OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [local-alloc.c] - Blame information for rev 193

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Allocate registers within a basic block, for GNU compiler.
2
   Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
/* Allocation of hard register numbers to pseudo registers is done in
23
   two passes.  In this pass we consider only regs that are born and
24
   die once within one basic block.  We do this one basic block at a
25
   time.  Then the next pass allocates the registers that remain.
26
   Two passes are used because this pass uses methods that work only
27
   on linear code, but that do a better job than the general methods
28
   used in global_alloc, and more quickly too.
29
 
30
   The assignments made are recorded in the vector reg_renumber
31
   whose space is allocated here.  The rtl code itself is not altered.
32
 
33
   We assign each instruction in the basic block a number
34
   which is its order from the beginning of the block.
35
   Then we can represent the lifetime of a pseudo register with
36
   a pair of numbers, and check for conflicts easily.
37
   We can record the availability of hard registers with a
38
   HARD_REG_SET for each instruction.  The HARD_REG_SET
39
   contains 0 or 1 for each hard reg.
40
 
41
   To avoid register shuffling, we tie registers together when one
42
   dies by being copied into another, or dies in an instruction that
43
   does arithmetic to produce another.  The tied registers are
44
   allocated as one.  Registers with different reg class preferences
45
   can never be tied unless the class preferred by one is a subclass
46
   of the one preferred by the other.
47
 
48
   Tying is represented with "quantity numbers".
49
   A non-tied register is given a new quantity number.
50
   Tied registers have the same quantity number.
51
 
52
   We have provision to exempt registers, even when they are contained
53
   within the block, that can be tied to others that are not contained in it.
54
   This is so that global_alloc could process them both and tie them then.
55
   But this is currently disabled since tying in global_alloc is not
56
   yet implemented.  */
57
 
58
/* Pseudos allocated here can be reallocated by global.c if the hard register
59
   is used as a spill register.  Currently we don't allocate such pseudos
60
   here if their preferred class is likely to be used by spills.  */
61
 
62
#include "config.h"
63
#include "system.h"
64
#include "coretypes.h"
65
#include "tm.h"
66
#include "hard-reg-set.h"
67
#include "rtl.h"
68
#include "tm_p.h"
69
#include "flags.h"
70
#include "regs.h"
71
#include "function.h"
72
#include "insn-config.h"
73
#include "insn-attr.h"
74
#include "recog.h"
75
#include "output.h"
76
#include "toplev.h"
77
#include "except.h"
78
#include "integrate.h"
79
#include "reload.h"
80
#include "ggc.h"
81
#include "timevar.h"
82
#include "tree-pass.h"
83
 
84
/* Next quantity number available for allocation.  */
85
 
86
static int next_qty;
87
 
88
/* Information we maintain about each quantity.  */
89
struct qty
90
{
91
  /* The number of refs to quantity Q.  */
92
 
93
  int n_refs;
94
 
95
  /* The frequency of uses of quantity Q.  */
96
 
97
  int freq;
98
 
99
  /* Insn number (counting from head of basic block)
100
     where quantity Q was born.  -1 if birth has not been recorded.  */
101
 
102
  int birth;
103
 
104
  /* Insn number (counting from head of basic block)
105
     where given quantity died.  Due to the way tying is done,
106
     and the fact that we consider in this pass only regs that die but once,
107
     a quantity can die only once.  Each quantity's life span
108
     is a set of consecutive insns.  -1 if death has not been recorded.  */
109
 
110
  int death;
111
 
112
  /* Number of words needed to hold the data in given quantity.
113
     This depends on its machine mode.  It is used for these purposes:
114
     1. It is used in computing the relative importance of qtys,
115
        which determines the order in which we look for regs for them.
116
     2. It is used in rules that prevent tying several registers of
117
        different sizes in a way that is geometrically impossible
118
        (see combine_regs).  */
119
 
120
  int size;
121
 
122
  /* Number of times a reg tied to given qty lives across a CALL_INSN.  */
123
 
124
  int n_calls_crossed;
125
 
126
  /* Number of times a reg tied to given qty lives across a CALL_INSN
127
     that might throw.  */
128
 
129
  int n_throwing_calls_crossed;
130
 
131
  /* The register number of one pseudo register whose reg_qty value is Q.
132
     This register should be the head of the chain
133
     maintained in reg_next_in_qty.  */
134
 
135
  int first_reg;
136
 
137
  /* Reg class contained in (smaller than) the preferred classes of all
138
     the pseudo regs that are tied in given quantity.
139
     This is the preferred class for allocating that quantity.  */
140
 
141
  enum reg_class min_class;
142
 
143
  /* Register class within which we allocate given qty if we can't get
144
     its preferred class.  */
145
 
146
  enum reg_class alternate_class;
147
 
148
  /* This holds the mode of the registers that are tied to given qty,
149
     or VOIDmode if registers with differing modes are tied together.  */
150
 
151
  enum machine_mode mode;
152
 
153
  /* the hard reg number chosen for given quantity,
154
     or -1 if none was found.  */
155
 
156
  short phys_reg;
157
};
158
 
159
static struct qty *qty;
160
 
161
/* These fields are kept separately to speedup their clearing.  */
162
 
163
/* We maintain two hard register sets that indicate suggested hard registers
164
   for each quantity.  The first, phys_copy_sugg, contains hard registers
165
   that are tied to the quantity by a simple copy.  The second contains all
166
   hard registers that are tied to the quantity via an arithmetic operation.
167
 
168
   The former register set is given priority for allocation.  This tends to
169
   eliminate copy insns.  */
170
 
171
/* Element Q is a set of hard registers that are suggested for quantity Q by
172
   copy insns.  */
173
 
174
static HARD_REG_SET *qty_phys_copy_sugg;
175
 
176
/* Element Q is a set of hard registers that are suggested for quantity Q by
177
   arithmetic insns.  */
178
 
179
static HARD_REG_SET *qty_phys_sugg;
180
 
181
/* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */
182
 
183
static short *qty_phys_num_copy_sugg;
184
 
185
/* Element Q is the number of suggested registers in qty_phys_sugg.  */
186
 
187
static short *qty_phys_num_sugg;
188
 
189
/* If (REG N) has been assigned a quantity number, is a register number
190
   of another register assigned the same quantity number, or -1 for the
191
   end of the chain.  qty->first_reg point to the head of this chain.  */
192
 
