1 |
38 |
julius |
/* Expands front end tree to back end RTL for GCC.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
3 |
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This file handles the generation of rtl code from tree structure
|
23 |
|
|
at the level of the function as a whole.
|
24 |
|
|
It creates the rtl expressions for parameters and auto variables
|
25 |
|
|
and has full responsibility for allocating stack slots.
|
26 |
|
|
|
27 |
|
|
`expand_function_start' is called at the beginning of a function,
|
28 |
|
|
before the function body is parsed, and `expand_function_end' is
|
29 |
|
|
called after parsing the body.
|
30 |
|
|
|
31 |
|
|
Call `assign_stack_local' to allocate a stack slot for a local variable.
|
32 |
|
|
This is usually done during the RTL generation for the function body,
|
33 |
|
|
but it can also be done in the reload pass when a pseudo-register does
|
34 |
|
|
not get a hard register. */
|
35 |
|
|
|
36 |
|
|
#include "config.h"
|
37 |
|
|
#include "system.h"
|
38 |
|
|
#include "coretypes.h"
|
39 |
|
|
#include "tm.h"
|
40 |
|
|
#include "rtl.h"
|
41 |
|
|
#include "tree.h"
|
42 |
|
|
#include "flags.h"
|
43 |
|
|
#include "except.h"
|
44 |
|
|
#include "function.h"
|
45 |
|
|
#include "expr.h"
|
46 |
|
|
#include "optabs.h"
|
47 |
|
|
#include "libfuncs.h"
|
48 |
|
|
#include "regs.h"
|
49 |
|
|
#include "hard-reg-set.h"
|
50 |
|
|
#include "insn-config.h"
|
51 |
|
|
#include "recog.h"
|
52 |
|
|
#include "output.h"
|
53 |
|
|
#include "basic-block.h"
|
54 |
|
|
#include "toplev.h"
|
55 |
|
|
#include "hashtab.h"
|
56 |
|
|
#include "ggc.h"
|
57 |
|
|
#include "tm_p.h"
|
58 |
|
|
#include "integrate.h"
|
59 |
|
|
#include "langhooks.h"
|
60 |
|
|
#include "target.h"
|
61 |
|
|
#include "cfglayout.h"
|
62 |
|
|
#include "tree-gimple.h"
|
63 |
|
|
#include "tree-pass.h"
|
64 |
|
|
#include "predict.h"
|
65 |
|
|
#include "vecprim.h"
|
66 |
|
|
|
67 |
|
|
#ifndef LOCAL_ALIGNMENT
|
68 |
|
|
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
|
69 |
|
|
#endif
|
70 |
|
|
|
71 |
|
|
#ifndef STACK_ALIGNMENT_NEEDED
|
72 |
|
|
#define STACK_ALIGNMENT_NEEDED 1
|
73 |
|
|
#endif
|
74 |
|
|
|
75 |
|
|
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
|
76 |
|
|
|
77 |
|
|
/* Some systems use __main in a way incompatible with its use in gcc, in these
|
78 |
|
|
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
|
79 |
|
|
give the same symbol without quotes for an alternative entry point. You
|
80 |
|
|
must define both, or neither. */
|
81 |
|
|
#ifndef NAME__MAIN
|
82 |
|
|
#define NAME__MAIN "__main"
|
83 |
|
|
#endif
|
84 |
|
|
|
85 |
|
|
/* Round a value to the lowest integer less than it that is a multiple of
|
86 |
|
|
the required alignment. Avoid using division in case the value is
|
87 |
|
|
negative. Assume the alignment is a power of two. */
|
88 |
|
|
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
|
89 |
|
|
|
90 |
|
|
/* Similar, but round to the next highest integer that meets the
|
91 |
|
|
alignment. */
|
92 |
|
|
#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
|
93 |
|
|
|
94 |
|
|
/* Nonzero if function being compiled doesn't contain any calls
|
95 |
|
|
(ignoring the prologue and epilogue). This is set prior to
|
96 |
|
|
local register allocation and is valid for the remaining
|
97 |
|
|
compiler passes. */
|
98 |
|
|
int current_function_is_leaf;
|
99 |
|
|
|
100 |
|
|
/* Nonzero if function being compiled doesn't modify the stack pointer
|
101 |
|
|
(ignoring the prologue and epilogue). This is only valid after
|
102 |
|
|
life_analysis has run. */
|
103 |
|
|
int current_function_sp_is_unchanging;
|
104 |
|
|
|
105 |
|
|
/* Nonzero if the function being compiled is a leaf function which only
|
106 |
|
|
uses leaf registers. This is valid after reload (specifically after
|
107 |
|
|
sched2) and is useful only if the port defines LEAF_REGISTERS. */
|
108 |
|
|
int current_function_uses_only_leaf_regs;
|
109 |
|
|
|
110 |
|
|
/* Nonzero once virtual register instantiation has been done.
|
111 |
|
|
assign_stack_local uses frame_pointer_rtx when this is nonzero.
|
112 |
|
|
calls.c:emit_library_call_value_1 uses it to set up
|
113 |
|
|
post-instantiation libcalls. */
|
114 |
|
|
int virtuals_instantiated;
|
115 |
|
|
|
116 |
|
|
/* Assign unique numbers to labels generated for profiling, debugging, etc. */
|
117 |
|
|
static GTY(()) int funcdef_no;
|
118 |
|
|
|
119 |
|
|
/* These variables hold pointers to functions to create and destroy
|
120 |
|
|
target specific, per-function data structures. */
|
121 |
|
|
struct machine_function * (*init_machine_status) (void);
|
122 |
|
|
|
123 |
|
|
/* The currently compiled function. */
|
124 |
|
|
struct function *cfun = 0;
|
125 |
|
|
|
126 |
|
|
/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
|
127 |
|
|
static VEC(int,heap) *prologue;
|
128 |
|
|
static VEC(int,heap) *epilogue;
|
129 |
|
|
|
130 |
|
|
/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
|
131 |
|
|
in this function. */
|
132 |
|
|
static VEC(int,heap) *sibcall_epilogue;
|
133 |
|
|
|
134 |
|
|
/* In order to evaluate some expressions, such as function calls returning
|
135 |
|
|
structures in memory, we need to temporarily allocate stack locations.
|
136 |
|
|
We record each allocated temporary in the following structure.
|
137 |
|
|
|
138 |
|
|
Associated with each temporary slot is a nesting level. When we pop up
|
139 |
|
|
one level, all temporaries associated with the previous level are freed.
|
140 |
|
|
Normally, all temporaries are freed after the execution of the statement
|
141 |
|
|
in which they were created. However, if we are inside a ({...}) grouping,
|
142 |
|
|
the result may be in a temporary and hence must be preserved. If the
|
143 |
|
|
result could be in a temporary, we preserve it if we can determine which
|
144 |
|
|
one it is in. If we cannot determine which temporary may contain the
|
145 |
|
|
result, all temporaries are preserved. A temporary is preserved by
|
146 |
|
|
pretending it was allocated at the previous nesting level.
|
147 |
|
|
|
148 |
|
|
Automatic variables are also assigned temporary slots, at the nesting
|
149 |
|
|
level where they are defined. They are marked a "kept" so that
|
150 |
|
|
free_temp_slots will not free them. */
|
151 |
|
|
|
152 |
|
|
struct temp_slot GTY(())
|
153 |
|
|
{
|
154 |
|
|
/* Points to next temporary slot. */
|
155 |
|
|
struct temp_slot *next;
|
156 |
|
|
/* Points to previous temporary slot. */
|
157 |
|
|
struct temp_slot *prev;
|
158 |
|
|
|
159 |
|
|
/* The rtx to used to reference the slot. */
|
160 |
|
|
rtx slot;
|
161 |
|
|
/* The rtx used to represent the address if not the address of the
|
162 |
|
|
slot above. May be an EXPR_LIST if multiple addresses exist. */
|
163 |
|
|
rtx address;
|
164 |
|
|
/* The alignment (in bits) of the slot. */
|
165 |
|
|
unsigned int align;
|
166 |
|
|
/* The size, in units, of the slot. */
|
167 |
|
|
HOST_WIDE_INT size;
|
168 |
|
|
/* The type of the object in the slot, or zero if it doesn't correspond
|
169 |
|
|
to a type. We use this to determine whether a slot can be reused.
|
170 |
|
|
It can be reused if objects of the type of the new slot will always
|
171 |
|
|
conflict with objects of the type of the old slot. */
|
172 |
|
|
tree type;
|
173 |
|
|
/* Nonzero if this temporary is currently in use. */
|
174 |
|
|
char in_use;
|
175 |
|
|
/* Nonzero if this temporary has its address taken. */
|
176 |
|
|
char addr_taken;
|
177 |
|
|
/* Nesting level at which this slot is being used. */
|
178 |
|
|
int level;
|
179 |
|
|
/* Nonzero if this should survive a call to free_temp_slots. */
|
180 |
|
|
int keep;
|
181 |
|
|
/* The offset of the slot from the frame_pointer, including extra space
|
182 |
|
|
for alignment. This info is for combine_temp_slots. */
|
183 |
|
|
HOST_WIDE_INT base_offset;
|
184 |
|
|
/* The size of the slot, including extra space for alignment. This
|
185 |
|
|
info is for combine_temp_slots. */
|
186 |
|
|
HOST_WIDE_INT full_size;
|
187 |
|
|
};
|
188 |
|
|
|
189 |
|
|
/* Forward declarations. */
|
190 |
|
|
|
191 |
|
|
static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
|
192 |
|
|
struct function *);
|
193 |
|
|
static struct temp_slot *find_temp_slot_from_address (rtx);
|
194 |
|
|
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
|
195 |
|
|
static void pad_below (struct args_size *, enum machine_mode, tree);
|
196 |
|
|
static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
|
197 |
|
|
static int all_blocks (tree, tree *);
|
198 |
|
|
static tree *get_block_vector (tree, int *);
|
199 |
|
|
extern tree debug_find_var_in_block_tree (tree, tree);
|
200 |
|
|
/* We always define `record_insns' even if it's not used so that we
|
201 |
|
|
can always export `prologue_epilogue_contains'. */
|
202 |
|
|
static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
|
203 |
|
|
static int contains (rtx, VEC(int,heap) **);
|
204 |
|
|
#ifdef HAVE_return
|
205 |
|
|
static void emit_return_into_block (basic_block, rtx);
|
206 |
|
|
#endif
|
207 |
|
|
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
|
208 |
|
|
static rtx keep_stack_depressed (rtx);
|
209 |
|
|
#endif
|
210 |
|
|
static void prepare_function_start (tree);
|
211 |
|
|
static void do_clobber_return_reg (rtx, void *);
|
212 |
|
|
static void do_use_return_reg (rtx, void *);
|
213 |
|
|
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
|
214 |
|
|
|
215 |
|
|
/* Pointer to chain of `struct function' for containing functions. */
|
216 |
|
|
struct function *outer_function_chain;
|
217 |
|
|
|
218 |
|
|
/* Given a function decl for a containing function,
|
219 |
|
|
return the `struct function' for it. */
|
220 |
|
|
|
221 |
|
|
struct function *
|
222 |
|
|
find_function_data (tree decl)
|
223 |
|
|
{
|
224 |
|
|
struct function *p;
|
225 |
|
|
|
226 |
|
|
for (p = outer_function_chain; p; p = p->outer)
|
227 |
|
|
if (p->decl == decl)
|
228 |
|
|
return p;
|
229 |
|
|
|
230 |
|
|
gcc_unreachable ();
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Save the current context for compilation of a nested function.
|
234 |
|
|
This is called from language-specific code. The caller should use
|
235 |
|
|
the enter_nested langhook to save any language-specific state,
|
236 |
|
|
since this function knows only about language-independent
|
237 |
|
|
variables. */
|
238 |
|
|
|
239 |
|
|
void
|
240 |
|
|
push_function_context_to (tree context ATTRIBUTE_UNUSED)
|
241 |
|
|
{
|
242 |
|
|
struct function *p;
|
243 |
|
|
|
244 |
|
|
if (cfun == 0)
|
245 |
|
|
init_dummy_function_start ();
|
246 |
|
|
p = cfun;
|
247 |
|
|
|
248 |
|
|
p->outer = outer_function_chain;
|
249 |
|
|
outer_function_chain = p;
|
250 |
|
|
|
251 |
|
|
lang_hooks.function.enter_nested (p);
|
252 |
|
|
|
253 |
|
|
cfun = 0;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
void
|
257 |
|
|
push_function_context (void)
|
258 |
|
|
{
|
259 |
|
|
push_function_context_to (current_function_decl);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* Restore the last saved context, at the end of a nested function.
|
263 |
|
|
This function is called from language-specific code. */
|
264 |
|
|
|
265 |
|
|
void
|
266 |
|
|
pop_function_context_from (tree context ATTRIBUTE_UNUSED)
|
267 |
|
|
{
|
268 |
|
|
struct function *p = outer_function_chain;
|
269 |
|
|
|
270 |
|
|
cfun = p;
|
271 |
|
|
outer_function_chain = p->outer;
|
272 |
|
|
|
273 |
|
|
current_function_decl = p->decl;
|
274 |
|
|
|
275 |
|
|
lang_hooks.function.leave_nested (p);
|
276 |
|
|
|
277 |
|
|
/* Reset variables that have known state during rtx generation. */
|
278 |
|
|
virtuals_instantiated = 0;
|
279 |
|
|
generating_concat_p = 1;
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
void
|
283 |
|
|
pop_function_context (void)
|
284 |
|
|
{
|
285 |
|
|
pop_function_context_from (current_function_decl);
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/* Clear out all parts of the state in F that can safely be discarded
|
289 |
|
|
after the function has been parsed, but not compiled, to let
|
290 |
|
|
garbage collection reclaim the memory. */
|
291 |
|
|
|
292 |
|
|
void
|
293 |
|
|
free_after_parsing (struct function *f)
|
294 |
|
|
{
|
295 |
|
|
/* f->expr->forced_labels is used by code generation. */
|
296 |
|
|
/* f->emit->regno_reg_rtx is used by code generation. */
|
297 |
|
|
/* f->varasm is used by code generation. */
|
298 |
|
|
/* f->eh->eh_return_stub_label is used by code generation. */
|
299 |
|
|
|
300 |
|
|
lang_hooks.function.final (f);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Clear out all parts of the state in F that can safely be discarded
|
304 |
|
|
after the function has been compiled, to let garbage collection
|
305 |
|
|
reclaim the memory. */
|
306 |
|
|
|
307 |
|
|
void
|
308 |
|
|
free_after_compilation (struct function *f)
|
309 |
|
|
{
|
310 |
|
|
VEC_free (int, heap, prologue);
|
311 |
|
|
VEC_free (int, heap, epilogue);
|
312 |
|
|
VEC_free (int, heap, sibcall_epilogue);
|
313 |
|
|
|
314 |
|
|
f->eh = NULL;
|
315 |
|
|
f->expr = NULL;
|
316 |
|
|
f->emit = NULL;
|
317 |
|
|
f->varasm = NULL;
|
318 |
|
|
f->machine = NULL;
|
319 |
|
|
f->cfg = NULL;
|
320 |
|
|
|
321 |
|
|
f->x_avail_temp_slots = NULL;
|
322 |
|
|
f->x_used_temp_slots = NULL;
|
323 |
|
|
f->arg_offset_rtx = NULL;
|
324 |
|
|
f->return_rtx = NULL;
|
325 |
|
|
f->internal_arg_pointer = NULL;
|
326 |
|
|
f->x_nonlocal_goto_handler_labels = NULL;
|
327 |
|
|
f->x_return_label = NULL;
|
328 |
|
|
f->x_naked_return_label = NULL;
|
329 |
|
|
f->x_stack_slot_list = NULL;
|
330 |
|
|
f->x_stack_check_probe_note = NULL;
|
331 |
|
|
f->x_arg_pointer_save_area = NULL;
|
332 |
|
|
f->x_parm_birth_insn = NULL;
|
333 |
|
|
f->epilogue_delay_list = NULL;
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
/* Allocate fixed slots in the stack frame of the current function. */
|
337 |
|
|
|
338 |
|
|
/* Return size needed for stack frame based on slots so far allocated in
|
339 |
|
|
function F.
|
340 |
|
|
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
|
341 |
|
|
the caller may have to do that. */
|
342 |
|
|
|
343 |
|
|
static HOST_WIDE_INT
|
344 |
|
|
get_func_frame_size (struct function *f)
|
345 |
|
|
{
|
346 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
347 |
|
|
return -f->x_frame_offset;
|
348 |
|
|
else
|
349 |
|
|
return f->x_frame_offset;
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
/* Return size needed for stack frame based on slots so far allocated.
|
353 |
|
|
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
|
354 |
|
|
the caller may have to do that. */
|
355 |
|
|
|
356 |
|
|
HOST_WIDE_INT
|
357 |
|
|
get_frame_size (void)
|
358 |
|
|
{
|
359 |
|
|
return get_func_frame_size (cfun);
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
/* Issue an error message and return TRUE if frame OFFSET overflows in
|
363 |
|
|
the signed target pointer arithmetics for function FUNC. Otherwise
|
364 |
|
|
return FALSE. */
|
365 |
|
|
|
366 |
|
|
bool
|
367 |
|
|
frame_offset_overflow (HOST_WIDE_INT offset, tree func)
|
368 |
|
|
{
|
369 |
|
|
unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
|
370 |
|
|
|
371 |
|
|
if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
|
372 |
|
|
/* Leave room for the fixed part of the frame. */
|
373 |
|
|
- 64 * UNITS_PER_WORD)
|
374 |
|
|
{
|
375 |
|
|
error ("%Jtotal size of local objects too large", func);
|
376 |
|
|
return TRUE;
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
return FALSE;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
|
383 |
|
|
with machine mode MODE.
|
384 |
|
|
|
385 |
|
|
ALIGN controls the amount of alignment for the address of the slot:
|
386 |
|
|
|
387 |
|
|
-1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
|
388 |
|
|
-2 means use BITS_PER_UNIT,
|
389 |
|
|
positive specifies alignment boundary in bits.
|
390 |
|
|
|
391 |
|
|
We do not round to stack_boundary here.
|
392 |
|
|
|
393 |
|
|
FUNCTION specifies the function to allocate in. */
|
394 |
|
|
|
395 |
|
|
static rtx
|
396 |
|
|
assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
|
397 |
|
|
struct function *function)
|
398 |
|
|
{
|
399 |
|
|
rtx x, addr;
|
400 |
|
|
int bigend_correction = 0;
|
401 |
|
|
unsigned int alignment;
|
402 |
|
|
int frame_off, frame_alignment, frame_phase;
|
403 |
|
|
|
404 |
|
|
if (align == 0)
|
405 |
|
|
{
|
406 |
|
|
tree type;
|
407 |
|
|
|
408 |
|
|
if (mode == BLKmode)
|
409 |
|
|
alignment = BIGGEST_ALIGNMENT;
|
410 |
|
|
else
|
411 |
|
|
alignment = GET_MODE_ALIGNMENT (mode);
|
412 |
|
|
|
413 |
|
|
/* Allow the target to (possibly) increase the alignment of this
|
414 |
|
|
stack slot. */
|
415 |
|
|
type = lang_hooks.types.type_for_mode (mode, 0);
|
416 |
|
|
if (type)
|
417 |
|
|
alignment = LOCAL_ALIGNMENT (type, alignment);
|
418 |
|
|
|
419 |
|
|
alignment /= BITS_PER_UNIT;
|
420 |
|
|
}
|
421 |
|
|
else if (align == -1)
|
422 |
|
|
{
|
423 |
|
|
alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
424 |
|
|
size = CEIL_ROUND (size, alignment);
|
425 |
|
|
}
|
426 |
|
|
else if (align == -2)
|
427 |
|
|
alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
|
428 |
|
|
else
|
429 |
|
|
alignment = align / BITS_PER_UNIT;
|
430 |
|
|
|
431 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
432 |
|
|
function->x_frame_offset -= size;
|
433 |
|
|
|
434 |
|
|
/* Ignore alignment we can't do with expected alignment of the boundary. */
|
435 |
|
|
if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
|
436 |
|
|
alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
437 |
|
|
|
438 |
|
|
if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
|
439 |
|
|
function->stack_alignment_needed = alignment * BITS_PER_UNIT;
|
440 |
|
|
|
441 |
|
|
/* Calculate how many bytes the start of local variables is off from
|
442 |
|
|
stack alignment. */
|
443 |
|
|
frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
444 |
|
|
frame_off = STARTING_FRAME_OFFSET % frame_alignment;
|
445 |
|
|
frame_phase = frame_off ? frame_alignment - frame_off : 0;
|
446 |
|
|
|
447 |
|
|
/* Round the frame offset to the specified alignment. The default is
|
448 |
|
|
to always honor requests to align the stack but a port may choose to
|
449 |
|
|
do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
|
450 |
|
|
if (STACK_ALIGNMENT_NEEDED
|
451 |
|
|
|| mode != BLKmode
|
452 |
|
|
|| size != 0)
|
453 |
|
|
{
|
454 |
|
|
/* We must be careful here, since FRAME_OFFSET might be negative and
|
455 |
|
|
division with a negative dividend isn't as well defined as we might
|
456 |
|
|
like. So we instead assume that ALIGNMENT is a power of two and
|
457 |
|
|
use logical operations which are unambiguous. */
|
458 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
459 |
|
|
function->x_frame_offset
|
460 |
|
|
= (FLOOR_ROUND (function->x_frame_offset - frame_phase,
|
461 |
|
|
(unsigned HOST_WIDE_INT) alignment)
|
462 |
|
|
+ frame_phase);
|
463 |
|
|
else
|
464 |
|
|
function->x_frame_offset
|
465 |
|
|
= (CEIL_ROUND (function->x_frame_offset - frame_phase,
|
466 |
|
|
(unsigned HOST_WIDE_INT) alignment)
|
467 |
|
|
+ frame_phase);
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
/* On a big-endian machine, if we are allocating more space than we will use,
|
471 |
|
|
use the least significant bytes of those that are allocated. */
|
472 |
|
|
if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
|
473 |
|
|
bigend_correction = size - GET_MODE_SIZE (mode);
|
474 |
|
|
|
475 |
|
|
/* If we have already instantiated virtual registers, return the actual
|
476 |
|
|
address relative to the frame pointer. */
|
477 |
|
|
if (function == cfun && virtuals_instantiated)
|
478 |
|
|
addr = plus_constant (frame_pointer_rtx,
|
479 |
|
|
trunc_int_for_mode
|
480 |
|
|
(frame_offset + bigend_correction
|
481 |
|
|
+ STARTING_FRAME_OFFSET, Pmode));
|
482 |
|
|
else
|
483 |
|
|
addr = plus_constant (virtual_stack_vars_rtx,
|
484 |
|
|
trunc_int_for_mode
|
485 |
|
|
(function->x_frame_offset + bigend_correction,
|
486 |
|
|
Pmode));
|
487 |
|
|
|
488 |
|
|
if (!FRAME_GROWS_DOWNWARD)
|
489 |
|
|
function->x_frame_offset += size;
|
490 |
|
|
|
491 |
|
|
x = gen_rtx_MEM (mode, addr);
|
492 |
|
|
MEM_NOTRAP_P (x) = 1;
|
493 |
|
|
|
494 |
|
|
function->x_stack_slot_list
|
495 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
|
496 |
|
|
|
497 |
|
|
if (frame_offset_overflow (function->x_frame_offset, function->decl))
|
498 |
|
|
function->x_frame_offset = 0;
|
499 |
|
|
|
500 |
|
|
return x;
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
/* Wrapper around assign_stack_local_1; assign a local stack slot for the
|
504 |
|
|
current function. */
|
505 |
|
|
|
506 |
|
|
rtx
|
507 |
|
|
assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
|
508 |
|
|
{
|
509 |
|
|
return assign_stack_local_1 (mode, size, align, cfun);
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
|
513 |
|
|
/* Removes temporary slot TEMP from LIST. */
|
514 |
|
|
|
515 |
|
|
static void
|
516 |
|
|
cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
|
517 |
|
|
{
|
518 |
|
|
if (temp->next)
|
519 |
|
|
temp->next->prev = temp->prev;
|
520 |
|
|
if (temp->prev)
|
521 |
|
|
temp->prev->next = temp->next;
|
522 |
|
|
else
|
523 |
|
|
*list = temp->next;
|
524 |
|
|
|
525 |
|
|
temp->prev = temp->next = NULL;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/* Inserts temporary slot TEMP to LIST. */
|
529 |
|
|
|
530 |
|
|
static void
|
531 |
|
|
insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
|
532 |
|
|
{
|
533 |
|
|
temp->next = *list;
|
534 |
|
|
if (*list)
|
535 |
|
|
(*list)->prev = temp;
|
536 |
|
|
temp->prev = NULL;
|
537 |
|
|
*list = temp;
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* Returns the list of used temp slots at LEVEL. */
|
541 |
|
|
|
542 |
|
|
static struct temp_slot **
|
543 |
|
|
temp_slots_at_level (int level)
|
544 |
|
|
{
|
545 |
|
|
if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
|
546 |
|
|
{
|
547 |
|
|
size_t old_length = VEC_length (temp_slot_p, used_temp_slots);
|
548 |
|
|
temp_slot_p *p;
|
549 |
|
|
|
550 |
|
|
VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1);
|
551 |
|
|
p = VEC_address (temp_slot_p, used_temp_slots);
|
552 |
|
|
memset (&p[old_length], 0,
|
553 |
|
|
sizeof (temp_slot_p) * (level + 1 - old_length));
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* Returns the maximal temporary slot level. */
|
560 |
|
|
|
561 |
|
|
static int
|
562 |
|
|
max_slot_level (void)
|
563 |
|
|
{
|
564 |
|
|
if (!used_temp_slots)
|
565 |
|
|
return -1;
|
566 |
|
|
|
567 |
|
|
return VEC_length (temp_slot_p, used_temp_slots) - 1;
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
/* Moves temporary slot TEMP to LEVEL. */
|
571 |
|
|
|
572 |
|
|
static void
|
573 |
|
|
move_slot_to_level (struct temp_slot *temp, int level)
|
574 |
|
|
{
|
575 |
|
|
cut_slot_from_list (temp, temp_slots_at_level (temp->level));
|
576 |
|
|
insert_slot_to_list (temp, temp_slots_at_level (level));
|
577 |
|
|
temp->level = level;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
/* Make temporary slot TEMP available. */
|
581 |
|
|
|
582 |
|
|
static void
|
583 |
|
|
make_slot_available (struct temp_slot *temp)
|
584 |
|
|
{
|
585 |
|
|
cut_slot_from_list (temp, temp_slots_at_level (temp->level));
|
586 |
|
|
insert_slot_to_list (temp, &avail_temp_slots);
|
587 |
|
|
temp->in_use = 0;
|
588 |
|
|
temp->level = -1;
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
/* Allocate a temporary stack slot and record it for possible later
|
592 |
|
|
reuse.
|
593 |
|
|
|
594 |
|
|
MODE is the machine mode to be given to the returned rtx.
|
595 |
|
|
|
596 |
|
|
SIZE is the size in units of the space required. We do no rounding here
|
597 |
|
|
since assign_stack_local will do any required rounding.
|
598 |
|
|
|
599 |
|
|
KEEP is 1 if this slot is to be retained after a call to
|
600 |
|
|
free_temp_slots. Automatic variables for a block are allocated
|
601 |
|
|
with this flag. KEEP values of 2 or 3 were needed respectively
|
602 |
|
|
for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
|
603 |
|
|
or for SAVE_EXPRs, but they are now unused.
|
604 |
|
|
|
605 |
|
|
TYPE is the type that will be used for the stack slot. */
|
606 |
|
|
|
607 |
|
|
rtx
|
608 |
|
|
assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
|
609 |
|
|
int keep, tree type)
|
610 |
|
|
{
|
611 |
|
|
unsigned int align;
|
612 |
|
|
struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
|
613 |
|
|
rtx slot;
|
614 |
|
|
|
615 |
|
|
/* If SIZE is -1 it means that somebody tried to allocate a temporary
|
616 |
|
|
of a variable size. */
|
617 |
|
|
gcc_assert (size != -1);
|
618 |
|
|
|
619 |
|
|
/* These are now unused. */
|
620 |
|
|
gcc_assert (keep <= 1);
|
621 |
|
|
|
622 |
|
|
if (mode == BLKmode)
|
623 |
|
|
align = BIGGEST_ALIGNMENT;
|
624 |
|
|
else
|
625 |
|
|
align = GET_MODE_ALIGNMENT (mode);
|
626 |
|
|
|
627 |
|
|
if (! type)
|
628 |
|
|
type = lang_hooks.types.type_for_mode (mode, 0);
|
629 |
|
|
|
630 |
|
|
if (type)
|
631 |
|
|
align = LOCAL_ALIGNMENT (type, align);
|
632 |
|
|
|
633 |
|
|
/* Try to find an available, already-allocated temporary of the proper
|
634 |
|
|
mode which meets the size and alignment requirements. Choose the
|
635 |
|
|
smallest one with the closest alignment.
|
636 |
|
|
|
637 |
|
|
If assign_stack_temp is called outside of the tree->rtl expansion,
|
638 |
|
|
we cannot reuse the stack slots (that may still refer to
|
639 |
|
|
VIRTUAL_STACK_VARS_REGNUM). */
|
640 |
|
|
if (!virtuals_instantiated)
|
641 |
|
|
{
|
642 |
|
|
for (p = avail_temp_slots; p; p = p->next)
|
643 |
|
|
{
|
644 |
|
|
if (p->align >= align && p->size >= size
|
645 |
|
|
&& GET_MODE (p->slot) == mode
|
646 |
|
|
&& objects_must_conflict_p (p->type, type)
|
647 |
|
|
&& (best_p == 0 || best_p->size > p->size
|
648 |
|
|
|| (best_p->size == p->size && best_p->align > p->align)))
|
649 |
|
|
{
|
650 |
|
|
if (p->align == align && p->size == size)
|
651 |
|
|
{
|
652 |
|
|
selected = p;
|
653 |
|
|
cut_slot_from_list (selected, &avail_temp_slots);
|
654 |
|
|
best_p = 0;
|
655 |
|
|
break;
|
656 |
|
|
}
|
657 |
|
|
best_p = p;
|
658 |
|
|
}
|
659 |
|
|
}
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* Make our best, if any, the one to use. */
|
663 |
|
|
if (best_p)
|
664 |
|
|
{
|
665 |
|
|
selected = best_p;
|
666 |
|
|
cut_slot_from_list (selected, &avail_temp_slots);
|
667 |
|
|
|
668 |
|
|
/* If there are enough aligned bytes left over, make them into a new
|
669 |
|
|
temp_slot so that the extra bytes don't get wasted. Do this only
|
670 |
|
|
for BLKmode slots, so that we can be sure of the alignment. */
|
671 |
|
|
if (GET_MODE (best_p->slot) == BLKmode)
|
672 |
|
|
{
|
673 |
|
|
int alignment = best_p->align / BITS_PER_UNIT;
|
674 |
|
|
HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
|
675 |
|
|
|
676 |
|
|
if (best_p->size - rounded_size >= alignment)
|
677 |
|
|
{
|
678 |
|
|
p = ggc_alloc (sizeof (struct temp_slot));
|
679 |
|
|
p->in_use = p->addr_taken = 0;
|
680 |
|
|
p->size = best_p->size - rounded_size;
|
681 |
|
|
p->base_offset = best_p->base_offset + rounded_size;
|
682 |
|
|
p->full_size = best_p->full_size - rounded_size;
|
683 |
|
|
p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
|
684 |
|
|
p->align = best_p->align;
|
685 |
|
|
p->address = 0;
|
686 |
|
|
p->type = best_p->type;
|
687 |
|
|
insert_slot_to_list (p, &avail_temp_slots);
|
688 |
|
|
|
689 |
|
|
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
|
690 |
|
|
stack_slot_list);
|
691 |
|
|
|
692 |
|
|
best_p->size = rounded_size;
|
693 |
|
|
best_p->full_size = rounded_size;
|
694 |
|
|
}
|
695 |
|
|
}
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
/* If we still didn't find one, make a new temporary. */
|
699 |
|
|
if (selected == 0)
|
700 |
|
|
{
|
701 |
|
|
HOST_WIDE_INT frame_offset_old = frame_offset;
|
702 |
|
|
|
703 |
|
|
p = ggc_alloc (sizeof (struct temp_slot));
|
704 |
|
|
|
705 |
|
|
/* We are passing an explicit alignment request to assign_stack_local.
|
706 |
|
|
One side effect of that is assign_stack_local will not round SIZE
|
707 |
|
|
to ensure the frame offset remains suitably aligned.
|
708 |
|
|
|
709 |
|
|
So for requests which depended on the rounding of SIZE, we go ahead
|
710 |
|
|
and round it now. We also make sure ALIGNMENT is at least
|
711 |
|
|
BIGGEST_ALIGNMENT. */
|
712 |
|
|
gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
|
713 |
|
|
p->slot = assign_stack_local (mode,
|
714 |
|
|
(mode == BLKmode
|
715 |
|
|
? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
|
716 |
|
|
: size),
|
717 |
|
|
align);
|
718 |
|
|
|
719 |
|
|
p->align = align;
|
720 |
|
|
|
721 |
|
|
/* The following slot size computation is necessary because we don't
|
722 |
|
|
know the actual size of the temporary slot until assign_stack_local
|
723 |
|
|
has performed all the frame alignment and size rounding for the
|
724 |
|
|
requested temporary. Note that extra space added for alignment
|
725 |
|
|
can be either above or below this stack slot depending on which
|
726 |
|
|
way the frame grows. We include the extra space if and only if it
|
727 |
|
|
is above this slot. */
|
728 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
729 |
|
|
p->size = frame_offset_old - frame_offset;
|
730 |
|
|
else
|
731 |
|
|
p->size = size;
|
732 |
|
|
|
733 |
|
|
/* Now define the fields used by combine_temp_slots. */
|
734 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
735 |
|
|
{
|
736 |
|
|
p->base_offset = frame_offset;
|
737 |
|
|
p->full_size = frame_offset_old - frame_offset;
|
738 |
|
|
}
|
739 |
|
|
else
|
740 |
|
|
{
|
741 |
|
|
p->base_offset = frame_offset_old;
|
742 |
|
|
p->full_size = frame_offset - frame_offset_old;
|
743 |
|
|
}
|
744 |
|
|
p->address = 0;
|
745 |
|
|
|
746 |
|
|
selected = p;
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
p = selected;
|
750 |
|
|
p->in_use = 1;
|
751 |
|
|
p->addr_taken = 0;
|
752 |
|
|
p->type = type;
|
753 |
|
|
p->level = temp_slot_level;
|
754 |
|
|
p->keep = keep;
|
755 |
|
|
|
756 |
|
|
pp = temp_slots_at_level (p->level);
|
757 |
|
|
insert_slot_to_list (p, pp);
|
758 |
|
|
|
759 |
|
|
/* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
|
760 |
|
|
slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
|
761 |
|
|
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
|
762 |
|
|
|
763 |
|
|
/* If we know the alias set for the memory that will be used, use
|
764 |
|
|
it. If there's no TYPE, then we don't know anything about the
|
765 |
|
|
alias set for the memory. */
|
766 |
|
|
set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
|
767 |
|
|
set_mem_align (slot, align);
|
768 |
|
|
|
769 |
|
|
/* If a type is specified, set the relevant flags. */
|
770 |
|
|
if (type != 0)
|
771 |
|
|
{
|
772 |
|
|
MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
|
773 |
|
|
MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
|
774 |
|
|
}
|
775 |
|
|
MEM_NOTRAP_P (slot) = 1;
|
776 |
|
|
|
777 |
|
|
return slot;
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
/* Allocate a temporary stack slot and record it for possible later
|
781 |
|
|
reuse. First three arguments are same as in preceding function. */
|
782 |
|
|
|
783 |
|
|
rtx
|
784 |
|
|
assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
|
785 |
|
|
{
|
786 |
|
|
return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* Assign a temporary.
