
PARALLEL REGS. This is for calls that pass values in multiple
|
2159 |
|
|
non-contiguous locations. The Irix 6 ABI has examples of this. */
|
2160 |
|
|
|
2161 |
|
|
void
|
2162 |
|
|
use_group_regs (rtx *call_fusage, rtx regs)
|
2163 |
|
|
{
|
2164 |
|
|
int i;
|
2165 |
|
|
|
2166 |
|
|
for (i = 0; i < XVECLEN (regs, 0); i++)
|
2167 |
|
|
{
|
2168 |
|
|
rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
|
2169 |
|
|
|
2170 |
|
|
/* A NULL entry means the parameter goes both on the stack and in
|
2171 |
|
|
registers. This can also be a MEM for targets that pass values
|
2172 |
|
|
partially on the stack and partially in registers. */
|
2173 |
|
|
if (reg != 0 && REG_P (reg))
|
2174 |
|
|
use_reg (call_fusage, reg);
|
2175 |
|
|
}
|
2176 |
|
|
}
|
2177 |
|
|
|
2178 |
|
|
|
2179 |
|
|
/* Determine whether the LEN bytes generated by CONSTFUN can be
|
2180 |
|
|
stored to memory using several move instructions. CONSTFUNDATA is
|
2181 |
|
|
a pointer which will be passed as argument in every CONSTFUN call.
|
2182 |
|
|
ALIGN is maximum alignment we can assume. Return nonzero if a
|
2183 |
|
|
call to store_by_pieces should succeed. */
|
2184 |
|
|
|
2185 |
|
|
int
|
2186 |
|
|
can_store_by_pieces (unsigned HOST_WIDE_INT len,
|
2187 |
|
|
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
|
2188 |
|
|
void *constfundata, unsigned int align)
|
2189 |
|
|
{
|
2190 |
|
|
unsigned HOST_WIDE_INT l;
|
2191 |
|
|
unsigned int max_size;
|
2192 |
|
|
HOST_WIDE_INT offset = 0;
|
2193 |
|
|
enum machine_mode mode, tmode;
|
2194 |
|
|
enum insn_code icode;
|
2195 |
|
|
int reverse;
|
2196 |
|
|
rtx cst;
|
2197 |
|
|
|
2198 |
|
|
if (len == 0)
|
2199 |
|
|
return 1;
|
2200 |
|
|
|
2201 |
|
|
if (! STORE_BY_PIECES_P (len, align))
|
2202 |
|
|
return 0;
|
2203 |
|
|
|
2204 |
|
|
tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
2205 |
|
|
if (align >= GET_MODE_ALIGNMENT (tmode))
|
2206 |
|
|
align = GET_MODE_ALIGNMENT (tmode);
|
2207 |
|
|
else
|
2208 |
|
|
{
|
2209 |
|
|
enum machine_mode xmode;
|
2210 |
|
|
|
2211 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
2212 |
|
|
tmode != VOIDmode;
|
2213 |
|
|
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
2214 |
|
|
if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
|
2215 |
|
|
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
2216 |
|
|
break;
|
2217 |
|
|
|
2218 |
|
|
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
2219 |
|
|
}
|
2220 |
|
|
|
2221 |
|
|
/* We would first store what we can in the largest integer mode, then go to
|
2222 |
|
|
successively smaller modes. */
|
2223 |
|
|
|
2224 |
|
|
for (reverse = 0;
|
2225 |
|
|
reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
|
2226 |
|
|
reverse++)
|
2227 |
|
|
{
|
2228 |
|
|
l = len;
|
2229 |
|
|
mode = VOIDmode;
|
2230 |
|
|
max_size = STORE_MAX_PIECES + 1;
|
2231 |
|
|
while (max_size > 1)
|
2232 |
|
|
{
|
2233 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
2234 |
|
|
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
2235 |
|
|
if (GET_MODE_SIZE (tmode) < max_size)
|
2236 |
|
|
mode = tmode;
|
2237 |
|
|
|
2238 |
|
|
if (mode == VOIDmode)
|
2239 |
|
|
break;
|
2240 |
|
|
|
2241 |
|
|
icode = mov_optab->handlers[(int) mode].insn_code;
|
2242 |
|
|
if (icode != CODE_FOR_nothing
|
2243 |
|
|
&& align >= GET_MODE_ALIGNMENT (mode))
|
2244 |
|
|
{
|
2245 |
|
|
unsigned int size = GET_MODE_SIZE (mode);
|
2246 |
|
|
|
2247 |
|
|
while (l >= size)
|
2248 |
|
|
{
|
2249 |
|
|
if (reverse)
|
2250 |
|
|
offset -= size;
|
2251 |
|
|
|
2252 |
|
|
cst = (*constfun) (constfundata, offset, mode);
|
2253 |
|
|
if (!LEGITIMATE_CONSTANT_P (cst))
|
2254 |
|
|
return 0;
|
2255 |
|
|
|
2256 |
|
|
if (!reverse)
|
2257 |
|
|
offset += size;
|
2258 |
|
|
|
2259 |
|
|
l -= size;
|
2260 |
|
|
}
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
max_size = GET_MODE_SIZE (mode);
|
2264 |
|
|
}
|
2265 |
|
|
|
2266 |
|
|
/* The code above should have handled everything. */
|
2267 |
|
|
gcc_assert (!l);
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
return 1;
|
2271 |
|
|
}
|
2272 |
|
|
|
2273 |
|
|
/* Generate several move instructions to store LEN bytes generated by
|
2274 |
|
|
CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
|
2275 |
|
|
pointer which will be passed as argument in every CONSTFUN call.
|
2276 |
|
|
ALIGN is maximum alignment we can assume.
|
2277 |
|
|
If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
|
2278 |
|
|
mempcpy, and if ENDP is 2 return memory the end minus one byte ala
|
2279 |
|
|
stpcpy. */
|
2280 |
|
|
|
2281 |
|
|
rtx
|
2282 |
|
|
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
|
2283 |
|
|
rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
|
2284 |
|
|
void *constfundata, unsigned int align, int endp)
|
2285 |
|
|
{
|
2286 |
|
|
struct store_by_pieces data;
|
2287 |
|
|
|
2288 |
|
|
if (len == 0)
|
2289 |
|
|
{
|
2290 |
|
|
gcc_assert (endp != 2);
|
2291 |
|
|
return to;
|
2292 |
|
|
}
|
2293 |
|
|
|
2294 |
|
|
gcc_assert (STORE_BY_PIECES_P (len, align));
|
2295 |
|
|
data.constfun = constfun;
|
2296 |
|
|
data.constfundata = constfundata;
|
2297 |
|
|
data.len = len;
|
2298 |
|
|
data.to = to;
|
2299 |
|
|
store_by_pieces_1 (&data, align);
|
2300 |
|
|
if (endp)
|
2301 |
|
|
{
|
2302 |
|
|
rtx to1;
|
2303 |
|
|
|
2304 |
|
|
gcc_assert (!data.reverse);
|
2305 |
|
|
if (data.autinc_to)
|
2306 |
|
|
{
|
2307 |
|
|
if (endp == 2)
|
2308 |
|
|
{
|
2309 |
|
|
if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
|
2310 |
|
|
emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
|
2311 |
|
|
else
|
2312 |
|
|
data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
|
2313 |
|
|
-1));
|
2314 |
|
|
}
|
2315 |
|
|
to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
|
2316 |
|
|
data.offset);
|
2317 |
|
|
}
|
2318 |
|
|
else
|
2319 |
|
|
{
|
2320 |
|
|
if (endp == 2)
|
2321 |
|
|
--data.offset;
|
2322 |
|
|
to1 = adjust_address (data.to, QImode, data.offset);
|
2323 |
|
|
}
|
2324 |
|
|
return to1;
|
2325 |
|
|
}
|
2326 |
|
|
else
|
2327 |
|
|
return data.to;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
/* Generate several move instructions to clear LEN bytes of block TO. (A MEM
|
2331 |
|
|
rtx with BLKmode). ALIGN is maximum alignment we can assume. */
|
2332 |
|
|
|
2333 |
|
|
static void
|
2334 |
|
|
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
|
2335 |
|
|
{
|
2336 |
|
|
struct store_by_pieces data;
|
2337 |
|
|
|
2338 |
|
|
if (len == 0)
|
2339 |
|
|
return;
|
2340 |
|
|
|
2341 |
|
|
data.constfun = clear_by_pieces_1;
|
2342 |
|
|
data.constfundata = NULL;
|
2343 |
|
|
data.len = len;
|
2344 |
|
|
data.to = to;
|
2345 |
|
|
store_by_pieces_1 (&data, align);
|
2346 |
|
|
}
|
2347 |
|
|
|
2348 |
|
|
/* Callback routine for clear_by_pieces.
|
2349 |
|
|
Return const0_rtx unconditionally. */
|
2350 |
|
|
|
2351 |
|
|
static rtx
|
2352 |
|
|
clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
|
2353 |
|
|
HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
|
2354 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED)
|
2355 |
|
|
{
|
2356 |
|
|
return const0_rtx;
|
2357 |
|
|
}
|
2358 |
|
|
|
2359 |
|
|
/* Subroutine of clear_by_pieces and store_by_pieces.
|
2360 |
|
|
Generate several move instructions to store LEN bytes of block TO. (A MEM
|
2361 |
|
|
rtx with BLKmode). ALIGN is maximum alignment we can assume. */
|
2362 |
|
|
|
2363 |
|
|
static void
|
2364 |
|
|
store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
|
2365 |
|
|
unsigned int align ATTRIBUTE_UNUSED)
|
2366 |
|
|
{
|
2367 |
|
|
rtx to_addr = XEXP (data->to, 0);
|
2368 |
|
|
unsigned int max_size = STORE_MAX_PIECES + 1;
|
2369 |
|
|
enum machine_mode mode = VOIDmode, tmode;
|
2370 |
|
|
enum insn_code icode;
|
2371 |
|
|
|
2372 |
|
|
data->offset = 0;
|
2373 |
|
|
data->to_addr = to_addr;
|
2374 |
|
|
data->autinc_to
|
2375 |
|
|
= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
|
2376 |
|
|
|| GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
|
2377 |
|
|
|
2378 |
|
|
data->explicit_inc_to = 0;
|
2379 |
|
|
data->reverse
|
2380 |
|
|
= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
|
2381 |
|
|
if (data->reverse)
|
2382 |
|
|
data->offset = data->len;
|
2383 |
|
|
|
2384 |
|
|
/* If storing requires more than two move insns,
|
2385 |
|
|
copy addresses to registers (to make displacements shorter)
|
2386 |
|
|
and use post-increment if available. */
|
2387 |
|
|
if (!data->autinc_to
|
2388 |
|
|
&& move_by_pieces_ninsns (data->len, align, max_size) > 2)
|
2389 |
|
|
{
|
2390 |
|
|
/* Determine the main mode we'll be using. */
|
2391 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
2392 |
|
|
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
2393 |
|
|
if (GET_MODE_SIZE (tmode) < max_size)
|
2394 |
|
|
mode = tmode;
|
2395 |
|
|
|
2396 |
|
|
if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
|
2397 |
|
|
{
|
2398 |
|
|
data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
|
2399 |
|
|
data->autinc_to = 1;
|
2400 |
|
|
data->explicit_inc_to = -1;
|
2401 |
|
|
}
|
2402 |
|
|
|
2403 |
|
|
if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
|
2404 |
|
|
&& ! data->autinc_to)
|
2405 |
|
|
{
|
2406 |
|
|
data->to_addr = copy_addr_to_reg (to_addr);
|
2407 |
|
|
data->autinc_to = 1;
|
2408 |
|
|
data->explicit_inc_to = 1;
|
2409 |
|
|
}
|
2410 |
|
|
|
2411 |
|
|
if ( !data->autinc_to && CONSTANT_P (to_addr))
|
2412 |
|
|
data->to_addr = copy_addr_to_reg (to_addr);
|
2413 |
|
|
}
|
2414 |
|
|
|
2415 |
|
|
tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
|
2416 |
|
|
if (align >= GET_MODE_ALIGNMENT (tmode))
|
2417 |
|
|
align = GET_MODE_ALIGNMENT (tmode);
|
2418 |
|
|
else
|
2419 |
|
|
{
|
2420 |
|
|
enum machine_mode xmode;
|
2421 |
|
|
|
2422 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
|
2423 |
|
|
tmode != VOIDmode;
|
2424 |
|
|
xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
|
2425 |
|
|
if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
|
2426 |
|
|
|| SLOW_UNALIGNED_ACCESS (tmode, align))
|
2427 |
|
|
break;
|
2428 |
|
|
|
2429 |
|
|
align = MAX (align, GET_MODE_ALIGNMENT (xmode));
|
2430 |
|
|
}
|
2431 |
|
|
|
2432 |
|
|
/* First store what we can in the largest integer mode, then go to
|
2433 |
|
|
successively smaller modes. */
|
2434 |
|
|
|
2435 |
|
|
while (max_size > 1)
|
2436 |
|
|
{
|
2437 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
2438 |
|
|
tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
|
2439 |
|
|
if (GET_MODE_SIZE (tmode) < max_size)
|
2440 |
|
|
mode = tmode;
|
2441 |
|
|
|
2442 |
|
|
if (mode == VOIDmode)
|
2443 |
|
|
break;
|
2444 |
|
|
|
2445 |
|
|
icode = mov_optab->handlers[(int) mode].insn_code;
|
2446 |
|
|
if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
|
2447 |
|
|
store_by_pieces_2 (GEN_FCN (icode), mode, data);
|
2448 |
|
|
|
2449 |
|
|
max_size = GET_MODE_SIZE (mode);
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
/* The code above should have handled everything. */
|
2453 |
|
|
gcc_assert (!data->len);
|
2454 |
|
|
}
|
2455 |
|
|
|
2456 |
|
|
/* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
|
2457 |
|
|
with move instructions for mode MODE. GENFUN is the gen_... function
|
2458 |
|
|
to make a move insn for that mode. DATA has all the other info. */
|
2459 |
|
|
|
2460 |
|
|
static void
|
2461 |
|
|
store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
|
2462 |
|
|
struct store_by_pieces *data)
|
2463 |
|
|
{
|
2464 |
|
|
unsigned int size = GET_MODE_SIZE (mode);
|
2465 |
|
|
rtx to1, cst;
|
2466 |
|
|
|
2467 |
|
|
while (data->len >= size)
|
2468 |
|
|
{
|
2469 |
|
|
if (data->reverse)
|
2470 |
|
|
data->offset -= size;
|
2471 |
|
|
|
2472 |
|
|
if (data->autinc_to)
|
2473 |
|
|
to1 = adjust_automodify_address (data->to, mode, data->to_addr,
|
2474 |
|
|
data->offset);
|
2475 |
|
|
else
|
2476 |
|
|
to1 = adjust_address (data->to, mode, data->offset);
|
2477 |
|
|
|
2478 |
|
|
if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
|
2479 |
|
|
emit_insn (gen_add2_insn (data->to_addr,
|
2480 |
|
|
GEN_INT (-(HOST_WIDE_INT) size)));
|
2481 |
|
|
|
2482 |
|
|
cst = (*data->constfun) (data->constfundata, data->offset, mode);
|
2483 |
|
|
emit_insn ((*genfun) (to1, cst));
|
2484 |
|
|
|
2485 |
|
|
if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
|
2486 |
|
|
emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
|
2487 |
|
|
|
2488 |
|
|
if (! data->reverse)
|
2489 |
|
|
data->offset += size;
|
2490 |
|
|
|
2491 |
|
|
data->len -= size;
|
2492 |
|
|
}
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
/* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
|
2496 |
|
|
its length in bytes. */
|
2497 |
|
|
|
2498 |
|
|
rtx
|
2499 |
|
|
clear_storage (rtx object, rtx size, enum block_op_methods method)
|
2500 |
|
|
{
|
2501 |
|
|
enum machine_mode mode = GET_MODE (object);
|
2502 |
|
|
unsigned int align;
|
2503 |
|
|
|
2504 |
|
|
gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
|
2505 |
|
|
|
2506 |
|
|
/* If OBJECT is not BLKmode and SIZE is the same size as its mode,
|
2507 |
|
|
just move a zero. Otherwise, do this a piece at a time. */
|
2508 |
|
|
if (mode != BLKmode
|
2509 |
|
|
&& GET_CODE (size) == CONST_INT
|
2510 |
|
|
&& INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
|
2511 |
|
|
{
|
2512 |
|
|
rtx zero = CONST0_RTX (mode);
|
2513 |
|
|
if (zero != NULL)
|
2514 |
|
|
{
|
2515 |
|
|
emit_move_insn (object, zero);
|
2516 |
|
|
return NULL;
|
2517 |
|
|
}
|
2518 |
|
|
|
2519 |
|
|
if (COMPLEX_MODE_P (mode))
|
2520 |
|
|
{
|
2521 |
|
|
zero = CONST0_RTX (GET_MODE_INNER (mode));
|
2522 |
|
|
if (zero != NULL)
|
2523 |
|
|
{
|
2524 |
|
|
write_complex_part (object, zero, 0);
|
2525 |
|
|
write_complex_part (object, zero, 1);
|
2526 |
|
|
return NULL;
|
2527 |
|
|
}
|
2528 |
|
|
}
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
if (size == const0_rtx)
|
2532 |
|
|
return NULL;
|
2533 |
|
|
|
2534 |
|
|
align = MEM_ALIGN (object);
|
2535 |
|
|
|
2536 |
|
|
if (GET_CODE (size) == CONST_INT
|
2537 |
|
|
&& CLEAR_BY_PIECES_P (INTVAL (size), align))
|
2538 |
|
|
clear_by_pieces (object, INTVAL (size), align);
|
2539 |
|
|
else if (set_storage_via_setmem (object, size, const0_rtx, align))
|
2540 |
|
|
;
|
2541 |
|
|
else
|
2542 |
|
|
return clear_storage_via_libcall (object, size,
|
2543 |
|
|
method == BLOCK_OP_TAILCALL);
|
2544 |
|
|
|
2545 |
|
|
return NULL;
|
2546 |
|
|
}
|
2547 |
|
|
|
2548 |
|
|
/* A subroutine of clear_storage. Expand a call to memset.
|
2549 |
|
|
Return the return value of memset, 0 otherwise. */
|
2550 |
|
|
|
2551 |
|
|
static rtx
|
2552 |
|
|
clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
|
2553 |
|
|
{
|
2554 |
|
|
tree call_expr, arg_list, fn, object_tree, size_tree;
|
2555 |
|
|
enum machine_mode size_mode;
|
2556 |
|
|
rtx retval;
|
2557 |
|
|
|
2558 |
|
|
/* Emit code to copy OBJECT and SIZE into new pseudos. We can then
|
2559 |
|
|
place those into new pseudos into a VAR_DECL and use them later. */
|
2560 |
|
|
|
2561 |
|
|
object = copy_to_mode_reg (Pmode, XEXP (object, 0));
|
2562 |
|
|
|
2563 |
|
|
size_mode = TYPE_MODE (sizetype);
|
2564 |
|
|
size = convert_to_mode (size_mode, size, 1);
|
2565 |
|
|
size = copy_to_mode_reg (size_mode, size);
|
2566 |
|
|
|
2567 |
|
|
/* It is incorrect to use the libcall calling conventions to call
|
2568 |
|
|
memset in this context. This could be a user call to memset and
|
2569 |
|
|
the user may wish to examine the return value from memset. For
|
2570 |
|
|
targets where libcalls and normal calls have different conventions
|
2571 |
|
|
for returning pointers, we could end up generating incorrect code. */
|
2572 |
|
|
|
2573 |
|
|
object_tree = make_tree (ptr_type_node, object);
|
2574 |
|
|
size_tree = make_tree (sizetype, size);
|
2575 |
|
|
|
2576 |
|
|
fn = clear_storage_libcall_fn (true);
|
2577 |
|
|
arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
|
2578 |
|
|
arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
|
2579 |
|
|
arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
|
2580 |
|
|
|
2581 |
|
|
/* Now we have to build up the CALL_EXPR itself. */
|
2582 |
|
|
call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
|
2583 |
|
|
call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
|
2584 |
|
|
call_expr, arg_list, NULL_TREE);
|
2585 |
|
|
CALL_EXPR_TAILCALL (call_expr) = tailcall;
|
2586 |
|
|
|
2587 |
|
|
retval = expand_normal (call_expr);
|
2588 |
|
|
|
2589 |
|
|
return retval;
|
2590 |
|
|
}
|
2591 |
|
|
|
2592 |
|
|
/* A subroutine of clear_storage_via_libcall. Create the tree node
|
2593 |
|
|
for the function we use for block clears. The first time FOR_CALL
|
2594 |
|
|
is true, we call assemble_external. */
|
2595 |
|
|
|
2596 |
|
|
static GTY(()) tree block_clear_fn;
|
2597 |
|
|
|
2598 |
|
|
void
|
2599 |
|
|
init_block_clear_fn (const char *asmspec)
|
2600 |
|
|
{
|
2601 |
|
|
if (!block_clear_fn)
|
2602 |
|
|
{
|
2603 |
|
|
tree fn, args;
|
2604 |
|
|
|
2605 |
|
|
fn = get_identifier ("memset");
|
2606 |
|
|
args = build_function_type_list (ptr_type_node, ptr_type_node,
|
2607 |
|
|
integer_type_node, sizetype,
|
2608 |
|
|
NULL_TREE);
|
2609 |
|
|
|
2610 |
|
|
fn = build_decl (FUNCTION_DECL, fn, args);
|
2611 |
|
|
DECL_EXTERNAL (fn) = 1;
|
2612 |
|
|
TREE_PUBLIC (fn) = 1;
|
2613 |
|
|
DECL_ARTIFICIAL (fn) = 1;
|
2614 |
|
|
TREE_NOTHROW (fn) = 1;
|
2615 |
|
|
DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
|
2616 |
|
|
DECL_VISIBILITY_SPECIFIED (fn) = 1;
|
2617 |
|
|
|
2618 |
|
|
block_clear_fn = fn;
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
if (asmspec)
|
2622 |
|
|
set_user_assembler_name (block_clear_fn, asmspec);
|
2623 |
|
|
}
|
2624 |
|
|
|
2625 |
|
|
static tree
|
2626 |
|
|
clear_storage_libcall_fn (int for_call)
|
2627 |
|
|
{
|
2628 |
|
|
static bool emitted_extern;
|
2629 |
|
|
|
2630 |
|
|
if (!block_clear_fn)
|
2631 |
|
|
init_block_clear_fn (NULL);
|
2632 |
|
|
|
2633 |
|
|
if (for_call && !emitted_extern)
|
2634 |
|
|
{
|
2635 |
|
|
emitted_extern = true;
|
2636 |
|
|
make_decl_rtl (block_clear_fn);
|
2637 |
|
|
assemble_external (block_clear_fn);
|
2638 |
|
|
}
|
2639 |
|
|
|
2640 |
|
|
return block_clear_fn;
|
2641 |
|
|
}
|
2642 |
|
|
|
2643 |
|
|
/* Expand a setmem pattern; return true if successful. */
|
2644 |
|
|
|
2645 |
|
|
bool
|
2646 |
|
|
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
|
2647 |
|
|
{
|
2648 |
|
|
/* Try the most limited insn first, because there's no point
|
2649 |
|
|
including more than one in the machine description unless
|
2650 |
|
|
the more limited one has some advantage. */
|
2651 |
|
|
|
2652 |
|
|
rtx opalign = GEN_INT (align / BITS_PER_UNIT);
|
2653 |
|
|
enum machine_mode mode;
|
2654 |
|
|
|
2655 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
2656 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
2657 |
|
|
{
|
2658 |
|
|
enum insn_code code = setmem_optab[(int) mode];
|
2659 |
|
|
insn_operand_predicate_fn pred;
|
2660 |
|
|
|
2661 |
|
|
if (code != CODE_FOR_nothing
|
2662 |
|
|
/* We don't need MODE to be narrower than
|
2663 |
|
|
BITS_PER_HOST_WIDE_INT here because if SIZE is less than
|
2664 |
|
|
the mode mask, as it is returned by the macro, it will
|
2665 |
|
|
definitely be less than the actual mode mask. */
|
2666 |
|
|
&& ((GET_CODE (size) == CONST_INT
|
2667 |
|
|
&& ((unsigned HOST_WIDE_INT) INTVAL (size)
|
2668 |
|
|
<= (GET_MODE_MASK (mode) >> 1)))
|
2669 |
|
|
|| GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
|
2670 |
|
|
&& ((pred = insn_data[(int) code].operand[0].predicate) == 0
|
2671 |
|
|
|| (*pred) (object, BLKmode))
|
2672 |
|
|
&& ((pred = insn_data[(int) code].operand[3].predicate) == 0
|
2673 |
|
|
|| (*pred) (opalign, VOIDmode)))
|
2674 |
|
|
{
|
2675 |
|
|
rtx opsize, opchar;
|
2676 |
|
|
enum machine_mode char_mode;
|
2677 |
|
|
rtx last = get_last_insn ();
|
2678 |
|
|
rtx pat;
|
2679 |
|
|
|
2680 |
|
|
opsize = convert_to_mode (mode, size, 1);
|
2681 |
|
|
pred = insn_data[(int) code].operand[1].predicate;
|
2682 |
|
|
if (pred != 0 && ! (*pred) (opsize, mode))
|
2683 |
|
|
opsize = copy_to_mode_reg (mode, opsize);
|
2684 |
|
|
|
2685 |
|
|
opchar = val;
|
2686 |
|
|
char_mode = insn_data[(int) code].operand[2].mode;
|
2687 |
|
|
if (char_mode != VOIDmode)
|
2688 |
|
|
{
|
2689 |
|
|
opchar = convert_to_mode (char_mode, opchar, 1);
|
2690 |
|
|
pred = insn_data[(int) code].operand[2].predicate;
|
2691 |
|
|
if (pred != 0 && ! (*pred) (opchar, char_mode))
|
2692 |
|
|
opchar = copy_to_mode_reg (char_mode, opchar);
|
2693 |
|
|
}
|
2694 |
|
|
|
2695 |
|
|
pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
|
2696 |
|
|
if (pat)
|
2697 |
|
|
{
|
2698 |
|
|
emit_insn (pat);
|
2699 |
|
|
return true;
|
2700 |
|
|
}
|
2701 |
|
|
else
|
2702 |
|
|
delete_insns_since (last);
|
2703 |
|
|
}
|
2704 |
|
|
}
|
2705 |
|
|
|
2706 |
|
|
return false;
|
2707 |
|
|
}
|
2708 |
|
|
|
2709 |
|
|
|
2710 |
|
|
/* Write to one of the components of the complex value CPLX. Write VAL to
|
2711 |
|
|
the real part if IMAG_P is false, and the imaginary part if its true. */
|
2712 |
|
|
|
2713 |
|
|
static void
|
2714 |
|
|
write_complex_part (rtx cplx, rtx val, bool imag_p)
|
2715 |
|
|
{
|
2716 |
|
|
enum machine_mode cmode;
|
2717 |
|
|
enum machine_mode imode;
|
2718 |
|
|
unsigned ibitsize;
|
2719 |
|
|
|
2720 |
|
|
if (GET_CODE (cplx) == CONCAT)
|
2721 |
|
|
{
|
2722 |
|
|
emit_move_insn (XEXP (cplx, imag_p), val);
|
2723 |
|
|
return;
|
2724 |
|
|
}
|
2725 |
|
|
|
2726 |
|
|
cmode = GET_MODE (cplx);
|
2727 |
|
|
imode = GET_MODE_INNER (cmode);
|
2728 |
|
|
ibitsize = GET_MODE_BITSIZE (imode);
|
2729 |
|
|
|
2730 |
|
|
/* For MEMs simplify_gen_subreg may generate an invalid new address
|
2731 |
|
|
because, e.g., the original address is considered mode-dependent
|
2732 |
|
|
by the target, which restricts simplify_subreg from invoking
|
2733 |
|
|
adjust_address_nv. Instead of preparing fallback support for an
|
2734 |
|
|
invalid address, we call adjust_address_nv directly. */
|
2735 |
|
|
if (MEM_P (cplx))
|
2736 |
|
|
{
|
2737 |
|
|
emit_move_insn (adjust_address_nv (cplx, imode,
|
2738 |
|
|
imag_p ? GET_MODE_SIZE (imode) : 0),
|
2739 |
|
|
val);
|
2740 |
|
|
return;
|
2741 |
|
|
}
|
2742 |
|
|
|
2743 |
|
|
/* If the sub-object is at least word sized, then we know that subregging
|
2744 |
|
|
will work. This special case is important, since store_bit_field
|
2745 |
|
|
wants to operate on integer modes, and there's rarely an OImode to
|
2746 |
|
|
correspond to TCmode. */
|
2747 |
|
|
if (ibitsize >= BITS_PER_WORD
|
2748 |
|
|
/* For hard regs we have exact predicates. Assume we can split
|
2749 |
|
|
the original object if it spans an even number of hard regs.
|
2750 |
|
|
This special case is important for SCmode on 64-bit platforms
|
2751 |
|
|
where the natural size of floating-point regs is 32-bit. */
|
2752 |
|
|
|| (REG_P (cplx)
|
2753 |
|
|
&& REGNO (cplx) < FIRST_PSEUDO_REGISTER
|
2754 |
|
|
&& hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
|
2755 |
|
|
{
|
2756 |
|
|
rtx part = simplify_gen_subreg (imode, cplx, cmode,
|
2757 |
|
|
imag_p ? GET_MODE_SIZE (imode) : 0);
|
2758 |
|
|
if (part)
|
2759 |
|
|
{
|
2760 |
|
|
emit_move_insn (part, val);
|
2761 |
|
|
return;
|
2762 |
|
|
}
|
2763 |
|
|
else
|
2764 |
|
|
/* simplify_gen_subreg may fail for sub-word MEMs. */
|
2765 |
|
|
gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
|
2766 |
|
|
}
|
2767 |
|
|
|
2768 |
|
|
store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
|
2769 |
|
|
}
|
2770 |
|
|
|
2771 |
|
|
/* Extract one of the components of the complex value CPLX. Extract the
|
2772 |
|
|
real part if IMAG_P is false, and the imaginary part if it's true. */
|
2773 |
|
|
|
2774 |
|
|
static rtx
|
2775 |
|
|
read_complex_part (rtx cplx, bool imag_p)
|
2776 |
|
|
{
|
2777 |
|
|
enum machine_mode cmode, imode;
|
2778 |
|
|
unsigned ibitsize;
|
2779 |
|
|
|
2780 |
|
|
if (GET_CODE (cplx) == CONCAT)
|
2781 |
|
|
return XEXP (cplx, imag_p);
|
2782 |
|
|
|
2783 |
|
|
cmode = GET_MODE (cplx);
|
2784 |
|
|
imode = GET_MODE_INNER (cmode);
|
2785 |
|
|
ibitsize = GET_MODE_BITSIZE (imode);
|
2786 |
|
|
|
2787 |
|
|
/* Special case reads from complex constants that got spilled to memory. */
|
2788 |
|
|
if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
|
2789 |
|
|
{
|
2790 |
|
|
tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
|
2791 |
|
|
if (decl && TREE_CODE (decl) == COMPLEX_CST)
|
2792 |
|
|
{
|
2793 |
|
|
tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
|
2794 |
|
|
if (CONSTANT_CLASS_P (part))
|
2795 |
|
|
return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
|
2796 |
|
|
}
|
2797 |
|
|
}
|
2798 |
|
|
|
2799 |
|
|
/* For MEMs simplify_gen_subreg may generate an invalid new address
|
2800 |
|
|
because, e.g., the original address is considered mode-dependent
|
2801 |
|
|
by the target, which restricts simplify_subreg from invoking
|
2802 |
|
|
adjust_address_nv. Instead of preparing fallback support for an
|
2803 |
|
|
invalid address, we call adjust_address_nv directly. */
|
2804 |
|
|
if (MEM_P (cplx))
|
2805 |
|
|
return adjust_address_nv (cplx, imode,
|
2806 |
|
|
imag_p ? GET_MODE_SIZE (imode) : 0);
|
2807 |
|
|
|
2808 |
|
|
/* If the sub-object is at least word sized, then we know that subregging
|
2809 |
|
|
will work. This special case is important, since extract_bit_field
|
2810 |
|
|
wants to operate on integer modes, and there's rarely an OImode to
|
2811 |
|
|
correspond to TCmode. */
|
2812 |
|
|
if (ibitsize >= BITS_PER_WORD
|
2813 |
|
|
/* For hard regs we have exact predicates. Assume we can split
|
2814 |
|
|
the original object if it spans an even number of hard regs.
|
2815 |
|
|
This special case is important for SCmode on 64-bit platforms
|
2816 |
|
|
where the natural size of floating-point regs is 32-bit. */
|
2817 |
|
|
|| (REG_P (cplx)
|
2818 |
|
|
&& REGNO (cplx) < FIRST_PSEUDO_REGISTER
|
2819 |
|
|
&& hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
|
2820 |
|
|
{
|
2821 |
|
|
rtx ret = simplify_gen_subreg (imode, cplx, cmode,
|
2822 |
|
|
imag_p ? GET_MODE_SIZE (imode) : 0);
|
2823 |
|
|
if (ret)
|
2824 |
|
|
return ret;
|
2825 |
|
|
else
|
2826 |
|
|
/* simplify_gen_subreg may fail for sub-word MEMs. */
|
2827 |
|
|
gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
|
2828 |
|
|
}
|
2829 |
|
|
|
2830 |
|
|
return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
|
2831 |
|
|
true, NULL_RTX, imode, imode);
|
2832 |
|
|
}
|
2833 |
|
|
|
2834 |
|
|
/* A subroutine of emit_move_insn_1. Yet another lowpart generator.
|
2835 |
|
|
NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
|
2836 |
|
|
represented in NEW_MODE. If FORCE is true, this will never happen, as
|
2837 |
|
|
we'll force-create a SUBREG if needed. */
|
2838 |
|
|
|
2839 |
|
|
static rtx
|
2840 |
|
|
emit_move_change_mode (enum machine_mode new_mode,
|
2841 |
|
|
enum machine_mode old_mode, rtx x, bool force)
|
2842 |
|
|
{
|
2843 |
|
|
rtx ret;
|
2844 |
|
|
|
2845 |
|
|
if (MEM_P (x))
|
2846 |
|
|
{
|
2847 |
|
|
/* We don't have to worry about changing the address since the
|
2848 |
|
|
size in bytes is supposed to be the same. */
|
2849 |
|
|
if (reload_in_progress)
|
2850 |
|
|
{
|
2851 |
|
|
/* Copy the MEM to change the mode and move any
|
2852 |
|
|
substitutions from the old MEM to the new one. */
|
2853 |
|
|
ret = adjust_address_nv (x, new_mode, 0);
|
2854 |
|
|
copy_replacements (x, ret);
|
2855 |
|
|
}
|
2856 |
|
|
else
|
2857 |
|
|
ret = adjust_address (x, new_mode, 0);
|
2858 |
|
|
}
|
2859 |
|
|
else
|
2860 |
|
|
{
|
2861 |
|
|
/* Note that we do want simplify_subreg's behavior of validating
|
2862 |
|
|
that the new mode is ok for a hard register. If we were to use
|
2863 |
|
|
simplify_gen_subreg, we would create the subreg, but would
|
2864 |
|
|
probably run into the target not being able to implement it. */
|
2865 |
|
|
/* Except, of course, when FORCE is true, when this is exactly what
|
2866 |
|
|
we want. Which is needed for CCmodes on some targets. */
|
2867 |
|
|
if (force)
|
2868 |
|
|
ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
|
2869 |
|
|
else
|
2870 |
|
|
ret = simplify_subreg (new_mode, x, old_mode, 0);
|
2871 |
|
|
}
|
2872 |
|
|
|
2873 |
|
|
return ret;
|
2874 |
|
|
}
|
2875 |
|
|
|
2876 |
|
|
/* A subroutine of emit_move_insn_1. Generate a move from Y into X using
|
2877 |
|
|
an integer mode of the same size as MODE. Returns the instruction
|
2878 |
|
|
emitted, or NULL if such a move could not be generated. */
|
2879 |
|
|
|
2880 |
|
|
static rtx
|
2881 |
|
|
emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
|
2882 |
|
|
{
|
2883 |
|
|
enum machine_mode imode;
|
2884 |
|
|
enum insn_code code;
|
2885 |
|
|
|
2886 |
|
|
/* There must exist a mode of the exact size we require. */
|
2887 |
|
|
imode = int_mode_for_mode (mode);
|
2888 |
|
|
if (imode == BLKmode)
|
2889 |
|
|
return NULL_RTX;
|
2890 |
|
|
|
2891 |
|
|
/* The target must support moves in this mode. */
|
2892 |
|
|
code = mov_optab->handlers[imode].insn_code;
|
2893 |
|
|
if (code == CODE_FOR_nothing)
|
2894 |
|
|
return NULL_RTX;
|
2895 |
|
|
|
2896 |
|
|
x = emit_move_change_mode (imode, mode, x, force);
|
2897 |
|
|
if (x == NULL_RTX)
|
2898 |
|
|
return NULL_RTX;
|
2899 |
|
|
y = emit_move_change_mode (imode, mode, y, force);
|
2900 |
|
|
if (y == NULL_RTX)
|
2901 |
|
|
return NULL_RTX;
|
2902 |
|
|
return emit_insn (GEN_FCN (code) (x, y));
|
2903 |
|
|
}
|
2904 |
|
|
|
2905 |
|
|
/* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
|
2906 |
|
|
Return an equivalent MEM that does not use an auto-increment. */
|
2907 |
|
|
|
2908 |
|
|
static rtx
|
2909 |
|
|
emit_move_resolve_push (enum machine_mode mode, rtx x)
|
2910 |
|
|
{
|
2911 |
|
|
enum rtx_code code = GET_CODE (XEXP (x, 0));
|
2912 |
|
|
HOST_WIDE_INT adjust;
|
2913 |
|
|
rtx temp;
|
2914 |
|
|
|
2915 |
|
|
adjust = GET_MODE_SIZE (mode);
|
2916 |
|
|
#ifdef PUSH_ROUNDING
|
2917 |
|
|
adjust = PUSH_ROUNDING (adjust);
|
2918 |
|
|
#endif
|
2919 |
|
|
if (code == PRE_DEC || code == POST_DEC)
|
2920 |
|
|
adjust = -adjust;
|
2921 |
|
|
else if (code == PRE_MODIFY || code == POST_MODIFY)
|
2922 |
|
|
{
|
2923 |
|
|
rtx expr = XEXP (XEXP (x, 0), 1);
|
2924 |
|
|
HOST_WIDE_INT val;
|
2925 |
|
|
|
2926 |
|
|
gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
|
2927 |
|
|
gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
|
2928 |
|
|
val = INTVAL (XEXP (expr, 1));
|
2929 |
|
|
if (GET_CODE (expr) == MINUS)
|
2930 |
|
|
val = -val;
|
2931 |
|
|
gcc_assert (adjust == val || adjust == -val);
|
2932 |
|
|
adjust = val;
|
2933 |
|
|
}
|
2934 |
|
|
|
2935 |
|
|
/* Do not use anti_adjust_stack, since we don't want to update
|
2936 |
|
|
stack_pointer_delta. */
|
2937 |
|
|
temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
|
2938 |
|
|
GEN_INT (adjust), stack_pointer_rtx,
|
2939 |
|
|
0, OPTAB_LIB_WIDEN);
|
2940 |
|
|
if (temp != stack_pointer_rtx)
|
2941 |
|
|
emit_move_insn (stack_pointer_rtx, temp);
|
2942 |
|
|
|
2943 |
|
|
switch (code)
|
2944 |
|
|
{
|
2945 |
|
|
case PRE_INC:
|
2946 |
|
|
case PRE_DEC:
|
2947 |
|
|
case PRE_MODIFY:
|
2948 |
|
|
temp = stack_pointer_rtx;
|
2949 |
|
|
break;
|
2950 |
|
|
case POST_INC:
|
2951 |
|
|
case POST_DEC:
|
2952 |
|
|
case POST_MODIFY:
|
2953 |
|
|
temp = plus_constant (stack_pointer_rtx, -adjust);
|
2954 |
|
|
break;
|
2955 |
|
|
default:
|
2956 |
|
|
gcc_unreachable ();
|
2957 |
|
|
}
|
2958 |
|
|
|
2959 |
|
|
return replace_equiv_address (x, temp);
|
2960 |
|
|
}
|
2961 |
|
|
|
2962 |
|
|
/* A subroutine of emit_move_complex. Generate a move from Y into X.
|
2963 |
|
|
X is known to satisfy push_operand, and MODE is known to be complex.
|
2964 |
|
|
Returns the last instruction emitted. */
|
2965 |
|
|
|
2966 |
|
|
static rtx
|
2967 |
|
|
emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
|
2968 |
|
|
{
|
2969 |
|
|
enum machine_mode submode = GET_MODE_INNER (mode);
|
2970 |
|
|
bool imag_first;
|
2971 |
|
|
|
2972 |
|
|
#ifdef PUSH_ROUNDING
|
2973 |
|
|
unsigned int submodesize = GET_MODE_SIZE (submode);
|
2974 |
|
|
|
2975 |
|
|
/* In case we output to the stack, but the size is smaller than the
|
2976 |
|
|
machine can push exactly, we need to use move instructions. */
|
2977 |
|
|
if (PUSH_ROUNDING (submodesize) != submodesize)
|
2978 |
|
|
{
|
2979 |
|
|
x = emit_move_resolve_push (mode, x);
|
2980 |
|
|
return emit_move_insn (x, y);
|
2981 |
|
|
}
|
2982 |
|
|
#endif
|
2983 |
|
|
|
2984 |
|
|
/* Note that the real part always precedes the imag part in memory
|
2985 |
|
|
regardless of machine's endianness. */
|
2986 |
|
|
switch (GET_CODE (XEXP (x, 0)))
|
2987 |
|
|
{
|
2988 |
|
|
case PRE_DEC:
|
2989 |
|
|
case POST_DEC:
|
2990 |
|
|
imag_first = true;
|
2991 |
|
|
break;
|
2992 |
|
|
case PRE_INC:
|
2993 |
|
|
case POST_INC:
|
2994 |
|
|
imag_first = false;
|
2995 |
|
|
break;
|
2996 |
|
|
default:
|
2997 |
|
|
gcc_unreachable ();
|
2998 |
|
|
}
|
2999 |
|
|
|
3000 |
|
|
emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
|
3001 |
|
|
read_complex_part (y, imag_first));
|
3002 |
|
|
return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
|
3003 |
|
|
read_complex_part (y, !imag_first));
|
3004 |
|
|
}
|
3005 |
|
|
|
3006 |
|
|
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
|
3007 |
|
|
MODE is known to be complex. Returns the last instruction emitted. */
|
3008 |
|
|
|
3009 |
|
|
static rtx
|
3010 |
|
|
emit_move_complex (enum machine_mode mode, rtx x, rtx y)
|
3011 |
|
|
{
|
3012 |
|
|
bool try_int;
|
3013 |
|
|
|
3014 |
|
|
/* Need to take special care for pushes, to maintain proper ordering
|
3015 |
|
|
of the data, and possibly extra padding. */
|
3016 |
|
|
if (push_operand (x, mode))
|
3017 |
|
|
return emit_move_complex_push (mode, x, y);
|
3018 |
|
|
|
3019 |
|
|
/* See if we can coerce the target into moving both values at once. */
|
3020 |
|
|
|
3021 |
|
|
/* Move floating point as parts. */
|
3022 |
|
|
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
3023 |
|
|
&& mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
|
3024 |
|
|
try_int = false;
|
3025 |
|
|
/* Not possible if the values are inherently not adjacent. */
|
3026 |
|
|
else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
|
3027 |
|
|
try_int = false;
|
3028 |
|
|
/* Is possible if both are registers (or subregs of registers). */
|
3029 |
|
|
else if (register_operand (x, mode) && register_operand (y, mode))
|
3030 |
|
|
try_int = true;
|
3031 |
|
|
/* If one of the operands is a memory, and alignment constraints
|
3032 |
|
|
are friendly enough, we may be able to do combined memory operations.