193
static int *reg_next_in_qty;
194
 
195
/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
196
   if it is >= 0,
197
   of -1 if this register cannot be allocated by local-alloc,
198
   or -2 if not known yet.
199
 
200
   Note that if we see a use or death of pseudo register N with
201
   reg_qty[N] == -2, register N must be local to the current block.  If
202
   it were used in more than one block, we would have reg_qty[N] == -1.
203
   This relies on the fact that if reg_basic_block[N] is >= 0, register N
204
   will not appear in any other block.  We save a considerable number of
205
   tests by exploiting this.
206
 
207
   If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
208
   be referenced.  */
209
 
210
static int *reg_qty;
211
 
212
/* The offset (in words) of register N within its quantity.
213
   This can be nonzero if register N is SImode, and has been tied
214
   to a subreg of a DImode register.  */
215
 
216
static char *reg_offset;
217
 
218
/* Vector of substitutions of register numbers,
219
   used to map pseudo regs into hardware regs.
220
   This is set up as a result of register allocation.
221
   Element N is the hard reg assigned to pseudo reg N,
222
   or is -1 if no hard reg was assigned.
223
   If N is a hard reg number, element N is N.  */
224
 
225
short *reg_renumber;
226
 
227
/* Set of hard registers live at the current point in the scan
228
   of the instructions in a basic block.  */
229
 
230
static HARD_REG_SET regs_live;
231
 
232
/* Each set of hard registers indicates registers live at a particular
233
   point in the basic block.  For N even, regs_live_at[N] says which
234
   hard registers are needed *after* insn N/2 (i.e., they may not
235
   conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
236
 
237
   If an object is to conflict with the inputs of insn J but not the
238
   outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
239
   if it is to conflict with the outputs of insn J but not the inputs of
240
   insn J + 1, it is said to die at index J*2 + 1.  */
241
 
242
static HARD_REG_SET *regs_live_at;
243
 
244
/* Communicate local vars `insn_number' and `insn'
245
   from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
246
static int this_insn_number;
247
static rtx this_insn;
248
 
249
struct equivalence
250
{
251
  /* Set when an attempt should be made to replace a register
252
     with the associated src_p entry.  */
253
 
254
  char replace;
255
 
256
  /* Set when a REG_EQUIV note is found or created.  Use to
257
     keep track of what memory accesses might be created later,
258
     e.g. by reload.  */
259
 
260
  rtx replacement;
261
 
262
  rtx *src_p;
263
 
264
  /* Loop depth is used to recognize equivalences which appear
265
     to be present within the same loop (or in an inner loop).  */
266
 
267
  int loop_depth;
268
 
269
  /* The list of each instruction which initializes this register.  */
270
 
271
  rtx init_insns;
272
 
273
  /* Nonzero if this had a preexisting REG_EQUIV note.  */
274
 
275
  int is_arg_equivalence;
276
};
277
 
278
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
279
   structure for that register.  */
280
 
281
static struct equivalence *reg_equiv;
282
 
283
/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
284
static int recorded_label_ref;
285
 
286
static void alloc_qty (int, enum machine_mode, int, int);
287
static void validate_equiv_mem_from_store (rtx, rtx, void *);
288
static int validate_equiv_mem (rtx, rtx, rtx);
289
static int equiv_init_varies_p (rtx);
290
static int equiv_init_movable_p (rtx, int);
291
static int contains_replace_regs (rtx);
292
static int memref_referenced_p (rtx, rtx);
293
static int memref_used_between_p (rtx, rtx, rtx);
294
static void update_equiv_regs (void);
295
static void no_equiv (rtx, rtx, void *);
296
static void block_alloc (int);
297
static int qty_sugg_compare (int, int);
298
static int qty_sugg_compare_1 (const void *, const void *);
299
static int qty_compare (int, int);
300
static int qty_compare_1 (const void *, const void *);
301
static int combine_regs (rtx, rtx, int, int, rtx, int);
302
static int reg_meets_class_p (int, enum reg_class);
303
static void update_qty_class (int, int);
304
static void reg_is_set (rtx, rtx, void *);
305
static void reg_is_born (rtx, int);
306
static void wipe_dead_reg (rtx, int);
307
static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
308
                          int, int);
309
static void mark_life (int, enum machine_mode, int);
310
static void post_mark_life (int, enum machine_mode, int, int, int);
311
static int no_conflict_p (rtx, rtx, rtx);
312
static int requires_inout (const char *);
313
 
314
/* Allocate a new quantity (new within current basic block)
315
   for register number REGNO which is born at index BIRTH
316
   within the block.  MODE and SIZE are info on reg REGNO.  */
317
 
318
static void
319
alloc_qty (int regno, enum machine_mode mode, int size, int birth)
320
{
321
  int qtyno = next_qty++;
322
 
323
  reg_qty[regno] = qtyno;
324
  reg_offset[regno] = 0;
325
  reg_next_in_qty[regno] = -1;
326
 
327
  qty[qtyno].first_reg = regno;
328
  qty[qtyno].size = size;
329
  qty[qtyno].mode = mode;
330
  qty[qtyno].birth = birth;
331
  qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
332
  qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
333
  qty[qtyno].min_class = reg_preferred_class (regno);
334
  qty[qtyno].alternate_class = reg_alternate_class (regno);
335
  qty[qtyno].n_refs = REG_N_REFS (regno);
336
  qty[qtyno].freq = REG_FREQ (regno);
337
}
338
 
339
/* Main entry point of this file.  */
340
 
341
static int
342
local_alloc (void)
343
{
344
  int i;
345
  int max_qty;
346
  basic_block b;
347
 
348
  /* We need to keep track of whether or not we recorded a LABEL_REF so
349
     that we know if the jump optimizer needs to be rerun.  */
350
  recorded_label_ref = 0;
351
 
352
  /* Leaf functions and non-leaf functions have different needs.
353
     If defined, let the machine say what kind of ordering we
354
     should use.  */
355
#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
356
  ORDER_REGS_FOR_LOCAL_ALLOC;
357
#endif
358
 
359
  /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
360
     registers.  */
361
  update_equiv_regs ();
362
 
363
  /* This sets the maximum number of quantities we can have.  Quantity
364
     numbers start at zero and we can have one for each pseudo.  */
365
  max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
366
 