|
790 |
|
|
If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
|
791 |
|
|
and so that should be used in error messages. In either case, we
|
792 |
|
|
allocate of the given type.
|
793 |
|
|
KEEP is as for assign_stack_temp.
|
794 |
|
|
MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
|
795 |
|
|
it is 0 if a register is OK.
|
796 |
|
|
DONT_PROMOTE is 1 if we should not promote values in register
|
797 |
|
|
to wider modes. */
|
798 |
|
|
|
799 |
|
|
rtx
|
800 |
|
|
assign_temp (tree type_or_decl, int keep, int memory_required,
|
801 |
|
|
int dont_promote ATTRIBUTE_UNUSED)
|
802 |
|
|
{
|
803 |
|
|
tree type, decl;
|
804 |
|
|
enum machine_mode mode;
|
805 |
|
|
#ifdef PROMOTE_MODE
|
806 |
|
|
int unsignedp;
|
807 |
|
|
#endif
|
808 |
|
|
|
809 |
|
|
if (DECL_P (type_or_decl))
|
810 |
|
|
decl = type_or_decl, type = TREE_TYPE (decl);
|
811 |
|
|
else
|
812 |
|
|
decl = NULL, type = type_or_decl;
|
813 |
|
|
|
814 |
|
|
mode = TYPE_MODE (type);
|
815 |
|
|
#ifdef PROMOTE_MODE
|
816 |
|
|
unsignedp = TYPE_UNSIGNED (type);
|
817 |
|
|
#endif
|
818 |
|
|
|
819 |
|
|
if (mode == BLKmode || memory_required)
|
820 |
|
|
{
|
821 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
822 |
|
|
rtx tmp;
|
823 |
|
|
|
824 |
|
|
/* Zero sized arrays are GNU C extension. Set size to 1 to avoid
|
825 |
|
|
problems with allocating the stack space. */
|
826 |
|
|
if (size == 0)
|
827 |
|
|
size = 1;
|
828 |
|
|
|
829 |
|
|
/* Unfortunately, we don't yet know how to allocate variable-sized
|
830 |
|
|
temporaries. However, sometimes we can find a fixed upper limit on
|
831 |
|
|
the size, so try that instead. */
|
832 |
|
|
else if (size == -1)
|
833 |
|
|
size = max_int_size_in_bytes (type);
|
834 |
|
|
|
835 |
|
|
/* The size of the temporary may be too large to fit into an integer. */
|
836 |
|
|
/* ??? Not sure this should happen except for user silliness, so limit
|
837 |
|
|
this to things that aren't compiler-generated temporaries. The
|
838 |
|
|
rest of the time we'll die in assign_stack_temp_for_type. */
|
839 |
|
|
if (decl && size == -1
|
840 |
|
|
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
|
841 |
|
|
{
|
842 |
|
|
error ("size of variable %q+D is too large", decl);
|
843 |
|
|
size = 1;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
tmp = assign_stack_temp_for_type (mode, size, keep, type);
|
847 |
|
|
return tmp;
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
#ifdef PROMOTE_MODE
|
851 |
|
|
if (! dont_promote)
|
852 |
|
|
mode = promote_mode (type, mode, &unsignedp, 0);
|
853 |
|
|
#endif
|
854 |
|
|
|
855 |
|
|
return gen_reg_rtx (mode);
|
856 |
|
|
}
|
857 |
|
|
|
858 |
|
|
/* Combine temporary stack slots which are adjacent on the stack.
|
859 |
|
|
|
860 |
|
|
This allows for better use of already allocated stack space. This is only
|
861 |
|
|
done for BLKmode slots because we can be sure that we won't have alignment
|
862 |
|
|
problems in this case. */
|
863 |
|
|
|
864 |
|
|
static void
|
865 |
|
|
combine_temp_slots (void)
|
866 |
|
|
{
|
867 |
|
|
struct temp_slot *p, *q, *next, *next_q;
|
868 |
|
|
int num_slots;
|
869 |
|
|
|
870 |
|
|
/* We can't combine slots, because the information about which slot
|
871 |
|
|
is in which alias set will be lost. */
|
872 |
|
|
if (flag_strict_aliasing)
|
873 |
|
|
return;
|
874 |
|
|
|
875 |
|
|
/* If there are a lot of temp slots, don't do anything unless
|
876 |
|
|
high levels of optimization. */
|
877 |
|
|
if (! flag_expensive_optimizations)
|
878 |
|
|
for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
|
879 |
|
|
if (num_slots > 100 || (num_slots > 10 && optimize == 0))
|
880 |
|
|
return;
|
881 |
|
|
|
882 |
|
|
for (p = avail_temp_slots; p; p = next)
|
883 |
|
|
{
|
884 |
|
|
int delete_p = 0;
|
885 |
|
|
|
886 |
|
|
next = p->next;
|
887 |
|
|
|
888 |
|
|
if (GET_MODE (p->slot) != BLKmode)
|
889 |
|
|
continue;
|
890 |
|
|
|
891 |
|
|
for (q = p->next; q; q = next_q)
|
892 |
|
|
{
|
893 |
|
|
int delete_q = 0;
|
894 |
|
|
|
895 |
|
|
next_q = q->next;
|
896 |
|
|
|
897 |
|
|
if (GET_MODE (q->slot) != BLKmode)
|
898 |
|
|
continue;
|
899 |
|
|
|
900 |
|
|
if (p->base_offset + p->full_size == q->base_offset)
|
901 |
|
|
{
|
902 |
|
|
/* Q comes after P; combine Q into P. */
|
903 |
|
|
p->size += q->size;
|
904 |
|
|
p->full_size += q->full_size;
|
905 |
|
|
delete_q = 1;
|
906 |
|
|
}
|
907 |
|
|
else if (q->base_offset + q->full_size == p->base_offset)
|
908 |
|
|
{
|
909 |
|
|
/* P comes after Q; combine P into Q. */
|
910 |
|
|
q->size += p->size;
|
911 |
|
|
q->full_size += p->full_size;
|
912 |
|
|
delete_p = 1;
|
913 |
|
|
break;
|
914 |
|
|
}
|
915 |
|
|
if (delete_q)
|
916 |
|
|
cut_slot_from_list (q, &avail_temp_slots);
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
/* Either delete P or advance past it. */
|
920 |
|
|
if (delete_p)
|
921 |
|
|
cut_slot_from_list (p, &avail_temp_slots);
|
922 |
|
|
}
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
/* Find the temp slot corresponding to the object at address X. */
|
926 |
|
|
|
927 |
|
|
static struct temp_slot *
|
928 |
|
|
find_temp_slot_from_address (rtx x)
|
929 |
|
|
{
|
930 |
|
|
struct temp_slot *p;
|
931 |
|
|
rtx next;
|
932 |
|
|
int i;
|
933 |
|
|
|
934 |
|
|
for (i = max_slot_level (); i >= 0; i--)
|
935 |
|
|
for (p = *temp_slots_at_level (i); p; p = p->next)
|
936 |
|
|
{
|
937 |
|
|
if (XEXP (p->slot, 0) == x
|
938 |
|
|
|| p->address == x
|
939 |
|
|
|| (GET_CODE (x) == PLUS
|
940 |
|
|
&& XEXP (x, 0) == virtual_stack_vars_rtx
|
941 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
942 |
|
|
&& INTVAL (XEXP (x, 1)) >= p->base_offset
|
943 |
|
|
&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
|
944 |
|
|
return p;
|
945 |
|
|
|
946 |
|
|
else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
|
947 |
|
|
for (next = p->address; next; next = XEXP (next, 1))
|
948 |
|
|
if (XEXP (next, 0) == x)
|
949 |
|
|
return p;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
/* If we have a sum involving a register, see if it points to a temp
|
953 |
|
|
slot. */
|
954 |
|
|
if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
|
955 |
|
|
&& (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
|
956 |
|
|
return p;
|
957 |
|
|
else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
|
958 |
|
|
&& (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
|
959 |
|
|
return p;
|
960 |
|
|
|
961 |
|
|
return 0;
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
/* Indicate that NEW is an alternate way of referring to the temp slot
|
965 |
|
|
that previously was known by OLD. */
|
966 |
|
|
|
967 |
|
|
void
|
968 |
|
|
update_temp_slot_address (rtx old, rtx new)
|
969 |
|
|
{
|
970 |
|
|
struct temp_slot *p;
|
971 |
|
|
|
972 |
|
|
if (rtx_equal_p (old, new))
|
973 |
|
|
return;
|
974 |
|
|
|
975 |
|
|
p = find_temp_slot_from_address (old);
|
976 |
|
|
|
977 |
|
|
/* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
|
978 |
|
|
is a register, see if one operand of the PLUS is a temporary
|
979 |
|
|
location. If so, NEW points into it. Otherwise, if both OLD and
|
980 |
|
|
NEW are a PLUS and if there is a register in common between them.
|
981 |
|
|
If so, try a recursive call on those values. */
|
982 |
|
|
if (p == 0)
|
983 |
|
|
{
|
984 |
|
|
if (GET_CODE (old) != PLUS)
|
985 |
|
|
return;
|
986 |
|
|
|
987 |
|
|
if (REG_P (new))
|
988 |
|
|
{
|
989 |
|
|
update_temp_slot_address (XEXP (old, 0), new);
|
990 |
|
|
update_temp_slot_address (XEXP (old, 1), new);
|
991 |
|
|
return;
|
992 |
|
|
}
|
993 |
|
|
else if (GET_CODE (new) != PLUS)
|
994 |
|
|
return;
|
995 |
|
|
|
996 |
|
|
if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
|
997 |
|
|
update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
|
998 |
|
|
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
|
999 |
|
|
update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
|
1000 |
|
|
else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
|
1001 |
|
|
update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
|
1002 |
|
|
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
|
1003 |
|
|
update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
|
1004 |
|
|
|
1005 |
|
|
return;
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* Otherwise add an alias for the temp's address. */
|
1009 |
|
|
else if (p->address == 0)
|
1010 |
|
|
p->address = new;
|
1011 |
|
|
else
|
1012 |
|
|
{
|
1013 |
|
|
if (GET_CODE (p->address) != EXPR_LIST)
|
1014 |
|
|
p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
|
1015 |
|
|
|
1016 |
|
|
p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
|
1017 |
|
|
}
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
/* If X could be a reference to a temporary slot, mark the fact that its
|
1021 |
|
|
address was taken. */
|
1022 |
|
|
|
1023 |
|
|
void
|
1024 |
|
|
mark_temp_addr_taken (rtx x)
|
1025 |
|
|
{
|
1026 |
|
|
struct temp_slot *p;
|
1027 |
|
|
|
1028 |
|
|
if (x == 0)
|
1029 |
|
|
return;
|
1030 |
|
|
|
1031 |
|
|
/* If X is not in memory or is at a constant address, it cannot be in
|
1032 |
|
|
a temporary slot. */
|
1033 |
|
|
if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
|
1034 |
|
|
return;
|
1035 |
|
|
|
1036 |
|
|
p = find_temp_slot_from_address (XEXP (x, 0));
|
1037 |
|
|
if (p != 0)
|
1038 |
|
|
p->addr_taken = 1;
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
/* If X could be a reference to a temporary slot, mark that slot as
|
1042 |
|
|
belonging to the to one level higher than the current level. If X
|
1043 |
|
|
matched one of our slots, just mark that one. Otherwise, we can't
|
1044 |
|
|
easily predict which it is, so upgrade all of them. Kept slots
|
1045 |
|
|
need not be touched.
|
1046 |
|
|
|
1047 |
|
|
This is called when an ({...}) construct occurs and a statement
|
1048 |
|
|
returns a value in memory. */
|
1049 |
|
|
|
1050 |
|
|
void
|
1051 |
|
|
preserve_temp_slots (rtx x)
|
1052 |
|
|
{
|
1053 |
|
|
struct temp_slot *p = 0, *next;
|
1054 |
|
|
|
1055 |
|
|
/* If there is no result, we still might have some objects whose address
|
1056 |
|
|
were taken, so we need to make sure they stay around. */
|
1057 |
|
|
if (x == 0)
|
1058 |
|
|
{
|
1059 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
1060 |
|
|
{
|
1061 |
|
|
next = p->next;
|
1062 |
|
|
|
1063 |
|
|
if (p->addr_taken)
|
1064 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
return;
|
1068 |
|
|
}
|
1069 |
|
|
|
1070 |
|
|
/* If X is a register that is being used as a pointer, see if we have
|
1071 |
|
|
a temporary slot we know it points to. To be consistent with
|
1072 |
|
|
the code below, we really should preserve all non-kept slots
|
1073 |
|
|
if we can't find a match, but that seems to be much too costly. */
|
1074 |
|
|
if (REG_P (x) && REG_POINTER (x))
|
1075 |
|
|
p = find_temp_slot_from_address (x);
|
1076 |
|
|
|
1077 |
|
|
/* If X is not in memory or is at a constant address, it cannot be in
|
1078 |
|
|
a temporary slot, but it can contain something whose address was
|
1079 |
|
|
taken. */
|
1080 |
|
|
if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
|
1081 |
|
|
{
|
1082 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
1083 |
|
|
{
|
1084 |
|
|
next = p->next;
|
1085 |
|
|
|
1086 |
|
|
if (p->addr_taken)
|
1087 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
return;
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
/* First see if we can find a match. */
|
1094 |
|
|
if (p == 0)
|
1095 |
|
|
p = find_temp_slot_from_address (XEXP (x, 0));
|
1096 |
|
|
|
1097 |
|
|
if (p != 0)
|
1098 |
|
|
{
|
1099 |
|
|
/* Move everything at our level whose address was taken to our new
|
1100 |
|
|
level in case we used its address. */
|
1101 |
|
|
struct temp_slot *q;
|
1102 |
|
|
|
1103 |
|
|
if (p->level == temp_slot_level)
|
1104 |
|
|
{
|
1105 |
|
|
for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
|
1106 |
|
|
{
|
1107 |
|
|
next = q->next;
|
1108 |
|
|
|
1109 |
|
|
if (p != q && q->addr_taken)
|
1110 |
|
|
move_slot_to_level (q, temp_slot_level - 1);
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
1114 |
|
|
p->addr_taken = 0;
|
1115 |
|
|
}
|
1116 |
|
|
return;
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
/* Otherwise, preserve all non-kept slots at this level. */
|
1120 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
1121 |
|
|
{
|
1122 |
|
|
next = p->next;
|
1123 |
|
|
|
1124 |
|
|
if (!p->keep)
|
1125 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
1126 |
|
|
}
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
/* Free all temporaries used so far. This is normally called at the
|
1130 |
|
|
end of generating code for a statement. */
|
1131 |
|
|
|
1132 |
|
|
void
|
1133 |
|
|
free_temp_slots (void)
|
1134 |
|
|
{
|
1135 |
|
|
struct temp_slot *p, *next;
|
1136 |
|
|
|
1137 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
1138 |
|
|
{
|
1139 |
|
|
next = p->next;
|
1140 |
|
|
|
1141 |
|
|
if (!p->keep)
|
1142 |
|
|
make_slot_available (p);
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
combine_temp_slots ();
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
/* Push deeper into the nesting level for stack temporaries. */
|
1149 |
|
|
|
1150 |
|
|
void
|
1151 |
|
|
push_temp_slots (void)
|
1152 |
|
|
{
|
1153 |
|
|
temp_slot_level++;
|
1154 |
|
|
}
|
1155 |
|
|
|
1156 |
|
|
/* Pop a temporary nesting level. All slots in use in the current level
|
1157 |
|
|
are freed. */
|
1158 |
|
|
|
1159 |
|
|
void
|
1160 |
|
|
pop_temp_slots (void)
|
1161 |
|
|
{
|
1162 |
|
|
struct temp_slot *p, *next;
|
1163 |
|
|
|
1164 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
1165 |
|
|
{
|
1166 |
|
|
next = p->next;
|
1167 |
|
|
make_slot_available (p);
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
combine_temp_slots ();
|
1171 |
|
|
|
1172 |
|
|
temp_slot_level--;
|
1173 |
|
|
}
|
1174 |
|
|
|
1175 |
|
|
/* Initialize temporary slots. */
|
1176 |
|
|
|
1177 |
|
|
void
|
1178 |
|
|
init_temp_slots (void)
|
1179 |
|
|
{
|
1180 |
|
|
/* We have not allocated any temporaries yet. */
|
1181 |
|
|
avail_temp_slots = 0;
|
1182 |
|
|
used_temp_slots = 0;
|
1183 |
|
|
temp_slot_level = 0;
|
1184 |
|
|
}
|
1185 |
|
|
|
1186 |
|
|
/* These routines are responsible for converting virtual register references
|
1187 |
|
|
to the actual hard register references once RTL generation is complete.
|
1188 |
|
|
|
1189 |
|
|
The following four variables are used for communication between the
|
1190 |
|
|
routines. They contain the offsets of the virtual registers from their
|
1191 |
|
|
respective hard registers. */
|
1192 |
|
|
|
1193 |
|
|
static int in_arg_offset;
|
1194 |
|
|
static int var_offset;
|
1195 |
|
|
static int dynamic_offset;
|
1196 |
|
|
static int out_arg_offset;
|
1197 |
|
|
static int cfa_offset;
|
1198 |
|
|
|
1199 |
|
|
/* In most machines, the stack pointer register is equivalent to the bottom
|
1200 |
|
|
of the stack. */
|
1201 |
|
|
|
1202 |
|
|
#ifndef STACK_POINTER_OFFSET
|
1203 |
|
|
#define STACK_POINTER_OFFSET 0
|
1204 |
|
|
#endif
|
1205 |
|
|
|
1206 |
|
|
/* If not defined, pick an appropriate default for the offset of dynamically
|
1207 |
|
|
allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
|
1208 |
|
|
REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
|
1209 |
|
|
|
1210 |
|
|
#ifndef STACK_DYNAMIC_OFFSET
|
1211 |
|
|
|
1212 |
|
|
/* The bottom of the stack points to the actual arguments. If
|
1213 |
|
|
REG_PARM_STACK_SPACE is defined, this includes the space for the register
|
1214 |
|
|
parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
|
1215 |
|
|
stack space for register parameters is not pushed by the caller, but
|
1216 |
|
|
rather part of the fixed stack areas and hence not included in
|
1217 |
|
|
`current_function_outgoing_args_size'. Nevertheless, we must allow
|
1218 |
|
|
for it when allocating stack dynamic objects. */
|
1219 |
|
|
|
1220 |
|
|
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
|
1221 |
|
|
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
1222 |
|
|
((ACCUMULATE_OUTGOING_ARGS \
|
1223 |
|
|
? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
|
1224 |
|
|
+ (STACK_POINTER_OFFSET)) \
|
1225 |
|
|
|
1226 |
|
|
#else
|
1227 |
|
|
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
1228 |
|
|
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
|
1229 |
|
|
+ (STACK_POINTER_OFFSET))
|
1230 |
|
|
#endif
|
1231 |
|
|
#endif
|
1232 |
|
|
|
1233 |
|
|
|
1234 |
|
|
/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
|
1235 |
|
|
is a virtual register, return the equivalent hard register and set the
|
1236 |
|
|
offset indirectly through the pointer. Otherwise, return 0. */
|
1237 |
|
|
|
1238 |
|
|
static rtx
|
1239 |
|
|
instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
|
1240 |
|
|
{
|
1241 |
|
|
rtx new;
|
1242 |
|
|
HOST_WIDE_INT offset;
|
1243 |
|
|
|
1244 |
|
|
if (x == virtual_incoming_args_rtx)
|
1245 |
|
|
new = arg_pointer_rtx, offset = in_arg_offset;
|
1246 |
|
|
else if (x == virtual_stack_vars_rtx)
|
1247 |
|
|
new = frame_pointer_rtx, offset = var_offset;
|
1248 |
|
|
else if (x == virtual_stack_dynamic_rtx)
|
1249 |
|
|
new = stack_pointer_rtx, offset = dynamic_offset;
|
1250 |
|
|
else if (x == virtual_outgoing_args_rtx)
|
1251 |
|
|
new = stack_pointer_rtx, offset = out_arg_offset;
|
1252 |
|
|
else if (x == virtual_cfa_rtx)
|
1253 |
|
|
{
|
1254 |
|
|
#ifdef FRAME_POINTER_CFA_OFFSET
|
1255 |
|
|
new = frame_pointer_rtx;
|
1256 |
|
|
#else
|
1257 |
|
|
new = arg_pointer_rtx;
|
1258 |
|
|
#endif
|
1259 |
|
|
offset = cfa_offset;
|
1260 |
|
|
}
|
1261 |
|
|
else
|
1262 |
|
|
return NULL_RTX;
|
1263 |
|
|
|
1264 |
|
|
*poffset = offset;
|
1265 |
|
|
return new;
|
1266 |
|
|
}
|
1267 |
|
|
|
1268 |
|
|
/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
|
1269 |
|
|
Instantiate any virtual registers present inside of *LOC. The expression
|
1270 |
|
|
is simplified, as much as possible, but is not to be considered "valid"
|
1271 |
|
|
in any sense implied by the target. If any change is made, set CHANGED
|
1272 |
|
|
to true. */
|
1273 |
|
|
|
1274 |
|
|
static int
|
1275 |
|
|
instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
|
1276 |
|
|
{
|
1277 |
|
|
HOST_WIDE_INT offset;
|
1278 |
|
|
bool *changed = (bool *) data;
|
1279 |
|
|
rtx x, new;
|
1280 |
|
|
|
1281 |
|
|
x = *loc;
|
1282 |
|
|
if (x == 0)
|
1283 |
|
|
return 0;
|
1284 |
|
|
|
1285 |
|
|
switch (GET_CODE (x))
|
1286 |
|
|
{
|
1287 |
|
|
case REG:
|
1288 |
|
|
new = instantiate_new_reg (x, &offset);
|
1289 |
|
|
if (new)
|
1290 |
|
|
{
|
1291 |
|
|
*loc = plus_constant (new, offset);
|
1292 |
|
|
if (changed)
|
1293 |
|
|
*changed = true;
|
1294 |
|
|
}
|
1295 |
|
|
return -1;
|
1296 |
|
|
|
1297 |
|
|
case PLUS:
|
1298 |
|
|
new = instantiate_new_reg (XEXP (x, 0), &offset);
|
1299 |
|
|
if (new)
|
1300 |
|
|
{
|
1301 |
|
|
new = plus_constant (new, offset);
|
1302 |
|
|
*loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
|
1303 |
|
|
if (changed)
|
1304 |
|
|
*changed = true;
|
1305 |
|
|
return -1;
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
/* FIXME -- from old code */
|
1309 |
|
|
/* If we have (plus (subreg (virtual-reg)) (const_int)), we know
|
1310 |
|
|
we can commute the PLUS and SUBREG because pointers into the
|
1311 |
|
|
frame are well-behaved. */
|
1312 |
|
|
break;
|
1313 |
|
|
|
1314 |
|
|
default:
|
1315 |
|
|
break;
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
return 0;
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
|
1322 |
|
|
matches the predicate for insn CODE operand OPERAND. */
|
1323 |
|
|
|
1324 |
|
|
static int
|
1325 |
|
|
safe_insn_predicate (int code, int operand, rtx x)
|
1326 |
|
|
{
|
1327 |
|
|
const struct insn_operand_data *op_data;
|
1328 |
|
|
|
1329 |
|
|
if (code < 0)
|
1330 |
|
|
return true;
|
1331 |
|
|
|
1332 |
|
|
op_data = &insn_data[code].operand[operand];
|
1333 |
|
|
if (op_data->predicate == NULL)
|
1334 |
|
|
return true;
|
1335 |
|
|
|
1336 |
|
|
return op_data->predicate (x, op_data->mode);
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
|
1340 |
|
|
registers present inside of insn. The result will be a valid insn. */
|
1341 |
|
|
|
1342 |
|
|
static void
|
1343 |
|
|
instantiate_virtual_regs_in_insn (rtx insn)
|
1344 |
|
|
{
|
1345 |
|
|
HOST_WIDE_INT offset;
|
1346 |
|
|
int insn_code, i;
|
1347 |
|
|
bool any_change = false;
|
1348 |
|
|
rtx set, new, x, seq;
|
1349 |
|
|
|
1350 |
|
|
/* There are some special cases to be handled first. */
|
1351 |
|
|
set = single_set (insn);
|
1352 |
|
|
if (set)
|
1353 |
|
|
{
|
1354 |
|
|
/* We're allowed to assign to a virtual register. This is interpreted
|
1355 |
|
|
to mean that the underlying register gets assigned the inverse
|
1356 |
|
|
transformation. This is used, for example, in the handling of
|
1357 |
|
|
non-local gotos. */
|
1358 |
|
|
new = instantiate_new_reg (SET_DEST (set), &offset);
|
1359 |
|
|
if (new)
|
1360 |
|
|
{
|
1361 |
|
|
start_sequence ();
|
1362 |
|
|
|
1363 |
|
|
for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
|
1364 |
|
|
x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
|
1365 |
|
|
GEN_INT (-offset));
|
1366 |
|
|
x = force_operand (x, new);
|
1367 |
|
|
if (x != new)
|
1368 |
|
|
emit_move_insn (new, x);
|
1369 |
|
|
|
1370 |
|
|
seq = get_insns ();
|
1371 |
|
|
end_sequence ();
|
1372 |
|
|
|
1373 |
|
|
emit_insn_before (seq, insn);
|
1374 |
|
|
delete_insn (insn);
|
1375 |
|
|
return;
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
/* Handle a straight copy from a virtual register by generating a
|
1379 |
|
|
new add insn. The difference between this and falling through
|
1380 |
|
|
to the generic case is avoiding a new pseudo and eliminating a
|
1381 |
|
|
move insn in the initial rtl stream. */
|
1382 |
|
|
new = instantiate_new_reg (SET_SRC (set), &offset);
|
1383 |
|
|
if (new && offset != 0
|
1384 |
|
|
&& REG_P (SET_DEST (set))
|
1385 |
|
|
&& REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
|
1386 |
|
|
{
|
1387 |
|
|
start_sequence ();
|
1388 |
|
|
|
1389 |
|
|
x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
|
1390 |
|
|
new, GEN_INT (offset), SET_DEST (set),
|
1391 |
|
|
1, OPTAB_LIB_WIDEN);
|
1392 |
|
|
if (x != SET_DEST (set))
|
1393 |
|
|
emit_move_insn (SET_DEST (set), x);
|
1394 |
|
|
|
1395 |
|
|
seq = get_insns ();
|
1396 |
|
|
end_sequence ();
|
1397 |
|
|
|
1398 |
|
|
emit_insn_before (seq, insn);
|
1399 |
|
|
delete_insn (insn);
|
1400 |
|
|
return;
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
extract_insn (insn);
|
1404 |
|
|
insn_code = INSN_CODE (insn);
|
1405 |
|
|
|
1406 |
|
|
/* Handle a plus involving a virtual register by determining if the
|
1407 |
|
|
operands remain valid if they're modified in place. */
|
1408 |
|
|
if (GET_CODE (SET_SRC (set)) == PLUS
|
1409 |
|
|
&& recog_data.n_operands >= 3
|
1410 |
|
|
&& recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
|
1411 |
|
|
&& recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
|
1412 |
|
|
&& GET_CODE (recog_data.operand[2]) == CONST_INT
|
1413 |
|
|
&& (new = instantiate_new_reg (recog_data.operand[1], &offset)))
|
1414 |
|
|
{
|
1415 |
|
|
offset += INTVAL (recog_data.operand[2]);
|
1416 |
|
|
|
1417 |
|
|
/* If the sum is zero, then replace with a plain move. */
|
1418 |
|
|
if (offset == 0
|
1419 |
|
|
&& REG_P (SET_DEST (set))
|
1420 |
|
|
&& REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
|
1421 |
|
|
{
|
1422 |
|
|
start_sequence ();
|
1423 |
|
|
emit_move_insn (SET_DEST (set), new);
|
1424 |
|
|
seq = get_insns ();
|
1425 |
|
|
end_sequence ();
|
1426 |
|
|
|
1427 |
|
|
emit_insn_before (seq, insn);
|
1428 |
|
|
delete_insn (insn);
|
1429 |
|
|
return;
|
1430 |
|
|
}
|
1431 |
|
|
|
1432 |
|
|
x = gen_int_mode (offset, recog_data.operand_mode[2]);
|
1433 |
|
|
|
1434 |
|
|
/* Using validate_change and apply_change_group here leaves
|
1435 |
|
|
recog_data in an invalid state. Since we know exactly what
|
1436 |
|
|
we want to check, do those two by hand. */
|
1437 |
|
|
if (safe_insn_predicate (insn_code, 1, new)
|
1438 |
|
|
&& safe_insn_predicate (insn_code, 2, x))
|
1439 |
|
|
{
|
1440 |
|
|
*recog_data.operand_loc[1] = recog_data.operand[1] = new;
|
1441 |
|
|
*recog_data.operand_loc[2] = recog_data.operand[2] = x;
|
1442 |
|
|
any_change = true;
|
1443 |
|
|
|
1444 |
|
|
/* Fall through into the regular operand fixup loop in
|
1445 |
|
|
order to take care of operands other than 1 and 2. */
|
1446 |
|
|
}
|
1447 |
|
|
}
|
1448 |
|
|
}
|
1449 |
|
|
else
|
1450 |
|
|
{
|
1451 |
|
|
extract_insn (insn);
|
1452 |
|
|
insn_code = INSN_CODE (insn);
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
/* In the general case, we expect virtual registers to appear only in
|
1456 |
|
|
operands, and then only as either bare registers or inside memories. */
|
1457 |
|
|
for (i = 0; i < recog_data.n_operands; ++i)
|
1458 |
|
|
{
|
1459 |
|
|
x = recog_data.operand[i];
|
1460 |
|
|
switch (GET_CODE (x))
|
1461 |
|
|
{
|
1462 |
|
|
case MEM:
|
1463 |
|
|
{
|
1464 |
|
|
rtx addr = XEXP (x, 0);
|
1465 |
|
|
bool changed = false;
|
1466 |
|
|
|
1467 |
|
|
for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
|
1468 |
|
|
if (!changed)
|
1469 |
|
|
continue;
|
1470 |
|
|
|
1471 |
|
|
start_sequence ();
|
1472 |
|
|
x = replace_equiv_address (x, addr);
|
1473 |
|
|
seq = get_insns ();
|
1474 |
|
|
end_sequence ();
|
1475 |
|
|
if (seq)
|
1476 |
|
|
emit_insn_before (seq, insn);
|
1477 |
|
|
}
|
1478 |
|
|
break;
|
1479 |
|
|
|
1480 |
|
|
case REG:
|
1481 |
|
|
new = instantiate_new_reg (x, &offset);
|
1482 |
|
|
if (new == NULL)
|
1483 |
|
|
continue;
|
1484 |
|
|
if (offset == 0)
|
1485 |
|
|
x = new;
|
1486 |
|
|
else
|
1487 |
|
|
{
|
1488 |
|
|
start_sequence ();
|
1489 |
|
|
|
1490 |
|
|
/* Careful, special mode predicates may have stuff in
|
1491 |
|
|
insn_data[insn_code].operand[i].mode that isn't useful
|
1492 |
|
|
to us for computing a new value. */
|
1493 |
|
|
/* ??? Recognize address_operand and/or "p" constraints
|
1494 |
|
|
to see if (plus new offset) is a valid before we put
|
1495 |
|
|
this through expand_simple_binop. */
|
1496 |
|
|
x = expand_simple_binop (GET_MODE (x), PLUS, new,
|
1497 |
|
|
GEN_INT (offset), NULL_RTX,
|
1498 |
|
|
1, OPTAB_LIB_WIDEN);
|
1499 |
|
|
seq = get_insns ();
|
1500 |
|
|
end_sequence ();
|
1501 |
|
|
emit_insn_before (seq, insn);
|
1502 |
|
|
}
|
1503 |
|
|
break;
|
1504 |
|
|
|
1505 |
|
|
case SUBREG:
|
1506 |
|
|
new = instantiate_new_reg (SUBREG_REG (x), &offset);
|
1507 |
|
|
if (new == NULL)
|
1508 |
|
|
continue;
|
1509 |
|
|
if (offset != 0)
|
1510 |
|
|
{
|
1511 |
|
|
start_sequence ();
|
1512 |
|
|
new = expand_simple_binop (GET_MODE (new), PLUS, new,
|
1513 |
|
|
GEN_INT (offset), NULL_RTX,
|
1514 |
|
|
1, OPTAB_LIB_WIDEN);
|
1515 |
|
|
seq = get_insns ();
|
1516 |
|
|
end_sequence ();
|
1517 |
|
|
emit_insn_before (seq, insn);
|
1518 |
|
|
}
|
1519 |
|
|
x = simplify_gen_subreg (recog_data.operand_mode[i], new,
|
1520 |
|
|
GET_MODE (new), SUBREG_BYTE (x));
|
1521 |
|
|
break;
|
1522 |
|
|
|
1523 |
|
|
default:
|
1524 |
|
|
continue;
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/* At this point, X contains the new value for the operand.