|
3033 |
|
|
We do not attempt this if Y is a constant because that combination is
|
3034 |
|
|
usually better with the by-parts thing below. */
|
3035 |
|
|
else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
|
3036 |
|
|
&& (!STRICT_ALIGNMENT
|
3037 |
|
|
|| get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
|
3038 |
|
|
try_int = true;
|
3039 |
|
|
else
|
3040 |
|
|
try_int = false;
|
3041 |
|
|
|
3042 |
|
|
if (try_int)
|
3043 |
|
|
{
|
3044 |
|
|
rtx ret;
|
3045 |
|
|
|
3046 |
|
|
/* For memory to memory moves, optimal behavior can be had with the
|
3047 |
|
|
existing block move logic. */
|
3048 |
|
|
if (MEM_P (x) && MEM_P (y))
|
3049 |
|
|
{
|
3050 |
|
|
emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
|
3051 |
|
|
BLOCK_OP_NO_LIBCALL);
|
3052 |
|
|
return get_last_insn ();
|
3053 |
|
|
}
|
3054 |
|
|
|
3055 |
|
|
ret = emit_move_via_integer (mode, x, y, true);
|
3056 |
|
|
if (ret)
|
3057 |
|
|
return ret;
|
3058 |
|
|
}
|
3059 |
|
|
|
3060 |
|
|
/* Show the output dies here. This is necessary for SUBREGs
|
3061 |
|
|
of pseudos since we cannot track their lifetimes correctly;
|
3062 |
|
|
hard regs shouldn't appear here except as return values. */
|
3063 |
|
|
if (!reload_completed && !reload_in_progress
|
3064 |
|
|
&& REG_P (x) && !reg_overlap_mentioned_p (x, y))
|
3065 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
|
3066 |
|
|
|
3067 |
|
|
write_complex_part (x, read_complex_part (y, false), false);
|
3068 |
|
|
write_complex_part (x, read_complex_part (y, true), true);
|
3069 |
|
|
return get_last_insn ();
|
3070 |
|
|
}
|
3071 |
|
|
|
3072 |
|
|
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
|
3073 |
|
|
MODE is known to be MODE_CC. Returns the last instruction emitted. */
|
3074 |
|
|
|
3075 |
|
|
static rtx
|
3076 |
|
|
emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
|
3077 |
|
|
{
|
3078 |
|
|
rtx ret;
|
3079 |
|
|
|
3080 |
|
|
/* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
|
3081 |
|
|
if (mode != CCmode)
|
3082 |
|
|
{
|
3083 |
|
|
enum insn_code code = mov_optab->handlers[CCmode].insn_code;
|
3084 |
|
|
if (code != CODE_FOR_nothing)
|
3085 |
|
|
{
|
3086 |
|
|
x = emit_move_change_mode (CCmode, mode, x, true);
|
3087 |
|
|
y = emit_move_change_mode (CCmode, mode, y, true);
|
3088 |
|
|
return emit_insn (GEN_FCN (code) (x, y));
|
3089 |
|
|
}
|
3090 |
|
|
}
|
3091 |
|
|
|
3092 |
|
|
/* Otherwise, find the MODE_INT mode of the same width. */
|
3093 |
|
|
ret = emit_move_via_integer (mode, x, y, false);
|
3094 |
|
|
gcc_assert (ret != NULL);
|
3095 |
|
|
return ret;
|
3096 |
|
|
}
|
3097 |
|
|
|
3098 |
|
|
/* Return true if word I of OP lies entirely in the
|
3099 |
|
|
undefined bits of a paradoxical subreg. */
|
3100 |
|
|
|
3101 |
|
|
static bool
|
3102 |
|
|
undefined_operand_subword_p (rtx op, int i)
|
3103 |
|
|
{
|
3104 |
|
|
enum machine_mode innermode, innermostmode;
|
3105 |
|
|
int offset;
|
3106 |
|
|
if (GET_CODE (op) != SUBREG)
|
3107 |
|
|
return false;
|
3108 |
|
|
innermode = GET_MODE (op);
|
3109 |
|
|
innermostmode = GET_MODE (SUBREG_REG (op));
|
3110 |
|
|
offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
|
3111 |
|
|
/* The SUBREG_BYTE represents offset, as if the value were stored in
|
3112 |
|
|
memory, except for a paradoxical subreg where we define
|
3113 |
|
|
SUBREG_BYTE to be 0; undo this exception as in
|
3114 |
|
|
simplify_subreg. */
|
3115 |
|
|
if (SUBREG_BYTE (op) == 0
|
3116 |
|
|
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
|
3117 |
|
|
{
|
3118 |
|
|
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
|
3119 |
|
|
if (WORDS_BIG_ENDIAN)
|
3120 |
|
|
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
3121 |
|
|
if (BYTES_BIG_ENDIAN)
|
3122 |
|
|
offset += difference % UNITS_PER_WORD;
|
3123 |
|
|
}
|
3124 |
|
|
if (offset >= GET_MODE_SIZE (innermostmode)
|
3125 |
|
|
|| offset <= -GET_MODE_SIZE (word_mode))
|
3126 |
|
|
return true;
|
3127 |
|
|
return false;
|
3128 |
|
|
}
|
3129 |
|
|
|
3130 |
|
|
/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
|
3131 |
|
|
MODE is any multi-word or full-word mode that lacks a move_insn
|
3132 |
|
|
pattern. Note that you will get better code if you define such
|
3133 |
|
|
patterns, even if they must turn into multiple assembler instructions. */
|
3134 |
|
|
|
3135 |
|
|
static rtx
|
3136 |
|
|
emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
|
3137 |
|
|
{
|
3138 |
|
|
rtx last_insn = 0;
|
3139 |
|
|
rtx seq, inner;
|
3140 |
|
|
bool need_clobber;
|
3141 |
|
|
int i;
|
3142 |
|
|
|
3143 |
|
|
gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
|
3144 |
|
|
|
3145 |
|
|
/* If X is a push on the stack, do the push now and replace
|
3146 |
|
|
X with a reference to the stack pointer. */
|
3147 |
|
|
if (push_operand (x, mode))
|
3148 |
|
|
x = emit_move_resolve_push (mode, x);
|
3149 |
|
|
|
3150 |
|
|
/* If we are in reload, see if either operand is a MEM whose address
|
3151 |
|
|
is scheduled for replacement. */
|
3152 |
|
|
if (reload_in_progress && MEM_P (x)
|
3153 |
|
|
&& (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
|
3154 |
|
|
x = replace_equiv_address_nv (x, inner);
|
3155 |
|
|
if (reload_in_progress && MEM_P (y)
|
3156 |
|
|
&& (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
|
3157 |
|
|
y = replace_equiv_address_nv (y, inner);
|
3158 |
|
|
|
3159 |
|
|
start_sequence ();
|
3160 |
|
|
|
3161 |
|
|
need_clobber = false;
|
3162 |
|
|
for (i = 0;
|
3163 |
|
|
i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
3164 |
|
|
i++)
|
3165 |
|
|
{
|
3166 |
|
|
rtx xpart = operand_subword (x, i, 1, mode);
|
3167 |
|
|
rtx ypart;
|
3168 |
|
|
|
3169 |
|
|
/* Do not generate code for a move if it would come entirely
|
3170 |
|
|
from the undefined bits of a paradoxical subreg. */
|
3171 |
|
|
if (undefined_operand_subword_p (y, i))
|
3172 |
|
|
continue;
|
3173 |
|
|
|
3174 |
|
|
ypart = operand_subword (y, i, 1, mode);
|
3175 |
|
|
|
3176 |
|
|
/* If we can't get a part of Y, put Y into memory if it is a
|
3177 |
|
|
constant. Otherwise, force it into a register. Then we must
|
3178 |
|
|
be able to get a part of Y. */
|
3179 |
|
|
if (ypart == 0 && CONSTANT_P (y))
|
3180 |
|
|
{
|
3181 |
|
|
y = use_anchored_address (force_const_mem (mode, y));
|
3182 |
|
|
ypart = operand_subword (y, i, 1, mode);
|
3183 |
|
|
}
|
3184 |
|
|
else if (ypart == 0)
|
3185 |
|
|
ypart = operand_subword_force (y, i, mode);
|
3186 |
|
|
|
3187 |
|
|
gcc_assert (xpart && ypart);
|
3188 |
|
|
|
3189 |
|
|
need_clobber |= (GET_CODE (xpart) == SUBREG);
|
3190 |
|
|
|
3191 |
|
|
last_insn = emit_move_insn (xpart, ypart);
|
3192 |
|
|
}
|
3193 |
|
|
|
3194 |
|
|
seq = get_insns ();
|
3195 |
|
|
end_sequence ();
|
3196 |
|
|
|
3197 |
|
|
/* Show the output dies here. This is necessary for SUBREGs
|
3198 |
|
|
of pseudos since we cannot track their lifetimes correctly;
|
3199 |
|
|
hard regs shouldn't appear here except as return values.
|
3200 |
|
|
We never want to emit such a clobber after reload. */
|
3201 |
|
|
if (x != y
|
3202 |
|
|
&& ! (reload_in_progress || reload_completed)
|
3203 |
|
|
&& need_clobber != 0)
|
3204 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
|
3205 |
|
|
|
3206 |
|
|
emit_insn (seq);
|
3207 |
|
|
|
3208 |
|
|
return last_insn;
|
3209 |
|
|
}
|
3210 |
|
|
|
3211 |
|
|
/* Low level part of emit_move_insn.
|
3212 |
|
|
Called just like emit_move_insn, but assumes X and Y
|
3213 |
|
|
are basically valid. */
|
3214 |
|
|
|
3215 |
|
|
rtx
|
3216 |
|
|
emit_move_insn_1 (rtx x, rtx y)
|
3217 |
|
|
{
|
3218 |
|
|
enum machine_mode mode = GET_MODE (x);
|
3219 |
|
|
enum insn_code code;
|
3220 |
|
|
|
3221 |
|
|
gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
|
3222 |
|
|
|
3223 |
|
|
code = mov_optab->handlers[mode].insn_code;
|
3224 |
|
|
if (code != CODE_FOR_nothing)
|
3225 |
|
|
return emit_insn (GEN_FCN (code) (x, y));
|
3226 |
|
|
|
3227 |
|
|
/* Expand complex moves by moving real part and imag part. */
|
3228 |
|
|
if (COMPLEX_MODE_P (mode))
|
3229 |
|
|
return emit_move_complex (mode, x, y);
|
3230 |
|
|
|
3231 |
|
|
if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
|
3232 |
|
|
{
|
3233 |
|
|
rtx result = emit_move_via_integer (mode, x, y, true);
|
3234 |
|
|
|
3235 |
|
|
/* If we can't find an integer mode, use multi words. */
|
3236 |
|
|
if (result)
|
3237 |
|
|
return result;
|
3238 |
|
|
else
|
3239 |
|
|
return emit_move_multi_word (mode, x, y);
|
3240 |
|
|
}
|
3241 |
|
|
|
3242 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC)
|
3243 |
|
|
return emit_move_ccmode (mode, x, y);
|
3244 |
|
|
|
3245 |
|
|
/* Try using a move pattern for the corresponding integer mode. This is
|
3246 |
|
|
only safe when simplify_subreg can convert MODE constants into integer
|
3247 |
|
|
constants. At present, it can only do this reliably if the value
|
3248 |
|
|
fits within a HOST_WIDE_INT. */
|
3249 |
|
|
if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
3250 |
|
|
{
|
3251 |
|
|
rtx ret = emit_move_via_integer (mode, x, y, false);
|
3252 |
|
|
if (ret)
|
3253 |
|
|
return ret;
|
3254 |
|
|
}
|
3255 |
|
|
|
3256 |
|
|
return emit_move_multi_word (mode, x, y);
|
3257 |
|
|
}
|
3258 |
|
|
|
3259 |
|
|
/* Generate code to copy Y into X.
|
3260 |
|
|
Both Y and X must have the same mode, except that
|
3261 |
|
|
Y can be a constant with VOIDmode.
|
3262 |
|
|
This mode cannot be BLKmode; use emit_block_move for that.
|
3263 |
|
|
|
3264 |
|
|
Return the last instruction emitted. */
|
3265 |
|
|
|
3266 |
|
|
rtx
|
3267 |
|
|
emit_move_insn (rtx x, rtx y)
|
3268 |
|
|
{
|
3269 |
|
|
enum machine_mode mode = GET_MODE (x);
|
3270 |
|
|
rtx y_cst = NULL_RTX;
|
3271 |
|
|
rtx last_insn, set;
|
3272 |
|
|
|
3273 |
|
|
gcc_assert (mode != BLKmode
|
3274 |
|
|
&& (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
|
3275 |
|
|
|
3276 |
|
|
if (CONSTANT_P (y))
|
3277 |
|
|
{
|
3278 |
|
|
if (optimize
|
3279 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (x))
|
3280 |
|
|
&& (last_insn = compress_float_constant (x, y)))
|
3281 |
|
|
return last_insn;
|
3282 |
|
|
|
3283 |
|
|
y_cst = y;
|
3284 |
|
|
|
3285 |
|
|
if (!LEGITIMATE_CONSTANT_P (y))
|
3286 |
|
|
{
|
3287 |
|
|
y = force_const_mem (mode, y);
|
3288 |
|
|
|
3289 |
|
|
/* If the target's cannot_force_const_mem prevented the spill,
|
3290 |
|
|
assume that the target's move expanders will also take care
|
3291 |
|
|
of the non-legitimate constant. */
|
3292 |
|
|
if (!y)
|
3293 |
|
|
y = y_cst;
|
3294 |
|
|
else
|
3295 |
|
|
y = use_anchored_address (y);
|
3296 |
|
|
}
|
3297 |
|
|
}
|
3298 |
|
|
|
3299 |
|
|
/* If X or Y are memory references, verify that their addresses are valid
|
3300 |
|
|
for the machine. */
|
3301 |
|
|
if (MEM_P (x)
|
3302 |
|
|
&& ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
|
3303 |
|
|
&& ! push_operand (x, GET_MODE (x)))
|
3304 |
|
|
|| (flag_force_addr
|
3305 |
|
|
&& CONSTANT_ADDRESS_P (XEXP (x, 0)))))
|
3306 |
|
|
x = validize_mem (x);
|
3307 |
|
|
|
3308 |
|
|
if (MEM_P (y)
|
3309 |
|
|
&& (! memory_address_p (GET_MODE (y), XEXP (y, 0))
|
3310 |
|
|
|| (flag_force_addr
|
3311 |
|
|
&& CONSTANT_ADDRESS_P (XEXP (y, 0)))))
|
3312 |
|
|
y = validize_mem (y);
|
3313 |
|
|
|
3314 |
|
|
gcc_assert (mode != BLKmode);
|
3315 |
|
|
|
3316 |
|
|
last_insn = emit_move_insn_1 (x, y);
|
3317 |
|
|
|
3318 |
|
|
if (y_cst && REG_P (x)
|
3319 |
|
|
&& (set = single_set (last_insn)) != NULL_RTX
|
3320 |
|
|
&& SET_DEST (set) == x
|
3321 |
|
|
&& ! rtx_equal_p (y_cst, SET_SRC (set)))
|
3322 |
|
|
set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
|
3323 |
|
|
|
3324 |
|
|
return last_insn;
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
/* If Y is representable exactly in a narrower mode, and the target can
|
3328 |
|
|
perform the extension directly from constant or memory, then emit the
|
3329 |
|
|
move as an extension. */
|
3330 |
|
|
|
3331 |
|
|
static rtx
|
3332 |
|
|
compress_float_constant (rtx x, rtx y)
|
3333 |
|
|
{
|
3334 |
|
|
enum machine_mode dstmode = GET_MODE (x);
|
3335 |
|
|
enum machine_mode orig_srcmode = GET_MODE (y);
|
3336 |
|
|
enum machine_mode srcmode;
|
3337 |
|
|
REAL_VALUE_TYPE r;
|
3338 |
|
|
int oldcost, newcost;
|
3339 |
|
|
|
3340 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, y);
|
3341 |
|
|
|
3342 |
|
|
if (LEGITIMATE_CONSTANT_P (y))
|
3343 |
|
|
oldcost = rtx_cost (y, SET);
|
3344 |
|
|
else
|
3345 |
|
|
oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
|
3346 |
|
|
|
3347 |
|
|
for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
|
3348 |
|
|
srcmode != orig_srcmode;
|
3349 |
|
|
srcmode = GET_MODE_WIDER_MODE (srcmode))
|
3350 |
|
|
{
|
3351 |
|
|
enum insn_code ic;
|
3352 |
|
|
rtx trunc_y, last_insn;
|
3353 |
|
|
|
3354 |
|
|
/* Skip if the target can't extend this way. */
|
3355 |
|
|
ic = can_extend_p (dstmode, srcmode, 0);
|
3356 |
|
|
if (ic == CODE_FOR_nothing)
|
3357 |
|
|
continue;
|
3358 |
|
|
|
3359 |
|
|
/* Skip if the narrowed value isn't exact. */
|
3360 |
|
|
if (! exact_real_truncate (srcmode, &r))
|
3361 |
|
|
continue;
|
3362 |
|
|
|
3363 |
|
|
trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
|
3364 |
|
|
|
3365 |
|
|
if (LEGITIMATE_CONSTANT_P (trunc_y))
|
3366 |
|
|
{
|
3367 |
|
|
/* Skip if the target needs extra instructions to perform
|
3368 |
|
|
the extension. */
|
3369 |
|
|
if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
|
3370 |
|
|
continue;
|
3371 |
|
|
/* This is valid, but may not be cheaper than the original. */
|
3372 |
|
|
newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
|
3373 |
|
|
if (oldcost < newcost)
|
3374 |
|
|
continue;
|
3375 |
|
|
}
|
3376 |
|
|
else if (float_extend_from_mem[dstmode][srcmode])
|
3377 |
|
|
{
|
3378 |
|
|
trunc_y = force_const_mem (srcmode, trunc_y);
|
3379 |
|
|
/* This is valid, but may not be cheaper than the original. */
|
3380 |
|
|
newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
|
3381 |
|
|
if (oldcost < newcost)
|
3382 |
|
|
continue;
|
3383 |
|
|
trunc_y = validize_mem (trunc_y);
|
3384 |
|
|
}
|
3385 |
|
|
else
|
3386 |
|
|
continue;
|
3387 |
|
|
|
3388 |
|
|
/* For CSE's benefit, force the compressed constant pool entry
|
3389 |
|
|
into a new pseudo. This constant may be used in different modes,
|
3390 |
|
|
and if not, combine will put things back together for us. */
|
3391 |
|
|
trunc_y = force_reg (srcmode, trunc_y);
|
3392 |
|
|
emit_unop_insn (ic, x, trunc_y, UNKNOWN);
|
3393 |
|
|
last_insn = get_last_insn ();
|
3394 |
|
|
|
3395 |
|
|
if (REG_P (x))
|
3396 |
|
|
set_unique_reg_note (last_insn, REG_EQUAL, y);
|
3397 |
|
|
|
3398 |
|
|
return last_insn;
|
3399 |
|
|
}
|
3400 |
|
|
|
3401 |
|
|
return NULL_RTX;
|
3402 |
|
|
}
|
3403 |
|
|
|
3404 |
|
|
/* Pushing data onto the stack. */
|
3405 |
|
|
|
3406 |
|
|
/* Push a block of length SIZE (perhaps variable)
|
3407 |
|
|
and return an rtx to address the beginning of the block.
|
3408 |
|
|
The value may be virtual_outgoing_args_rtx.
|
3409 |
|
|
|
3410 |
|
|
EXTRA is the number of bytes of padding to push in addition to SIZE.
|
3411 |
|
|
BELOW nonzero means this padding comes at low addresses;
|
3412 |
|
|
otherwise, the padding comes at high addresses. */
|
3413 |
|
|
|
3414 |
|
|
rtx
|
3415 |
|
|
push_block (rtx size, int extra, int below)
|
3416 |
|
|
{
|
3417 |
|
|
rtx temp;
|
3418 |
|
|
|
3419 |
|
|
size = convert_modes (Pmode, ptr_mode, size, 1);
|
3420 |
|
|
if (CONSTANT_P (size))
|
3421 |
|
|
anti_adjust_stack (plus_constant (size, extra));
|
3422 |
|
|
else if (REG_P (size) && extra == 0)
|
3423 |
|
|
anti_adjust_stack (size);
|
3424 |
|
|
else
|
3425 |
|
|
{
|
3426 |
|
|
temp = copy_to_mode_reg (Pmode, size);
|
3427 |
|
|
if (extra != 0)
|
3428 |
|
|
temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
|
3429 |
|
|
temp, 0, OPTAB_LIB_WIDEN);
|
3430 |
|
|
anti_adjust_stack (temp);
|
3431 |
|
|
}
|
3432 |
|
|
|
3433 |
|
|
#ifndef STACK_GROWS_DOWNWARD
|
3434 |
|
|
if (0)
|
3435 |
|
|
#else
|
3436 |
|
|
if (1)
|
3437 |
|
|
#endif
|
3438 |
|
|
{
|
3439 |
|
|
temp = virtual_outgoing_args_rtx;
|
3440 |
|
|
if (extra != 0 && below)
|
3441 |
|
|
temp = plus_constant (temp, extra);
|
3442 |
|
|
}
|
3443 |
|
|
else
|
3444 |
|
|
{
|
3445 |
|
|
if (GET_CODE (size) == CONST_INT)
|
3446 |
|
|
temp = plus_constant (virtual_outgoing_args_rtx,
|
3447 |
|
|
-INTVAL (size) - (below ? 0 : extra));
|
3448 |
|
|
else if (extra != 0 && !below)
|
3449 |
|
|
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
3450 |
|
|
negate_rtx (Pmode, plus_constant (size, extra)));
|
3451 |
|
|
else
|
3452 |
|
|
temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
|
3453 |
|
|
negate_rtx (Pmode, size));
|
3454 |
|
|
}
|
3455 |
|
|
|
3456 |
|
|
return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
|
3457 |
|
|
}
|
3458 |
|
|
|
3459 |
|
|
#ifdef PUSH_ROUNDING
|
3460 |
|
|
|
3461 |
|
|
/* Emit single push insn. */
|
3462 |
|
|
|
3463 |
|
|
static void
|
3464 |
|
|
emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
|
3465 |
|
|
{
|
3466 |
|
|
rtx dest_addr;
|
3467 |
|
|
unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
|
3468 |
|
|
rtx dest;
|
3469 |
|
|
enum insn_code icode;
|
3470 |
|
|
insn_operand_predicate_fn pred;
|
3471 |
|
|
|
3472 |
|
|
stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
|
3473 |
|
|
/* If there is push pattern, use it. Otherwise try old way of throwing
|
3474 |
|
|
MEM representing push operation to move expander. */
|
3475 |
|
|
icode = push_optab->handlers[(int) mode].insn_code;
|
3476 |
|
|
if (icode != CODE_FOR_nothing)
|
3477 |
|
|
{
|
3478 |
|
|
if (((pred = insn_data[(int) icode].operand[0].predicate)
|
3479 |
|
|
&& !((*pred) (x, mode))))
|
3480 |
|
|
x = force_reg (mode, x);
|
3481 |
|
|
emit_insn (GEN_FCN (icode) (x));
|
3482 |
|
|
return;
|
3483 |
|
|
}
|
3484 |
|
|
if (GET_MODE_SIZE (mode) == rounded_size)
|
3485 |
|
|
dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
|
3486 |
|
|
/* If we are to pad downward, adjust the stack pointer first and
|
3487 |
|
|
then store X into the stack location using an offset. This is
|
3488 |
|
|
because emit_move_insn does not know how to pad; it does not have
|
3489 |
|
|
access to type. */
|
3490 |
|
|
else if (FUNCTION_ARG_PADDING (mode, type) == downward)
|
3491 |
|
|
{
|
3492 |
|
|
unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
|
3493 |
|
|
HOST_WIDE_INT offset;
|
3494 |
|
|
|
3495 |
|
|
emit_move_insn (stack_pointer_rtx,
|
3496 |
|
|
expand_binop (Pmode,
|
3497 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
3498 |
|
|
sub_optab,
|
3499 |
|
|
#else
|
3500 |
|
|
add_optab,
|
3501 |
|
|
#endif
|
3502 |
|
|
stack_pointer_rtx,
|
3503 |
|
|
GEN_INT (rounded_size),
|
3504 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN));
|
3505 |
|
|
|
3506 |
|
|
offset = (HOST_WIDE_INT) padding_size;
|
3507 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
3508 |
|
|
if (STACK_PUSH_CODE == POST_DEC)
|
3509 |
|
|
/* We have already decremented the stack pointer, so get the
|
3510 |
|
|
previous value. */
|
3511 |
|
|
offset += (HOST_WIDE_INT) rounded_size;
|
3512 |
|
|
#else
|
3513 |
|
|
if (STACK_PUSH_CODE == POST_INC)
|
3514 |
|
|
/* We have already incremented the stack pointer, so get the
|
3515 |
|
|
previous value. */
|
3516 |
|
|
offset -= (HOST_WIDE_INT) rounded_size;
|
3517 |
|
|
#endif
|
3518 |
|
|
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
|
3519 |
|
|
}
|
3520 |
|
|
else
|
3521 |
|
|
{
|
3522 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
3523 |
|
|
/* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
|
3524 |
|
|
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
3525 |
|
|
GEN_INT (-(HOST_WIDE_INT) rounded_size));
|
3526 |
|
|
#else
|
3527 |
|
|
/* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
|
3528 |
|
|
dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
3529 |
|
|
GEN_INT (rounded_size));
|
3530 |
|
|
#endif
|
3531 |
|
|
dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
|
3532 |
|
|
}
|
3533 |
|
|
|
3534 |
|
|
dest = gen_rtx_MEM (mode, dest_addr);
|
3535 |
|
|
|
3536 |
|
|
if (type != 0)
|
3537 |
|
|
{
|
3538 |
|
|
set_mem_attributes (dest, type, 1);
|
3539 |
|
|
|
3540 |
|
|
if (flag_optimize_sibling_calls)
|
3541 |
|
|
/* Function incoming arguments may overlap with sibling call
|
3542 |
|
|
outgoing arguments and we cannot allow reordering of reads
|
3543 |
|
|
from function arguments with stores to outgoing arguments
|
3544 |
|
|
of sibling calls. */
|
3545 |
|
|
set_mem_alias_set (dest, 0);
|
3546 |
|
|
}
|
3547 |
|
|
emit_move_insn (dest, x);
|
3548 |
|
|
}
|
3549 |
|
|
#endif
|
3550 |
|
|
|
3551 |
|
|
/* Generate code to push X onto the stack, assuming it has mode MODE and
|
3552 |
|
|
type TYPE.
|
3553 |
|
|
MODE is redundant except when X is a CONST_INT (since they don't
|
3554 |
|
|
carry mode info).
|
3555 |
|
|
SIZE is an rtx for the size of data to be copied (in bytes),
|
3556 |
|
|
needed only if X is BLKmode.
|
3557 |
|
|
|
3558 |
|
|
ALIGN (in bits) is maximum alignment we can assume.
|
3559 |
|
|
|
3560 |
|
|
If PARTIAL and REG are both nonzero, then copy that many of the first
|
3561 |
|
|
bytes of X into registers starting with REG, and push the rest of X.
|
3562 |
|
|
The amount of space pushed is decreased by PARTIAL bytes.
|
3563 |
|
|
REG must be a hard register in this case.
|
3564 |
|
|
If REG is zero but PARTIAL is not, take any all others actions for an
|
3565 |
|
|
argument partially in registers, but do not actually load any
|
3566 |
|
|
registers.
|
3567 |
|
|
|
3568 |
|
|
EXTRA is the amount in bytes of extra space to leave next to this arg.
|
3569 |
|
|
This is ignored if an argument block has already been allocated.
|
3570 |
|
|
|
3571 |
|
|
On a machine that lacks real push insns, ARGS_ADDR is the address of
|
3572 |
|
|
the bottom of the argument block for this call. We use indexing off there
|
3573 |
|
|
to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
|
3574 |
|
|
argument block has not been preallocated.
|
3575 |
|
|
|
3576 |
|
|
ARGS_SO_FAR is the size of args previously pushed for this call.
|
3577 |
|
|
|
3578 |
|
|
REG_PARM_STACK_SPACE is nonzero if functions require stack space
|
3579 |
|
|
for arguments passed in registers. If nonzero, it will be the number
|
3580 |
|
|
of bytes required. */
|
3581 |
|
|
|
3582 |
|
|
void
|
3583 |
|
|
emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
|
3584 |
|
|
unsigned int align, int partial, rtx reg, int extra,
|
3585 |
|
|
rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
|
3586 |
|
|
rtx alignment_pad)
|
3587 |
|
|
{
|
3588 |
|
|
rtx xinner;
|
3589 |
|
|
enum direction stack_direction
|
3590 |
|
|
#ifdef STACK_GROWS_DOWNWARD
|
3591 |
|
|
= downward;
|
3592 |
|
|
#else
|
3593 |
|
|
= upward;
|
3594 |
|
|
#endif
|
3595 |
|
|
|
3596 |
|
|
/* Decide where to pad the argument: `downward' for below,
|
3597 |
|
|
`upward' for above, or `none' for don't pad it.
|
3598 |
|
|
Default is below for small data on big-endian machines; else above. */
|
3599 |
|
|
enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
|
3600 |
|
|
|
3601 |
|
|
/* Invert direction if stack is post-decrement.
|
3602 |
|
|
FIXME: why? */
|
3603 |
|
|
if (STACK_PUSH_CODE == POST_DEC)
|
3604 |
|
|
if (where_pad != none)
|
3605 |
|
|
where_pad = (where_pad == downward ? upward : downward);
|
3606 |
|
|
|
3607 |
|
|
xinner = x;
|
3608 |
|
|
|
3609 |
|
|
if (mode == BLKmode)
|
3610 |
|
|
{
|
3611 |
|
|
/* Copy a block into the stack, entirely or partially. */
|
3612 |
|
|
|
3613 |
|
|
rtx temp;
|
3614 |
|
|
int used;
|
3615 |
|
|
int offset;
|
3616 |
|
|
int skip;
|
3617 |
|
|
|
3618 |
|
|
offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
|
3619 |
|
|
used = partial - offset;
|
3620 |
|
|
|
3621 |
|
|
gcc_assert (size);
|
3622 |
|
|
|
3623 |
|
|
/* USED is now the # of bytes we need not copy to the stack
|
3624 |
|
|
because registers will take care of them. */
|
3625 |
|
|
|
3626 |
|
|
if (partial != 0)
|
3627 |
|
|
xinner = adjust_address (xinner, BLKmode, used);
|
3628 |
|
|
|
3629 |
|
|
/* If the partial register-part of the arg counts in its stack size,
|
3630 |
|
|
skip the part of stack space corresponding to the registers.
|
3631 |
|
|
Otherwise, start copying to the beginning of the stack space,
|
3632 |
|
|
by setting SKIP to 0. */
|
3633 |
|
|
skip = (reg_parm_stack_space == 0) ? 0 : used;
|
3634 |
|
|
|
3635 |
|
|
#ifdef PUSH_ROUNDING
|
3636 |
|
|
/* Do it with several push insns if that doesn't take lots of insns
|
3637 |
|
|
and if there is no difficulty with push insns that skip bytes
|
3638 |
|
|
on the stack for alignment purposes. */
|
3639 |
|
|
if (args_addr == 0
|
3640 |
|
|
&& PUSH_ARGS
|
3641 |
|
|
&& GET_CODE (size) == CONST_INT
|
3642 |
|
|
&& skip == 0
|
3643 |
|
|
&& MEM_ALIGN (xinner) >= align
|
3644 |
|
|
&& (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
|
3645 |
|
|
/* Here we avoid the case of a structure whose weak alignment
|
3646 |
|
|
forces many pushes of a small amount of data,
|
3647 |
|
|
and such small pushes do rounding that causes trouble. */
|
3648 |
|
|
&& ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
|
3649 |
|
|
|| align >= BIGGEST_ALIGNMENT
|
3650 |
|
|
|| (PUSH_ROUNDING (align / BITS_PER_UNIT)
|
3651 |
|
|
== (align / BITS_PER_UNIT)))
|
3652 |
|
|
&& PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
|
3653 |
|
|
{
|
3654 |
|
|
/* Push padding now if padding above and stack grows down,
|
3655 |
|
|
or if padding below and stack grows up.
|
3656 |
|
|
But if space already allocated, this has already been done. */
|
3657 |
|
|
if (extra && args_addr == 0
|
3658 |
|
|
&& where_pad != none && where_pad != stack_direction)
|
3659 |
|
|
anti_adjust_stack (GEN_INT (extra));
|
3660 |
|
|
|
3661 |
|
|
move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
|
3662 |
|
|
}
|
3663 |
|
|
else
|
3664 |
|
|
#endif /* PUSH_ROUNDING */
|
3665 |
|
|
{
|
3666 |
|
|
rtx target;
|
3667 |
|
|
|
3668 |
|
|
/* Otherwise make space on the stack and copy the data
|
3669 |
|
|
to the address of that space. */
|
3670 |
|
|
|
3671 |
|
|
/* Deduct words put into registers from the size we must copy. */
|
3672 |
|
|
if (partial != 0)
|
3673 |
|
|
{
|
3674 |
|
|
if (GET_CODE (size) == CONST_INT)
|
3675 |
|
|
size = GEN_INT (INTVAL (size) - used);
|
3676 |
|
|
else
|
3677 |
|
|
size = expand_binop (GET_MODE (size), sub_optab, size,
|
3678 |
|
|
GEN_INT (used), NULL_RTX, 0,
|
3679 |
|
|
OPTAB_LIB_WIDEN);
|
3680 |
|
|
}
|
3681 |
|
|
|
3682 |
|
|
/* Get the address of the stack space.
|
3683 |
|
|
In this case, we do not deal with EXTRA separately.
|
3684 |
|
|
A single stack adjust will do. */
|
3685 |
|
|
if (! args_addr)
|
3686 |
|
|
{
|
3687 |
|
|
temp = push_block (size, extra, where_pad == downward);
|
3688 |
|
|
extra = 0;
|
3689 |
|
|
}
|
3690 |
|
|
else if (GET_CODE (args_so_far) == CONST_INT)
|
3691 |
|
|
temp = memory_address (BLKmode,
|
3692 |
|
|
plus_constant (args_addr,
|
3693 |
|
|
skip + INTVAL (args_so_far)));
|
3694 |
|
|
else
|
3695 |
|
|
temp = memory_address (BLKmode,
|
3696 |
|
|
plus_constant (gen_rtx_PLUS (Pmode,
|
3697 |
|
|
args_addr,
|
3698 |
|
|
args_so_far),
|
3699 |
|
|
skip));
|
3700 |
|
|
|
3701 |
|
|
if (!ACCUMULATE_OUTGOING_ARGS)
|
3702 |
|
|
{
|
3703 |
|
|
/* If the source is referenced relative to the stack pointer,
|
3704 |
|
|
copy it to another register to stabilize it. We do not need
|
3705 |
|
|
to do this if we know that we won't be changing sp. */
|
3706 |
|
|
|
3707 |
|
|
if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
|
3708 |
|
|
|| reg_mentioned_p (virtual_outgoing_args_rtx, temp))
|
3709 |
|
|
temp = copy_to_reg (temp);
|
3710 |
|
|
}
|
3711 |
|
|
|
3712 |
|
|
target = gen_rtx_MEM (BLKmode, temp);
|
3713 |
|
|
|
3714 |
|
|
/* We do *not* set_mem_attributes here, because incoming arguments
|
3715 |
|
|
may overlap with sibling call outgoing arguments and we cannot
|
3716 |
|
|
allow reordering of reads from function arguments with stores
|
3717 |
|
|
to outgoing arguments of sibling calls. We do, however, want
|
3718 |
|
|
to record the alignment of the stack slot. */
|
3719 |
|
|
/* ALIGN may well be better aligned than TYPE, e.g. due to
|
3720 |
|
|
PARM_BOUNDARY. Assume the caller isn't lying. */
|
3721 |
|
|
set_mem_align (target, align);
|
3722 |
|
|
|
3723 |
|
|
emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
|
3724 |
|
|
}
|
3725 |
|
|
}
|
3726 |
|
|
else if (partial > 0)
|
3727 |
|
|
{
|
3728 |
|
|
/* Scalar partly in registers. */
|
3729 |
|
|
|
3730 |
|
|
int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
|
3731 |
|
|
int i;
|
3732 |
|
|
int not_stack;
|
3733 |
|
|
/* # bytes of start of argument
|
3734 |
|
|
that we must make space for but need not store. */
|
3735 |
|
|
int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
|
3736 |
|
|
int args_offset = INTVAL (args_so_far);
|
3737 |
|
|
int skip;
|
3738 |
|
|
|
3739 |
|
|
/* Push padding now if padding above and stack grows down,
|
3740 |
|
|
or if padding below and stack grows up.
|
3741 |
|
|
But if space already allocated, this has already been done. */
|
3742 |
|
|
if (extra && args_addr == 0
|
3743 |
|
|
&& where_pad != none && where_pad != stack_direction)
|
3744 |
|
|
anti_adjust_stack (GEN_INT (extra));
|
3745 |
|
|
|
3746 |
|
|
/* If we make space by pushing it, we might as well push
|
3747 |
|
|
the real data. Otherwise, we can leave OFFSET nonzero
|
3748 |
|
|
and leave the space uninitialized. */
|
3749 |
|
|
if (args_addr == 0)
|
3750 |
|
|
offset = 0;
|
3751 |
|
|
|
3752 |
|
|
/* Now NOT_STACK gets the number of words that we don't need to
|
3753 |
|
|
allocate on the stack. Convert OFFSET to words too. */
|
3754 |
|
|
not_stack = (partial - offset) / UNITS_PER_WORD;
|
3755 |
|
|
offset /= UNITS_PER_WORD;
|
3756 |
|
|
|
3757 |
|
|
/* If the partial register-part of the arg counts in its stack size,
|
3758 |
|
|
skip the part of stack space corresponding to the registers.
|
3759 |
|
|
Otherwise, start copying to the beginning of the stack space,
|
3760 |
|
|
by setting SKIP to 0. */
|
3761 |
|
|
skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
|
3762 |
|
|
|
3763 |
|
|
if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
|
3764 |
|
|
x = validize_mem (force_const_mem (mode, x));
|
3765 |
|
|
|
3766 |
|
|
/* If X is a hard register in a non-integer mode, copy it into a pseudo;
|
3767 |
|
|
SUBREGs of such registers are not allowed. */
|
3768 |
|
|
if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
|
3769 |
|
|
&& GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
|
3770 |
|
|
x = copy_to_reg (x);
|
3771 |
|
|
|
3772 |
|
|
/* Loop over all the words allocated on the stack for this arg. */
|
3773 |
|
|
/* We can do it by words, because any scalar bigger than a word
|
3774 |
|
|
has a size a multiple of a word. */
|
3775 |
|
|
#ifndef PUSH_ARGS_REVERSED
|
3776 |
|
|
for (i = not_stack; i < size; i++)
|
3777 |
|
|
#else
|
3778 |
|
|
for (i = size - 1; i >= not_stack; i--)
|
3779 |
|
|
#endif
|
3780 |
|
|
if (i >= not_stack + offset)
|
3781 |
|
|
emit_push_insn (operand_subword_force (x, i, mode),
|
3782 |
|
|
word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
|
3783 |
|
|
0, args_addr,
|
3784 |
|
|
GEN_INT (args_offset + ((i - not_stack + skip)
|
3785 |
|
|
* UNITS_PER_WORD)),
|
3786 |
|
|
reg_parm_stack_space, alignment_pad);
|
3787 |
|
|
}
|
3788 |
|
|
else
|
3789 |
|
|
{
|
3790 |
|
|
rtx addr;
|
3791 |
|
|
rtx dest;
|
3792 |
|
|
|
3793 |
|
|
/* Push padding now if padding above and stack grows down,
|
3794 |
|
|
or if padding below and stack grows up.
|
3795 |
|
|
But if space already allocated, this has already been done. */
|
3796 |
|
|
if (extra && args_addr == 0
|
3797 |
|
|
&& where_pad != none && where_pad != stack_direction)
|
3798 |
|
|
anti_adjust_stack (GEN_INT (extra));
|
3799 |
|
|
|
3800 |
|
|
#ifdef PUSH_ROUNDING
|
3801 |
|
|
if (args_addr == 0 && PUSH_ARGS)
|
3802 |
|
|
emit_single_push_insn (mode, x, type);
|
3803 |
|
|
else
|
3804 |
|
|
#endif
|
3805 |
|
|
{
|
3806 |
|
|
if (GET_CODE (args_so_far) == CONST_INT)
|
3807 |
|
|
addr
|
3808 |
|
|
= memory_address (mode,
|
3809 |
|
|
plus_constant (args_addr,
|
3810 |
|
|
INTVAL (args_so_far)));
|
3811 |
|
|
else
|
3812 |
|
|
addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
|
3813 |
|
|
args_so_far));
|
3814 |
|
|
dest = gen_rtx_MEM (mode, addr);
|
3815 |
|
|
|
3816 |
|
|
/* We do *not* set_mem_attributes here, because incoming arguments
|
3817 |
|
|
may overlap with sibling call outgoing arguments and we cannot
|
3818 |
|
|
allow reordering of reads from function arguments with stores
|
3819 |
|
|
to outgoing arguments of sibling calls. We do, however, want
|
3820 |
|
|
to record the alignment of the stack slot. */
|
3821 |
|
|
/* ALIGN may well be better aligned than TYPE, e.g. due to
|
3822 |
|
|
PARM_BOUNDARY. Assume the caller isn't lying. */
|
3823 |
|
|
set_mem_align (dest, align);
|
3824 |
|
|
|
3825 |
|
|
emit_move_insn (dest, x);
|
3826 |
|
|
}
|
3827 |
|
|
}
|
3828 |
|
|
|
3829 |
|
|
/* If part should go in registers, copy that part
|
3830 |
|
|
into the appropriate registers. Do this now, at the end,
|
3831 |
|
|
since mem-to-mem copies above may do function calls. */
|
3832 |
|
|
if (partial > 0 && reg != 0)
|
3833 |
|
|
{
|
3834 |
|
|
/* Handle calls that pass values in multiple non-contiguous locations.
|
3835 |
|
|
The Irix 6 ABI has examples of this. */
|
3836 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
3837 |
|
|
emit_group_load (reg, x, type, -1);
|
3838 |
|
|
else
|
3839 |
|
|
{
|
3840 |
|
|
gcc_assert (partial % UNITS_PER_WORD == 0);
|
3841 |
|
|
move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
|
3842 |
|
|
}
|
3843 |
|
|
}
|
3844 |
|
|
|
3845 |
|
|
if (extra && args_addr == 0 && where_pad == stack_direction)
|
3846 |
|
|
anti_adjust_stack (GEN_INT (extra));
|
3847 |
|
|
|
3848 |
|
|
if (alignment_pad && args_addr == 0)
|
3849 |
|
|
anti_adjust_stack (alignment_pad);
|
3850 |
|
|
}
|
3851 |
|
|
|
3852 |
|
|
/* Return X if X can be used as a subtarget in a sequence of arithmetic
|
3853 |
|
|
operations. */
|
3854 |
|
|
|
3855 |
|
|
static rtx
|
3856 |
|
|
get_subtarget (rtx x)
|
3857 |
|
|
{
|
3858 |
|
|
return (optimize
|
3859 |
|
|
|| x == 0
|
3860 |
|
|
/* Only registers can be subtargets. */
|
3861 |
|
|
|| !REG_P (x)
|
3862 |
|
|
/* Don't use hard regs to avoid extending their life. */
|
3863 |
|
|
|| REGNO (x) < FIRST_PSEUDO_REGISTER
|
3864 |
|
|
? 0 : x);
|
3865 |
|
|
}
|
3866 |
|
|
|
3867 |
|
|
/* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
|
3868 |
|
|
FIELD is a bitfield. Returns true if the optimization was successful,
|
3869 |
|
|
and there's nothing else to do. */
|
3870 |
|
|
|
3871 |
|
|
static bool
|
3872 |
|
|
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
|
3873 |
|
|
unsigned HOST_WIDE_INT bitpos,
|
3874 |
|
|
enum machine_mode mode1, rtx str_rtx,
|
3875 |
|
|
tree to, tree src)
|
3876 |
|
|
{
|
3877 |
|
|
enum machine_mode str_mode = GET_MODE (str_rtx);
|
3878 |
|
|
unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
|
3879 |
|
|
tree op0, op1;
|
3880 |
|
|
rtx value, result;
|
3881 |
|
|
optab binop;
|
3882 |
|
|
|
3883 |
|
|
if (mode1 != VOIDmode
|
3884 |
|
|
|| bitsize >= BITS_PER_WORD
|
3885 |
|
|
|| str_bitsize > BITS_PER_WORD
|
3886 |
|
|
|| TREE_SIDE_EFFECTS (to)
|
3887 |
|
|
|| TREE_THIS_VOLATILE (to))
|
3888 |
|
|
return false;
|
3889 |
|
|
|
3890 |
|
|
STRIP_NOPS (src);
|
3891 |
|
|
if (!BINARY_CLASS_P (src)
|
3892 |
|
|
|| TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
|
3893 |
|
|
return false;
|
3894 |
|
|
|
3895 |
|
|
op0 = TREE_OPERAND (src, 0);
|
3896 |
|
|
op1 = TREE_OPERAND (src, 1);
|
3897 |
|
|
STRIP_NOPS (op0);
|
3898 |
|
|
|
3899 |
|
|
if (!operand_equal_p (to, op0, 0))
|
3900 |
|
|
return false;
|
3901 |
|
|
|
3902 |
|
|
if (MEM_P (str_rtx))
|
3903 |
|
|
{
|
3904 |
|
|
unsigned HOST_WIDE_INT offset1;
|
3905 |
|
|
|
3906 |
|
|
if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
|
3907 |
|
|
str_mode = word_mode;
|
3908 |
|
|
str_mode = get_best_mode (bitsize, bitpos,
|
3909 |
|
|
MEM_ALIGN (str_rtx), str_mode, 0);
|
3910 |
|
|
if (str_mode == VOIDmode)
|
3911 |
|
|
return false;
|
3912 |
|
|
str_bitsize = GET_MODE_BITSIZE (str_mode);
|
3913 |
|
|
|
3914 |
|
|
offset1 = bitpos;
|
3915 |
|
|
bitpos %= str_bitsize;
|
3916 |
|
|
offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
|
3917 |
|
|
str_rtx = adjust_address (str_rtx, str_mode, offset1);
|
3918 |
|
|
}
|
3919 |
|
|
else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
|
3920 |
|
|
return false;
|
3921 |
|
|
|
3922 |
|
|
/* If the bit field covers the whole REG/MEM, store_field
|
3923 |
|
|
will likely generate better code. */
|
3924 |
|
|
if (bitsize >= str_bitsize)
|
3925 |
|
|
return false;
|
3926 |
|
|
|
3927 |
|
|
/* We can't handle fields split across multiple entities. */
|
3928 |
|
|
if (bitpos + bitsize > str_bitsize)
|
3929 |
|
|
return false;
|
3930 |
|
|
|
3931 |
|
|
if (BYTES_BIG_ENDIAN)
|
3932 |
|
|
bitpos = str_bitsize - bitpos - bitsize;
|
3933 |
|
|
|
3934 |
|
|
switch (TREE_CODE (src))
|
3935 |
|
|
{
|
3936 |
|
|
case PLUS_EXPR:
|
3937 |
|
|
case MINUS_EXPR:
|
3938 |
|
|
/* For now, just optimize the case of the topmost bitfield
|
3939 |
|
|
where we don't need to do any masking and also
|
3940 |
|
|
1 bit bitfields where xor can be used.
|
3941 |
|
|
We might win by one instruction for the other bitfields
|
3942 |
|
|
too if insv/extv instructions aren't used, so that
|
3943 |
|
|
can be added later. */
|
3944 |
|
|
if (bitpos + bitsize != str_bitsize
|
3945 |
|
|
&& (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
|
3946 |
|
|
break;
|
3947 |
|
|
|
3948 |
|
|
value = expand_expr (op1, NULL_RTX, str_mode, 0);
|
3949 |
|
|
value = convert_modes (str_mode,
|
3950 |
|
|
TYPE_MODE (TREE_TYPE (op1)), value,
|
3951 |
|
|
TYPE_UNSIGNED (TREE_TYPE (op1)));
|
3952 |
|
|
|
3953 |
|
|
/* We may be accessing data outside the field, which means
|
3954 |
|
|
we can alias adjacent data. */
|
3955 |
|
|
if (MEM_P (str_rtx))
|
3956 |
|
|
{
|
3957 |
|
|
str_rtx = shallow_copy_rtx (str_rtx);
|
3958 |
|
|
set_mem_alias_set (str_rtx, 0);
|
3959 |
|
|
set_mem_expr (str_rtx, 0);
|
3960 |
|
|
}
|
3961 |
|
|
|
3962 |
|
|
binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
|
3963 |
|
|
if (bitsize == 1 && bitpos + bitsize != str_bitsize)
|
3964 |
|
|
{
|
3965 |
|
|
value = expand_and (str_mode, value, const1_rtx, NULL);
|
3966 |
|
|
binop = xor_optab;
|
3967 |
|
|
}
|
3968 |
|
|
value = expand_shift (LSHIFT_EXPR, str_mode, value,
|
3969 |
|
|
build_int_cst (NULL_TREE, bitpos),
|
3970 |
|
|
NULL_RTX, 1);
|
3971 |
|
|
result = expand_binop (str_mode, binop, str_rtx,
|
3972 |
|
|
value, str_rtx, 1, OPTAB_WIDEN);
|
3973 |
|
|
if (result != str_rtx)
|
3974 |
|
|
emit_move_insn (str_rtx, result);
|
3975 |
|
|
return true;
|
3976 |
|
|
|
3977 |
|
|
case BIT_IOR_EXPR:
|
3978 |
|
|
case BIT_XOR_EXPR:
|
3979 |
|
|
if (TREE_CODE (op1) != INTEGER_CST)
|
3980 |
|
|
break;
|
3981 |
|
|
value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
|
3982 |
|
|
value = convert_modes (GET_MODE (str_rtx),
|
3983 |
|
|
TYPE_MODE (TREE_TYPE (op1)), value,
|
3984 |
|
|
TYPE_UNSIGNED (TREE_TYPE (op1)));
|
3985 |
|
|
|
3986 |
|
|
/* We may be accessing data outside the field, which means
|
3987 |
|
|
we can alias adjacent data. */
|
3988 |
|
|
if (MEM_P (str_rtx))
|
3989 |
|
|
{
|
3990 |
|
|
str_rtx = shallow_copy_rtx (str_rtx);
|
3991 |
|
|
set_mem_alias_set (str_rtx, 0);
|
3992 |
|
|
set_mem_expr (str_rtx, 0);
|
3993 |
|
|
}
|
3994 |
|
|
|
3995 |
|
|
binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
|
3996 |
|
|
if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
|
3997 |
|
|
{
|
3998 |
|
|
rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
|
3999 |
|
|
- 1);
|
4000 |
|
|
value = expand_and (GET_MODE (str_rtx), value, mask,
|
4001 |
|
|
NULL_RTX);
|
4002 |
|
|
}
|
4003 |
|
|
value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
|
4004 |
|
|
build_int_cst (NULL_TREE, bitpos),
|
4005 |
|
|
NULL_RTX, 1);
|
4006 |
|
|
result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
|
4007 |
|
|
value, str_rtx, 1, OPTAB_WIDEN);
|
4008 |
|
|
if (result != str_rtx)
|
4009 |
|
|
emit_move_insn (str_rtx, result);
|
4010 |
|
|
return true;
|
4011 |
|
|
|
4012 |
|
|
default:
|
4013 |
|
|
break;
|
4014 |
|
|
}
|
4015 |
|
|
|
4016 |
|
|
return false;
|
4017 |
|
|
}
|
4018 |
|
|
|
4019 |
|
|
|
4020 |
|
|
/* Expand an assignment that stores the value of FROM into TO. */
|
4021 |
|
|
|
4022 |
|
|
void
|
4023 |
|
|
expand_assignment (tree to, tree from)
|
4024 |
|
|
{
|
4025 |
|
|
rtx to_rtx = 0;
|
4026 |
|
|
rtx result;
|
4027 |
|
|
|
4028 |
|
|
/* Don't crash if the lhs of the assignment was erroneous. */
|
4029 |
|
|
if (TREE_CODE (to) == ERROR_MARK)
|
4030 |
|
|
{
|
4031 |
|
|
result = expand_normal (from);
|
4032 |
|
|
return;
|
4033 |
|
|
}
|
4034 |
|
|
|
4035 |
|
|
/* Optimize away no-op moves without side-effects. */
|
4036 |
|
|
if (operand_equal_p (to, from, 0))
|
4037 |
|
|
return;
|
4038 |
|
|
|
4039 |
|
|
/* Assignment of a structure component needs special treatment
|
4040 |
|
|
if the structure component's rtx is not simply a MEM.