367
  /* Allocate vectors of temporary data.
368
     See the declarations of these variables, above,
369
     for what they mean.  */
370
 
371
  qty = XNEWVEC (struct qty, max_qty);
372
  qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
373
  qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
374
  qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
375
  qty_phys_num_sugg = XNEWVEC (short, max_qty);
376
 
377
  reg_qty = XNEWVEC (int, max_regno);
378
  reg_offset = XNEWVEC (char, max_regno);
379
  reg_next_in_qty = XNEWVEC (int, max_regno);
380
 
381
  /* Determine which pseudo-registers can be allocated by local-alloc.
382
     In general, these are the registers used only in a single block and
383
     which only die once.
384
 
385
     We need not be concerned with which block actually uses the register
386
     since we will never see it outside that block.  */
387
 
388
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
389
    {
390
      if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
391
        reg_qty[i] = -2;
392
      else
393
        reg_qty[i] = -1;
394
    }
395
 
396
  /* Force loop below to initialize entire quantity array.  */
397
  next_qty = max_qty;
398
 
399
  /* Allocate each block's local registers, block by block.  */
400
 
401
  FOR_EACH_BB (b)
402
    {
403
      /* NEXT_QTY indicates which elements of the `qty_...'
404
         vectors might need to be initialized because they were used
405
         for the previous block; it is set to the entire array before
406
         block 0.  Initialize those, with explicit loop if there are few,
407
         else with bzero and bcopy.  Do not initialize vectors that are
408
         explicit set by `alloc_qty'.  */
409
 
410
      if (next_qty < 6)
411
        {
412
          for (i = 0; i < next_qty; i++)
413
            {
414
              CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
415
              qty_phys_num_copy_sugg[i] = 0;
416
              CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
417
              qty_phys_num_sugg[i] = 0;
418
            }
419
        }
420
      else
421
        {
422
#define CLEAR(vector)  \
423
          memset ((vector), 0, (sizeof (*(vector))) * next_qty);
424
 
425
          CLEAR (qty_phys_copy_sugg);
426
          CLEAR (qty_phys_num_copy_sugg);
427
          CLEAR (qty_phys_sugg);
428
          CLEAR (qty_phys_num_sugg);
429
        }
430
 
431
      next_qty = 0;
432
 
433
      block_alloc (b->index);
434
    }
435
 
436
  free (qty);
437
  free (qty_phys_copy_sugg);
438
  free (qty_phys_num_copy_sugg);
439
  free (qty_phys_sugg);
440
  free (qty_phys_num_sugg);
441
 
442
  free (reg_qty);
443
  free (reg_offset);
444
  free (reg_next_in_qty);
445
 
446
  return recorded_label_ref;
447
}
448
 
449
/* Used for communication between the following two functions: contains
450
   a MEM that we wish to ensure remains unchanged.  */
451
static rtx equiv_mem;
452
 
453
/* Set nonzero if EQUIV_MEM is modified.  */
454
static int equiv_mem_modified;
455
 
456
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
457
   Called via note_stores.  */
458
 
459
static void
460
validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
461
                               void *data ATTRIBUTE_UNUSED)
462
{
463
  if ((REG_P (dest)
464
       && reg_overlap_mentioned_p (dest, equiv_mem))
465
      || (MEM_P (dest)
466
          && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
467
    equiv_mem_modified = 1;
468
}
469
 
470
/* Verify that no store between START and the death of REG invalidates
471
   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
472
   by storing into an overlapping memory location, or with a non-const
473
   CALL_INSN.
474
 
475
   Return 1 if MEMREF remains valid.  */
476
 
477
static int
478
validate_equiv_mem (rtx start, rtx reg, rtx memref)
479
{
480
  rtx insn;
481
  rtx note;
482
 
483
  equiv_mem = memref;
484
  equiv_mem_modified = 0;
485
 
486
  /* If the memory reference has side effects or is volatile, it isn't a
487
     valid equivalence.  */
488
  if (side_effects_p (memref))
489
    return 0;
490
 
491
  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
492
    {
493
      if (! INSN_P (insn))
494
        continue;
495
 
496
      if (find_reg_note (insn, REG_DEAD, reg))
497
        return 1;
498
 
499
      if (CALL_P (insn) && ! MEM_READONLY_P (memref)
500
          && ! CONST_OR_PURE_CALL_P (insn))
501
        return 0;
502
 
503
      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
504
 
505
      /* If a register mentioned in MEMREF is modified via an
506
         auto-increment, we lose the equivalence.  Do the same if one
507
         dies; although we could extend the life, it doesn't seem worth
508
         the trouble.  */
509
 
510
      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511
        if ((REG_NOTE_KIND (note) == REG_INC
512
             || REG_NOTE_KIND (note) == REG_DEAD)
513
            && REG_P (XEXP (note, 0))
514
            && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515
          return 0;
516
    }
517
 
518
  return 0;
519
}
520
 
521
/* Returns zero if X is known to be invariant.  */
522
 
523
static int
524
equiv_init_varies_p (rtx x)
525
{
526
  RTX_CODE code = GET_CODE (x);
527
  int i;
528
  const char *fmt;
529
 
530
  switch (code)
531
    {
532
    case MEM:
533
      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
534
 
535
    case CONST:
536
    case CONST_INT:
537
    case CONST_DOUBLE:
538
    case CONST_VECTOR:
539
    case SYMBOL_REF:
540
    case LABEL_REF:
541
      return 0;
542
 
543
    case REG:
544
      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
545
 
546
    case ASM_OPERANDS:
547
      if (MEM_VOLATILE_P (x))
548
        return 1;
549
 
550
      /* Fall through.  */
551
 
552
    default:
553
      break;
554
    }
555
 
556
  fmt = GET_RTX_FORMAT (code);
557
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
558
    if (fmt[i] == 'e')
559
      {
560
        if (equiv_init_varies_p (XEXP (x, i)))
561
          return 1;
562
      }
563
    else if (fmt[i] == 'E')
564
      {
565
        int j;
566
        for (j = 0; j < XVECLEN (x, i); j++)
567
          if (equiv_init_varies_p (XVECEXP (x, i, j)))
568
            return 1;
569
      }
570
 
571
  return 0;
572
}
573
 
574
/* Returns nonzero if X (used to initialize register REGNO) is movable.
575
   X is only movable if the registers it uses have equivalent initializations
576
   which appear to be within the same loop (or in an inner loop) and movable
577
   or if they are not candidates for local_alloc and don't vary.  */
578
 