|
1528 |
|
|
Validate the new value vs the insn predicate. Note that
|
1529 |
|
|
asm insns will have insn_code -1 here. */
|
1530 |
|
|
if (!safe_insn_predicate (insn_code, i, x))
|
1531 |
|
|
{
|
1532 |
|
|
start_sequence ();
|
1533 |
|
|
x = force_reg (insn_data[insn_code].operand[i].mode, x);
|
1534 |
|
|
seq = get_insns ();
|
1535 |
|
|
end_sequence ();
|
1536 |
|
|
if (seq)
|
1537 |
|
|
emit_insn_before (seq, insn);
|
1538 |
|
|
}
|
1539 |
|
|
|
1540 |
|
|
*recog_data.operand_loc[i] = recog_data.operand[i] = x;
|
1541 |
|
|
any_change = true;
|
1542 |
|
|
}
|
1543 |
|
|
|
1544 |
|
|
if (any_change)
|
1545 |
|
|
{
|
1546 |
|
|
/* Propagate operand changes into the duplicates. */
|
1547 |
|
|
for (i = 0; i < recog_data.n_dups; ++i)
|
1548 |
|
|
*recog_data.dup_loc[i]
|
1549 |
|
|
= recog_data.operand[(unsigned)recog_data.dup_num[i]];
|
1550 |
|
|
|
1551 |
|
|
/* Force re-recognition of the instruction for validation. */
|
1552 |
|
|
INSN_CODE (insn) = -1;
|
1553 |
|
|
}
|
1554 |
|
|
|
1555 |
|
|
if (asm_noperands (PATTERN (insn)) >= 0)
|
1556 |
|
|
{
|
1557 |
|
|
if (!check_asm_operands (PATTERN (insn)))
|
1558 |
|
|
{
|
1559 |
|
|
error_for_asm (insn, "impossible constraint in %<asm%>");
|
1560 |
|
|
delete_insn (insn);
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
else
|
1564 |
|
|
{
|
1565 |
|
|
if (recog_memoized (insn) < 0)
|
1566 |
|
|
fatal_insn_not_found (insn);
|
1567 |
|
|
}
|
1568 |
|
|
}
|
1569 |
|
|
|
1570 |
|
|
/* Subroutine of instantiate_decls. Given RTL representing a decl,
|
1571 |
|
|
do any instantiation required. */
|
1572 |
|
|
|
1573 |
|
|
static void
|
1574 |
|
|
instantiate_decl (rtx x)
|
1575 |
|
|
{
|
1576 |
|
|
rtx addr;
|
1577 |
|
|
|
1578 |
|
|
if (x == 0)
|
1579 |
|
|
return;
|
1580 |
|
|
|
1581 |
|
|
/* If this is a CONCAT, recurse for the pieces. */
|
1582 |
|
|
if (GET_CODE (x) == CONCAT)
|
1583 |
|
|
{
|
1584 |
|
|
instantiate_decl (XEXP (x, 0));
|
1585 |
|
|
instantiate_decl (XEXP (x, 1));
|
1586 |
|
|
return;
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
/* If this is not a MEM, no need to do anything. Similarly if the
|
1590 |
|
|
address is a constant or a register that is not a virtual register. */
|
1591 |
|
|
if (!MEM_P (x))
|
1592 |
|
|
return;
|
1593 |
|
|
|
1594 |
|
|
addr = XEXP (x, 0);
|
1595 |
|
|
if (CONSTANT_P (addr)
|
1596 |
|
|
|| (REG_P (addr)
|
1597 |
|
|
&& (REGNO (addr) < FIRST_VIRTUAL_REGISTER
|
1598 |
|
|
|| REGNO (addr) > LAST_VIRTUAL_REGISTER)))
|
1599 |
|
|
return;
|
1600 |
|
|
|
1601 |
|
|
for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* Helper for instantiate_decls called via walk_tree: Process all decls
|
1605 |
|
|
in the given DECL_VALUE_EXPR. */
|
1606 |
|
|
|
1607 |
|
|
static tree
|
1608 |
|
|
instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
1609 |
|
|
{
|
1610 |
|
|
tree t = *tp;
|
1611 |
|
|
if (! EXPR_P (t))
|
1612 |
|
|
{
|
1613 |
|
|
*walk_subtrees = 0;
|
1614 |
|
|
if (DECL_P (t) && DECL_RTL_SET_P (t))
|
1615 |
|
|
instantiate_decl (DECL_RTL (t));
|
1616 |
|
|
}
|
1617 |
|
|
return NULL;
|
1618 |
|
|
}
|
1619 |
|
|
|
1620 |
|
|
/* Subroutine of instantiate_decls: Process all decls in the given
|
1621 |
|
|
BLOCK node and all its subblocks. */
|
1622 |
|
|
|
1623 |
|
|
static void
|
1624 |
|
|
instantiate_decls_1 (tree let)
|
1625 |
|
|
{
|
1626 |
|
|
tree t;
|
1627 |
|
|
|
1628 |
|
|
for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
|
1629 |
|
|
{
|
1630 |
|
|
if (DECL_RTL_SET_P (t))
|
1631 |
|
|
instantiate_decl (DECL_RTL (t));
|
1632 |
|
|
if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
|
1633 |
|
|
{
|
1634 |
|
|
tree v = DECL_VALUE_EXPR (t);
|
1635 |
|
|
walk_tree (&v, instantiate_expr, NULL, NULL);
|
1636 |
|
|
}
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
/* Process all subblocks. */
|
1640 |
|
|
for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
|
1641 |
|
|
instantiate_decls_1 (t);
|
1642 |
|
|
}
|
1643 |
|
|
|
1644 |
|
|
/* Scan all decls in FNDECL (both variables and parameters) and instantiate
|
1645 |
|
|
all virtual registers in their DECL_RTL's. */
|
1646 |
|
|
|
1647 |
|
|
static void
|
1648 |
|
|
instantiate_decls (tree fndecl)
|
1649 |
|
|
{
|
1650 |
|
|
tree decl;
|
1651 |
|
|
|
1652 |
|
|
/* Process all parameters of the function. */
|
1653 |
|
|
for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
|
1654 |
|
|
{
|
1655 |
|
|
instantiate_decl (DECL_RTL (decl));
|
1656 |
|
|
instantiate_decl (DECL_INCOMING_RTL (decl));
|
1657 |
|
|
if (DECL_HAS_VALUE_EXPR_P (decl))
|
1658 |
|
|
{
|
1659 |
|
|
tree v = DECL_VALUE_EXPR (decl);
|
1660 |
|
|
walk_tree (&v, instantiate_expr, NULL, NULL);
|
1661 |
|
|
}
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
/* Now process all variables defined in the function or its subblocks. */
|
1665 |
|
|
instantiate_decls_1 (DECL_INITIAL (fndecl));
|
1666 |
|
|
}
|
1667 |
|
|
|
1668 |
|
|
/* Pass through the INSNS of function FNDECL and convert virtual register
|
1669 |
|
|
references to hard register references. */
|
1670 |
|
|
|
1671 |
|
|
static unsigned int
|
1672 |
|
|
instantiate_virtual_regs (void)
|
1673 |
|
|
{
|
1674 |
|
|
rtx insn;
|
1675 |
|
|
|
1676 |
|
|
/* Compute the offsets to use for this function. */
|
1677 |
|
|
in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
|
1678 |
|
|
var_offset = STARTING_FRAME_OFFSET;
|
1679 |
|
|
dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
|
1680 |
|
|
out_arg_offset = STACK_POINTER_OFFSET;
|
1681 |
|
|
#ifdef FRAME_POINTER_CFA_OFFSET
|
1682 |
|
|
cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
|
1683 |
|
|
#else
|
1684 |
|
|
cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
|
1685 |
|
|
#endif
|
1686 |
|
|
|
1687 |
|
|
/* Initialize recognition, indicating that volatile is OK. */
|
1688 |
|
|
init_recog ();
|
1689 |
|
|
|
1690 |
|
|
/* Scan through all the insns, instantiating every virtual register still
|
1691 |
|
|
present. */
|
1692 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
1693 |
|
|
if (INSN_P (insn))
|
1694 |
|
|
{
|
1695 |
|
|
/* These patterns in the instruction stream can never be recognized.
|
1696 |
|
|
Fortunately, they shouldn't contain virtual registers either. */
|
1697 |
|
|
if (GET_CODE (PATTERN (insn)) == USE
|
1698 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
1699 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|
1700 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|
1701 |
|
|
|| GET_CODE (PATTERN (insn)) == ASM_INPUT)
|
1702 |
|
|
continue;
|
1703 |
|
|
|
1704 |
|
|
instantiate_virtual_regs_in_insn (insn);
|
1705 |
|
|
|
1706 |
|
|
if (INSN_DELETED_P (insn))
|
1707 |
|
|
continue;
|
1708 |
|
|
|
1709 |
|
|
for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
|
1710 |
|
|
|
1711 |
|
|
/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
|
1712 |
|
|
if (GET_CODE (insn) == CALL_INSN)
|
1713 |
|
|
for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
|
1714 |
|
|
instantiate_virtual_regs_in_rtx, NULL);
|
1715 |
|
|
}
|
1716 |
|
|
|
1717 |
|
|
/* Instantiate the virtual registers in the DECLs for debugging purposes. */
|
1718 |
|
|
instantiate_decls (current_function_decl);
|
1719 |
|
|
|
1720 |
|
|
/* Indicate that, from now on, assign_stack_local should use
|
1721 |
|
|
frame_pointer_rtx. */
|
1722 |
|
|
virtuals_instantiated = 1;
|
1723 |
|
|
return 0;
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
struct tree_opt_pass pass_instantiate_virtual_regs =
|
1727 |
|
|
{
|
1728 |
|
|
"vregs", /* name */
|
1729 |
|
|
NULL, /* gate */
|
1730 |
|
|
instantiate_virtual_regs, /* execute */
|
1731 |
|
|
NULL, /* sub */
|
1732 |
|
|
NULL, /* next */
|
1733 |
|
|
0, /* static_pass_number */
|
1734 |
|
|
0, /* tv_id */
|
1735 |
|
|
0, /* properties_required */
|
1736 |
|
|
0, /* properties_provided */
|
1737 |
|
|
0, /* properties_destroyed */
|
1738 |
|
|
0, /* todo_flags_start */
|
1739 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
1740 |
|
|
|
1741 |
|
|
};
|
1742 |
|
|
|
1743 |
|
|
|
1744 |
|
|
/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
|
1745 |
|
|
This means a type for which function calls must pass an address to the
|
1746 |
|
|
function or get an address back from the function.
|
1747 |
|
|
EXP may be a type node or an expression (whose type is tested). */
|
1748 |
|
|
|
1749 |
|
|
int
|
1750 |
|
|
aggregate_value_p (tree exp, tree fntype)
|
1751 |
|
|
{
|
1752 |
|
|
int i, regno, nregs;
|
1753 |
|
|
rtx reg;
|
1754 |
|
|
|
1755 |
|
|
tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
|
1756 |
|
|
|
1757 |
|
|
/* DECL node associated with FNTYPE when relevant, which we might need to
|
1758 |
|
|
check for by-invisible-reference returns, typically for CALL_EXPR input
|
1759 |
|
|
EXPressions. */
|
1760 |
|
|
tree fndecl = NULL_TREE;
|
1761 |
|
|
|
1762 |
|
|
if (fntype)
|
1763 |
|
|
switch (TREE_CODE (fntype))
|
1764 |
|
|
{
|
1765 |
|
|
case CALL_EXPR:
|
1766 |
|
|
fndecl = get_callee_fndecl (fntype);
|
1767 |
|
|
fntype = fndecl ? TREE_TYPE (fndecl) : 0;
|
1768 |
|
|
break;
|
1769 |
|
|
case FUNCTION_DECL:
|
1770 |
|
|
fndecl = fntype;
|
1771 |
|
|
fntype = TREE_TYPE (fndecl);
|
1772 |
|
|
break;
|
1773 |
|
|
case FUNCTION_TYPE:
|
1774 |
|
|
case METHOD_TYPE:
|
1775 |
|
|
break;
|
1776 |
|
|
case IDENTIFIER_NODE:
|
1777 |
|
|
fntype = 0;
|
1778 |
|
|
break;
|
1779 |
|
|
default:
|
1780 |
|
|
/* We don't expect other rtl types here. */
|
1781 |
|
|
gcc_unreachable ();
|
1782 |
|
|
}
|
1783 |
|
|
|
1784 |
|
|
if (TREE_CODE (type) == VOID_TYPE)
|
1785 |
|
|
return 0;
|
1786 |
|
|
|
1787 |
|
|
/* If the front end has decided that this needs to be passed by
|
1788 |
|
|
reference, do so. */
|
1789 |
|
|
if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
|
1790 |
|
|
&& DECL_BY_REFERENCE (exp))
|
1791 |
|
|
return 1;
|
1792 |
|
|
|
1793 |
|
|
/* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
|
1794 |
|
|
called function RESULT_DECL, meaning the function returns in memory by
|
1795 |
|
|
invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
|
1796 |
|
|
on the function type, which used to be the way to request such a return
|
1797 |
|
|
mechanism but might now be causing troubles at gimplification time if
|
1798 |
|
|
temporaries with the function type need to be created. */
|
1799 |
|
|
if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
|
1800 |
|
|
&& DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
|
1801 |
|
|
return 1;
|
1802 |
|
|
|
1803 |
|
|
if (targetm.calls.return_in_memory (type, fntype))
|
1804 |
|
|
return 1;
|
1805 |
|
|
/* Types that are TREE_ADDRESSABLE must be constructed in memory,
|
1806 |
|
|
and thus can't be returned in registers. */
|
1807 |
|
|
if (TREE_ADDRESSABLE (type))
|
1808 |
|
|
return 1;
|
1809 |
|
|
if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
|
1810 |
|
|
return 1;
|
1811 |
|
|
/* Make sure we have suitable call-clobbered regs to return
|
1812 |
|
|
the value in; if not, we must return it in memory. */
|
1813 |
|
|
reg = hard_function_value (type, 0, fntype, 0);
|
1814 |
|
|
|
1815 |
|
|
/* If we have something other than a REG (e.g. a PARALLEL), then assume
|
1816 |
|
|
it is OK. */
|
1817 |
|
|
if (!REG_P (reg))
|
1818 |
|
|
return 0;
|
1819 |
|
|
|
1820 |
|
|
regno = REGNO (reg);
|
1821 |
|
|
nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
|
1822 |
|
|
for (i = 0; i < nregs; i++)
|
1823 |
|
|
if (! call_used_regs[regno + i])
|
1824 |
|
|
return 1;
|
1825 |
|
|
return 0;
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
/* Return true if we should assign DECL a pseudo register; false if it
|
1829 |
|
|
should live on the local stack. */
|
1830 |
|
|
|
1831 |
|
|
bool
|
1832 |
|
|
use_register_for_decl (tree decl)
|
1833 |
|
|
{
|
1834 |
|
|
/* Honor volatile. */
|
1835 |
|
|
if (TREE_SIDE_EFFECTS (decl))
|
1836 |
|
|
return false;
|
1837 |
|
|
|
1838 |
|
|
/* Honor addressability. */
|
1839 |
|
|
if (TREE_ADDRESSABLE (decl))
|
1840 |
|
|
return false;
|
1841 |
|
|
|
1842 |
|
|
/* Only register-like things go in registers. */
|
1843 |
|
|
if (DECL_MODE (decl) == BLKmode)
|
1844 |
|
|
return false;
|
1845 |
|
|
|
1846 |
|
|
/* If -ffloat-store specified, don't put explicit float variables
|
1847 |
|
|
into registers. */
|
1848 |
|
|
/* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
|
1849 |
|
|
propagates values across these stores, and it probably shouldn't. */
|
1850 |
|
|
if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
|
1851 |
|
|
return false;
|
1852 |
|
|
|
1853 |
|
|
/* If we're not interested in tracking debugging information for
|
1854 |
|
|
this decl, then we can certainly put it in a register. */
|
1855 |
|
|
if (DECL_IGNORED_P (decl))
|
1856 |
|
|
return true;
|
1857 |
|
|
|
1858 |
|
|
return (optimize || DECL_REGISTER (decl));
|
1859 |
|
|
}
|
1860 |
|
|
|
1861 |
|
|
/* Return true if TYPE should be passed by invisible reference. */
|
1862 |
|
|
|
1863 |
|
|
bool
|
1864 |
|
|
pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
|
1865 |
|
|
tree type, bool named_arg)
|
1866 |
|
|
{
|
1867 |
|
|
if (type)
|
1868 |
|
|
{
|
1869 |
|
|
/* If this type contains non-trivial constructors, then it is
|
1870 |
|
|
forbidden for the middle-end to create any new copies. */
|
1871 |
|
|
if (TREE_ADDRESSABLE (type))
|
1872 |
|
|
return true;
|
1873 |
|
|
|
1874 |
|
|
/* GCC post 3.4 passes *all* variable sized types by reference. */
|
1875 |
|
|
if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
1876 |
|
|
return true;
|
1877 |
|
|
}
|
1878 |
|
|
|
1879 |
|
|
return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
|
1880 |
|
|
}
|
1881 |
|
|
|
1882 |
|
|
/* Return true if TYPE, which is passed by reference, should be callee
|
1883 |
|
|
copied instead of caller copied. */
|
1884 |
|
|
|
1885 |
|
|
bool
|
1886 |
|
|
reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
|
1887 |
|
|
tree type, bool named_arg)
|
1888 |
|
|
{
|
1889 |
|
|
if (type && TREE_ADDRESSABLE (type))
|
1890 |
|
|
return false;
|
1891 |
|
|
return targetm.calls.callee_copies (ca, mode, type, named_arg);
|
1892 |
|
|
}
|
1893 |
|
|
|
1894 |
|
|
/* Structures to communicate between the subroutines of assign_parms.
|
1895 |
|
|
The first holds data persistent across all parameters, the second
|
1896 |
|
|
is cleared out for each parameter. */
|
1897 |
|
|
|
1898 |
|
|
struct assign_parm_data_all
|
1899 |
|
|
{
|
1900 |
|
|
CUMULATIVE_ARGS args_so_far;
|
1901 |
|
|
struct args_size stack_args_size;
|
1902 |
|
|
tree function_result_decl;
|
1903 |
|
|
tree orig_fnargs;
|
1904 |
|
|
rtx conversion_insns;
|
1905 |
|
|
HOST_WIDE_INT pretend_args_size;
|
1906 |
|
|
HOST_WIDE_INT extra_pretend_bytes;
|
1907 |
|
|
int reg_parm_stack_space;
|
1908 |
|
|
};
|
1909 |
|
|
|
1910 |
|
|
struct assign_parm_data_one
|
1911 |
|
|
{
|
1912 |
|
|
tree nominal_type;
|
1913 |
|
|
tree passed_type;
|
1914 |
|
|
rtx entry_parm;
|
1915 |
|
|
rtx stack_parm;
|
1916 |
|
|
enum machine_mode nominal_mode;
|
1917 |
|
|
enum machine_mode passed_mode;
|
1918 |
|
|
enum machine_mode promoted_mode;
|
1919 |
|
|
struct locate_and_pad_arg_data locate;
|
1920 |
|
|
int partial;
|
1921 |
|
|
BOOL_BITFIELD named_arg : 1;
|
1922 |
|
|
BOOL_BITFIELD passed_pointer : 1;
|
1923 |
|
|
BOOL_BITFIELD on_stack : 1;
|
1924 |
|
|
BOOL_BITFIELD loaded_in_reg : 1;
|
1925 |
|
|
};
|
1926 |
|
|
|
1927 |
|
|
/* A subroutine of assign_parms. Initialize ALL. */
|
1928 |
|
|
|
1929 |
|
|
static void
|
1930 |
|
|
assign_parms_initialize_all (struct assign_parm_data_all *all)
|
1931 |
|
|
{
|
1932 |
|
|
tree fntype;
|
1933 |
|
|
|
1934 |
|
|
memset (all, 0, sizeof (*all));
|
1935 |
|
|
|
1936 |
|
|
fntype = TREE_TYPE (current_function_decl);
|
1937 |
|
|
|
1938 |
|
|
#ifdef INIT_CUMULATIVE_INCOMING_ARGS
|
1939 |
|
|
INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
|
1940 |
|
|
#else
|
1941 |
|
|
INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
|
1942 |
|
|
current_function_decl, -1);
|
1943 |
|
|
#endif
|
1944 |
|
|
|
1945 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
1946 |
|
|
all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
|
1947 |
|
|
#endif
|
1948 |
|
|
}
|
1949 |
|
|
|
1950 |
|
|
/* If ARGS contains entries with complex types, split the entry into two
|
1951 |
|
|
entries of the component type. Return a new list of substitutions are
|
1952 |
|
|
needed, else the old list. */
|
1953 |
|
|
|
1954 |
|
|
static tree
|
1955 |
|
|
split_complex_args (tree args)
|
1956 |
|
|
{
|
1957 |
|
|
tree p;
|
1958 |
|
|
|
1959 |
|
|
/* Before allocating memory, check for the common case of no complex. */
|
1960 |
|
|
for (p = args; p; p = TREE_CHAIN (p))
|
1961 |
|
|
{
|
1962 |
|
|
tree type = TREE_TYPE (p);
|
1963 |
|
|
if (TREE_CODE (type) == COMPLEX_TYPE
|
1964 |
|
|
&& targetm.calls.split_complex_arg (type))
|
1965 |
|
|
goto found;
|
1966 |
|
|
}
|
1967 |
|
|
return args;
|
1968 |
|
|
|
1969 |
|
|
found:
|
1970 |
|
|
args = copy_list (args);
|
1971 |
|
|
|
1972 |
|
|
for (p = args; p; p = TREE_CHAIN (p))
|
1973 |
|
|
{
|
1974 |
|
|
tree type = TREE_TYPE (p);
|
1975 |
|
|
if (TREE_CODE (type) == COMPLEX_TYPE
|
1976 |
|
|
&& targetm.calls.split_complex_arg (type))
|
1977 |
|
|
{
|
1978 |
|
|
tree decl;
|
1979 |
|
|
tree subtype = TREE_TYPE (type);
|
1980 |
|
|
bool addressable = TREE_ADDRESSABLE (p);
|
1981 |
|
|
|
1982 |
|
|
/* Rewrite the PARM_DECL's type with its component. */
|
1983 |
|
|
TREE_TYPE (p) = subtype;
|
1984 |
|
|
DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
|
1985 |
|
|
DECL_MODE (p) = VOIDmode;
|
1986 |
|
|
DECL_SIZE (p) = NULL;
|
1987 |
|
|
DECL_SIZE_UNIT (p) = NULL;
|
1988 |
|
|
/* If this arg must go in memory, put it in a pseudo here.
|
1989 |
|
|
We can't allow it to go in memory as per normal parms,
|
1990 |
|
|
because the usual place might not have the imag part
|
1991 |
|
|
adjacent to the real part. */
|
1992 |
|
|
DECL_ARTIFICIAL (p) = addressable;
|
1993 |
|
|
DECL_IGNORED_P (p) = addressable;
|
1994 |
|
|
TREE_ADDRESSABLE (p) = 0;
|
1995 |
|
|
layout_decl (p, 0);
|
1996 |
|
|
|
1997 |
|
|
/* Build a second synthetic decl. */
|
1998 |
|
|
decl = build_decl (PARM_DECL, NULL_TREE, subtype);
|
1999 |
|
|
DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
|
2000 |
|
|
DECL_ARTIFICIAL (decl) = addressable;
|
2001 |
|
|
DECL_IGNORED_P (decl) = addressable;
|
2002 |
|
|
layout_decl (decl, 0);
|
2003 |
|
|
|
2004 |
|
|
/* Splice it in; skip the new decl. */
|
2005 |
|
|
TREE_CHAIN (decl) = TREE_CHAIN (p);
|
2006 |
|
|
TREE_CHAIN (p) = decl;
|
2007 |
|
|
p = decl;
|
2008 |
|
|
}
|
2009 |
|
|
}
|
2010 |
|
|
|
2011 |
|
|
return args;
|
2012 |
|
|
}
|
2013 |
|
|
|
2014 |
|
|
/* A subroutine of assign_parms. Adjust the parameter list to incorporate
|
2015 |
|
|
the hidden struct return argument, and (abi willing) complex args.
|
2016 |
|
|
Return the new parameter list. */
|
2017 |
|
|
|
2018 |
|
|
static tree
|
2019 |
|
|
assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
|
2020 |
|
|
{
|
2021 |
|
|
tree fndecl = current_function_decl;
|
2022 |
|
|
tree fntype = TREE_TYPE (fndecl);
|
2023 |
|
|
tree fnargs = DECL_ARGUMENTS (fndecl);
|
2024 |
|
|
|
2025 |
|
|
/* If struct value address is treated as the first argument, make it so. */
|
2026 |
|
|
if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
|
2027 |
|
|
&& ! current_function_returns_pcc_struct
|
2028 |
|
|
&& targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
|
2029 |
|
|
{
|
2030 |
|
|
tree type = build_pointer_type (TREE_TYPE (fntype));
|
2031 |
|
|
tree decl;
|
2032 |
|
|
|
2033 |
|
|
decl = build_decl (PARM_DECL, NULL_TREE, type);
|
2034 |
|
|
DECL_ARG_TYPE (decl) = type;
|
2035 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
2036 |
|
|
DECL_IGNORED_P (decl) = 1;
|
2037 |
|
|
|
2038 |
|
|
TREE_CHAIN (decl) = fnargs;
|
2039 |
|
|
fnargs = decl;
|
2040 |
|
|
all->function_result_decl = decl;
|
2041 |
|
|
}
|
2042 |
|
|
|
2043 |
|
|
all->orig_fnargs = fnargs;
|
2044 |
|
|
|
2045 |
|
|
/* If the target wants to split complex arguments into scalars, do so. */
|
2046 |
|
|
if (targetm.calls.split_complex_arg)
|
2047 |
|
|
fnargs = split_complex_args (fnargs);
|
2048 |
|
|
|
2049 |
|
|
return fnargs;
|
2050 |
|
|
}
|
2051 |
|
|
|
2052 |
|
|
/* A subroutine of assign_parms. Examine PARM and pull out type and mode
|
2053 |
|
|
data for the parameter. Incorporate ABI specifics such as pass-by-
|
2054 |
|
|
reference and type promotion. */
|
2055 |
|
|
|
2056 |
|
|
static void
|
2057 |
|
|
assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
|
2058 |
|
|
struct assign_parm_data_one *data)
|
2059 |
|
|
{
|
2060 |
|
|
tree nominal_type, passed_type;
|
2061 |
|
|
enum machine_mode nominal_mode, passed_mode, promoted_mode;
|
2062 |
|
|
|
2063 |
|
|
memset (data, 0, sizeof (*data));
|
2064 |
|
|
|
2065 |
|
|
/* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
|
2066 |
|
|
if (!current_function_stdarg)
|
2067 |
|
|
data->named_arg = 1; /* No varadic parms. */
|
2068 |
|
|
else if (TREE_CHAIN (parm))
|
2069 |
|
|
data->named_arg = 1; /* Not the last non-varadic parm. */
|
2070 |
|
|
else if (targetm.calls.strict_argument_naming (&all->args_so_far))
|
2071 |
|
|
data->named_arg = 1; /* Only varadic ones are unnamed. */
|
2072 |
|
|
else
|
2073 |
|
|
data->named_arg = 0; /* Treat as varadic. */
|
2074 |
|
|
|
2075 |
|
|
nominal_type = TREE_TYPE (parm);
|
2076 |
|
|
passed_type = DECL_ARG_TYPE (parm);
|
2077 |
|
|
|
2078 |
|
|
/* Look out for errors propagating this far. Also, if the parameter's
|
2079 |
|
|
type is void then its value doesn't matter. */
|
2080 |
|
|
if (TREE_TYPE (parm) == error_mark_node
|
2081 |
|
|
/* This can happen after weird syntax errors
|
2082 |
|
|
or if an enum type is defined among the parms. */
|
2083 |
|
|
|| TREE_CODE (parm) != PARM_DECL
|
2084 |
|
|
|| passed_type == NULL
|
2085 |
|
|
|| VOID_TYPE_P (nominal_type))
|
2086 |
|
|
{
|
2087 |
|
|
nominal_type = passed_type = void_type_node;
|
2088 |
|
|
nominal_mode = passed_mode = promoted_mode = VOIDmode;
|
2089 |
|
|
goto egress;
|
2090 |
|
|
}
|
2091 |
|
|
|
2092 |
|
|
/* Find mode of arg as it is passed, and mode of arg as it should be
|
2093 |
|
|
during execution of this function. */
|
2094 |
|
|
passed_mode = TYPE_MODE (passed_type);
|
2095 |
|
|
nominal_mode = TYPE_MODE (nominal_type);
|
2096 |
|
|
|
2097 |
|
|
/* If the parm is to be passed as a transparent union, use the type of
|
2098 |
|
|
the first field for the tests below. We have already verified that
|
2099 |
|
|
the modes are the same. */
|
2100 |
|
|
if (TREE_CODE (passed_type) == UNION_TYPE
|
2101 |
|
|
&& TYPE_TRANSPARENT_UNION (passed_type))
|
2102 |
|
|
passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
|
2103 |
|
|
|
2104 |
|
|
/* See if this arg was passed by invisible reference. */
|
2105 |
|
|
if (pass_by_reference (&all->args_so_far, passed_mode,
|
2106 |
|
|
passed_type, data->named_arg))
|
2107 |
|
|
{
|
2108 |
|
|
passed_type = nominal_type = build_pointer_type (passed_type);
|
2109 |
|
|
data->passed_pointer = true;
|
2110 |
|
|
passed_mode = nominal_mode = Pmode;
|
2111 |
|
|
}
|
2112 |
|
|
|
2113 |
|
|
/* Find mode as it is passed by the ABI. */
|
2114 |
|
|
promoted_mode = passed_mode;
|
2115 |
|
|
if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
|
2116 |
|
|
{
|
2117 |
|
|
int unsignedp = TYPE_UNSIGNED (passed_type);
|
2118 |
|
|
promoted_mode = promote_mode (passed_type, promoted_mode,
|
2119 |
|
|
&unsignedp, 1);
|
2120 |
|
|
}
|
2121 |
|
|
|
2122 |
|
|
egress:
|
2123 |
|
|
data->nominal_type = nominal_type;
|
2124 |
|
|
data->passed_type = passed_type;
|
2125 |
|
|
data->nominal_mode = nominal_mode;
|
2126 |
|
|
data->passed_mode = passed_mode;
|
2127 |
|
|
data->promoted_mode = promoted_mode;
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
|
2131 |
|
|
|
2132 |
|
|
static void
|
2133 |
|
|
assign_parms_setup_varargs (struct assign_parm_data_all *all,
|
2134 |
|
|
struct assign_parm_data_one *data, bool no_rtl)
|
2135 |
|
|
{
|
2136 |
|
|
int varargs_pretend_bytes = 0;
|
2137 |
|
|
|
2138 |
|
|
targetm.calls.setup_incoming_varargs (&all->args_so_far,
|
2139 |
|
|
data->promoted_mode,
|
2140 |
|
|
data->passed_type,
|
2141 |
|
|
&varargs_pretend_bytes, no_rtl);
|
2142 |
|
|
|
2143 |
|
|
/* If the back-end has requested extra stack space, record how much is
|
2144 |
|
|
needed. Do not change pretend_args_size otherwise since it may be
|
2145 |
|
|
nonzero from an earlier partial argument. */
|
2146 |
|
|
if (varargs_pretend_bytes > 0)
|
2147 |
|
|
all->pretend_args_size = varargs_pretend_bytes;
|
2148 |
|
|
}
|
2149 |
|
|
|
2150 |
|
|
/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
|
2151 |
|
|
the incoming location of the current parameter. */
|
2152 |
|
|
|
2153 |
|
|
static void
|
2154 |
|
|
assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
|
2155 |
|
|
struct assign_parm_data_one *data)
|
2156 |
|
|
{
|
2157 |
|
|
HOST_WIDE_INT pretend_bytes = 0;
|
2158 |
|
|
rtx entry_parm;
|
2159 |
|
|
bool in_regs;
|
2160 |
|
|
|
2161 |
|
|
if (data->promoted_mode == VOIDmode)
|
2162 |
|
|
{
|
2163 |
|
|
data->entry_parm = data->stack_parm = const0_rtx;
|
2164 |
|
|
return;
|
2165 |
|
|
}
|
2166 |
|
|
|
2167 |
|
|
#ifdef FUNCTION_INCOMING_ARG
|
2168 |
|
|
entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
|
2169 |
|
|
data->passed_type, data->named_arg);
|
2170 |
|
|
#else
|
2171 |
|
|
entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
|
2172 |
|
|
data->passed_type, data->named_arg);
|
2173 |
|
|
#endif
|
2174 |
|
|
|
2175 |
|
|
if (entry_parm == 0)
|
2176 |
|
|
data->promoted_mode = data->passed_mode;
|
2177 |
|
|
|
2178 |
|
|
/* Determine parm's home in the stack, in case it arrives in the stack
|
2179 |
|
|
or we should pretend it did. Compute the stack position and rtx where
|
2180 |
|
|
the argument arrives and its size.