|
4041 |
|
|
Assignment of an array element at a constant index, and assignment of
|
4042 |
|
|
an array element in an unaligned packed structure field, has the same
|
4043 |
|
|
problem. */
|
4044 |
|
|
if (handled_component_p (to)
|
4045 |
|
|
|| TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
|
4046 |
|
|
{
|
4047 |
|
|
enum machine_mode mode1;
|
4048 |
|
|
HOST_WIDE_INT bitsize, bitpos;
|
4049 |
|
|
tree offset;
|
4050 |
|
|
int unsignedp;
|
4051 |
|
|
int volatilep = 0;
|
4052 |
|
|
tree tem;
|
4053 |
|
|
|
4054 |
|
|
push_temp_slots ();
|
4055 |
|
|
tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
|
4056 |
|
|
&unsignedp, &volatilep, true);
|
4057 |
|
|
|
4058 |
|
|
/* If we are going to use store_bit_field and extract_bit_field,
|
4059 |
|
|
make sure to_rtx will be safe for multiple use. */
|
4060 |
|
|
|
4061 |
|
|
to_rtx = expand_normal (tem);
|
4062 |
|
|
|
4063 |
|
|
if (offset != 0)
|
4064 |
|
|
{
|
4065 |
|
|
rtx offset_rtx;
|
4066 |
|
|
|
4067 |
|
|
if (!MEM_P (to_rtx))
|
4068 |
|
|
{
|
4069 |
|
|
/* We can get constant negative offsets into arrays with broken
|
4070 |
|
|
user code. Translate this to a trap instead of ICEing. */
|
4071 |
|
|
gcc_assert (TREE_CODE (offset) == INTEGER_CST);
|
4072 |
|
|
expand_builtin_trap ();
|
4073 |
|
|
to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
|
4074 |
|
|
}
|
4075 |
|
|
|
4076 |
|
|
offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
|
4077 |
|
|
#ifdef POINTERS_EXTEND_UNSIGNED
|
4078 |
|
|
if (GET_MODE (offset_rtx) != Pmode)
|
4079 |
|
|
offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
|
4080 |
|
|
#else
|
4081 |
|
|
if (GET_MODE (offset_rtx) != ptr_mode)
|
4082 |
|
|
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
4083 |
|
|
#endif
|
4084 |
|
|
|
4085 |
|
|
/* A constant address in TO_RTX can have VOIDmode, we must not try
|
4086 |
|
|
to call force_reg for that case. Avoid that case. */
|
4087 |
|
|
if (MEM_P (to_rtx)
|
4088 |
|
|
&& GET_MODE (to_rtx) == BLKmode
|
4089 |
|
|
&& GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
|
4090 |
|
|
&& bitsize > 0
|
4091 |
|
|
&& (bitpos % bitsize) == 0
|
4092 |
|
|
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
|
4093 |
|
|
&& MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
|
4094 |
|
|
{
|
4095 |
|
|
to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
|
4096 |
|
|
bitpos = 0;
|
4097 |
|
|
}
|
4098 |
|
|
|
4099 |
|
|
to_rtx = offset_address (to_rtx, offset_rtx,
|
4100 |
|
|
highest_pow2_factor_for_target (to,
|
4101 |
|
|
offset));
|
4102 |
|
|
}
|
4103 |
|
|
|
4104 |
|
|
/* Handle expand_expr of a complex value returning a CONCAT. */
|
4105 |
|
|
if (GET_CODE (to_rtx) == CONCAT)
|
4106 |
|
|
{
|
4107 |
|
|
if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
|
4108 |
|
|
{
|
4109 |
|
|
gcc_assert (bitpos == 0);
|
4110 |
|
|
result = store_expr (from, to_rtx, false);
|
4111 |
|
|
}
|
4112 |
|
|
else
|
4113 |
|
|
{
|
4114 |
|
|
gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
|
4115 |
|
|
result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
|
4116 |
|
|
}
|
4117 |
|
|
}
|
4118 |
|
|
else
|
4119 |
|
|
{
|
4120 |
|
|
if (MEM_P (to_rtx))
|
4121 |
|
|
{
|
4122 |
|
|
/* If the field is at offset zero, we could have been given the
|
4123 |
|
|
DECL_RTX of the parent struct. Don't munge it. */
|
4124 |
|
|
to_rtx = shallow_copy_rtx (to_rtx);
|
4125 |
|
|
|
4126 |
|
|
set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
|
4127 |
|
|
|
4128 |
|
|
/* Deal with volatile and readonly fields. The former is only
|
4129 |
|
|
done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
|
4130 |
|
|
if (volatilep)
|
4131 |
|
|
MEM_VOLATILE_P (to_rtx) = 1;
|
4132 |
|
|
if (component_uses_parent_alias_set (to))
|
4133 |
|
|
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
|
4134 |
|
|
}
|
4135 |
|
|
|
4136 |
|
|
if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
|
4137 |
|
|
to_rtx, to, from))
|
4138 |
|
|
result = NULL;
|
4139 |
|
|
else
|
4140 |
|
|
result = store_field (to_rtx, bitsize, bitpos, mode1, from,
|
4141 |
|
|
TREE_TYPE (tem), get_alias_set (to));
|
4142 |
|
|
}
|
4143 |
|
|
|
4144 |
|
|
if (result)
|
4145 |
|
|
preserve_temp_slots (result);
|
4146 |
|
|
free_temp_slots ();
|
4147 |
|
|
pop_temp_slots ();
|
4148 |
|
|
return;
|
4149 |
|
|
}
|
4150 |
|
|
|
4151 |
|
|
/* If the rhs is a function call and its value is not an aggregate,
|
4152 |
|
|
call the function before we start to compute the lhs.
|
4153 |
|
|
This is needed for correct code for cases such as
|
4154 |
|
|
val = setjmp (buf) on machines where reference to val
|
4155 |
|
|
requires loading up part of an address in a separate insn.
|
4156 |
|
|
|
4157 |
|
|
Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
|
4158 |
|
|
since it might be a promoted variable where the zero- or sign- extension
|
4159 |
|
|
needs to be done. Handling this in the normal way is safe because no
|
4160 |
|
|
computation is done before the call. */
|
4161 |
|
|
if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
|
4162 |
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
|
4163 |
|
|
&& ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
|
4164 |
|
|
&& REG_P (DECL_RTL (to))))
|
4165 |
|
|
{
|
4166 |
|
|
rtx value;
|
4167 |
|
|
|
4168 |
|
|
push_temp_slots ();
|
4169 |
|
|
value = expand_normal (from);
|
4170 |
|
|
if (to_rtx == 0)
|
4171 |
|
|
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
4172 |
|
|
|
4173 |
|
|
/* Handle calls that return values in multiple non-contiguous locations.
|
4174 |
|
|
The Irix 6 ABI has examples of this. */
|
4175 |
|
|
if (GET_CODE (to_rtx) == PARALLEL)
|
4176 |
|
|
emit_group_load (to_rtx, value, TREE_TYPE (from),
|
4177 |
|
|
int_size_in_bytes (TREE_TYPE (from)));
|
4178 |
|
|
else if (GET_MODE (to_rtx) == BLKmode)
|
4179 |
|
|
emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
|
4180 |
|
|
else
|
4181 |
|
|
{
|
4182 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (to)))
|
4183 |
|
|
value = convert_memory_address (GET_MODE (to_rtx), value);
|
4184 |
|
|
emit_move_insn (to_rtx, value);
|
4185 |
|
|
}
|
4186 |
|
|
preserve_temp_slots (to_rtx);
|
4187 |
|
|
free_temp_slots ();
|
4188 |
|
|
pop_temp_slots ();
|
4189 |
|
|
return;
|
4190 |
|
|
}
|
4191 |
|
|
|
4192 |
|
|
/* Ordinary treatment. Expand TO to get a REG or MEM rtx.
|
4193 |
|
|
Don't re-expand if it was expanded already (in COMPONENT_REF case). */
|
4194 |
|
|
|
4195 |
|
|
if (to_rtx == 0)
|
4196 |
|
|
to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
4197 |
|
|
|
4198 |
|
|
/* Don't move directly into a return register. */
|
4199 |
|
|
if (TREE_CODE (to) == RESULT_DECL
|
4200 |
|
|
&& (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
|
4201 |
|
|
{
|
4202 |
|
|
rtx temp;
|
4203 |
|
|
|
4204 |
|
|
push_temp_slots ();
|
4205 |
|
|
temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
|
4206 |
|
|
|
4207 |
|
|
if (GET_CODE (to_rtx) == PARALLEL)
|
4208 |
|
|
emit_group_load (to_rtx, temp, TREE_TYPE (from),
|
4209 |
|
|
int_size_in_bytes (TREE_TYPE (from)));
|
4210 |
|
|
else
|
4211 |
|
|
emit_move_insn (to_rtx, temp);
|
4212 |
|
|
|
4213 |
|
|
preserve_temp_slots (to_rtx);
|
4214 |
|
|
free_temp_slots ();
|
4215 |
|
|
pop_temp_slots ();
|
4216 |
|
|
return;
|
4217 |
|
|
}
|
4218 |
|
|
|
4219 |
|
|
/* In case we are returning the contents of an object which overlaps
|
4220 |
|
|
the place the value is being stored, use a safe function when copying
|
4221 |
|
|
a value through a pointer into a structure value return block. */
|
4222 |
|
|
if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
|
4223 |
|
|
&& current_function_returns_struct
|
4224 |
|
|
&& !current_function_returns_pcc_struct)
|
4225 |
|
|
{
|
4226 |
|
|
rtx from_rtx, size;
|
4227 |
|
|
|
4228 |
|
|
push_temp_slots ();
|
4229 |
|
|
size = expr_size (from);
|
4230 |
|
|
from_rtx = expand_normal (from);
|
4231 |
|
|
|
4232 |
|
|
emit_library_call (memmove_libfunc, LCT_NORMAL,
|
4233 |
|
|
VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
|
4234 |
|
|
XEXP (from_rtx, 0), Pmode,
|
4235 |
|
|
convert_to_mode (TYPE_MODE (sizetype),
|
4236 |
|
|
size, TYPE_UNSIGNED (sizetype)),
|
4237 |
|
|
TYPE_MODE (sizetype));
|
4238 |
|
|
|
4239 |
|
|
preserve_temp_slots (to_rtx);
|
4240 |
|
|
free_temp_slots ();
|
4241 |
|
|
pop_temp_slots ();
|
4242 |
|
|
return;
|
4243 |
|
|
}
|
4244 |
|
|
|
4245 |
|
|
/* Compute FROM and store the value in the rtx we got. */
|
4246 |
|
|
|
4247 |
|
|
push_temp_slots ();
|
4248 |
|
|
result = store_expr (from, to_rtx, 0);
|
4249 |
|
|
preserve_temp_slots (result);
|
4250 |
|
|
free_temp_slots ();
|
4251 |
|
|
pop_temp_slots ();
|
4252 |
|
|
return;
|
4253 |
|
|
}
|
4254 |
|
|
|
4255 |
|
|
/* Generate code for computing expression EXP,
|
4256 |
|
|
and storing the value into TARGET.
|
4257 |
|
|
|
4258 |
|
|
If the mode is BLKmode then we may return TARGET itself.
|
4259 |
|
|
It turns out that in BLKmode it doesn't cause a problem.
|
4260 |
|
|
because C has no operators that could combine two different
|
4261 |
|
|
assignments into the same BLKmode object with different values
|
4262 |
|
|
with no sequence point. Will other languages need this to
|
4263 |
|
|
be more thorough?
|
4264 |
|
|
|
4265 |
|
|
If CALL_PARAM_P is nonzero, this is a store into a call param on the
|
4266 |
|
|
stack, and block moves may need to be treated specially. */
|
4267 |
|
|
|
4268 |
|
|
rtx
|
4269 |
|
|
store_expr (tree exp, rtx target, int call_param_p)
|
4270 |
|
|
{
|
4271 |
|
|
rtx temp;
|
4272 |
|
|
rtx alt_rtl = NULL_RTX;
|
4273 |
|
|
int dont_return_target = 0;
|
4274 |
|
|
|
4275 |
|
|
if (VOID_TYPE_P (TREE_TYPE (exp)))
|
4276 |
|
|
{
|
4277 |
|
|
/* C++ can generate ?: expressions with a throw expression in one
|
4278 |
|
|
branch and an rvalue in the other. Here, we resolve attempts to
|
4279 |
|
|
store the throw expression's nonexistent result. */
|
4280 |
|
|
gcc_assert (!call_param_p);
|
4281 |
|
|
expand_expr (exp, const0_rtx, VOIDmode, 0);
|
4282 |
|
|
return NULL_RTX;
|
4283 |
|
|
}
|
4284 |
|
|
if (TREE_CODE (exp) == COMPOUND_EXPR)
|
4285 |
|
|
{
|
4286 |
|
|
/* Perform first part of compound expression, then assign from second
|
4287 |
|
|
part. */
|
4288 |
|
|
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
|
4289 |
|
|
call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
|
4290 |
|
|
return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
|
4291 |
|
|
}
|
4292 |
|
|
else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
|
4293 |
|
|
{
|
4294 |
|
|
/* For conditional expression, get safe form of the target. Then
|
4295 |
|
|
test the condition, doing the appropriate assignment on either
|
4296 |
|
|
side. This avoids the creation of unnecessary temporaries.
|
4297 |
|
|
For non-BLKmode, it is more efficient not to do this. */
|
4298 |
|
|
|
4299 |
|
|
rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
|
4300 |
|
|
|
4301 |
|
|
do_pending_stack_adjust ();
|
4302 |
|
|
NO_DEFER_POP;
|
4303 |
|
|
jumpifnot (TREE_OPERAND (exp, 0), lab1);
|
4304 |
|
|
store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
|
4305 |
|
|
emit_jump_insn (gen_jump (lab2));
|
4306 |
|
|
emit_barrier ();
|
4307 |
|
|
emit_label (lab1);
|
4308 |
|
|
store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
|
4309 |
|
|
emit_label (lab2);
|
4310 |
|
|
OK_DEFER_POP;
|
4311 |
|
|
|
4312 |
|
|
return NULL_RTX;
|
4313 |
|
|
}
|
4314 |
|
|
else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
|
4315 |
|
|
/* If this is a scalar in a register that is stored in a wider mode
|
4316 |
|
|
than the declared mode, compute the result into its declared mode
|
4317 |
|
|
and then convert to the wider mode. Our value is the computed
|
4318 |
|
|
expression. */
|
4319 |
|
|
{
|
4320 |
|
|
rtx inner_target = 0;
|
4321 |
|
|
|
4322 |
|
|
/* We can do the conversion inside EXP, which will often result
|
4323 |
|
|
in some optimizations. Do the conversion in two steps: first
|
4324 |
|
|
change the signedness, if needed, then the extend. But don't
|
4325 |
|
|
do this if the type of EXP is a subtype of something else
|
4326 |
|
|
since then the conversion might involve more than just
|
4327 |
|
|
converting modes. */
|
4328 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
|
4329 |
|
|
&& TREE_TYPE (TREE_TYPE (exp)) == 0
|
4330 |
|
|
&& (!lang_hooks.reduce_bit_field_operations
|
4331 |
|
|
|| (GET_MODE_PRECISION (GET_MODE (target))
|
4332 |
|
|
== TYPE_PRECISION (TREE_TYPE (exp)))))
|
4333 |
|
|
{
|
4334 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (exp))
|
4335 |
|
|
!= SUBREG_PROMOTED_UNSIGNED_P (target))
|
4336 |
|
|
exp = fold_convert
|
4337 |
|
|
(lang_hooks.types.signed_or_unsigned_type
|
4338 |
|
|
(SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
|
4339 |
|
|
|
4340 |
|
|
exp = fold_convert (lang_hooks.types.type_for_mode
|
4341 |
|
|
(GET_MODE (SUBREG_REG (target)),
|
4342 |
|
|
SUBREG_PROMOTED_UNSIGNED_P (target)),
|
4343 |
|
|
exp);
|
4344 |
|
|
|
4345 |
|
|
inner_target = SUBREG_REG (target);
|
4346 |
|
|
}
|
4347 |
|
|
|
4348 |
|
|
temp = expand_expr (exp, inner_target, VOIDmode,
|
4349 |
|
|
call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
|
4350 |
|
|
|
4351 |
|
|
/* If TEMP is a VOIDmode constant, use convert_modes to make
|
4352 |
|
|
sure that we properly convert it. */
|
4353 |
|
|
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
|
4354 |
|
|
{
|
4355 |
|
|
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
|
4356 |
|
|
temp, SUBREG_PROMOTED_UNSIGNED_P (target));
|
4357 |
|
|
temp = convert_modes (GET_MODE (SUBREG_REG (target)),
|
4358 |
|
|
GET_MODE (target), temp,
|
4359 |
|
|
SUBREG_PROMOTED_UNSIGNED_P (target));
|
4360 |
|
|
}
|
4361 |
|
|
|
4362 |
|
|
convert_move (SUBREG_REG (target), temp,
|
4363 |
|
|
SUBREG_PROMOTED_UNSIGNED_P (target));
|
4364 |
|
|
|
4365 |
|
|
return NULL_RTX;
|
4366 |
|
|
}
|
4367 |
|
|
else
|
4368 |
|
|
{
|
4369 |
|
|
temp = expand_expr_real (exp, target, GET_MODE (target),
|
4370 |
|
|
(call_param_p
|
4371 |
|
|
? EXPAND_STACK_PARM : EXPAND_NORMAL),
|
4372 |
|
|
&alt_rtl);
|
4373 |
|
|
/* Return TARGET if it's a specified hardware register.
|
4374 |
|
|
If TARGET is a volatile mem ref, either return TARGET
|
4375 |
|
|
or return a reg copied *from* TARGET; ANSI requires this.
|
4376 |
|
|
|
4377 |
|
|
Otherwise, if TEMP is not TARGET, return TEMP
|
4378 |
|
|
if it is constant (for efficiency),
|
4379 |
|
|
or if we really want the correct value. */
|
4380 |
|
|
if (!(target && REG_P (target)
|
4381 |
|
|
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
|
4382 |
|
|
&& !(MEM_P (target) && MEM_VOLATILE_P (target))
|
4383 |
|
|
&& ! rtx_equal_p (temp, target)
|
4384 |
|
|
&& CONSTANT_P (temp))
|
4385 |
|
|
dont_return_target = 1;
|
4386 |
|
|
}
|
4387 |
|
|
|
4388 |
|
|
/* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
|
4389 |
|
|
the same as that of TARGET, adjust the constant. This is needed, for
|
4390 |
|
|
example, in case it is a CONST_DOUBLE and we want only a word-sized
|
4391 |
|
|
value. */
|
4392 |
|
|
if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
|
4393 |
|
|
&& TREE_CODE (exp) != ERROR_MARK
|
4394 |
|
|
&& GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
|
4395 |
|
|
temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
|
4396 |
|
|
temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
|
4397 |
|
|
|
4398 |
|
|
/* If value was not generated in the target, store it there.
|
4399 |
|
|
Convert the value to TARGET's type first if necessary and emit the
|
4400 |
|
|
pending incrementations that have been queued when expanding EXP.
|
4401 |
|
|
Note that we cannot emit the whole queue blindly because this will
|
4402 |
|
|
effectively disable the POST_INC optimization later.
|
4403 |
|
|
|
4404 |
|
|
If TEMP and TARGET compare equal according to rtx_equal_p, but
|
4405 |
|
|
one or both of them are volatile memory refs, we have to distinguish
|
4406 |
|
|
two cases:
|
4407 |
|
|
- expand_expr has used TARGET. In this case, we must not generate
|
4408 |
|
|
another copy. This can be detected by TARGET being equal according
|
4409 |
|
|
to == .
|
4410 |
|
|
- expand_expr has not used TARGET - that means that the source just
|
4411 |
|
|
happens to have the same RTX form. Since temp will have been created
|
4412 |
|
|
by expand_expr, it will compare unequal according to == .
|
4413 |
|
|
We must generate a copy in this case, to reach the correct number
|
4414 |
|
|
of volatile memory references. */
|
4415 |
|
|
|
4416 |
|
|
if ((! rtx_equal_p (temp, target)
|
4417 |
|
|
|| (temp != target && (side_effects_p (temp)
|
4418 |
|
|
|| side_effects_p (target))))
|
4419 |
|
|
&& TREE_CODE (exp) != ERROR_MARK
|
4420 |
|
|
/* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
|
4421 |
|
|
but TARGET is not valid memory reference, TEMP will differ
|
4422 |
|
|
from TARGET although it is really the same location. */
|
4423 |
|
|
&& !(alt_rtl && rtx_equal_p (alt_rtl, target))
|
4424 |
|
|
/* If there's nothing to copy, don't bother. Don't call
|
4425 |
|
|
expr_size unless necessary, because some front-ends (C++)
|
4426 |
|
|
expr_size-hook must not be given objects that are not
|
4427 |
|
|
supposed to be bit-copied or bit-initialized. */
|
4428 |
|
|
&& expr_size (exp) != const0_rtx)
|
4429 |
|
|
{
|
4430 |
|
|
if (GET_MODE (temp) != GET_MODE (target)
|
4431 |
|
|
&& GET_MODE (temp) != VOIDmode)
|
4432 |
|
|
{
|
4433 |
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
|
4434 |
|
|
if (dont_return_target)
|
4435 |
|
|
{
|
4436 |
|
|
/* In this case, we will return TEMP,
|
4437 |
|
|
so make sure it has the proper mode.
|
4438 |
|
|
But don't forget to store the value into TARGET. */
|
4439 |
|
|
temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
|
4440 |
|
|
emit_move_insn (target, temp);
|
4441 |
|
|
}
|
4442 |
|
|
else
|
4443 |
|
|
convert_move (target, temp, unsignedp);
|
4444 |
|
|
}
|
4445 |
|
|
|
4446 |
|
|
else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
|
4447 |
|
|
{
|
4448 |
|
|
/* Handle copying a string constant into an array. The string
|
4449 |
|
|
constant may be shorter than the array. So copy just the string's
|
4450 |
|
|
actual length, and clear the rest. First get the size of the data
|
4451 |
|
|
type of the string, which is actually the size of the target. */
|
4452 |
|
|
rtx size = expr_size (exp);
|
4453 |
|
|
|
4454 |
|
|
if (GET_CODE (size) == CONST_INT
|
4455 |
|
|
&& INTVAL (size) < TREE_STRING_LENGTH (exp))
|
4456 |
|
|
emit_block_move (target, temp, size,
|
4457 |
|
|
(call_param_p
|
4458 |
|
|
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
4459 |
|
|
else
|
4460 |
|
|
{
|
4461 |
|
|
/* Compute the size of the data to copy from the string. */
|
4462 |
|
|
tree copy_size
|
4463 |
|
|
= size_binop (MIN_EXPR,
|
4464 |
|
|
make_tree (sizetype, size),
|
4465 |
|
|
size_int (TREE_STRING_LENGTH (exp)));
|
4466 |
|
|
rtx copy_size_rtx
|
4467 |
|
|
= expand_expr (copy_size, NULL_RTX, VOIDmode,
|
4468 |
|
|
(call_param_p
|
4469 |
|
|
? EXPAND_STACK_PARM : EXPAND_NORMAL));
|
4470 |
|
|
rtx label = 0;
|
4471 |
|
|
|
4472 |
|
|
/* Copy that much. */
|
4473 |
|
|
copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
|
4474 |
|
|
TYPE_UNSIGNED (sizetype));
|
4475 |
|
|
emit_block_move (target, temp, copy_size_rtx,
|
4476 |
|
|
(call_param_p
|
4477 |
|
|
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
4478 |
|
|
|
4479 |
|
|
/* Figure out how much is left in TARGET that we have to clear.
|
4480 |
|
|
Do all calculations in ptr_mode. */
|
4481 |
|
|
if (GET_CODE (copy_size_rtx) == CONST_INT)
|
4482 |
|
|
{
|
4483 |
|
|
size = plus_constant (size, -INTVAL (copy_size_rtx));
|
4484 |
|
|
target = adjust_address (target, BLKmode,
|
4485 |
|
|
INTVAL (copy_size_rtx));
|
4486 |
|
|
}
|
4487 |
|
|
else
|
4488 |
|
|
{
|
4489 |
|
|
size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
|
4490 |
|
|
copy_size_rtx, NULL_RTX, 0,
|
4491 |
|
|
OPTAB_LIB_WIDEN);
|
4492 |
|
|
|
4493 |
|
|
#ifdef POINTERS_EXTEND_UNSIGNED
|
4494 |
|
|
if (GET_MODE (copy_size_rtx) != Pmode)
|
4495 |
|
|
copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
|
4496 |
|
|
TYPE_UNSIGNED (sizetype));
|
4497 |
|
|
#endif
|
4498 |
|
|
|
4499 |
|
|
target = offset_address (target, copy_size_rtx,
|
4500 |
|
|
highest_pow2_factor (copy_size));
|
4501 |
|
|
label = gen_label_rtx ();
|
4502 |
|
|
emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
|
4503 |
|
|
GET_MODE (size), 0, label);
|
4504 |
|
|
}
|
4505 |
|
|
|
4506 |
|
|
if (size != const0_rtx)
|
4507 |
|
|
clear_storage (target, size, BLOCK_OP_NORMAL);
|
4508 |
|
|
|
4509 |
|
|
if (label)
|
4510 |
|
|
emit_label (label);
|
4511 |
|
|
}
|
4512 |
|
|
}
|
4513 |
|
|
/* Handle calls that return values in multiple non-contiguous locations.
|
4514 |
|
|
The Irix 6 ABI has examples of this. */
|
4515 |
|
|
else if (GET_CODE (target) == PARALLEL)
|
4516 |
|
|
emit_group_load (target, temp, TREE_TYPE (exp),
|
4517 |
|
|
int_size_in_bytes (TREE_TYPE (exp)));
|
4518 |
|
|
else if (GET_MODE (temp) == BLKmode)
|
4519 |
|
|
emit_block_move (target, temp, expr_size (exp),
|
4520 |
|
|
(call_param_p
|
4521 |
|
|
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
4522 |
|
|
else
|
4523 |
|
|
{
|
4524 |
|
|
temp = force_operand (temp, target);
|
4525 |
|
|
if (temp != target)
|
4526 |
|
|
emit_move_insn (target, temp);
|
4527 |
|
|
}
|
4528 |
|
|
}
|
4529 |
|
|
|
4530 |
|
|
return NULL_RTX;
|
4531 |
|
|
}
|
4532 |
|
|
|
4533 |
|
|
/* Helper for categorize_ctor_elements. Identical interface. */
|
4534 |
|
|
|
4535 |
|
|
static bool
|
4536 |
|
|
categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
|
4537 |
|
|
HOST_WIDE_INT *p_elt_count,
|
4538 |
|
|
bool *p_must_clear)
|
4539 |
|
|
{
|
4540 |
|
|
unsigned HOST_WIDE_INT idx;
|
4541 |
|
|
HOST_WIDE_INT nz_elts, elt_count;
|
4542 |
|
|
tree value, purpose;
|
4543 |
|
|
|
4544 |
|
|
/* Whether CTOR is a valid constant initializer, in accordance with what
|
4545 |
|
|
initializer_constant_valid_p does. If inferred from the constructor
|
4546 |
|
|
elements, true until proven otherwise. */
|
4547 |
|
|
bool const_from_elts_p = constructor_static_from_elts_p (ctor);
|
4548 |
|
|
bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
|
4549 |
|
|
|
4550 |
|
|
nz_elts = 0;
|
4551 |
|
|
elt_count = 0;
|
4552 |
|
|
|
4553 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
|
4554 |
|
|
{
|
4555 |
|
|
HOST_WIDE_INT mult;
|
4556 |
|
|
|
4557 |
|
|
mult = 1;
|
4558 |
|
|
if (TREE_CODE (purpose) == RANGE_EXPR)
|
4559 |
|
|
{
|
4560 |
|
|
tree lo_index = TREE_OPERAND (purpose, 0);
|
4561 |
|
|
tree hi_index = TREE_OPERAND (purpose, 1);
|
4562 |
|
|
|
4563 |
|
|
if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
|
4564 |
|
|
mult = (tree_low_cst (hi_index, 1)
|
4565 |
|
|
- tree_low_cst (lo_index, 1) + 1);
|
4566 |
|
|
}
|
4567 |
|
|
|
4568 |
|
|
switch (TREE_CODE (value))
|
4569 |
|
|
{
|
4570 |
|
|
case CONSTRUCTOR:
|
4571 |
|
|
{
|
4572 |
|
|
HOST_WIDE_INT nz = 0, ic = 0;
|
4573 |
|
|
|
4574 |
|
|
bool const_elt_p
|
4575 |
|
|
= categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
|
4576 |
|
|
|
4577 |
|
|
nz_elts += mult * nz;
|
4578 |
|
|
elt_count += mult * ic;
|
4579 |
|
|
|
4580 |
|
|
if (const_from_elts_p && const_p)
|
4581 |
|
|
const_p = const_elt_p;
|
4582 |
|
|
}
|
4583 |
|
|
break;
|
4584 |
|
|
|
4585 |
|
|
case INTEGER_CST:
|
4586 |
|
|
case REAL_CST:
|
4587 |
|
|
if (!initializer_zerop (value))
|
4588 |
|
|
nz_elts += mult;
|
4589 |
|
|
elt_count += mult;
|
4590 |
|
|
break;
|
4591 |
|
|
|
4592 |
|
|
case STRING_CST:
|
4593 |
|
|
nz_elts += mult * TREE_STRING_LENGTH (value);
|
4594 |
|
|
elt_count += mult * TREE_STRING_LENGTH (value);
|
4595 |
|
|
break;
|
4596 |
|
|
|
4597 |
|
|
case COMPLEX_CST:
|
4598 |
|
|
if (!initializer_zerop (TREE_REALPART (value)))
|
4599 |
|
|
nz_elts += mult;
|
4600 |
|
|
if (!initializer_zerop (TREE_IMAGPART (value)))
|
4601 |
|
|
nz_elts += mult;
|
4602 |
|
|
elt_count += mult;
|
4603 |
|
|
break;
|
4604 |
|
|
|
4605 |
|
|
case VECTOR_CST:
|
4606 |
|
|
{
|
4607 |
|
|
tree v;
|
4608 |
|
|
for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
|
4609 |
|
|
{
|
4610 |
|
|
if (!initializer_zerop (TREE_VALUE (v)))
|
4611 |
|
|
nz_elts += mult;
|
4612 |
|
|
elt_count += mult;
|
4613 |
|
|
}
|
4614 |
|
|
}
|
4615 |
|
|
break;
|
4616 |
|
|
|
4617 |
|
|
default:
|
4618 |
|
|
nz_elts += mult;
|
4619 |
|
|
elt_count += mult;
|
4620 |
|
|
|
4621 |
|
|
if (const_from_elts_p && const_p)
|
4622 |
|
|
const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
|
4623 |
|
|
!= NULL_TREE;
|
4624 |
|
|
break;
|
4625 |
|
|
}
|
4626 |
|
|
}
|
4627 |
|
|
|
4628 |
|
|
if (!*p_must_clear
|
4629 |
|
|
&& (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
|
4630 |
|
|
|| TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
|
4631 |
|
|
{
|
4632 |
|
|
tree init_sub_type;
|
4633 |
|
|
bool clear_this = true;
|
4634 |
|
|
|
4635 |
|
|
if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
|
4636 |
|
|
{
|
4637 |
|
|
/* We don't expect more than one element of the union to be
|
4638 |
|
|
initialized. Not sure what we should do otherwise... */
|
4639 |
|
|
gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
|
4640 |
|
|
== 1);
|
4641 |
|
|
|
4642 |
|
|
init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
|
4643 |
|
|
CONSTRUCTOR_ELTS (ctor),
|
4644 |
|
|
0)->value);
|
4645 |
|
|
|
4646 |
|
|
/* ??? We could look at each element of the union, and find the
|
4647 |
|
|
largest element. Which would avoid comparing the size of the
|
4648 |
|
|
initialized element against any tail padding in the union.
|
4649 |
|
|
Doesn't seem worth the effort... */
|
4650 |
|
|
if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
|
4651 |
|
|
TYPE_SIZE (init_sub_type)) == 1)
|
4652 |
|
|
{
|
4653 |
|
|
/* And now we have to find out if the element itself is fully
|
4654 |
|
|
constructed. E.g. for union { struct { int a, b; } s; } u
|
4655 |
|
|
= { .s = { .a = 1 } }. */
|
4656 |
|
|
if (elt_count == count_type_elements (init_sub_type, false))
|
4657 |
|
|
clear_this = false;
|
4658 |
|
|
}
|
4659 |
|
|
}
|
4660 |
|
|
|
4661 |
|
|
*p_must_clear = clear_this;
|
4662 |
|
|
}
|
4663 |
|
|
|
4664 |
|
|
*p_nz_elts += nz_elts;
|
4665 |
|
|
*p_elt_count += elt_count;
|
4666 |
|
|
|
4667 |
|
|
return const_p;
|
4668 |
|
|
}
|
4669 |
|
|
|
4670 |
|
|
/* Examine CTOR to discover:
|
4671 |
|
|
* how many scalar fields are set to nonzero values,
|
4672 |
|
|
and place it in *P_NZ_ELTS;
|
4673 |
|
|
* how many scalar fields in total are in CTOR,
|
4674 |
|
|
and place it in *P_ELT_COUNT.
|
4675 |
|
|
* if a type is a union, and the initializer from the constructor
|
4676 |
|
|
is not the largest element in the union, then set *p_must_clear.
|
4677 |
|
|
|
4678 |
|
|
Return whether or not CTOR is a valid static constant initializer, the same
|
4679 |
|
|
as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
|
4680 |
|
|
|
4681 |
|
|
bool
|
4682 |
|
|
categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
|
4683 |
|
|
HOST_WIDE_INT *p_elt_count,
|
4684 |
|
|
bool *p_must_clear)
|
4685 |
|
|
{
|
4686 |
|
|
*p_nz_elts = 0;
|
4687 |
|
|
*p_elt_count = 0;
|
4688 |
|
|
*p_must_clear = false;
|
4689 |
|
|
|
4690 |
|
|
return
|
4691 |
|
|
categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
|
4692 |
|
|
}
|
4693 |
|
|
|
4694 |
|
|
/* Count the number of scalars in TYPE. Return -1 on overflow or
|
4695 |
|
|
variable-sized. If ALLOW_FLEXARR is true, don't count flexible
|
4696 |
|
|
array member at the end of the structure. */
|
4697 |
|
|
|
4698 |
|
|
HOST_WIDE_INT
|
4699 |
|
|
count_type_elements (tree type, bool allow_flexarr)
|
4700 |
|
|
{
|
4701 |
|
|
const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
|
4702 |
|
|
switch (TREE_CODE (type))
|
4703 |
|
|
{
|
4704 |
|
|
case ARRAY_TYPE:
|
4705 |
|
|
{
|
4706 |
|
|
tree telts = array_type_nelts (type);
|
4707 |
|
|
if (telts && host_integerp (telts, 1))
|
4708 |
|
|
{
|
4709 |
|
|
HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
|
4710 |
|
|
HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
|
4711 |
|
|
if (n == 0)
|
4712 |
|
|
return 0;
|
4713 |
|
|
else if (max / n > m)
|
4714 |
|
|
return n * m;
|
4715 |
|
|
}
|
4716 |
|
|
return -1;
|
4717 |
|
|
}
|
4718 |
|
|
|
4719 |
|
|
case RECORD_TYPE:
|
4720 |
|
|
{
|
4721 |
|
|
HOST_WIDE_INT n = 0, t;
|
4722 |
|
|
tree f;
|
4723 |
|
|
|
4724 |
|
|
for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
|
4725 |
|
|
if (TREE_CODE (f) == FIELD_DECL)
|
4726 |
|
|
{
|
4727 |
|
|
t = count_type_elements (TREE_TYPE (f), false);
|
4728 |
|
|
if (t < 0)
|
4729 |
|
|
{
|
4730 |
|
|
/* Check for structures with flexible array member. */
|
4731 |
|
|
tree tf = TREE_TYPE (f);
|
4732 |
|
|
if (allow_flexarr
|
4733 |
|
|
&& TREE_CHAIN (f) == NULL
|
4734 |
|
|
&& TREE_CODE (tf) == ARRAY_TYPE
|
4735 |
|
|
&& TYPE_DOMAIN (tf)
|
4736 |
|
|
&& TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
|
4737 |
|
|
&& integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
|
4738 |
|
|
&& !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
|
4739 |
|
|
&& int_size_in_bytes (type) >= 0)
|
4740 |
|
|
break;
|
4741 |
|
|
|
4742 |
|
|
return -1;
|
4743 |
|
|
}
|
4744 |
|
|
n += t;
|
4745 |
|
|
}
|
4746 |
|
|
|
4747 |
|
|
return n;
|
4748 |
|
|
}
|
4749 |
|
|
|
4750 |
|
|
case UNION_TYPE:
|
4751 |
|
|
case QUAL_UNION_TYPE:
|
4752 |
|
|
{
|
4753 |
|
|
/* Ho hum. How in the world do we guess here? Clearly it isn't
|
4754 |
|
|
right to count the fields. Guess based on the number of words. */
|
4755 |
|
|
HOST_WIDE_INT n = int_size_in_bytes (type);
|
4756 |
|
|
if (n < 0)
|
4757 |
|
|
return -1;
|
4758 |
|
|
return n / UNITS_PER_WORD;
|
4759 |
|
|
}
|
4760 |
|
|
|
4761 |
|
|
case COMPLEX_TYPE:
|
4762 |
|
|
return 2;
|
4763 |
|
|
|
4764 |
|
|
case VECTOR_TYPE:
|
4765 |
|
|
return TYPE_VECTOR_SUBPARTS (type);
|
4766 |
|
|
|
4767 |
|
|
case INTEGER_TYPE:
|
4768 |
|
|
case REAL_TYPE:
|
4769 |
|
|
case ENUMERAL_TYPE:
|
4770 |
|
|
case BOOLEAN_TYPE:
|
4771 |
|
|
case POINTER_TYPE:
|
4772 |
|
|
case OFFSET_TYPE:
|
4773 |
|
|
case REFERENCE_TYPE:
|
4774 |
|
|
return 1;
|
4775 |
|
|
|
4776 |
|
|
case VOID_TYPE:
|
4777 |
|
|
case METHOD_TYPE:
|
4778 |
|
|
case FUNCTION_TYPE:
|
4779 |
|
|
case LANG_TYPE:
|
4780 |
|
|
default:
|
4781 |
|
|
gcc_unreachable ();
|
4782 |
|
|
}
|
4783 |
|
|
}
|
4784 |
|
|
|
4785 |
|
|
/* Return 1 if EXP contains mostly (3/4) zeros. */
|
4786 |
|
|
|
4787 |
|
|
static int
|
4788 |
|
|
mostly_zeros_p (tree exp)
|
4789 |
|
|
{
|
4790 |
|
|
if (TREE_CODE (exp) == CONSTRUCTOR)
|
4791 |
|
|
|
4792 |
|
|
{
|
4793 |
|
|
HOST_WIDE_INT nz_elts, count, elts;
|
4794 |
|
|
bool must_clear;
|
4795 |
|
|
|
4796 |
|
|
categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
|
4797 |
|
|
if (must_clear)
|
4798 |
|
|
return 1;
|
4799 |
|
|
|
4800 |
|
|
elts = count_type_elements (TREE_TYPE (exp), false);
|
4801 |
|
|
|
4802 |
|
|
return nz_elts < elts / 4;
|
4803 |
|
|
}
|
4804 |
|
|
|
4805 |
|
|
return initializer_zerop (exp);
|
4806 |
|
|
}
|
4807 |
|
|
|
4808 |
|
|
/* Return 1 if EXP contains all zeros. */
|
4809 |
|
|
|
4810 |
|
|
static int
|
4811 |
|
|
all_zeros_p (tree exp)
|
4812 |
|
|
{
|
4813 |
|
|
if (TREE_CODE (exp) == CONSTRUCTOR)
|
4814 |
|
|
|
4815 |
|
|
{
|
4816 |
|
|
HOST_WIDE_INT nz_elts, count;
|
4817 |
|
|
bool must_clear;
|
4818 |
|
|
|
4819 |
|
|
categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
|
4820 |
|
|
return nz_elts == 0;
|
4821 |
|
|
}
|
4822 |
|
|
|
4823 |
|
|
return initializer_zerop (exp);
|
4824 |
|
|
}
|
4825 |
|
|
|
4826 |
|
|
/* Helper function for store_constructor.
|
4827 |
|
|
TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
|
4828 |
|
|
TYPE is the type of the CONSTRUCTOR, not the element type.
|
4829 |
|
|
CLEARED is as for store_constructor.
|
4830 |
|
|
ALIAS_SET is the alias set to use for any stores.
|
4831 |
|
|
|
4832 |
|
|
This provides a recursive shortcut back to store_constructor when it isn't
|
4833 |
|
|
necessary to go through store_field. This is so that we can pass through
|
4834 |
|
|
the cleared field to let store_constructor know that we may not have to
|
4835 |
|
|
clear a substructure if the outer structure has already been cleared. */
|
4836 |
|
|
|
4837 |
|
|
static void
|
4838 |
|
|
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
|
4839 |
|
|
HOST_WIDE_INT bitpos, enum machine_mode mode,
|
4840 |
|
|
tree exp, tree type, int cleared, int alias_set)
|
4841 |
|
|
{
|
4842 |
|
|
if (TREE_CODE (exp) == CONSTRUCTOR
|
4843 |
|
|
/* We can only call store_constructor recursively if the size and
|
4844 |
|
|
bit position are on a byte boundary. */
|
4845 |
|
|
&& bitpos % BITS_PER_UNIT == 0
|
4846 |
|
|
&& (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
|
4847 |
|
|
/* If we have a nonzero bitpos for a register target, then we just
|
4848 |
|
|
let store_field do the bitfield handling. This is unlikely to
|
4849 |
|
|
generate unnecessary clear instructions anyways. */
|
4850 |
|
|
&& (bitpos == 0 || MEM_P (target)))
|
4851 |
|
|
{
|
4852 |
|
|
if (MEM_P (target))
|
4853 |
|
|
target
|
4854 |
|
|
= adjust_address (target,
|
4855 |
|
|
GET_MODE (target) == BLKmode
|
4856 |
|
|
|| 0 != (bitpos
|
4857 |
|
|
% GET_MODE_ALIGNMENT (GET_MODE (target)))
|
4858 |
|
|
? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
|
4859 |
|
|
|
4860 |
|
|
|
4861 |
|
|
/* Update the alias set, if required. */
|
4862 |
|
|
if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
|
4863 |
|
|
&& MEM_ALIAS_SET (target) != 0)
|
4864 |
|
|
{
|
4865 |
|
|
target = copy_rtx (target);
|
4866 |
|
|
set_mem_alias_set (target, alias_set);
|
4867 |
|
|
}
|
4868 |
|
|
|
4869 |
|
|
store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
|
4870 |
|
|
}
|
4871 |
|
|
else
|
4872 |
|
|
store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
|
4873 |
|
|
}
|
4874 |
|
|
|
4875 |
|
|
/* Store the value of constructor EXP into the rtx TARGET.
|
4876 |
|
|
TARGET is either a REG or a MEM; we know it cannot conflict, since
|
4877 |
|
|
safe_from_p has been called.
|
4878 |
|
|
CLEARED is true if TARGET is known to have been zero'd.