579
static int
580
equiv_init_movable_p (rtx x, int regno)
581
{
582
  int i, j;
583
  const char *fmt;
584
  enum rtx_code code = GET_CODE (x);
585
 
586
  switch (code)
587
    {
588
    case SET:
589
      return equiv_init_movable_p (SET_SRC (x), regno);
590
 
591
    case CC0:
592
    case CLOBBER:
593
      return 0;
594
 
595
    case PRE_INC:
596
    case PRE_DEC:
597
    case POST_INC:
598
    case POST_DEC:
599
    case PRE_MODIFY:
600
    case POST_MODIFY:
601
      return 0;
602
 
603
    case REG:
604
      return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
605
              && reg_equiv[REGNO (x)].replace)
606
             || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
607
 
608
    case UNSPEC_VOLATILE:
609
      return 0;
610
 
611
    case ASM_OPERANDS:
612
      if (MEM_VOLATILE_P (x))
613
        return 0;
614
 
615
      /* Fall through.  */
616
 
617
    default:
618
      break;
619
    }
620
 
621
  fmt = GET_RTX_FORMAT (code);
622
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
623
    switch (fmt[i])
624
      {
625
      case 'e':
626
        if (! equiv_init_movable_p (XEXP (x, i), regno))
627
          return 0;
628
        break;
629
      case 'E':
630
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
631
          if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
632
            return 0;
633
        break;
634
      }
635
 
636
  return 1;
637
}
638
 
639
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */
640
 
641
static int
642
contains_replace_regs (rtx x)
643
{
644
  int i, j;
645
  const char *fmt;
646
  enum rtx_code code = GET_CODE (x);
647
 
648
  switch (code)
649
    {
650
    case CONST_INT:
651
    case CONST:
652
    case LABEL_REF:
653
    case SYMBOL_REF:
654
    case CONST_DOUBLE:
655
    case CONST_VECTOR:
656
    case PC:
657
    case CC0:
658
    case HIGH:
659
      return 0;
660
 
661
    case REG:
662
      return reg_equiv[REGNO (x)].replace;
663
 
664
    default:
665
      break;
666
    }
667
 
668
  fmt = GET_RTX_FORMAT (code);
669
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
670
    switch (fmt[i])
671
      {
672
      case 'e':
673
        if (contains_replace_regs (XEXP (x, i)))
674
          return 1;
675
        break;
676
      case 'E':
677
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
678
          if (contains_replace_regs (XVECEXP (x, i, j)))
679
            return 1;
680
        break;
681
      }
682
 
683
  return 0;
684
}
685
 
686
/* TRUE if X references a memory location that would be affected by a store
687
   to MEMREF.  */
688
 
689
static int
690
memref_referenced_p (rtx memref, rtx x)
691
{
692
  int i, j;
693
  const char *fmt;
694
  enum rtx_code code = GET_CODE (x);
695
 
696
  switch (code)
697
    {
698
    case CONST_INT:
699
    case CONST:
700
    case LABEL_REF:
701
    case SYMBOL_REF:
702
    case CONST_DOUBLE:
703
    case CONST_VECTOR:
704
    case PC:
705
    case CC0:
706
    case HIGH:
707
    case LO_SUM:
708
      return 0;
709
 
710
    case REG:
711
      return (reg_equiv[REGNO (x)].replacement
712
              && memref_referenced_p (memref,
713
                                      reg_equiv[REGNO (x)].replacement));
714
 
715
    case MEM:
716
      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
717
        return 1;
718
      break;
719
 
720
    case SET:
721
      /* If we are setting a MEM, it doesn't count (its address does), but any
722
         other SET_DEST that has a MEM in it is referencing the MEM.  */
723
      if (MEM_P (SET_DEST (x)))
724
        {
725
          if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
726
            return 1;
727
        }
728
      else if (memref_referenced_p (memref, SET_DEST (x)))
729
        return 1;
730
 
731
      return memref_referenced_p (memref, SET_SRC (x));
732
 
733
    default:
734
      break;
735
    }
736
 
737
  fmt = GET_RTX_FORMAT (code);
738
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
739
    switch (fmt[i])
740
      {
741
      case 'e':
742
        if (memref_referenced_p (memref, XEXP (x, i)))
743
          return 1;
744
        break;
745
      case 'E':
746
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
747
          if (memref_referenced_p (memref, XVECEXP (x, i, j)))
748
            return 1;
749
        break;
750
      }
751
 
752
  return 0;
753
}
754
 
755
/* TRUE if some insn in the range (START, END] references a memory location
756
   that would be affected by a store to MEMREF.  */
757
 
758
static int
759
memref_used_between_p (rtx memref, rtx start, rtx end)
760
{
761
  rtx insn;
762
 
763
  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
764
       insn = NEXT_INSN (insn))
765
    {
766
      if (!INSN_P (insn))
767
        continue;
768
 
769
      if (memref_referenced_p (memref, PATTERN (insn)))
770
        return 1;
771
 
772
      /* Nonconst functions may access memory.  */
773
      if (CALL_P (insn)
774
          && (! CONST_OR_PURE_CALL_P (insn)
775
              || pure_call_p (insn)))
776
        return 1;
777
    }
778
 
779
  return 0;
780
}
781
 
782
/* Find registers that are equivalent to a single value throughout the
783
   compilation (either because they can be referenced in memory or are set once
784
   from a single constant).  Lower their priority for a register.
785
 
786
   If such a register is only referenced once, try substituting its value
787
   into the using insn.  If it succeeds, we can eliminate the register
788
   completely.
789
 
790
   Initialize the REG_EQUIV_INIT array of initializing insns.  */
791
 
792
static void
793
update_equiv_regs (void)
794
{
795
  rtx insn;
796
  basic_block bb;
797
  int loop_depth;
798
  regset_head cleared_regs;
799
  int clear_regnos = 0;
800
 
801
  reg_equiv = XCNEWVEC (struct equivalence, max_regno);
802
  INIT_REG_SET (&cleared_regs);
803
  reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
804
  reg_equiv_init_size = max_regno;
805
 