|
2181 |
|
|
|
2182 |
|
|
There is one complexity here: If this was a parameter that would
|
2183 |
|
|
have been passed in registers, but wasn't only because it is
|
2184 |
|
|
__builtin_va_alist, we want locate_and_pad_parm to treat it as if
|
2185 |
|
|
it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
|
2186 |
|
|
In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
|
2187 |
|
|
as it was the previous time. */
|
2188 |
|
|
in_regs = entry_parm != 0;
|
2189 |
|
|
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
2190 |
|
|
in_regs = true;
|
2191 |
|
|
#endif
|
2192 |
|
|
if (!in_regs && !data->named_arg)
|
2193 |
|
|
{
|
2194 |
|
|
if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
|
2195 |
|
|
{
|
2196 |
|
|
rtx tem;
|
2197 |
|
|
#ifdef FUNCTION_INCOMING_ARG
|
2198 |
|
|
tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
|
2199 |
|
|
data->passed_type, true);
|
2200 |
|
|
#else
|
2201 |
|
|
tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
|
2202 |
|
|
data->passed_type, true);
|
2203 |
|
|
#endif
|
2204 |
|
|
in_regs = tem != NULL;
|
2205 |
|
|
}
|
2206 |
|
|
}
|
2207 |
|
|
|
2208 |
|
|
/* If this parameter was passed both in registers and in the stack, use
|
2209 |
|
|
the copy on the stack. */
|
2210 |
|
|
if (targetm.calls.must_pass_in_stack (data->promoted_mode,
|
2211 |
|
|
data->passed_type))
|
2212 |
|
|
entry_parm = 0;
|
2213 |
|
|
|
2214 |
|
|
if (entry_parm)
|
2215 |
|
|
{
|
2216 |
|
|
int partial;
|
2217 |
|
|
|
2218 |
|
|
partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
|
2219 |
|
|
data->promoted_mode,
|
2220 |
|
|
data->passed_type,
|
2221 |
|
|
data->named_arg);
|
2222 |
|
|
data->partial = partial;
|
2223 |
|
|
|
2224 |
|
|
/* The caller might already have allocated stack space for the
|
2225 |
|
|
register parameters. */
|
2226 |
|
|
if (partial != 0 && all->reg_parm_stack_space == 0)
|
2227 |
|
|
{
|
2228 |
|
|
/* Part of this argument is passed in registers and part
|
2229 |
|
|
is passed on the stack. Ask the prologue code to extend
|
2230 |
|
|
the stack part so that we can recreate the full value.
|
2231 |
|
|
|
2232 |
|
|
PRETEND_BYTES is the size of the registers we need to store.
|
2233 |
|
|
CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
|
2234 |
|
|
stack space that the prologue should allocate.
|
2235 |
|
|
|
2236 |
|
|
Internally, gcc assumes that the argument pointer is aligned
|
2237 |
|
|
to STACK_BOUNDARY bits. This is used both for alignment
|
2238 |
|
|
optimizations (see init_emit) and to locate arguments that are
|
2239 |
|
|
aligned to more than PARM_BOUNDARY bits. We must preserve this
|
2240 |
|
|
invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
|
2241 |
|
|
a stack boundary. */
|
2242 |
|
|
|
2243 |
|
|
/* We assume at most one partial arg, and it must be the first
|
2244 |
|
|
argument on the stack. */
|
2245 |
|
|
gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
|
2246 |
|
|
|
2247 |
|
|
pretend_bytes = partial;
|
2248 |
|
|
all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
|
2249 |
|
|
|
2250 |
|
|
/* We want to align relative to the actual stack pointer, so
|
2251 |
|
|
don't include this in the stack size until later. */
|
2252 |
|
|
all->extra_pretend_bytes = all->pretend_args_size;
|
2253 |
|
|
}
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
|
2257 |
|
|
entry_parm ? data->partial : 0, current_function_decl,
|
2258 |
|
|
&all->stack_args_size, &data->locate);
|
2259 |
|
|
|
2260 |
|
|
/* Adjust offsets to include the pretend args. */
|
2261 |
|
|
pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
|
2262 |
|
|
data->locate.slot_offset.constant += pretend_bytes;
|
2263 |
|
|
data->locate.offset.constant += pretend_bytes;
|
2264 |
|
|
|
2265 |
|
|
data->entry_parm = entry_parm;
|
2266 |
|
|
}
|
2267 |
|
|
|
2268 |
|
|
/* A subroutine of assign_parms. If there is actually space on the stack
|
2269 |
|
|
for this parm, count it in stack_args_size and return true. */
|
2270 |
|
|
|
2271 |
|
|
static bool
|
2272 |
|
|
assign_parm_is_stack_parm (struct assign_parm_data_all *all,
|
2273 |
|
|
struct assign_parm_data_one *data)
|
2274 |
|
|
{
|
2275 |
|
|
/* Trivially true if we've no incoming register. */
|
2276 |
|
|
if (data->entry_parm == NULL)
|
2277 |
|
|
;
|
2278 |
|
|
/* Also true if we're partially in registers and partially not,
|
2279 |
|
|
since we've arranged to drop the entire argument on the stack. */
|
2280 |
|
|
else if (data->partial != 0)
|
2281 |
|
|
;
|
2282 |
|
|
/* Also true if the target says that it's passed in both registers
|
2283 |
|
|
and on the stack. */
|
2284 |
|
|
else if (GET_CODE (data->entry_parm) == PARALLEL
|
2285 |
|
|
&& XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
|
2286 |
|
|
;
|
2287 |
|
|
/* Also true if the target says that there's stack allocated for
|
2288 |
|
|
all register parameters. */
|
2289 |
|
|
else if (all->reg_parm_stack_space > 0)
|
2290 |
|
|
;
|
2291 |
|
|
/* Otherwise, no, this parameter has no ABI defined stack slot. */
|
2292 |
|
|
else
|
2293 |
|
|
return false;
|
2294 |
|
|
|
2295 |
|
|
all->stack_args_size.constant += data->locate.size.constant;
|
2296 |
|
|
if (data->locate.size.var)
|
2297 |
|
|
ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
|
2298 |
|
|
|
2299 |
|
|
return true;
|
2300 |
|
|
}
|
2301 |
|
|
|
2302 |
|
|
/* A subroutine of assign_parms. Given that this parameter is allocated
|
2303 |
|
|
stack space by the ABI, find it. */
|
2304 |
|
|
|
2305 |
|
|
static void
|
2306 |
|
|
assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
|
2307 |
|
|
{
|
2308 |
|
|
rtx offset_rtx, stack_parm;
|
2309 |
|
|
unsigned int align, boundary;
|
2310 |
|
|
|
2311 |
|
|
/* If we're passing this arg using a reg, make its stack home the
|
2312 |
|
|
aligned stack slot. */
|
2313 |
|
|
if (data->entry_parm)
|
2314 |
|
|
offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
|
2315 |
|
|
else
|
2316 |
|
|
offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
|
2317 |
|
|
|
2318 |
|
|
stack_parm = current_function_internal_arg_pointer;
|
2319 |
|
|
if (offset_rtx != const0_rtx)
|
2320 |
|
|
stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
|
2321 |
|
|
stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
|
2322 |
|
|
|
2323 |
|
|
set_mem_attributes (stack_parm, parm, 1);
|
2324 |
|
|
|
2325 |
|
|
boundary = data->locate.boundary;
|
2326 |
|
|
align = BITS_PER_UNIT;
|
2327 |
|
|
|
2328 |
|
|
/* If we're padding upward, we know that the alignment of the slot
|
2329 |
|
|
is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
|
2330 |
|
|
intentionally forcing upward padding. Otherwise we have to come
|
2331 |
|
|
up with a guess at the alignment based on OFFSET_RTX. */
|
2332 |
|
|
if (data->locate.where_pad != downward || data->entry_parm)
|
2333 |
|
|
align = boundary;
|
2334 |
|
|
else if (GET_CODE (offset_rtx) == CONST_INT)
|
2335 |
|
|
{
|
2336 |
|
|
align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
|
2337 |
|
|
align = align & -align;
|
2338 |
|
|
}
|
2339 |
|
|
set_mem_align (stack_parm, align);
|
2340 |
|
|
|
2341 |
|
|
if (data->entry_parm)
|
2342 |
|
|
set_reg_attrs_for_parm (data->entry_parm, stack_parm);
|
2343 |
|
|
|
2344 |
|
|
data->stack_parm = stack_parm;
|
2345 |
|
|
}
|
2346 |
|
|
|
2347 |
|
|
/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
|
2348 |
|
|
always valid and contiguous. */
|
2349 |
|
|
|
2350 |
|
|
static void
|
2351 |
|
|
assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
|
2352 |
|
|
{
|
2353 |
|
|
rtx entry_parm = data->entry_parm;
|
2354 |
|
|
rtx stack_parm = data->stack_parm;
|
2355 |
|
|
|
2356 |
|
|
/* If this parm was passed part in regs and part in memory, pretend it
|
2357 |
|
|
arrived entirely in memory by pushing the register-part onto the stack.
|
2358 |
|
|
In the special case of a DImode or DFmode that is split, we could put
|
2359 |
|
|
it together in a pseudoreg directly, but for now that's not worth
|
2360 |
|
|
bothering with. */
|
2361 |
|
|
if (data->partial != 0)
|
2362 |
|
|
{
|
2363 |
|
|
/* Handle calls that pass values in multiple non-contiguous
|
2364 |
|
|
locations. The Irix 6 ABI has examples of this. */
|
2365 |
|
|
if (GET_CODE (entry_parm) == PARALLEL)
|
2366 |
|
|
emit_group_store (validize_mem (stack_parm), entry_parm,
|
2367 |
|
|
data->passed_type,
|
2368 |
|
|
int_size_in_bytes (data->passed_type));
|
2369 |
|
|
else
|
2370 |
|
|
{
|
2371 |
|
|
gcc_assert (data->partial % UNITS_PER_WORD == 0);
|
2372 |
|
|
move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
|
2373 |
|
|
data->partial / UNITS_PER_WORD);
|
2374 |
|
|
}
|
2375 |
|
|
|
2376 |
|
|
entry_parm = stack_parm;
|
2377 |
|
|
}
|
2378 |
|
|
|
2379 |
|
|
/* If we didn't decide this parm came in a register, by default it came
|
2380 |
|
|
on the stack. */
|
2381 |
|
|
else if (entry_parm == NULL)
|
2382 |
|
|
entry_parm = stack_parm;
|
2383 |
|
|
|
2384 |
|
|
/* When an argument is passed in multiple locations, we can't make use
|
2385 |
|
|
of this information, but we can save some copying if the whole argument
|
2386 |
|
|
is passed in a single register. */
|
2387 |
|
|
else if (GET_CODE (entry_parm) == PARALLEL
|
2388 |
|
|
&& data->nominal_mode != BLKmode
|
2389 |
|
|
&& data->passed_mode != BLKmode)
|
2390 |
|
|
{
|
2391 |
|
|
size_t i, len = XVECLEN (entry_parm, 0);
|
2392 |
|
|
|
2393 |
|
|
for (i = 0; i < len; i++)
|
2394 |
|
|
if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
|
2395 |
|
|
&& REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
|
2396 |
|
|
&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
|
2397 |
|
|
== data->passed_mode)
|
2398 |
|
|
&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
|
2399 |
|
|
{
|
2400 |
|
|
entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
|
2401 |
|
|
break;
|
2402 |
|
|
}
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
data->entry_parm = entry_parm;
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
|
2409 |
|
|
always valid and properly aligned. */
|
2410 |
|
|
|
2411 |
|
|
static void
|
2412 |
|
|
assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
|
2413 |
|
|
{
|
2414 |
|
|
rtx stack_parm = data->stack_parm;
|
2415 |
|
|
|
2416 |
|
|
/* If we can't trust the parm stack slot to be aligned enough for its
|
2417 |
|
|
ultimate type, don't use that slot after entry. We'll make another
|
2418 |
|
|
stack slot, if we need one. */
|
2419 |
|
|
if (stack_parm
|
2420 |
|
|
&& ((STRICT_ALIGNMENT
|
2421 |
|
|
&& GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
|
2422 |
|
|
|| (data->nominal_type
|
2423 |
|
|
&& TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
|
2424 |
|
|
&& MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
|
2425 |
|
|
stack_parm = NULL;
|
2426 |
|
|
|
2427 |
|
|
/* If parm was passed in memory, and we need to convert it on entry,
|
2428 |
|
|
don't store it back in that same slot. */
|
2429 |
|
|
else if (data->entry_parm == stack_parm
|
2430 |
|
|
&& data->nominal_mode != BLKmode
|
2431 |
|
|
&& data->nominal_mode != data->passed_mode)
|
2432 |
|
|
stack_parm = NULL;
|
2433 |
|
|
|
2434 |
|
|
/* If stack protection is in effect for this function, don't leave any
|
2435 |
|
|
pointers in their passed stack slots. */
|
2436 |
|
|
else if (cfun->stack_protect_guard
|
2437 |
|
|
&& (flag_stack_protect == 2
|
2438 |
|
|
|| data->passed_pointer
|
2439 |
|
|
|| POINTER_TYPE_P (data->nominal_type)))
|
2440 |
|
|
stack_parm = NULL;
|
2441 |
|
|
|
2442 |
|
|
data->stack_parm = stack_parm;
|
2443 |
|
|
}
|
2444 |
|
|
|
2445 |
|
|
/* A subroutine of assign_parms. Return true if the current parameter
|
2446 |
|
|
should be stored as a BLKmode in the current frame. */
|
2447 |
|
|
|
2448 |
|
|
static bool
|
2449 |
|
|
assign_parm_setup_block_p (struct assign_parm_data_one *data)
|
2450 |
|
|
{
|
2451 |
|
|
if (data->nominal_mode == BLKmode)
|
2452 |
|
|
return true;
|
2453 |
|
|
if (GET_CODE (data->entry_parm) == PARALLEL)
|
2454 |
|
|
return true;
|
2455 |
|
|
|
2456 |
|
|
#ifdef BLOCK_REG_PADDING
|
2457 |
|
|
/* Only assign_parm_setup_block knows how to deal with register arguments
|
2458 |
|
|
that are padded at the least significant end. */
|
2459 |
|
|
if (REG_P (data->entry_parm)
|
2460 |
|
|
&& GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
|
2461 |
|
|
&& (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
|
2462 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
2463 |
|
|
return true;
|
2464 |
|
|
#endif
|
2465 |
|
|
|
2466 |
|
|
return false;
|
2467 |
|
|
}
|
2468 |
|
|
|
2469 |
|
|
/* A subroutine of assign_parms. Arrange for the parameter to be
|
2470 |
|
|
present and valid in DATA->STACK_RTL. */
|
2471 |
|
|
|
2472 |
|
|
static void
|
2473 |
|
|
assign_parm_setup_block (struct assign_parm_data_all *all,
|
2474 |
|
|
tree parm, struct assign_parm_data_one *data)
|
2475 |
|
|
{
|
2476 |
|
|
rtx entry_parm = data->entry_parm;
|
2477 |
|
|
rtx stack_parm = data->stack_parm;
|
2478 |
|
|
HOST_WIDE_INT size;
|
2479 |
|
|
HOST_WIDE_INT size_stored;
|
2480 |
|
|
rtx orig_entry_parm = entry_parm;
|
2481 |
|
|
|
2482 |
|
|
if (GET_CODE (entry_parm) == PARALLEL)
|
2483 |
|
|
entry_parm = emit_group_move_into_temps (entry_parm);
|
2484 |
|
|
|
2485 |
|
|
/* If we've a non-block object that's nevertheless passed in parts,
|
2486 |
|
|
reconstitute it in register operations rather than on the stack. */
|
2487 |
|
|
if (GET_CODE (entry_parm) == PARALLEL
|
2488 |
|
|
&& data->nominal_mode != BLKmode)
|
2489 |
|
|
{
|
2490 |
|
|
rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
|
2491 |
|
|
|
2492 |
|
|
if ((XVECLEN (entry_parm, 0) > 1
|
2493 |
|
|
|| hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
|
2494 |
|
|
&& use_register_for_decl (parm))
|
2495 |
|
|
{
|
2496 |
|
|
rtx parmreg = gen_reg_rtx (data->nominal_mode);
|
2497 |
|
|
|
2498 |
|
|
push_to_sequence (all->conversion_insns);
|
2499 |
|
|
|
2500 |
|
|
/* For values returned in multiple registers, handle possible
|
2501 |
|
|
incompatible calls to emit_group_store.
|
2502 |
|
|
|
2503 |
|
|
For example, the following would be invalid, and would have to
|
2504 |
|
|
be fixed by the conditional below:
|
2505 |
|
|
|
2506 |
|
|
emit_group_store ((reg:SF), (parallel:DF))
|
2507 |
|
|
emit_group_store ((reg:SI), (parallel:DI))
|
2508 |
|
|
|
2509 |
|
|
An example of this are doubles in e500 v2:
|
2510 |
|
|
(parallel:DF (expr_list (reg:SI) (const_int 0))
|
2511 |
|
|
(expr_list (reg:SI) (const_int 4))). */
|
2512 |
|
|
if (data->nominal_mode != data->passed_mode)
|
2513 |
|
|
{
|
2514 |
|
|
rtx t = gen_reg_rtx (GET_MODE (entry_parm));
|
2515 |
|
|
emit_group_store (t, entry_parm, NULL_TREE,
|
2516 |
|
|
GET_MODE_SIZE (GET_MODE (entry_parm)));
|
2517 |
|
|
convert_move (parmreg, t, 0);
|
2518 |
|
|
}
|
2519 |
|
|
else
|
2520 |
|
|
emit_group_store (parmreg, entry_parm, data->nominal_type,
|
2521 |
|
|
int_size_in_bytes (data->nominal_type));
|
2522 |
|
|
|
2523 |
|
|
all->conversion_insns = get_insns ();
|
2524 |
|
|
end_sequence ();
|
2525 |
|
|
|
2526 |
|
|
SET_DECL_RTL (parm, parmreg);
|
2527 |
|
|
return;
|
2528 |
|
|
}
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
size = int_size_in_bytes (data->passed_type);
|
2532 |
|
|
size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
|
2533 |
|
|
if (stack_parm == 0)
|
2534 |
|
|
{
|
2535 |
|
|
DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
|
2536 |
|
|
stack_parm = assign_stack_local (BLKmode, size_stored,
|
2537 |
|
|
DECL_ALIGN (parm));
|
2538 |
|
|
if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
|
2539 |
|
|
PUT_MODE (stack_parm, GET_MODE (entry_parm));
|
2540 |
|
|
set_mem_attributes (stack_parm, parm, 1);
|
2541 |
|
|
}
|
2542 |
|
|
|
2543 |
|
|
/* If a BLKmode arrives in registers, copy it to a stack slot. Handle
|
2544 |
|
|
calls that pass values in multiple non-contiguous locations. */
|
2545 |
|
|
if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
|
2546 |
|
|
{
|
2547 |
|
|
rtx mem;
|
2548 |
|
|
|
2549 |
|
|
/* Note that we will be storing an integral number of words.
|
2550 |
|
|
So we have to be careful to ensure that we allocate an
|
2551 |
|
|
integral number of words. We do this above when we call
|
2552 |
|
|
assign_stack_local if space was not allocated in the argument
|
2553 |
|
|
list. If it was, this will not work if PARM_BOUNDARY is not
|
2554 |
|
|
a multiple of BITS_PER_WORD. It isn't clear how to fix this
|
2555 |
|
|
if it becomes a problem. Exception is when BLKmode arrives
|
2556 |
|
|
with arguments not conforming to word_mode. */
|
2557 |
|
|
|
2558 |
|
|
if (data->stack_parm == 0)
|
2559 |
|
|
;
|
2560 |
|
|
else if (GET_CODE (entry_parm) == PARALLEL)
|
2561 |
|
|
;
|
2562 |
|
|
else
|
2563 |
|
|
gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
|
2564 |
|
|
|
2565 |
|
|
mem = validize_mem (stack_parm);
|
2566 |
|
|
|
2567 |
|
|
/* Handle values in multiple non-contiguous locations. */
|
2568 |
|
|
if (GET_CODE (entry_parm) == PARALLEL)
|
2569 |
|
|
{
|
2570 |
|
|
push_to_sequence (all->conversion_insns);
|
2571 |
|
|
emit_group_store (mem, entry_parm, data->passed_type, size);
|
2572 |
|
|
all->conversion_insns = get_insns ();
|
2573 |
|
|
end_sequence ();
|
2574 |
|
|
}
|
2575 |
|
|
|
2576 |
|
|
else if (size == 0)
|
2577 |
|
|
;
|
2578 |
|
|
|
2579 |
|
|
/* If SIZE is that of a mode no bigger than a word, just use
|
2580 |
|
|
that mode's store operation. */
|
2581 |
|
|
else if (size <= UNITS_PER_WORD)
|
2582 |
|
|
{
|
2583 |
|
|
enum machine_mode mode
|
2584 |
|
|
= mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
|
2585 |
|
|
|
2586 |
|
|
if (mode != BLKmode
|
2587 |
|
|
#ifdef BLOCK_REG_PADDING
|
2588 |
|
|
&& (size == UNITS_PER_WORD
|
2589 |
|
|
|| (BLOCK_REG_PADDING (mode, data->passed_type, 1)
|
2590 |
|
|
!= (BYTES_BIG_ENDIAN ? upward : downward)))
|
2591 |
|
|
#endif
|
2592 |
|
|
)
|
2593 |
|
|
{
|
2594 |
|
|
rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
|
2595 |
|
|
emit_move_insn (change_address (mem, mode, 0), reg);
|
2596 |
|
|
}
|
2597 |
|
|
|
2598 |
|
|
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN
|
2599 |
|
|
machine must be aligned to the left before storing
|
2600 |
|
|
to memory. Note that the previous test doesn't
|
2601 |
|
|
handle all cases (e.g. SIZE == 3). */
|
2602 |
|
|
else if (size != UNITS_PER_WORD
|
2603 |
|
|
#ifdef BLOCK_REG_PADDING
|
2604 |
|
|
&& (BLOCK_REG_PADDING (mode, data->passed_type, 1)
|
2605 |
|
|
== downward)
|
2606 |
|
|
#else
|
2607 |
|
|
&& BYTES_BIG_ENDIAN
|
2608 |
|
|
#endif
|
2609 |
|
|
)
|
2610 |
|
|
{
|
2611 |
|
|
rtx tem, x;
|
2612 |
|
|
int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
2613 |
|
|
rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
|
2614 |
|
|
|
2615 |
|
|
x = expand_shift (LSHIFT_EXPR, word_mode, reg,
|
2616 |
|
|
build_int_cst (NULL_TREE, by),
|
2617 |
|
|
NULL_RTX, 1);
|
2618 |
|
|
tem = change_address (mem, word_mode, 0);
|
2619 |
|
|
emit_move_insn (tem, x);
|
2620 |
|
|
}
|
2621 |
|
|
else
|
2622 |
|
|
move_block_from_reg (REGNO (entry_parm), mem,
|
2623 |
|
|
size_stored / UNITS_PER_WORD);
|
2624 |
|
|
}
|
2625 |
|
|
else
|
2626 |
|
|
move_block_from_reg (REGNO (entry_parm), mem,
|
2627 |
|
|
size_stored / UNITS_PER_WORD);
|
2628 |
|
|
}
|
2629 |
|
|
else if (data->stack_parm == 0)
|
2630 |
|
|
{
|
2631 |
|
|
push_to_sequence (all->conversion_insns);
|
2632 |
|
|
emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
|
2633 |
|
|
BLOCK_OP_NORMAL);
|
2634 |
|
|
all->conversion_insns = get_insns ();
|
2635 |
|
|
end_sequence ();
|
2636 |
|
|
}
|
2637 |
|
|
|
2638 |
|
|
data->stack_parm = stack_parm;
|
2639 |
|
|
SET_DECL_RTL (parm, stack_parm);
|
2640 |
|
|
}
|
2641 |
|
|
|
2642 |
|
|
/* A subroutine of assign_parms. Allocate a pseudo to hold the current
|
2643 |
|
|
parameter. Get it there. Perform all ABI specified conversions. */
|
2644 |
|
|
|
2645 |
|
|
static void
|
2646 |
|
|
assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
|
2647 |
|
|
struct assign_parm_data_one *data)
|
2648 |
|
|
{
|
2649 |
|
|
rtx parmreg;
|
2650 |
|
|
enum machine_mode promoted_nominal_mode;
|
2651 |
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
|
2652 |
|
|
bool did_conversion = false;
|
2653 |
|
|
|
2654 |
|
|
/* Store the parm in a pseudoregister during the function, but we may
|
2655 |
|
|
need to do it in a wider mode. */
|
2656 |
|
|
|
2657 |
|
|
/* This is not really promoting for a call. However we need to be
|
2658 |
|
|
consistent with assign_parm_find_data_types and expand_expr_real_1. */
|
2659 |
|
|
promoted_nominal_mode
|
2660 |
|
|
= promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
|
2661 |
|
|
|
2662 |
|
|
parmreg = gen_reg_rtx (promoted_nominal_mode);
|
2663 |
|
|
|
2664 |
|
|
if (!DECL_ARTIFICIAL (parm))
|
2665 |
|
|
mark_user_reg (parmreg);
|
2666 |
|
|
|
2667 |
|
|
/* If this was an item that we received a pointer to,
|
2668 |
|
|
set DECL_RTL appropriately. */
|
2669 |
|
|
if (data->passed_pointer)
|
2670 |
|
|
{
|
2671 |
|
|
rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
|
2672 |
|
|
set_mem_attributes (x, parm, 1);
|
2673 |
|
|
SET_DECL_RTL (parm, x);
|
2674 |
|
|
}
|
2675 |
|
|
else
|
2676 |
|
|
SET_DECL_RTL (parm, parmreg);
|
2677 |
|
|
|
2678 |
|
|
/* Copy the value into the register. */
|
2679 |
|
|
if (data->nominal_mode != data->passed_mode
|
2680 |
|
|
|| promoted_nominal_mode != data->promoted_mode)
|
2681 |
|
|
{
|
2682 |
|
|
int save_tree_used;
|
2683 |
|
|
|
2684 |
|
|
/* ENTRY_PARM has been converted to PROMOTED_MODE, its
|
2685 |
|
|
mode, by the caller. We now have to convert it to
|
2686 |
|
|
NOMINAL_MODE, if different. However, PARMREG may be in
|
2687 |
|
|
a different mode than NOMINAL_MODE if it is being stored
|
2688 |
|
|
promoted.
|
2689 |
|
|
|
2690 |
|
|
If ENTRY_PARM is a hard register, it might be in a register
|
2691 |
|
|
not valid for operating in its mode (e.g., an odd-numbered
|
2692 |
|
|
register for a DFmode). In that case, moves are the only
|
2693 |
|
|
thing valid, so we can't do a convert from there. This
|
2694 |
|
|
occurs when the calling sequence allow such misaligned
|
2695 |
|
|
usages.