|
4879 |
|
|
SIZE is the number of bytes of TARGET we are allowed to modify: this
|
4880 |
|
|
may not be the same as the size of EXP if we are assigning to a field
|
4881 |
|
|
which has been packed to exclude padding bits. */
|
4882 |
|
|
|
4883 |
|
|
static void
|
4884 |
|
|
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
|
4885 |
|
|
{
|
4886 |
|
|
tree type = TREE_TYPE (exp);
|
4887 |
|
|
#ifdef WORD_REGISTER_OPERATIONS
|
4888 |
|
|
HOST_WIDE_INT exp_size = int_size_in_bytes (type);
|
4889 |
|
|
#endif
|
4890 |
|
|
|
4891 |
|
|
switch (TREE_CODE (type))
|
4892 |
|
|
{
|
4893 |
|
|
case RECORD_TYPE:
|
4894 |
|
|
case UNION_TYPE:
|
4895 |
|
|
case QUAL_UNION_TYPE:
|
4896 |
|
|
{
|
4897 |
|
|
unsigned HOST_WIDE_INT idx;
|
4898 |
|
|
tree field, value;
|
4899 |
|
|
|
4900 |
|
|
/* If size is zero or the target is already cleared, do nothing. */
|
4901 |
|
|
if (size == 0 || cleared)
|
4902 |
|
|
cleared = 1;
|
4903 |
|
|
/* We either clear the aggregate or indicate the value is dead. */
|
4904 |
|
|
else if ((TREE_CODE (type) == UNION_TYPE
|
4905 |
|
|
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
4906 |
|
|
&& ! CONSTRUCTOR_ELTS (exp))
|
4907 |
|
|
/* If the constructor is empty, clear the union. */
|
4908 |
|
|
{
|
4909 |
|
|
clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
|
4910 |
|
|
cleared = 1;
|
4911 |
|
|
}
|
4912 |
|
|
|
4913 |
|
|
/* If we are building a static constructor into a register,
|
4914 |
|
|
set the initial value as zero so we can fold the value into
|
4915 |
|
|
a constant. But if more than one register is involved,
|
4916 |
|
|
this probably loses. */
|
4917 |
|
|
else if (REG_P (target) && TREE_STATIC (exp)
|
4918 |
|
|
&& GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
|
4919 |
|
|
{
|
4920 |
|
|
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
4921 |
|
|
cleared = 1;
|
4922 |
|
|
}
|
4923 |
|
|
|
4924 |
|
|
/* If the constructor has fewer fields than the structure or
|
4925 |
|
|
if we are initializing the structure to mostly zeros, clear
|
4926 |
|
|
the whole structure first. Don't do this if TARGET is a
|
4927 |
|
|
register whose mode size isn't equal to SIZE since
|
4928 |
|
|
clear_storage can't handle this case. */
|
4929 |
|
|
else if (size > 0
|
4930 |
|
|
&& (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
|
4931 |
|
|
!= fields_length (type))
|
4932 |
|
|
|| mostly_zeros_p (exp))
|
4933 |
|
|
&& (!REG_P (target)
|
4934 |
|
|
|| ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
|
4935 |
|
|
== size)))
|
4936 |
|
|
{
|
4937 |
|
|
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
|
4938 |
|
|
cleared = 1;
|
4939 |
|
|
}
|
4940 |
|
|
|
4941 |
|
|
if (! cleared)
|
4942 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
4943 |
|
|
|
4944 |
|
|
/* Store each element of the constructor into the
|
4945 |
|
|
corresponding field of TARGET. */
|
4946 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
|
4947 |
|
|
{
|
4948 |
|
|
enum machine_mode mode;
|
4949 |
|
|
HOST_WIDE_INT bitsize;
|
4950 |
|
|
HOST_WIDE_INT bitpos = 0;
|
4951 |
|
|
tree offset;
|
4952 |
|
|
rtx to_rtx = target;
|
4953 |
|
|
|
4954 |
|
|
/* Just ignore missing fields. We cleared the whole
|
4955 |
|
|
structure, above, if any fields are missing. */
|
4956 |
|
|
if (field == 0)
|
4957 |
|
|
continue;
|
4958 |
|
|
|
4959 |
|
|
if (cleared && initializer_zerop (value))
|
4960 |
|
|
continue;
|
4961 |
|
|
|
4962 |
|
|
if (host_integerp (DECL_SIZE (field), 1))
|
4963 |
|
|
bitsize = tree_low_cst (DECL_SIZE (field), 1);
|
4964 |
|
|
else
|
4965 |
|
|
bitsize = -1;
|
4966 |
|
|
|
4967 |
|
|
mode = DECL_MODE (field);
|
4968 |
|
|
if (DECL_BIT_FIELD (field))
|
4969 |
|
|
mode = VOIDmode;
|
4970 |
|
|
|
4971 |
|
|
offset = DECL_FIELD_OFFSET (field);
|
4972 |
|
|
if (host_integerp (offset, 0)
|
4973 |
|
|
&& host_integerp (bit_position (field), 0))
|
4974 |
|
|
{
|
4975 |
|
|
bitpos = int_bit_position (field);
|
4976 |
|
|
offset = 0;
|
4977 |
|
|
}
|
4978 |
|
|
else
|
4979 |
|
|
bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
|
4980 |
|
|
|
4981 |
|
|
if (offset)
|
4982 |
|
|
{
|
4983 |
|
|
rtx offset_rtx;
|
4984 |
|
|
|
4985 |
|
|
offset
|
4986 |
|
|
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
|
4987 |
|
|
make_tree (TREE_TYPE (exp),
|
4988 |
|
|
target));
|
4989 |
|
|
|
4990 |
|
|
offset_rtx = expand_normal (offset);
|
4991 |
|
|
gcc_assert (MEM_P (to_rtx));
|
4992 |
|
|
|
4993 |
|
|
#ifdef POINTERS_EXTEND_UNSIGNED
|
4994 |
|
|
if (GET_MODE (offset_rtx) != Pmode)
|
4995 |
|
|
offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
|
4996 |
|
|
#else
|
4997 |
|
|
if (GET_MODE (offset_rtx) != ptr_mode)
|
4998 |
|
|
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
4999 |
|
|
#endif
|
5000 |
|
|
|
5001 |
|
|
to_rtx = offset_address (to_rtx, offset_rtx,
|
5002 |
|
|
highest_pow2_factor (offset));
|
5003 |
|
|
}
|
5004 |
|
|
|
5005 |
|
|
#ifdef WORD_REGISTER_OPERATIONS
|
5006 |
|
|
/* If this initializes a field that is smaller than a
|
5007 |
|
|
word, at the start of a word, try to widen it to a full
|
5008 |
|
|
word. This special case allows us to output C++ member
|
5009 |
|
|
function initializations in a form that the optimizers
|
5010 |
|
|
can understand. */
|
5011 |
|
|
if (REG_P (target)
|
5012 |
|
|
&& bitsize < BITS_PER_WORD
|
5013 |
|
|
&& bitpos % BITS_PER_WORD == 0
|
5014 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
5015 |
|
|
&& TREE_CODE (value) == INTEGER_CST
|
5016 |
|
|
&& exp_size >= 0
|
5017 |
|
|
&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
|
5018 |
|
|
{
|
5019 |
|
|
tree type = TREE_TYPE (value);
|
5020 |
|
|
|
5021 |
|
|
if (TYPE_PRECISION (type) < BITS_PER_WORD)
|
5022 |
|
|
{
|
5023 |
|
|
type = lang_hooks.types.type_for_size
|
5024 |
|
|
(BITS_PER_WORD, TYPE_UNSIGNED (type));
|
5025 |
|
|
value = fold_convert (type, value);
|
5026 |
|
|
}
|
5027 |
|
|
|
5028 |
|
|
if (BYTES_BIG_ENDIAN)
|
5029 |
|
|
value
|
5030 |
|
|
= fold_build2 (LSHIFT_EXPR, type, value,
|
5031 |
|
|
build_int_cst (type,
|
5032 |
|
|
BITS_PER_WORD - bitsize));
|
5033 |
|
|
bitsize = BITS_PER_WORD;
|
5034 |
|
|
mode = word_mode;
|
5035 |
|
|
}
|
5036 |
|
|
#endif
|
5037 |
|
|
|
5038 |
|
|
if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
|
5039 |
|
|
&& DECL_NONADDRESSABLE_P (field))
|
5040 |
|
|
{
|
5041 |
|
|
to_rtx = copy_rtx (to_rtx);
|
5042 |
|
|
MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
|
5043 |
|
|
}
|
5044 |
|
|
|
5045 |
|
|
store_constructor_field (to_rtx, bitsize, bitpos, mode,
|
5046 |
|
|
value, type, cleared,
|
5047 |
|
|
get_alias_set (TREE_TYPE (field)));
|
5048 |
|
|
}
|
5049 |
|
|
break;
|
5050 |
|
|
}
|
5051 |
|
|
case ARRAY_TYPE:
|
5052 |
|
|
{
|
5053 |
|
|
tree value, index;
|
5054 |
|
|
unsigned HOST_WIDE_INT i;
|
5055 |
|
|
int need_to_clear;
|
5056 |
|
|
tree domain;
|
5057 |
|
|
tree elttype = TREE_TYPE (type);
|
5058 |
|
|
int const_bounds_p;
|
5059 |
|
|
HOST_WIDE_INT minelt = 0;
|
5060 |
|
|
HOST_WIDE_INT maxelt = 0;
|
5061 |
|
|
|
5062 |
|
|
domain = TYPE_DOMAIN (type);
|
5063 |
|
|
const_bounds_p = (TYPE_MIN_VALUE (domain)
|
5064 |
|
|
&& TYPE_MAX_VALUE (domain)
|
5065 |
|
|
&& host_integerp (TYPE_MIN_VALUE (domain), 0)
|
5066 |
|
|
&& host_integerp (TYPE_MAX_VALUE (domain), 0));
|
5067 |
|
|
|
5068 |
|
|
/* If we have constant bounds for the range of the type, get them. */
|
5069 |
|
|
if (const_bounds_p)
|
5070 |
|
|
{
|
5071 |
|
|
minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
|
5072 |
|
|
maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
|
5073 |
|
|
}
|
5074 |
|
|
|
5075 |
|
|
/* If the constructor has fewer elements than the array, clear
|
5076 |
|
|
the whole array first. Similarly if this is static
|
5077 |
|
|
constructor of a non-BLKmode object. */
|
5078 |
|
|
if (cleared)
|
5079 |
|
|
need_to_clear = 0;
|
5080 |
|
|
else if (REG_P (target) && TREE_STATIC (exp))
|
5081 |
|
|
need_to_clear = 1;
|
5082 |
|
|
else
|
5083 |
|
|
{
|
5084 |
|
|
unsigned HOST_WIDE_INT idx;
|
5085 |
|
|
tree index, value;
|
5086 |
|
|
HOST_WIDE_INT count = 0, zero_count = 0;
|
5087 |
|
|
need_to_clear = ! const_bounds_p;
|
5088 |
|
|
|
5089 |
|
|
/* This loop is a more accurate version of the loop in
|
5090 |
|
|
mostly_zeros_p (it handles RANGE_EXPR in an index). It
|
5091 |
|
|
is also needed to check for missing elements. */
|
5092 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
|
5093 |
|
|
{
|
5094 |
|
|
HOST_WIDE_INT this_node_count;
|
5095 |
|
|
|
5096 |
|
|
if (need_to_clear)
|
5097 |
|
|
break;
|
5098 |
|
|
|
5099 |
|
|
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
|
5100 |
|
|
{
|
5101 |
|
|
tree lo_index = TREE_OPERAND (index, 0);
|
5102 |
|
|
tree hi_index = TREE_OPERAND (index, 1);
|
5103 |
|
|
|
5104 |
|
|
if (! host_integerp (lo_index, 1)
|
5105 |
|
|
|| ! host_integerp (hi_index, 1))
|
5106 |
|
|
{
|
5107 |
|
|
need_to_clear = 1;
|
5108 |
|
|
break;
|
5109 |
|
|
}
|
5110 |
|
|
|
5111 |
|
|
this_node_count = (tree_low_cst (hi_index, 1)
|
5112 |
|
|
- tree_low_cst (lo_index, 1) + 1);
|
5113 |
|
|
}
|
5114 |
|
|
else
|
5115 |
|
|
this_node_count = 1;
|
5116 |
|
|
|
5117 |
|
|
count += this_node_count;
|
5118 |
|
|
if (mostly_zeros_p (value))
|
5119 |
|
|
zero_count += this_node_count;
|
5120 |
|
|
}
|
5121 |
|
|
|
5122 |
|
|
/* Clear the entire array first if there are any missing
|
5123 |
|
|
elements, or if the incidence of zero elements is >=
|
5124 |
|
|
75%. */
|
5125 |
|
|
if (! need_to_clear
|
5126 |
|
|
&& (count < maxelt - minelt + 1
|
5127 |
|
|
|| 4 * zero_count >= 3 * count))
|
5128 |
|
|
need_to_clear = 1;
|
5129 |
|
|
}
|
5130 |
|
|
|
5131 |
|
|
if (need_to_clear && size > 0)
|
5132 |
|
|
{
|
5133 |
|
|
if (REG_P (target))
|
5134 |
|
|
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
5135 |
|
|
else
|
5136 |
|
|
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
|
5137 |
|
|
cleared = 1;
|
5138 |
|
|
}
|
5139 |
|
|
|
5140 |
|
|
if (!cleared && REG_P (target))
|
5141 |
|
|
/* Inform later passes that the old value is dead. */
|
5142 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
5143 |
|
|
|
5144 |
|
|
/* Store each element of the constructor into the
|
5145 |
|
|
corresponding element of TARGET, determined by counting the
|
5146 |
|
|
elements. */
|
5147 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
|
5148 |
|
|
{
|
5149 |
|
|
enum machine_mode mode;
|
5150 |
|
|
HOST_WIDE_INT bitsize;
|
5151 |
|
|
HOST_WIDE_INT bitpos;
|
5152 |
|
|
int unsignedp;
|
5153 |
|
|
rtx xtarget = target;
|
5154 |
|
|
|
5155 |
|
|
if (cleared && initializer_zerop (value))
|
5156 |
|
|
continue;
|
5157 |
|
|
|
5158 |
|
|
unsignedp = TYPE_UNSIGNED (elttype);
|
5159 |
|
|
mode = TYPE_MODE (elttype);
|
5160 |
|
|
if (mode == BLKmode)
|
5161 |
|
|
bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
|
5162 |
|
|
? tree_low_cst (TYPE_SIZE (elttype), 1)
|
5163 |
|
|
: -1);
|
5164 |
|
|
else
|
5165 |
|
|
bitsize = GET_MODE_BITSIZE (mode);
|
5166 |
|
|
|
5167 |
|
|
if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
|
5168 |
|
|
{
|
5169 |
|
|
tree lo_index = TREE_OPERAND (index, 0);
|
5170 |
|
|
tree hi_index = TREE_OPERAND (index, 1);
|
5171 |
|
|
rtx index_r, pos_rtx;
|
5172 |
|
|
HOST_WIDE_INT lo, hi, count;
|
5173 |
|
|
tree position;
|
5174 |
|
|
|
5175 |
|
|
/* If the range is constant and "small", unroll the loop. */
|
5176 |
|
|
if (const_bounds_p
|
5177 |
|
|
&& host_integerp (lo_index, 0)
|
5178 |
|
|
&& host_integerp (hi_index, 0)
|
5179 |
|
|
&& (lo = tree_low_cst (lo_index, 0),
|
5180 |
|
|
hi = tree_low_cst (hi_index, 0),
|
5181 |
|
|
count = hi - lo + 1,
|
5182 |
|
|
(!MEM_P (target)
|
5183 |
|
|
|| count <= 2
|
5184 |
|
|
|| (host_integerp (TYPE_SIZE (elttype), 1)
|
5185 |
|
|
&& (tree_low_cst (TYPE_SIZE (elttype), 1) * count
|
5186 |
|
|
<= 40 * 8)))))
|
5187 |
|
|
{
|
5188 |
|
|
lo -= minelt; hi -= minelt;
|
5189 |
|
|
for (; lo <= hi; lo++)
|
5190 |
|
|
{
|
5191 |
|
|
bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
|
5192 |
|
|
|
5193 |
|
|
if (MEM_P (target)
|
5194 |
|
|
&& !MEM_KEEP_ALIAS_SET_P (target)
|
5195 |
|
|
&& TREE_CODE (type) == ARRAY_TYPE
|
5196 |
|
|
&& TYPE_NONALIASED_COMPONENT (type))
|
5197 |
|
|
{
|
5198 |
|
|
target = copy_rtx (target);
|
5199 |
|
|
MEM_KEEP_ALIAS_SET_P (target) = 1;
|
5200 |
|
|
}
|
5201 |
|
|
|
5202 |
|
|
store_constructor_field
|
5203 |
|
|
(target, bitsize, bitpos, mode, value, type, cleared,
|
5204 |
|
|
get_alias_set (elttype));
|
5205 |
|
|
}
|
5206 |
|
|
}
|
5207 |
|
|
else
|
5208 |
|
|
{
|
5209 |
|
|
rtx loop_start = gen_label_rtx ();
|
5210 |
|
|
rtx loop_end = gen_label_rtx ();
|
5211 |
|
|
tree exit_cond;
|
5212 |
|
|
|
5213 |
|
|
expand_normal (hi_index);
|
5214 |
|
|
unsignedp = TYPE_UNSIGNED (domain);
|
5215 |
|
|
|
5216 |
|
|
index = build_decl (VAR_DECL, NULL_TREE, domain);
|
5217 |
|
|
|
5218 |
|
|
index_r
|
5219 |
|
|
= gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
|
5220 |
|
|
&unsignedp, 0));
|
5221 |
|
|
SET_DECL_RTL (index, index_r);
|
5222 |
|
|
store_expr (lo_index, index_r, 0);
|
5223 |
|
|
|
5224 |
|
|
/* Build the head of the loop. */
|
5225 |
|
|
do_pending_stack_adjust ();
|
5226 |
|
|
emit_label (loop_start);
|
5227 |
|
|
|
5228 |
|
|
/* Assign value to element index. */
|
5229 |
|
|
position =
|
5230 |
|
|
fold_convert (ssizetype,
|
5231 |
|
|
fold_build2 (MINUS_EXPR,
|
5232 |
|
|
TREE_TYPE (index),
|
5233 |
|
|
index,
|
5234 |
|
|
TYPE_MIN_VALUE (domain)));
|
5235 |
|
|
|
5236 |
|
|
position =
|
5237 |
|
|
size_binop (MULT_EXPR, position,
|
5238 |
|
|
fold_convert (ssizetype,
|
5239 |
|
|
TYPE_SIZE_UNIT (elttype)));
|
5240 |
|
|
|
5241 |
|
|
pos_rtx = expand_normal (position);
|
5242 |
|
|
xtarget = offset_address (target, pos_rtx,
|
5243 |
|
|
highest_pow2_factor (position));
|
5244 |
|
|
xtarget = adjust_address (xtarget, mode, 0);
|
5245 |
|
|
if (TREE_CODE (value) == CONSTRUCTOR)
|
5246 |
|
|
store_constructor (value, xtarget, cleared,
|
5247 |
|
|
bitsize / BITS_PER_UNIT);
|
5248 |
|
|
else
|
5249 |
|
|
store_expr (value, xtarget, 0);
|
5250 |
|
|
|
5251 |
|
|
/* Generate a conditional jump to exit the loop. */
|
5252 |
|
|
exit_cond = build2 (LT_EXPR, integer_type_node,
|
5253 |
|
|
index, hi_index);
|
5254 |
|
|
jumpif (exit_cond, loop_end);
|
5255 |
|
|
|
5256 |
|
|
/* Update the loop counter, and jump to the head of
|
5257 |
|
|
the loop. */
|
5258 |
|
|
expand_assignment (index,
|
5259 |
|
|
build2 (PLUS_EXPR, TREE_TYPE (index),
|
5260 |
|
|
index, integer_one_node));
|
5261 |
|
|
|
5262 |
|
|
emit_jump (loop_start);
|
5263 |
|
|
|
5264 |
|
|
/* Build the end of the loop. */
|
5265 |
|
|
emit_label (loop_end);
|
5266 |
|
|
}
|
5267 |
|
|
}
|
5268 |
|
|
else if ((index != 0 && ! host_integerp (index, 0))
|
5269 |
|
|
|| ! host_integerp (TYPE_SIZE (elttype), 1))
|
5270 |
|
|
{
|
5271 |
|
|
tree position;
|
5272 |
|
|
|
5273 |
|
|
if (index == 0)
|
5274 |
|
|
index = ssize_int (1);
|
5275 |
|
|
|
5276 |
|
|
if (minelt)
|
5277 |
|
|
index = fold_convert (ssizetype,
|
5278 |
|
|
fold_build2 (MINUS_EXPR,
|
5279 |
|
|
TREE_TYPE (index),
|
5280 |
|
|
index,
|
5281 |
|
|
TYPE_MIN_VALUE (domain)));
|
5282 |
|
|
|
5283 |
|
|
position =
|
5284 |
|
|
size_binop (MULT_EXPR, index,
|
5285 |
|
|
fold_convert (ssizetype,
|
5286 |
|
|
TYPE_SIZE_UNIT (elttype)));
|
5287 |
|
|
xtarget = offset_address (target,
|
5288 |
|
|
expand_normal (position),
|
5289 |
|
|
highest_pow2_factor (position));
|
5290 |
|
|
xtarget = adjust_address (xtarget, mode, 0);
|
5291 |
|
|
store_expr (value, xtarget, 0);
|
5292 |
|
|
}
|
5293 |
|
|
else
|
5294 |
|
|
{
|
5295 |
|
|
if (index != 0)
|
5296 |
|
|
bitpos = ((tree_low_cst (index, 0) - minelt)
|
5297 |
|
|
* tree_low_cst (TYPE_SIZE (elttype), 1));
|
5298 |
|
|
else
|
5299 |
|
|
bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
|
5300 |
|
|
|
5301 |
|
|
if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
|
5302 |
|
|
&& TREE_CODE (type) == ARRAY_TYPE
|
5303 |
|
|
&& TYPE_NONALIASED_COMPONENT (type))
|
5304 |
|
|
{
|
5305 |
|
|
target = copy_rtx (target);
|
5306 |
|
|
MEM_KEEP_ALIAS_SET_P (target) = 1;
|
5307 |
|
|
}
|
5308 |
|
|
store_constructor_field (target, bitsize, bitpos, mode, value,
|
5309 |
|
|
type, cleared, get_alias_set (elttype));
|
5310 |
|
|
}
|
5311 |
|
|
}
|
5312 |
|
|
break;
|
5313 |
|
|
}
|
5314 |
|
|
|
5315 |
|
|
case VECTOR_TYPE:
|
5316 |
|
|
{
|
5317 |
|
|
unsigned HOST_WIDE_INT idx;
|
5318 |
|
|
constructor_elt *ce;
|
5319 |
|
|
int i;
|
5320 |
|
|
int need_to_clear;
|
5321 |
|
|
int icode = 0;
|
5322 |
|
|
tree elttype = TREE_TYPE (type);
|
5323 |
|
|
int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
|
5324 |
|
|
enum machine_mode eltmode = TYPE_MODE (elttype);
|
5325 |
|
|
HOST_WIDE_INT bitsize;
|
5326 |
|
|
HOST_WIDE_INT bitpos;
|
5327 |
|
|
rtvec vector = NULL;
|
5328 |
|
|
unsigned n_elts;
|
5329 |
|
|
|
5330 |
|
|
gcc_assert (eltmode != BLKmode);
|
5331 |
|
|
|
5332 |
|
|
n_elts = TYPE_VECTOR_SUBPARTS (type);
|
5333 |
|
|
if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
|
5334 |
|
|
{
|
5335 |
|
|
enum machine_mode mode = GET_MODE (target);
|
5336 |
|
|
|
5337 |
|
|
icode = (int) vec_init_optab->handlers[mode].insn_code;
|
5338 |
|
|
if (icode != CODE_FOR_nothing)
|
5339 |
|
|
{
|
5340 |
|
|
unsigned int i;
|
5341 |
|
|
|
5342 |
|
|
vector = rtvec_alloc (n_elts);
|
5343 |
|
|
for (i = 0; i < n_elts; i++)
|
5344 |
|
|
RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
|
5345 |
|
|
}
|
5346 |
|
|
}
|
5347 |
|
|
|
5348 |
|
|
/* If the constructor has fewer elements than the vector,
|
5349 |
|
|
clear the whole array first. Similarly if this is static
|
5350 |
|
|
constructor of a non-BLKmode object. */
|
5351 |
|
|
if (cleared)
|
5352 |
|
|
need_to_clear = 0;
|
5353 |
|
|
else if (REG_P (target) && TREE_STATIC (exp))
|
5354 |
|
|
need_to_clear = 1;
|
5355 |
|
|
else
|
5356 |
|
|
{
|
5357 |
|
|
unsigned HOST_WIDE_INT count = 0, zero_count = 0;
|
5358 |
|
|
tree value;
|
5359 |
|
|
|
5360 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
|
5361 |
|
|
{
|
5362 |
|
|
int n_elts_here = tree_low_cst
|
5363 |
|
|
(int_const_binop (TRUNC_DIV_EXPR,
|
5364 |
|
|
TYPE_SIZE (TREE_TYPE (value)),
|
5365 |
|
|
TYPE_SIZE (elttype), 0), 1);
|
5366 |
|
|
|
5367 |
|
|
count += n_elts_here;
|
5368 |
|
|
if (mostly_zeros_p (value))
|
5369 |
|
|
zero_count += n_elts_here;
|
5370 |
|
|
}
|
5371 |
|
|
|
5372 |
|
|
/* Clear the entire vector first if there are any missing elements,
|
5373 |
|
|
or if the incidence of zero elements is >= 75%. */
|
5374 |
|
|
need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
|
5375 |
|
|
}
|
5376 |
|
|
|
5377 |
|
|
if (need_to_clear && size > 0 && !vector)
|
5378 |
|
|
{
|
5379 |
|
|
if (REG_P (target))
|
5380 |
|
|
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
5381 |
|
|
else
|
5382 |
|
|
clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
|
5383 |
|
|
cleared = 1;
|
5384 |
|
|
}
|
5385 |
|
|
|
5386 |
|
|
/* Inform later passes that the old value is dead. */
|
5387 |
|
|
if (!cleared && !vector && REG_P (target))
|
5388 |
|
|
emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
|
5389 |
|
|
|
5390 |
|
|
/* Store each element of the constructor into the corresponding
|
5391 |
|
|
element of TARGET, determined by counting the elements. */
|
5392 |
|
|
for (idx = 0, i = 0;
|
5393 |
|
|
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
|
5394 |
|
|
idx++, i += bitsize / elt_size)
|
5395 |
|
|
{
|
5396 |
|
|
HOST_WIDE_INT eltpos;
|
5397 |
|
|
tree value = ce->value;
|
5398 |
|
|
|
5399 |
|
|
bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
|
5400 |
|
|
if (cleared && initializer_zerop (value))
|
5401 |
|
|
continue;
|
5402 |
|
|
|
5403 |
|
|
if (ce->index)
|
5404 |
|
|
eltpos = tree_low_cst (ce->index, 1);
|
5405 |
|
|
else
|
5406 |
|
|
eltpos = i;
|
5407 |
|
|
|
5408 |
|
|
if (vector)
|
5409 |
|
|
{
|
5410 |
|
|
/* Vector CONSTRUCTORs should only be built from smaller
|
5411 |
|
|
vectors in the case of BLKmode vectors. */
|
5412 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
|
5413 |
|
|
RTVEC_ELT (vector, eltpos)
|
5414 |
|
|
= expand_normal (value);
|
5415 |
|
|
}
|
5416 |
|
|
else
|
5417 |
|
|
{
|
5418 |
|
|
enum machine_mode value_mode =
|
5419 |
|
|
TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
|
5420 |
|
|
? TYPE_MODE (TREE_TYPE (value))
|
5421 |
|
|
: eltmode;
|
5422 |
|
|
bitpos = eltpos * elt_size;
|
5423 |
|
|
store_constructor_field (target, bitsize, bitpos,
|
5424 |
|
|
value_mode, value, type,
|
5425 |
|
|
cleared, get_alias_set (elttype));
|
5426 |
|
|
}
|
5427 |
|
|
}
|
5428 |
|
|
|
5429 |
|
|
if (vector)
|
5430 |
|
|
emit_insn (GEN_FCN (icode)
|
5431 |
|
|
(target,
|
5432 |
|
|
gen_rtx_PARALLEL (GET_MODE (target), vector)));
|
5433 |
|
|
break;
|
5434 |
|
|
}
|
5435 |
|
|
|
5436 |
|
|
default:
|
5437 |
|
|
gcc_unreachable ();
|
5438 |
|
|
}
|
5439 |
|
|
}
|
5440 |
|
|
|
5441 |
|
|
/* Store the value of EXP (an expression tree)
|
5442 |
|
|
into a subfield of TARGET which has mode MODE and occupies
|
5443 |
|
|
BITSIZE bits, starting BITPOS bits from the start of TARGET.
|
5444 |
|
|
If MODE is VOIDmode, it means that we are storing into a bit-field.
|
5445 |
|
|
|
5446 |
|
|
Always return const0_rtx unless we have something particular to
|
5447 |
|
|
return.
|
5448 |
|
|
|
5449 |
|
|
TYPE is the type of the underlying object,
|
5450 |
|
|
|
5451 |
|
|
ALIAS_SET is the alias set for the destination. This value will
|
5452 |
|
|
(in general) be different from that for TARGET, since TARGET is a
|
5453 |
|
|
reference to the containing structure. */
|
5454 |
|
|
|
5455 |
|
|
static rtx
|
5456 |
|
|
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
|
5457 |
|
|
enum machine_mode mode, tree exp, tree type, int alias_set)
|
5458 |
|
|
{
|
5459 |
|
|
HOST_WIDE_INT width_mask = 0;
|
5460 |
|
|
|
5461 |
|
|
if (TREE_CODE (exp) == ERROR_MARK)
|
5462 |
|
|
return const0_rtx;
|
5463 |
|
|
|
5464 |
|
|
/* If we have nothing to store, do nothing unless the expression has
|
5465 |
|
|
side-effects. */
|
5466 |
|
|
if (bitsize == 0)
|
5467 |
|
|
return expand_expr (exp, const0_rtx, VOIDmode, 0);
|
5468 |
|
|
else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
|
5469 |
|
|
width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
5470 |
|
|
|
5471 |
|
|
/* If we are storing into an unaligned field of an aligned union that is
|
5472 |
|
|
in a register, we may have the mode of TARGET being an integer mode but
|
5473 |
|
|
MODE == BLKmode. In that case, get an aligned object whose size and
|
5474 |
|
|
alignment are the same as TARGET and store TARGET into it (we can avoid
|
5475 |
|
|
the store if the field being stored is the entire width of TARGET). Then
|
5476 |
|
|
call ourselves recursively to store the field into a BLKmode version of
|
5477 |
|
|
that object. Finally, load from the object into TARGET. This is not
|
5478 |
|
|
very efficient in general, but should only be slightly more expensive
|
5479 |
|
|
than the otherwise-required unaligned accesses. Perhaps this can be
|
5480 |
|
|
cleaned up later. It's tempting to make OBJECT readonly, but it's set
|
5481 |
|
|
twice, once with emit_move_insn and once via store_field. */
|
5482 |
|
|
|
5483 |
|
|
if (mode == BLKmode
|
5484 |
|
|
&& (REG_P (target) || GET_CODE (target) == SUBREG))
|
5485 |
|
|
{
|
5486 |
|
|
rtx object = assign_temp (type, 0, 1, 1);
|
5487 |
|
|
rtx blk_object = adjust_address (object, BLKmode, 0);
|
5488 |
|
|
|
5489 |
|
|
if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
|
5490 |
|
|
emit_move_insn (object, target);
|
5491 |
|
|
|
5492 |
|
|
store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
|
5493 |
|
|
|
5494 |
|
|
emit_move_insn (target, object);
|
5495 |
|
|
|
5496 |
|
|
/* We want to return the BLKmode version of the data. */
|
5497 |
|
|
return blk_object;
|
5498 |
|
|
}
|
5499 |
|
|
|
5500 |
|
|
if (GET_CODE (target) == CONCAT)
|
5501 |
|
|
{
|
5502 |
|
|
/* We're storing into a struct containing a single __complex. */
|
5503 |
|
|
|
5504 |
|
|
gcc_assert (!bitpos);
|
5505 |
|
|
return store_expr (exp, target, 0);
|
5506 |
|
|
}
|
5507 |
|
|
|
5508 |
|
|
/* If the structure is in a register or if the component
|
5509 |
|
|
is a bit field, we cannot use addressing to access it.
|
5510 |
|
|
Use bit-field techniques or SUBREG to store in it. */
|
5511 |
|
|
|
5512 |
|
|
if (mode == VOIDmode
|
5513 |
|
|
|| (mode != BLKmode && ! direct_store[(int) mode]
|
5514 |
|
|
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
5515 |
|
|
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|
5516 |
|
|
|| REG_P (target)
|
5517 |
|
|
|| GET_CODE (target) == SUBREG
|
5518 |
|
|
/* If the field isn't aligned enough to store as an ordinary memref,
|
5519 |
|
|
store it as a bit field. */
|
5520 |
|
|
|| (mode != BLKmode
|
5521 |
|
|
&& ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
|
5522 |
|
|
|| bitpos % GET_MODE_ALIGNMENT (mode))
|
5523 |
|
|
&& SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
|
5524 |
|
|
|| (bitpos % BITS_PER_UNIT != 0)))
|
5525 |
|
|
/* If the RHS and field are a constant size and the size of the
|
5526 |
|
|
RHS isn't the same size as the bitfield, we must use bitfield
|
5527 |
|
|
operations. */
|
5528 |
|
|
|| (bitsize >= 0
|
5529 |
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
|
5530 |
|
|
&& compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
|
5531 |
|
|
{
|
5532 |
|
|
rtx temp;
|
5533 |
|
|
|
5534 |
|
|
/* If EXP is a NOP_EXPR of precision less than its mode, then that
|
5535 |
|
|
implies a mask operation. If the precision is the same size as
|
5536 |
|
|
the field we're storing into, that mask is redundant. This is
|
5537 |
|
|
particularly common with bit field assignments generated by the
|
5538 |
|
|
C front end. */
|
5539 |
|
|
if (TREE_CODE (exp) == NOP_EXPR)
|
5540 |
|
|
{
|
5541 |
|
|
tree type = TREE_TYPE (exp);
|
5542 |
|
|
if (INTEGRAL_TYPE_P (type)
|
5543 |
|
|
&& TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
|
5544 |
|
|
&& bitsize == TYPE_PRECISION (type))
|
5545 |
|
|
{
|
5546 |
|
|
type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
5547 |
|
|
if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
|
5548 |
|
|
exp = TREE_OPERAND (exp, 0);
|
5549 |
|
|
}
|
5550 |
|
|
}
|
5551 |
|
|
|
5552 |
|
|
temp = expand_normal (exp);
|
5553 |
|
|
|
5554 |
|
|
/* If BITSIZE is narrower than the size of the type of EXP
|
5555 |
|
|
we will be narrowing TEMP. Normally, what's wanted are the
|
5556 |
|
|
low-order bits. However, if EXP's type is a record and this is
|
5557 |
|
|
big-endian machine, we want the upper BITSIZE bits. */
|
5558 |
|
|
if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
|
5559 |
|
|
&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
|
5560 |
|
|
&& TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
|
5561 |
|
|
temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
|
5562 |
|
|
size_int (GET_MODE_BITSIZE (GET_MODE (temp))
|
5563 |
|
|
- bitsize),
|
5564 |
|
|
NULL_RTX, 1);
|
5565 |
|
|
|
5566 |
|
|
/* Unless MODE is VOIDmode or BLKmode, convert TEMP to
|
5567 |
|
|
MODE. */
|
5568 |
|
|
if (mode != VOIDmode && mode != BLKmode
|
5569 |
|
|
&& mode != TYPE_MODE (TREE_TYPE (exp)))
|
5570 |
|
|
temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
|
5571 |
|
|
|
5572 |
|
|
/* If the modes of TARGET and TEMP are both BLKmode, both
|
5573 |
|
|
must be in memory and BITPOS must be aligned on a byte
|
5574 |
|
|
boundary. If so, we simply do a block copy. */
|
5575 |
|
|
if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
|
5576 |
|
|
{
|
5577 |
|
|
gcc_assert (MEM_P (target) && MEM_P (temp)
|
5578 |
|
|
&& !(bitpos % BITS_PER_UNIT));
|
5579 |
|
|
|
5580 |
|
|
target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
|
5581 |
|
|
emit_block_move (target, temp,
|
5582 |
|
|
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
|
5583 |
|
|
/ BITS_PER_UNIT),
|
5584 |
|
|
BLOCK_OP_NORMAL);
|
5585 |
|
|
|
5586 |
|
|
return const0_rtx;
|
5587 |
|
|
}
|
5588 |
|
|
|
5589 |
|
|
/* Store the value in the bitfield. */
|
5590 |
|
|
store_bit_field (target, bitsize, bitpos, mode, temp);
|
5591 |
|
|
|
5592 |
|
|
return const0_rtx;
|
5593 |
|
|
}
|
5594 |
|
|
else
|
5595 |
|
|
{
|
5596 |
|
|
/* Now build a reference to just the desired component. */
|
5597 |
|
|
rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
|
5598 |
|
|
|
5599 |
|
|
if (to_rtx == target)
|
5600 |
|
|
to_rtx = copy_rtx (to_rtx);
|
5601 |
|
|
|
5602 |
|
|
MEM_SET_IN_STRUCT_P (to_rtx, 1);
|
5603 |
|
|
if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
|
5604 |
|
|
set_mem_alias_set (to_rtx, alias_set);
|
5605 |
|
|
|
5606 |
|
|
return store_expr (exp, to_rtx, 0);
|
5607 |
|
|
}
|
5608 |
|
|
}
|
5609 |
|
|
|
5610 |
|
|
/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
|
5611 |
|
|
an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
|
5612 |
|
|
codes and find the ultimate containing object, which we return.
|
5613 |
|
|
|
5614 |
|
|
We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
|
5615 |
|
|
bit position, and *PUNSIGNEDP to the signedness of the field.
|
5616 |
|
|
If the position of the field is variable, we store a tree
|
5617 |
|
|
giving the variable offset (in units) in *POFFSET.
|
5618 |
|
|
This offset is in addition to the bit position.
|
5619 |
|
|
If the position is not variable, we store 0 in *POFFSET.
|
5620 |
|
|
|
5621 |
|
|
If any of the extraction expressions is volatile,
|
5622 |
|
|
we store 1 in *PVOLATILEP. Otherwise we don't change that.
|
5623 |
|
|
|
5624 |
|
|
If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
|
5625 |
|
|
is a mode that can be used to access the field. In that case, *PBITSIZE
|
5626 |
|
|
is redundant.
|
5627 |
|
|
|
5628 |
|
|
If the field describes a variable-sized object, *PMODE is set to
|
5629 |
|
|
VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
|
5630 |
|
|
this case, but the address of the object can be found.
|
5631 |
|
|
|
5632 |
|
|
If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
|
5633 |
|
|
look through nodes that serve as markers of a greater alignment than
|
5634 |
|
|
the one that can be deduced from the expression. These nodes make it
|
5635 |
|
|
possible for front-ends to prevent temporaries from being created by
|
5636 |
|
|
the middle-end on alignment considerations. For that purpose, the
|
5637 |
|
|
normal operating mode at high-level is to always pass FALSE so that
|
5638 |
|
|
the ultimate containing object is really returned; moreover, the
|
5639 |
|
|
associated predicate handled_component_p will always return TRUE
|
5640 |
|
|
on these nodes, thus indicating that they are essentially handled
|
5641 |
|
|
by get_inner_reference. TRUE should only be passed when the caller
|
5642 |
|
|
is scanning the expression in order to build another representation
|
5643 |
|
|
and specifically knows how to handle these nodes; as such, this is
|
5644 |
|
|
the normal operating mode in the RTL expanders. */
|
5645 |
|
|
|
5646 |
|
|
tree
|
5647 |
|
|
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
|
5648 |
|
|
HOST_WIDE_INT *pbitpos, tree *poffset,
|
5649 |
|
|
enum machine_mode *pmode, int *punsignedp,
|
5650 |
|
|
int *pvolatilep, bool keep_aligning)
|
5651 |
|
|
{
|
5652 |
|
|
tree size_tree = 0;
|
5653 |
|
|
enum machine_mode mode = VOIDmode;
|
5654 |
|
|
tree offset = size_zero_node;
|
5655 |
|
|
tree bit_offset = bitsize_zero_node;
|
5656 |
|
|
|
5657 |
|
|
/* First get the mode, signedness, and size. We do this from just the
|
5658 |
|
|
outermost expression. */
|
5659 |
|
|
if (TREE_CODE (exp) == COMPONENT_REF)
|
5660 |
|
|
{
|
5661 |
|
|
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
|
5662 |
|
|
if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
|
5663 |
|
|
mode = DECL_MODE (TREE_OPERAND (exp, 1));
|
5664 |
|
|
|
5665 |
|
|
*punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
|
5666 |
|
|
}
|
5667 |
|
|
else if (TREE_CODE (exp) == BIT_FIELD_REF)
|
5668 |
|
|
{
|
5669 |
|
|
size_tree = TREE_OPERAND (exp, 1);
|
5670 |
|
|
*punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
|
5671 |
|
|
}
|
5672 |
|
|
else
|
5673 |
|
|
{
|
5674 |
|
|
mode = TYPE_MODE (TREE_TYPE (exp));
|
5675 |
|
|
*punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
|
5676 |
|
|
|
5677 |
|
|
if (mode == BLKmode)
|
5678 |
|
|
size_tree = TYPE_SIZE (TREE_TYPE (exp));
|
5679 |
|
|
else
|
5680 |
|
|
*pbitsize = GET_MODE_BITSIZE (mode);
|
5681 |
|
|
}
|
5682 |
|
|
|
5683 |
|
|
if (size_tree != 0)
|
5684 |
|
|
{
|
5685 |
|
|
if (! host_integerp (size_tree, 1))
|
5686 |
|
|
mode = BLKmode, *pbitsize = -1;
|
5687 |
|
|
else
|
5688 |
|
|
*pbitsize = tree_low_cst (size_tree, 1);
|
5689 |
|
|
}
|
5690 |
|
|
|
5691 |
|
|
*pmode = mode;
|
5692 |
|
|
|
5693 |
|
|
/* Compute cumulative bit-offset for nested component-refs and array-refs,
|
5694 |
|
|
and find the ultimate containing object. */
|
5695 |
|
|
while (1)
|
5696 |
|
|
{
|
5697 |
|
|
switch (TREE_CODE (exp))
|
5698 |
|
|
{
|
5699 |
|
|
case BIT_FIELD_REF:
|
5700 |
|
|
bit_offset = size_binop (PLUS_EXPR, bit_offset,
|
5701 |
|
|
TREE_OPERAND (exp, 2));
|
5702 |
|
|
break;
|
5703 |
|
|
|
5704 |
|
|
case COMPONENT_REF:
|
5705 |
|
|
{
|
5706 |
|
|
tree field = TREE_OPERAND (exp, 1);
|
5707 |
|
|
tree this_offset = component_ref_field_offset (exp);
|
5708 |
|
|
|
5709 |
|
|
/* If this field hasn't been filled in yet, don't go past it.
|
5710 |
|
|
This should only happen when folding expressions made during
|
5711 |
|
|
type construction. */
|
5712 |
|
|
if (this_offset == 0)
|
5713 |
|
|
break;
|
5714 |
|
|
|
5715 |
|
|
offset = size_binop (PLUS_EXPR, offset, this_offset);
|
5716 |
|
|
bit_offset = size_binop (PLUS_EXPR, bit_offset,
|
5717 |
|
|
DECL_FIELD_BIT_OFFSET (field));
|
5718 |
|
|
|
5719 |
|
|
/* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
|
5720 |
|
|
}
|
5721 |
|
|
break;
|
5722 |
|
|
|
5723 |
|
|
case ARRAY_REF:
|
5724 |
|
|
case ARRAY_RANGE_REF:
|
5725 |
|
|
{
|
5726 |
|
|
tree index = TREE_OPERAND (exp, 1);
|
5727 |
|
|
tree low_bound = array_ref_low_bound (exp);
|
5728 |
|
|
tree unit_size = array_ref_element_size (exp);
|
5729 |
|
|
|
5730 |
|
|
/* We assume all arrays have sizes that are a multiple of a byte.
|
5731 |
|
|
First subtract the lower bound, if any, in the type of the
|
5732 |
|
|
index, then convert to sizetype and multiply by the size of
|
5733 |
|
|
the array element. */
|
5734 |
|
|
if (! integer_zerop (low_bound))
|
5735 |
|
|
index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
|
5736 |
|
|
index, low_bound);
|
5737 |
|
|
|
5738 |
|
|
offset = size_binop (PLUS_EXPR, offset,
|
5739 |
|
|
size_binop (MULT_EXPR,
|
5740 |
|
|
fold_convert (sizetype, index),
|
5741 |
|
|
unit_size));
|
5742 |
|
|
}
|
5743 |
|
|
break;
|
5744 |
|
|
|
5745 |
|
|
case REALPART_EXPR:
|
5746 |
|
|
break;
|
5747 |
|
|
|
5748 |
|
|
case IMAGPART_EXPR:
|
5749 |
|
|
bit_offset = size_binop (PLUS_EXPR, bit_offset,
|
5750 |
|
|
bitsize_int (*pbitsize));
|
5751 |
|
|
break;
|
5752 |
|
|
|
5753 |
|
|
case VIEW_CONVERT_EXPR:
|
5754 |
|
|
if (keep_aligning && STRICT_ALIGNMENT
|
5755 |
|
|
&& (TYPE_ALIGN (TREE_TYPE (exp))
|
5756 |
|
|
> TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
5757 |
|
|
&& (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
|
5758 |
|
|
< BIGGEST_ALIGNMENT)
|
5759 |
|
|
&& (TYPE_ALIGN_OK (TREE_TYPE (exp))
|
5760 |
|
|
|| TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
5761 |
|
|
goto done;
|
5762 |
|
|
break;
|
5763 |
|
|
|
5764 |
|
|
default:
|
5765 |
|
|
goto done;
|
5766 |
|
|
}
|
5767 |
|
|
|
5768 |
|
|
/* If any reference in the chain is volatile, the effect is volatile. */
|
5769 |
|
|
if (TREE_THIS_VOLATILE (exp))
|
5770 |
|
|
*pvolatilep = 1;
|
5771 |
|
|
|
5772 |
|
|
exp = TREE_OPERAND (exp, 0);
|
5773 |
|
|
}
|
5774 |
|
|
done:
|
5775 |
|
|
|
5776 |
|
|
/* If OFFSET is constant, see if we can return the whole thing as a
|
5777 |
|
|
constant bit position. Make sure to handle overflow during
|
5778 |
|
|
this conversion. */
|
5779 |
|
|
if (host_integerp (offset, 0))
|
5780 |
|
|
{
|
5781 |
|
|
double_int tem = double_int_mul (tree_to_double_int (offset),
|
5782 |
|
|
uhwi_to_double_int (BITS_PER_UNIT));
|
5783 |
|
|
tem = double_int_add (tem, tree_to_double_int (bit_offset));
|
5784 |
|
|
if (double_int_fits_in_shwi_p (tem))
|
5785 |
|
|
{
|
5786 |
|
|
*pbitpos = double_int_to_shwi (tem);
|
5787 |
|
|
*poffset = NULL_TREE;
|
5788 |
|
|
return exp;
|
5789 |
|
|
}
|
5790 |
|
|
}
|
5791 |
|
|
|
5792 |
|
|
/* Otherwise, split it up. */
|
5793 |
|
|
*pbitpos = tree_low_cst (bit_offset, 0);
|
5794 |
|
|
*poffset = offset;
|
5795 |
|
|
|
5796 |
|
|
return exp;
|
5797 |
|
|
}
|
5798 |
|
|
|
5799 |
|
|
/* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
|
5800 |
|
|
look for whether EXP or any nested component-refs within EXP is marked
|
5801 |
|
|
as PACKED. */
|
5802 |
|
|
|
5803 |
|
|
bool
|
5804 |
|
|
contains_packed_reference (tree exp)
|
5805 |
|
|
{
|
5806 |
|
|
bool packed_p = false;
|
5807 |
|
|
|
5808 |
|
|
while (1)
|
5809 |
|
|
{
|
5810 |
|
|
switch (TREE_CODE (exp))
|
5811 |
|
|
{
|
5812 |
|
|
case COMPONENT_REF:
|
5813 |
|
|
{
|
5814 |
|
|
tree field = TREE_OPERAND (exp, 1);
|
5815 |
|
|
packed_p = DECL_PACKED (field)
|
5816 |
|
|
|| TYPE_PACKED (TREE_TYPE (field))
|
5817 |
|
|
|| TYPE_PACKED (TREE_TYPE (exp));
|
5818 |
|
|
if (packed_p)
|
5819 |
|
|
goto done;
|
5820 |
|
|
}
|
5821 |
|
|
break;
|
5822 |
|
|
|
5823 |
|
|
case BIT_FIELD_REF:
|
5824 |
|
|
case ARRAY_REF:
|
5825 |
|
|
case ARRAY_RANGE_REF:
|
5826 |
|
|
case REALPART_EXPR:
|
5827 |
|
|
case IMAGPART_EXPR:
|
5828 |
|
|
case VIEW_CONVERT_EXPR:
|
5829 |
|
|
break;
|
5830 |
|
|
|
5831 |
|
|
default:
|
5832 |
|
|
goto done;
|
5833 |
|
|
}
|
5834 |
|
|
exp = TREE_OPERAND (exp, 0);
|
5835 |
|
|
}
|
5836 |
|
|
done:
|
5837 |
|
|
return packed_p;
|
5838 |
|
|
}
|
5839 |
|
|
|
5840 |
|
|
/* Return a tree of sizetype representing the size, in bytes, of the element
|
5841 |
|
|
of EXP, an ARRAY_REF. */
|
5842 |
|
|
|
5843 |
|
|
tree
|
5844 |
|
|
array_ref_element_size (tree exp)
|
5845 |
|
|
{
|
5846 |
|
|
tree aligned_size = TREE_OPERAND (exp, 3);
|
5847 |
|
|
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
5848 |
|
|
|
5849 |
|
|
/* If a size was specified in the ARRAY_REF, it's the size measured
|
5850 |
|
|
in alignment units of the element type. So multiply by that value. */
|
5851 |
|
|
if (aligned_size)
|
5852 |
|
|
{
|
5853 |
|
|
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
|
5854 |
|
|
sizetype from another type of the same width and signedness. */
|
5855 |
|
|
if (TREE_TYPE (aligned_size) != sizetype)
|
5856 |
|
|
aligned_size = fold_convert (sizetype, aligned_size);
|
5857 |
|
|
return size_binop (MULT_EXPR, aligned_size,
|
5858 |
|
|
size_int (TYPE_ALIGN_UNIT (elmt_type)));
|
5859 |
|
|
}
|
5860 |
|
|
|
5861 |
|
|
/* Otherwise, take the size from that of the element type. Substitute
|
5862 |
|
|
any PLACEHOLDER_EXPR that we have. */
|
5863 |
|
|
else
|
5864 |
|
|
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
|
5865 |
|
|
}
|
5866 |
|
|
|
5867 |
|
|
/* Return a tree representing the lower bound of the array mentioned in
|
5868 |
|
|
EXP, an ARRAY_REF. */
|
5869 |
|
|
|
5870 |
|
|
tree
|
5871 |
|
|
array_ref_low_bound (tree exp)
|
5872 |
|
|
{
|
5873 |
|
|
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
5874 |
|
|
|
5875 |
|
|
/* If a lower bound is specified in EXP, use it. */
|
5876 |
|
|
if (TREE_OPERAND (exp, 2))
|
5877 |
|
|
return TREE_OPERAND (exp, 2);
|
5878 |
|
|
|
5879 |
|
|
/* Otherwise, if there is a domain type and it has a lower bound, use it,
|
5880 |
|
|
substituting for a PLACEHOLDER_EXPR as needed. */
|
5881 |
|
|
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
5882 |
|
|
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
|
5883 |
|
|
|
5884 |
|
|
/* Otherwise, return a zero of the appropriate type. */
|
5885 |
|
|
return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
|
5886 |
|
|
}
|
5887 |
|
|
|
5888 |
|
|
/* Return a tree representing the upper bound of the array mentioned in
|
5889 |
|
|
EXP, an ARRAY_REF. */
|
5890 |
|
|
|
5891 |
|
|
tree
|
5892 |
|
|
array_ref_up_bound (tree exp)
|
5893 |
|
|
{
|
5894 |
|
|
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
5895 |
|
|
|
5896 |
|
|
/* If there is a domain type and it has an upper bound, use it, substituting
|
5897 |
|
|
for a PLACEHOLDER_EXPR as needed. */
|
5898 |
|
|
if (domain_type && TYPE_MAX_VALUE (domain_type))
|
5899 |
|
|
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
|
5900 |
|
|
|
5901 |
|
|
/* Otherwise fail. */
|
5902 |
|
|
return NULL_TREE;
|
5903 |
|
|
}
|
5904 |
|
|
|
5905 |
|
|
/* Return a tree representing the offset, in bytes, of the field referenced
|
5906 |
|
|
by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
|
5907 |
|
|
|
5908 |
|
|
tree
|
5909 |
|
|
component_ref_field_offset (tree exp)
|
5910 |
|
|
{
|
5911 |
|
|
tree aligned_offset = TREE_OPERAND (exp, 2);
|
5912 |
|
|
tree field = TREE_OPERAND (exp, 1);
|
5913 |
|
|
|
5914 |
|
|
/* If an offset was specified in the COMPONENT_REF, it's the offset measured
|
5915 |
|
|
in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
|
5916 |
|
|
value. */
|
5917 |
|
|
if (aligned_offset)
|
5918 |
|
|
{
|
5919 |
|
|
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
|
5920 |
|
|
sizetype from another type of the same width and signedness. */
|
5921 |
|
|
if (TREE_TYPE (aligned_offset) != sizetype)
|
5922 |
|
|
aligned_offset = fold_convert (sizetype, aligned_offset);
|
5923 |
|
|
return size_binop (MULT_EXPR, aligned_offset,
|
5924 |
|
|
size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
|
5925 |
|
|
}
|
5926 |
|
|
|
5927 |
|
|
/* Otherwise, take the offset from that of the field. Substitute
|
5928 |
|
|
any PLACEHOLDER_EXPR that we have. */
|
5929 |
|
|
else
|
5930 |
|
|
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
|
5931 |
|
|
}
|
5932 |
|
|
|
5933 |
|
|
/* Return 1 if T is an expression that get_inner_reference handles. */
|
5934 |
|
|
|
5935 |
|
|
int
|
5936 |
|
|
handled_component_p (tree t)
|
5937 |
|
|
{
|
5938 |
|
|
switch (TREE_CODE (t))
|
5939 |
|
|
{
|
5940 |
|
|
case BIT_FIELD_REF:
|
5941 |
|
|
case COMPONENT_REF:
|
5942 |
|
|
case ARRAY_REF:
|
5943 |
|
|
case ARRAY_RANGE_REF:
|
5944 |
|
|
case VIEW_CONVERT_EXPR:
|
5945 |
|
|
case REALPART_EXPR:
|
5946 |
|
|
case IMAGPART_EXPR:
|
5947 |
|
|
return 1;
|
5948 |
|
|
|
5949 |
|
|
default:
|
5950 |
|
|
return 0;
|
5951 |
|
|
}
|
5952 |
|
|
}
|
5953 |
|
|
|
5954 |
|
|
/* Given an rtx VALUE that may contain additions and multiplications, return
|
5955 |
|
|
an equivalent value that just refers to a register, memory, or constant.