806
  init_alias_analysis ();
807
 
808
  /* Scan the insns and find which registers have equivalences.  Do this
809
     in a separate scan of the insns because (due to -fcse-follow-jumps)
810
     a register can be set below its use.  */
811
  FOR_EACH_BB (bb)
812
    {
813
      loop_depth = bb->loop_depth;
814
 
815
      for (insn = BB_HEAD (bb);
816
           insn != NEXT_INSN (BB_END (bb));
817
           insn = NEXT_INSN (insn))
818
        {
819
          rtx note;
820
          rtx set;
821
          rtx dest, src;
822
          int regno;
823
 
824
          if (! INSN_P (insn))
825
            continue;
826
 
827
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
828
            if (REG_NOTE_KIND (note) == REG_INC)
829
              no_equiv (XEXP (note, 0), note, NULL);
830
 
831
          set = single_set (insn);
832
 
833
          /* If this insn contains more (or less) than a single SET,
834
             only mark all destinations as having no known equivalence.  */
835
          if (set == 0)
836
            {
837
              note_stores (PATTERN (insn), no_equiv, NULL);
838
              continue;
839
            }
840
          else if (GET_CODE (PATTERN (insn)) == PARALLEL)
841
            {
842
              int i;
843
 
844
              for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
845
                {
846
                  rtx part = XVECEXP (PATTERN (insn), 0, i);
847
                  if (part != set)
848
                    note_stores (part, no_equiv, NULL);
849
                }
850
            }
851
 
852
          dest = SET_DEST (set);
853
          src = SET_SRC (set);
854
 
855
          /* See if this is setting up the equivalence between an argument
856
             register and its stack slot.  */
857
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
858
          if (note)
859
            {
860
              gcc_assert (REG_P (dest));
861
              regno = REGNO (dest);
862
 
863
              /* Note that we don't want to clear reg_equiv_init even if there
864
                 are multiple sets of this register.  */
865
              reg_equiv[regno].is_arg_equivalence = 1;
866
 
867
              /* Record for reload that this is an equivalencing insn.  */
868
              if (rtx_equal_p (src, XEXP (note, 0)))
869
                reg_equiv_init[regno]
870
                  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
871
 
872
              /* Continue normally in case this is a candidate for
873
                 replacements.  */
874
            }
875
 
876
          if (!optimize)
877
            continue;
878
 
879
          /* We only handle the case of a pseudo register being set
880
             once, or always to the same value.  */
881
          /* ??? The mn10200 port breaks if we add equivalences for
882
             values that need an ADDRESS_REGS register and set them equivalent
883
             to a MEM of a pseudo.  The actual problem is in the over-conservative
884
             handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
885
             calculate_needs, but we traditionally work around this problem
886
             here by rejecting equivalences when the destination is in a register
887
             that's likely spilled.  This is fragile, of course, since the
888
             preferred class of a pseudo depends on all instructions that set
889
             or use it.  */
890
 
891
          if (!REG_P (dest)
892
              || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
893
              || reg_equiv[regno].init_insns == const0_rtx
894
              || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
895
                  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
896
            {
897
              /* This might be setting a SUBREG of a pseudo, a pseudo that is
898
                 also set somewhere else to a constant.  */
899
              note_stores (set, no_equiv, NULL);
900
              continue;
901
            }
902
 
903
          note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
904
 
905
          /* cse sometimes generates function invariants, but doesn't put a
906
             REG_EQUAL note on the insn.  Since this note would be redundant,
907
             there's no point creating it earlier than here.  */
908
          if (! note && ! rtx_varies_p (src, 0))
909
            note = set_unique_reg_note (insn, REG_EQUAL, src);
910
 
911
          /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
912
             since it represents a function call */
913
          if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
914
            note = NULL_RTX;
915
 
916
          if (REG_N_SETS (regno) != 1
917
              && (! note
918
                  || rtx_varies_p (XEXP (note, 0), 0)
919
                  || (reg_equiv[regno].replacement
920
                      && ! rtx_equal_p (XEXP (note, 0),
921
                                        reg_equiv[regno].replacement))))
922
            {
923
              no_equiv (dest, set, NULL);
924
              continue;
925
            }
926
          /* Record this insn as initializing this register.  */
927
          reg_equiv[regno].init_insns
928
            = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
929
 
930
          /* If this register is known to be equal to a constant, record that
931
             it is always equivalent to the constant.  */
932
          if (note && ! rtx_varies_p (XEXP (note, 0), 0))
933
            PUT_MODE (note, (enum machine_mode) REG_EQUIV);
934
 
935
          /* If this insn introduces a "constant" register, decrease the priority
936
             of that register.  Record this insn if the register is only used once
937
             more and the equivalence value is the same as our source.
938
 
939
             The latter condition is checked for two reasons:  First, it is an
940
             indication that it may be more efficient to actually emit the insn
941
             as written (if no registers are available, reload will substitute
942
             the equivalence).  Secondly, it avoids problems with any registers
943
             dying in this insn whose death notes would be missed.
944
 
945
             If we don't have a REG_EQUIV note, see if this insn is loading
946
             a register used only in one basic block from a MEM.  If so, and the
947
             MEM remains unchanged for the life of the register, add a REG_EQUIV
948
             note.  */
949
 
950
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
951
 
952
          if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
953
              && MEM_P (SET_SRC (set))
954
              && validate_equiv_mem (insn, dest, SET_SRC (set)))
955
            REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
956
                                                         REG_NOTES (insn));
957
 
958
          if (note)
959
            {
960
              int regno = REGNO (dest);
961
              rtx x = XEXP (note, 0);
962
 
963
              /* If we haven't done so, record for reload that this is an
964
                 equivalencing insn.  */
965
              if (!reg_equiv[regno].is_arg_equivalence)
966
                reg_equiv_init[regno]
967
                  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
968
 
969
              /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
970
                 We might end up substituting the LABEL_REF for uses of the
971
                 pseudo here or later.  That kind of transformation may turn an
972
                 indirect jump into a direct jump, in which case we must rerun the
973
                 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
974
              if (GET_CODE (x) == LABEL_REF
975
                  || (GET_CODE (x) == CONST
976
                      && GET_CODE (XEXP (x, 0)) == PLUS
977
                      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
978
                recorded_label_ref = 1;
979
 
980
              reg_equiv[regno].replacement = x;
981
              reg_equiv[regno].src_p = &SET_SRC (set);
982
              reg_equiv[regno].loop_depth = loop_depth;
983
 