|
2696 |
|
|
|
2697 |
|
|
In addition, the conversion may involve a call, which could
|
2698 |
|
|
clobber parameters which haven't been copied to pseudo
|
2699 |
|
|
registers yet. Therefore, we must first copy the parm to
|
2700 |
|
|
a pseudo reg here, and save the conversion until after all
|
2701 |
|
|
parameters have been moved. */
|
2702 |
|
|
|
2703 |
|
|
rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
|
2704 |
|
|
|
2705 |
|
|
emit_move_insn (tempreg, validize_mem (data->entry_parm));
|
2706 |
|
|
|
2707 |
|
|
push_to_sequence (all->conversion_insns);
|
2708 |
|
|
tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
|
2709 |
|
|
|
2710 |
|
|
if (GET_CODE (tempreg) == SUBREG
|
2711 |
|
|
&& GET_MODE (tempreg) == data->nominal_mode
|
2712 |
|
|
&& REG_P (SUBREG_REG (tempreg))
|
2713 |
|
|
&& data->nominal_mode == data->passed_mode
|
2714 |
|
|
&& GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
|
2715 |
|
|
&& GET_MODE_SIZE (GET_MODE (tempreg))
|
2716 |
|
|
< GET_MODE_SIZE (GET_MODE (data->entry_parm)))
|
2717 |
|
|
{
|
2718 |
|
|
/* The argument is already sign/zero extended, so note it
|
2719 |
|
|
into the subreg. */
|
2720 |
|
|
SUBREG_PROMOTED_VAR_P (tempreg) = 1;
|
2721 |
|
|
SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
|
2722 |
|
|
}
|
2723 |
|
|
|
2724 |
|
|
/* TREE_USED gets set erroneously during expand_assignment. */
|
2725 |
|
|
save_tree_used = TREE_USED (parm);
|
2726 |
|
|
expand_assignment (parm, make_tree (data->nominal_type, tempreg));
|
2727 |
|
|
TREE_USED (parm) = save_tree_used;
|
2728 |
|
|
all->conversion_insns = get_insns ();
|
2729 |
|
|
end_sequence ();
|
2730 |
|
|
|
2731 |
|
|
did_conversion = true;
|
2732 |
|
|
}
|
2733 |
|
|
else
|
2734 |
|
|
emit_move_insn (parmreg, validize_mem (data->entry_parm));
|
2735 |
|
|
|
2736 |
|
|
/* If we were passed a pointer but the actual value can safely live
|
2737 |
|
|
in a register, put it in one. */
|
2738 |
|
|
if (data->passed_pointer
|
2739 |
|
|
&& TYPE_MODE (TREE_TYPE (parm)) != BLKmode
|
2740 |
|
|
/* If by-reference argument was promoted, demote it. */
|
2741 |
|
|
&& (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
|
2742 |
|
|
|| use_register_for_decl (parm)))
|
2743 |
|
|
{
|
2744 |
|
|
/* We can't use nominal_mode, because it will have been set to
|
2745 |
|
|
Pmode above. We must use the actual mode of the parm. */
|
2746 |
|
|
parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
|
2747 |
|
|
mark_user_reg (parmreg);
|
2748 |
|
|
|
2749 |
|
|
if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
|
2750 |
|
|
{
|
2751 |
|
|
rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
|
2752 |
|
|
int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
|
2753 |
|
|
|
2754 |
|
|
push_to_sequence (all->conversion_insns);
|
2755 |
|
|
emit_move_insn (tempreg, DECL_RTL (parm));
|
2756 |
|
|
tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
|
2757 |
|
|
emit_move_insn (parmreg, tempreg);
|
2758 |
|
|
all->conversion_insns = get_insns ();
|
2759 |
|
|
end_sequence ();
|
2760 |
|
|
|
2761 |
|
|
did_conversion = true;
|
2762 |
|
|
}
|
2763 |
|
|
else
|
2764 |
|
|
emit_move_insn (parmreg, DECL_RTL (parm));
|
2765 |
|
|
|
2766 |
|
|
SET_DECL_RTL (parm, parmreg);
|
2767 |
|
|
|
2768 |
|
|
/* STACK_PARM is the pointer, not the parm, and PARMREG is
|
2769 |
|
|
now the parm. */
|
2770 |
|
|
data->stack_parm = NULL;
|
2771 |
|
|
}
|
2772 |
|
|
|
2773 |
|
|
/* Mark the register as eliminable if we did no conversion and it was
|
2774 |
|
|
copied from memory at a fixed offset, and the arg pointer was not
|
2775 |
|
|
copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
|
2776 |
|
|
offset formed an invalid address, such memory-equivalences as we
|
2777 |
|
|
make here would screw up life analysis for it. */
|
2778 |
|
|
if (data->nominal_mode == data->passed_mode
|
2779 |
|
|
&& !did_conversion
|
2780 |
|
|
&& data->stack_parm != 0
|
2781 |
|
|
&& MEM_P (data->stack_parm)
|
2782 |
|
|
&& data->locate.offset.var == 0
|
2783 |
|
|
&& reg_mentioned_p (virtual_incoming_args_rtx,
|
2784 |
|
|
XEXP (data->stack_parm, 0)))
|
2785 |
|
|
{
|
2786 |
|
|
rtx linsn = get_last_insn ();
|
2787 |
|
|
rtx sinsn, set;
|
2788 |
|
|
|
2789 |
|
|
/* Mark complex types separately. */
|
2790 |
|
|
if (GET_CODE (parmreg) == CONCAT)
|
2791 |
|
|
{
|
2792 |
|
|
enum machine_mode submode
|
2793 |
|
|
= GET_MODE_INNER (GET_MODE (parmreg));
|
2794 |
|
|
int regnor = REGNO (XEXP (parmreg, 0));
|
2795 |
|
|
int regnoi = REGNO (XEXP (parmreg, 1));
|
2796 |
|
|
rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
|
2797 |
|
|
rtx stacki = adjust_address_nv (data->stack_parm, submode,
|
2798 |
|
|
GET_MODE_SIZE (submode));
|
2799 |
|
|
|
2800 |
|
|
/* Scan backwards for the set of the real and
|
2801 |
|
|
imaginary parts. */
|
2802 |
|
|
for (sinsn = linsn; sinsn != 0;
|
2803 |
|
|
sinsn = prev_nonnote_insn (sinsn))
|
2804 |
|
|
{
|
2805 |
|
|
set = single_set (sinsn);
|
2806 |
|
|
if (set == 0)
|
2807 |
|
|
continue;
|
2808 |
|
|
|
2809 |
|
|
if (SET_DEST (set) == regno_reg_rtx [regnoi])
|
2810 |
|
|
REG_NOTES (sinsn)
|
2811 |
|
|
= gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
|
2812 |
|
|
REG_NOTES (sinsn));
|
2813 |
|
|
else if (SET_DEST (set) == regno_reg_rtx [regnor])
|
2814 |
|
|
REG_NOTES (sinsn)
|
2815 |
|
|
= gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
|
2816 |
|
|
REG_NOTES (sinsn));
|
2817 |
|
|
}
|
2818 |
|
|
}
|
2819 |
|
|
else if ((set = single_set (linsn)) != 0
|
2820 |
|
|
&& SET_DEST (set) == parmreg)
|
2821 |
|
|
REG_NOTES (linsn)
|
2822 |
|
|
= gen_rtx_EXPR_LIST (REG_EQUIV,
|
2823 |
|
|
data->stack_parm, REG_NOTES (linsn));
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
/* For pointer data type, suggest pointer register. */
|
2827 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (parm)))
|
2828 |
|
|
mark_reg_pointer (parmreg,
|
2829 |
|
|
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
|
2830 |
|
|
}
|
2831 |
|
|
|
2832 |
|
|
/* A subroutine of assign_parms. Allocate stack space to hold the current
|
2833 |
|
|
parameter. Get it there. Perform all ABI specified conversions. */
|
2834 |
|
|
|
2835 |
|
|
static void
|
2836 |
|
|
assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
|
2837 |
|
|
struct assign_parm_data_one *data)
|
2838 |
|
|
{
|
2839 |
|
|
/* Value must be stored in the stack slot STACK_PARM during function
|
2840 |
|
|
execution. */
|
2841 |
|
|
bool to_conversion = false;
|
2842 |
|
|
|
2843 |
|
|
if (data->promoted_mode != data->nominal_mode)
|
2844 |
|
|
{
|
2845 |
|
|
/* Conversion is required. */
|
2846 |
|
|
rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
|
2847 |
|
|
|
2848 |
|
|
emit_move_insn (tempreg, validize_mem (data->entry_parm));
|
2849 |
|
|
|
2850 |
|
|
push_to_sequence (all->conversion_insns);
|
2851 |
|
|
to_conversion = true;
|
2852 |
|
|
|
2853 |
|
|
data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
|
2854 |
|
|
TYPE_UNSIGNED (TREE_TYPE (parm)));
|
2855 |
|
|
|
2856 |
|
|
if (data->stack_parm)
|
2857 |
|
|
/* ??? This may need a big-endian conversion on sparc64. */
|
2858 |
|
|
data->stack_parm
|
2859 |
|
|
= adjust_address (data->stack_parm, data->nominal_mode, 0);
|
2860 |
|
|
}
|
2861 |
|
|
|
2862 |
|
|
if (data->entry_parm != data->stack_parm)
|
2863 |
|
|
{
|
2864 |
|
|
rtx src, dest;
|
2865 |
|
|
|
2866 |
|
|
if (data->stack_parm == 0)
|
2867 |
|
|
{
|
2868 |
|
|
data->stack_parm
|
2869 |
|
|
= assign_stack_local (GET_MODE (data->entry_parm),
|
2870 |
|
|
GET_MODE_SIZE (GET_MODE (data->entry_parm)),
|
2871 |
|
|
TYPE_ALIGN (data->passed_type));
|
2872 |
|
|
set_mem_attributes (data->stack_parm, parm, 1);
|
2873 |
|
|
}
|
2874 |
|
|
|
2875 |
|
|
dest = validize_mem (data->stack_parm);
|
2876 |
|
|
src = validize_mem (data->entry_parm);
|
2877 |
|
|
|
2878 |
|
|
if (MEM_P (src))
|
2879 |
|
|
{
|
2880 |
|
|
/* Use a block move to handle potentially misaligned entry_parm. */
|
2881 |
|
|
if (!to_conversion)
|
2882 |
|
|
push_to_sequence (all->conversion_insns);
|
2883 |
|
|
to_conversion = true;
|
2884 |
|
|
|
2885 |
|
|
emit_block_move (dest, src,
|
2886 |
|
|
GEN_INT (int_size_in_bytes (data->passed_type)),
|
2887 |
|
|
BLOCK_OP_NORMAL);
|
2888 |
|
|
}
|
2889 |
|
|
else
|
2890 |
|
|
emit_move_insn (dest, src);
|
2891 |
|
|
}
|
2892 |
|
|
|
2893 |
|
|
if (to_conversion)
|
2894 |
|
|
{
|
2895 |
|
|
all->conversion_insns = get_insns ();
|
2896 |
|
|
end_sequence ();
|
2897 |
|
|
}
|
2898 |
|
|
|
2899 |
|
|
SET_DECL_RTL (parm, data->stack_parm);
|
2900 |
|
|
}
|
2901 |
|
|
|
2902 |
|
|
/* A subroutine of assign_parms. If the ABI splits complex arguments, then
|
2903 |
|
|
undo the frobbing that we did in assign_parms_augmented_arg_list. */
|
2904 |
|
|
|
2905 |
|
|
static void
|
2906 |
|
|
assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
|
2907 |
|
|
{
|
2908 |
|
|
tree parm;
|
2909 |
|
|
tree orig_fnargs = all->orig_fnargs;
|
2910 |
|
|
|
2911 |
|
|
for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
|
2912 |
|
|
{
|
2913 |
|
|
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
|
2914 |
|
|
&& targetm.calls.split_complex_arg (TREE_TYPE (parm)))
|
2915 |
|
|
{
|
2916 |
|
|
rtx tmp, real, imag;
|
2917 |
|
|
enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
|
2918 |
|
|
|
2919 |
|
|
real = DECL_RTL (fnargs);
|
2920 |
|
|
imag = DECL_RTL (TREE_CHAIN (fnargs));
|
2921 |
|
|
if (inner != GET_MODE (real))
|
2922 |
|
|
{
|
2923 |
|
|
real = gen_lowpart_SUBREG (inner, real);
|
2924 |
|
|
imag = gen_lowpart_SUBREG (inner, imag);
|
2925 |
|
|
}
|
2926 |
|
|
|
2927 |
|
|
if (TREE_ADDRESSABLE (parm))
|
2928 |
|
|
{
|
2929 |
|
|
rtx rmem, imem;
|
2930 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
|
2931 |
|
|
|
2932 |
|
|
/* split_complex_arg put the real and imag parts in
|
2933 |
|
|
pseudos. Move them to memory. */
|
2934 |
|
|
tmp = assign_stack_local (DECL_MODE (parm), size,
|
2935 |
|
|
TYPE_ALIGN (TREE_TYPE (parm)));
|
2936 |
|
|
set_mem_attributes (tmp, parm, 1);
|
2937 |
|
|
rmem = adjust_address_nv (tmp, inner, 0);
|
2938 |
|
|
imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
|
2939 |
|
|
push_to_sequence (all->conversion_insns);
|
2940 |
|
|
emit_move_insn (rmem, real);
|
2941 |
|
|
emit_move_insn (imem, imag);
|
2942 |
|
|
all->conversion_insns = get_insns ();
|
2943 |
|
|
end_sequence ();
|
2944 |
|
|
}
|
2945 |
|
|
else
|
2946 |
|
|
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
|
2947 |
|
|
SET_DECL_RTL (parm, tmp);
|
2948 |
|
|
|
2949 |
|
|
real = DECL_INCOMING_RTL (fnargs);
|
2950 |
|
|
imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
|
2951 |
|
|
if (inner != GET_MODE (real))
|
2952 |
|
|
{
|
2953 |
|
|
real = gen_lowpart_SUBREG (inner, real);
|
2954 |
|
|
imag = gen_lowpart_SUBREG (inner, imag);
|
2955 |
|
|
}
|
2956 |
|
|
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
|
2957 |
|
|
set_decl_incoming_rtl (parm, tmp);
|
2958 |
|
|
fnargs = TREE_CHAIN (fnargs);
|
2959 |
|
|
}
|
2960 |
|
|
else
|
2961 |
|
|
{
|
2962 |
|
|
SET_DECL_RTL (parm, DECL_RTL (fnargs));
|
2963 |
|
|
set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
|
2964 |
|
|
|
2965 |
|
|
/* Set MEM_EXPR to the original decl, i.e. to PARM,
|
2966 |
|
|
instead of the copy of decl, i.e. FNARGS. */
|
2967 |
|
|
if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
|
2968 |
|
|
set_mem_expr (DECL_INCOMING_RTL (parm), parm);
|
2969 |
|
|
}
|
2970 |
|
|
|
2971 |
|
|
fnargs = TREE_CHAIN (fnargs);
|
2972 |
|
|
}
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
/* Assign RTL expressions to the function's parameters. This may involve
|
2976 |
|
|
copying them into registers and using those registers as the DECL_RTL. */
|
2977 |
|
|
|
2978 |
|
|
static void
|
2979 |
|
|
assign_parms (tree fndecl)
|
2980 |
|
|
{
|
2981 |
|
|
struct assign_parm_data_all all;
|
2982 |
|
|
tree fnargs, parm;
|
2983 |
|
|
|
2984 |
|
|
current_function_internal_arg_pointer
|
2985 |
|
|
= targetm.calls.internal_arg_pointer ();
|
2986 |
|
|
|
2987 |
|
|
assign_parms_initialize_all (&all);
|
2988 |
|
|
fnargs = assign_parms_augmented_arg_list (&all);
|
2989 |
|
|
|
2990 |
|
|
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
|
2991 |
|
|
{
|
2992 |
|
|
struct assign_parm_data_one data;
|
2993 |
|
|
|
2994 |
|
|
/* Extract the type of PARM; adjust it according to ABI. */
|
2995 |
|
|
assign_parm_find_data_types (&all, parm, &data);
|
2996 |
|
|
|
2997 |
|
|
/* Early out for errors and void parameters. */
|
2998 |
|
|
if (data.passed_mode == VOIDmode)
|
2999 |
|
|
{
|
3000 |
|
|
SET_DECL_RTL (parm, const0_rtx);
|
3001 |
|
|
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
|
3002 |
|
|
continue;
|
3003 |
|
|
}
|
3004 |
|
|
|
3005 |
|
|
if (current_function_stdarg && !TREE_CHAIN (parm))
|
3006 |
|
|
assign_parms_setup_varargs (&all, &data, false);
|
3007 |
|
|
|
3008 |
|
|
/* Find out where the parameter arrives in this function. */
|
3009 |
|
|
assign_parm_find_entry_rtl (&all, &data);
|
3010 |
|
|
|
3011 |
|
|
/* Find out where stack space for this parameter might be. */
|
3012 |
|
|
if (assign_parm_is_stack_parm (&all, &data))
|
3013 |
|
|
{
|
3014 |
|
|
assign_parm_find_stack_rtl (parm, &data);
|
3015 |
|
|
assign_parm_adjust_entry_rtl (&data);
|
3016 |
|
|
}
|
3017 |
|
|
|
3018 |
|
|
/* Record permanently how this parm was passed. */
|
3019 |
|
|
set_decl_incoming_rtl (parm, data.entry_parm);
|
3020 |
|
|
|
3021 |
|
|
/* Update info on where next arg arrives in registers. */
|
3022 |
|
|
FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
|
3023 |
|
|
data.passed_type, data.named_arg);
|
3024 |
|
|
|
3025 |
|
|
assign_parm_adjust_stack_rtl (&data);
|
3026 |
|
|
|
3027 |
|
|
if (assign_parm_setup_block_p (&data))
|
3028 |
|
|
assign_parm_setup_block (&all, parm, &data);
|
3029 |
|
|
else if (data.passed_pointer || use_register_for_decl (parm))
|
3030 |
|
|
assign_parm_setup_reg (&all, parm, &data);
|
3031 |
|
|
else
|
3032 |
|
|
assign_parm_setup_stack (&all, parm, &data);
|
3033 |
|
|
}
|
3034 |
|
|
|
3035 |
|
|
if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
|
3036 |
|
|
assign_parms_unsplit_complex (&all, fnargs);
|
3037 |
|
|
|
3038 |
|
|
/* Output all parameter conversion instructions (possibly including calls)
|
3039 |
|
|
now that all parameters have been copied out of hard registers. */
|
3040 |
|
|
emit_insn (all.conversion_insns);
|
3041 |
|
|
|
3042 |
|
|
/* If we are receiving a struct value address as the first argument, set up
|
3043 |
|
|
the RTL for the function result. As this might require code to convert
|
3044 |
|
|
the transmitted address to Pmode, we do this here to ensure that possible
|
3045 |
|
|
preliminary conversions of the address have been emitted already. */
|
3046 |
|
|
if (all.function_result_decl)
|
3047 |
|
|
{
|
3048 |
|
|
tree result = DECL_RESULT (current_function_decl);
|
3049 |
|
|
rtx addr = DECL_RTL (all.function_result_decl);
|
3050 |
|
|
rtx x;
|
3051 |
|
|
|
3052 |
|
|
if (DECL_BY_REFERENCE (result))
|
3053 |
|
|
x = addr;
|
3054 |
|
|
else
|
3055 |
|
|
{
|
3056 |
|
|
addr = convert_memory_address (Pmode, addr);
|
3057 |
|
|
x = gen_rtx_MEM (DECL_MODE (result), addr);
|
3058 |
|
|
set_mem_attributes (x, result, 1);
|
3059 |
|
|
}
|
3060 |
|
|
SET_DECL_RTL (result, x);
|
3061 |
|
|
}
|
3062 |
|
|
|
3063 |
|
|
/* We have aligned all the args, so add space for the pretend args. */
|
3064 |
|
|
current_function_pretend_args_size = all.pretend_args_size;
|
3065 |
|
|
all.stack_args_size.constant += all.extra_pretend_bytes;
|
3066 |
|
|
current_function_args_size = all.stack_args_size.constant;
|
3067 |
|
|
|
3068 |
|
|
/* Adjust function incoming argument size for alignment and
|
3069 |
|
|
minimum length. */
|
3070 |
|
|
|
3071 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3072 |
|
|
current_function_args_size = MAX (current_function_args_size,
|
3073 |
|
|
REG_PARM_STACK_SPACE (fndecl));
|
3074 |
|
|
#endif
|
3075 |
|
|
|
3076 |
|
|
current_function_args_size = CEIL_ROUND (current_function_args_size,
|
3077 |
|
|
PARM_BOUNDARY / BITS_PER_UNIT);
|
3078 |
|
|
|
3079 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
3080 |
|
|
current_function_arg_offset_rtx
|
3081 |
|
|
= (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
|
3082 |
|
|
: expand_expr (size_diffop (all.stack_args_size.var,
|
3083 |
|
|
size_int (-all.stack_args_size.constant)),
|
3084 |
|
|
NULL_RTX, VOIDmode, 0));
|
3085 |
|
|
#else
|
3086 |
|
|
current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
|
3087 |
|
|
#endif
|
3088 |
|
|
|
3089 |
|
|
/* See how many bytes, if any, of its args a function should try to pop
|
3090 |
|
|
on return. */
|
3091 |
|
|
|
3092 |
|
|
current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
|
3093 |
|
|
current_function_args_size);
|
3094 |
|
|
|
3095 |
|
|
/* For stdarg.h function, save info about
|
3096 |
|
|
regs and stack space used by the named args. */
|
3097 |
|
|
|
3098 |
|
|
current_function_args_info = all.args_so_far;
|
3099 |
|
|
|
3100 |
|
|
/* Set the rtx used for the function return value. Put this in its
|
3101 |
|
|
own variable so any optimizers that need this information don't have
|
3102 |
|
|
to include tree.h. Do this here so it gets done when an inlined
|
3103 |
|
|
function gets output. */
|
3104 |
|
|
|
3105 |
|
|
current_function_return_rtx
|
3106 |
|
|
= (DECL_RTL_SET_P (DECL_RESULT (fndecl))
|
3107 |
|
|
? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
|
3108 |
|
|
|
3109 |
|
|
/* If scalar return value was computed in a pseudo-reg, or was a named
|
3110 |
|
|
return value that got dumped to the stack, copy that to the hard
|
3111 |
|
|
return register. */
|
3112 |
|
|
if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
|
3113 |
|
|
{
|
3114 |
|
|
tree decl_result = DECL_RESULT (fndecl);
|
3115 |
|
|
rtx decl_rtl = DECL_RTL (decl_result);
|
3116 |
|
|
|
3117 |
|
|
if (REG_P (decl_rtl)
|
3118 |
|
|
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
|
3119 |
|
|
: DECL_REGISTER (decl_result))
|
3120 |
|
|
{
|
3121 |
|
|
rtx real_decl_rtl;
|
3122 |
|
|
|
3123 |
|
|
real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
|
3124 |
|
|
fndecl, true);
|
3125 |
|
|
REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
|
3126 |
|
|
/* The delay slot scheduler assumes that current_function_return_rtx
|
3127 |
|
|
holds the hard register containing the return value, not a
|
3128 |
|
|
temporary pseudo. */
|
3129 |
|
|
current_function_return_rtx = real_decl_rtl;
|
3130 |
|
|
}
|
3131 |
|
|
}
|
3132 |
|
|
}
|
3133 |
|
|
|
3134 |
|
|
/* A subroutine of gimplify_parameters, invoked via walk_tree.
|
3135 |
|
|
For all seen types, gimplify their sizes. */
|
3136 |
|
|
|
3137 |
|
|
static tree
|
3138 |
|
|
gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
|
3139 |
|
|
{
|
3140 |
|
|
tree t = *tp;
|
3141 |
|
|
|
3142 |
|
|
*walk_subtrees = 0;
|
3143 |
|
|
if (TYPE_P (t))
|
3144 |
|
|
{
|
3145 |
|
|
if (POINTER_TYPE_P (t))
|
3146 |
|
|
*walk_subtrees = 1;
|
3147 |
|
|
else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
|
3148 |
|
|
&& !TYPE_SIZES_GIMPLIFIED (t))
|
3149 |
|
|
{
|
3150 |
|
|
gimplify_type_sizes (t, (tree *) data);
|
3151 |
|
|
*walk_subtrees = 1;
|
3152 |
|
|
}
|
3153 |
|
|
}
|
3154 |
|
|
|
3155 |
|
|
return NULL;
|
3156 |
|
|
}
|
3157 |
|
|
|
3158 |
|
|
/* Gimplify the parameter list for current_function_decl. This involves
|
3159 |
|
|
evaluating SAVE_EXPRs of variable sized parameters and generating code
|
3160 |
|
|
to implement callee-copies reference parameters. Returns a list of
|
3161 |
|
|
statements to add to the beginning of the function, or NULL if nothing
|
3162 |
|
|
to do. */
|
3163 |
|
|
|
3164 |
|
|
tree
|
3165 |
|
|
gimplify_parameters (void)
|
3166 |
|
|
{
|
3167 |
|
|
struct assign_parm_data_all all;
|
3168 |
|
|
tree fnargs, parm, stmts = NULL;
|
3169 |
|
|
|
3170 |
|
|
assign_parms_initialize_all (&all);
|
3171 |
|
|
fnargs = assign_parms_augmented_arg_list (&all);
|
3172 |
|
|
|
3173 |
|
|
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
|
3174 |
|
|
{
|
3175 |
|
|
struct assign_parm_data_one data;
|
3176 |
|
|
|
3177 |
|
|
/* Extract the type of PARM; adjust it according to ABI. */
|
3178 |
|
|
assign_parm_find_data_types (&all, parm, &data);
|
3179 |
|
|
|
3180 |
|
|
/* Early out for errors and void parameters. */
|
3181 |
|
|
if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
|
3182 |
|
|
continue;
|
3183 |
|
|
|
3184 |
|
|
/* Update info on where next arg arrives in registers. */
|
3185 |
|
|
FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
|
3186 |
|
|
data.passed_type, data.named_arg);
|
3187 |
|
|
|
3188 |
|
|
/* ??? Once upon a time variable_size stuffed parameter list
|
3189 |
|
|
SAVE_EXPRs (amongst others) onto a pending sizes list. This
|
3190 |
|
|
turned out to be less than manageable in the gimple world.
|
3191 |
|
|
Now we have to hunt them down ourselves. */
|
3192 |
|
|
walk_tree_without_duplicates (&data.passed_type,
|
3193 |
|
|
gimplify_parm_type, &stmts);
|
3194 |
|
|
|
3195 |
|
|
if (!TREE_CONSTANT (DECL_SIZE (parm)))
|
3196 |
|
|
{
|
3197 |
|
|
gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
|
3198 |
|
|
gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
|
3199 |
|
|
}
|
3200 |
|
|
|
3201 |
|
|
if (data.passed_pointer)
|
3202 |
|
|
{
|
3203 |
|
|
tree type = TREE_TYPE (data.passed_type);
|
3204 |
|
|
if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
|
3205 |
|
|
type, data.named_arg))
|
3206 |
|
|
{
|
3207 |
|
|
tree local, t;
|
3208 |
|
|
|
3209 |
|
|
/* For constant sized objects, this is trivial; for
|
3210 |
|
|
variable-sized objects, we have to play games. */
|
3211 |
|
|
if (TREE_CONSTANT (DECL_SIZE (parm)))
|
3212 |
|
|
{
|
3213 |
|
|
local = create_tmp_var (type, get_name (parm));
|
3214 |
|
|
DECL_IGNORED_P (local) = 0;
|
3215 |
|
|
}
|
3216 |
|
|
else
|
3217 |
|
|
{
|
3218 |
|
|
tree ptr_type, addr, args;
|
3219 |
|
|
|
3220 |
|
|
ptr_type = build_pointer_type (type);
|
3221 |
|
|
addr = create_tmp_var (ptr_type, get_name (parm));
|
3222 |
|
|
DECL_IGNORED_P (addr) = 0;
|
3223 |
|
|
local = build_fold_indirect_ref (addr);
|
3224 |
|
|
|
3225 |
|
|
args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
|
3226 |
|
|
t = built_in_decls[BUILT_IN_ALLOCA];
|
3227 |
|
|
t = build_function_call_expr (t, args);
|
3228 |
|
|
t = fold_convert (ptr_type, t);
|
3229 |
|
|
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
|
3230 |
|
|
gimplify_and_add (t, &stmts);
|
3231 |
|
|
}
|
3232 |
|
|
|
3233 |
|
|
t = build2 (MODIFY_EXPR, void_type_node, local, parm);
|
3234 |
|
|
gimplify_and_add (t, &stmts);
|
3235 |
|
|
|
3236 |
|
|
SET_DECL_VALUE_EXPR (parm, local);
|
3237 |
|
|
DECL_HAS_VALUE_EXPR_P (parm) = 1;
|
3238 |
|
|
}
|
3239 |
|
|
}
|
3240 |
|
|
}
|
3241 |
|
|
|
3242 |
|
|
return stmts;
|
3243 |
|
|
}
|
3244 |
|
|
|
3245 |
|
|
/* Indicate whether REGNO is an incoming argument to the current function
|
3246 |
|
|
that was promoted to a wider mode. If so, return the RTX for the
|
3247 |
|
|
register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
|
3248 |
|
|
that REGNO is promoted from and whether the promotion was signed or
|
3249 |
|
|
unsigned. */
|
3250 |
|
|
|
3251 |
|
|
rtx
|
3252 |
|
|
promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
|
3253 |
|
|
{
|
3254 |
|
|
tree arg;
|
3255 |
|
|
|
3256 |
|
|
for (arg = DECL_ARGUMENTS (current_function_decl); arg;
|
3257 |
|
|
arg = TREE_CHAIN (arg))
|
3258 |
|
|
if (REG_P (DECL_INCOMING_RTL (arg))
|
3259 |
|
|
&& REGNO (DECL_INCOMING_RTL (arg)) == regno
|
3260 |
|
|
&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
|
3261 |
|
|
{
|
3262 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
|
3263 |
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
|
3264 |
|
|
|
3265 |
|
|
mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
|
3266 |
|
|
if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
|
3267 |
|
|
&& mode != DECL_MODE (arg))
|
3268 |
|
|
{
|
3269 |
|
|
*pmode = DECL_MODE (arg);
|
3270 |
|
|
*punsignedp = unsignedp;
|
3271 |
|
|
return DECL_INCOMING_RTL (arg);
|
3272 |
|
|
}
|
3273 |
|
|
}
|
3274 |
|
|
|
3275 |
|
|
return 0;
|
3276 |
|
|
}
|
3277 |
|
|
|
3278 |
|
|
|
3279 |
|
|
/* Compute the size and offset from the start of the stacked arguments for a
|
3280 |
|
|
parm passed in mode PASSED_MODE and with type TYPE.
|
3281 |
|
|
|
3282 |
|
|
INITIAL_OFFSET_PTR points to the current offset into the stacked
|
3283 |
|
|
arguments.
|
3284 |
|
|
|
3285 |
|
|
The starting offset and size for this parm are returned in
|
3286 |
|
|
LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
|
3287 |
|
|
nonzero, the offset is that of stack slot, which is returned in
|
3288 |
|
|
LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
|
3289 |
|
|
padding required from the initial offset ptr to the stack slot.
|
3290 |
|
|
|
3291 |
|
|
IN_REGS is nonzero if the argument will be passed in registers. It will
|
3292 |
|
|
never be set if REG_PARM_STACK_SPACE is not defined.
|
3293 |
|
|
|
3294 |
|
|
FNDECL is the function in which the argument was defined.
|
3295 |
|
|
|
3296 |
|
|
There are two types of rounding that are done. The first, controlled by
|
3297 |
|
|
FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
|
3298 |
|
|
list to be aligned to the specific boundary (in bits). This rounding
|
3299 |
|
|
affects the initial and starting offsets, but not the argument size.
|
3300 |
|
|
|
3301 |
|
|
The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
|
3302 |
|
|
optionally rounds the size of the parm to PARM_BOUNDARY. The
|
3303 |
|
|
initial offset is not affected by this rounding, while the size always
|
3304 |
|
|
is and the starting offset may be. */
|
3305 |
|
|
|
3306 |
|
|
/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
|
3307 |
|
|
INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
|
3308 |
|
|
callers pass in the total size of args so far as
|
3309 |
|
|
INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
|
3310 |
|
|
|
3311 |
|
|
void
|
3312 |
|
|
locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
|
3313 |
|
|
int partial, tree fndecl ATTRIBUTE_UNUSED,
|
3314 |
|
|
struct args_size *initial_offset_ptr,
|
3315 |
|
|
struct locate_and_pad_arg_data *locate)
|
3316 |
|
|
{
|
3317 |
|
|
tree sizetree;
|
3318 |
|
|
enum direction where_pad;
|
3319 |
|
|
unsigned int boundary;
|
3320 |
|
|
int reg_parm_stack_space = 0;
|
3321 |
|
|
int part_size_in_regs;
|
3322 |
|
|
|
3323 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3324 |
|
|
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
3325 |
|
|
|
3326 |
|
|
/* If we have found a stack parm before we reach the end of the
|
3327 |
|
|
area reserved for registers, skip that area. */
|
3328 |
|
|
if (! in_regs)
|
3329 |
|
|
{
|
3330 |
|
|
if (reg_parm_stack_space > 0)
|
3331 |
|
|
{
|
3332 |
|
|
if (initial_offset_ptr->var)
|
3333 |
|
|
{
|
3334 |
|
|
initial_offset_ptr->var
|
3335 |
|
|
= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
|
3336 |
|
|
ssize_int (reg_parm_stack_space));
|
3337 |
|
|
initial_offset_ptr->constant = 0;
|
3338 |
|
|
}
|
3339 |
|
|
else if (initial_offset_ptr->constant < reg_parm_stack_space)
|
3340 |
|
|
initial_offset_ptr->constant = reg_parm_stack_space;
|
3341 |
|
|
}
|
3342 |
|
|
}
|
3343 |
|
|
#endif /* REG_PARM_STACK_SPACE */
|
3344 |
|
|
|
3345 |
|
|
part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
|
3346 |
|
|
|
3347 |
|
|
sizetree
|
3348 |
|
|
= type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
|
3349 |
|
|
where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
|
3350 |
|
|
boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
|
3351 |
|
|
locate->where_pad = where_pad;
|
3352 |
|
|
locate->boundary = boundary;
|
3353 |
|
|
|
3354 |
|
|
/* Remember if the outgoing parameter requires extra alignment on the
|
3355 |
|
|
calling function side. */
|
3356 |
|
|
if (boundary > PREFERRED_STACK_BOUNDARY)
|
3357 |
|
|
boundary = PREFERRED_STACK_BOUNDARY;
|
3358 |
|
|
if (cfun->stack_alignment_needed < boundary)
|
3359 |
|
|
cfun->stack_alignment_needed = boundary;
|
3360 |
|
|
|
3361 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
3362 |
|
|
locate->slot_offset.constant = -initial_offset_ptr->constant;
|
3363 |
|
|
if (initial_offset_ptr->var)
|
3364 |
|
|
locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
|
3365 |
|
|
initial_offset_ptr->var);
|
3366 |
|
|
|
3367 |
|
|
{
|
3368 |
|
|
tree s2 = sizetree;
|
3369 |
|
|
if (where_pad != none
|
3370 |
|
|
&& (!host_integerp (sizetree, 1)
|
3371 |
|
|
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
|
3372 |
|
|
s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
|
3373 |
|
|
SUB_PARM_SIZE (locate->slot_offset, s2);
|
3374 |
|
|
}
|
3375 |
|
|
|
3376 |
|
|
locate->slot_offset.constant += part_size_in_regs;
|
3377 |
|
|
|
3378 |
|
|
if (!in_regs
|
3379 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3380 |
|
|
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
3381 |
|
|
#endif
|
3382 |
|
|
)
|
3383 |
|
|
pad_to_arg_alignment (&locate->slot_offset, boundary,
|
3384 |
|
|
&locate->alignment_pad);
|
3385 |
|
|
|
3386 |
|
|
locate->size.constant = (-initial_offset_ptr->constant
|
3387 |
|
|
- locate->slot_offset.constant);
|
3388 |
|
|
if (initial_offset_ptr->var)
|
3389 |
|
|
locate->size.var = size_binop (MINUS_EXPR,
|
3390 |
|
|
size_binop (MINUS_EXPR,
|
3391 |
|
|
ssize_int (0),
|
3392 |
|
|
initial_offset_ptr->var),
|
3393 |
|
|
locate->slot_offset.var);
|
3394 |
|
|
|
3395 |
|
|
/* Pad_below needs the pre-rounded size to know how much to pad
|
3396 |
|
|
below. */
|
3397 |
|
|
locate->offset = locate->slot_offset;
|
3398 |
|
|
if (where_pad == downward)
|
3399 |
|
|
pad_below (&locate->offset, passed_mode, sizetree);
|
3400 |
|
|
|
3401 |
|
|
#else /* !ARGS_GROW_DOWNWARD */
|
3402 |
|
|
if (!in_regs
|
3403 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
3404 |
|
|
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
3405 |
|
|
#endif
|
3406 |
|
|
)
|
3407 |
|
|
pad_to_arg_alignment (initial_offset_ptr, boundary,
|
3408 |
|
|
&locate->alignment_pad);
|
3409 |
|
|
locate->slot_offset = *initial_offset_ptr;
|
3410 |
|
|
|
3411 |
|
|
#ifdef PUSH_ROUNDING
|
3412 |
|
|
if (passed_mode != BLKmode)
|
3413 |
|
|
sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
|
3414 |
|
|
#endif
|
3415 |
|
|
|
3416 |
|
|
/* Pad_below needs the pre-rounded size to know how much to pad below
|
3417 |
|
|
so this must be done before rounding up. */
|
3418 |
|
|
locate->offset = locate->slot_offset;
|
3419 |
|
|
if (where_pad == downward)
|
3420 |
|
|
pad_below (&locate->offset, passed_mode, sizetree);
|
3421 |
|
|
|
3422 |
|
|
if (where_pad != none
|
3423 |
|
|
&& (!host_integerp (sizetree, 1)
|
3424 |
|
|
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
|
3425 |
|
|
sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
|
3426 |
|
|
|
3427 |
|
|
ADD_PARM_SIZE (locate->size, sizetree);
|
3428 |
|
|
|
3429 |
|
|
locate->size.constant -= part_size_in_regs;
|
3430 |
|
|
#endif /* ARGS_GROW_DOWNWARD */
|
3431 |
|
|
}
|
3432 |
|
|
|
3433 |
|
|
/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
|
3434 |
|
|
BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
|
3435 |
|
|
|
3436 |
|
|
static void
|
3437 |
|
|
pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
|
3438 |
|
|
struct args_size *alignment_pad)
|
3439 |
|
|
{
|
3440 |
|
|
tree save_var = NULL_TREE;
|
3441 |
|
|
HOST_WIDE_INT save_constant = 0;
|
3442 |
|
|
int boundary_in_bytes = boundary / BITS_PER_UNIT;
|
3443 |
|
|
HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
|
3444 |
|
|
|
3445 |
|
|
#ifdef SPARC_STACK_BOUNDARY_HACK
|
3446 |
|
|
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
|
3447 |
|
|
the real alignment of %sp. However, when it does this, the
|
3448 |
|
|
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
|
3449 |
|
|
if (SPARC_STACK_BOUNDARY_HACK)
|
3450 |
|
|
sp_offset = 0;
|
3451 |
|
|
#endif
|
3452 |
|
|
|
3453 |
|
|
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
|
3454 |
|
|
{
|
3455 |
|
|
save_var = offset_ptr->var;
|
3456 |
|
|
save_constant = offset_ptr->constant;
|
3457 |
|
|
}
|
3458 |
|
|
|
3459 |
|
|
alignment_pad->var = NULL_TREE;
|
3460 |
|
|
alignment_pad->constant = 0;
|
3461 |
|
|
|
3462 |
|
|
if (boundary > BITS_PER_UNIT)
|
3463 |
|
|
{
|
3464 |
|
|
if (offset_ptr->var)
|
3465 |
|
|
{
|
3466 |
|
|
tree sp_offset_tree = ssize_int (sp_offset);
|
3467 |
|
|
tree offset = size_binop (PLUS_EXPR,
|
3468 |
|
|
ARGS_SIZE_TREE (*offset_ptr),
|
3469 |
|
|
sp_offset_tree);
|
3470 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
3471 |
|
|
tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
|
3472 |
|
|
#else
|
3473 |
|
|
tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
|
3474 |
|
|
#endif
|
3475 |
|
|
|
3476 |
|
|
offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
|
3477 |
|
|
/* ARGS_SIZE_TREE includes constant term. */
|
3478 |
|
|
offset_ptr->constant = 0;
|
3479 |
|
|
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
|
3480 |
|
|
alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
|
3481 |
|
|
save_var);
|
3482 |
|
|
}
|
3483 |
|
|
else
|
3484 |
|
|
{
|
3485 |
|
|
offset_ptr->constant = -sp_offset +
|
3486 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
3487 |
|
|
FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
|
3488 |
|
|
#else
|
3489 |
|
|
CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
|
3490 |
|
|
#endif
|
3491 |
|
|
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
|
3492 |
|
|
alignment_pad->constant = offset_ptr->constant - save_constant;
|
3493 |
|
|
}
|
3494 |
|
|
}
|
3495 |
|
|
}
|
3496 |
|
|
|
3497 |
|
|
static void
|
3498 |
|
|
pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
|
3499 |
|
|
{
|
3500 |
|
|
if (passed_mode != BLKmode)
|
3501 |
|
|
{
|
3502 |
|
|
if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
|
3503 |
|
|
offset_ptr->constant
|
3504 |
|
|
+= (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
|
3505 |
|
|
/ PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
|
3506 |
|
|
- GET_MODE_SIZE (passed_mode));
|
3507 |
|
|
}
|
3508 |
|
|
else
|
3509 |
|
|
{
|
3510 |
|
|
if (TREE_CODE (sizetree) != INTEGER_CST
|
3511 |
|
|
|| (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
|
3512 |
|
|
{
|
3513 |
|
|
/* Round the size up to multiple of PARM_BOUNDARY bits. */
|
3514 |
|
|
tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
|
3515 |
|
|
/* Add it in. */
|
3516 |
|
|
ADD_PARM_SIZE (*offset_ptr, s2);
|
3517 |
|
|
SUB_PARM_SIZE (*offset_ptr, sizetree);
|
3518 |
|
|
}
|
3519 |
|
|
}
|
3520 |
|
|
}
|
3521 |
|
|
|
3522 |
|
|
/* Walk the tree of blocks describing the binding levels within a function
|
3523 |
|
|
and warn about variables the might be killed by setjmp or vfork.