|
5956 |
|
|
This is done by generating instructions to perform the arithmetic and
|
5957 |
|
|
returning a pseudo-register containing the value.
|
5958 |
|
|
|
5959 |
|
|
The returned value may be a REG, SUBREG, MEM or constant. */
|
5960 |
|
|
|
5961 |
|
|
rtx
|
5962 |
|
|
force_operand (rtx value, rtx target)
|
5963 |
|
|
{
|
5964 |
|
|
rtx op1, op2;
|
5965 |
|
|
/* Use subtarget as the target for operand 0 of a binary operation. */
|
5966 |
|
|
rtx subtarget = get_subtarget (target);
|
5967 |
|
|
enum rtx_code code = GET_CODE (value);
|
5968 |
|
|
|
5969 |
|
|
/* Check for subreg applied to an expression produced by loop optimizer. */
|
5970 |
|
|
if (code == SUBREG
|
5971 |
|
|
&& !REG_P (SUBREG_REG (value))
|
5972 |
|
|
&& !MEM_P (SUBREG_REG (value)))
|
5973 |
|
|
{
|
5974 |
|
|
value = simplify_gen_subreg (GET_MODE (value),
|
5975 |
|
|
force_reg (GET_MODE (SUBREG_REG (value)),
|
5976 |
|
|
force_operand (SUBREG_REG (value),
|
5977 |
|
|
NULL_RTX)),
|
5978 |
|
|
GET_MODE (SUBREG_REG (value)),
|
5979 |
|
|
SUBREG_BYTE (value));
|
5980 |
|
|
code = GET_CODE (value);
|
5981 |
|
|
}
|
5982 |
|
|
|
5983 |
|
|
/* Check for a PIC address load. */
|
5984 |
|
|
if ((code == PLUS || code == MINUS)
|
5985 |
|
|
&& XEXP (value, 0) == pic_offset_table_rtx
|
5986 |
|
|
&& (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
|
5987 |
|
|
|| GET_CODE (XEXP (value, 1)) == LABEL_REF
|
5988 |
|
|
|| GET_CODE (XEXP (value, 1)) == CONST))
|
5989 |
|
|
{
|
5990 |
|
|
if (!subtarget)
|
5991 |
|
|
subtarget = gen_reg_rtx (GET_MODE (value));
|
5992 |
|
|
emit_move_insn (subtarget, value);
|
5993 |
|
|
return subtarget;
|
5994 |
|
|
}
|
5995 |
|
|
|
5996 |
|
|
if (ARITHMETIC_P (value))
|
5997 |
|
|
{
|
5998 |
|
|
op2 = XEXP (value, 1);
|
5999 |
|
|
if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
|
6000 |
|
|
subtarget = 0;
|
6001 |
|
|
if (code == MINUS && GET_CODE (op2) == CONST_INT)
|
6002 |
|
|
{
|
6003 |
|
|
code = PLUS;
|
6004 |
|
|
op2 = negate_rtx (GET_MODE (value), op2);
|
6005 |
|
|
}
|
6006 |
|
|
|
6007 |
|
|
/* Check for an addition with OP2 a constant integer and our first
|
6008 |
|
|
operand a PLUS of a virtual register and something else. In that
|
6009 |
|
|
case, we want to emit the sum of the virtual register and the
|
6010 |
|
|
constant first and then add the other value. This allows virtual
|
6011 |
|
|
register instantiation to simply modify the constant rather than
|
6012 |
|
|
creating another one around this addition. */
|
6013 |
|
|
if (code == PLUS && GET_CODE (op2) == CONST_INT
|
6014 |
|
|
&& GET_CODE (XEXP (value, 0)) == PLUS
|
6015 |
|
|
&& REG_P (XEXP (XEXP (value, 0), 0))
|
6016 |
|
|
&& REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
|
6017 |
|
|
&& REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
|
6018 |
|
|
{
|
6019 |
|
|
rtx temp = expand_simple_binop (GET_MODE (value), code,
|
6020 |
|
|
XEXP (XEXP (value, 0), 0), op2,
|
6021 |
|
|
subtarget, 0, OPTAB_LIB_WIDEN);
|
6022 |
|
|
return expand_simple_binop (GET_MODE (value), code, temp,
|
6023 |
|
|
force_operand (XEXP (XEXP (value,
|
6024 |
|
|
0), 1), 0),
|
6025 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
6026 |
|
|
}
|
6027 |
|
|
|
6028 |
|
|
op1 = force_operand (XEXP (value, 0), subtarget);
|
6029 |
|
|
op2 = force_operand (op2, NULL_RTX);
|
6030 |
|
|
switch (code)
|
6031 |
|
|
{
|
6032 |
|
|
case MULT:
|
6033 |
|
|
return expand_mult (GET_MODE (value), op1, op2, target, 1);
|
6034 |
|
|
case DIV:
|
6035 |
|
|
if (!INTEGRAL_MODE_P (GET_MODE (value)))
|
6036 |
|
|
return expand_simple_binop (GET_MODE (value), code, op1, op2,
|
6037 |
|
|
target, 1, OPTAB_LIB_WIDEN);
|
6038 |
|
|
else
|
6039 |
|
|
return expand_divmod (0,
|
6040 |
|
|
FLOAT_MODE_P (GET_MODE (value))
|
6041 |
|
|
? RDIV_EXPR : TRUNC_DIV_EXPR,
|
6042 |
|
|
GET_MODE (value), op1, op2, target, 0);
|
6043 |
|
|
break;
|
6044 |
|
|
case MOD:
|
6045 |
|
|
return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
|
6046 |
|
|
target, 0);
|
6047 |
|
|
break;
|
6048 |
|
|
case UDIV:
|
6049 |
|
|
return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
|
6050 |
|
|
target, 1);
|
6051 |
|
|
break;
|
6052 |
|
|
case UMOD:
|
6053 |
|
|
return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
|
6054 |
|
|
target, 1);
|
6055 |
|
|
break;
|
6056 |
|
|
case ASHIFTRT:
|
6057 |
|
|
return expand_simple_binop (GET_MODE (value), code, op1, op2,
|
6058 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
6059 |
|
|
break;
|
6060 |
|
|
default:
|
6061 |
|
|
return expand_simple_binop (GET_MODE (value), code, op1, op2,
|
6062 |
|
|
target, 1, OPTAB_LIB_WIDEN);
|
6063 |
|
|
}
|
6064 |
|
|
}
|
6065 |
|
|
if (UNARY_P (value))
|
6066 |
|
|
{
|
6067 |
|
|
if (!target)
|
6068 |
|
|
target = gen_reg_rtx (GET_MODE (value));
|
6069 |
|
|
op1 = force_operand (XEXP (value, 0), NULL_RTX);
|
6070 |
|
|
switch (code)
|
6071 |
|
|
{
|
6072 |
|
|
case ZERO_EXTEND:
|
6073 |
|
|
case SIGN_EXTEND:
|
6074 |
|
|
case TRUNCATE:
|
6075 |
|
|
case FLOAT_EXTEND:
|
6076 |
|
|
case FLOAT_TRUNCATE:
|
6077 |
|
|
convert_move (target, op1, code == ZERO_EXTEND);
|
6078 |
|
|
return target;
|
6079 |
|
|
|
6080 |
|
|
case FIX:
|
6081 |
|
|
case UNSIGNED_FIX:
|
6082 |
|
|
expand_fix (target, op1, code == UNSIGNED_FIX);
|
6083 |
|
|
return target;
|
6084 |
|
|
|
6085 |
|
|
case FLOAT:
|
6086 |
|
|
case UNSIGNED_FLOAT:
|
6087 |
|
|
expand_float (target, op1, code == UNSIGNED_FLOAT);
|
6088 |
|
|
return target;
|
6089 |
|
|
|
6090 |
|
|
default:
|
6091 |
|
|
return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
|
6092 |
|
|
}
|
6093 |
|
|
}
|
6094 |
|
|
|
6095 |
|
|
#ifdef INSN_SCHEDULING
|
6096 |
|
|
/* On machines that have insn scheduling, we want all memory reference to be
|
6097 |
|
|
explicit, so we need to deal with such paradoxical SUBREGs. */
|
6098 |
|
|
if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
|
6099 |
|
|
&& (GET_MODE_SIZE (GET_MODE (value))
|
6100 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
|
6101 |
|
|
value
|
6102 |
|
|
= simplify_gen_subreg (GET_MODE (value),
|
6103 |
|
|
force_reg (GET_MODE (SUBREG_REG (value)),
|
6104 |
|
|
force_operand (SUBREG_REG (value),
|
6105 |
|
|
NULL_RTX)),
|
6106 |
|
|
GET_MODE (SUBREG_REG (value)),
|
6107 |
|
|
SUBREG_BYTE (value));
|
6108 |
|
|
#endif
|
6109 |
|
|
|
6110 |
|
|
return value;
|
6111 |
|
|
}
|
6112 |
|
|
|
6113 |
|
|
/* Subroutine of expand_expr: return nonzero iff there is no way that
|
6114 |
|
|
EXP can reference X, which is being modified. TOP_P is nonzero if this
|
6115 |
|
|
call is going to be used to determine whether we need a temporary
|
6116 |
|
|
for EXP, as opposed to a recursive call to this function.
|
6117 |
|
|
|
6118 |
|
|
It is always safe for this routine to return zero since it merely
|
6119 |
|
|
searches for optimization opportunities. */
|
6120 |
|
|
|
6121 |
|
|
int
|
6122 |
|
|
safe_from_p (rtx x, tree exp, int top_p)
|
6123 |
|
|
{
|
6124 |
|
|
rtx exp_rtl = 0;
|
6125 |
|
|
int i, nops;
|
6126 |
|
|
|
6127 |
|
|
if (x == 0
|
6128 |
|
|
/* If EXP has varying size, we MUST use a target since we currently
|
6129 |
|
|
have no way of allocating temporaries of variable size
|
6130 |
|
|
(except for arrays that have TYPE_ARRAY_MAX_SIZE set).
|
6131 |
|
|
So we assume here that something at a higher level has prevented a
|
6132 |
|
|
clash. This is somewhat bogus, but the best we can do. Only
|
6133 |
|
|
do this when X is BLKmode and when we are at the top level. */
|
6134 |
|
|
|| (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
|
6135 |
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
|
6136 |
|
|
&& (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
|
6137 |
|
|
|| TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
|
6138 |
|
|
|| TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
|
6139 |
|
|
!= INTEGER_CST)
|
6140 |
|
|
&& GET_MODE (x) == BLKmode)
|
6141 |
|
|
/* If X is in the outgoing argument area, it is always safe. */
|
6142 |
|
|
|| (MEM_P (x)
|
6143 |
|
|
&& (XEXP (x, 0) == virtual_outgoing_args_rtx
|
6144 |
|
|
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
6145 |
|
|
&& XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
|
6146 |
|
|
return 1;
|
6147 |
|
|
|
6148 |
|
|
/* If this is a subreg of a hard register, declare it unsafe, otherwise,
|
6149 |
|
|
find the underlying pseudo. */
|
6150 |
|
|
if (GET_CODE (x) == SUBREG)
|
6151 |
|
|
{
|
6152 |
|
|
x = SUBREG_REG (x);
|
6153 |
|
|
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
6154 |
|
|
return 0;
|
6155 |
|
|
}
|
6156 |
|
|
|
6157 |
|
|
/* Now look at our tree code and possibly recurse. */
|
6158 |
|
|
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
|
6159 |
|
|
{
|
6160 |
|
|
case tcc_declaration:
|
6161 |
|
|
exp_rtl = DECL_RTL_IF_SET (exp);
|
6162 |
|
|
break;
|
6163 |
|
|
|
6164 |
|
|
case tcc_constant:
|
6165 |
|
|
return 1;
|
6166 |
|
|
|
6167 |
|
|
case tcc_exceptional:
|
6168 |
|
|
if (TREE_CODE (exp) == TREE_LIST)
|
6169 |
|
|
{
|
6170 |
|
|
while (1)
|
6171 |
|
|
{
|
6172 |
|
|
if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
|
6173 |
|
|
return 0;
|
6174 |
|
|
exp = TREE_CHAIN (exp);
|
6175 |
|
|
if (!exp)
|
6176 |
|
|
return 1;
|
6177 |
|
|
if (TREE_CODE (exp) != TREE_LIST)
|
6178 |
|
|
return safe_from_p (x, exp, 0);
|
6179 |
|
|
}
|
6180 |
|
|
}
|
6181 |
|
|
else if (TREE_CODE (exp) == CONSTRUCTOR)
|
6182 |
|
|
{
|
6183 |
|
|
constructor_elt *ce;
|
6184 |
|
|
unsigned HOST_WIDE_INT idx;
|
6185 |
|
|
|
6186 |
|
|
for (idx = 0;
|
6187 |
|
|
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
|
6188 |
|
|
idx++)
|
6189 |
|
|
if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
|
6190 |
|
|
|| !safe_from_p (x, ce->value, 0))
|
6191 |
|
|
return 0;
|
6192 |
|
|
return 1;
|
6193 |
|
|
}
|
6194 |
|
|
else if (TREE_CODE (exp) == ERROR_MARK)
|
6195 |
|
|
return 1; /* An already-visited SAVE_EXPR? */
|
6196 |
|
|
else
|
6197 |
|
|
return 0;
|
6198 |
|
|
|
6199 |
|
|
case tcc_statement:
|
6200 |
|
|
/* The only case we look at here is the DECL_INITIAL inside a
|
6201 |
|
|
DECL_EXPR. */
|
6202 |
|
|
return (TREE_CODE (exp) != DECL_EXPR
|
6203 |
|
|
|| TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
|
6204 |
|
|
|| !DECL_INITIAL (DECL_EXPR_DECL (exp))
|
6205 |
|
|
|| safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
|
6206 |
|
|
|
6207 |
|
|
case tcc_binary:
|
6208 |
|
|
case tcc_comparison:
|
6209 |
|
|
if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
|
6210 |
|
|
return 0;
|
6211 |
|
|
/* Fall through. */
|
6212 |
|
|
|
6213 |
|
|
case tcc_unary:
|
6214 |
|
|
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
|
6215 |
|
|
|
6216 |
|
|
case tcc_expression:
|
6217 |
|
|
case tcc_reference:
|
6218 |
|
|
/* Now do code-specific tests. EXP_RTL is set to any rtx we find in
|
6219 |
|
|
the expression. If it is set, we conflict iff we are that rtx or
|
6220 |
|
|
both are in memory. Otherwise, we check all operands of the
|
6221 |
|
|
expression recursively. */
|
6222 |
|
|
|
6223 |
|
|
switch (TREE_CODE (exp))
|
6224 |
|
|
{
|
6225 |
|
|
case ADDR_EXPR:
|
6226 |
|
|
/* If the operand is static or we are static, we can't conflict.
|
6227 |
|
|
Likewise if we don't conflict with the operand at all. */
|
6228 |
|
|
if (staticp (TREE_OPERAND (exp, 0))
|
6229 |
|
|
|| TREE_STATIC (exp)
|
6230 |
|
|
|| safe_from_p (x, TREE_OPERAND (exp, 0), 0))
|
6231 |
|
|
return 1;
|
6232 |
|
|
|
6233 |
|
|
/* Otherwise, the only way this can conflict is if we are taking
|
6234 |
|
|
the address of a DECL a that address if part of X, which is
|
6235 |
|
|
very rare. */
|
6236 |
|
|
exp = TREE_OPERAND (exp, 0);
|
6237 |
|
|
if (DECL_P (exp))
|
6238 |
|
|
{
|
6239 |
|
|
if (!DECL_RTL_SET_P (exp)
|
6240 |
|
|
|| !MEM_P (DECL_RTL (exp)))
|
6241 |
|
|
return 0;
|
6242 |
|
|
else
|
6243 |
|
|
exp_rtl = XEXP (DECL_RTL (exp), 0);
|
6244 |
|
|
}
|
6245 |
|
|
break;
|
6246 |
|
|
|
6247 |
|
|
case MISALIGNED_INDIRECT_REF:
|
6248 |
|
|
case ALIGN_INDIRECT_REF:
|
6249 |
|
|
case INDIRECT_REF:
|
6250 |
|
|
if (MEM_P (x)
|
6251 |
|
|
&& alias_sets_conflict_p (MEM_ALIAS_SET (x),
|
6252 |
|
|
get_alias_set (exp)))
|
6253 |
|
|
return 0;
|
6254 |
|
|
break;
|
6255 |
|
|
|
6256 |
|
|
case CALL_EXPR:
|
6257 |
|
|
/* Assume that the call will clobber all hard registers and
|
6258 |
|
|
all of memory. */
|
6259 |
|
|
if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
6260 |
|
|
|| MEM_P (x))
|
6261 |
|
|
return 0;
|
6262 |
|
|
break;
|
6263 |
|
|
|
6264 |
|
|
case WITH_CLEANUP_EXPR:
|
6265 |
|
|
case CLEANUP_POINT_EXPR:
|
6266 |
|
|
/* Lowered by gimplify.c. */
|
6267 |
|
|
gcc_unreachable ();
|
6268 |
|
|
|
6269 |
|
|
case SAVE_EXPR:
|
6270 |
|
|
return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
|
6271 |
|
|
|
6272 |
|
|
default:
|
6273 |
|
|
break;
|
6274 |
|
|
}
|
6275 |
|
|
|
6276 |
|
|
/* If we have an rtx, we do not need to scan our operands. */
|
6277 |
|
|
if (exp_rtl)
|
6278 |
|
|
break;
|
6279 |
|
|
|
6280 |
|
|
nops = TREE_CODE_LENGTH (TREE_CODE (exp));
|
6281 |
|
|
for (i = 0; i < nops; i++)
|
6282 |
|
|
if (TREE_OPERAND (exp, i) != 0
|
6283 |
|
|
&& ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
|
6284 |
|
|
return 0;
|
6285 |
|
|
|
6286 |
|
|
/* If this is a language-specific tree code, it may require
|
6287 |
|
|
special handling. */
|
6288 |
|
|
if ((unsigned int) TREE_CODE (exp)
|
6289 |
|
|
>= (unsigned int) LAST_AND_UNUSED_TREE_CODE
|
6290 |
|
|
&& !lang_hooks.safe_from_p (x, exp))
|
6291 |
|
|
return 0;
|
6292 |
|
|
break;
|
6293 |
|
|
|
6294 |
|
|
case tcc_type:
|
6295 |
|
|
/* Should never get a type here. */
|
6296 |
|
|
gcc_unreachable ();
|
6297 |
|
|
}
|
6298 |
|
|
|
6299 |
|
|
/* If we have an rtl, find any enclosed object. Then see if we conflict
|
6300 |
|
|
with it. */
|
6301 |
|
|
if (exp_rtl)
|
6302 |
|
|
{
|
6303 |
|
|
if (GET_CODE (exp_rtl) == SUBREG)
|
6304 |
|
|
{
|
6305 |
|
|
exp_rtl = SUBREG_REG (exp_rtl);
|
6306 |
|
|
if (REG_P (exp_rtl)
|
6307 |
|
|
&& REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
|
6308 |
|
|
return 0;
|
6309 |
|
|
}
|
6310 |
|
|
|
6311 |
|
|
/* If the rtl is X, then it is not safe. Otherwise, it is unless both
|
6312 |
|
|
are memory and they conflict. */
|
6313 |
|
|
return ! (rtx_equal_p (x, exp_rtl)
|
6314 |
|
|
|| (MEM_P (x) && MEM_P (exp_rtl)
|
6315 |
|
|
&& true_dependence (exp_rtl, VOIDmode, x,
|
6316 |
|
|
rtx_addr_varies_p)));
|
6317 |
|
|
}
|
6318 |
|
|
|
6319 |
|
|
/* If we reach here, it is safe. */
|
6320 |
|
|
return 1;
|
6321 |
|
|
}
|
6322 |
|
|
|
6323 |
|
|
|
6324 |
|
|
/* Return the highest power of two that EXP is known to be a multiple of.
|
6325 |
|
|
This is used in updating alignment of MEMs in array references. */
|
6326 |
|
|
|
6327 |
|
|
unsigned HOST_WIDE_INT
|
6328 |
|
|
highest_pow2_factor (tree exp)
|
6329 |
|
|
{
|
6330 |
|
|
unsigned HOST_WIDE_INT c0, c1;
|
6331 |
|
|
|
6332 |
|
|
switch (TREE_CODE (exp))
|
6333 |
|
|
{
|
6334 |
|
|
case INTEGER_CST:
|
6335 |
|
|
/* We can find the lowest bit that's a one. If the low
|
6336 |
|
|
HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
|
6337 |
|
|
We need to handle this case since we can find it in a COND_EXPR,
|
6338 |
|
|
a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
|
6339 |
|
|
erroneous program, so return BIGGEST_ALIGNMENT to avoid any
|
6340 |
|
|
later ICE. */
|
6341 |
|
|
if (TREE_CONSTANT_OVERFLOW (exp))
|
6342 |
|
|
return BIGGEST_ALIGNMENT;
|
6343 |
|
|
else
|
6344 |
|
|
{
|
6345 |
|
|
/* Note: tree_low_cst is intentionally not used here,
|
6346 |
|
|
we don't care about the upper bits. */
|
6347 |
|
|
c0 = TREE_INT_CST_LOW (exp);
|
6348 |
|
|
c0 &= -c0;
|
6349 |
|
|
return c0 ? c0 : BIGGEST_ALIGNMENT;
|
6350 |
|
|
}
|
6351 |
|
|
break;
|
6352 |
|
|
|
6353 |
|
|
case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
|
6354 |
|
|
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
|
6355 |
|
|
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
|
6356 |
|
|
return MIN (c0, c1);
|
6357 |
|
|
|
6358 |
|
|
case MULT_EXPR:
|
6359 |
|
|
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
|
6360 |
|
|
c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
|
6361 |
|
|
return c0 * c1;
|
6362 |
|
|
|
6363 |
|
|
case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
|
6364 |
|
|
case CEIL_DIV_EXPR:
|
6365 |
|
|
if (integer_pow2p (TREE_OPERAND (exp, 1))
|
6366 |
|
|
&& host_integerp (TREE_OPERAND (exp, 1), 1))
|
6367 |
|
|
{
|
6368 |
|
|
c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
|
6369 |
|
|
c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
|
6370 |
|
|
return MAX (1, c0 / c1);
|
6371 |
|
|
}
|
6372 |
|
|
break;
|
6373 |
|
|
|
6374 |
|
|
case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
|
6375 |
|
|
case SAVE_EXPR:
|
6376 |
|
|
return highest_pow2_factor (TREE_OPERAND (exp, 0));
|
6377 |
|
|
|
6378 |
|
|
case COMPOUND_EXPR:
|
6379 |
|
|
return highest_pow2_factor (TREE_OPERAND (exp, 1));
|
6380 |
|
|
|
6381 |
|
|
case COND_EXPR:
|
6382 |
|
|
c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
|
6383 |
|
|
c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
|
6384 |
|
|
return MIN (c0, c1);
|
6385 |
|
|
|
6386 |
|
|
default:
|
6387 |
|
|
break;
|
6388 |
|
|
}
|
6389 |
|
|
|
6390 |
|
|
return 1;
|
6391 |
|
|
}
|
6392 |
|
|
|
6393 |
|
|
/* Similar, except that the alignment requirements of TARGET are
|
6394 |
|
|
taken into account. Assume it is at least as aligned as its
|
6395 |
|
|
type, unless it is a COMPONENT_REF in which case the layout of
|
6396 |
|
|
the structure gives the alignment. */
|
6397 |
|
|
|
6398 |
|
|
static unsigned HOST_WIDE_INT
|
6399 |
|
|
highest_pow2_factor_for_target (tree target, tree exp)
|
6400 |
|
|
{
|
6401 |
|
|
unsigned HOST_WIDE_INT target_align, factor;
|
6402 |
|
|
|
6403 |
|
|
factor = highest_pow2_factor (exp);
|
6404 |
|
|
if (TREE_CODE (target) == COMPONENT_REF)
|
6405 |
|
|
target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
|
6406 |
|
|
else
|
6407 |
|
|
target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
|
6408 |
|
|
return MAX (factor, target_align);
|
6409 |
|
|
}
|
6410 |
|
|
|
6411 |
|
|
/* Expands variable VAR. */
|
6412 |
|
|
|
6413 |
|
|
void
|
6414 |
|
|
expand_var (tree var)
|
6415 |
|
|
{
|
6416 |
|
|
if (DECL_EXTERNAL (var))
|
6417 |
|
|
return;
|
6418 |
|
|
|
6419 |
|
|
if (TREE_STATIC (var))
|
6420 |
|
|
/* If this is an inlined copy of a static local variable,
|
6421 |
|
|
look up the original decl. */
|
6422 |
|
|
var = DECL_ORIGIN (var);
|
6423 |
|
|
|
6424 |
|
|
if (TREE_STATIC (var)
|
6425 |
|
|
? !TREE_ASM_WRITTEN (var)
|
6426 |
|
|
: !DECL_RTL_SET_P (var))
|
6427 |
|
|
{
|
6428 |
|
|
if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
|
6429 |
|
|
/* Should be ignored. */;
|
6430 |
|
|
else if (lang_hooks.expand_decl (var))
|
6431 |
|
|
/* OK. */;
|
6432 |
|
|
else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
|
6433 |
|
|
expand_decl (var);
|
6434 |
|
|
else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
|
6435 |
|
|
rest_of_decl_compilation (var, 0, 0);
|
6436 |
|
|
else
|
6437 |
|
|
/* No expansion needed. */
|
6438 |
|
|
gcc_assert (TREE_CODE (var) == TYPE_DECL
|
6439 |
|
|
|| TREE_CODE (var) == CONST_DECL
|
6440 |
|
|
|| TREE_CODE (var) == FUNCTION_DECL
|
6441 |
|
|
|| TREE_CODE (var) == LABEL_DECL);
|
6442 |
|
|
}
|
6443 |
|
|
}
|
6444 |
|
|
|
6445 |
|
|
/* Subroutine of expand_expr. Expand the two operands of a binary
|
6446 |
|
|
expression EXP0 and EXP1 placing the results in OP0 and OP1.
|
6447 |
|
|
The value may be stored in TARGET if TARGET is nonzero. The
|
6448 |
|
|
MODIFIER argument is as documented by expand_expr. */
|
6449 |
|
|
|
6450 |
|
|
static void
|
6451 |
|
|
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
|
6452 |
|
|
enum expand_modifier modifier)
|
6453 |
|
|
{
|
6454 |
|
|
if (! safe_from_p (target, exp1, 1))
|
6455 |
|
|
target = 0;
|
6456 |
|
|
if (operand_equal_p (exp0, exp1, 0))
|
6457 |
|
|
{
|
6458 |
|
|
*op0 = expand_expr (exp0, target, VOIDmode, modifier);
|
6459 |
|
|
*op1 = copy_rtx (*op0);
|
6460 |
|
|
}
|
6461 |
|
|
else
|
6462 |
|
|
{
|
6463 |
|
|
/* If we need to preserve evaluation order, copy exp0 into its own
|
6464 |
|
|
temporary variable so that it can't be clobbered by exp1. */
|
6465 |
|
|
if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
|
6466 |
|
|
exp0 = save_expr (exp0);
|
6467 |
|
|
*op0 = expand_expr (exp0, target, VOIDmode, modifier);
|
6468 |
|
|
*op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
|
6469 |
|
|
}
|
6470 |
|
|
}
|
6471 |
|
|
|
6472 |
|
|
|
6473 |
|
|
/* Return a MEM that contains constant EXP. DEFER is as for
|
6474 |
|
|
output_constant_def and MODIFIER is as for expand_expr. */
|
6475 |
|
|
|
6476 |
|
|
static rtx
|
6477 |
|
|
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
|
6478 |
|
|
{
|
6479 |
|
|
rtx mem;
|
6480 |
|
|
|
6481 |
|
|
mem = output_constant_def (exp, defer);
|
6482 |
|
|
if (modifier != EXPAND_INITIALIZER)
|
6483 |
|
|
mem = use_anchored_address (mem);
|
6484 |
|
|
return mem;
|
6485 |
|
|
}
|
6486 |
|
|
|
6487 |
|
|
/* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
|
6488 |
|
|
The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
|
6489 |
|
|
|
6490 |
|
|
static rtx
|
6491 |
|
|
expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
|
6492 |
|
|
enum expand_modifier modifier)
|
6493 |
|
|
{
|
6494 |
|
|
rtx result, subtarget;
|
6495 |
|
|
tree inner, offset;
|
6496 |
|
|
HOST_WIDE_INT bitsize, bitpos;
|
6497 |
|
|
int volatilep, unsignedp;
|
6498 |
|
|
enum machine_mode mode1;
|
6499 |
|
|
|
6500 |
|
|
/* If we are taking the address of a constant and are at the top level,
|
6501 |
|
|
we have to use output_constant_def since we can't call force_const_mem
|
6502 |
|
|
at top level. */
|
6503 |
|
|
/* ??? This should be considered a front-end bug. We should not be
|
6504 |
|
|
generating ADDR_EXPR of something that isn't an LVALUE. The only
|
6505 |
|
|
exception here is STRING_CST. */
|
6506 |
|
|
if (TREE_CODE (exp) == CONSTRUCTOR
|
6507 |
|
|
|| CONSTANT_CLASS_P (exp))
|
6508 |
|
|
return XEXP (expand_expr_constant (exp, 0, modifier), 0);
|
6509 |
|
|
|
6510 |
|
|
/* Everything must be something allowed by is_gimple_addressable. */
|
6511 |
|
|
switch (TREE_CODE (exp))
|
6512 |
|
|
{
|
6513 |
|
|
case INDIRECT_REF:
|
6514 |
|
|
/* This case will happen via recursion for &a->b. */
|
6515 |
|
|
return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
|
6516 |
|
|
|
6517 |
|
|
case CONST_DECL:
|
6518 |
|
|
/* Recurse and make the output_constant_def clause above handle this. */
|
6519 |
|
|
return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
|
6520 |
|
|
tmode, modifier);
|
6521 |
|
|
|
6522 |
|
|
case REALPART_EXPR:
|
6523 |
|
|
/* The real part of the complex number is always first, therefore
|
6524 |
|
|
the address is the same as the address of the parent object. */
|
6525 |
|
|
offset = 0;
|
6526 |
|
|
bitpos = 0;
|
6527 |
|
|
inner = TREE_OPERAND (exp, 0);
|
6528 |
|
|
break;
|
6529 |
|
|
|
6530 |
|
|
case IMAGPART_EXPR:
|
6531 |
|
|
/* The imaginary part of the complex number is always second.
|
6532 |
|
|
The expression is therefore always offset by the size of the
|
6533 |
|
|
scalar type. */
|
6534 |
|
|
offset = 0;
|
6535 |
|
|
bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
|
6536 |
|
|
inner = TREE_OPERAND (exp, 0);
|
6537 |
|
|
break;
|
6538 |
|
|
|
6539 |
|
|
default:
|
6540 |
|
|
/* If the object is a DECL, then expand it for its rtl. Don't bypass
|
6541 |
|
|
expand_expr, as that can have various side effects; LABEL_DECLs for
|
6542 |
|
|
example, may not have their DECL_RTL set yet. Assume language
|
6543 |
|
|
specific tree nodes can be expanded in some interesting way. */
|
6544 |
|
|
if (DECL_P (exp)
|
6545 |
|
|
|| TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
|
6546 |
|
|
{
|
6547 |
|
|
result = expand_expr (exp, target, tmode,
|
6548 |
|
|
modifier == EXPAND_INITIALIZER
|
6549 |
|
|
? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
|
6550 |
|
|
|
6551 |
|
|
/* If the DECL isn't in memory, then the DECL wasn't properly
|
6552 |
|
|
marked TREE_ADDRESSABLE, which will be either a front-end
|
6553 |
|
|
or a tree optimizer bug. */
|
6554 |
|
|
gcc_assert (MEM_P (result));
|
6555 |
|
|
result = XEXP (result, 0);
|
6556 |
|
|
|
6557 |
|
|
/* ??? Is this needed anymore? */
|
6558 |
|
|
if (DECL_P (exp) && !TREE_USED (exp) == 0)
|
6559 |
|
|
{
|
6560 |
|
|
assemble_external (exp);
|
6561 |
|
|
TREE_USED (exp) = 1;
|
6562 |
|
|
}
|
6563 |
|
|
|
6564 |
|
|
if (modifier != EXPAND_INITIALIZER
|
6565 |
|
|
&& modifier != EXPAND_CONST_ADDRESS)
|
6566 |
|
|
result = force_operand (result, target);
|
6567 |
|
|
return result;
|
6568 |
|
|
}
|
6569 |
|
|
|
6570 |
|
|
/* Pass FALSE as the last argument to get_inner_reference although
|
6571 |
|
|
we are expanding to RTL. The rationale is that we know how to
|
6572 |
|
|
handle "aligning nodes" here: we can just bypass them because
|
6573 |
|
|
they won't change the final object whose address will be returned
|
6574 |
|
|
(they actually exist only for that purpose). */
|
6575 |
|
|
inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
6576 |
|
|
&mode1, &unsignedp, &volatilep, false);
|
6577 |
|
|
break;
|
6578 |
|
|
}
|
6579 |
|
|
|
6580 |
|
|
/* We must have made progress. */
|
6581 |
|
|
gcc_assert (inner != exp);
|
6582 |
|
|
|
6583 |
|
|
subtarget = offset || bitpos ? NULL_RTX : target;
|
6584 |
|
|
result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
|
6585 |
|
|
|
6586 |
|
|
if (offset)
|
6587 |
|
|
{
|
6588 |
|
|
rtx tmp;
|
6589 |
|
|
|
6590 |
|
|
if (modifier != EXPAND_NORMAL)
|
6591 |
|
|
result = force_operand (result, NULL);
|
6592 |
|
|
tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
|
6593 |
|
|
|
6594 |
|
|
result = convert_memory_address (tmode, result);
|
6595 |
|
|
tmp = convert_memory_address (tmode, tmp);
|
6596 |
|
|
|
6597 |
|
|
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
6598 |
|
|
result = gen_rtx_PLUS (tmode, result, tmp);
|
6599 |
|
|
else
|
6600 |
|
|
{
|
6601 |
|
|
subtarget = bitpos ? NULL_RTX : target;
|
6602 |
|
|
result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
|
6603 |
|
|
1, OPTAB_LIB_WIDEN);
|
6604 |
|
|
}
|
6605 |
|
|
}
|
6606 |
|
|
|
6607 |
|
|
if (bitpos)
|
6608 |
|
|
{
|
6609 |
|
|
/* Someone beforehand should have rejected taking the address
|
6610 |
|
|
of such an object. */
|
6611 |
|
|
gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
|
6612 |
|
|
|
6613 |
|
|
result = plus_constant (result, bitpos / BITS_PER_UNIT);
|
6614 |
|
|
if (modifier < EXPAND_SUM)
|
6615 |
|
|
result = force_operand (result, target);
|
6616 |
|
|
}
|
6617 |
|
|
|
6618 |
|
|
return result;
|
6619 |
|
|
}
|
6620 |
|
|
|
6621 |
|
|
/* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
|
6622 |
|
|
The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
|
6623 |
|
|
|
6624 |
|
|
static rtx
|
6625 |
|
|
expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
|
6626 |
|
|
enum expand_modifier modifier)
|
6627 |
|
|
{
|
6628 |
|
|
enum machine_mode rmode;
|
6629 |
|
|
rtx result;
|
6630 |
|
|
|
6631 |
|
|
/* Target mode of VOIDmode says "whatever's natural". */
|
6632 |
|
|
if (tmode == VOIDmode)
|
6633 |
|
|
tmode = TYPE_MODE (TREE_TYPE (exp));
|
6634 |
|
|
|
6635 |
|
|
/* We can get called with some Weird Things if the user does silliness
|
6636 |
|
|
like "(short) &a". In that case, convert_memory_address won't do
|
6637 |
|
|
the right thing, so ignore the given target mode. */
|
6638 |
|
|
if (tmode != Pmode && tmode != ptr_mode)
|
6639 |
|
|
tmode = Pmode;
|
6640 |
|
|
|
6641 |
|
|
result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
|
6642 |
|
|
tmode, modifier);
|
6643 |
|
|
|
6644 |
|
|
/* Despite expand_expr claims concerning ignoring TMODE when not
|
6645 |
|
|
strictly convenient, stuff breaks if we don't honor it. Note
|
6646 |
|
|
that combined with the above, we only do this for pointer modes. */
|
6647 |
|
|
rmode = GET_MODE (result);
|
6648 |
|
|
if (rmode == VOIDmode)
|
6649 |
|
|
rmode = tmode;
|
6650 |
|
|
if (rmode != tmode)
|
6651 |
|
|
result = convert_memory_address (tmode, result);
|
6652 |
|
|
|
6653 |
|
|
return result;
|
6654 |
|
|
}
|
6655 |
|
|
|
6656 |
|
|
|
6657 |
|
|
/* expand_expr: generate code for computing expression EXP.
|
6658 |
|
|
An rtx for the computed value is returned. The value is never null.
|
6659 |
|
|
In the case of a void EXP, const0_rtx is returned.
|
6660 |
|
|
|
6661 |
|
|
The value may be stored in TARGET if TARGET is nonzero.
|
6662 |
|
|
TARGET is just a suggestion; callers must assume that
|
6663 |
|
|
the rtx returned may not be the same as TARGET.
|
6664 |
|
|
|
6665 |
|
|
If TARGET is CONST0_RTX, it means that the value will be ignored.
|
6666 |
|
|
|
6667 |
|
|
If TMODE is not VOIDmode, it suggests generating the
|
6668 |
|
|
result in mode TMODE. But this is done only when convenient.
|
6669 |
|
|
Otherwise, TMODE is ignored and the value generated in its natural mode.
|
6670 |
|
|
TMODE is just a suggestion; callers must assume that
|
6671 |
|
|
the rtx returned may not have mode TMODE.
|
6672 |
|
|
|
6673 |
|
|
Note that TARGET may have neither TMODE nor MODE. In that case, it
|
6674 |
|
|
probably will not be used.
|
6675 |
|
|
|
6676 |
|
|
If MODIFIER is EXPAND_SUM then when EXP is an addition
|
6677 |
|
|
we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
|
6678 |
|
|
or a nest of (PLUS ...) and (MINUS ...) where the terms are
|
6679 |
|
|
products as above, or REG or MEM, or constant.
|
6680 |
|
|
Ordinarily in such cases we would output mul or add instructions
|
6681 |
|
|
and then return a pseudo reg containing the sum.
|
6682 |
|
|
|
6683 |
|
|
EXPAND_INITIALIZER is much like EXPAND_SUM except that
|
6684 |
|
|
it also marks a label as absolutely required (it can't be dead).
|
6685 |
|
|
It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
|
6686 |
|
|
This is used for outputting expressions used in initializers.
|
6687 |
|
|
|
6688 |
|
|
EXPAND_CONST_ADDRESS says that it is okay to return a MEM
|
6689 |
|
|
with a constant address even if that address is not normally legitimate.
|
6690 |
|
|
EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
|
6691 |
|
|
|
6692 |
|
|
EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
|
6693 |
|
|
a call parameter. Such targets require special care as we haven't yet
|
6694 |
|
|
marked TARGET so that it's safe from being trashed by libcalls. We
|
6695 |
|
|
don't want to use TARGET for anything but the final result;
|
6696 |
|
|
Intermediate values must go elsewhere. Additionally, calls to
|
6697 |
|
|
emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
|
6698 |
|
|
|
6699 |
|
|
If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
|
6700 |
|
|
address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
|
6701 |
|
|
DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
|
6702 |
|
|
COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
|
6703 |
|
|
recursively. */
|
6704 |
|
|
|
6705 |
|
|
static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
|
6706 |
|
|
enum expand_modifier, rtx *);
|
6707 |
|
|
|
6708 |
|
|
rtx
|
6709 |
|
|
expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
|
6710 |
|
|
enum expand_modifier modifier, rtx *alt_rtl)
|
6711 |
|
|
{
|
6712 |
|
|
int rn = -1;
|
6713 |
|
|
rtx ret, last = NULL;
|
6714 |
|
|
|
6715 |
|
|
/* Handle ERROR_MARK before anybody tries to access its type. */
|
6716 |
|
|
if (TREE_CODE (exp) == ERROR_MARK
|
6717 |
|
|
|| TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
|
6718 |
|
|
{
|
6719 |
|
|
ret = CONST0_RTX (tmode);
|
6720 |
|
|
return ret ? ret : const0_rtx;
|
6721 |
|
|
}
|
6722 |
|
|
|
6723 |
|
|
if (flag_non_call_exceptions)
|
6724 |
|
|
{
|
6725 |
|
|
rn = lookup_stmt_eh_region (exp);
|
6726 |
|
|
/* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
|
6727 |
|
|
if (rn >= 0)
|
6728 |
|
|
last = get_last_insn ();
|
6729 |
|
|
}
|
6730 |
|
|
|
6731 |
|
|
/* If this is an expression of some kind and it has an associated line
|
6732 |
|
|
number, then emit the line number before expanding the expression.
|
6733 |
|
|
|
6734 |
|
|
We need to save and restore the file and line information so that
|
6735 |
|
|
errors discovered during expansion are emitted with the right
|
6736 |
|
|
information. It would be better of the diagnostic routines
|
6737 |
|
|
used the file/line information embedded in the tree nodes rather
|
6738 |
|
|
than globals. */
|
6739 |
|
|
if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
|
6740 |
|
|
{
|
6741 |
|
|
location_t saved_location = input_location;
|
6742 |
|
|
input_location = EXPR_LOCATION (exp);
|
6743 |
|
|
emit_line_note (input_location);
|
6744 |
|
|
|
6745 |
|
|
/* Record where the insns produced belong. */
|
6746 |
|
|
record_block_change (TREE_BLOCK (exp));
|
6747 |
|
|
|
6748 |
|
|
ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
|
6749 |
|
|
|
6750 |
|
|
input_location = saved_location;
|
6751 |
|
|
}
|
6752 |
|
|
else
|
6753 |
|
|
{
|
6754 |
|
|
ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
|
6755 |
|
|
}
|
6756 |
|
|
|
6757 |
|
|
/* If using non-call exceptions, mark all insns that may trap.