984
              /* Don't mess with things live during setjmp.  */
985
              if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
986
                {
987
                  /* Note that the statement below does not affect the priority
988
                     in local-alloc!  */
989
                  REG_LIVE_LENGTH (regno) *= 2;
990
 
991
                  /* If the register is referenced exactly twice, meaning it is
992
                     set once and used once, indicate that the reference may be
993
                     replaced by the equivalence we computed above.  Do this
994
                     even if the register is only used in one block so that
995
                     dependencies can be handled where the last register is
996
                     used in a different block (i.e. HIGH / LO_SUM sequences)
997
                     and to reduce the number of registers alive across
998
                     calls.  */
999
 
1000
                  if (REG_N_REFS (regno) == 2
1001
                      && (rtx_equal_p (x, src)
1002
                          || ! equiv_init_varies_p (src))
1003
                      && NONJUMP_INSN_P (insn)
1004
                      && equiv_init_movable_p (PATTERN (insn), regno))
1005
                    reg_equiv[regno].replace = 1;
1006
                }
1007
            }
1008
        }
1009
    }
1010
 
1011
  if (!optimize)
1012
    goto out;
1013
 
1014
  /* A second pass, to gather additional equivalences with memory.  This needs
1015
     to be done after we know which registers we are going to replace.  */
1016
 
1017
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1018
    {
1019
      rtx set, src, dest;
1020
      unsigned regno;
1021
 
1022
      if (! INSN_P (insn))
1023
        continue;
1024
 
1025
      set = single_set (insn);
1026
      if (! set)
1027
        continue;
1028
 
1029
      dest = SET_DEST (set);
1030
      src = SET_SRC (set);
1031
 
1032
      /* If this sets a MEM to the contents of a REG that is only used
1033
         in a single basic block, see if the register is always equivalent
1034
         to that memory location and if moving the store from INSN to the
1035
         insn that set REG is safe.  If so, put a REG_EQUIV note on the
1036
         initializing insn.
1037
 
1038
         Don't add a REG_EQUIV note if the insn already has one.  The existing
1039
         REG_EQUIV is likely more useful than the one we are adding.
1040
 
1041
         If one of the regs in the address has reg_equiv[REGNO].replace set,
1042
         then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
1043
         optimization may move the set of this register immediately before
1044
         insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1045
         the mention in the REG_EQUIV note would be to an uninitialized
1046
         pseudo.  */
1047
 
1048
      if (MEM_P (dest) && REG_P (src)
1049
          && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1050
          && REG_BASIC_BLOCK (regno) >= 0
1051
          && REG_N_SETS (regno) == 1
1052
          && reg_equiv[regno].init_insns != 0
1053
          && reg_equiv[regno].init_insns != const0_rtx
1054
          && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1055
                              REG_EQUIV, NULL_RTX)
1056
          && ! contains_replace_regs (XEXP (dest, 0)))
1057
        {
1058
          rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1059
          if (validate_equiv_mem (init_insn, src, dest)
1060
              && ! memref_used_between_p (dest, init_insn, insn))
1061
            {
1062
              REG_NOTES (init_insn)
1063
                = gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1064
                                     REG_NOTES (init_insn));
1065
              /* This insn makes the equivalence, not the one initializing
1066
                 the register.  */
1067
              reg_equiv_init[regno]
1068
                = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1069
            }
1070
        }
1071
    }
1072
 
1073
  /* Now scan all regs killed in an insn to see if any of them are
1074
     registers only used that once.  If so, see if we can replace the
1075
     reference with the equivalent form.  If we can, delete the
1076
     initializing reference and this register will go away.  If we
1077
     can't replace the reference, and the initializing reference is
1078
     within the same loop (or in an inner loop), then move the register
1079
     initialization just before the use, so that they are in the same
1080
     basic block.  */
1081
  FOR_EACH_BB_REVERSE (bb)
1082
    {
1083
      loop_depth = bb->loop_depth;
1084
      for (insn = BB_END (bb);
1085
           insn != PREV_INSN (BB_HEAD (bb));
1086
           insn = PREV_INSN (insn))
1087
        {
1088
          rtx link;
1089
 
1090
          if (! INSN_P (insn))
1091
            continue;
1092
 
1093
          /* Don't substitute into a non-local goto, this confuses CFG.  */
1094
          if (JUMP_P (insn)
1095
              && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1096
            continue;
1097
 
1098
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1099
            {
1100
              if (REG_NOTE_KIND (link) == REG_DEAD
1101
                  /* Make sure this insn still refers to the register.  */
1102
                  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1103
                {
1104
                  int regno = REGNO (XEXP (link, 0));
1105
                  rtx equiv_insn;
1106
 
1107
                  if (! reg_equiv[regno].replace
1108
                      || reg_equiv[regno].loop_depth < loop_depth)
1109
                    continue;
1110
 
1111
                  /* reg_equiv[REGNO].replace gets set only when
1112
                     REG_N_REFS[REGNO] is 2, i.e. the register is set
1113
                     once and used once.  (If it were only set, but not used,
1114
                     flow would have deleted the setting insns.)  Hence
1115
                     there can only be one insn in reg_equiv[REGNO].init_insns.  */
1116
                  gcc_assert (reg_equiv[regno].init_insns
1117
                              && !XEXP (reg_equiv[regno].init_insns, 1));
1118
                  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1119
 
1120
                  /* We may not move instructions that can throw, since
1121
                     that changes basic block boundaries and we are not
1122
                     prepared to adjust the CFG to match.  */
1123
                  if (can_throw_internal (equiv_insn))
1124
                    continue;
1125
 
1126
                  if (asm_noperands (PATTERN (equiv_insn)) < 0
1127
                      && validate_replace_rtx (regno_reg_rtx[regno],
1128
                                               *(reg_equiv[regno].src_p), insn))
1129
                    {
1130
                      rtx equiv_link;
1131
                      rtx last_link;
1132
                      rtx note;
1133
 
1134
                      /* Find the last note.  */
1135
                      for (last_link = link; XEXP (last_link, 1);
1136
                           last_link = XEXP (last_link, 1))
1137
                        ;
1138
 