|
3524 |
|
|
This is done after calling flow_analysis and before global_alloc
|
3525 |
|
|
clobbers the pseudo-regs to hard regs. */
|
3526 |
|
|
|
3527 |
|
|
void
|
3528 |
|
|
setjmp_vars_warning (tree block)
|
3529 |
|
|
{
|
3530 |
|
|
tree decl, sub;
|
3531 |
|
|
|
3532 |
|
|
for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
|
3533 |
|
|
{
|
3534 |
|
|
if (TREE_CODE (decl) == VAR_DECL
|
3535 |
|
|
&& DECL_RTL_SET_P (decl)
|
3536 |
|
|
&& REG_P (DECL_RTL (decl))
|
3537 |
|
|
&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
|
3538 |
|
|
warning (0, "variable %q+D might be clobbered by %<longjmp%>"
|
3539 |
|
|
" or %<vfork%>",
|
3540 |
|
|
decl);
|
3541 |
|
|
}
|
3542 |
|
|
|
3543 |
|
|
for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
|
3544 |
|
|
setjmp_vars_warning (sub);
|
3545 |
|
|
}
|
3546 |
|
|
|
3547 |
|
|
/* Do the appropriate part of setjmp_vars_warning
|
3548 |
|
|
but for arguments instead of local variables. */
|
3549 |
|
|
|
3550 |
|
|
void
|
3551 |
|
|
setjmp_args_warning (void)
|
3552 |
|
|
{
|
3553 |
|
|
tree decl;
|
3554 |
|
|
for (decl = DECL_ARGUMENTS (current_function_decl);
|
3555 |
|
|
decl; decl = TREE_CHAIN (decl))
|
3556 |
|
|
if (DECL_RTL (decl) != 0
|
3557 |
|
|
&& REG_P (DECL_RTL (decl))
|
3558 |
|
|
&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
|
3559 |
|
|
warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
|
3560 |
|
|
decl);
|
3561 |
|
|
}
|
3562 |
|
|
|
3563 |
|
|
|
3564 |
|
|
/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
|
3565 |
|
|
and create duplicate blocks. */
|
3566 |
|
|
/* ??? Need an option to either create block fragments or to create
|
3567 |
|
|
abstract origin duplicates of a source block. It really depends
|
3568 |
|
|
on what optimization has been performed. */
|
3569 |
|
|
|
3570 |
|
|
void
|
3571 |
|
|
reorder_blocks (void)
|
3572 |
|
|
{
|
3573 |
|
|
tree block = DECL_INITIAL (current_function_decl);
|
3574 |
|
|
VEC(tree,heap) *block_stack;
|
3575 |
|
|
|
3576 |
|
|
if (block == NULL_TREE)
|
3577 |
|
|
return;
|
3578 |
|
|
|
3579 |
|
|
block_stack = VEC_alloc (tree, heap, 10);
|
3580 |
|
|
|
3581 |
|
|
/* Reset the TREE_ASM_WRITTEN bit for all blocks. */
|
3582 |
|
|
clear_block_marks (block);
|
3583 |
|
|
|
3584 |
|
|
/* Prune the old trees away, so that they don't get in the way. */
|
3585 |
|
|
BLOCK_SUBBLOCKS (block) = NULL_TREE;
|
3586 |
|
|
BLOCK_CHAIN (block) = NULL_TREE;
|
3587 |
|
|
|
3588 |
|
|
/* Recreate the block tree from the note nesting. */
|
3589 |
|
|
reorder_blocks_1 (get_insns (), block, &block_stack);
|
3590 |
|
|
BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
|
3591 |
|
|
|
3592 |
|
|
VEC_free (tree, heap, block_stack);
|
3593 |
|
|
}
|
3594 |
|
|
|
3595 |
|
|
/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
|
3596 |
|
|
|
3597 |
|
|
void
|
3598 |
|
|
clear_block_marks (tree block)
|
3599 |
|
|
{
|
3600 |
|
|
while (block)
|
3601 |
|
|
{
|
3602 |
|
|
TREE_ASM_WRITTEN (block) = 0;
|
3603 |
|
|
clear_block_marks (BLOCK_SUBBLOCKS (block));
|
3604 |
|
|
block = BLOCK_CHAIN (block);
|
3605 |
|
|
}
|
3606 |
|
|
}
|
3607 |
|
|
|
3608 |
|
|
static void
|
3609 |
|
|
reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
|
3610 |
|
|
{
|
3611 |
|
|
rtx insn;
|
3612 |
|
|
|
3613 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
3614 |
|
|
{
|
3615 |
|
|
if (NOTE_P (insn))
|
3616 |
|
|
{
|
3617 |
|
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
|
3618 |
|
|
{
|
3619 |
|
|
tree block = NOTE_BLOCK (insn);
|
3620 |
|
|
tree origin;
|
3621 |
|
|
|
3622 |
|
|
origin = (BLOCK_FRAGMENT_ORIGIN (block)
|
3623 |
|
|
? BLOCK_FRAGMENT_ORIGIN (block)
|
3624 |
|
|
: block);
|
3625 |
|
|
|
3626 |
|
|
/* If we have seen this block before, that means it now
|
3627 |
|
|
spans multiple address regions. Create a new fragment. */
|
3628 |
|
|
if (TREE_ASM_WRITTEN (block))
|
3629 |
|
|
{
|
3630 |
|
|
tree new_block = copy_node (block);
|
3631 |
|
|
|
3632 |
|
|
BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
|
3633 |
|
|
BLOCK_FRAGMENT_CHAIN (new_block)
|
3634 |
|
|
= BLOCK_FRAGMENT_CHAIN (origin);
|
3635 |
|
|
BLOCK_FRAGMENT_CHAIN (origin) = new_block;
|
3636 |
|
|
|
3637 |
|
|
NOTE_BLOCK (insn) = new_block;
|
3638 |
|
|
block = new_block;
|
3639 |
|
|
}
|
3640 |
|
|
|
3641 |
|
|
BLOCK_SUBBLOCKS (block) = 0;
|
3642 |
|
|
TREE_ASM_WRITTEN (block) = 1;
|
3643 |
|
|
/* When there's only one block for the entire function,
|
3644 |
|
|
current_block == block and we mustn't do this, it
|
3645 |
|
|
will cause infinite recursion. */
|
3646 |
|
|
if (block != current_block)
|
3647 |
|
|
{
|
3648 |
|
|
if (block != origin)
|
3649 |
|
|
gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
|
3650 |
|
|
|
3651 |
|
|
BLOCK_SUPERCONTEXT (block) = current_block;
|
3652 |
|
|
BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
|
3653 |
|
|
BLOCK_SUBBLOCKS (current_block) = block;
|
3654 |
|
|
current_block = origin;
|
3655 |
|
|
}
|
3656 |
|
|
VEC_safe_push (tree, heap, *p_block_stack, block);
|
3657 |
|
|
}
|
3658 |
|
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
|
3659 |
|
|
{
|
3660 |
|
|
NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
|
3661 |
|
|
BLOCK_SUBBLOCKS (current_block)
|
3662 |
|
|
= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
|
3663 |
|
|
current_block = BLOCK_SUPERCONTEXT (current_block);
|
3664 |
|
|
}
|
3665 |
|
|
}
|
3666 |
|
|
}
|
3667 |
|
|
}
|
3668 |
|
|
|
3669 |
|
|
/* Reverse the order of elements in the chain T of blocks,
|
3670 |
|
|
and return the new head of the chain (old last element). */
|
3671 |
|
|
|
3672 |
|
|
tree
|
3673 |
|
|
blocks_nreverse (tree t)
|
3674 |
|
|
{
|
3675 |
|
|
tree prev = 0, decl, next;
|
3676 |
|
|
for (decl = t; decl; decl = next)
|
3677 |
|
|
{
|
3678 |
|
|
next = BLOCK_CHAIN (decl);
|
3679 |
|
|
BLOCK_CHAIN (decl) = prev;
|
3680 |
|
|
prev = decl;
|
3681 |
|
|
}
|
3682 |
|
|
return prev;
|
3683 |
|
|
}
|
3684 |
|
|
|
3685 |
|
|
/* Count the subblocks of the list starting with BLOCK. If VECTOR is
|
3686 |
|
|
non-NULL, list them all into VECTOR, in a depth-first preorder
|
3687 |
|
|
traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
|
3688 |
|
|
blocks. */
|
3689 |
|
|
|
3690 |
|
|
static int
|
3691 |
|
|
all_blocks (tree block, tree *vector)
|
3692 |
|
|
{
|
3693 |
|
|
int n_blocks = 0;
|
3694 |
|
|
|
3695 |
|
|
while (block)
|
3696 |
|
|
{
|
3697 |
|
|
TREE_ASM_WRITTEN (block) = 0;
|
3698 |
|
|
|
3699 |
|
|
/* Record this block. */
|
3700 |
|
|
if (vector)
|
3701 |
|
|
vector[n_blocks] = block;
|
3702 |
|
|
|
3703 |
|
|
++n_blocks;
|
3704 |
|
|
|
3705 |
|
|
/* Record the subblocks, and their subblocks... */
|
3706 |
|
|
n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
|
3707 |
|
|
vector ? vector + n_blocks : 0);
|
3708 |
|
|
block = BLOCK_CHAIN (block);
|
3709 |
|
|
}
|
3710 |
|
|
|
3711 |
|
|
return n_blocks;
|
3712 |
|
|
}
|
3713 |
|
|
|
3714 |
|
|
/* Return a vector containing all the blocks rooted at BLOCK. The
|
3715 |
|
|
number of elements in the vector is stored in N_BLOCKS_P. The
|
3716 |
|
|
vector is dynamically allocated; it is the caller's responsibility
|
3717 |
|
|
to call `free' on the pointer returned. */
|
3718 |
|
|
|
3719 |
|
|
static tree *
|
3720 |
|
|
get_block_vector (tree block, int *n_blocks_p)
|
3721 |
|
|
{
|
3722 |
|
|
tree *block_vector;
|
3723 |
|
|
|
3724 |
|
|
*n_blocks_p = all_blocks (block, NULL);
|
3725 |
|
|
block_vector = XNEWVEC (tree, *n_blocks_p);
|
3726 |
|
|
all_blocks (block, block_vector);
|
3727 |
|
|
|
3728 |
|
|
return block_vector;
|
3729 |
|
|
}
|
3730 |
|
|
|
3731 |
|
|
static GTY(()) int next_block_index = 2;
|
3732 |
|
|
|
3733 |
|
|
/* Set BLOCK_NUMBER for all the blocks in FN. */
|
3734 |
|
|
|
3735 |
|
|
void
|
3736 |
|
|
number_blocks (tree fn)
|
3737 |
|
|
{
|
3738 |
|
|
int i;
|
3739 |
|
|
int n_blocks;
|
3740 |
|
|
tree *block_vector;
|
3741 |
|
|
|
3742 |
|
|
/* For SDB and XCOFF debugging output, we start numbering the blocks
|
3743 |
|
|
from 1 within each function, rather than keeping a running
|
3744 |
|
|
count. */
|
3745 |
|
|
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
|
3746 |
|
|
if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
|
3747 |
|
|
next_block_index = 1;
|
3748 |
|
|
#endif
|
3749 |
|
|
|
3750 |
|
|
block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
|
3751 |
|
|
|
3752 |
|
|
/* The top-level BLOCK isn't numbered at all. */
|
3753 |
|
|
for (i = 1; i < n_blocks; ++i)
|
3754 |
|
|
/* We number the blocks from two. */
|
3755 |
|
|
BLOCK_NUMBER (block_vector[i]) = next_block_index++;
|
3756 |
|
|
|
3757 |
|
|
free (block_vector);
|
3758 |
|
|
|
3759 |
|
|
return;
|
3760 |
|
|
}
|
3761 |
|
|
|
3762 |
|
|
/* If VAR is present in a subblock of BLOCK, return the subblock. */
|
3763 |
|
|
|
3764 |
|
|
tree
|
3765 |
|
|
debug_find_var_in_block_tree (tree var, tree block)
|
3766 |
|
|
{
|
3767 |
|
|
tree t;
|
3768 |
|
|
|
3769 |
|
|
for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
|
3770 |
|
|
if (t == var)
|
3771 |
|
|
return block;
|
3772 |
|
|
|
3773 |
|
|
for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
|
3774 |
|
|
{
|
3775 |
|
|
tree ret = debug_find_var_in_block_tree (var, t);
|
3776 |
|
|
if (ret)
|
3777 |
|
|
return ret;
|
3778 |
|
|
}
|
3779 |
|
|
|
3780 |
|
|
return NULL_TREE;
|
3781 |
|
|
}
|
3782 |
|
|
|
3783 |
|
|
/* Allocate a function structure for FNDECL and set its contents
|
3784 |
|
|
to the defaults. */
|
3785 |
|
|
|
3786 |
|
|
void
|
3787 |
|
|
allocate_struct_function (tree fndecl)
|
3788 |
|
|
{
|
3789 |
|
|
tree result;
|
3790 |
|
|
tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
|
3791 |
|
|
|
3792 |
|
|
cfun = ggc_alloc_cleared (sizeof (struct function));
|
3793 |
|
|
|
3794 |
|
|
cfun->stack_alignment_needed = STACK_BOUNDARY;
|
3795 |
|
|
cfun->preferred_stack_boundary = STACK_BOUNDARY;
|
3796 |
|
|
|
3797 |
|
|
current_function_funcdef_no = funcdef_no++;
|
3798 |
|
|
|
3799 |
|
|
cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
|
3800 |
|
|
|
3801 |
|
|
init_eh_for_function ();
|
3802 |
|
|
|
3803 |
|
|
lang_hooks.function.init (cfun);
|
3804 |
|
|
if (init_machine_status)
|
3805 |
|
|
cfun->machine = (*init_machine_status) ();
|
3806 |
|
|
|
3807 |
|
|
if (fndecl == NULL)
|
3808 |
|
|
return;
|
3809 |
|
|
|
3810 |
|
|
DECL_STRUCT_FUNCTION (fndecl) = cfun;
|
3811 |
|
|
cfun->decl = fndecl;
|
3812 |
|
|
|
3813 |
|
|
result = DECL_RESULT (fndecl);
|
3814 |
|
|
if (aggregate_value_p (result, fndecl))
|
3815 |
|
|
{
|
3816 |
|
|
#ifdef PCC_STATIC_STRUCT_RETURN
|
3817 |
|
|
current_function_returns_pcc_struct = 1;
|
3818 |
|
|
#endif
|
3819 |
|
|
current_function_returns_struct = 1;
|
3820 |
|
|
}
|
3821 |
|
|
|
3822 |
|
|
current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
|
3823 |
|
|
|
3824 |
|
|
current_function_stdarg
|
3825 |
|
|
= (fntype
|
3826 |
|
|
&& TYPE_ARG_TYPES (fntype) != 0
|
3827 |
|
|
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
3828 |
|
|
!= void_type_node));
|
3829 |
|
|
|
3830 |
|
|
/* Assume all registers in stdarg functions need to be saved. */
|
3831 |
|
|
cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
|
3832 |
|
|
cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
|
3833 |
|
|
}
|
3834 |
|
|
|
3835 |
|
|
/* Reset cfun, and other non-struct-function variables to defaults as
|
3836 |
|
|
appropriate for emitting rtl at the start of a function. */
|
3837 |
|
|
|
3838 |
|
|
static void
|
3839 |
|
|
prepare_function_start (tree fndecl)
|
3840 |
|
|
{
|
3841 |
|
|
if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
|
3842 |
|
|
cfun = DECL_STRUCT_FUNCTION (fndecl);
|
3843 |
|
|
else
|
3844 |
|
|
allocate_struct_function (fndecl);
|
3845 |
|
|
init_emit ();
|
3846 |
|
|
init_varasm_status (cfun);
|
3847 |
|
|
init_expr ();
|
3848 |
|
|
|
3849 |
|
|
cse_not_expected = ! optimize;
|
3850 |
|
|
|
3851 |
|
|
/* Caller save not needed yet. */
|
3852 |
|
|
caller_save_needed = 0;
|
3853 |
|
|
|
3854 |
|
|
/* We haven't done register allocation yet. */
|
3855 |
|
|
reg_renumber = 0;
|
3856 |
|
|
|
3857 |
|
|
/* Indicate that we have not instantiated virtual registers yet. */
|
3858 |
|
|
virtuals_instantiated = 0;
|
3859 |
|
|
|
3860 |
|
|
/* Indicate that we want CONCATs now. */
|
3861 |
|
|
generating_concat_p = 1;
|
3862 |
|
|
|
3863 |
|
|
/* Indicate we have no need of a frame pointer yet. */
|
3864 |
|
|
frame_pointer_needed = 0;
|
3865 |
|
|
}
|
3866 |
|
|
|
3867 |
|
|
/* Initialize the rtl expansion mechanism so that we can do simple things
|
3868 |
|
|
like generate sequences. This is used to provide a context during global
|
3869 |
|
|
initialization of some passes. */
|
3870 |
|
|
void
|
3871 |
|
|
init_dummy_function_start (void)
|
3872 |
|
|
{
|
3873 |
|
|
prepare_function_start (NULL);
|
3874 |
|
|
}
|
3875 |
|
|
|
3876 |
|
|
/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
|
3877 |
|
|
and initialize static variables for generating RTL for the statements
|
3878 |
|
|
of the function. */
|
3879 |
|
|
|
3880 |
|
|
void
|
3881 |
|
|
init_function_start (tree subr)
|
3882 |
|
|
{
|
3883 |
|
|
prepare_function_start (subr);
|
3884 |
|
|
|
3885 |
|
|
/* Prevent ever trying to delete the first instruction of a
|
3886 |
|
|
function. Also tell final how to output a linenum before the
|
3887 |
|
|
function prologue. Note linenums could be missing, e.g. when
|
3888 |
|
|
compiling a Java .class file. */
|
3889 |
|
|
if (! DECL_IS_BUILTIN (subr))
|
3890 |
|
|
emit_line_note (DECL_SOURCE_LOCATION (subr));
|
3891 |
|
|
|
3892 |
|
|
/* Make sure first insn is a note even if we don't want linenums.
|
3893 |
|
|
This makes sure the first insn will never be deleted.
|
3894 |
|
|
Also, final expects a note to appear there. */
|
3895 |
|
|
emit_note (NOTE_INSN_DELETED);
|
3896 |
|
|
|
3897 |
|
|
/* Warn if this value is an aggregate type,
|
3898 |
|
|
regardless of which calling convention we are using for it. */
|
3899 |
|
|
if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
|
3900 |
|
|
warning (OPT_Waggregate_return, "function returns an aggregate");
|
3901 |
|
|
}
|
3902 |
|
|
|
3903 |
|
|
/* Make sure all values used by the optimization passes have sane
|
3904 |
|
|
defaults. */
|
3905 |
|
|
unsigned int
|
3906 |
|
|
init_function_for_compilation (void)
|
3907 |
|
|
{
|
3908 |
|
|
reg_renumber = 0;
|
3909 |
|
|
|
3910 |
|
|
/* No prologue/epilogue insns yet. Make sure that these vectors are
|
3911 |
|
|
empty. */
|
3912 |
|
|
gcc_assert (VEC_length (int, prologue) == 0);
|
3913 |
|
|
gcc_assert (VEC_length (int, epilogue) == 0);
|
3914 |
|
|
gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
|
3915 |
|
|
return 0;
|
3916 |
|
|
}
|
3917 |
|
|
|
3918 |
|
|
struct tree_opt_pass pass_init_function =
|
3919 |
|
|
{
|
3920 |
|
|
NULL, /* name */
|
3921 |
|
|
NULL, /* gate */
|
3922 |
|
|
init_function_for_compilation, /* execute */
|
3923 |
|
|
NULL, /* sub */
|
3924 |
|
|
NULL, /* next */
|
3925 |
|
|
0, /* static_pass_number */
|
3926 |
|
|
0, /* tv_id */
|
3927 |
|
|
0, /* properties_required */
|
3928 |
|
|
0, /* properties_provided */
|
3929 |
|
|
0, /* properties_destroyed */
|
3930 |
|
|
0, /* todo_flags_start */
|
3931 |
|
|
0, /* todo_flags_finish */
|
3932 |
|
|
|
3933 |
|
|
};
|
3934 |
|
|
|
3935 |
|
|
|
3936 |
|
|
void
|
3937 |
|
|
expand_main_function (void)
|
3938 |
|
|
{
|
3939 |
|
|
#if (defined(INVOKE__main) \
|
3940 |
|
|
|| (!defined(HAS_INIT_SECTION) \
|
3941 |
|
|
&& !defined(INIT_SECTION_ASM_OP) \
|
3942 |
|
|
&& !defined(INIT_ARRAY_SECTION_ASM_OP)))
|
3943 |
|
|
emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
|
3944 |
|
|
#endif
|
3945 |
|
|
}
|
3946 |
|
|
|
3947 |
|
|
/* Expand code to initialize the stack_protect_guard. This is invoked at
|
3948 |
|
|
the beginning of a function to be protected. */
|
3949 |
|
|
|
3950 |
|
|
#ifndef HAVE_stack_protect_set
|
3951 |
|
|
# define HAVE_stack_protect_set 0
|
3952 |
|
|
# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
|
3953 |
|
|
#endif
|
3954 |
|
|
|
3955 |
|
|
void
|
3956 |
|
|
stack_protect_prologue (void)
|
3957 |
|
|
{
|
3958 |
|
|
tree guard_decl = targetm.stack_protect_guard ();
|
3959 |
|
|
rtx x, y;
|
3960 |
|
|
|
3961 |
|
|
/* Avoid expand_expr here, because we don't want guard_decl pulled
|
3962 |
|
|
into registers unless absolutely necessary. And we know that
|
3963 |
|
|
cfun->stack_protect_guard is a local stack slot, so this skips
|
3964 |
|
|
all the fluff. */
|
3965 |
|
|
x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
|
3966 |
|
|
y = validize_mem (DECL_RTL (guard_decl));
|
3967 |
|
|
|
3968 |
|
|
/* Allow the target to copy from Y to X without leaking Y into a
|
3969 |
|
|
register. */
|
3970 |
|
|
if (HAVE_stack_protect_set)
|
3971 |
|
|
{
|
3972 |
|
|
rtx insn = gen_stack_protect_set (x, y);
|
3973 |
|
|
if (insn)
|
3974 |
|
|
{
|
3975 |
|
|
emit_insn (insn);
|
3976 |
|
|
return;
|
3977 |
|
|
}
|
3978 |
|
|
}
|
3979 |
|
|
|
3980 |
|
|
/* Otherwise do a straight move. */
|
3981 |
|
|
emit_move_insn (x, y);
|
3982 |
|
|
}
|
3983 |
|
|
|
3984 |
|
|
/* Expand code to verify the stack_protect_guard. This is invoked at
|
3985 |
|
|
the end of a function to be protected. */
|
3986 |
|
|
|
3987 |
|
|
#ifndef HAVE_stack_protect_test
|
3988 |
|
|
# define HAVE_stack_protect_test 0
|
3989 |
|
|
# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
|
3990 |
|
|
#endif
|
3991 |
|
|
|
3992 |
|
|
void
|
3993 |
|
|
stack_protect_epilogue (void)
|
3994 |
|
|
{
|
3995 |
|
|
tree guard_decl = targetm.stack_protect_guard ();
|
3996 |
|
|
rtx label = gen_label_rtx ();
|
3997 |
|
|
rtx x, y, tmp;
|
3998 |
|
|
|
3999 |
|
|
/* Avoid expand_expr here, because we don't want guard_decl pulled
|
4000 |
|
|
into registers unless absolutely necessary. And we know that
|
4001 |
|
|
cfun->stack_protect_guard is a local stack slot, so this skips
|
4002 |
|
|
all the fluff. */
|
4003 |
|
|
x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
|
4004 |
|
|
y = validize_mem (DECL_RTL (guard_decl));
|
4005 |
|
|
|
4006 |
|
|
/* Allow the target to compare Y with X without leaking either into
|
4007 |
|
|
a register. */
|
4008 |
|
|
switch (HAVE_stack_protect_test != 0)
|
4009 |
|
|
{
|
4010 |
|
|
case 1:
|
4011 |
|
|
tmp = gen_stack_protect_test (x, y, label);
|
4012 |
|
|
if (tmp)
|
4013 |
|
|
{
|
4014 |
|
|
emit_insn (tmp);
|
4015 |
|
|
break;
|
4016 |
|
|
}
|
4017 |
|
|
/* FALLTHRU */
|
4018 |
|
|
|
4019 |
|
|
default:
|
4020 |
|
|
emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
|
4021 |
|
|
break;
|
4022 |
|
|
}
|
4023 |
|
|
|
4024 |
|
|
/* The noreturn predictor has been moved to the tree level. The rtl-level
|
4025 |
|
|
predictors estimate this branch about 20%, which isn't enough to get
|
4026 |
|
|
things moved out of line. Since this is the only extant case of adding
|
4027 |
|
|
a noreturn function at the rtl level, it doesn't seem worth doing ought
|
4028 |
|
|
except adding the prediction by hand. */
|
4029 |
|
|
tmp = get_last_insn ();
|
4030 |
|
|
if (JUMP_P (tmp))
|
4031 |
|
|
predict_insn_def (tmp, PRED_NORETURN, TAKEN);
|
4032 |
|
|
|
4033 |
|
|
expand_expr_stmt (targetm.stack_protect_fail ());
|
4034 |
|
|
emit_label (label);
|
4035 |
|
|
}
|
4036 |
|
|
|
4037 |
|
|
/* Start the RTL for a new function, and set variables used for
|
4038 |
|
|
emitting RTL.
|
4039 |
|
|
SUBR is the FUNCTION_DECL node.
|
4040 |
|
|
PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
|
4041 |
|
|
the function's parameters, which must be run at any return statement. */
|
4042 |
|
|
|
4043 |
|
|
void
|
4044 |
|
|
expand_function_start (tree subr)
|
4045 |
|
|
{
|
4046 |
|
|
/* Make sure volatile mem refs aren't considered
|
4047 |
|
|
valid operands of arithmetic insns. */
|
4048 |
|
|
init_recog_no_volatile ();
|
4049 |
|
|
|
4050 |
|
|
current_function_profile
|
4051 |
|
|
= (profile_flag
|
4052 |
|
|
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
|
4053 |
|
|
|
4054 |
|
|
current_function_limit_stack
|
4055 |
|
|
= (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
|
4056 |
|
|
|
4057 |
|
|
/* Make the label for return statements to jump to. Do not special
|
4058 |
|
|
case machines with special return instructions -- they will be
|
4059 |
|
|
handled later during jump, ifcvt, or epilogue creation. */
|
4060 |
|
|
return_label = gen_label_rtx ();
|
4061 |
|
|
|
4062 |
|
|
/* Initialize rtx used to return the value. */
|
4063 |
|
|
/* Do this before assign_parms so that we copy the struct value address
|
4064 |
|
|
before any library calls that assign parms might generate. */
|
4065 |
|
|
|
4066 |
|
|
/* Decide whether to return the value in memory or in a register. */
|
4067 |
|
|
if (aggregate_value_p (DECL_RESULT (subr), subr))
|
4068 |
|
|
{
|
4069 |
|
|
/* Returning something that won't go in a register. */
|
4070 |
|
|
rtx value_address = 0;
|
4071 |
|
|
|
4072 |
|
|
#ifdef PCC_STATIC_STRUCT_RETURN
|
4073 |
|
|
if (current_function_returns_pcc_struct)
|
4074 |
|
|
{
|
4075 |
|
|
int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
|
4076 |
|
|
value_address = assemble_static_space (size);
|
4077 |
|
|
}
|
4078 |
|
|
else
|
4079 |
|
|
#endif
|
4080 |
|
|
{
|
4081 |
|
|
rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
|
4082 |
|
|
/* Expect to be passed the address of a place to store the value.
|
4083 |
|
|
If it is passed as an argument, assign_parms will take care of
|
4084 |
|
|
it. */
|
4085 |
|
|
if (sv)
|
4086 |
|
|
{
|
4087 |
|
|
value_address = gen_reg_rtx (Pmode);
|
4088 |
|
|
emit_move_insn (value_address, sv);
|
4089 |
|
|
}
|
4090 |
|
|
}
|
4091 |
|
|
if (value_address)
|
4092 |
|
|
{
|
4093 |
|
|
rtx x = value_address;
|
4094 |
|
|
if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
|
4095 |
|
|
{
|
4096 |
|
|
x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
|
4097 |
|
|
set_mem_attributes (x, DECL_RESULT (subr), 1);
|
4098 |
|
|
}
|
4099 |
|
|
SET_DECL_RTL (DECL_RESULT (subr), x);
|
4100 |
|
|
}
|
4101 |
|
|
}
|
4102 |
|
|
else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
|
4103 |
|
|
/* If return mode is void, this decl rtl should not be used. */
|
4104 |
|
|
SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
|
4105 |
|
|
else
|
4106 |
|
|
{
|
4107 |
|
|
/* Compute the return values into a pseudo reg, which we will copy
|
4108 |
|
|
into the true return register after the cleanups are done. */
|
4109 |
|
|
tree return_type = TREE_TYPE (DECL_RESULT (subr));
|
4110 |
|
|
if (TYPE_MODE (return_type) != BLKmode
|
4111 |
|
|
&& targetm.calls.return_in_msb (return_type))
|
4112 |
|
|
/* expand_function_end will insert the appropriate padding in
|
4113 |
|
|
this case. Use the return value's natural (unpadded) mode
|
4114 |
|
|
within the function proper. */
|
4115 |
|
|
SET_DECL_RTL (DECL_RESULT (subr),
|
4116 |
|
|
gen_reg_rtx (TYPE_MODE (return_type)));
|
4117 |
|
|
else
|
4118 |
|
|
{
|
4119 |
|
|
/* In order to figure out what mode to use for the pseudo, we
|
4120 |
|
|
figure out what the mode of the eventual return register will
|
4121 |
|
|
actually be, and use that. */
|
4122 |
|
|
rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
|
4123 |
|
|
|
4124 |
|
|
/* Structures that are returned in registers are not
|
4125 |
|
|
aggregate_value_p, so we may see a PARALLEL or a REG. */
|
4126 |
|
|
if (REG_P (hard_reg))
|
4127 |
|
|
SET_DECL_RTL (DECL_RESULT (subr),
|
4128 |
|
|
gen_reg_rtx (GET_MODE (hard_reg)));
|
4129 |
|
|
else
|
4130 |
|
|
{
|
4131 |
|
|
gcc_assert (GET_CODE (hard_reg) == PARALLEL);
|
4132 |
|
|
SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
|
4133 |
|
|
}
|
4134 |
|
|
}
|
4135 |
|
|
|
4136 |
|
|
/* Set DECL_REGISTER flag so that expand_function_end will copy the
|
4137 |
|
|
result to the real return register(s). */
|
4138 |
|
|
DECL_REGISTER (DECL_RESULT (subr)) = 1;
|
4139 |
|
|
}
|
4140 |
|
|
|
4141 |
|
|
/* Initialize rtx for parameters and local variables.
|
4142 |
|
|
In some cases this requires emitting insns. */
|
4143 |
|
|
assign_parms (subr);
|
4144 |
|
|
|
4145 |
|
|
/* If function gets a static chain arg, store it. */
|
4146 |
|
|
if (cfun->static_chain_decl)
|
4147 |
|
|
{
|
4148 |
|
|
tree parm = cfun->static_chain_decl;
|
4149 |
|
|
rtx local = gen_reg_rtx (Pmode);
|
4150 |
|
|
|
4151 |
|
|
set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
|
4152 |
|
|
SET_DECL_RTL (parm, local);
|
4153 |
|
|
mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
|
4154 |
|
|
|
4155 |
|
|
emit_move_insn (local, static_chain_incoming_rtx);
|
4156 |
|
|
}
|
4157 |
|
|
|
4158 |
|
|
/* If the function receives a non-local goto, then store the
|
4159 |
|
|
bits we need to restore the frame pointer. */
|
4160 |
|
|
if (cfun->nonlocal_goto_save_area)
|
4161 |
|
|
{
|
4162 |
|
|
tree t_save;
|
4163 |
|
|
rtx r_save;
|
4164 |
|
|
|
4165 |
|
|
/* ??? We need to do this save early. Unfortunately here is
|
4166 |
|
|
before the frame variable gets declared. Help out... */
|
4167 |
|
|
expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
|
4168 |
|
|
|
4169 |
|
|
t_save = build4 (ARRAY_REF, ptr_type_node,
|
4170 |
|
|
cfun->nonlocal_goto_save_area,
|
4171 |
|
|
integer_zero_node, NULL_TREE, NULL_TREE);
|
4172 |
|
|
r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
4173 |
|
|
r_save = convert_memory_address (Pmode, r_save);
|
4174 |
|
|
|
4175 |
|
|
emit_move_insn (r_save, virtual_stack_vars_rtx);
|
4176 |
|
|
update_nonlocal_goto_save_area ();
|
4177 |
|
|
}
|
4178 |
|
|
|
4179 |
|
|
/* The following was moved from init_function_start.