|
6758 |
|
|
expand_call() will mark CALL_INSNs before we get to this code,
|
6759 |
|
|
but it doesn't handle libcalls, and these may trap. */
|
6760 |
|
|
if (rn >= 0)
|
6761 |
|
|
{
|
6762 |
|
|
rtx insn;
|
6763 |
|
|
for (insn = next_real_insn (last); insn;
|
6764 |
|
|
insn = next_real_insn (insn))
|
6765 |
|
|
{
|
6766 |
|
|
if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
|
6767 |
|
|
/* If we want exceptions for non-call insns, any
|
6768 |
|
|
may_trap_p instruction may throw. */
|
6769 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER
|
6770 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
6771 |
|
|
&& (CALL_P (insn) || may_trap_p (PATTERN (insn))))
|
6772 |
|
|
{
|
6773 |
|
|
REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
|
6774 |
|
|
REG_NOTES (insn));
|
6775 |
|
|
}
|
6776 |
|
|
}
|
6777 |
|
|
}
|
6778 |
|
|
|
6779 |
|
|
return ret;
|
6780 |
|
|
}
|
6781 |
|
|
|
6782 |
|
|
static rtx
|
6783 |
|
|
expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
|
6784 |
|
|
enum expand_modifier modifier, rtx *alt_rtl)
|
6785 |
|
|
{
|
6786 |
|
|
rtx op0, op1, temp, decl_rtl;
|
6787 |
|
|
tree type = TREE_TYPE (exp);
|
6788 |
|
|
int unsignedp;
|
6789 |
|
|
enum machine_mode mode;
|
6790 |
|
|
enum tree_code code = TREE_CODE (exp);
|
6791 |
|
|
optab this_optab;
|
6792 |
|
|
rtx subtarget, original_target;
|
6793 |
|
|
int ignore;
|
6794 |
|
|
tree context, subexp0, subexp1;
|
6795 |
|
|
bool reduce_bit_field = false;
|
6796 |
|
|
#define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
|
6797 |
|
|
? reduce_to_bit_field_precision ((expr), \
|
6798 |
|
|
target, \
|
6799 |
|
|
type) \
|
6800 |
|
|
: (expr))
|
6801 |
|
|
|
6802 |
|
|
mode = TYPE_MODE (type);
|
6803 |
|
|
unsignedp = TYPE_UNSIGNED (type);
|
6804 |
|
|
if (lang_hooks.reduce_bit_field_operations
|
6805 |
|
|
&& TREE_CODE (type) == INTEGER_TYPE
|
6806 |
|
|
&& GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
|
6807 |
|
|
{
|
6808 |
|
|
/* An operation in what may be a bit-field type needs the
|
6809 |
|
|
result to be reduced to the precision of the bit-field type,
|
6810 |
|
|
which is narrower than that of the type's mode. */
|
6811 |
|
|
reduce_bit_field = true;
|
6812 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
6813 |
|
|
target = 0;
|
6814 |
|
|
}
|
6815 |
|
|
|
6816 |
|
|
/* Use subtarget as the target for operand 0 of a binary operation. */
|
6817 |
|
|
subtarget = get_subtarget (target);
|
6818 |
|
|
original_target = target;
|
6819 |
|
|
ignore = (target == const0_rtx
|
6820 |
|
|
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|
6821 |
|
|
|| code == CONVERT_EXPR || code == COND_EXPR
|
6822 |
|
|
|| code == VIEW_CONVERT_EXPR)
|
6823 |
|
|
&& TREE_CODE (type) == VOID_TYPE));
|
6824 |
|
|
|
6825 |
|
|
/* If we are going to ignore this result, we need only do something
|
6826 |
|
|
if there is a side-effect somewhere in the expression. If there
|
6827 |
|
|
is, short-circuit the most common cases here. Note that we must
|
6828 |
|
|
not call expand_expr with anything but const0_rtx in case this
|
6829 |
|
|
is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
|
6830 |
|
|
|
6831 |
|
|
if (ignore)
|
6832 |
|
|
{
|
6833 |
|
|
if (! TREE_SIDE_EFFECTS (exp))
|
6834 |
|
|
return const0_rtx;
|
6835 |
|
|
|
6836 |
|
|
/* Ensure we reference a volatile object even if value is ignored, but
|
6837 |
|
|
don't do this if all we are doing is taking its address. */
|
6838 |
|
|
if (TREE_THIS_VOLATILE (exp)
|
6839 |
|
|
&& TREE_CODE (exp) != FUNCTION_DECL
|
6840 |
|
|
&& mode != VOIDmode && mode != BLKmode
|
6841 |
|
|
&& modifier != EXPAND_CONST_ADDRESS)
|
6842 |
|
|
{
|
6843 |
|
|
temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
|
6844 |
|
|
if (MEM_P (temp))
|
6845 |
|
|
temp = copy_to_reg (temp);
|
6846 |
|
|
return const0_rtx;
|
6847 |
|
|
}
|
6848 |
|
|
|
6849 |
|
|
if (TREE_CODE_CLASS (code) == tcc_unary
|
6850 |
|
|
|| code == COMPONENT_REF || code == INDIRECT_REF)
|
6851 |
|
|
return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
|
6852 |
|
|
modifier);
|
6853 |
|
|
|
6854 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_binary
|
6855 |
|
|
|| TREE_CODE_CLASS (code) == tcc_comparison
|
6856 |
|
|
|| code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
6857 |
|
|
{
|
6858 |
|
|
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
|
6859 |
|
|
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
|
6860 |
|
|
return const0_rtx;
|
6861 |
|
|
}
|
6862 |
|
|
else if (code == BIT_FIELD_REF)
|
6863 |
|
|
{
|
6864 |
|
|
expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
|
6865 |
|
|
expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
|
6866 |
|
|
expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
|
6867 |
|
|
return const0_rtx;
|
6868 |
|
|
}
|
6869 |
|
|
|
6870 |
|
|
target = 0;
|
6871 |
|
|
}
|
6872 |
|
|
|
6873 |
|
|
|
6874 |
|
|
switch (code)
|
6875 |
|
|
{
|
6876 |
|
|
case LABEL_DECL:
|
6877 |
|
|
{
|
6878 |
|
|
tree function = decl_function_context (exp);
|
6879 |
|
|
|
6880 |
|
|
temp = label_rtx (exp);
|
6881 |
|
|
temp = gen_rtx_LABEL_REF (Pmode, temp);
|
6882 |
|
|
|
6883 |
|
|
if (function != current_function_decl
|
6884 |
|
|
&& function != 0)
|
6885 |
|
|
LABEL_REF_NONLOCAL_P (temp) = 1;
|
6886 |
|
|
|
6887 |
|
|
temp = gen_rtx_MEM (FUNCTION_MODE, temp);
|
6888 |
|
|
return temp;
|
6889 |
|
|
}
|
6890 |
|
|
|
6891 |
|
|
case SSA_NAME:
|
6892 |
|
|
return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
|
6893 |
|
|
NULL);
|
6894 |
|
|
|
6895 |
|
|
case PARM_DECL:
|
6896 |
|
|
case VAR_DECL:
|
6897 |
|
|
/* If a static var's type was incomplete when the decl was written,
|
6898 |
|
|
but the type is complete now, lay out the decl now. */
|
6899 |
|
|
if (DECL_SIZE (exp) == 0
|
6900 |
|
|
&& COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
|
6901 |
|
|
&& (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
|
6902 |
|
|
layout_decl (exp, 0);
|
6903 |
|
|
|
6904 |
|
|
/* ... fall through ... */
|
6905 |
|
|
|
6906 |
|
|
case FUNCTION_DECL:
|
6907 |
|
|
case RESULT_DECL:
|
6908 |
|
|
decl_rtl = DECL_RTL (exp);
|
6909 |
|
|
gcc_assert (decl_rtl);
|
6910 |
|
|
|
6911 |
|
|
/* Ensure variable marked as used even if it doesn't go through
|
6912 |
|
|
a parser. If it hasn't be used yet, write out an external
|
6913 |
|
|
definition. */
|
6914 |
|
|
if (! TREE_USED (exp))
|
6915 |
|
|
{
|
6916 |
|
|
assemble_external (exp);
|
6917 |
|
|
TREE_USED (exp) = 1;
|
6918 |
|
|
}
|
6919 |
|
|
|
6920 |
|
|
/* Show we haven't gotten RTL for this yet. */
|
6921 |
|
|
temp = 0;
|
6922 |
|
|
|
6923 |
|
|
/* Variables inherited from containing functions should have
|
6924 |
|
|
been lowered by this point. */
|
6925 |
|
|
context = decl_function_context (exp);
|
6926 |
|
|
gcc_assert (!context
|
6927 |
|
|
|| context == current_function_decl
|
6928 |
|
|
|| TREE_STATIC (exp)
|
6929 |
|
|
/* ??? C++ creates functions that are not TREE_STATIC. */
|
6930 |
|
|
|| TREE_CODE (exp) == FUNCTION_DECL);
|
6931 |
|
|
|
6932 |
|
|
/* This is the case of an array whose size is to be determined
|
6933 |
|
|
from its initializer, while the initializer is still being parsed.
|
6934 |
|
|
See expand_decl. */
|
6935 |
|
|
|
6936 |
|
|
if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
|
6937 |
|
|
temp = validize_mem (decl_rtl);
|
6938 |
|
|
|
6939 |
|
|
/* If DECL_RTL is memory, we are in the normal case and either
|
6940 |
|
|
the address is not valid or it is not a register and -fforce-addr
|
6941 |
|
|
is specified, get the address into a register. */
|
6942 |
|
|
|
6943 |
|
|
else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
|
6944 |
|
|
{
|
6945 |
|
|
if (alt_rtl)
|
6946 |
|
|
*alt_rtl = decl_rtl;
|
6947 |
|
|
decl_rtl = use_anchored_address (decl_rtl);
|
6948 |
|
|
if (modifier != EXPAND_CONST_ADDRESS
|
6949 |
|
|
&& modifier != EXPAND_SUM
|
6950 |
|
|
&& (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
|
6951 |
|
|
|| (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
|
6952 |
|
|
temp = replace_equiv_address (decl_rtl,
|
6953 |
|
|
copy_rtx (XEXP (decl_rtl, 0)));
|
6954 |
|
|
}
|
6955 |
|
|
|
6956 |
|
|
/* If we got something, return it. But first, set the alignment
|
6957 |
|
|
if the address is a register. */
|
6958 |
|
|
if (temp != 0)
|
6959 |
|
|
{
|
6960 |
|
|
if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
|
6961 |
|
|
mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
|
6962 |
|
|
|
6963 |
|
|
return temp;
|
6964 |
|
|
}
|
6965 |
|
|
|
6966 |
|
|
/* If the mode of DECL_RTL does not match that of the decl, it
|
6967 |
|
|
must be a promoted value. We return a SUBREG of the wanted mode,
|
6968 |
|
|
but mark it so that we know that it was already extended. */
|
6969 |
|
|
|
6970 |
|
|
if (REG_P (decl_rtl)
|
6971 |
|
|
&& GET_MODE (decl_rtl) != DECL_MODE (exp))
|
6972 |
|
|
{
|
6973 |
|
|
enum machine_mode pmode;
|
6974 |
|
|
|
6975 |
|
|
/* Get the signedness used for this variable. Ensure we get the
|
6976 |
|
|
same mode we got when the variable was declared. */
|
6977 |
|
|
pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
|
6978 |
|
|
(TREE_CODE (exp) == RESULT_DECL
|
6979 |
|
|
|| TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
|
6980 |
|
|
gcc_assert (GET_MODE (decl_rtl) == pmode);
|
6981 |
|
|
|
6982 |
|
|
temp = gen_lowpart_SUBREG (mode, decl_rtl);
|
6983 |
|
|
SUBREG_PROMOTED_VAR_P (temp) = 1;
|
6984 |
|
|
SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
|
6985 |
|
|
return temp;
|
6986 |
|
|
}
|
6987 |
|
|
|
6988 |
|
|
return decl_rtl;
|
6989 |
|
|
|
6990 |
|
|
case INTEGER_CST:
|
6991 |
|
|
temp = immed_double_const (TREE_INT_CST_LOW (exp),
|
6992 |
|
|
TREE_INT_CST_HIGH (exp), mode);
|
6993 |
|
|
|
6994 |
|
|
/* ??? If overflow is set, fold will have done an incomplete job,
|
6995 |
|
|
which can result in (plus xx (const_int 0)), which can get
|
6996 |
|
|
simplified by validate_replace_rtx during virtual register
|
6997 |
|
|
instantiation, which can result in unrecognizable insns.
|
6998 |
|
|
Avoid this by forcing all overflows into registers. */
|
6999 |
|
|
if (TREE_CONSTANT_OVERFLOW (exp)
|
7000 |
|
|
&& modifier != EXPAND_INITIALIZER)
|
7001 |
|
|
temp = force_reg (mode, temp);
|
7002 |
|
|
|
7003 |
|
|
return temp;
|
7004 |
|
|
|
7005 |
|
|
case VECTOR_CST:
|
7006 |
|
|
{
|
7007 |
|
|
tree tmp = NULL_TREE;
|
7008 |
|
|
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|
7009 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
7010 |
|
|
return const_vector_from_tree (exp);
|
7011 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT)
|
7012 |
|
|
{
|
7013 |
|
|
tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
|
7014 |
|
|
if (type_for_mode)
|
7015 |
|
|
tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
|
7016 |
|
|
}
|
7017 |
|
|
if (!tmp)
|
7018 |
|
|
tmp = build_constructor_from_list (type,
|
7019 |
|
|
TREE_VECTOR_CST_ELTS (exp));
|
7020 |
|
|
return expand_expr (tmp, ignore ? const0_rtx : target,
|
7021 |
|
|
tmode, modifier);
|
7022 |
|
|
}
|
7023 |
|
|
|
7024 |
|
|
case CONST_DECL:
|
7025 |
|
|
return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
|
7026 |
|
|
|
7027 |
|
|
case REAL_CST:
|
7028 |
|
|
/* If optimized, generate immediate CONST_DOUBLE
|
7029 |
|
|
which will be turned into memory by reload if necessary.
|
7030 |
|
|
|
7031 |
|
|
We used to force a register so that loop.c could see it. But
|
7032 |
|
|
this does not allow gen_* patterns to perform optimizations with
|
7033 |
|
|
the constants. It also produces two insns in cases like "x = 1.0;".
|
7034 |
|
|
On most machines, floating-point constants are not permitted in
|
7035 |
|
|
many insns, so we'd end up copying it to a register in any case.
|
7036 |
|
|
|
7037 |
|
|
Now, we do the copying in expand_binop, if appropriate. */
|
7038 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
|
7039 |
|
|
TYPE_MODE (TREE_TYPE (exp)));
|
7040 |
|
|
|
7041 |
|
|
case COMPLEX_CST:
|
7042 |
|
|
/* Handle evaluating a complex constant in a CONCAT target. */
|
7043 |
|
|
if (original_target && GET_CODE (original_target) == CONCAT)
|
7044 |
|
|
{
|
7045 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
|
7046 |
|
|
rtx rtarg, itarg;
|
7047 |
|
|
|
7048 |
|
|
rtarg = XEXP (original_target, 0);
|
7049 |
|
|
itarg = XEXP (original_target, 1);
|
7050 |
|
|
|
7051 |
|
|
/* Move the real and imaginary parts separately. */
|
7052 |
|
|
op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
|
7053 |
|
|
op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
|
7054 |
|
|
|
7055 |
|
|
if (op0 != rtarg)
|
7056 |
|
|
emit_move_insn (rtarg, op0);
|
7057 |
|
|
if (op1 != itarg)
|
7058 |
|
|
emit_move_insn (itarg, op1);
|
7059 |
|
|
|
7060 |
|
|
return original_target;
|
7061 |
|
|
}
|
7062 |
|
|
|
7063 |
|
|
/* ... fall through ... */
|
7064 |
|
|
|
7065 |
|
|
case STRING_CST:
|
7066 |
|
|
temp = expand_expr_constant (exp, 1, modifier);
|
7067 |
|
|
|
7068 |
|
|
/* temp contains a constant address.
|
7069 |
|
|
On RISC machines where a constant address isn't valid,
|
7070 |
|
|
make some insns to get that address into a register. */
|
7071 |
|
|
if (modifier != EXPAND_CONST_ADDRESS
|
7072 |
|
|
&& modifier != EXPAND_INITIALIZER
|
7073 |
|
|
&& modifier != EXPAND_SUM
|
7074 |
|
|
&& (! memory_address_p (mode, XEXP (temp, 0))
|
7075 |
|
|
|| flag_force_addr))
|
7076 |
|
|
return replace_equiv_address (temp,
|
7077 |
|
|
copy_rtx (XEXP (temp, 0)));
|
7078 |
|
|
return temp;
|
7079 |
|
|
|
7080 |
|
|
case SAVE_EXPR:
|
7081 |
|
|
{
|
7082 |
|
|
tree val = TREE_OPERAND (exp, 0);
|
7083 |
|
|
rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
|
7084 |
|
|
|
7085 |
|
|
if (!SAVE_EXPR_RESOLVED_P (exp))
|
7086 |
|
|
{
|
7087 |
|
|
/* We can indeed still hit this case, typically via builtin
|
7088 |
|
|
expanders calling save_expr immediately before expanding
|
7089 |
|
|
something. Assume this means that we only have to deal
|
7090 |
|
|
with non-BLKmode values. */
|
7091 |
|
|
gcc_assert (GET_MODE (ret) != BLKmode);
|
7092 |
|
|
|
7093 |
|
|
val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
|
7094 |
|
|
DECL_ARTIFICIAL (val) = 1;
|
7095 |
|
|
DECL_IGNORED_P (val) = 1;
|
7096 |
|
|
TREE_OPERAND (exp, 0) = val;
|
7097 |
|
|
SAVE_EXPR_RESOLVED_P (exp) = 1;
|
7098 |
|
|
|
7099 |
|
|
if (!CONSTANT_P (ret))
|
7100 |
|
|
ret = copy_to_reg (ret);
|
7101 |
|
|
SET_DECL_RTL (val, ret);
|
7102 |
|
|
}
|
7103 |
|
|
|
7104 |
|
|
return ret;
|
7105 |
|
|
}
|
7106 |
|
|
|
7107 |
|
|
case GOTO_EXPR:
|
7108 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
|
7109 |
|
|
expand_goto (TREE_OPERAND (exp, 0));
|
7110 |
|
|
else
|
7111 |
|
|
expand_computed_goto (TREE_OPERAND (exp, 0));
|
7112 |
|
|
return const0_rtx;
|
7113 |
|
|
|
7114 |
|
|
case CONSTRUCTOR:
|
7115 |
|
|
/* If we don't need the result, just ensure we evaluate any
|
7116 |
|
|
subexpressions. */
|
7117 |
|
|
if (ignore)
|
7118 |
|
|
{
|
7119 |
|
|
unsigned HOST_WIDE_INT idx;
|
7120 |
|
|
tree value;
|
7121 |
|
|
|
7122 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
|
7123 |
|
|
expand_expr (value, const0_rtx, VOIDmode, 0);
|
7124 |
|
|
|
7125 |
|
|
return const0_rtx;
|
7126 |
|
|
}
|
7127 |
|
|
|
7128 |
|
|
/* Try to avoid creating a temporary at all. This is possible
|
7129 |
|
|
if all of the initializer is zero.
|
7130 |
|
|
FIXME: try to handle all [0..255] initializers we can handle
|
7131 |
|
|
with memset. */
|
7132 |
|
|
else if (TREE_STATIC (exp)
|
7133 |
|
|
&& !TREE_ADDRESSABLE (exp)
|
7134 |
|
|
&& target != 0 && mode == BLKmode
|
7135 |
|
|
&& all_zeros_p (exp))
|
7136 |
|
|
{
|
7137 |
|
|
clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
|
7138 |
|
|
return target;
|
7139 |
|
|
}
|
7140 |
|
|
|
7141 |
|
|
/* All elts simple constants => refer to a constant in memory. But
|
7142 |
|
|
if this is a non-BLKmode mode, let it store a field at a time
|
7143 |
|
|
since that should make a CONST_INT or CONST_DOUBLE when we
|
7144 |
|
|
fold. Likewise, if we have a target we can use, it is best to
|
7145 |
|
|
store directly into the target unless the type is large enough
|
7146 |
|
|
that memcpy will be used. If we are making an initializer and
|
7147 |
|
|
all operands are constant, put it in memory as well.
|
7148 |
|
|
|
7149 |
|
|
FIXME: Avoid trying to fill vector constructors piece-meal.
|
7150 |
|
|
Output them with output_constant_def below unless we're sure
|
7151 |
|
|
they're zeros. This should go away when vector initializers
|
7152 |
|
|
are treated like VECTOR_CST instead of arrays.
|
7153 |
|
|
*/
|
7154 |
|
|
else if ((TREE_STATIC (exp)
|
7155 |
|
|
&& ((mode == BLKmode
|
7156 |
|
|
&& ! (target != 0 && safe_from_p (target, exp, 1)))
|
7157 |
|
|
|| TREE_ADDRESSABLE (exp)
|
7158 |
|
|
|| (host_integerp (TYPE_SIZE_UNIT (type), 1)
|
7159 |
|
|
&& (! MOVE_BY_PIECES_P
|
7160 |
|
|
(tree_low_cst (TYPE_SIZE_UNIT (type), 1),
|
7161 |
|
|
TYPE_ALIGN (type)))
|
7162 |
|
|
&& ! mostly_zeros_p (exp))))
|
7163 |
|
|
|| ((modifier == EXPAND_INITIALIZER
|
7164 |
|
|
|| modifier == EXPAND_CONST_ADDRESS)
|
7165 |
|
|
&& TREE_CONSTANT (exp)))
|
7166 |
|
|
{
|
7167 |
|
|
rtx constructor = expand_expr_constant (exp, 1, modifier);
|
7168 |
|
|
|
7169 |
|
|
if (modifier != EXPAND_CONST_ADDRESS
|
7170 |
|
|
&& modifier != EXPAND_INITIALIZER
|
7171 |
|
|
&& modifier != EXPAND_SUM)
|
7172 |
|
|
constructor = validize_mem (constructor);
|
7173 |
|
|
|
7174 |
|
|
return constructor;
|
7175 |
|
|
}
|
7176 |
|
|
else
|
7177 |
|
|
{
|
7178 |
|
|
/* Handle calls that pass values in multiple non-contiguous
|
7179 |
|
|
locations. The Irix 6 ABI has examples of this. */
|
7180 |
|
|
if (target == 0 || ! safe_from_p (target, exp, 1)
|
7181 |
|
|
|| GET_CODE (target) == PARALLEL
|
7182 |
|
|
|| modifier == EXPAND_STACK_PARM)
|
7183 |
|
|
target
|
7184 |
|
|
= assign_temp (build_qualified_type (type,
|
7185 |
|
|
(TYPE_QUALS (type)
|
7186 |
|
|
| (TREE_READONLY (exp)
|
7187 |
|
|
* TYPE_QUAL_CONST))),
|
7188 |
|
|
0, TREE_ADDRESSABLE (exp), 1);
|
7189 |
|
|
|
7190 |
|
|
store_constructor (exp, target, 0, int_expr_size (exp));
|
7191 |
|
|
return target;
|
7192 |
|
|
}
|
7193 |
|
|
|
7194 |
|
|
case MISALIGNED_INDIRECT_REF:
|
7195 |
|
|
case ALIGN_INDIRECT_REF:
|
7196 |
|
|
case INDIRECT_REF:
|
7197 |
|
|
{
|
7198 |
|
|
tree exp1 = TREE_OPERAND (exp, 0);
|
7199 |
|
|
|
7200 |
|
|
if (modifier != EXPAND_WRITE)
|
7201 |
|
|
{
|
7202 |
|
|
tree t;
|
7203 |
|
|
|
7204 |
|
|
t = fold_read_from_constant_string (exp);
|
7205 |
|
|
if (t)
|
7206 |
|
|
return expand_expr (t, target, tmode, modifier);
|
7207 |
|
|
}
|
7208 |
|
|
|
7209 |
|
|
op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
|
7210 |
|
|
op0 = memory_address (mode, op0);
|
7211 |
|
|
|
7212 |
|
|
if (code == ALIGN_INDIRECT_REF)
|
7213 |
|
|
{
|
7214 |
|
|
int align = TYPE_ALIGN_UNIT (type);
|
7215 |
|
|
op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
|
7216 |
|
|
op0 = memory_address (mode, op0);
|
7217 |
|
|
}
|
7218 |
|
|
|
7219 |
|
|
temp = gen_rtx_MEM (mode, op0);
|
7220 |
|
|
|
7221 |
|
|
set_mem_attributes (temp, exp, 0);
|
7222 |
|
|
|
7223 |
|
|
/* Resolve the misalignment now, so that we don't have to remember
|
7224 |
|
|
to resolve it later. Of course, this only works for reads. */
|
7225 |
|
|
/* ??? When we get around to supporting writes, we'll have to handle
|
7226 |
|
|
this in store_expr directly. The vectorizer isn't generating
|
7227 |
|
|
those yet, however. */
|
7228 |
|
|
if (code == MISALIGNED_INDIRECT_REF)
|
7229 |
|
|
{
|
7230 |
|
|
int icode;
|
7231 |
|
|
rtx reg, insn;
|
7232 |
|
|
|
7233 |
|
|
gcc_assert (modifier == EXPAND_NORMAL
|
7234 |
|
|
|| modifier == EXPAND_STACK_PARM);
|
7235 |
|
|
|
7236 |
|
|
/* The vectorizer should have already checked the mode. */
|
7237 |
|
|
icode = movmisalign_optab->handlers[mode].insn_code;
|
7238 |
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
7239 |
|
|
|
7240 |
|
|
/* We've already validated the memory, and we're creating a
|
7241 |
|
|
new pseudo destination. The predicates really can't fail. */
|
7242 |
|
|
reg = gen_reg_rtx (mode);
|
7243 |
|
|
|
7244 |
|
|
/* Nor can the insn generator. */
|
7245 |
|
|
insn = GEN_FCN (icode) (reg, temp);
|
7246 |
|
|
emit_insn (insn);
|
7247 |
|
|
|
7248 |
|
|
return reg;
|
7249 |
|
|
}
|
7250 |
|
|
|
7251 |
|
|
return temp;
|
7252 |
|
|
}
|
7253 |
|
|
|
7254 |
|
|
case TARGET_MEM_REF:
|
7255 |
|
|
{
|
7256 |
|
|
struct mem_address addr;
|
7257 |
|
|
|
7258 |
|
|
get_address_description (exp, &addr);
|
7259 |
|
|
op0 = addr_for_mem_ref (&addr, true);
|
7260 |
|
|
op0 = memory_address (mode, op0);
|
7261 |
|
|
temp = gen_rtx_MEM (mode, op0);
|
7262 |
|
|
set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
|
7263 |
|
|
}
|
7264 |
|
|
return temp;
|
7265 |
|
|
|
7266 |
|
|
case ARRAY_REF:
|
7267 |
|
|
|
7268 |
|
|
{
|
7269 |
|
|
tree array = TREE_OPERAND (exp, 0);
|
7270 |
|
|
tree index = TREE_OPERAND (exp, 1);
|
7271 |
|
|
|
7272 |
|
|
/* Fold an expression like: "foo"[2].
|
7273 |
|
|
This is not done in fold so it won't happen inside &.
|
7274 |
|
|
Don't fold if this is for wide characters since it's too
|
7275 |
|
|
difficult to do correctly and this is a very rare case. */
|
7276 |
|
|
|
7277 |
|
|
if (modifier != EXPAND_CONST_ADDRESS
|
7278 |
|
|
&& modifier != EXPAND_INITIALIZER
|
7279 |
|
|
&& modifier != EXPAND_MEMORY)
|
7280 |
|
|
{
|
7281 |
|
|
tree t = fold_read_from_constant_string (exp);
|
7282 |
|
|
|
7283 |
|
|
if (t)
|
7284 |
|
|
return expand_expr (t, target, tmode, modifier);
|
7285 |
|
|
}
|
7286 |
|
|
|
7287 |
|
|
/* If this is a constant index into a constant array,
|
7288 |
|
|
just get the value from the array. Handle both the cases when
|
7289 |
|
|
we have an explicit constructor and when our operand is a variable
|
7290 |
|
|
that was declared const. */
|
7291 |
|
|
|
7292 |
|
|
if (modifier != EXPAND_CONST_ADDRESS
|
7293 |
|
|
&& modifier != EXPAND_INITIALIZER
|
7294 |
|
|
&& modifier != EXPAND_MEMORY
|
7295 |
|
|
&& TREE_CODE (array) == CONSTRUCTOR
|
7296 |
|
|
&& ! TREE_SIDE_EFFECTS (array)
|
7297 |
|
|
&& TREE_CODE (index) == INTEGER_CST)
|
7298 |
|
|
{
|
7299 |
|
|
unsigned HOST_WIDE_INT ix;
|
7300 |
|
|
tree field, value;
|
7301 |
|
|
|
7302 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
|
7303 |
|
|
field, value)
|
7304 |
|
|
if (tree_int_cst_equal (field, index))
|
7305 |
|
|
{
|
7306 |
|
|
if (!TREE_SIDE_EFFECTS (value))
|
7307 |
|
|
return expand_expr (fold (value), target, tmode, modifier);
|
7308 |
|
|
break;
|
7309 |
|
|
}
|
7310 |
|
|
}
|
7311 |
|
|
|
7312 |
|
|
else if (optimize >= 1
|
7313 |
|
|
&& modifier != EXPAND_CONST_ADDRESS
|
7314 |
|
|
&& modifier != EXPAND_INITIALIZER
|
7315 |
|
|
&& modifier != EXPAND_MEMORY
|
7316 |
|
|
&& TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
|
7317 |
|
|
&& TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
|
7318 |
|
|
&& TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
|
7319 |
|
|
&& targetm.binds_local_p (array))
|
7320 |
|
|
{
|
7321 |
|
|
if (TREE_CODE (index) == INTEGER_CST)
|
7322 |
|
|
{
|
7323 |
|
|
tree init = DECL_INITIAL (array);
|
7324 |
|
|
|
7325 |
|
|
if (TREE_CODE (init) == CONSTRUCTOR)
|
7326 |
|
|
{
|
7327 |
|
|
unsigned HOST_WIDE_INT ix;
|
7328 |
|
|
tree field, value;
|
7329 |
|
|
|
7330 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
|
7331 |
|
|
field, value)
|
7332 |
|
|
if (tree_int_cst_equal (field, index))
|
7333 |
|
|
{
|
7334 |
|
|
if (!TREE_SIDE_EFFECTS (value))
|
7335 |
|
|
return expand_expr (fold (value), target, tmode,
|
7336 |
|
|
modifier);
|
7337 |
|
|
break;
|
7338 |
|
|
}
|
7339 |
|
|
}
|
7340 |
|
|
else if(TREE_CODE (init) == STRING_CST)
|
7341 |
|
|
{
|
7342 |
|
|
tree index1 = index;
|
7343 |
|
|
tree low_bound = array_ref_low_bound (exp);
|
7344 |
|
|
index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
|
7345 |
|
|
|
7346 |
|
|
/* Optimize the special-case of a zero lower bound.
|
7347 |
|
|
|
7348 |
|
|
We convert the low_bound to sizetype to avoid some problems
|
7349 |
|
|
with constant folding. (E.g. suppose the lower bound is 1,
|
7350 |
|
|
and its mode is QI. Without the conversion,l (ARRAY
|
7351 |
|
|
+(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
|
7352 |
|
|
+INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
|
7353 |
|
|
|
7354 |
|
|
if (! integer_zerop (low_bound))
|
7355 |
|
|
index1 = size_diffop (index1, fold_convert (sizetype,
|
7356 |
|
|
low_bound));
|
7357 |
|
|
|
7358 |
|
|
if (0 > compare_tree_int (index1,
|
7359 |
|
|
TREE_STRING_LENGTH (init)))
|
7360 |
|
|
{
|
7361 |
|
|
tree type = TREE_TYPE (TREE_TYPE (init));
|
7362 |
|
|
enum machine_mode mode = TYPE_MODE (type);
|
7363 |
|
|
|
7364 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
7365 |
|
|
&& GET_MODE_SIZE (mode) == 1)
|
7366 |
|
|
return gen_int_mode (TREE_STRING_POINTER (init)
|
7367 |
|
|
[TREE_INT_CST_LOW (index1)],
|
7368 |
|
|
mode);
|
7369 |
|
|
}
|
7370 |
|
|
}
|
7371 |
|
|
}
|
7372 |
|
|
}
|
7373 |
|
|
}
|
7374 |
|
|
goto normal_inner_ref;
|
7375 |
|
|
|
7376 |
|
|
case COMPONENT_REF:
|
7377 |
|
|
/* If the operand is a CONSTRUCTOR, we can just extract the
|
7378 |
|
|
appropriate field if it is present. */
|
7379 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
|
7380 |
|
|
{
|
7381 |
|
|
unsigned HOST_WIDE_INT idx;
|
7382 |
|
|
tree field, value;
|
7383 |
|
|
|
7384 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
|
7385 |
|
|
idx, field, value)
|
7386 |
|
|
if (field == TREE_OPERAND (exp, 1)
|
7387 |
|
|
/* We can normally use the value of the field in the
|
7388 |
|
|
CONSTRUCTOR. However, if this is a bitfield in
|
7389 |
|
|
an integral mode that we can fit in a HOST_WIDE_INT,
|
7390 |
|
|
we must mask only the number of bits in the bitfield,
|
7391 |
|
|
since this is done implicitly by the constructor. If
|
7392 |
|
|
the bitfield does not meet either of those conditions,
|
7393 |
|
|
we can't do this optimization. */
|
7394 |
|
|
&& (! DECL_BIT_FIELD (field)
|
7395 |
|
|
|| ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
|
7396 |
|
|
&& (GET_MODE_BITSIZE (DECL_MODE (field))
|
7397 |
|
|
<= HOST_BITS_PER_WIDE_INT))))
|
7398 |
|
|
{
|
7399 |
|
|
if (DECL_BIT_FIELD (field)
|
7400 |
|
|
&& modifier == EXPAND_STACK_PARM)
|
7401 |
|
|
target = 0;
|
7402 |
|
|
op0 = expand_expr (value, target, tmode, modifier);
|
7403 |
|
|
if (DECL_BIT_FIELD (field))
|
7404 |
|
|
{
|
7405 |
|
|
HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
|
7406 |
|
|
enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
|
7407 |
|
|
|
7408 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (field)))
|
7409 |
|
|
{
|
7410 |
|
|
op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
|
7411 |
|
|
op0 = expand_and (imode, op0, op1, target);
|
7412 |
|
|
}
|
7413 |
|
|
else
|
7414 |
|
|
{
|
7415 |
|
|
tree count
|
7416 |
|
|
= build_int_cst (NULL_TREE,
|
7417 |
|
|
GET_MODE_BITSIZE (imode) - bitsize);
|
7418 |
|
|
|
7419 |
|
|
op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
|
7420 |
|
|
target, 0);
|
7421 |
|
|
op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
|
7422 |
|
|
target, 0);
|
7423 |
|
|
}
|
7424 |
|
|
}
|
7425 |
|
|
|
7426 |
|
|
return op0;
|
7427 |
|
|
}
|
7428 |
|
|
}
|
7429 |
|
|
goto normal_inner_ref;
|
7430 |
|
|
|
7431 |
|
|
case BIT_FIELD_REF:
|
7432 |
|
|
case ARRAY_RANGE_REF:
|
7433 |
|
|
normal_inner_ref:
|
7434 |
|
|
{
|
7435 |
|
|
enum machine_mode mode1;
|
7436 |
|
|
HOST_WIDE_INT bitsize, bitpos;
|
7437 |
|
|
tree offset;
|
7438 |
|
|
int volatilep = 0;
|
7439 |
|
|
tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
|
7440 |
|
|
&mode1, &unsignedp, &volatilep, true);
|
7441 |
|
|
rtx orig_op0;
|
7442 |
|
|
|
7443 |
|
|
/* If we got back the original object, something is wrong. Perhaps
|
7444 |
|
|
we are evaluating an expression too early. In any event, don't
|
7445 |
|
|
infinitely recurse. */
|
7446 |
|
|
gcc_assert (tem != exp);
|
7447 |
|
|
|
7448 |
|
|
/* If TEM's type is a union of variable size, pass TARGET to the inner
|
7449 |
|
|
computation, since it will need a temporary and TARGET is known
|
7450 |
|
|
to have to do. This occurs in unchecked conversion in Ada. */
|
7451 |
|
|
|
7452 |
|
|
orig_op0 = op0
|
7453 |
|
|
= expand_expr (tem,
|
7454 |
|
|
(TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
|
7455 |
|
|
&& (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
|
7456 |
|
|
!= INTEGER_CST)
|
7457 |
|
|
&& modifier != EXPAND_STACK_PARM
|
7458 |
|
|
? target : NULL_RTX),
|
7459 |
|
|
VOIDmode,
|
7460 |
|
|
(modifier == EXPAND_INITIALIZER
|
7461 |
|
|
|| modifier == EXPAND_CONST_ADDRESS
|
7462 |
|
|
|| modifier == EXPAND_STACK_PARM)
|
7463 |
|
|
? modifier : EXPAND_NORMAL);
|
7464 |
|
|
|
7465 |
|
|
/* If this is a constant, put it into a register if it is a legitimate
|
7466 |
|
|
constant, OFFSET is 0, and we won't try to extract outside the
|
7467 |
|
|
register (in case we were passed a partially uninitialized object
|
7468 |
|
|
or a view_conversion to a larger size). Force the constant to
|
7469 |
|
|
memory otherwise. */
|
7470 |
|
|
if (CONSTANT_P (op0))
|
7471 |
|
|
{
|
7472 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
|
7473 |
|
|
if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
|
7474 |
|
|
&& offset == 0
|
7475 |
|
|
&& bitpos + bitsize <= GET_MODE_BITSIZE (mode))
|
7476 |
|
|
op0 = force_reg (mode, op0);
|
7477 |
|
|
else
|
7478 |
|
|
op0 = validize_mem (force_const_mem (mode, op0));
|
7479 |
|
|
}
|
7480 |
|
|
|
7481 |
|
|
/* Otherwise, if this object not in memory and we either have an
|
7482 |
|
|
offset, a BLKmode result, or a reference outside the object, put it
|
7483 |
|
|
there. Such cases can occur in Ada if we have unchecked conversion
|
7484 |
|
|
of an expression from a scalar type to an array or record type or
|
7485 |
|
|
for an ARRAY_RANGE_REF whose type is BLKmode. */
|
7486 |
|
|
else if (!MEM_P (op0)
|
7487 |
|
|
&& (offset != 0
|
7488 |
|
|
|| (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
|
7489 |
|
|
|| (code == ARRAY_RANGE_REF && mode == BLKmode)))
|
7490 |
|
|
{
|
7491 |
|
|
tree nt = build_qualified_type (TREE_TYPE (tem),
|
7492 |
|
|
(TYPE_QUALS (TREE_TYPE (tem))
|
7493 |
|
|
| TYPE_QUAL_CONST));
|
7494 |
|
|
rtx memloc = assign_temp (nt, 1, 1, 1);
|
7495 |
|
|
|
7496 |
|
|
emit_move_insn (memloc, op0);
|
7497 |
|
|
op0 = memloc;
|
7498 |
|
|
}
|
7499 |
|
|
|
7500 |
|
|
if (offset != 0)
|
7501 |
|
|
{
|
7502 |
|
|
rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
|
7503 |
|
|
EXPAND_SUM);
|
7504 |
|
|
|
7505 |
|
|
gcc_assert (MEM_P (op0));
|
7506 |
|
|
|
7507 |
|
|
#ifdef POINTERS_EXTEND_UNSIGNED
|
7508 |
|
|
if (GET_MODE (offset_rtx) != Pmode)
|
7509 |
|
|
offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
|
7510 |
|
|
#else
|
7511 |
|
|
if (GET_MODE (offset_rtx) != ptr_mode)
|
7512 |
|
|
offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
|
7513 |
|
|
#endif
|
7514 |
|
|
|
7515 |
|
|
if (GET_MODE (op0) == BLKmode
|
7516 |
|
|
/* A constant address in OP0 can have VOIDmode, we must
|
7517 |
|
|
not try to call force_reg in that case. */
|
7518 |
|
|
&& GET_MODE (XEXP (op0, 0)) != VOIDmode
|
7519 |
|
|
&& bitsize != 0
|
7520 |
|
|
&& (bitpos % bitsize) == 0
|
7521 |
|
|
&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
|
7522 |
|
|
&& MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
|
7523 |
|
|
{
|
7524 |
|
|
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
|
7525 |
|
|
bitpos = 0;
|
7526 |
|
|
}
|
7527 |
|
|
|
7528 |
|
|
op0 = offset_address (op0, offset_rtx,
|
7529 |
|
|
highest_pow2_factor (offset));
|
7530 |
|
|
}
|
7531 |
|
|
|
7532 |
|
|
/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
|
7533 |
|
|
record its alignment as BIGGEST_ALIGNMENT. */
|
7534 |
|
|
if (MEM_P (op0) && bitpos == 0 && offset != 0
|
7535 |
|
|
&& is_aligning_offset (offset, tem))
|
7536 |
|
|
set_mem_align (op0, BIGGEST_ALIGNMENT);
|
7537 |
|
|
|
7538 |
|
|
/* Don't forget about volatility even if this is a bitfield. */
|
7539 |
|
|
if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
|
7540 |
|
|
{
|
7541 |
|
|
if (op0 == orig_op0)
|
7542 |
|
|
op0 = copy_rtx (op0);
|
7543 |
|
|
|
7544 |
|
|
MEM_VOLATILE_P (op0) = 1;
|
7545 |
|
|
}
|
7546 |
|
|
|
7547 |
|
|
/* The following code doesn't handle CONCAT.