1139
                      /* Append the REG_DEAD notes from equiv_insn.  */
1140
                      equiv_link = REG_NOTES (equiv_insn);
1141
                      while (equiv_link)
1142
                        {
1143
                          note = equiv_link;
1144
                          equiv_link = XEXP (equiv_link, 1);
1145
                          if (REG_NOTE_KIND (note) == REG_DEAD)
1146
                            {
1147
                              remove_note (equiv_insn, note);
1148
                              XEXP (last_link, 1) = note;
1149
                              XEXP (note, 1) = NULL_RTX;
1150
                              last_link = note;
1151
                            }
1152
                        }
1153
 
1154
                      remove_death (regno, insn);
1155
                      REG_N_REFS (regno) = 0;
1156
                      REG_FREQ (regno) = 0;
1157
                      delete_insn (equiv_insn);
1158
 
1159
                      reg_equiv[regno].init_insns
1160
                        = XEXP (reg_equiv[regno].init_insns, 1);
1161
 
1162
                      /* Remember to clear REGNO from all basic block's live
1163
                         info.  */
1164
                      SET_REGNO_REG_SET (&cleared_regs, regno);
1165
                      clear_regnos++;
1166
                      reg_equiv_init[regno] = NULL_RTX;
1167
                    }
1168
                  /* Move the initialization of the register to just before
1169
                     INSN.  Update the flow information.  */
1170
                  else if (PREV_INSN (insn) != equiv_insn)
1171
                    {
1172
                      rtx new_insn;
1173
 
1174
                      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1175
                      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1176
                      REG_NOTES (equiv_insn) = 0;
1177
 
1178
                      /* Make sure this insn is recognized before
1179
                         reload begins, otherwise
1180
                         eliminate_regs_in_insn will die.  */
1181
                      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1182
 
1183
                      delete_insn (equiv_insn);
1184
 
1185
                      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1186
 
1187
                      REG_BASIC_BLOCK (regno) = bb->index;
1188
                      REG_N_CALLS_CROSSED (regno) = 0;
1189
                      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
1190
                      REG_LIVE_LENGTH (regno) = 2;
1191
 
1192
                      if (insn == BB_HEAD (bb))
1193
                        BB_HEAD (bb) = PREV_INSN (insn);
1194
 
1195
                      /* Remember to clear REGNO from all basic block's live
1196
                         info.  */
1197
                      SET_REGNO_REG_SET (&cleared_regs, regno);
1198
                      clear_regnos++;
1199
                      reg_equiv_init[regno]
1200
                        = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1201
                    }
1202
                }
1203
            }
1204
        }
1205
    }
1206
 
1207
  /* Clear all dead REGNOs from all basic block's live info.  */
1208
  if (clear_regnos)
1209
    {
1210
      unsigned j;
1211
 
1212
      if (clear_regnos > 8)
1213
        {
1214
          FOR_EACH_BB (bb)
1215
            {
1216
              AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1217
                                 &cleared_regs);
1218
              AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1219
                                 &cleared_regs);
1220
            }
1221
        }
1222
      else
1223
        {
1224
          reg_set_iterator rsi;
1225
          EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1226
            {
1227
              FOR_EACH_BB (bb)
1228
                {
1229
                  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1230
                  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1231
                }
1232
            }
1233
        }
1234
    }
1235
 
1236
  out:
1237
  /* Clean up.  */
1238
  end_alias_analysis ();
1239
  CLEAR_REG_SET (&cleared_regs);
1240
  free (reg_equiv);
1241
}
1242
 
1243
/* Mark REG as having no known equivalence.
1244
   Some instructions might have been processed before and furnished
1245
   with REG_EQUIV notes for this register; these notes will have to be
1246
   removed.
1247
   STORE is the piece of RTL that does the non-constant / conflicting
1248
   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
1249
   but needs to be there because this function is called from note_stores.  */
1250
static void
1251
no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1252
{
1253
  int regno;
1254
  rtx list;
1255
 
1256
  if (!REG_P (reg))
1257
    return;
1258
  regno = REGNO (reg);
1259
  list = reg_equiv[regno].init_insns;
1260
  if (list == const0_rtx)
1261
    return;
1262
  reg_equiv[regno].init_insns = const0_rtx;
1263
  reg_equiv[regno].replacement = NULL_RTX;
1264
  /* This doesn't matter for equivalences made for argument registers, we
1265
     should keep their initialization insns.  */
1266
  if (reg_equiv[regno].is_arg_equivalence)
1267
    return;
1268
  reg_equiv_init[regno] = NULL_RTX;
1269
  for (; list; list =  XEXP (list, 1))
1270
    {
1271
      rtx insn = XEXP (list, 0);
1272
      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1273
    }
1274
}
1275
 
1276
/* Allocate hard regs to the pseudo regs used only within block number B.
1277
   Only the pseudos that die but once can be handled.  */
1278
 
1279
static void
1280
block_alloc (int b)
1281
{
1282
  int i, q;
1283
  rtx insn;
1284
  rtx note, hard_reg;
1285
  int insn_number = 0;
1286
  int insn_count = 0;
1287
  int max_uid = get_max_uid ();
1288
  int *qty_order;
1289
  int no_conflict_combined_regno = -1;
1290
 
1291
  /* Count the instructions in the basic block.  */
1292
 
1293
  insn = BB_END (BASIC_BLOCK (b));
1294
  while (1)
1295
    {
1296
      if (!NOTE_P (insn))
1297
        {
1298
          ++insn_count;
1299
          gcc_assert (insn_count <= max_uid);
1300
        }
1301
      if (insn == BB_HEAD (BASIC_BLOCK (b)))
1302
        break;
1303
      insn = PREV_INSN (insn);
1304
    }
1305
 
1306
  /* +2 to leave room for a post_mark_life at the last insn and for
1307
     the birth of a CLOBBER in the first insn.  */
1308
  regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);
1309
 
1310
  /* Initialize table of hardware registers currently live.  */
1311
 
1312
  REG_SET_TO_HARD_REG_SET (regs_live,
1313
                           BASIC_BLOCK (b)->il.rtl->global_live_at_start);
1314
 
1315
  /* This loop scans the instructions of the basic block
1316
     and assigns quantities to registers.
1317
     It computes which registers to tie.  */
1318
 
1319
  insn = BB_HEAD (BASIC_BLOCK (b));
1320
  while (1)
1321
    {
1322
      if (!NOTE_P (insn))
1323
        insn_number++;
1324
 