|
4180 |
|
|
The move is supposed to make sdb output more accurate. */
|
4181 |
|
|
/* Indicate the beginning of the function body,
|
4182 |
|
|
as opposed to parm setup. */
|
4183 |
|
|
emit_note (NOTE_INSN_FUNCTION_BEG);
|
4184 |
|
|
|
4185 |
|
|
gcc_assert (NOTE_P (get_last_insn ()));
|
4186 |
|
|
|
4187 |
|
|
parm_birth_insn = get_last_insn ();
|
4188 |
|
|
|
4189 |
|
|
if (current_function_profile)
|
4190 |
|
|
{
|
4191 |
|
|
#ifdef PROFILE_HOOK
|
4192 |
|
|
PROFILE_HOOK (current_function_funcdef_no);
|
4193 |
|
|
#endif
|
4194 |
|
|
}
|
4195 |
|
|
|
4196 |
|
|
/* After the display initializations is where the stack checking
|
4197 |
|
|
probe should go. */
|
4198 |
|
|
if(flag_stack_check)
|
4199 |
|
|
stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
|
4200 |
|
|
|
4201 |
|
|
/* Make sure there is a line number after the function entry setup code. */
|
4202 |
|
|
force_next_line_note ();
|
4203 |
|
|
}
|
4204 |
|
|
|
4205 |
|
|
/* Undo the effects of init_dummy_function_start. */
|
4206 |
|
|
void
|
4207 |
|
|
expand_dummy_function_end (void)
|
4208 |
|
|
{
|
4209 |
|
|
/* End any sequences that failed to be closed due to syntax errors. */
|
4210 |
|
|
while (in_sequence_p ())
|
4211 |
|
|
end_sequence ();
|
4212 |
|
|
|
4213 |
|
|
/* Outside function body, can't compute type's actual size
|
4214 |
|
|
until next function's body starts. */
|
4215 |
|
|
|
4216 |
|
|
free_after_parsing (cfun);
|
4217 |
|
|
free_after_compilation (cfun);
|
4218 |
|
|
cfun = 0;
|
4219 |
|
|
}
|
4220 |
|
|
|
4221 |
|
|
/* Call DOIT for each hard register used as a return value from
|
4222 |
|
|
the current function. */
|
4223 |
|
|
|
4224 |
|
|
void
|
4225 |
|
|
diddle_return_value (void (*doit) (rtx, void *), void *arg)
|
4226 |
|
|
{
|
4227 |
|
|
rtx outgoing = current_function_return_rtx;
|
4228 |
|
|
|
4229 |
|
|
if (! outgoing)
|
4230 |
|
|
return;
|
4231 |
|
|
|
4232 |
|
|
if (REG_P (outgoing))
|
4233 |
|
|
(*doit) (outgoing, arg);
|
4234 |
|
|
else if (GET_CODE (outgoing) == PARALLEL)
|
4235 |
|
|
{
|
4236 |
|
|
int i;
|
4237 |
|
|
|
4238 |
|
|
for (i = 0; i < XVECLEN (outgoing, 0); i++)
|
4239 |
|
|
{
|
4240 |
|
|
rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
|
4241 |
|
|
|
4242 |
|
|
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
4243 |
|
|
(*doit) (x, arg);
|
4244 |
|
|
}
|
4245 |
|
|
}
|
4246 |
|
|
}
|
4247 |
|
|
|
4248 |
|
|
static void
|
4249 |
|
|
do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
|
4250 |
|
|
{
|
4251 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
|
4252 |
|
|
}
|
4253 |
|
|
|
4254 |
|
|
void
|
4255 |
|
|
clobber_return_register (void)
|
4256 |
|
|
{
|
4257 |
|
|
diddle_return_value (do_clobber_return_reg, NULL);
|
4258 |
|
|
|
4259 |
|
|
/* In case we do use pseudo to return value, clobber it too. */
|
4260 |
|
|
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
|
4261 |
|
|
{
|
4262 |
|
|
tree decl_result = DECL_RESULT (current_function_decl);
|
4263 |
|
|
rtx decl_rtl = DECL_RTL (decl_result);
|
4264 |
|
|
if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
|
4265 |
|
|
{
|
4266 |
|
|
do_clobber_return_reg (decl_rtl, NULL);
|
4267 |
|
|
}
|
4268 |
|
|
}
|
4269 |
|
|
}
|
4270 |
|
|
|
4271 |
|
|
static void
|
4272 |
|
|
do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
|
4273 |
|
|
{
|
4274 |
|
|
emit_insn (gen_rtx_USE (VOIDmode, reg));
|
4275 |
|
|
}
|
4276 |
|
|
|
4277 |
|
|
static void
|
4278 |
|
|
use_return_register (void)
|
4279 |
|
|
{
|
4280 |
|
|
diddle_return_value (do_use_return_reg, NULL);
|
4281 |
|
|
}
|
4282 |
|
|
|
4283 |
|
|
/* Possibly warn about unused parameters. */
|
4284 |
|
|
void
|
4285 |
|
|
do_warn_unused_parameter (tree fn)
|
4286 |
|
|
{
|
4287 |
|
|
tree decl;
|
4288 |
|
|
|
4289 |
|
|
for (decl = DECL_ARGUMENTS (fn);
|
4290 |
|
|
decl; decl = TREE_CHAIN (decl))
|
4291 |
|
|
if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
|
4292 |
|
|
&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
|
4293 |
|
|
warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
|
4294 |
|
|
}
|
4295 |
|
|
|
4296 |
|
|
static GTY(()) rtx initial_trampoline;
|
4297 |
|
|
|
4298 |
|
|
/* Generate RTL for the end of the current function. */
|
4299 |
|
|
|
4300 |
|
|
void
|
4301 |
|
|
expand_function_end (void)
|
4302 |
|
|
{
|
4303 |
|
|
rtx clobber_after;
|
4304 |
|
|
|
4305 |
|
|
/* If arg_pointer_save_area was referenced only from a nested
|
4306 |
|
|
function, we will not have initialized it yet. Do that now. */
|
4307 |
|
|
if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
|
4308 |
|
|
get_arg_pointer_save_area (cfun);
|
4309 |
|
|
|
4310 |
|
|
/* If we are doing stack checking and this function makes calls,
|
4311 |
|
|
do a stack probe at the start of the function to ensure we have enough
|
4312 |
|
|
space for another stack frame. */
|
4313 |
|
|
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
|
4314 |
|
|
{
|
4315 |
|
|
rtx insn, seq;
|
4316 |
|
|
|
4317 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
4318 |
|
|
if (CALL_P (insn))
|
4319 |
|
|
{
|
4320 |
|
|
start_sequence ();
|
4321 |
|
|
probe_stack_range (STACK_CHECK_PROTECT,
|
4322 |
|
|
GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
|
4323 |
|
|
seq = get_insns ();
|
4324 |
|
|
end_sequence ();
|
4325 |
|
|
emit_insn_before (seq, stack_check_probe_note);
|
4326 |
|
|
break;
|
4327 |
|
|
}
|
4328 |
|
|
}
|
4329 |
|
|
|
4330 |
|
|
/* Possibly warn about unused parameters.
|
4331 |
|
|
When frontend does unit-at-a-time, the warning is already
|
4332 |
|
|
issued at finalization time. */
|
4333 |
|
|
if (warn_unused_parameter
|
4334 |
|
|
&& !lang_hooks.callgraph.expand_function)
|
4335 |
|
|
do_warn_unused_parameter (current_function_decl);
|
4336 |
|
|
|
4337 |
|
|
/* End any sequences that failed to be closed due to syntax errors. */
|
4338 |
|
|
while (in_sequence_p ())
|
4339 |
|
|
end_sequence ();
|
4340 |
|
|
|
4341 |
|
|
clear_pending_stack_adjust ();
|
4342 |
|
|
do_pending_stack_adjust ();
|
4343 |
|
|
|
4344 |
|
|
/* Mark the end of the function body.
|
4345 |
|
|
If control reaches this insn, the function can drop through
|
4346 |
|
|
without returning a value. */
|
4347 |
|
|
emit_note (NOTE_INSN_FUNCTION_END);
|
4348 |
|
|
|
4349 |
|
|
/* Must mark the last line number note in the function, so that the test
|
4350 |
|
|
coverage code can avoid counting the last line twice. This just tells
|
4351 |
|
|
the code to ignore the immediately following line note, since there
|
4352 |
|
|
already exists a copy of this note somewhere above. This line number
|
4353 |
|
|
note is still needed for debugging though, so we can't delete it. */
|
4354 |
|
|
if (flag_test_coverage)
|
4355 |
|
|
emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
|
4356 |
|
|
|
4357 |
|
|
/* Output a linenumber for the end of the function.
|
4358 |
|
|
SDB depends on this. */
|
4359 |
|
|
force_next_line_note ();
|
4360 |
|
|
emit_line_note (input_location);
|
4361 |
|
|
|
4362 |
|
|
/* Before the return label (if any), clobber the return
|
4363 |
|
|
registers so that they are not propagated live to the rest of
|
4364 |
|
|
the function. This can only happen with functions that drop
|
4365 |
|
|
through; if there had been a return statement, there would
|
4366 |
|
|
have either been a return rtx, or a jump to the return label.
|
4367 |
|
|
|
4368 |
|
|
We delay actual code generation after the current_function_value_rtx
|
4369 |
|
|
is computed. */
|
4370 |
|
|
clobber_after = get_last_insn ();
|
4371 |
|
|
|
4372 |
|
|
/* Output the label for the actual return from the function. */
|
4373 |
|
|
emit_label (return_label);
|
4374 |
|
|
|
4375 |
|
|
if (USING_SJLJ_EXCEPTIONS)
|
4376 |
|
|
{
|
4377 |
|
|
/* Let except.c know where it should emit the call to unregister
|
4378 |
|
|
the function context for sjlj exceptions. */
|
4379 |
|
|
if (flag_exceptions)
|
4380 |
|
|
sjlj_emit_function_exit_after (get_last_insn ());
|
4381 |
|
|
}
|
4382 |
|
|
else
|
4383 |
|
|
{
|
4384 |
|
|
/* @@@ This is a kludge. We want to ensure that instructions that
|
4385 |
|
|
may trap are not moved into the epilogue by scheduling, because
|
4386 |
|
|
we don't always emit unwind information for the epilogue.
|
4387 |
|
|
However, not all machine descriptions define a blockage insn, so
|
4388 |
|
|
emit an ASM_INPUT to act as one. */
|
4389 |
|
|
if (flag_non_call_exceptions)
|
4390 |
|
|
emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
|
4391 |
|
|
}
|
4392 |
|
|
|
4393 |
|
|
/* If this is an implementation of throw, do what's necessary to
|
4394 |
|
|
communicate between __builtin_eh_return and the epilogue. */
|
4395 |
|
|
expand_eh_return ();
|
4396 |
|
|
|
4397 |
|
|
/* If scalar return value was computed in a pseudo-reg, or was a named
|
4398 |
|
|
return value that got dumped to the stack, copy that to the hard
|
4399 |
|
|
return register. */
|
4400 |
|
|
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
|
4401 |
|
|
{
|
4402 |
|
|
tree decl_result = DECL_RESULT (current_function_decl);
|
4403 |
|
|
rtx decl_rtl = DECL_RTL (decl_result);
|
4404 |
|
|
|
4405 |
|
|
if (REG_P (decl_rtl)
|
4406 |
|
|
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
|
4407 |
|
|
: DECL_REGISTER (decl_result))
|
4408 |
|
|
{
|
4409 |
|
|
rtx real_decl_rtl = current_function_return_rtx;
|
4410 |
|
|
|
4411 |
|
|
/* This should be set in assign_parms. */
|
4412 |
|
|
gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
|
4413 |
|
|
|
4414 |
|
|
/* If this is a BLKmode structure being returned in registers,
|
4415 |
|
|
then use the mode computed in expand_return. Note that if
|
4416 |
|
|
decl_rtl is memory, then its mode may have been changed,
|
4417 |
|
|
but that current_function_return_rtx has not. */
|
4418 |
|
|
if (GET_MODE (real_decl_rtl) == BLKmode)
|
4419 |
|
|
PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
|
4420 |
|
|
|
4421 |
|
|
/* If a non-BLKmode return value should be padded at the least
|
4422 |
|
|
significant end of the register, shift it left by the appropriate
|
4423 |
|
|
amount. BLKmode results are handled using the group load/store
|
4424 |
|
|
machinery. */
|
4425 |
|
|
if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
|
4426 |
|
|
&& targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
|
4427 |
|
|
{
|
4428 |
|
|
emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
|
4429 |
|
|
REGNO (real_decl_rtl)),
|
4430 |
|
|
decl_rtl);
|
4431 |
|
|
shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
|
4432 |
|
|
}
|
4433 |
|
|
/* If a named return value dumped decl_return to memory, then
|
4434 |
|
|
we may need to re-do the PROMOTE_MODE signed/unsigned
|
4435 |
|
|
extension. */
|
4436 |
|
|
else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
|
4437 |
|
|
{
|
4438 |
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
|
4439 |
|
|
|
4440 |
|
|
if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
|
4441 |
|
|
promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
|
4442 |
|
|
&unsignedp, 1);
|
4443 |
|
|
|
4444 |
|
|
convert_move (real_decl_rtl, decl_rtl, unsignedp);
|
4445 |
|
|
}
|
4446 |
|
|
else if (GET_CODE (real_decl_rtl) == PARALLEL)
|
4447 |
|
|
{
|
4448 |
|
|
/* If expand_function_start has created a PARALLEL for decl_rtl,
|
4449 |
|
|
move the result to the real return registers. Otherwise, do
|
4450 |
|
|
a group load from decl_rtl for a named return. */
|
4451 |
|
|
if (GET_CODE (decl_rtl) == PARALLEL)
|
4452 |
|
|
emit_group_move (real_decl_rtl, decl_rtl);
|
4453 |
|
|
else
|
4454 |
|
|
emit_group_load (real_decl_rtl, decl_rtl,
|
4455 |
|
|
TREE_TYPE (decl_result),
|
4456 |
|
|
int_size_in_bytes (TREE_TYPE (decl_result)));
|
4457 |
|
|
}
|
4458 |
|
|
/* In the case of complex integer modes smaller than a word, we'll
|
4459 |
|
|
need to generate some non-trivial bitfield insertions. Do that
|
4460 |
|
|
on a pseudo and not the hard register. */
|
4461 |
|
|
else if (GET_CODE (decl_rtl) == CONCAT
|
4462 |
|
|
&& GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
|
4463 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
|
4464 |
|
|
{
|
4465 |
|
|
int old_generating_concat_p;
|
4466 |
|
|
rtx tmp;
|
4467 |
|
|
|
4468 |
|
|
old_generating_concat_p = generating_concat_p;
|
4469 |
|
|
generating_concat_p = 0;
|
4470 |
|
|
tmp = gen_reg_rtx (GET_MODE (decl_rtl));
|
4471 |
|
|
generating_concat_p = old_generating_concat_p;
|
4472 |
|
|
|
4473 |
|
|
emit_move_insn (tmp, decl_rtl);
|
4474 |
|
|
emit_move_insn (real_decl_rtl, tmp);
|
4475 |
|
|
}
|
4476 |
|
|
else
|
4477 |
|
|
emit_move_insn (real_decl_rtl, decl_rtl);
|
4478 |
|
|
}
|
4479 |
|
|
}
|
4480 |
|
|
|
4481 |
|
|
/* If returning a structure, arrange to return the address of the value
|
4482 |
|
|
in a place where debuggers expect to find it.
|
4483 |
|
|
|
4484 |
|
|
If returning a structure PCC style,
|
4485 |
|
|
the caller also depends on this value.
|
4486 |
|
|
And current_function_returns_pcc_struct is not necessarily set. */
|
4487 |
|
|
if (current_function_returns_struct
|
4488 |
|
|
|| current_function_returns_pcc_struct)
|
4489 |
|
|
{
|
4490 |
|
|
rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
|
4491 |
|
|
tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
|
4492 |
|
|
rtx outgoing;
|
4493 |
|
|
|
4494 |
|
|
if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
|
4495 |
|
|
type = TREE_TYPE (type);
|
4496 |
|
|
else
|
4497 |
|
|
value_address = XEXP (value_address, 0);
|
4498 |
|
|
|
4499 |
|
|
outgoing = targetm.calls.function_value (build_pointer_type (type),
|
4500 |
|
|
current_function_decl, true);
|
4501 |
|
|
|
4502 |
|
|
/* Mark this as a function return value so integrate will delete the
|
4503 |
|
|
assignment and USE below when inlining this function. */
|
4504 |
|
|
REG_FUNCTION_VALUE_P (outgoing) = 1;
|
4505 |
|
|
|
4506 |
|
|
/* The address may be ptr_mode and OUTGOING may be Pmode. */
|
4507 |
|
|
value_address = convert_memory_address (GET_MODE (outgoing),
|
4508 |
|
|
value_address);
|
4509 |
|
|
|
4510 |
|
|
emit_move_insn (outgoing, value_address);
|
4511 |
|
|
|
4512 |
|
|
/* Show return register used to hold result (in this case the address
|
4513 |
|
|
of the result. */
|
4514 |
|
|
current_function_return_rtx = outgoing;
|
4515 |
|
|
}
|
4516 |
|
|
|
4517 |
|
|
/* Emit the actual code to clobber return register. */
|
4518 |
|
|
{
|
4519 |
|
|
rtx seq;
|
4520 |
|
|
|
4521 |
|
|
start_sequence ();
|
4522 |
|
|
clobber_return_register ();
|
4523 |
|
|
expand_naked_return ();
|
4524 |
|
|
seq = get_insns ();
|
4525 |
|
|
end_sequence ();
|
4526 |
|
|
|
4527 |
|
|
emit_insn_after (seq, clobber_after);
|
4528 |
|
|
}
|
4529 |
|
|
|
4530 |
|
|
/* Output the label for the naked return from the function. */
|
4531 |
|
|
emit_label (naked_return_label);
|
4532 |
|
|
|
4533 |
|
|
/* If stack protection is enabled for this function, check the guard. */
|
4534 |
|
|
if (cfun->stack_protect_guard)
|
4535 |
|
|
stack_protect_epilogue ();
|
4536 |
|
|
|
4537 |
|
|
/* If we had calls to alloca, and this machine needs
|
4538 |
|
|
an accurate stack pointer to exit the function,
|
4539 |
|
|
insert some code to save and restore the stack pointer. */
|
4540 |
|
|
if (! EXIT_IGNORE_STACK
|
4541 |
|
|
&& current_function_calls_alloca)
|
4542 |
|
|
{
|
4543 |
|
|
rtx tem = 0;
|
4544 |
|
|
|
4545 |
|
|
emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
|
4546 |
|
|
emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
|
4547 |
|
|
}
|
4548 |
|
|
|
4549 |
|
|
/* ??? This should no longer be necessary since stupid is no longer with
|
4550 |
|
|
us, but there are some parts of the compiler (eg reload_combine, and
|
4551 |
|
|
sh mach_dep_reorg) that still try and compute their own lifetime info
|
4552 |
|
|
instead of using the general framework. */
|
4553 |
|
|
use_return_register ();
|
4554 |
|
|
}
|
4555 |
|
|
|
4556 |
|
|
rtx
|
4557 |
|
|
get_arg_pointer_save_area (struct function *f)
|
4558 |
|
|
{
|
4559 |
|
|
rtx ret = f->x_arg_pointer_save_area;
|
4560 |
|
|
|
4561 |
|
|
if (! ret)
|
4562 |
|
|
{
|
4563 |
|
|
ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
|
4564 |
|
|
f->x_arg_pointer_save_area = ret;
|
4565 |
|
|
}
|
4566 |
|
|
|
4567 |
|
|
if (f == cfun && ! f->arg_pointer_save_area_init)
|
4568 |
|
|
{
|
4569 |
|
|
rtx seq;
|
4570 |
|
|
|
4571 |
|
|
/* Save the arg pointer at the beginning of the function. The
|
4572 |
|
|
generated stack slot may not be a valid memory address, so we
|
4573 |
|
|
have to check it and fix it if necessary. */
|
4574 |
|
|
start_sequence ();
|
4575 |
|
|
emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
|
4576 |
|
|
seq = get_insns ();
|
4577 |
|
|
end_sequence ();
|
4578 |
|
|
|
4579 |
|
|
push_topmost_sequence ();
|
4580 |
|
|
emit_insn_after (seq, entry_of_function ());
|
4581 |
|
|
pop_topmost_sequence ();
|
4582 |
|
|
}
|
4583 |
|
|
|
4584 |
|
|
return ret;
|
4585 |
|
|
}
|
4586 |
|
|
|
4587 |
|
|
/* Extend a vector that records the INSN_UIDs of INSNS
|
4588 |
|
|
(a list of one or more insns). */
|
4589 |
|
|
|
4590 |
|
|
static void
|
4591 |
|
|
record_insns (rtx insns, VEC(int,heap) **vecp)
|
4592 |
|
|
{
|
4593 |
|
|
rtx tmp;
|
4594 |
|
|
|
4595 |
|
|
for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
|
4596 |
|
|
VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
|
4597 |
|
|
}
|
4598 |
|
|
|
4599 |
|
|
/* Set the locator of the insn chain starting at INSN to LOC. */
|
4600 |
|
|
static void
|
4601 |
|
|
set_insn_locators (rtx insn, int loc)
|
4602 |
|
|
{
|
4603 |
|
|
while (insn != NULL_RTX)
|
4604 |
|
|
{
|
4605 |
|
|
if (INSN_P (insn))
|
4606 |
|
|
INSN_LOCATOR (insn) = loc;
|
4607 |
|
|
insn = NEXT_INSN (insn);
|
4608 |
|
|
}
|
4609 |
|
|
}
|
4610 |
|
|
|
4611 |
|
|
/* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
|
4612 |
|
|
be running after reorg, SEQUENCE rtl is possible. */
|
4613 |
|
|
|
4614 |
|
|
static int
|
4615 |
|
|
contains (rtx insn, VEC(int,heap) **vec)
|
4616 |
|
|
{
|
4617 |
|
|
int i, j;
|
4618 |
|
|
|
4619 |
|
|
if (NONJUMP_INSN_P (insn)
|
4620 |
|
|
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
4621 |
|
|
{
|
4622 |
|
|
int count = 0;
|
4623 |
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
4624 |
|
|
for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
|
4625 |
|
|
if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
|
4626 |
|
|
== VEC_index (int, *vec, j))
|
4627 |
|
|
count++;
|
4628 |
|
|
return count;
|
4629 |
|
|
}
|
4630 |
|
|
else
|
4631 |
|
|
{
|
4632 |
|
|
for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
|
4633 |
|
|
if (INSN_UID (insn) == VEC_index (int, *vec, j))
|
4634 |
|
|
return 1;
|
4635 |
|
|
}
|
4636 |
|
|
return 0;
|
4637 |
|
|
}
|
4638 |
|
|
|
4639 |
|
|
int
|
4640 |
|
|
prologue_epilogue_contains (rtx insn)
|
4641 |
|
|
{
|
4642 |
|
|
if (contains (insn, &prologue))
|
4643 |
|
|
return 1;
|
4644 |
|
|
if (contains (insn, &epilogue))
|
4645 |
|
|
return 1;
|
4646 |
|
|
return 0;
|
4647 |
|
|
}
|
4648 |
|
|
|
4649 |
|
|
int
|
4650 |
|
|
sibcall_epilogue_contains (rtx insn)
|
4651 |
|
|
{
|
4652 |
|
|
if (sibcall_epilogue)
|
4653 |
|
|
return contains (insn, &sibcall_epilogue);
|
4654 |
|
|
return 0;
|
4655 |
|
|
}
|
4656 |
|
|
|
4657 |
|
|
#ifdef HAVE_return
|
4658 |
|
|
/* Insert gen_return at the end of block BB. This also means updating
|
4659 |
|
|
block_for_insn appropriately. */
|
4660 |
|
|
|
4661 |
|
|
static void
|
4662 |
|
|
emit_return_into_block (basic_block bb, rtx line_note)
|
4663 |
|
|
{
|
4664 |
|
|
emit_jump_insn_after (gen_return (), BB_END (bb));
|
4665 |
|
|
if (line_note)
|
4666 |
|
|
emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
|
4667 |
|
|
}
|
4668 |
|
|
#endif /* HAVE_return */
|
4669 |
|
|
|
4670 |
|
|
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
|
4671 |
|
|
|
4672 |
|
|
/* These functions convert the epilogue into a variant that does not
|
4673 |
|
|
modify the stack pointer. This is used in cases where a function
|
4674 |
|
|
returns an object whose size is not known until it is computed.
|
4675 |
|
|
The called function leaves the object on the stack, leaves the
|
4676 |
|
|
stack depressed, and returns a pointer to the object.
|
4677 |
|
|
|
4678 |
|
|
What we need to do is track all modifications and references to the
|
4679 |
|
|
stack pointer, deleting the modifications and changing the
|
4680 |
|
|
references to point to the location the stack pointer would have
|
4681 |
|
|
pointed to had the modifications taken place.
|
4682 |
|
|
|
4683 |
|
|
These functions need to be portable so we need to make as few
|
4684 |
|
|
assumptions about the epilogue as we can. However, the epilogue
|
4685 |
|
|
basically contains three things: instructions to reset the stack
|
4686 |
|
|
pointer, instructions to reload registers, possibly including the
|
4687 |
|
|
frame pointer, and an instruction to return to the caller.
|
4688 |
|
|
|
4689 |
|
|
We must be sure of what a relevant epilogue insn is doing. We also
|
4690 |
|
|
make no attempt to validate the insns we make since if they are
|
4691 |
|
|
invalid, we probably can't do anything valid. The intent is that
|
4692 |
|
|
these routines get "smarter" as more and more machines start to use
|
4693 |
|
|
them and they try operating on different epilogues.
|
4694 |
|
|
|
4695 |
|
|
We use the following structure to track what the part of the
|
4696 |
|
|
epilogue that we've already processed has done. We keep two copies
|
4697 |
|
|
of the SP equivalence, one for use during the insn we are
|
4698 |
|
|
processing and one for use in the next insn. The difference is
|
4699 |
|
|
because one part of a PARALLEL may adjust SP and the other may use
|
4700 |
|
|
it. */
|
4701 |
|
|
|
4702 |
|
|
struct epi_info
|
4703 |
|
|
{
|
4704 |
|
|
rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
|
4705 |
|
|
HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
|
4706 |
|
|
rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
|
4707 |
|
|
HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
|
4708 |
|
|
rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
|
4709 |
|
|
should be set to once we no longer need
|
4710 |
|
|
its value. */
|
4711 |
|
|
rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
|
4712 |
|
|
for registers. */
|
4713 |
|
|
};
|
4714 |
|
|
|
4715 |
|
|
static void handle_epilogue_set (rtx, struct epi_info *);
|
4716 |
|
|
static void update_epilogue_consts (rtx, rtx, void *);
|
4717 |
|
|
static void emit_equiv_load (struct epi_info *);
|
4718 |
|
|
|
4719 |
|
|
/* Modify INSN, a list of one or more insns that is part of the epilogue, to
|
4720 |
|
|
no modifications to the stack pointer. Return the new list of insns. */
|
4721 |
|
|
|
4722 |
|
|
static rtx
|
4723 |
|
|
keep_stack_depressed (rtx insns)
|
4724 |
|
|
{
|
4725 |
|
|
int j;
|
4726 |
|
|
struct epi_info info;
|
4727 |
|
|
rtx insn, next;
|
4728 |
|
|
|
4729 |
|
|
/* If the epilogue is just a single instruction, it must be OK as is. */
|
4730 |
|
|
if (NEXT_INSN (insns) == NULL_RTX)
|
4731 |
|
|
return insns;
|
4732 |
|
|
|
4733 |
|
|
/* Otherwise, start a sequence, initialize the information we have, and
|
4734 |
|
|
process all the insns we were given. */
|
4735 |
|
|
start_sequence ();
|
4736 |
|
|
|
4737 |
|
|
info.sp_equiv_reg = stack_pointer_rtx;
|
4738 |
|
|
info.sp_offset = 0;
|
4739 |
|
|
info.equiv_reg_src = 0;
|
4740 |
|
|
|
4741 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
4742 |
|
|
info.const_equiv[j] = 0;
|
4743 |
|
|
|
4744 |
|
|
insn = insns;
|
4745 |
|
|
next = NULL_RTX;
|
4746 |
|
|
while (insn != NULL_RTX)
|
4747 |
|
|
{
|
4748 |
|
|
next = NEXT_INSN (insn);
|
4749 |
|
|
|
4750 |
|
|
if (!INSN_P (insn))
|
4751 |
|
|
{
|
4752 |
|
|
add_insn (insn);
|
4753 |
|
|
insn = next;
|
4754 |
|
|
continue;
|
4755 |
|
|
}
|
4756 |
|
|
|
4757 |
|
|
/* If this insn references the register that SP is equivalent to and
|
4758 |
|
|
we have a pending load to that register, we must force out the load
|
4759 |
|
|
first and then indicate we no longer know what SP's equivalent is. */
|
4760 |
|
|
if (info.equiv_reg_src != 0
|
4761 |
|
|
&& reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
|
4762 |
|
|
{
|
4763 |
|
|
emit_equiv_load (&info);
|
4764 |
|
|
info.sp_equiv_reg = 0;
|
4765 |
|
|
}
|
4766 |
|
|
|
4767 |
|
|
info.new_sp_equiv_reg = info.sp_equiv_reg;
|
4768 |
|
|
info.new_sp_offset = info.sp_offset;
|
4769 |
|
|
|
4770 |
|
|
/* If this is a (RETURN) and the return address is on the stack,
|
4771 |
|
|
update the address and change to an indirect jump. */
|
4772 |
|
|
if (GET_CODE (PATTERN (insn)) == RETURN
|
4773 |
|
|
|| (GET_CODE (PATTERN (insn)) == PARALLEL
|
4774 |
|
|
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
|
4775 |
|
|
{
|
4776 |
|
|
rtx retaddr = INCOMING_RETURN_ADDR_RTX;
|
4777 |
|
|
rtx base = 0;
|
4778 |
|
|
HOST_WIDE_INT offset = 0;
|
4779 |
|
|
rtx jump_insn, jump_set;
|
4780 |
|
|
|
4781 |
|
|
/* If the return address is in a register, we can emit the insn
|
4782 |
|
|
unchanged. Otherwise, it must be a MEM and we see what the
|
4783 |
|
|
base register and offset are. In any case, we have to emit any
|
4784 |
|
|
pending load to the equivalent reg of SP, if any. */
|
4785 |
|
|
if (REG_P (retaddr))
|
4786 |
|
|
{
|
4787 |
|
|
emit_equiv_load (&info);
|
4788 |
|
|
add_insn (insn);
|
4789 |
|
|
insn = next;
|
4790 |
|
|
continue;
|
4791 |
|
|
}
|
4792 |
|
|
else
|
4793 |
|
|
{
|
4794 |
|
|
rtx ret_ptr;
|
4795 |
|
|
gcc_assert (MEM_P (retaddr));
|
4796 |
|
|
|
4797 |
|
|
ret_ptr = XEXP (retaddr, 0);
|
4798 |
|
|
|
4799 |
|
|
if (REG_P (ret_ptr))
|
4800 |
|
|
{
|
4801 |
|
|
base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
|
4802 |
|
|
offset = 0;
|
4803 |
|
|
}
|
4804 |
|
|
else
|
4805 |
|
|
{
|
4806 |
|
|
gcc_assert (GET_CODE (ret_ptr) == PLUS
|
4807 |
|
|
&& REG_P (XEXP (ret_ptr, 0))
|
4808 |
|
|
&& GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
|
4809 |
|
|
base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
|
4810 |
|
|
offset = INTVAL (XEXP (ret_ptr, 1));
|
4811 |
|
|
}
|
4812 |
|
|
}
|
4813 |
|
|
|
4814 |
|
|
/* If the base of the location containing the return pointer
|
4815 |
|
|
is SP, we must update it with the replacement address. Otherwise,
|
4816 |
|
|
just build the necessary MEM. */
|
4817 |
|
|
retaddr = plus_constant (base, offset);
|
4818 |
|
|
if (base == stack_pointer_rtx)
|
4819 |
|
|
retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
|
4820 |
|
|
plus_constant (info.sp_equiv_reg,
|
4821 |
|
|
info.sp_offset));
|
4822 |
|
|
|
4823 |
|
|
retaddr = gen_rtx_MEM (Pmode, retaddr);
|
4824 |
|
|
MEM_NOTRAP_P (retaddr) = 1;
|
4825 |
|
|
|
4826 |
|
|
/* If there is a pending load to the equivalent register for SP
|
4827 |
|
|
and we reference that register, we must load our address into
|
4828 |
|
|
a scratch register and then do that load. */
|
4829 |
|
|
if (info.equiv_reg_src
|
4830 |
|
|
&& reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
|
4831 |
|
|
{
|
4832 |
|
|
unsigned int regno;
|
4833 |
|
|
rtx reg;
|
4834 |
|
|
|
4835 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
4836 |
|
|
if (HARD_REGNO_MODE_OK (regno, Pmode)
|
4837 |
|
|
&& !fixed_regs[regno]
|
4838 |
|
|
&& TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
|
4839 |
|
|
&& !REGNO_REG_SET_P
|
4840 |
|
|
(EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
|
4841 |
|
|
&& !refers_to_regno_p (regno,
|
4842 |
|
|
regno + hard_regno_nregs[regno]
|
4843 |
|
|
[Pmode],
|
4844 |
|
|
info.equiv_reg_src, NULL)
|
4845 |
|
|
&& info.const_equiv[regno] == 0)
|
4846 |
|
|
break;
|
4847 |
|
|
|
4848 |
|
|
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
4849 |
|
|
|
4850 |
|
|
reg = gen_rtx_REG (Pmode, regno);
|
4851 |
|
|
emit_move_insn (reg, retaddr);
|
4852 |
|
|
retaddr = reg;
|
4853 |
|
|
}
|
4854 |
|
|
|
4855 |
|
|
emit_equiv_load (&info);
|
4856 |
|
|
jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
|
4857 |
|
|
|
4858 |
|
|
/* Show the SET in the above insn is a RETURN. */
|
4859 |
|
|
jump_set = single_set (jump_insn);
|
4860 |
|
|
gcc_assert (jump_set);
|
4861 |
|
|
SET_IS_RETURN_P (jump_set) = 1;
|
4862 |
|
|
}
|
4863 |
|
|
|
4864 |
|
|
/* If SP is not mentioned in the pattern and its equivalent register, if
|
4865 |
|
|
any, is not modified, just emit it. Otherwise, if neither is set,
|
4866 |
|
|
replace the reference to SP and emit the insn. If none of those are
|
4867 |
|
|
true, handle each SET individually. */
|
4868 |
|
|
else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
|
4869 |
|
|
&& (info.sp_equiv_reg == stack_pointer_rtx
|
4870 |
|
|
|| !reg_set_p (info.sp_equiv_reg, insn)))
|
4871 |
|
|
add_insn (insn);
|
4872 |
|
|
else if (! reg_set_p (stack_pointer_rtx, insn)
|
4873 |
|
|
&& (info.sp_equiv_reg == stack_pointer_rtx
|
4874 |
|
|
|| !reg_set_p (info.sp_equiv_reg, insn)))
|
4875 |
|
|
{
|
4876 |
|
|
int changed;
|
4877 |
|
|
|
4878 |
|
|
changed = validate_replace_rtx (stack_pointer_rtx,
|
4879 |
|
|
plus_constant (info.sp_equiv_reg,
|
4880 |
|
|
info.sp_offset),
|
4881 |
|
|
insn);
|
4882 |
|
|
gcc_assert (changed);
|
4883 |
|
|
|
4884 |
|
|
add_insn (insn);
|
4885 |
|
|
}
|
4886 |
|
|
else if (GET_CODE (PATTERN (insn)) == SET)
|
4887 |
|
|
handle_epilogue_set (PATTERN (insn), &info);
|
4888 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
4889 |
|
|
{
|
4890 |
|
|
for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
|
4891 |
|
|
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
|
4892 |
|
|
handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
|
4893 |
|
|
}
|
4894 |
|
|
else
|
4895 |
|
|
add_insn (insn);
|
4896 |
|
|
|
4897 |
|
|
info.sp_equiv_reg = info.new_sp_equiv_reg;
|
4898 |
|
|
info.sp_offset = info.new_sp_offset;
|
4899 |
|
|
|
4900 |
|
|
/* Now update any constants this insn sets. */
|
4901 |
|
|
note_stores (PATTERN (insn), update_epilogue_consts, &info);
|
4902 |
|
|
insn = next;
|
4903 |
|
|
}
|
4904 |
|
|
|
4905 |
|
|
insns = get_insns ();
|
4906 |
|
|
end_sequence ();
|
4907 |
|
|
return insns;
|
4908 |
|
|
}
|
4909 |
|
|
|
4910 |
|
|
/* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
|
4911 |
|
|
structure that contains information about what we've seen so far. We
|
4912 |
|
|
process this SET by either updating that data or by emitting one or
|
4913 |
|
|
more insns. */
|
4914 |
|
|
|
4915 |
|
|
static void
|
4916 |
|
|
handle_epilogue_set (rtx set, struct epi_info *p)
|
4917 |
|
|
{
|
4918 |
|
|
/* First handle the case where we are setting SP. Record what it is being
|
4919 |
|
|
set from, which we must be able to determine */
|
4920 |
|
|
if (reg_set_p (stack_pointer_rtx, set))
|
4921 |
|
|
{
|
4922 |
|
|
gcc_assert (SET_DEST (set) == stack_pointer_rtx);
|
4923 |
|
|
|
4924 |
|
|
if (GET_CODE (SET_SRC (set)) == PLUS)
|
4925 |
|
|
{
|
4926 |
|
|
p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
|
4927 |
|
|
if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
|
4928 |
|
|
p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
|
4929 |
|
|
else
|
4930 |
|
|
{
|
4931 |
|
|
gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
|
4932 |
|
|
&& (REGNO (XEXP (SET_SRC (set), 1))
|
4933 |
|
|
< FIRST_PSEUDO_REGISTER)
|
4934 |
|
|
&& p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
|
4935 |
|
|
p->new_sp_offset
|
4936 |
|
|
= INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
|
4937 |
|
|
}
|
4938 |
|
|
}
|
4939 |
|
|
else
|
4940 |
|
|
p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
|
4941 |
|
|
|
4942 |
|
|
/* If we are adjusting SP, we adjust from the old data. */
|
4943 |
|
|
if (p->new_sp_equiv_reg == stack_pointer_rtx)
|
4944 |
|
|
{
|
4945 |
|
|
p->new_sp_equiv_reg = p->sp_equiv_reg;
|
4946 |
|
|
p->new_sp_offset += p->sp_offset;
|
4947 |
|
|
}
|
4948 |
|
|
|
4949 |
|
|
gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
|
4950 |
|
|
|
4951 |
|
|
return;
|
4952 |
|
|
}
|
4953 |
|
|
|
4954 |
|
|
/* Next handle the case where we are setting SP's equivalent
|
4955 |
|
|
register. We must not already have a value to set it to. We
|
4956 |
|
|
could update, but there seems little point in handling that case.