|
7548 |
|
|
Assume only bitpos == 0 can be used for CONCAT, due to
|
7549 |
|
|
one element arrays having the same mode as its element. */
|
7550 |
|
|
if (GET_CODE (op0) == CONCAT)
|
7551 |
|
|
{
|
7552 |
|
|
gcc_assert (bitpos == 0
|
7553 |
|
|
&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
|
7554 |
|
|
return op0;
|
7555 |
|
|
}
|
7556 |
|
|
|
7557 |
|
|
/* In cases where an aligned union has an unaligned object
|
7558 |
|
|
as a field, we might be extracting a BLKmode value from
|
7559 |
|
|
an integer-mode (e.g., SImode) object. Handle this case
|
7560 |
|
|
by doing the extract into an object as wide as the field
|
7561 |
|
|
(which we know to be the width of a basic mode), then
|
7562 |
|
|
storing into memory, and changing the mode to BLKmode. */
|
7563 |
|
|
if (mode1 == VOIDmode
|
7564 |
|
|
|| REG_P (op0) || GET_CODE (op0) == SUBREG
|
7565 |
|
|
|| (mode1 != BLKmode && ! direct_load[(int) mode1]
|
7566 |
|
|
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
7567 |
|
|
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
|
7568 |
|
|
&& modifier != EXPAND_CONST_ADDRESS
|
7569 |
|
|
&& modifier != EXPAND_INITIALIZER)
|
7570 |
|
|
/* If the field isn't aligned enough to fetch as a memref,
|
7571 |
|
|
fetch it as a bit field. */
|
7572 |
|
|
|| (mode1 != BLKmode
|
7573 |
|
|
&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
|
7574 |
|
|
|| (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
|
7575 |
|
|
|| (MEM_P (op0)
|
7576 |
|
|
&& (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
|
7577 |
|
|
|| (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
|
7578 |
|
|
&& ((modifier == EXPAND_CONST_ADDRESS
|
7579 |
|
|
|| modifier == EXPAND_INITIALIZER)
|
7580 |
|
|
? STRICT_ALIGNMENT
|
7581 |
|
|
: SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
|
7582 |
|
|
|| (bitpos % BITS_PER_UNIT != 0)))
|
7583 |
|
|
/* If the type and the field are a constant size and the
|
7584 |
|
|
size of the type isn't the same size as the bitfield,
|
7585 |
|
|
we must use bitfield operations. */
|
7586 |
|
|
|| (bitsize >= 0
|
7587 |
|
|
&& TYPE_SIZE (TREE_TYPE (exp))
|
7588 |
|
|
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
|
7589 |
|
|
&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
|
7590 |
|
|
bitsize)))
|
7591 |
|
|
{
|
7592 |
|
|
enum machine_mode ext_mode = mode;
|
7593 |
|
|
|
7594 |
|
|
if (ext_mode == BLKmode
|
7595 |
|
|
&& ! (target != 0 && MEM_P (op0)
|
7596 |
|
|
&& MEM_P (target)
|
7597 |
|
|
&& bitpos % BITS_PER_UNIT == 0))
|
7598 |
|
|
ext_mode = mode_for_size (bitsize, MODE_INT, 1);
|
7599 |
|
|
|
7600 |
|
|
if (ext_mode == BLKmode)
|
7601 |
|
|
{
|
7602 |
|
|
if (target == 0)
|
7603 |
|
|
target = assign_temp (type, 0, 1, 1);
|
7604 |
|
|
|
7605 |
|
|
if (bitsize == 0)
|
7606 |
|
|
return target;
|
7607 |
|
|
|
7608 |
|
|
/* In this case, BITPOS must start at a byte boundary and
|
7609 |
|
|
TARGET, if specified, must be a MEM. */
|
7610 |
|
|
gcc_assert (MEM_P (op0)
|
7611 |
|
|
&& (!target || MEM_P (target))
|
7612 |
|
|
&& !(bitpos % BITS_PER_UNIT));
|
7613 |
|
|
|
7614 |
|
|
emit_block_move (target,
|
7615 |
|
|
adjust_address (op0, VOIDmode,
|
7616 |
|
|
bitpos / BITS_PER_UNIT),
|
7617 |
|
|
GEN_INT ((bitsize + BITS_PER_UNIT - 1)
|
7618 |
|
|
/ BITS_PER_UNIT),
|
7619 |
|
|
(modifier == EXPAND_STACK_PARM
|
7620 |
|
|
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
7621 |
|
|
|
7622 |
|
|
return target;
|
7623 |
|
|
}
|
7624 |
|
|
|
7625 |
|
|
op0 = validize_mem (op0);
|
7626 |
|
|
|
7627 |
|
|
if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
|
7628 |
|
|
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
|
7629 |
|
|
|
7630 |
|
|
op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
|
7631 |
|
|
(modifier == EXPAND_STACK_PARM
|
7632 |
|
|
? NULL_RTX : target),
|
7633 |
|
|
ext_mode, ext_mode);
|
7634 |
|
|
|
7635 |
|
|
/* If the result is a record type and BITSIZE is narrower than
|
7636 |
|
|
the mode of OP0, an integral mode, and this is a big endian
|
7637 |
|
|
machine, we must put the field into the high-order bits. */
|
7638 |
|
|
if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
|
7639 |
|
|
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
7640 |
|
|
&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
|
7641 |
|
|
op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
|
7642 |
|
|
size_int (GET_MODE_BITSIZE (GET_MODE (op0))
|
7643 |
|
|
- bitsize),
|
7644 |
|
|
op0, 1);
|
7645 |
|
|
|
7646 |
|
|
/* If the result type is BLKmode, store the data into a temporary
|
7647 |
|
|
of the appropriate type, but with the mode corresponding to the
|
7648 |
|
|
mode for the data we have (op0's mode). It's tempting to make
|
7649 |
|
|
this a constant type, since we know it's only being stored once,
|
7650 |
|
|
but that can cause problems if we are taking the address of this
|
7651 |
|
|
COMPONENT_REF because the MEM of any reference via that address
|
7652 |
|
|
will have flags corresponding to the type, which will not
|
7653 |
|
|
necessarily be constant. */
|
7654 |
|
|
if (mode == BLKmode)
|
7655 |
|
|
{
|
7656 |
|
|
rtx new
|
7657 |
|
|
= assign_stack_temp_for_type
|
7658 |
|
|
(ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
|
7659 |
|
|
|
7660 |
|
|
emit_move_insn (new, op0);
|
7661 |
|
|
op0 = copy_rtx (new);
|
7662 |
|
|
PUT_MODE (op0, BLKmode);
|
7663 |
|
|
set_mem_attributes (op0, exp, 1);
|
7664 |
|
|
}
|
7665 |
|
|
|
7666 |
|
|
return op0;
|
7667 |
|
|
}
|
7668 |
|
|
|
7669 |
|
|
/* If the result is BLKmode, use that to access the object
|
7670 |
|
|
now as well. */
|
7671 |
|
|
if (mode == BLKmode)
|
7672 |
|
|
mode1 = BLKmode;
|
7673 |
|
|
|
7674 |
|
|
/* Get a reference to just this component. */
|
7675 |
|
|
if (modifier == EXPAND_CONST_ADDRESS
|
7676 |
|
|
|| modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
7677 |
|
|
op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
|
7678 |
|
|
else
|
7679 |
|
|
op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
|
7680 |
|
|
|
7681 |
|
|
if (op0 == orig_op0)
|
7682 |
|
|
op0 = copy_rtx (op0);
|
7683 |
|
|
|
7684 |
|
|
set_mem_attributes (op0, exp, 0);
|
7685 |
|
|
if (REG_P (XEXP (op0, 0)))
|
7686 |
|
|
mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
|
7687 |
|
|
|
7688 |
|
|
MEM_VOLATILE_P (op0) |= volatilep;
|
7689 |
|
|
if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
|
7690 |
|
|
|| modifier == EXPAND_CONST_ADDRESS
|
7691 |
|
|
|| modifier == EXPAND_INITIALIZER)
|
7692 |
|
|
return op0;
|
7693 |
|
|
else if (target == 0)
|
7694 |
|
|
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
7695 |
|
|
|
7696 |
|
|
convert_move (target, op0, unsignedp);
|
7697 |
|
|
return target;
|
7698 |
|
|
}
|
7699 |
|
|
|
7700 |
|
|
case OBJ_TYPE_REF:
|
7701 |
|
|
return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
|
7702 |
|
|
|
7703 |
|
|
case CALL_EXPR:
|
7704 |
|
|
/* Check for a built-in function. */
|
7705 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
7706 |
|
|
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
7707 |
|
|
== FUNCTION_DECL)
|
7708 |
|
|
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
7709 |
|
|
{
|
7710 |
|
|
if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
7711 |
|
|
== BUILT_IN_FRONTEND)
|
7712 |
|
|
return lang_hooks.expand_expr (exp, original_target,
|
7713 |
|
|
tmode, modifier,
|
7714 |
|
|
alt_rtl);
|
7715 |
|
|
else
|
7716 |
|
|
return expand_builtin (exp, target, subtarget, tmode, ignore);
|
7717 |
|
|
}
|
7718 |
|
|
|
7719 |
|
|
return expand_call (exp, target, ignore);
|
7720 |
|
|
|
7721 |
|
|
case NON_LVALUE_EXPR:
|
7722 |
|
|
case NOP_EXPR:
|
7723 |
|
|
case CONVERT_EXPR:
|
7724 |
|
|
if (TREE_OPERAND (exp, 0) == error_mark_node)
|
7725 |
|
|
return const0_rtx;
|
7726 |
|
|
|
7727 |
|
|
if (TREE_CODE (type) == UNION_TYPE)
|
7728 |
|
|
{
|
7729 |
|
|
tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
|
7730 |
|
|
|
7731 |
|
|
/* If both input and output are BLKmode, this conversion isn't doing
|
7732 |
|
|
anything except possibly changing memory attribute. */
|
7733 |
|
|
if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
|
7734 |
|
|
{
|
7735 |
|
|
rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
|
7736 |
|
|
modifier);
|
7737 |
|
|
|
7738 |
|
|
result = copy_rtx (result);
|
7739 |
|
|
set_mem_attributes (result, exp, 0);
|
7740 |
|
|
return result;
|
7741 |
|
|
}
|
7742 |
|
|
|
7743 |
|
|
if (target == 0)
|
7744 |
|
|
{
|
7745 |
|
|
if (TYPE_MODE (type) != BLKmode)
|
7746 |
|
|
target = gen_reg_rtx (TYPE_MODE (type));
|
7747 |
|
|
else
|
7748 |
|
|
target = assign_temp (type, 0, 1, 1);
|
7749 |
|
|
}
|
7750 |
|
|
|
7751 |
|
|
if (MEM_P (target))
|
7752 |
|
|
/* Store data into beginning of memory target. */
|
7753 |
|
|
store_expr (TREE_OPERAND (exp, 0),
|
7754 |
|
|
adjust_address (target, TYPE_MODE (valtype), 0),
|
7755 |
|
|
modifier == EXPAND_STACK_PARM);
|
7756 |
|
|
|
7757 |
|
|
else
|
7758 |
|
|
{
|
7759 |
|
|
gcc_assert (REG_P (target));
|
7760 |
|
|
|
7761 |
|
|
/* Store this field into a union of the proper type. */
|
7762 |
|
|
store_field (target,
|
7763 |
|
|
MIN ((int_size_in_bytes (TREE_TYPE
|
7764 |
|
|
(TREE_OPERAND (exp, 0)))
|
7765 |
|
|
* BITS_PER_UNIT),
|
7766 |
|
|
(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
|
7767 |
|
|
0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
|
7768 |
|
|
type, 0);
|
7769 |
|
|
}
|
7770 |
|
|
|
7771 |
|
|
/* Return the entire union. */
|
7772 |
|
|
return target;
|
7773 |
|
|
}
|
7774 |
|
|
|
7775 |
|
|
if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
7776 |
|
|
{
|
7777 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
|
7778 |
|
|
modifier);
|
7779 |
|
|
|
7780 |
|
|
/* If the signedness of the conversion differs and OP0 is
|
7781 |
|
|
a promoted SUBREG, clear that indication since we now
|
7782 |
|
|
have to do the proper extension. */
|
7783 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
|
7784 |
|
|
&& GET_CODE (op0) == SUBREG)
|
7785 |
|
|
SUBREG_PROMOTED_VAR_P (op0) = 0;
|
7786 |
|
|
|
7787 |
|
|
return REDUCE_BIT_FIELD (op0);
|
7788 |
|
|
}
|
7789 |
|
|
|
7790 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
|
7791 |
|
|
modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
|
7792 |
|
|
if (GET_MODE (op0) == mode)
|
7793 |
|
|
;
|
7794 |
|
|
|
7795 |
|
|
/* If OP0 is a constant, just convert it into the proper mode. */
|
7796 |
|
|
else if (CONSTANT_P (op0))
|
7797 |
|
|
{
|
7798 |
|
|
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
7799 |
|
|
enum machine_mode inner_mode = TYPE_MODE (inner_type);
|
7800 |
|
|
|
7801 |
|
|
if (modifier == EXPAND_INITIALIZER)
|
7802 |
|
|
op0 = simplify_gen_subreg (mode, op0, inner_mode,
|
7803 |
|
|
subreg_lowpart_offset (mode,
|
7804 |
|
|
inner_mode));
|
7805 |
|
|
else
|
7806 |
|
|
op0= convert_modes (mode, inner_mode, op0,
|
7807 |
|
|
TYPE_UNSIGNED (inner_type));
|
7808 |
|
|
}
|
7809 |
|
|
|
7810 |
|
|
else if (modifier == EXPAND_INITIALIZER)
|
7811 |
|
|
op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
|
7812 |
|
|
|
7813 |
|
|
else if (target == 0)
|
7814 |
|
|
op0 = convert_to_mode (mode, op0,
|
7815 |
|
|
TYPE_UNSIGNED (TREE_TYPE
|
7816 |
|
|
(TREE_OPERAND (exp, 0))));
|
7817 |
|
|
else
|
7818 |
|
|
{
|
7819 |
|
|
convert_move (target, op0,
|
7820 |
|
|
TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
7821 |
|
|
op0 = target;
|
7822 |
|
|
}
|
7823 |
|
|
|
7824 |
|
|
return REDUCE_BIT_FIELD (op0);
|
7825 |
|
|
|
7826 |
|
|
case VIEW_CONVERT_EXPR:
|
7827 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
|
7828 |
|
|
|
7829 |
|
|
/* If the input and output modes are both the same, we are done. */
|
7830 |
|
|
if (TYPE_MODE (type) == GET_MODE (op0))
|
7831 |
|
|
;
|
7832 |
|
|
/* If neither mode is BLKmode, and both modes are the same size
|
7833 |
|
|
then we can use gen_lowpart. */
|
7834 |
|
|
else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
|
7835 |
|
|
&& GET_MODE_SIZE (TYPE_MODE (type))
|
7836 |
|
|
== GET_MODE_SIZE (GET_MODE (op0)))
|
7837 |
|
|
{
|
7838 |
|
|
if (GET_CODE (op0) == SUBREG)
|
7839 |
|
|
op0 = force_reg (GET_MODE (op0), op0);
|
7840 |
|
|
op0 = gen_lowpart (TYPE_MODE (type), op0);
|
7841 |
|
|
}
|
7842 |
|
|
/* If both modes are integral, then we can convert from one to the
|
7843 |
|
|
other. */
|
7844 |
|
|
else if (SCALAR_INT_MODE_P (GET_MODE (op0))
|
7845 |
|
|
&& SCALAR_INT_MODE_P (TYPE_MODE (type)))
|
7846 |
|
|
op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
|
7847 |
|
|
TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
7848 |
|
|
/* As a last resort, spill op0 to memory, and reload it in a
|
7849 |
|
|
different mode. */
|
7850 |
|
|
else if (!MEM_P (op0))
|
7851 |
|
|
{
|
7852 |
|
|
/* If the operand is not a MEM, force it into memory. Since we
|
7853 |
|
|
are going to be changing the mode of the MEM, don't call
|
7854 |
|
|
force_const_mem for constants because we don't allow pool
|
7855 |
|
|
constants to change mode. */
|
7856 |
|
|
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
7857 |
|
|
|
7858 |
|
|
gcc_assert (!TREE_ADDRESSABLE (exp));
|
7859 |
|
|
|
7860 |
|
|
if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
|
7861 |
|
|
target
|
7862 |
|
|
= assign_stack_temp_for_type
|
7863 |
|
|
(TYPE_MODE (inner_type),
|
7864 |
|
|
GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
|
7865 |
|
|
|
7866 |
|
|
emit_move_insn (target, op0);
|
7867 |
|
|
op0 = target;
|
7868 |
|
|
}
|
7869 |
|
|
|
7870 |
|
|
/* At this point, OP0 is in the correct mode. If the output type is such
|
7871 |
|
|
that the operand is known to be aligned, indicate that it is.
|
7872 |
|
|
Otherwise, we need only be concerned about alignment for non-BLKmode
|
7873 |
|
|
results. */
|
7874 |
|
|
if (MEM_P (op0))
|
7875 |
|
|
{
|
7876 |
|
|
op0 = copy_rtx (op0);
|
7877 |
|
|
|
7878 |
|
|
if (TYPE_ALIGN_OK (type))
|
7879 |
|
|
set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
|
7880 |
|
|
else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
|
7881 |
|
|
&& MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
|
7882 |
|
|
{
|
7883 |
|
|
tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
7884 |
|
|
HOST_WIDE_INT temp_size
|
7885 |
|
|
= MAX (int_size_in_bytes (inner_type),
|
7886 |
|
|
(HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
|
7887 |
|
|
rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
|
7888 |
|
|
temp_size, 0, type);
|
7889 |
|
|
rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
|
7890 |
|
|
|
7891 |
|
|
gcc_assert (!TREE_ADDRESSABLE (exp));
|
7892 |
|
|
|
7893 |
|
|
if (GET_MODE (op0) == BLKmode)
|
7894 |
|
|
emit_block_move (new_with_op0_mode, op0,
|
7895 |
|
|
GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
|
7896 |
|
|
(modifier == EXPAND_STACK_PARM
|
7897 |
|
|
? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
|
7898 |
|
|
else
|
7899 |
|
|
emit_move_insn (new_with_op0_mode, op0);
|
7900 |
|
|
|
7901 |
|
|
op0 = new;
|
7902 |
|
|
}
|
7903 |
|
|
|
7904 |
|
|
op0 = adjust_address (op0, TYPE_MODE (type), 0);
|
7905 |
|
|
}
|
7906 |
|
|
|
7907 |
|
|
return op0;
|
7908 |
|
|
|
7909 |
|
|
case PLUS_EXPR:
|
7910 |
|
|
/* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
|
7911 |
|
|
something else, make sure we add the register to the constant and
|
7912 |
|
|
then to the other thing. This case can occur during strength
|
7913 |
|
|
reduction and doing it this way will produce better code if the
|
7914 |
|
|
frame pointer or argument pointer is eliminated.
|
7915 |
|
|
|
7916 |
|
|
fold-const.c will ensure that the constant is always in the inner
|
7917 |
|
|
PLUS_EXPR, so the only case we need to do anything about is if
|
7918 |
|
|
sp, ap, or fp is our second argument, in which case we must swap
|
7919 |
|
|
the innermost first argument and our second argument. */
|
7920 |
|
|
|
7921 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
|
7922 |
|
|
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
|
7923 |
|
|
&& TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
|
7924 |
|
|
&& (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
|
7925 |
|
|
|| DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
|
7926 |
|
|
|| DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
|
7927 |
|
|
{
|
7928 |
|
|
tree t = TREE_OPERAND (exp, 1);
|
7929 |
|
|
|
7930 |
|
|
TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
7931 |
|
|
TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
|
7932 |
|
|
}
|
7933 |
|
|
|
7934 |
|
|
/* If the result is to be ptr_mode and we are adding an integer to
|
7935 |
|
|
something, we might be forming a constant. So try to use
|
7936 |
|
|
plus_constant. If it produces a sum and we can't accept it,
|
7937 |
|
|
use force_operand. This allows P = &ARR[const] to generate
|
7938 |
|
|
efficient code on machines where a SYMBOL_REF is not a valid
|
7939 |
|
|
address.
|
7940 |
|
|
|
7941 |
|
|
If this is an EXPAND_SUM call, always return the sum. */
|
7942 |
|
|
if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
|
7943 |
|
|
|| (mode == ptr_mode && (unsignedp || ! flag_trapv)))
|
7944 |
|
|
{
|
7945 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
7946 |
|
|
target = 0;
|
7947 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
|
7948 |
|
|
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
7949 |
|
|
&& TREE_CONSTANT (TREE_OPERAND (exp, 1)))
|
7950 |
|
|
{
|
7951 |
|
|
rtx constant_part;
|
7952 |
|
|
|
7953 |
|
|
op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
|
7954 |
|
|
EXPAND_SUM);
|
7955 |
|
|
/* Use immed_double_const to ensure that the constant is
|
7956 |
|
|
truncated according to the mode of OP1, then sign extended
|
7957 |
|
|
to a HOST_WIDE_INT. Using the constant directly can result
|
7958 |
|
|
in non-canonical RTL in a 64x32 cross compile. */
|
7959 |
|
|
constant_part
|
7960 |
|
|
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
|
7961 |
|
|
(HOST_WIDE_INT) 0,
|
7962 |
|
|
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
|
7963 |
|
|
op1 = plus_constant (op1, INTVAL (constant_part));
|
7964 |
|
|
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
7965 |
|
|
op1 = force_operand (op1, target);
|
7966 |
|
|
return REDUCE_BIT_FIELD (op1);
|
7967 |
|
|
}
|
7968 |
|
|
|
7969 |
|
|
else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
7970 |
|
|
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
7971 |
|
|
&& TREE_CONSTANT (TREE_OPERAND (exp, 0)))
|
7972 |
|
|
{
|
7973 |
|
|
rtx constant_part;
|
7974 |
|
|
|
7975 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
|
7976 |
|
|
(modifier == EXPAND_INITIALIZER
|
7977 |
|
|
? EXPAND_INITIALIZER : EXPAND_SUM));
|
7978 |
|
|
if (! CONSTANT_P (op0))
|
7979 |
|
|
{
|
7980 |
|
|
op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
|
7981 |
|
|
VOIDmode, modifier);
|
7982 |
|
|
/* Return a PLUS if modifier says it's OK. */
|
7983 |
|
|
if (modifier == EXPAND_SUM
|
7984 |
|
|
|| modifier == EXPAND_INITIALIZER)
|
7985 |
|
|
return simplify_gen_binary (PLUS, mode, op0, op1);
|
7986 |
|
|
goto binop2;
|
7987 |
|
|
}
|
7988 |
|
|
/* Use immed_double_const to ensure that the constant is
|
7989 |
|
|
truncated according to the mode of OP1, then sign extended
|
7990 |
|
|
to a HOST_WIDE_INT. Using the constant directly can result
|
7991 |
|
|
in non-canonical RTL in a 64x32 cross compile. */
|
7992 |
|
|
constant_part
|
7993 |
|
|
= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
|
7994 |
|
|
(HOST_WIDE_INT) 0,
|
7995 |
|
|
TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
7996 |
|
|
op0 = plus_constant (op0, INTVAL (constant_part));
|
7997 |
|
|
if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
7998 |
|
|
op0 = force_operand (op0, target);
|
7999 |
|
|
return REDUCE_BIT_FIELD (op0);
|
8000 |
|
|
}
|
8001 |
|
|
}
|
8002 |
|
|
|
8003 |
|
|
/* No sense saving up arithmetic to be done
|
8004 |
|
|
if it's all in the wrong mode to form part of an address.
|
8005 |
|
|
And force_operand won't know whether to sign-extend or
|
8006 |
|
|
zero-extend. */
|
8007 |
|
|
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
8008 |
|
|
|| mode != ptr_mode)
|
8009 |
|
|
{
|
8010 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8011 |
|
|
subtarget, &op0, &op1, 0);
|
8012 |
|
|
if (op0 == const0_rtx)
|
8013 |
|
|
return op1;
|
8014 |
|
|
if (op1 == const0_rtx)
|
8015 |
|
|
return op0;
|
8016 |
|
|
goto binop2;
|
8017 |
|
|
}
|
8018 |
|
|
|
8019 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8020 |
|
|
subtarget, &op0, &op1, modifier);
|
8021 |
|
|
return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
|
8022 |
|
|
|
8023 |
|
|
case MINUS_EXPR:
|
8024 |
|
|
/* For initializers, we are allowed to return a MINUS of two
|
8025 |
|
|
symbolic constants. Here we handle all cases when both operands
|
8026 |
|
|
are constant. */
|
8027 |
|
|
/* Handle difference of two symbolic constants,
|
8028 |
|
|
for the sake of an initializer. */
|
8029 |
|
|
if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
|
8030 |
|
|
&& really_constant_p (TREE_OPERAND (exp, 0))
|
8031 |
|
|
&& really_constant_p (TREE_OPERAND (exp, 1)))
|
8032 |
|
|
{
|
8033 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8034 |
|
|
NULL_RTX, &op0, &op1, modifier);
|
8035 |
|
|
|
8036 |
|
|
/* If the last operand is a CONST_INT, use plus_constant of
|
8037 |
|
|
the negated constant. Else make the MINUS. */
|
8038 |
|
|
if (GET_CODE (op1) == CONST_INT)
|
8039 |
|
|
return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
|
8040 |
|
|
else
|
8041 |
|
|
return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
|
8042 |
|
|
}
|
8043 |
|
|
|
8044 |
|
|
/* No sense saving up arithmetic to be done
|
8045 |
|
|
if it's all in the wrong mode to form part of an address.
|
8046 |
|
|
And force_operand won't know whether to sign-extend or
|
8047 |
|
|
zero-extend. */
|
8048 |
|
|
if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
|
8049 |
|
|
|| mode != ptr_mode)
|
8050 |
|
|
goto binop;
|
8051 |
|
|
|
8052 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8053 |
|
|
subtarget, &op0, &op1, modifier);
|
8054 |
|
|
|
8055 |
|
|
/* Convert A - const to A + (-const). */
|
8056 |
|
|
if (GET_CODE (op1) == CONST_INT)
|
8057 |
|
|
{
|
8058 |
|
|
op1 = negate_rtx (mode, op1);
|
8059 |
|
|
return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
|
8060 |
|
|
}
|
8061 |
|
|
|
8062 |
|
|
goto binop2;
|
8063 |
|
|
|
8064 |
|
|
case MULT_EXPR:
|
8065 |
|
|
/* If first operand is constant, swap them.
|
8066 |
|
|
Thus the following special case checks need only
|
8067 |
|
|
check the second operand. */
|
8068 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
|
8069 |
|
|
{
|
8070 |
|
|
tree t1 = TREE_OPERAND (exp, 0);
|
8071 |
|
|
TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
|
8072 |
|
|
TREE_OPERAND (exp, 1) = t1;
|
8073 |
|
|
}
|
8074 |
|
|
|
8075 |
|
|
/* Attempt to return something suitable for generating an
|
8076 |
|
|
indexed address, for machines that support that. */
|
8077 |
|
|
|
8078 |
|
|
if (modifier == EXPAND_SUM && mode == ptr_mode
|
8079 |
|
|
&& host_integerp (TREE_OPERAND (exp, 1), 0))
|
8080 |
|
|
{
|
8081 |
|
|
tree exp1 = TREE_OPERAND (exp, 1);
|
8082 |
|
|
|
8083 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
|
8084 |
|
|
EXPAND_SUM);
|
8085 |
|
|
|
8086 |
|
|
if (!REG_P (op0))
|
8087 |
|
|
op0 = force_operand (op0, NULL_RTX);
|
8088 |
|
|
if (!REG_P (op0))
|
8089 |
|
|
op0 = copy_to_mode_reg (mode, op0);
|
8090 |
|
|
|
8091 |
|
|
return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
|
8092 |
|
|
gen_int_mode (tree_low_cst (exp1, 0),
|
8093 |
|
|
TYPE_MODE (TREE_TYPE (exp1)))));
|
8094 |
|
|
}
|
8095 |
|
|
|
8096 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8097 |
|
|
target = 0;
|
8098 |
|
|
|
8099 |
|
|
/* Check for multiplying things that have been extended
|
8100 |
|
|
from a narrower type. If this machine supports multiplying
|
8101 |
|
|
in that narrower type with a result in the desired type,
|
8102 |
|
|
do it that way, and avoid the explicit type-conversion. */
|
8103 |
|
|
|
8104 |
|
|
subexp0 = TREE_OPERAND (exp, 0);
|
8105 |
|
|
subexp1 = TREE_OPERAND (exp, 1);
|
8106 |
|
|
/* First, check if we have a multiplication of one signed and one
|
8107 |
|
|
unsigned operand. */
|
8108 |
|
|
if (TREE_CODE (subexp0) == NOP_EXPR
|
8109 |
|
|
&& TREE_CODE (subexp1) == NOP_EXPR
|
8110 |
|
|
&& TREE_CODE (type) == INTEGER_TYPE
|
8111 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
|
8112 |
|
|
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
8113 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
|
8114 |
|
|
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
|
8115 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
|
8116 |
|
|
!= TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
|
8117 |
|
|
{
|
8118 |
|
|
enum machine_mode innermode
|
8119 |
|
|
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
|
8120 |
|
|
this_optab = usmul_widen_optab;
|
8121 |
|
|
if (mode == GET_MODE_WIDER_MODE (innermode))
|
8122 |
|
|
{
|
8123 |
|
|
if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
8124 |
|
|
{
|
8125 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
|
8126 |
|
|
expand_operands (TREE_OPERAND (subexp0, 0),
|
8127 |
|
|
TREE_OPERAND (subexp1, 0),
|
8128 |
|
|
NULL_RTX, &op0, &op1, 0);
|
8129 |
|
|
else
|
8130 |
|
|
expand_operands (TREE_OPERAND (subexp0, 0),
|
8131 |
|
|
TREE_OPERAND (subexp1, 0),
|
8132 |
|
|
NULL_RTX, &op1, &op0, 0);
|
8133 |
|
|
|
8134 |
|
|
goto binop3;
|
8135 |
|
|
}
|
8136 |
|
|
}
|
8137 |
|
|
}
|
8138 |
|
|
/* Check for a multiplication with matching signedness. */
|
8139 |
|
|
else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
|
8140 |
|
|
&& TREE_CODE (type) == INTEGER_TYPE
|
8141 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
8142 |
|
|
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
8143 |
|
|
&& ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
8144 |
|
|
&& int_fits_type_p (TREE_OPERAND (exp, 1),
|
8145 |
|
|
TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
|
8146 |
|
|
/* Don't use a widening multiply if a shift will do. */
|
8147 |
|
|
&& ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
8148 |
|
|
> HOST_BITS_PER_WIDE_INT)
|
8149 |
|
|
|| exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
|
8150 |
|
|
||
|
8151 |
|
|
(TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
|
8152 |
|
|
&& (TYPE_PRECISION (TREE_TYPE
|
8153 |
|
|
(TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
|
8154 |
|
|
== TYPE_PRECISION (TREE_TYPE
|
8155 |
|
|
(TREE_OPERAND
|
8156 |
|
|
(TREE_OPERAND (exp, 0), 0))))
|
8157 |
|
|
/* If both operands are extended, they must either both
|
8158 |
|
|
be zero-extended or both be sign-extended. */
|
8159 |
|
|
&& (TYPE_UNSIGNED (TREE_TYPE
|
8160 |
|
|
(TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
|
8161 |
|
|
== TYPE_UNSIGNED (TREE_TYPE
|
8162 |
|
|
(TREE_OPERAND
|
8163 |
|
|
(TREE_OPERAND (exp, 0), 0)))))))
|
8164 |
|
|
{
|
8165 |
|
|
tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
|
8166 |
|
|
enum machine_mode innermode = TYPE_MODE (op0type);
|
8167 |
|
|
bool zextend_p = TYPE_UNSIGNED (op0type);
|
8168 |
|
|
optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
|
8169 |
|
|
this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
|
8170 |
|
|
|
8171 |
|
|
if (mode == GET_MODE_2XWIDER_MODE (innermode))
|
8172 |
|
|
{
|
8173 |
|
|
if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
8174 |
|
|
{
|
8175 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
8176 |
|
|
expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
8177 |
|
|
TREE_OPERAND (exp, 1),
|
8178 |
|
|
NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
8179 |
|
|
else
|
8180 |
|
|
expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
|
8181 |
|
|
TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
|
8182 |
|
|
NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
8183 |
|
|
goto binop3;
|
8184 |
|
|
}
|
8185 |
|
|
else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
8186 |
|
|
&& innermode == word_mode)
|
8187 |
|
|
{
|
8188 |
|
|
rtx htem, hipart;
|
8189 |
|
|
op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
|
8190 |
|
|
if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
8191 |
|
|
op1 = convert_modes (innermode, mode,
|
8192 |
|
|
expand_normal (TREE_OPERAND (exp, 1)),
|
8193 |
|
|
unsignedp);
|
8194 |
|
|
else
|
8195 |
|
|
op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
|
8196 |
|
|
temp = expand_binop (mode, other_optab, op0, op1, target,
|
8197 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
8198 |
|
|
hipart = gen_highpart (innermode, temp);
|
8199 |
|
|
htem = expand_mult_highpart_adjust (innermode, hipart,
|
8200 |
|
|
op0, op1, hipart,
|
8201 |
|
|
zextend_p);
|
8202 |
|
|
if (htem != hipart)
|
8203 |
|
|
emit_move_insn (hipart, htem);
|
8204 |
|
|
return REDUCE_BIT_FIELD (temp);
|
8205 |
|
|
}
|
8206 |
|
|
}
|
8207 |
|
|
}
|
8208 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8209 |
|
|
subtarget, &op0, &op1, 0);
|
8210 |
|
|
return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
|
8211 |
|
|
|
8212 |
|
|
case TRUNC_DIV_EXPR:
|
8213 |
|
|
case FLOOR_DIV_EXPR:
|
8214 |
|
|
case CEIL_DIV_EXPR:
|
8215 |
|
|
case ROUND_DIV_EXPR:
|
8216 |
|
|
case EXACT_DIV_EXPR:
|
8217 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8218 |
|
|
target = 0;
|
8219 |
|
|
/* Possible optimization: compute the dividend with EXPAND_SUM
|
8220 |
|
|
then if the divisor is constant can optimize the case
|
8221 |
|
|
where some terms of the dividend have coeffs divisible by it. */
|
8222 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8223 |
|
|
subtarget, &op0, &op1, 0);
|
8224 |
|
|
return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
|
8225 |
|
|
|
8226 |
|
|
case RDIV_EXPR:
|
8227 |
|
|
goto binop;
|
8228 |
|
|
|
8229 |
|
|
case TRUNC_MOD_EXPR:
|
8230 |
|
|
case FLOOR_MOD_EXPR:
|
8231 |
|
|
case CEIL_MOD_EXPR:
|
8232 |
|
|
case ROUND_MOD_EXPR:
|
8233 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8234 |
|
|
target = 0;
|
8235 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8236 |
|
|
subtarget, &op0, &op1, 0);
|
8237 |
|
|
return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
|
8238 |
|
|
|
8239 |
|
|
case FIX_ROUND_EXPR:
|
8240 |
|
|
case FIX_FLOOR_EXPR:
|
8241 |
|
|
case FIX_CEIL_EXPR:
|
8242 |
|
|
gcc_unreachable (); /* Not used for C. */
|
8243 |
|
|
|
8244 |
|
|
case FIX_TRUNC_EXPR:
|
8245 |
|
|
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
8246 |
|
|
if (target == 0 || modifier == EXPAND_STACK_PARM)
|
8247 |
|
|
target = gen_reg_rtx (mode);
|
8248 |
|
|
expand_fix (target, op0, unsignedp);
|
8249 |
|
|
return target;
|
8250 |
|
|
|
8251 |
|
|
case FLOAT_EXPR:
|
8252 |
|
|
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
8253 |
|
|
if (target == 0 || modifier == EXPAND_STACK_PARM)
|
8254 |
|
|
target = gen_reg_rtx (mode);
|
8255 |
|
|
/* expand_float can't figure out what to do if FROM has VOIDmode.
|
8256 |
|
|
So give it the correct mode. With -O, cse will optimize this. */
|
8257 |
|
|
if (GET_MODE (op0) == VOIDmode)
|
8258 |
|
|
op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
|
8259 |
|
|
op0);
|
8260 |
|
|
expand_float (target, op0,
|
8261 |
|
|
TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
|
8262 |
|
|
return target;
|
8263 |
|
|
|
8264 |
|
|
case NEGATE_EXPR:
|
8265 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
8266 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8267 |
|
|
target = 0;
|
8268 |
|
|
temp = expand_unop (mode,
|
8269 |
|
|
optab_for_tree_code (NEGATE_EXPR, type),
|
8270 |
|
|
op0, target, 0);
|
8271 |
|
|
gcc_assert (temp);
|
8272 |
|
|
return REDUCE_BIT_FIELD (temp);
|
8273 |
|
|
|
8274 |
|
|
case ABS_EXPR:
|
8275 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
8276 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8277 |
|
|
target = 0;
|
8278 |
|
|
|
8279 |
|
|
/* ABS_EXPR is not valid for complex arguments. */
|
8280 |
|
|
gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
8281 |
|
|
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
|
8282 |
|
|
|
8283 |
|
|
/* Unsigned abs is simply the operand. Testing here means we don't
|
8284 |
|
|
risk generating incorrect code below. */
|
8285 |
|
|
if (TYPE_UNSIGNED (type))
|
8286 |
|
|
return op0;
|
8287 |
|
|
|
8288 |
|
|
return expand_abs (mode, op0, target, unsignedp,
|
8289 |
|
|
safe_from_p (target, TREE_OPERAND (exp, 0), 1));
|
8290 |
|
|
|
8291 |
|
|
case MAX_EXPR:
|
8292 |
|
|
case MIN_EXPR:
|
8293 |
|
|
target = original_target;
|
8294 |
|
|
if (target == 0
|
8295 |
|
|
|| modifier == EXPAND_STACK_PARM
|
8296 |
|
|
|| (MEM_P (target) && MEM_VOLATILE_P (target))
|
8297 |
|
|
|| GET_MODE (target) != mode
|
8298 |
|
|
|| (REG_P (target)
|
8299 |
|
|
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
8300 |
|
|
target = gen_reg_rtx (mode);
|
8301 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8302 |
|
|
target, &op0, &op1, 0);
|
8303 |
|
|
|
8304 |
|
|
/* First try to do it with a special MIN or MAX instruction.
|
8305 |
|
|
If that does not win, use a conditional jump to select the proper
|
8306 |
|
|
value. */
|
8307 |
|
|
this_optab = optab_for_tree_code (code, type);
|
8308 |
|
|
temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
|
8309 |
|
|
OPTAB_WIDEN);
|
8310 |
|
|
if (temp != 0)
|
8311 |
|
|
return temp;
|
8312 |
|
|
|
8313 |
|
|
/* At this point, a MEM target is no longer useful; we will get better
|
8314 |
|
|
code without it. */
|
8315 |
|
|
|
8316 |
|
|
if (! REG_P (target))
|
8317 |
|
|
target = gen_reg_rtx (mode);
|
8318 |
|
|
|
8319 |
|
|
/* If op1 was placed in target, swap op0 and op1. */
|
8320 |
|
|
if (target != op0 && target == op1)
|
8321 |
|
|
{
|
8322 |
|
|
temp = op0;
|
8323 |
|
|
op0 = op1;
|
8324 |
|
|
op1 = temp;
|
8325 |
|
|
}
|
8326 |
|
|
|
8327 |
|
|
/* We generate better code and avoid problems with op1 mentioning
|
8328 |
|
|
target by forcing op1 into a pseudo if it isn't a constant. */
|
8329 |
|
|
if (! CONSTANT_P (op1))
|
8330 |
|
|
op1 = force_reg (mode, op1);
|
8331 |
|
|
|
8332 |
|
|
{
|
8333 |
|
|
enum rtx_code comparison_code;
|
8334 |
|
|
rtx cmpop1 = op1;
|
8335 |
|
|
|
8336 |
|
|
if (code == MAX_EXPR)
|
8337 |
|
|
comparison_code = unsignedp ? GEU : GE;
|
8338 |
|
|
else
|
8339 |
|
|
comparison_code = unsignedp ? LEU : LE;
|
8340 |
|
|
|
8341 |
|
|
/* Canonicalize to comparisons against 0. */
|
8342 |
|
|
if (op1 == const1_rtx)
|
8343 |
|
|
{
|
8344 |
|
|
/* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
|
8345 |
|
|
or (a != 0 ? a : 1) for unsigned.
|
8346 |
|
|
For MIN we are safe converting (a <= 1 ? a : 1)
|
8347 |
|
|
into (a <= 0 ? a : 1) */
|
8348 |
|
|
cmpop1 = const0_rtx;
|
8349 |
|
|
if (code == MAX_EXPR)
|
8350 |
|
|
comparison_code = unsignedp ? NE : GT;
|
8351 |
|
|
}
|
8352 |
|
|
if (op1 == constm1_rtx && !unsignedp)
|
8353 |
|
|
{
|
8354 |
|
|
/* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
|
8355 |
|
|
and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
|
8356 |
|
|
cmpop1 = const0_rtx;
|
8357 |
|
|
if (code == MIN_EXPR)
|
8358 |
|
|
comparison_code = LT;
|
8359 |
|
|
}
|
8360 |
|
|
#ifdef HAVE_conditional_move
|
8361 |
|
|
/* Use a conditional move if possible. */
|
8362 |
|
|
if (can_conditionally_move_p (mode))
|
8363 |
|
|
{
|
8364 |
|
|
rtx insn;
|
8365 |
|
|
|
8366 |
|
|
/* ??? Same problem as in expmed.c: emit_conditional_move
|
8367 |
|
|
forces a stack adjustment via compare_from_rtx, and we
|
8368 |
|
|
lose the stack adjustment if the sequence we are about
|
8369 |
|
|
to create is discarded. */
|
8370 |
|
|
do_pending_stack_adjust ();
|
8371 |
|
|
|
8372 |
|
|
start_sequence ();
|
8373 |
|
|
|
8374 |
|
|
/* Try to emit the conditional move. */
|
8375 |
|
|
insn = emit_conditional_move (target, comparison_code,
|
8376 |
|
|
op0, cmpop1, mode,
|
8377 |
|
|
op0, op1, mode,
|
8378 |
|
|
unsignedp);
|
8379 |
|
|
|
8380 |
|
|
/* If we could do the conditional move, emit the sequence,
|
8381 |
|
|
and return. */
|
8382 |
|
|
if (insn)
|
8383 |
|
|
{
|
8384 |
|
|
rtx seq = get_insns ();
|
8385 |
|
|
end_sequence ();
|
8386 |
|
|
emit_insn (seq);
|
8387 |
|
|
return target;
|
8388 |
|
|
}
|
8389 |
|
|
|
8390 |
|
|
/* Otherwise discard the sequence and fall back to code with
|
8391 |
|
|
branches. */
|
8392 |
|
|
end_sequence ();
|
8393 |
|
|
}
|
8394 |
|
|
#endif
|
8395 |
|
|
if (target != op0)
|
8396 |
|
|
emit_move_insn (target, op0);
|
8397 |
|
|
|
8398 |
|
|
temp = gen_label_rtx ();
|
8399 |
|
|
do_compare_rtx_and_jump (target, cmpop1, comparison_code,
|
8400 |
|
|
unsignedp, mode, NULL_RTX, NULL_RTX, temp);
|
8401 |
|
|
}
|
8402 |
|
|
emit_move_insn (target, op1);
|
8403 |
|
|
emit_label (temp);
|
8404 |
|
|
return target;
|
8405 |
|
|
|
8406 |
|
|
case BIT_NOT_EXPR:
|
8407 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
8408 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8409 |
|
|
target = 0;
|
8410 |
|
|
temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
|
8411 |
|
|
gcc_assert (temp);
|
8412 |
|
|
return temp;
|
8413 |
|
|
|
8414 |
|
|
/* ??? Can optimize bitwise operations with one arg constant.
|
8415 |
|
|
Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
|
8416 |
|
|
and (a bitwise1 b) bitwise2 b (etc)
|
8417 |
|
|
but that is probably not worth while. */
|
8418 |
|
|
|
8419 |
|
|
/* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
|
8420 |
|
|
boolean values when we want in all cases to compute both of them. In
|
8421 |
|
|
general it is fastest to do TRUTH_AND_EXPR by computing both operands
|
8422 |
|
|
as actual zero-or-1 values and then bitwise anding. In cases where
|
8423 |
|
|
there cannot be any side effects, better code would be made by
|
8424 |
|
|
treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
|
8425 |
|
|
how to recognize those cases. */
|
8426 |
|
|
|
8427 |
|
|
case TRUTH_AND_EXPR:
|
8428 |
|
|
code = BIT_AND_EXPR;
|
8429 |
|
|
case BIT_AND_EXPR:
|
8430 |
|
|
goto binop;
|
8431 |
|
|
|
8432 |
|
|
case TRUTH_OR_EXPR:
|
8433 |
|
|
code = BIT_IOR_EXPR;
|
8434 |
|
|
case BIT_IOR_EXPR:
|
8435 |
|
|
goto binop;
|
8436 |
|
|
|
8437 |
|
|
case TRUTH_XOR_EXPR:
|
8438 |
|
|
code = BIT_XOR_EXPR;
|
8439 |
|
|
case BIT_XOR_EXPR:
|
8440 |
|
|
goto binop;
|
8441 |
|
|
|
8442 |
|
|
case LSHIFT_EXPR:
|
8443 |
|
|
case RSHIFT_EXPR:
|
8444 |
|
|
case LROTATE_EXPR:
|
8445 |
|
|
case RROTATE_EXPR:
|
8446 |
|
|
if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
|
8447 |
|
|
subtarget = 0;
|
8448 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8449 |
|
|
target = 0;
|
8450 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
|
8451 |
|
|
return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
|
8452 |
|
|
unsignedp);
|
8453 |
|
|
|
8454 |
|
|
/* Could determine the answer when only additive constants differ. Also,
|
8455 |
|
|
the addition of one can be handled by changing the condition. */
|
8456 |
|
|
case LT_EXPR:
|
8457 |
|
|
case LE_EXPR:
|
8458 |
|
|
case GT_EXPR:
|
8459 |
|
|
case GE_EXPR:
|
8460 |
|
|
case EQ_EXPR:
|
8461 |
|
|
case NE_EXPR:
|
8462 |
|
|
case UNORDERED_EXPR:
|
8463 |
|
|
case ORDERED_EXPR:
|
8464 |
|
|
case UNLT_EXPR:
|
8465 |
|
|
case UNLE_EXPR:
|
8466 |
|
|
case UNGT_EXPR:
|
8467 |
|
|
case UNGE_EXPR:
|
8468 |
|
|
case UNEQ_EXPR:
|
8469 |
|
|
case LTGT_EXPR:
|
8470 |
|
|
temp = do_store_flag (exp,
|
8471 |
|
|
modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
|
8472 |
|
|
tmode != VOIDmode ? tmode : mode, 0);
|
8473 |
|
|
if (temp != 0)
|
8474 |
|
|
return temp;
|
8475 |
|
|
|
8476 |
|
|
/* For foo != 0, load foo, and if it is nonzero load 1 instead. */
|
8477 |
|
|
if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
|
8478 |
|
|
&& original_target
|
8479 |
|
|
&& REG_P (original_target)
|
8480 |
|
|
&& (GET_MODE (original_target)
|
8481 |
|
|
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
8482 |
|
|
{
|
8483 |
|
|
temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
|
8484 |
|
|
VOIDmode, 0);
|
8485 |
|
|
|
8486 |
|
|
/* If temp is constant, we can just compute the result. */
|
8487 |
|
|
if (GET_CODE (temp) == CONST_INT)
|
8488 |
|
|
{
|
8489 |
|
|
if (INTVAL (temp) != 0)
|
8490 |
|
|
emit_move_insn (target, const1_rtx);
|
8491 |
|
|
else
|
8492 |
|
|
emit_move_insn (target, const0_rtx);
|
8493 |
|
|
|
8494 |
|
|
return target;
|
8495 |
|
|
}
|
8496 |
|
|
|
8497 |
|
|
if (temp != original_target)
|
8498 |
|
|
{
|
8499 |
|
|
enum machine_mode mode1 = GET_MODE (temp);
|
8500 |
|
|
if (mode1 == VOIDmode)
|
8501 |
|
|
mode1 = tmode != VOIDmode ? tmode : mode;
|
8502 |
|
|
|
8503 |
|
|
temp = copy_to_mode_reg (mode1, temp);
|
8504 |
|
|
}
|
8505 |
|
|
|
8506 |
|
|
op1 = gen_label_rtx ();
|
8507 |
|
|
emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
|
8508 |
|
|
GET_MODE (temp), unsignedp, op1);
|
8509 |
|
|
emit_move_insn (temp, const1_rtx);
|
8510 |
|
|
emit_label (op1);
|
8511 |
|
|
return temp;
|
8512 |
|
|
}
|
8513 |
|
|
|
8514 |
|
|
/* If no set-flag instruction, must generate a conditional store
|
8515 |
|
|
into a temporary variable. Drop through and handle this
|
8516 |
|
|
like && and ||. */
|
8517 |
|
|
|
8518 |
|
|
if (! ignore
|
8519 |
|
|
&& (target == 0
|
8520 |
|
|
|| modifier == EXPAND_STACK_PARM
|
8521 |
|
|
|| ! safe_from_p (target, exp, 1)
|
8522 |
|
|
/* Make sure we don't have a hard reg (such as function's return
|
8523 |
|
|
value) live across basic blocks, if not optimizing. */
|
8524 |
|
|
|| (!optimize && REG_P (target)
|
8525 |
|
|
&& REGNO (target) < FIRST_PSEUDO_REGISTER)))
|
8526 |
|
|
target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
|
8527 |
|
|
|
8528 |
|
|
if (target)
|
8529 |
|
|
emit_move_insn (target, const0_rtx);
|
8530 |
|
|
|
8531 |
|
|
op1 = gen_label_rtx ();
|
8532 |
|
|
jumpifnot (exp, op1);
|
8533 |
|
|
|
8534 |
|
|
if (target)
|
8535 |
|
|
emit_move_insn (target, const1_rtx);
|
8536 |
|
|
|
8537 |
|
|
emit_label (op1);
|
8538 |
|
|
return ignore ? const0_rtx : target;
|
8539 |
|
|
|
8540 |
|
|
case TRUTH_NOT_EXPR:
|
8541 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8542 |
|
|
target = 0;
|
8543 |
|
|
op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
|
8544 |
|
|
/* The parser is careful to generate TRUTH_NOT_EXPR
|
8545 |
|
|
only with operands that are always zero or one. */
|
8546 |
|
|
temp = expand_binop (mode, xor_optab, op0, const1_rtx,
|
8547 |
|
|
target, 1, OPTAB_LIB_WIDEN);
|
8548 |
|
|
gcc_assert (temp);
|
8549 |
|
|
return temp;
|
8550 |
|
|
|
8551 |
|
|
case STATEMENT_LIST:
|
8552 |
|
|
{
|
8553 |
|
|
tree_stmt_iterator iter;
|
8554 |
|
|
|
8555 |
|
|
gcc_assert (ignore);
|
8556 |
|
|
|
8557 |
|
|
for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
|
8558 |
|
|
expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
|
8559 |
|
|
}
|
8560 |
|
|
return const0_rtx;
|
8561 |
|
|
|
8562 |
|
|
case COND_EXPR:
|
8563 |
|
|
/* A COND_EXPR with its type being VOID_TYPE represents a
|
8564 |
|
|
conditional jump and is handled in
|
8565 |
|
|
expand_gimple_cond_expr. */
|
8566 |
|
|
gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
|
8567 |
|
|
|
8568 |
|
|
/* Note that COND_EXPRs whose type is a structure or union
|
8569 |
|
|
are required to be constructed to contain assignments of
|
8570 |
|
|
a temporary variable, so that we can evaluate them here
|
8571 |
|
|
for side effect only. If type is void, we must do likewise. */
|
8572 |
|
|
|
8573 |
|
|
gcc_assert (!TREE_ADDRESSABLE (type)
|
8574 |
|
|
&& !ignore
|
8575 |
|
|
&& TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
|
8576 |
|
|
&& TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
|
8577 |
|
|
|
8578 |
|
|
/* If we are not to produce a result, we have no target. Otherwise,
|
8579 |
|
|
if a target was specified use it; it will not be used as an
|
8580 |
|
|
intermediate target unless it is safe. If no target, use a
|
8581 |
|
|
temporary. */
|
8582 |
|
|
|
8583 |
|
|
if (modifier != EXPAND_STACK_PARM
|
8584 |
|
|
&& original_target
|
8585 |
|
|
&& safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
|
8586 |
|
|
&& GET_MODE (original_target) == mode
|
8587 |
|
|
#ifdef HAVE_conditional_move
|
8588 |
|
|
&& (! can_conditionally_move_p (mode)
|
8589 |
|
|
|| REG_P (original_target))
|
8590 |
|
|
#endif
|
8591 |
|
|
&& !MEM_P (original_target))
|
8592 |
|
|
temp = original_target;
|
8593 |
|
|
else
|
8594 |
|
|
temp = assign_temp (type, 0, 0, 1);
|
8595 |
|
|
|
8596 |
|
|
do_pending_stack_adjust ();
|
8597 |
|
|
NO_DEFER_POP;
|
8598 |
|
|
op0 = gen_label_rtx ();
|
8599 |
|
|
op1 = gen_label_rtx ();
|
8600 |
|
|
jumpifnot (TREE_OPERAND (exp, 0), op0);
|
8601 |
|
|
store_expr (TREE_OPERAND (exp, 1), temp,
|
8602 |
|
|
modifier == EXPAND_STACK_PARM);
|
8603 |
|
|
|
8604 |
|
|
emit_jump_insn (gen_jump (op1));
|
8605 |
|
|
emit_barrier ();
|
8606 |
|
|
emit_label (op0);
|
8607 |
|
|
store_expr (TREE_OPERAND (exp, 2), temp,
|
8608 |
|
|
modifier == EXPAND_STACK_PARM);
|
8609 |
|
|
|
8610 |
|
|
emit_label (op1);
|
8611 |
|
|
OK_DEFER_POP;
|
8612 |
|
|
return temp;
|
8613 |
|
|
|
8614 |
|
|
case VEC_COND_EXPR:
|
8615 |
|
|
target = expand_vec_cond_expr (exp, target);
|
8616 |
|
|
return target;
|
8617 |
|
|
|
8618 |
|
|
case MODIFY_EXPR:
|
8619 |
|
|
{
|
8620 |
|
|
tree lhs = TREE_OPERAND (exp, 0);
|
8621 |
|
|
tree rhs = TREE_OPERAND (exp, 1);
|
8622 |
|
|
|
8623 |
|
|
gcc_assert (ignore);
|
8624 |
|
|
|
8625 |
|
|
/* Check for |= or &= of a bitfield of size one into another bitfield
|
8626 |
|
|
of size 1. In this case, (unless we need the result of the
|
8627 |
|
|
assignment) we can do this more efficiently with a
|
8628 |
|
|
test followed by an assignment, if necessary.