|
4957 |
|
|
Note that we have to allow for the case where we are setting the
|
4958 |
|
|
register set in the previous part of a PARALLEL inside a single
|
4959 |
|
|
insn. But use the old offset for any updates within this insn.
|
4960 |
|
|
We must allow for the case where the register is being set in a
|
4961 |
|
|
different (usually wider) mode than Pmode). */
|
4962 |
|
|
else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
|
4963 |
|
|
{
|
4964 |
|
|
gcc_assert (!p->equiv_reg_src
|
4965 |
|
|
&& REG_P (p->new_sp_equiv_reg)
|
4966 |
|
|
&& REG_P (SET_DEST (set))
|
4967 |
|
|
&& (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
|
4968 |
|
|
<= BITS_PER_WORD)
|
4969 |
|
|
&& REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
|
4970 |
|
|
p->equiv_reg_src
|
4971 |
|
|
= simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
|
4972 |
|
|
plus_constant (p->sp_equiv_reg,
|
4973 |
|
|
p->sp_offset));
|
4974 |
|
|
}
|
4975 |
|
|
|
4976 |
|
|
/* Otherwise, replace any references to SP in the insn to its new value
|
4977 |
|
|
and emit the insn. */
|
4978 |
|
|
else
|
4979 |
|
|
{
|
4980 |
|
|
SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
|
4981 |
|
|
plus_constant (p->sp_equiv_reg,
|
4982 |
|
|
p->sp_offset));
|
4983 |
|
|
SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
|
4984 |
|
|
plus_constant (p->sp_equiv_reg,
|
4985 |
|
|
p->sp_offset));
|
4986 |
|
|
emit_insn (set);
|
4987 |
|
|
}
|
4988 |
|
|
}
|
4989 |
|
|
|
4990 |
|
|
/* Update the tracking information for registers set to constants. */
|
4991 |
|
|
|
4992 |
|
|
static void
|
4993 |
|
|
update_epilogue_consts (rtx dest, rtx x, void *data)
|
4994 |
|
|
{
|
4995 |
|
|
struct epi_info *p = (struct epi_info *) data;
|
4996 |
|
|
rtx new;
|
4997 |
|
|
|
4998 |
|
|
if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
|
4999 |
|
|
return;
|
5000 |
|
|
|
5001 |
|
|
/* If we are either clobbering a register or doing a partial set,
|
5002 |
|
|
show we don't know the value. */
|
5003 |
|
|
else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
|
5004 |
|
|
p->const_equiv[REGNO (dest)] = 0;
|
5005 |
|
|
|
5006 |
|
|
/* If we are setting it to a constant, record that constant. */
|
5007 |
|
|
else if (GET_CODE (SET_SRC (x)) == CONST_INT)
|
5008 |
|
|
p->const_equiv[REGNO (dest)] = SET_SRC (x);
|
5009 |
|
|
|
5010 |
|
|
/* If this is a binary operation between a register we have been tracking
|
5011 |
|
|
and a constant, see if we can compute a new constant value. */
|
5012 |
|
|
else if (ARITHMETIC_P (SET_SRC (x))
|
5013 |
|
|
&& REG_P (XEXP (SET_SRC (x), 0))
|
5014 |
|
|
&& REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
|
5015 |
|
|
&& p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
|
5016 |
|
|
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
|
5017 |
|
|
&& 0 != (new = simplify_binary_operation
|
5018 |
|
|
(GET_CODE (SET_SRC (x)), GET_MODE (dest),
|
5019 |
|
|
p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
|
5020 |
|
|
XEXP (SET_SRC (x), 1)))
|
5021 |
|
|
&& GET_CODE (new) == CONST_INT)
|
5022 |
|
|
p->const_equiv[REGNO (dest)] = new;
|
5023 |
|
|
|
5024 |
|
|
/* Otherwise, we can't do anything with this value. */
|
5025 |
|
|
else
|
5026 |
|
|
p->const_equiv[REGNO (dest)] = 0;
|
5027 |
|
|
}
|
5028 |
|
|
|
5029 |
|
|
/* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
|
5030 |
|
|
|
5031 |
|
|
static void
|
5032 |
|
|
emit_equiv_load (struct epi_info *p)
|
5033 |
|
|
{
|
5034 |
|
|
if (p->equiv_reg_src != 0)
|
5035 |
|
|
{
|
5036 |
|
|
rtx dest = p->sp_equiv_reg;
|
5037 |
|
|
|
5038 |
|
|
if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
|
5039 |
|
|
dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
|
5040 |
|
|
REGNO (p->sp_equiv_reg));
|
5041 |
|
|
|
5042 |
|
|
emit_move_insn (dest, p->equiv_reg_src);
|
5043 |
|
|
p->equiv_reg_src = 0;
|
5044 |
|
|
}
|
5045 |
|
|
}
|
5046 |
|
|
#endif
|
5047 |
|
|
|
5048 |
|
|
/* Generate the prologue and epilogue RTL if the machine supports it. Thread
|
5049 |
|
|
this into place with notes indicating where the prologue ends and where
|
5050 |
|
|
the epilogue begins. Update the basic block information when possible. */
|
5051 |
|
|
|
5052 |
|
|
void
|
5053 |
|
|
thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
|
5054 |
|
|
{
|
5055 |
|
|
int inserted = 0;
|
5056 |
|
|
edge e;
|
5057 |
|
|
#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
|
5058 |
|
|
rtx seq;
|
5059 |
|
|
#endif
|
5060 |
|
|
#ifdef HAVE_prologue
|
5061 |
|
|
rtx prologue_end = NULL_RTX;
|
5062 |
|
|
#endif
|
5063 |
|
|
#if defined (HAVE_epilogue) || defined(HAVE_return)
|
5064 |
|
|
rtx epilogue_end = NULL_RTX;
|
5065 |
|
|
#endif
|
5066 |
|
|
edge_iterator ei;
|
5067 |
|
|
|
5068 |
|
|
#ifdef HAVE_prologue
|
5069 |
|
|
if (HAVE_prologue)
|
5070 |
|
|
{
|
5071 |
|
|
start_sequence ();
|
5072 |
|
|
seq = gen_prologue ();
|
5073 |
|
|
emit_insn (seq);
|
5074 |
|
|
|
5075 |
|
|
/* Retain a map of the prologue insns. */
|
5076 |
|
|
record_insns (seq, &prologue);
|
5077 |
|
|
prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
|
5078 |
|
|
|
5079 |
|
|
#ifndef PROFILE_BEFORE_PROLOGUE
|
5080 |
|
|
/* Ensure that instructions are not moved into the prologue when
|
5081 |
|
|
profiling is on. The call to the profiling routine can be
|
5082 |
|
|
emitted within the live range of a call-clobbered register. */
|
5083 |
|
|
if (current_function_profile)
|
5084 |
|
|
emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
|
5085 |
|
|
#endif
|
5086 |
|
|
|
5087 |
|
|
seq = get_insns ();
|
5088 |
|
|
end_sequence ();
|
5089 |
|
|
set_insn_locators (seq, prologue_locator);
|
5090 |
|
|
|
5091 |
|
|
/* Can't deal with multiple successors of the entry block
|
5092 |
|
|
at the moment. Function should always have at least one
|
5093 |
|
|
entry point. */
|
5094 |
|
|
gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
|
5095 |
|
|
|
5096 |
|
|
insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
|
5097 |
|
|
inserted = 1;
|
5098 |
|
|
}
|
5099 |
|
|
#endif
|
5100 |
|
|
|
5101 |
|
|
/* If the exit block has no non-fake predecessors, we don't need
|
5102 |
|
|
an epilogue. */
|
5103 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
5104 |
|
|
if ((e->flags & EDGE_FAKE) == 0)
|
5105 |
|
|
break;
|
5106 |
|
|
if (e == NULL)
|
5107 |
|
|
goto epilogue_done;
|
5108 |
|
|
|
5109 |
|
|
#ifdef HAVE_return
|
5110 |
|
|
if (optimize && HAVE_return)
|
5111 |
|
|
{
|
5112 |
|
|
/* If we're allowed to generate a simple return instruction,
|
5113 |
|
|
then by definition we don't need a full epilogue. Examine
|
5114 |
|
|
the block that falls through to EXIT. If it does not
|
5115 |
|
|
contain any code, examine its predecessors and try to
|
5116 |
|
|
emit (conditional) return instructions. */
|
5117 |
|
|
|
5118 |
|
|
basic_block last;
|
5119 |
|
|
rtx label;
|
5120 |
|
|
|
5121 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
5122 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
5123 |
|
|
break;
|
5124 |
|
|
if (e == NULL)
|
5125 |
|
|
goto epilogue_done;
|
5126 |
|
|
last = e->src;
|
5127 |
|
|
|
5128 |
|
|
/* Verify that there are no active instructions in the last block. */
|
5129 |
|
|
label = BB_END (last);
|
5130 |
|
|
while (label && !LABEL_P (label))
|
5131 |
|
|
{
|
5132 |
|
|
if (active_insn_p (label))
|
5133 |
|
|
break;
|
5134 |
|
|
label = PREV_INSN (label);
|
5135 |
|
|
}
|
5136 |
|
|
|
5137 |
|
|
if (BB_HEAD (last) == label && LABEL_P (label))
|
5138 |
|
|
{
|
5139 |
|
|
edge_iterator ei2;
|
5140 |
|
|
rtx epilogue_line_note = NULL_RTX;
|
5141 |
|
|
|
5142 |
|
|
/* Locate the line number associated with the closing brace,
|
5143 |
|
|
if we can find one. */
|
5144 |
|
|
for (seq = get_last_insn ();
|
5145 |
|
|
seq && ! active_insn_p (seq);
|
5146 |
|
|
seq = PREV_INSN (seq))
|
5147 |
|
|
if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
|
5148 |
|
|
{
|
5149 |
|
|
epilogue_line_note = seq;
|
5150 |
|
|
break;
|
5151 |
|
|
}
|
5152 |
|
|
|
5153 |
|
|
for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
|
5154 |
|
|
{
|
5155 |
|
|
basic_block bb = e->src;
|
5156 |
|
|
rtx jump;
|
5157 |
|
|
|
5158 |
|
|
if (bb == ENTRY_BLOCK_PTR)
|
5159 |
|
|
{
|
5160 |
|
|
ei_next (&ei2);
|
5161 |
|
|
continue;
|
5162 |
|
|
}
|
5163 |
|
|
|
5164 |
|
|
jump = BB_END (bb);
|
5165 |
|
|
if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
|
5166 |
|
|
{
|
5167 |
|
|
ei_next (&ei2);
|
5168 |
|
|
continue;
|
5169 |
|
|
}
|
5170 |
|
|
|
5171 |
|
|
/* If we have an unconditional jump, we can replace that
|
5172 |
|
|
with a simple return instruction. */
|
5173 |
|
|
if (simplejump_p (jump))
|
5174 |
|
|
{
|
5175 |
|
|
emit_return_into_block (bb, epilogue_line_note);
|
5176 |
|
|
delete_insn (jump);
|
5177 |
|
|
}
|
5178 |
|
|
|
5179 |
|
|
/* If we have a conditional jump, we can try to replace
|
5180 |
|
|
that with a conditional return instruction. */
|
5181 |
|
|
else if (condjump_p (jump))
|
5182 |
|
|
{
|
5183 |
|
|
if (! redirect_jump (jump, 0, 0))
|
5184 |
|
|
{
|
5185 |
|
|
ei_next (&ei2);
|
5186 |
|
|
continue;
|
5187 |
|
|
}
|
5188 |
|
|
|
5189 |
|
|
/* If this block has only one successor, it both jumps
|
5190 |
|
|
and falls through to the fallthru block, so we can't
|
5191 |
|
|
delete the edge. */
|
5192 |
|
|
if (single_succ_p (bb))
|
5193 |
|
|
{
|
5194 |
|
|
ei_next (&ei2);
|
5195 |
|
|
continue;
|
5196 |
|
|
}
|
5197 |
|
|
}
|
5198 |
|
|
else
|
5199 |
|
|
{
|
5200 |
|
|
ei_next (&ei2);
|
5201 |
|
|
continue;
|
5202 |
|
|
}
|
5203 |
|
|
|
5204 |
|
|
/* Fix up the CFG for the successful change we just made. */
|
5205 |
|
|
redirect_edge_succ (e, EXIT_BLOCK_PTR);
|
5206 |
|
|
}
|
5207 |
|
|
|
5208 |
|
|
/* Emit a return insn for the exit fallthru block. Whether
|
5209 |
|
|
this is still reachable will be determined later. */
|
5210 |
|
|
|
5211 |
|
|
emit_barrier_after (BB_END (last));
|
5212 |
|
|
emit_return_into_block (last, epilogue_line_note);
|
5213 |
|
|
epilogue_end = BB_END (last);
|
5214 |
|
|
single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
|
5215 |
|
|
goto epilogue_done;
|
5216 |
|
|
}
|
5217 |
|
|
}
|
5218 |
|
|
#endif
|
5219 |
|
|
/* Find the edge that falls through to EXIT. Other edges may exist
|
5220 |
|
|
due to RETURN instructions, but those don't need epilogues.
|
5221 |
|
|
There really shouldn't be a mixture -- either all should have
|
5222 |
|
|
been converted or none, however... */
|
5223 |
|
|
|
5224 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
5225 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
5226 |
|
|
break;
|
5227 |
|
|
if (e == NULL)
|
5228 |
|
|
goto epilogue_done;
|
5229 |
|
|
|
5230 |
|
|
#ifdef HAVE_epilogue
|
5231 |
|
|
if (HAVE_epilogue)
|
5232 |
|
|
{
|
5233 |
|
|
start_sequence ();
|
5234 |
|
|
epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
|
5235 |
|
|
|
5236 |
|
|
seq = gen_epilogue ();
|
5237 |
|
|
|
5238 |
|
|
#ifdef INCOMING_RETURN_ADDR_RTX
|
5239 |
|
|
/* If this function returns with the stack depressed and we can support
|
5240 |
|
|
it, massage the epilogue to actually do that. */
|
5241 |
|
|
if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
|
5242 |
|
|
&& TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
|
5243 |
|
|
seq = keep_stack_depressed (seq);
|
5244 |
|
|
#endif
|
5245 |
|
|
|
5246 |
|
|
emit_jump_insn (seq);
|
5247 |
|
|
|
5248 |
|
|
/* Retain a map of the epilogue insns. */
|
5249 |
|
|
record_insns (seq, &epilogue);
|
5250 |
|
|
set_insn_locators (seq, epilogue_locator);
|
5251 |
|
|
|
5252 |
|
|
seq = get_insns ();
|
5253 |
|
|
end_sequence ();
|
5254 |
|
|
|
5255 |
|
|
insert_insn_on_edge (seq, e);
|
5256 |
|
|
inserted = 1;
|
5257 |
|
|
}
|
5258 |
|
|
else
|
5259 |
|
|
#endif
|
5260 |
|
|
{
|
5261 |
|
|
basic_block cur_bb;
|
5262 |
|
|
|
5263 |
|
|
if (! next_active_insn (BB_END (e->src)))
|
5264 |
|
|
goto epilogue_done;
|
5265 |
|
|
/* We have a fall-through edge to the exit block, the source is not
|
5266 |
|
|
at the end of the function, and there will be an assembler epilogue
|
5267 |
|
|
at the end of the function.
|
5268 |
|
|
We can't use force_nonfallthru here, because that would try to
|
5269 |
|
|
use return. Inserting a jump 'by hand' is extremely messy, so
|
5270 |
|
|
we take advantage of cfg_layout_finalize using
|
5271 |
|
|
fixup_fallthru_exit_predecessor. */
|
5272 |
|
|
cfg_layout_initialize (0);
|
5273 |
|
|
FOR_EACH_BB (cur_bb)
|
5274 |
|
|
if (cur_bb->index >= NUM_FIXED_BLOCKS
|
5275 |
|
|
&& cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
|
5276 |
|
|
cur_bb->aux = cur_bb->next_bb;
|
5277 |
|
|
cfg_layout_finalize ();
|
5278 |
|
|
}
|
5279 |
|
|
epilogue_done:
|
5280 |
|
|
|
5281 |
|
|
if (inserted)
|
5282 |
|
|
commit_edge_insertions ();
|
5283 |
|
|
|
5284 |
|
|
#ifdef HAVE_sibcall_epilogue
|
5285 |
|
|
/* Emit sibling epilogues before any sibling call sites. */
|
5286 |
|
|
for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
|
5287 |
|
|
{
|
5288 |
|
|
basic_block bb = e->src;
|
5289 |
|
|
rtx insn = BB_END (bb);
|
5290 |
|
|
|
5291 |
|
|
if (!CALL_P (insn)
|
5292 |
|
|
|| ! SIBLING_CALL_P (insn))
|
5293 |
|
|
{
|
5294 |
|
|
ei_next (&ei);
|
5295 |
|
|
continue;
|
5296 |
|
|
}
|
5297 |
|
|
|
5298 |
|
|
start_sequence ();
|
5299 |
|
|
emit_insn (gen_sibcall_epilogue ());
|
5300 |
|
|
seq = get_insns ();
|
5301 |
|
|
end_sequence ();
|
5302 |
|
|
|
5303 |
|
|
/* Retain a map of the epilogue insns. Used in life analysis to
|
5304 |
|
|
avoid getting rid of sibcall epilogue insns. Do this before we
|
5305 |
|
|
actually emit the sequence. */
|
5306 |
|
|
record_insns (seq, &sibcall_epilogue);
|
5307 |
|
|
set_insn_locators (seq, epilogue_locator);
|
5308 |
|
|
|
5309 |
|
|
emit_insn_before (seq, insn);
|
5310 |
|
|
ei_next (&ei);
|
5311 |
|
|
}
|
5312 |
|
|
#endif
|
5313 |
|
|
|
5314 |
|
|
#ifdef HAVE_prologue
|
5315 |
|
|
/* This is probably all useless now that we use locators. */
|
5316 |
|
|
if (prologue_end)
|
5317 |
|
|
{
|
5318 |
|
|
rtx insn, prev;
|
5319 |
|
|
|
5320 |
|
|
/* GDB handles `break f' by setting a breakpoint on the first
|
5321 |
|
|
line note after the prologue. Which means (1) that if
|
5322 |
|
|
there are line number notes before where we inserted the
|
5323 |
|
|
prologue we should move them, and (2) we should generate a
|
5324 |
|
|
note before the end of the first basic block, if there isn't
|
5325 |
|
|
one already there.
|
5326 |
|
|
|
5327 |
|
|
??? This behavior is completely broken when dealing with
|
5328 |
|
|
multiple entry functions. We simply place the note always
|
5329 |
|
|
into first basic block and let alternate entry points
|
5330 |
|
|
to be missed.
|
5331 |
|
|
*/
|
5332 |
|
|
|
5333 |
|
|
for (insn = prologue_end; insn; insn = prev)
|
5334 |
|
|
{
|
5335 |
|
|
prev = PREV_INSN (insn);
|
5336 |
|
|
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
|
5337 |
|
|
{
|
5338 |
|
|
/* Note that we cannot reorder the first insn in the
|
5339 |
|
|
chain, since rest_of_compilation relies on that
|
5340 |
|
|
remaining constant. */
|
5341 |
|
|
if (prev == NULL)
|
5342 |
|
|
break;
|
5343 |
|
|
reorder_insns (insn, insn, prologue_end);
|
5344 |
|
|
}
|
5345 |
|
|
}
|
5346 |
|
|
|
5347 |
|
|
/* Find the last line number note in the first block. */
|
5348 |
|
|
for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
|
5349 |
|
|
insn != prologue_end && insn;
|
5350 |
|
|
insn = PREV_INSN (insn))
|
5351 |
|
|
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
|
5352 |
|
|
break;
|
5353 |
|
|
|
5354 |
|
|
/* If we didn't find one, make a copy of the first line number
|
5355 |
|
|
we run across. */
|
5356 |
|
|
if (! insn)
|
5357 |
|
|
{
|
5358 |
|
|
for (insn = next_active_insn (prologue_end);
|
5359 |
|
|
insn;
|
5360 |
|
|
insn = PREV_INSN (insn))
|
5361 |
|
|
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
|
5362 |
|
|
{
|
5363 |
|
|
emit_note_copy_after (insn, prologue_end);
|
5364 |
|
|
break;
|
5365 |
|
|
}
|
5366 |
|
|
}
|
5367 |
|
|
}
|
5368 |
|
|
#endif
|
5369 |
|
|
#ifdef HAVE_epilogue
|
5370 |
|
|
if (epilogue_end)
|
5371 |
|
|
{
|
5372 |
|
|
rtx insn, next;
|
5373 |
|
|
|
5374 |
|
|
/* Similarly, move any line notes that appear after the epilogue.
|
5375 |
|
|
There is no need, however, to be quite so anal about the existence
|
5376 |
|
|
of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
|
5377 |
|
|
NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
|
5378 |
|
|
info generation. */
|
5379 |
|
|
for (insn = epilogue_end; insn; insn = next)
|
5380 |
|
|
{
|
5381 |
|
|
next = NEXT_INSN (insn);
|
5382 |
|
|
if (NOTE_P (insn)
|
5383 |
|
|
&& (NOTE_LINE_NUMBER (insn) > 0
|
5384 |
|
|
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
|
5385 |
|
|
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
|
5386 |
|
|
reorder_insns (insn, insn, PREV_INSN (epilogue_end));
|
5387 |
|
|
}
|
5388 |
|
|
}
|
5389 |
|
|
#endif
|
5390 |
|
|
}
|
5391 |
|
|
|
5392 |
|
|
/* Reposition the prologue-end and epilogue-begin notes after instruction
|
5393 |
|
|
scheduling and delayed branch scheduling. */
|
5394 |
|
|
|
5395 |
|
|
void
|
5396 |
|
|
reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
|
5397 |
|
|
{
|
5398 |
|
|
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
|
5399 |
|
|
rtx insn, last, note;
|
5400 |
|
|
int len;
|
5401 |
|
|
|
5402 |
|
|
if ((len = VEC_length (int, prologue)) > 0)
|
5403 |
|
|
{
|
5404 |
|
|
last = 0, note = 0;
|
5405 |
|
|
|
5406 |
|
|
/* Scan from the beginning until we reach the last prologue insn.
|
5407 |
|
|
We apparently can't depend on basic_block_{head,end} after
|
5408 |
|
|
reorg has run. */
|
5409 |
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
5410 |
|
|
{
|
5411 |
|
|
if (NOTE_P (insn))
|
5412 |
|
|
{
|
5413 |
|
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
|
5414 |
|
|
note = insn;
|
5415 |
|
|
}
|
5416 |
|
|
else if (contains (insn, &prologue))
|
5417 |
|
|
{
|
5418 |
|
|
last = insn;
|
5419 |
|
|
if (--len == 0)
|
5420 |
|
|
break;
|
5421 |
|
|
}
|
5422 |
|
|
}
|
5423 |
|
|
|
5424 |
|
|
if (last)
|
5425 |
|
|
{
|
5426 |
|
|
/* Find the prologue-end note if we haven't already, and
|
5427 |
|
|
move it to just after the last prologue insn. */
|
5428 |
|
|
if (note == 0)
|
5429 |
|
|
{
|
5430 |
|
|
for (note = last; (note = NEXT_INSN (note));)
|
5431 |
|
|
if (NOTE_P (note)
|
5432 |
|
|
&& NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
|
5433 |
|
|
break;
|
5434 |
|
|
}
|
5435 |
|
|
|
5436 |
|
|
/* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
|
5437 |
|
|
if (LABEL_P (last))
|
5438 |
|
|
last = NEXT_INSN (last);
|
5439 |
|
|
reorder_insns (note, note, last);
|
5440 |
|
|
}
|
5441 |
|
|
}
|
5442 |
|
|
|
5443 |
|
|
if ((len = VEC_length (int, epilogue)) > 0)
|
5444 |
|
|
{
|
5445 |
|
|
last = 0, note = 0;
|
5446 |
|
|
|
5447 |
|
|
/* Scan from the end until we reach the first epilogue insn.
|
5448 |
|
|
We apparently can't depend on basic_block_{head,end} after
|
5449 |
|
|
reorg has run. */
|
5450 |
|
|
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
5451 |
|
|
{
|
5452 |
|
|
if (NOTE_P (insn))
|
5453 |
|
|
{
|
5454 |
|
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
|
5455 |
|
|
note = insn;
|
5456 |
|
|
}
|
5457 |
|
|
else if (contains (insn, &epilogue))
|
5458 |
|
|
{
|
5459 |
|
|
last = insn;
|
5460 |
|
|
if (--len == 0)
|
5461 |
|
|
break;
|
5462 |
|
|
}
|
5463 |
|
|
}
|
5464 |
|
|
|
5465 |
|
|
if (last)
|
5466 |
|
|
{
|
5467 |
|
|
/* Find the epilogue-begin note if we haven't already, and
|
5468 |
|
|
move it to just before the first epilogue insn. */
|
5469 |
|
|
if (note == 0)
|
5470 |
|
|
{
|
5471 |
|
|
for (note = insn; (note = PREV_INSN (note));)
|
5472 |
|
|
if (NOTE_P (note)
|
5473 |
|
|
&& NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
|
5474 |
|
|
break;
|
5475 |
|
|
}
|
5476 |
|
|
|
5477 |
|
|
if (PREV_INSN (last) != note)
|
5478 |
|
|
reorder_insns (note, note, PREV_INSN (last));
|
5479 |
|
|
}
|
5480 |
|
|
}
|
5481 |
|
|
#endif /* HAVE_prologue or HAVE_epilogue */
|
5482 |
|
|
}
|
5483 |
|
|
|
5484 |
|
|
/* Resets insn_block_boundaries array. */
|
5485 |
|
|
|
5486 |
|
|
void
|
5487 |
|
|
reset_block_changes (void)
|
5488 |
|
|
{
|
5489 |
|
|
cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
|
5490 |
|
|
VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
|
5491 |
|
|
}
|
5492 |
|
|
|
5493 |
|
|
/* Record the boundary for BLOCK. */
|
5494 |
|
|
void
|
5495 |
|
|
record_block_change (tree block)
|
5496 |
|
|
{
|
5497 |
|
|
int i, n;
|
5498 |
|
|
tree last_block;
|
5499 |
|
|
|
5500 |
|
|
if (!block)
|
5501 |
|
|
return;
|
5502 |
|
|
|
5503 |
|
|
if(!cfun->ib_boundaries_block)
|
5504 |
|
|
return;
|
5505 |
|
|
|
5506 |
|
|
last_block = VEC_pop (tree, cfun->ib_boundaries_block);
|
5507 |
|
|
n = get_max_uid ();
|
5508 |
|
|
for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
|
5509 |
|
|
VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
|
5510 |
|
|
|
5511 |
|
|
VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
|
5512 |
|
|
}
|
5513 |
|
|
|
5514 |
|
|
/* Finishes record of boundaries. */
|
5515 |
|
|
void
|
5516 |
|
|
finalize_block_changes (void)
|
5517 |
|
|
{
|
5518 |
|
|
record_block_change (DECL_INITIAL (current_function_decl));
|
5519 |
|
|
}
|
5520 |
|
|
|
5521 |
|
|
/* For INSN return the BLOCK it belongs to. */
|
5522 |
|
|
void
|
5523 |
|
|
check_block_change (rtx insn, tree *block)
|
5524 |
|
|
{
|
5525 |
|
|
unsigned uid = INSN_UID (insn);
|
5526 |
|
|
|
5527 |
|
|
if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
|
5528 |
|
|
return;
|
5529 |
|
|
|
5530 |
|
|
*block = VEC_index (tree, cfun->ib_boundaries_block, uid);
|
5531 |
|
|
}
|
5532 |
|
|
|
5533 |
|
|
/* Releases the ib_boundaries_block records. */
|
5534 |
|
|
void
|
5535 |
|
|
free_block_changes (void)
|
5536 |
|
|
{
|
5537 |
|
|
VEC_free (tree, gc, cfun->ib_boundaries_block);
|
5538 |
|
|
}
|
5539 |
|
|
|
5540 |
|
|
/* Returns the name of the current function. */
|
5541 |
|
|
const char *
|
5542 |
|
|
current_function_name (void)
|
5543 |
|
|
{
|
5544 |
|
|
return lang_hooks.decl_printable_name (cfun->decl, 2);
|
5545 |
|
|
}
|
5546 |
|
|
|
5547 |
|
|
|
5548 |
|
|
static unsigned int
|
5549 |
|
|
rest_of_handle_check_leaf_regs (void)
|
5550 |
|
|
{
|
5551 |
|
|
#ifdef LEAF_REGISTERS
|
5552 |
|
|
current_function_uses_only_leaf_regs
|
5553 |
|
|
= optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
|
5554 |
|
|
#endif
|
5555 |
|
|
return 0;
|
5556 |
|
|
}
|
5557 |
|
|
|
5558 |
|
|
/* Insert a TYPE into the used types hash table of CFUN. */
|
5559 |
|
|
static void
|
5560 |
|
|
used_types_insert_helper (tree type, struct function *func)
|
5561 |
|
|
{
|
5562 |
|
|
if (type != NULL && func != NULL)
|
5563 |
|
|
{
|
5564 |
|
|
void **slot;
|
5565 |
|
|
|
5566 |
|
|
if (func->used_types_hash == NULL)
|
5567 |
|
|
func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
|
5568 |
|
|
htab_eq_pointer, NULL);
|
5569 |
|
|
slot = htab_find_slot (func->used_types_hash, type, INSERT);
|
5570 |
|
|
if (*slot == NULL)
|
5571 |
|
|
*slot = type;
|
5572 |
|
|
}
|
5573 |
|
|
}
|
5574 |
|
|
|
5575 |
|
|
/* Given a type, insert it into the used hash table in cfun. */
|
5576 |
|
|
void
|
5577 |
|
|
used_types_insert (tree t)
|
5578 |
|
|
{
|
5579 |
|
|
while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
|
5580 |
|
|
t = TREE_TYPE (t);
|
5581 |
|
|
t = TYPE_MAIN_VARIANT (t);
|
5582 |
|
|
if (debug_info_level > DINFO_LEVEL_NONE)
|
5583 |
|
|
used_types_insert_helper (t, cfun);
|
5584 |
|
|
}
|
5585 |
|
|
|
5586 |
|
|
struct tree_opt_pass pass_leaf_regs =
|
5587 |
|
|
{
|
5588 |
|
|
NULL, /* name */
|
5589 |
|
|
NULL, /* gate */
|
5590 |
|
|
rest_of_handle_check_leaf_regs, /* execute */
|
5591 |
|
|
NULL, /* sub */
|
5592 |
|
|
NULL, /* next */
|
5593 |
|
|
0, /* static_pass_number */
|
5594 |
|
|
0, /* tv_id */
|
5595 |
|
|
0, /* properties_required */
|
5596 |
|
|
0, /* properties_provided */
|
5597 |
|
|
0, /* properties_destroyed */
|
5598 |
|
|
0, /* todo_flags_start */
|
5599 |
|
|
0, /* todo_flags_finish */
|
5600 |
|
|
|
5601 |
|
|
};
|
5602 |
|
|
|
5603 |
|
|
|
5604 |
|
|
#include "gt-function.h"
|