|
8629 |
|
|
|
8630 |
|
|
??? At this point, we can't get a BIT_FIELD_REF here. But if
|
8631 |
|
|
things change so we do, this code should be enhanced to
|
8632 |
|
|
support it. */
|
8633 |
|
|
if (TREE_CODE (lhs) == COMPONENT_REF
|
8634 |
|
|
&& (TREE_CODE (rhs) == BIT_IOR_EXPR
|
8635 |
|
|
|| TREE_CODE (rhs) == BIT_AND_EXPR)
|
8636 |
|
|
&& TREE_OPERAND (rhs, 0) == lhs
|
8637 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
|
8638 |
|
|
&& integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
|
8639 |
|
|
&& integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
|
8640 |
|
|
{
|
8641 |
|
|
rtx label = gen_label_rtx ();
|
8642 |
|
|
int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
|
8643 |
|
|
do_jump (TREE_OPERAND (rhs, 1),
|
8644 |
|
|
value ? label : 0,
|
8645 |
|
|
value ? 0 : label);
|
8646 |
|
|
expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
|
8647 |
|
|
do_pending_stack_adjust ();
|
8648 |
|
|
emit_label (label);
|
8649 |
|
|
return const0_rtx;
|
8650 |
|
|
}
|
8651 |
|
|
|
8652 |
|
|
expand_assignment (lhs, rhs);
|
8653 |
|
|
|
8654 |
|
|
return const0_rtx;
|
8655 |
|
|
}
|
8656 |
|
|
|
8657 |
|
|
case RETURN_EXPR:
|
8658 |
|
|
if (!TREE_OPERAND (exp, 0))
|
8659 |
|
|
expand_null_return ();
|
8660 |
|
|
else
|
8661 |
|
|
expand_return (TREE_OPERAND (exp, 0));
|
8662 |
|
|
return const0_rtx;
|
8663 |
|
|
|
8664 |
|
|
case ADDR_EXPR:
|
8665 |
|
|
return expand_expr_addr_expr (exp, target, tmode, modifier);
|
8666 |
|
|
|
8667 |
|
|
case COMPLEX_EXPR:
|
8668 |
|
|
/* Get the rtx code of the operands. */
|
8669 |
|
|
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
8670 |
|
|
op1 = expand_normal (TREE_OPERAND (exp, 1));
|
8671 |
|
|
|
8672 |
|
|
if (!target)
|
8673 |
|
|
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
|
8674 |
|
|
|
8675 |
|
|
/* Move the real (op0) and imaginary (op1) parts to their location. */
|
8676 |
|
|
write_complex_part (target, op0, false);
|
8677 |
|
|
write_complex_part (target, op1, true);
|
8678 |
|
|
|
8679 |
|
|
return target;
|
8680 |
|
|
|
8681 |
|
|
case REALPART_EXPR:
|
8682 |
|
|
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
8683 |
|
|
return read_complex_part (op0, false);
|
8684 |
|
|
|
8685 |
|
|
case IMAGPART_EXPR:
|
8686 |
|
|
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
8687 |
|
|
return read_complex_part (op0, true);
|
8688 |
|
|
|
8689 |
|
|
case RESX_EXPR:
|
8690 |
|
|
expand_resx_expr (exp);
|
8691 |
|
|
return const0_rtx;
|
8692 |
|
|
|
8693 |
|
|
case TRY_CATCH_EXPR:
|
8694 |
|
|
case CATCH_EXPR:
|
8695 |
|
|
case EH_FILTER_EXPR:
|
8696 |
|
|
case TRY_FINALLY_EXPR:
|
8697 |
|
|
/* Lowered by tree-eh.c. */
|
8698 |
|
|
gcc_unreachable ();
|
8699 |
|
|
|
8700 |
|
|
case WITH_CLEANUP_EXPR:
|
8701 |
|
|
case CLEANUP_POINT_EXPR:
|
8702 |
|
|
case TARGET_EXPR:
|
8703 |
|
|
case CASE_LABEL_EXPR:
|
8704 |
|
|
case VA_ARG_EXPR:
|
8705 |
|
|
case BIND_EXPR:
|
8706 |
|
|
case INIT_EXPR:
|
8707 |
|
|
case CONJ_EXPR:
|
8708 |
|
|
case COMPOUND_EXPR:
|
8709 |
|
|
case PREINCREMENT_EXPR:
|
8710 |
|
|
case PREDECREMENT_EXPR:
|
8711 |
|
|
case POSTINCREMENT_EXPR:
|
8712 |
|
|
case POSTDECREMENT_EXPR:
|
8713 |
|
|
case LOOP_EXPR:
|
8714 |
|
|
case EXIT_EXPR:
|
8715 |
|
|
case TRUTH_ANDIF_EXPR:
|
8716 |
|
|
case TRUTH_ORIF_EXPR:
|
8717 |
|
|
/* Lowered by gimplify.c. */
|
8718 |
|
|
gcc_unreachable ();
|
8719 |
|
|
|
8720 |
|
|
case EXC_PTR_EXPR:
|
8721 |
|
|
return get_exception_pointer (cfun);
|
8722 |
|
|
|
8723 |
|
|
case FILTER_EXPR:
|
8724 |
|
|
return get_exception_filter (cfun);
|
8725 |
|
|
|
8726 |
|
|
case FDESC_EXPR:
|
8727 |
|
|
/* Function descriptors are not valid except for as
|
8728 |
|
|
initialization constants, and should not be expanded. */
|
8729 |
|
|
gcc_unreachable ();
|
8730 |
|
|
|
8731 |
|
|
case SWITCH_EXPR:
|
8732 |
|
|
expand_case (exp);
|
8733 |
|
|
return const0_rtx;
|
8734 |
|
|
|
8735 |
|
|
case LABEL_EXPR:
|
8736 |
|
|
expand_label (TREE_OPERAND (exp, 0));
|
8737 |
|
|
return const0_rtx;
|
8738 |
|
|
|
8739 |
|
|
case ASM_EXPR:
|
8740 |
|
|
expand_asm_expr (exp);
|
8741 |
|
|
return const0_rtx;
|
8742 |
|
|
|
8743 |
|
|
case WITH_SIZE_EXPR:
|
8744 |
|
|
/* WITH_SIZE_EXPR expands to its first argument. The caller should
|
8745 |
|
|
have pulled out the size to use in whatever context it needed. */
|
8746 |
|
|
return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
|
8747 |
|
|
modifier, alt_rtl);
|
8748 |
|
|
|
8749 |
|
|
case REALIGN_LOAD_EXPR:
|
8750 |
|
|
{
|
8751 |
|
|
tree oprnd0 = TREE_OPERAND (exp, 0);
|
8752 |
|
|
tree oprnd1 = TREE_OPERAND (exp, 1);
|
8753 |
|
|
tree oprnd2 = TREE_OPERAND (exp, 2);
|
8754 |
|
|
rtx op2;
|
8755 |
|
|
|
8756 |
|
|
this_optab = optab_for_tree_code (code, type);
|
8757 |
|
|
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
8758 |
|
|
op2 = expand_normal (oprnd2);
|
8759 |
|
|
temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
|
8760 |
|
|
target, unsignedp);
|
8761 |
|
|
gcc_assert (temp);
|
8762 |
|
|
return temp;
|
8763 |
|
|
}
|
8764 |
|
|
|
8765 |
|
|
case DOT_PROD_EXPR:
|
8766 |
|
|
{
|
8767 |
|
|
tree oprnd0 = TREE_OPERAND (exp, 0);
|
8768 |
|
|
tree oprnd1 = TREE_OPERAND (exp, 1);
|
8769 |
|
|
tree oprnd2 = TREE_OPERAND (exp, 2);
|
8770 |
|
|
rtx op2;
|
8771 |
|
|
|
8772 |
|
|
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
|
8773 |
|
|
op2 = expand_normal (oprnd2);
|
8774 |
|
|
target = expand_widen_pattern_expr (exp, op0, op1, op2,
|
8775 |
|
|
target, unsignedp);
|
8776 |
|
|
return target;
|
8777 |
|
|
}
|
8778 |
|
|
|
8779 |
|
|
case WIDEN_SUM_EXPR:
|
8780 |
|
|
{
|
8781 |
|
|
tree oprnd0 = TREE_OPERAND (exp, 0);
|
8782 |
|
|
tree oprnd1 = TREE_OPERAND (exp, 1);
|
8783 |
|
|
|
8784 |
|
|
expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
|
8785 |
|
|
target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
|
8786 |
|
|
target, unsignedp);
|
8787 |
|
|
return target;
|
8788 |
|
|
}
|
8789 |
|
|
|
8790 |
|
|
case REDUC_MAX_EXPR:
|
8791 |
|
|
case REDUC_MIN_EXPR:
|
8792 |
|
|
case REDUC_PLUS_EXPR:
|
8793 |
|
|
{
|
8794 |
|
|
op0 = expand_normal (TREE_OPERAND (exp, 0));
|
8795 |
|
|
this_optab = optab_for_tree_code (code, type);
|
8796 |
|
|
temp = expand_unop (mode, this_optab, op0, target, unsignedp);
|
8797 |
|
|
gcc_assert (temp);
|
8798 |
|
|
return temp;
|
8799 |
|
|
}
|
8800 |
|
|
|
8801 |
|
|
case VEC_LSHIFT_EXPR:
|
8802 |
|
|
case VEC_RSHIFT_EXPR:
|
8803 |
|
|
{
|
8804 |
|
|
target = expand_vec_shift_expr (exp, target);
|
8805 |
|
|
return target;
|
8806 |
|
|
}
|
8807 |
|
|
|
8808 |
|
|
default:
|
8809 |
|
|
return lang_hooks.expand_expr (exp, original_target, tmode,
|
8810 |
|
|
modifier, alt_rtl);
|
8811 |
|
|
}
|
8812 |
|
|
|
8813 |
|
|
/* Here to do an ordinary binary operator. */
|
8814 |
|
|
binop:
|
8815 |
|
|
expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
8816 |
|
|
subtarget, &op0, &op1, 0);
|
8817 |
|
|
binop2:
|
8818 |
|
|
this_optab = optab_for_tree_code (code, type);
|
8819 |
|
|
binop3:
|
8820 |
|
|
if (modifier == EXPAND_STACK_PARM)
|
8821 |
|
|
target = 0;
|
8822 |
|
|
temp = expand_binop (mode, this_optab, op0, op1, target,
|
8823 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
8824 |
|
|
gcc_assert (temp);
|
8825 |
|
|
return REDUCE_BIT_FIELD (temp);
|
8826 |
|
|
}
|
8827 |
|
|
#undef REDUCE_BIT_FIELD
|
8828 |
|
|
|
8829 |
|
|
/* Subroutine of above: reduce EXP to the precision of TYPE (in the
|
8830 |
|
|
signedness of TYPE), possibly returning the result in TARGET. */
|
8831 |
|
|
static rtx
|
8832 |
|
|
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
|
8833 |
|
|
{
|
8834 |
|
|
HOST_WIDE_INT prec = TYPE_PRECISION (type);
|
8835 |
|
|
if (target && GET_MODE (target) != GET_MODE (exp))
|
8836 |
|
|
target = 0;
|
8837 |
|
|
/* For constant values, reduce using build_int_cst_type. */
|
8838 |
|
|
if (GET_CODE (exp) == CONST_INT)
|
8839 |
|
|
{
|
8840 |
|
|
HOST_WIDE_INT value = INTVAL (exp);
|
8841 |
|
|
tree t = build_int_cst_type (type, value);
|
8842 |
|
|
return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
|
8843 |
|
|
}
|
8844 |
|
|
else if (TYPE_UNSIGNED (type))
|
8845 |
|
|
{
|
8846 |
|
|
rtx mask;
|
8847 |
|
|
if (prec < HOST_BITS_PER_WIDE_INT)
|
8848 |
|
|
mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
|
8849 |
|
|
GET_MODE (exp));
|
8850 |
|
|
else
|
8851 |
|
|
mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
|
8852 |
|
|
((unsigned HOST_WIDE_INT) 1
|
8853 |
|
|
<< (prec - HOST_BITS_PER_WIDE_INT)) - 1,
|
8854 |
|
|
GET_MODE (exp));
|
8855 |
|
|
return expand_and (GET_MODE (exp), exp, mask, target);
|
8856 |
|
|
}
|
8857 |
|
|
else
|
8858 |
|
|
{
|
8859 |
|
|
tree count = build_int_cst (NULL_TREE,
|
8860 |
|
|
GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
|
8861 |
|
|
exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
|
8862 |
|
|
return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
|
8863 |
|
|
}
|
8864 |
|
|
}
|
8865 |
|
|
|
8866 |
|
|
/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
|
8867 |
|
|
when applied to the address of EXP produces an address known to be
|
8868 |
|
|
aligned more than BIGGEST_ALIGNMENT. */
|
8869 |
|
|
|
8870 |
|
|
static int
|
8871 |
|
|
is_aligning_offset (tree offset, tree exp)
|
8872 |
|
|
{
|
8873 |
|
|
/* Strip off any conversions. */
|
8874 |
|
|
while (TREE_CODE (offset) == NON_LVALUE_EXPR
|
8875 |
|
|
|| TREE_CODE (offset) == NOP_EXPR
|
8876 |
|
|
|| TREE_CODE (offset) == CONVERT_EXPR)
|
8877 |
|
|
offset = TREE_OPERAND (offset, 0);
|
8878 |
|
|
|
8879 |
|
|
/* We must now have a BIT_AND_EXPR with a constant that is one less than
|
8880 |
|
|
power of 2 and which is larger than BIGGEST_ALIGNMENT. */
|
8881 |
|
|
if (TREE_CODE (offset) != BIT_AND_EXPR
|
8882 |
|
|
|| !host_integerp (TREE_OPERAND (offset, 1), 1)
|
8883 |
|
|
|| compare_tree_int (TREE_OPERAND (offset, 1),
|
8884 |
|
|
BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
|
8885 |
|
|
|| !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
|
8886 |
|
|
return 0;
|
8887 |
|
|
|
8888 |
|
|
/* Look at the first operand of BIT_AND_EXPR and strip any conversion.
|
8889 |
|
|
It must be NEGATE_EXPR. Then strip any more conversions. */
|
8890 |
|
|
offset = TREE_OPERAND (offset, 0);
|
8891 |
|
|
while (TREE_CODE (offset) == NON_LVALUE_EXPR
|
8892 |
|
|
|| TREE_CODE (offset) == NOP_EXPR
|
8893 |
|
|
|| TREE_CODE (offset) == CONVERT_EXPR)
|
8894 |
|
|
offset = TREE_OPERAND (offset, 0);
|
8895 |
|
|
|
8896 |
|
|
if (TREE_CODE (offset) != NEGATE_EXPR)
|
8897 |
|
|
return 0;
|
8898 |
|
|
|
8899 |
|
|
offset = TREE_OPERAND (offset, 0);
|
8900 |
|
|
while (TREE_CODE (offset) == NON_LVALUE_EXPR
|
8901 |
|
|
|| TREE_CODE (offset) == NOP_EXPR
|
8902 |
|
|
|| TREE_CODE (offset) == CONVERT_EXPR)
|
8903 |
|
|
offset = TREE_OPERAND (offset, 0);
|
8904 |
|
|
|
8905 |
|
|
/* This must now be the address of EXP. */
|
8906 |
|
|
return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
|
8907 |
|
|
}
|
8908 |
|
|
|
8909 |
|
|
/* Return the tree node if an ARG corresponds to a string constant or zero
|
8910 |
|
|
if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
|
8911 |
|
|
in bytes within the string that ARG is accessing. The type of the
|
8912 |
|
|
offset will be `sizetype'. */
|
8913 |
|
|
|
8914 |
|
|
tree
|
8915 |
|
|
string_constant (tree arg, tree *ptr_offset)
|
8916 |
|
|
{
|
8917 |
|
|
tree array, offset;
|
8918 |
|
|
STRIP_NOPS (arg);
|
8919 |
|
|
|
8920 |
|
|
if (TREE_CODE (arg) == ADDR_EXPR)
|
8921 |
|
|
{
|
8922 |
|
|
if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
|
8923 |
|
|
{
|
8924 |
|
|
*ptr_offset = size_zero_node;
|
8925 |
|
|
return TREE_OPERAND (arg, 0);
|
8926 |
|
|
}
|
8927 |
|
|
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
|
8928 |
|
|
{
|
8929 |
|
|
array = TREE_OPERAND (arg, 0);
|
8930 |
|
|
offset = size_zero_node;
|
8931 |
|
|
}
|
8932 |
|
|
else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
|
8933 |
|
|
{
|
8934 |
|
|
array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
|
8935 |
|
|
offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
|
8936 |
|
|
if (TREE_CODE (array) != STRING_CST
|
8937 |
|
|
&& TREE_CODE (array) != VAR_DECL)
|
8938 |
|
|
return 0;
|
8939 |
|
|
}
|
8940 |
|
|
else
|
8941 |
|
|
return 0;
|
8942 |
|
|
}
|
8943 |
|
|
else if (TREE_CODE (arg) == PLUS_EXPR)
|
8944 |
|
|
{
|
8945 |
|
|
tree arg0 = TREE_OPERAND (arg, 0);
|
8946 |
|
|
tree arg1 = TREE_OPERAND (arg, 1);
|
8947 |
|
|
|
8948 |
|
|
STRIP_NOPS (arg0);
|
8949 |
|
|
STRIP_NOPS (arg1);
|
8950 |
|
|
|
8951 |
|
|
if (TREE_CODE (arg0) == ADDR_EXPR
|
8952 |
|
|
&& (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
|
8953 |
|
|
|| TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
|
8954 |
|
|
{
|
8955 |
|
|
array = TREE_OPERAND (arg0, 0);
|
8956 |
|
|
offset = arg1;
|
8957 |
|
|
}
|
8958 |
|
|
else if (TREE_CODE (arg1) == ADDR_EXPR
|
8959 |
|
|
&& (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
|
8960 |
|
|
|| TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
|
8961 |
|
|
{
|
8962 |
|
|
array = TREE_OPERAND (arg1, 0);
|
8963 |
|
|
offset = arg0;
|
8964 |
|
|
}
|
8965 |
|
|
else
|
8966 |
|
|
return 0;
|
8967 |
|
|
}
|
8968 |
|
|
else
|
8969 |
|
|
return 0;
|
8970 |
|
|
|
8971 |
|
|
if (TREE_CODE (array) == STRING_CST)
|
8972 |
|
|
{
|
8973 |
|
|
*ptr_offset = fold_convert (sizetype, offset);
|
8974 |
|
|
return array;
|
8975 |
|
|
}
|
8976 |
|
|
else if (TREE_CODE (array) == VAR_DECL)
|
8977 |
|
|
{
|
8978 |
|
|
int length;
|
8979 |
|
|
|
8980 |
|
|
/* Variables initialized to string literals can be handled too. */
|
8981 |
|
|
if (DECL_INITIAL (array) == NULL_TREE
|
8982 |
|
|
|| TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
|
8983 |
|
|
return 0;
|
8984 |
|
|
|
8985 |
|
|
/* If they are read-only, non-volatile and bind locally. */
|
8986 |
|
|
if (! TREE_READONLY (array)
|
8987 |
|
|
|| TREE_SIDE_EFFECTS (array)
|
8988 |
|
|
|| ! targetm.binds_local_p (array))
|
8989 |
|
|
return 0;
|
8990 |
|
|
|
8991 |
|
|
/* Avoid const char foo[4] = "abcde"; */
|
8992 |
|
|
if (DECL_SIZE_UNIT (array) == NULL_TREE
|
8993 |
|
|
|| TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
|
8994 |
|
|
|| (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
|
8995 |
|
|
|| compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
|
8996 |
|
|
return 0;
|
8997 |
|
|
|
8998 |
|
|
/* If variable is bigger than the string literal, OFFSET must be constant
|
8999 |
|
|
and inside of the bounds of the string literal. */
|
9000 |
|
|
offset = fold_convert (sizetype, offset);
|
9001 |
|
|
if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
|
9002 |
|
|
&& (! host_integerp (offset, 1)
|
9003 |
|
|
|| compare_tree_int (offset, length) >= 0))
|
9004 |
|
|
return 0;
|
9005 |
|
|
|
9006 |
|
|
*ptr_offset = offset;
|
9007 |
|
|
return DECL_INITIAL (array);
|
9008 |
|
|
}
|
9009 |
|
|
|
9010 |
|
|
return 0;
|
9011 |
|
|
}
|
9012 |
|
|
|
9013 |
|
|
/* Generate code to calculate EXP using a store-flag instruction
|
9014 |
|
|
and return an rtx for the result. EXP is either a comparison
|
9015 |
|
|
or a TRUTH_NOT_EXPR whose operand is a comparison.
|
9016 |
|
|
|
9017 |
|
|
If TARGET is nonzero, store the result there if convenient.
|
9018 |
|
|
|
9019 |
|
|
If ONLY_CHEAP is nonzero, only do this if it is likely to be very
|
9020 |
|
|
cheap.
|
9021 |
|
|
|
9022 |
|
|
Return zero if there is no suitable set-flag instruction
|
9023 |
|
|
available on this machine.
|
9024 |
|
|
|
9025 |
|
|
Once expand_expr has been called on the arguments of the comparison,
|
9026 |
|
|
we are committed to doing the store flag, since it is not safe to
|
9027 |
|
|
re-evaluate the expression. We emit the store-flag insn by calling
|
9028 |
|
|
emit_store_flag, but only expand the arguments if we have a reason
|
9029 |
|
|
to believe that emit_store_flag will be successful. If we think that
|
9030 |
|
|
it will, but it isn't, we have to simulate the store-flag with a
|
9031 |
|
|
set/jump/set sequence. */
|
9032 |
|
|
|
9033 |
|
|
static rtx
|
9034 |
|
|
do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
|
9035 |
|
|
{
|
9036 |
|
|
enum rtx_code code;
|
9037 |
|
|
tree arg0, arg1, type;
|
9038 |
|
|
tree tem;
|
9039 |
|
|
enum machine_mode operand_mode;
|
9040 |
|
|
int invert = 0;
|
9041 |
|
|
int unsignedp;
|
9042 |
|
|
rtx op0, op1;
|
9043 |
|
|
enum insn_code icode;
|
9044 |
|
|
rtx subtarget = target;
|
9045 |
|
|
rtx result, label;
|
9046 |
|
|
|
9047 |
|
|
/* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
|
9048 |
|
|
result at the end. We can't simply invert the test since it would
|
9049 |
|
|
have already been inverted if it were valid. This case occurs for
|
9050 |
|
|
some floating-point comparisons. */
|
9051 |
|
|
|
9052 |
|
|
if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
|
9053 |
|
|
invert = 1, exp = TREE_OPERAND (exp, 0);
|
9054 |
|
|
|
9055 |
|
|
arg0 = TREE_OPERAND (exp, 0);
|
9056 |
|
|
arg1 = TREE_OPERAND (exp, 1);
|
9057 |
|
|
|
9058 |
|
|
/* Don't crash if the comparison was erroneous. */
|
9059 |
|
|
if (arg0 == error_mark_node || arg1 == error_mark_node)
|
9060 |
|
|
return const0_rtx;
|
9061 |
|
|
|
9062 |
|
|
type = TREE_TYPE (arg0);
|
9063 |
|
|
operand_mode = TYPE_MODE (type);
|
9064 |
|
|
unsignedp = TYPE_UNSIGNED (type);
|
9065 |
|
|
|
9066 |
|
|
/* We won't bother with BLKmode store-flag operations because it would mean
|
9067 |
|
|
passing a lot of information to emit_store_flag. */
|
9068 |
|
|
if (operand_mode == BLKmode)
|
9069 |
|
|
return 0;
|
9070 |
|
|
|
9071 |
|
|
/* We won't bother with store-flag operations involving function pointers
|
9072 |
|
|
when function pointers must be canonicalized before comparisons. */
|
9073 |
|
|
#ifdef HAVE_canonicalize_funcptr_for_compare
|
9074 |
|
|
if (HAVE_canonicalize_funcptr_for_compare
|
9075 |
|
|
&& ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
|
9076 |
|
|
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
|
9077 |
|
|
== FUNCTION_TYPE))
|
9078 |
|
|
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
|
9079 |
|
|
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
|
9080 |
|
|
== FUNCTION_TYPE))))
|
9081 |
|
|
return 0;
|
9082 |
|
|
#endif
|
9083 |
|
|
|
9084 |
|
|
STRIP_NOPS (arg0);
|
9085 |
|
|
STRIP_NOPS (arg1);
|
9086 |
|
|
|
9087 |
|
|
/* Get the rtx comparison code to use. We know that EXP is a comparison
|
9088 |
|
|
operation of some type. Some comparisons against 1 and -1 can be
|
9089 |
|
|
converted to comparisons with zero. Do so here so that the tests
|
9090 |
|
|
below will be aware that we have a comparison with zero. These
|
9091 |
|
|
tests will not catch constants in the first operand, but constants
|
9092 |
|
|
are rarely passed as the first operand. */
|
9093 |
|
|
|
9094 |
|
|
switch (TREE_CODE (exp))
|
9095 |
|
|
{
|
9096 |
|
|
case EQ_EXPR:
|
9097 |
|
|
code = EQ;
|
9098 |
|
|
break;
|
9099 |
|
|
case NE_EXPR:
|
9100 |
|
|
code = NE;
|
9101 |
|
|
break;
|
9102 |
|
|
case LT_EXPR:
|
9103 |
|
|
if (integer_onep (arg1))
|
9104 |
|
|
arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
|
9105 |
|
|
else
|
9106 |
|
|
code = unsignedp ? LTU : LT;
|
9107 |
|
|
break;
|
9108 |
|
|
case LE_EXPR:
|
9109 |
|
|
if (! unsignedp && integer_all_onesp (arg1))
|
9110 |
|
|
arg1 = integer_zero_node, code = LT;
|
9111 |
|
|
else
|
9112 |
|
|
code = unsignedp ? LEU : LE;
|
9113 |
|
|
break;
|
9114 |
|
|
case GT_EXPR:
|
9115 |
|
|
if (! unsignedp && integer_all_onesp (arg1))
|
9116 |
|
|
arg1 = integer_zero_node, code = GE;
|
9117 |
|
|
else
|
9118 |
|
|
code = unsignedp ? GTU : GT;
|
9119 |
|
|
break;
|
9120 |
|
|
case GE_EXPR:
|
9121 |
|
|
if (integer_onep (arg1))
|
9122 |
|
|
arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
|
9123 |
|
|
else
|
9124 |
|
|
code = unsignedp ? GEU : GE;
|
9125 |
|
|
break;
|
9126 |
|
|
|
9127 |
|
|
case UNORDERED_EXPR:
|
9128 |
|
|
code = UNORDERED;
|
9129 |
|
|
break;
|
9130 |
|
|
case ORDERED_EXPR:
|
9131 |
|
|
code = ORDERED;
|
9132 |
|
|
break;
|
9133 |
|
|
case UNLT_EXPR:
|
9134 |
|
|
code = UNLT;
|
9135 |
|
|
break;
|
9136 |
|
|
case UNLE_EXPR:
|
9137 |
|
|
code = UNLE;
|
9138 |
|
|
break;
|
9139 |
|
|
case UNGT_EXPR:
|
9140 |
|
|
code = UNGT;
|
9141 |
|
|
break;
|
9142 |
|
|
case UNGE_EXPR:
|
9143 |
|
|
code = UNGE;
|
9144 |
|
|
break;
|
9145 |
|
|
case UNEQ_EXPR:
|
9146 |
|
|
code = UNEQ;
|
9147 |
|
|
break;
|
9148 |
|
|
case LTGT_EXPR:
|
9149 |
|
|
code = LTGT;
|
9150 |
|
|
break;
|
9151 |
|
|
|
9152 |
|
|
default:
|
9153 |
|
|
gcc_unreachable ();
|
9154 |
|
|
}
|
9155 |
|
|
|
9156 |
|
|
/* Put a constant second. */
|
9157 |
|
|
if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
|
9158 |
|
|
{
|
9159 |
|
|
tem = arg0; arg0 = arg1; arg1 = tem;
|
9160 |
|
|
code = swap_condition (code);
|
9161 |
|
|
}
|
9162 |
|
|
|
9163 |
|
|
/* If this is an equality or inequality test of a single bit, we can
|
9164 |
|
|
do this by shifting the bit being tested to the low-order bit and
|
9165 |
|
|
masking the result with the constant 1. If the condition was EQ,
|
9166 |
|
|
we xor it with 1. This does not require an scc insn and is faster
|
9167 |
|
|
than an scc insn even if we have it.
|
9168 |
|
|
|
9169 |
|
|
The code to make this transformation was moved into fold_single_bit_test,
|
9170 |
|
|
so we just call into the folder and expand its result. */
|
9171 |
|
|
|
9172 |
|
|
if ((code == NE || code == EQ)
|
9173 |
|
|
&& TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
|
9174 |
|
|
&& integer_pow2p (TREE_OPERAND (arg0, 1)))
|
9175 |
|
|
{
|
9176 |
|
|
tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
|
9177 |
|
|
return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
|
9178 |
|
|
arg0, arg1, type),
|
9179 |
|
|
target, VOIDmode, EXPAND_NORMAL);
|
9180 |
|
|
}
|
9181 |
|
|
|
9182 |
|
|
/* Now see if we are likely to be able to do this. Return if not. */
|
9183 |
|
|
if (! can_compare_p (code, operand_mode, ccp_store_flag))
|
9184 |
|
|
return 0;
|
9185 |
|
|
|
9186 |
|
|
icode = setcc_gen_code[(int) code];
|
9187 |
|
|
if (icode == CODE_FOR_nothing
|
9188 |
|
|
|| (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
|
9189 |
|
|
{
|
9190 |
|
|
/* We can only do this if it is one of the special cases that
|
9191 |
|
|
can be handled without an scc insn. */
|
9192 |
|
|
if ((code == LT && integer_zerop (arg1))
|
9193 |
|
|
|| (! only_cheap && code == GE && integer_zerop (arg1)))
|
9194 |
|
|
;
|
9195 |
|
|
else if (! only_cheap && (code == NE || code == EQ)
|
9196 |
|
|
&& TREE_CODE (type) != REAL_TYPE
|
9197 |
|
|
&& ((abs_optab->handlers[(int) operand_mode].insn_code
|
9198 |
|
|
!= CODE_FOR_nothing)
|
9199 |
|
|
|| (ffs_optab->handlers[(int) operand_mode].insn_code
|
9200 |
|
|
!= CODE_FOR_nothing)))
|
9201 |
|
|
;
|
9202 |
|
|
else
|
9203 |
|
|
return 0;
|
9204 |
|
|
}
|
9205 |
|
|
|
9206 |
|
|
if (! get_subtarget (target)
|
9207 |
|
|
|| GET_MODE (subtarget) != operand_mode)
|
9208 |
|
|
subtarget = 0;
|
9209 |
|
|
|
9210 |
|
|
expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
|
9211 |
|
|
|
9212 |
|
|
if (target == 0)
|
9213 |
|
|
target = gen_reg_rtx (mode);
|
9214 |
|
|
|
9215 |
|
|
result = emit_store_flag (target, code, op0, op1,
|
9216 |
|
|
operand_mode, unsignedp, 1);
|
9217 |
|
|
|
9218 |
|
|
if (result)
|
9219 |
|
|
{
|
9220 |
|
|
if (invert)
|
9221 |
|
|
result = expand_binop (mode, xor_optab, result, const1_rtx,
|
9222 |
|
|
result, 0, OPTAB_LIB_WIDEN);
|
9223 |
|
|
return result;
|
9224 |
|
|
}
|
9225 |
|
|
|
9226 |
|
|
/* If this failed, we have to do this with set/compare/jump/set code. */
|
9227 |
|
|
if (!REG_P (target)
|
9228 |
|
|
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
|
9229 |
|
|
target = gen_reg_rtx (GET_MODE (target));
|
9230 |
|
|
|
9231 |
|
|
emit_move_insn (target, invert ? const0_rtx : const1_rtx);
|
9232 |
|
|
result = compare_from_rtx (op0, op1, code, unsignedp,
|
9233 |
|
|
operand_mode, NULL_RTX);
|
9234 |
|
|
if (GET_CODE (result) == CONST_INT)
|
9235 |
|
|
return (((result == const0_rtx && ! invert)
|
9236 |
|
|
|| (result != const0_rtx && invert))
|
9237 |
|
|
? const0_rtx : const1_rtx);
|
9238 |
|
|
|
9239 |
|
|
/* The code of RESULT may not match CODE if compare_from_rtx
|
9240 |
|
|
decided to swap its operands and reverse the original code.
|
9241 |
|
|
|
9242 |
|
|
We know that compare_from_rtx returns either a CONST_INT or
|
9243 |
|
|
a new comparison code, so it is safe to just extract the
|
9244 |
|
|
code from RESULT. */
|
9245 |
|
|
code = GET_CODE (result);
|
9246 |
|
|
|
9247 |
|
|
label = gen_label_rtx ();
|
9248 |
|
|
gcc_assert (bcc_gen_fctn[(int) code]);
|
9249 |
|
|
|
9250 |
|
|
emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
|
9251 |
|
|
emit_move_insn (target, invert ? const1_rtx : const0_rtx);
|
9252 |
|
|
emit_label (label);
|
9253 |
|
|
|
9254 |
|
|
return target;
|
9255 |
|
|
}
|
9256 |
|
|
|
9257 |
|
|
|
9258 |
|
|
/* Stubs in case we haven't got a casesi insn. */
|
9259 |
|
|
#ifndef HAVE_casesi
|
9260 |
|
|
# define HAVE_casesi 0
|
9261 |
|
|
# define gen_casesi(a, b, c, d, e) (0)
|
9262 |
|
|
# define CODE_FOR_casesi CODE_FOR_nothing
|
9263 |
|
|
#endif
|
9264 |
|
|
|
9265 |
|
|
/* If the machine does not have a case insn that compares the bounds,
|
9266 |
|
|
this means extra overhead for dispatch tables, which raises the
|
9267 |
|
|
threshold for using them. */
|
9268 |
|
|
#ifndef CASE_VALUES_THRESHOLD
|
9269 |
|
|
#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
|
9270 |
|
|
#endif /* CASE_VALUES_THRESHOLD */
|
9271 |
|
|
|
9272 |
|
|
unsigned int
|
9273 |
|
|
case_values_threshold (void)
|
9274 |
|
|
{
|
9275 |
|
|
return CASE_VALUES_THRESHOLD;
|
9276 |
|
|
}
|
9277 |
|
|
|
9278 |
|
|
/* Attempt to generate a casesi instruction. Returns 1 if successful,
|
9279 |
|
|
|
9280 |
|
|
int
|
9281 |
|
|
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
|
9282 |
|
|
rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
|
9283 |
|
|
{
|
9284 |
|
|
enum machine_mode index_mode = SImode;
|
9285 |
|
|
int index_bits = GET_MODE_BITSIZE (index_mode);
|
9286 |
|
|
rtx op1, op2, index;
|
9287 |
|
|
enum machine_mode op_mode;
|
9288 |
|
|
|
9289 |
|
|
if (! HAVE_casesi)
|
9290 |
|
|
return 0;
|
9291 |
|
|
|
9292 |
|
|
/* Convert the index to SImode. */
|
9293 |
|
|
if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
|
9294 |
|
|
{
|
9295 |
|
|
enum machine_mode omode = TYPE_MODE (index_type);
|
9296 |
|
|
rtx rangertx = expand_normal (range);
|
9297 |
|
|
|
9298 |
|
|
/* We must handle the endpoints in the original mode. */
|
9299 |
|
|
index_expr = build2 (MINUS_EXPR, index_type,
|
9300 |
|
|
index_expr, minval);
|
9301 |
|
|
minval = integer_zero_node;
|
9302 |
|
|
index = expand_normal (index_expr);
|
9303 |
|
|
emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
|
9304 |
|
|
omode, 1, default_label);
|
9305 |
|
|
/* Now we can safely truncate. */
|
9306 |
|
|
index = convert_to_mode (index_mode, index, 0);
|
9307 |
|
|
}
|
9308 |
|
|
else
|
9309 |
|
|
{
|
9310 |
|
|
if (TYPE_MODE (index_type) != index_mode)
|
9311 |
|
|
{
|
9312 |
|
|
index_type = lang_hooks.types.type_for_size (index_bits, 0);
|
9313 |
|
|
index_expr = fold_convert (index_type, index_expr);
|
9314 |
|
|
}
|
9315 |
|
|
|
9316 |
|
|
index = expand_normal (index_expr);
|
9317 |
|
|
}
|
9318 |
|
|
|
9319 |
|
|
do_pending_stack_adjust ();
|
9320 |
|
|
|
9321 |
|
|
op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
|
9322 |
|
|
if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
|
9323 |
|
|
(index, op_mode))
|
9324 |
|
|
index = copy_to_mode_reg (op_mode, index);
|
9325 |
|
|
|
9326 |
|
|
op1 = expand_normal (minval);
|
9327 |
|
|
|
9328 |
|
|
op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
|
9329 |
|
|
op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
|
9330 |
|
|
op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
|
9331 |
|
|
if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
|
9332 |
|
|
(op1, op_mode))
|
9333 |
|
|
op1 = copy_to_mode_reg (op_mode, op1);
|
9334 |
|
|
|
9335 |
|
|
op2 = expand_normal (range);
|
9336 |
|
|
|
9337 |
|
|
op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
|
9338 |
|
|
op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
|
9339 |
|
|
op2, TYPE_UNSIGNED (TREE_TYPE (range)));
|
9340 |
|
|
if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
|
9341 |
|
|
(op2, op_mode))
|
9342 |
|
|
op2 = copy_to_mode_reg (op_mode, op2);
|
9343 |
|
|
|
9344 |
|
|
emit_jump_insn (gen_casesi (index, op1, op2,
|
9345 |
|
|
table_label, default_label));
|
9346 |
|
|
return 1;
|
9347 |
|
|
}
|
9348 |
|
|
|
9349 |
|
|
/* Attempt to generate a tablejump instruction; same concept. */
|
9350 |
|
|
#ifndef HAVE_tablejump
|
9351 |
|
|
#define HAVE_tablejump 0
|
9352 |
|
|
#define gen_tablejump(x, y) (0)
|
9353 |
|
|
#endif
|
9354 |
|
|
|
9355 |
|
|
/* Subroutine of the next function.
|
9356 |
|
|
|
9357 |
|
|
INDEX is the value being switched on, with the lowest value
|
9358 |
|
|
in the table already subtracted.
|
9359 |
|
|
MODE is its expected mode (needed if INDEX is constant).
|
9360 |
|
|
RANGE is the length of the jump table.
|
9361 |
|
|
TABLE_LABEL is a CODE_LABEL rtx for the table itself.
|
9362 |
|
|
|
9363 |
|
|
DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
|
9364 |
|
|
index value is out of range. */
|
9365 |
|
|
|
9366 |
|
|
static void
|
9367 |
|
|
do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
|
9368 |
|
|
rtx default_label)
|
9369 |
|
|
{
|
9370 |
|
|
rtx temp, vector;
|
9371 |
|
|
|
9372 |
|
|
if (INTVAL (range) > cfun->max_jumptable_ents)
|
9373 |
|
|
cfun->max_jumptable_ents = INTVAL (range);
|
9374 |
|
|
|
9375 |
|
|
/* Do an unsigned comparison (in the proper mode) between the index
|
9376 |
|
|
expression and the value which represents the length of the range.
|
9377 |
|
|
Since we just finished subtracting the lower bound of the range
|
9378 |
|
|
from the index expression, this comparison allows us to simultaneously
|
9379 |
|
|
check that the original index expression value is both greater than
|
9380 |
|
|
or equal to the minimum value of the range and less than or equal to
|
9381 |
|
|
the maximum value of the range. */
|
9382 |
|
|
|
9383 |
|
|
emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
|
9384 |
|
|
default_label);
|
9385 |
|
|
|
9386 |
|
|
/* If index is in range, it must fit in Pmode.
|
9387 |
|
|
Convert to Pmode so we can index with it. */
|
9388 |
|
|
if (mode != Pmode)
|
9389 |
|
|
index = convert_to_mode (Pmode, index, 1);
|
9390 |
|
|
|
9391 |
|
|
/* Don't let a MEM slip through, because then INDEX that comes
|
9392 |
|
|
out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
|
9393 |
|
|
and break_out_memory_refs will go to work on it and mess it up. */
|
9394 |
|
|
#ifdef PIC_CASE_VECTOR_ADDRESS
|
9395 |
|
|
if (flag_pic && !REG_P (index))
|
9396 |
|
|
index = copy_to_mode_reg (Pmode, index);
|
9397 |
|
|
#endif
|
9398 |
|
|
|
9399 |
|
|
/* If flag_force_addr were to affect this address
|
9400 |
|
|
it could interfere with the tricky assumptions made
|
9401 |
|
|
about addresses that contain label-refs,
|
9402 |
|
|
which may be valid only very near the tablejump itself. */
|
9403 |
|
|
/* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
|
9404 |
|
|
GET_MODE_SIZE, because this indicates how large insns are. The other
|
9405 |
|
|
uses should all be Pmode, because they are addresses. This code
|
9406 |
|
|
could fail if addresses and insns are not the same size. */
|
9407 |
|
|
index = gen_rtx_PLUS (Pmode,
|
9408 |
|
|
gen_rtx_MULT (Pmode, index,
|
9409 |
|
|
GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
|
9410 |
|
|
gen_rtx_LABEL_REF (Pmode, table_label));
|
9411 |
|
|
#ifdef PIC_CASE_VECTOR_ADDRESS
|
9412 |
|
|
if (flag_pic)
|
9413 |
|
|
index = PIC_CASE_VECTOR_ADDRESS (index);
|
9414 |
|
|
else
|
9415 |
|
|
#endif
|
9416 |
|
|
index = memory_address_noforce (CASE_VECTOR_MODE, index);
|
9417 |
|
|
temp = gen_reg_rtx (CASE_VECTOR_MODE);
|
9418 |
|
|
vector = gen_const_mem (CASE_VECTOR_MODE, index);
|
9419 |
|
|
convert_move (temp, vector, 0);
|
9420 |
|
|
|
9421 |
|
|
emit_jump_insn (gen_tablejump (temp, table_label));
|
9422 |
|
|
|
9423 |
|
|
/* If we are generating PIC code or if the table is PC-relative, the
|
9424 |
|
|
table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
|
9425 |
|
|
if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
|
9426 |
|
|
emit_barrier ();
|
9427 |
|
|
}
|
9428 |
|
|
|
9429 |
|
|
int
|
9430 |
|
|
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
|
9431 |
|
|
rtx table_label, rtx default_label)
|
9432 |
|
|
{
|
9433 |
|
|
rtx index;
|
9434 |
|
|
|
9435 |
|
|
if (! HAVE_tablejump)
|
9436 |
|
|
return 0;
|
9437 |
|
|
|
9438 |
|
|
index_expr = fold_build2 (MINUS_EXPR, index_type,
|
9439 |
|
|
fold_convert (index_type, index_expr),
|
9440 |
|
|
fold_convert (index_type, minval));
|
9441 |
|
|
index = expand_normal (index_expr);
|
9442 |
|
|
do_pending_stack_adjust ();
|
9443 |
|
|
|
9444 |
|
|
do_tablejump (index, TYPE_MODE (index_type),
|
9445 |
|
|
convert_modes (TYPE_MODE (index_type),
|
9446 |
|
|
TYPE_MODE (TREE_TYPE (range)),
|
9447 |
|
|
expand_normal (range),
|
9448 |
|
|
TYPE_UNSIGNED (TREE_TYPE (range))),
|
9449 |
|
|
table_label, default_label);
|
9450 |
|
|
return 1;
|
9451 |
|
|
}
|
9452 |
|
|
|
9453 |
|
|
/* Nonzero if the mode is a valid vector mode for this architecture.
|
9454 |
|
|
This returns nonzero even if there is no hardware support for the
|
9455 |
|
|
vector mode, but we can emulate with narrower modes. */
|
9456 |
|
|
|
9457 |
|
|
int
|
9458 |
|
|
vector_mode_valid_p (enum machine_mode mode)
|
9459 |
|
|
{
|
9460 |
|
|
enum mode_class class = GET_MODE_CLASS (mode);
|
9461 |
|
|
enum machine_mode innermode;
|
9462 |
|
|
|
9463 |
|
|
/* Doh! What's going on? */
|
9464 |
|
|
if (class != MODE_VECTOR_INT
|
9465 |
|
|
&& class != MODE_VECTOR_FLOAT)
|
9466 |
|
|
return 0;
|
9467 |
|
|
|
9468 |
|
|
/* Hardware support. Woo hoo! */
|
9469 |
|
|
if (targetm.vector_mode_supported_p (mode))
|
9470 |
|
|
return 1;
|
9471 |
|
|
|
9472 |
|
|
innermode = GET_MODE_INNER (mode);
|
9473 |
|
|
|
9474 |
|
|
/* We should probably return 1 if requesting V4DI and we have no DI,
|
9475 |
|
|
but we have V2DI, but this is probably very unlikely. */
|
9476 |
|
|
|
9477 |
|
|
/* If we have support for the inner mode, we can safely emulate it.
|
9478 |
|
|
We may not have V2DI, but me can emulate with a pair of DIs. */
|
9479 |
|
|
return targetm.scalar_mode_supported_p (innermode);
|
9480 |
|
|
}
|
9481 |
|
|
|
9482 |
|
|
/* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
|
9483 |
|
|
static rtx
|
9484 |
|
|
const_vector_from_tree (tree exp)
|
9485 |
|
|
{
|
9486 |
|
|
rtvec v;
|
9487 |
|
|
int units, i;
|
9488 |
|
|
tree link, elt;
|
9489 |
|
|
enum machine_mode inner, mode;
|
9490 |
|
|
|
9491 |
|
|
mode = TYPE_MODE (TREE_TYPE (exp));
|
9492 |
|
|
|
9493 |
|
|
if (initializer_zerop (exp))
|
9494 |
|
|
return CONST0_RTX (mode);
|
9495 |
|
|
|
9496 |
|
|
units = GET_MODE_NUNITS (mode);
|
9497 |
|
|
inner = GET_MODE_INNER (mode);
|
9498 |
|
|
|
9499 |
|
|
v = rtvec_alloc (units);
|
9500 |
|
|
|
9501 |
|
|
link = TREE_VECTOR_CST_ELTS (exp);
|
9502 |
|
|
for (i = 0; link; link = TREE_CHAIN (link), ++i)
|
9503 |
|
|
{
|
9504 |
|
|
elt = TREE_VALUE (link);
|
9505 |
|
|
|
9506 |
|
|
if (TREE_CODE (elt) == REAL_CST)
|
9507 |
|
|
RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
|
9508 |
|
|
inner);
|
9509 |
|
|
else
|
9510 |
|
|
RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
|
9511 |
|
|
TREE_INT_CST_HIGH (elt),
|
9512 |
|
|
inner);
|
9513 |
|
|
}
|
9514 |
|
|
|
9515 |
|
|
/* Initialize remaining elements to 0. */
|
9516 |
|
|
for (; i < units; ++i)
|
9517 |
|
|
RTVEC_ELT (v, i) = CONST0_RTX (inner);
|
9518 |
|
|
|
9519 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
9520 |
|
|
}
|
9521 |
|
|
#include "gt-expr.h"
|