1325
      if (INSN_P (insn))
1326
        {
1327
          rtx link, set;
1328
          int win = 0;
1329
          rtx r0, r1 = NULL_RTX;
1330
          int combined_regno = -1;
1331
          int i;
1332
 
1333
          this_insn_number = insn_number;
1334
          this_insn = insn;
1335
 
1336
          extract_insn (insn);
1337
          which_alternative = -1;
1338
 
1339
          /* Is this insn suitable for tying two registers?
1340
             If so, try doing that.
1341
             Suitable insns are those with at least two operands and where
1342
             operand 0 is an output that is a register that is not
1343
             earlyclobber.
1344
 
1345
             We can tie operand 0 with some operand that dies in this insn.
1346
             First look for operands that are required to be in the same
1347
             register as operand 0.  If we find such, only try tying that
1348
             operand or one that can be put into that operand if the
1349
             operation is commutative.  If we don't find an operand
1350
             that is required to be in the same register as operand 0,
1351
             we can tie with any operand.
1352
 
1353
             Subregs in place of regs are also ok.
1354
 
1355
             If tying is done, WIN is set nonzero.  */
1356
 
1357
          if (optimize
1358
              && recog_data.n_operands > 1
1359
              && recog_data.constraints[0][0] == '='
1360
              && recog_data.constraints[0][1] != '&')
1361
            {
1362
              /* If non-negative, is an operand that must match operand 0.  */
1363
              int must_match_0 = -1;
1364
              /* Counts number of alternatives that require a match with
1365
                 operand 0.  */
1366
              int n_matching_alts = 0;
1367
 
1368
              for (i = 1; i < recog_data.n_operands; i++)
1369
                {
1370
                  const char *p = recog_data.constraints[i];
1371
                  int this_match = requires_inout (p);
1372
 
1373
                  n_matching_alts += this_match;
1374
                  if (this_match == recog_data.n_alternatives)
1375
                    must_match_0 = i;
1376
                }
1377
 
1378
              r0 = recog_data.operand[0];
1379
              for (i = 1; i < recog_data.n_operands; i++)
1380
                {
1381
                  /* Skip this operand if we found an operand that
1382
                     must match operand 0 and this operand isn't it
1383
                     and can't be made to be it by commutativity.  */
1384
 
1385
                  if (must_match_0 >= 0 && i != must_match_0
1386
                      && ! (i == must_match_0 + 1
1387
                            && recog_data.constraints[i-1][0] == '%')
1388
                      && ! (i == must_match_0 - 1
1389
                            && recog_data.constraints[i][0] == '%'))
1390
                    continue;
1391
 
1392
                  /* Likewise if each alternative has some operand that
1393
                     must match operand zero.  In that case, skip any
1394
                     operand that doesn't list operand 0 since we know that
1395
                     the operand always conflicts with operand 0.  We
1396
                     ignore commutativity in this case to keep things simple.  */
1397
                  if (n_matching_alts == recog_data.n_alternatives
1398
                      && 0 == requires_inout (recog_data.constraints[i]))
1399
                    continue;
1400
 
1401
                  r1 = recog_data.operand[i];
1402
 
1403
                  /* If the operand is an address, find a register in it.
1404
                     There may be more than one register, but we only try one
1405
                     of them.  */
1406
                  if (recog_data.constraints[i][0] == 'p'
1407
                      || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1408
                                                   recog_data.constraints[i]))
1409
                    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1410
                      r1 = XEXP (r1, 0);
1411
 
1412
                  /* Avoid making a call-saved register unnecessarily
1413
                     clobbered.  */
1414
                  hard_reg = get_hard_reg_initial_reg (cfun, r1);
1415
                  if (hard_reg != NULL_RTX)
1416
                    {
1417
                      if (REG_P (hard_reg)
1418
                          && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1419
                          && !call_used_regs[REGNO (hard_reg)])
1420
                        continue;
1421
                    }
1422
 
1423
                  if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1424
                    {
1425
                      /* We have two priorities for hard register preferences.
1426
                         If we have a move insn or an insn whose first input
1427
                         can only be in the same register as the output, give
1428
                         priority to an equivalence found from that insn.  */
1429
                      int may_save_copy
1430
                        = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1431
 
1432
                      if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1433
                        win = combine_regs (r1, r0, may_save_copy,
1434
                                            insn_number, insn, 0);
1435
                    }
1436
                  if (win)
1437
                    break;
1438
                }
1439
            }
1440
 
1441
          /* Recognize an insn sequence with an ultimate result
1442
             which can safely overlap one of the inputs.
1443
             The sequence begins with a CLOBBER of its result,
1444
             and ends with an insn that copies the result to itself
1445
             and has a REG_EQUAL note for an equivalent formula.
1446
             That note indicates what the inputs are.
1447
             The result and the input can overlap if each insn in
1448
             the sequence either doesn't mention the input
1449
             or has a REG_NO_CONFLICT note to inhibit the conflict.
1450
 
1451
             We do the combining test at the CLOBBER so that the
1452
             destination register won't have had a quantity number
1453
             assigned, since that would prevent combining.  */
1454
 
1455
          if (optimize
1456
              && GET_CODE (PATTERN (insn)) == CLOBBER
1457
              && (r0 = XEXP (PATTERN (insn), 0),
1458
                  REG_P (r0))
1459
              && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1460
              && XEXP (link, 0) != 0
1461
              && NONJUMP_INSN_P (XEXP (link, 0))
1462
              && (set = single_set (XEXP (link, 0))) != 0
1463
              && SET_DEST (set) == r0 && SET_SRC (set) == r0
1464
              && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1465
                                        NULL_RTX)) != 0)
1466
            {
1467
              if (r1 = XEXP (note, 0), REG_P (r1)
1468
                  /* Check that we have such a sequence.  */
1469
                  && no_conflict_p (insn, r0, r1))
1470
                win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1471
              else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1472
                       && (r1 = XEXP (XEXP (note, 0), 0),
1473
                           REG_P (r1) || GET_CODE (r1) == SUBREG)
1474
                       && no_conflict_p (insn, r0, r1))
1475
                win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1476
 
1477
              /* Here we care if the operation to be computed is
1478
                 commutative.  */
1479
              else if (COMMUTATIVE_P (XEXP (note, 0))
1480
                       && (r1 = XEXP (XEXP (note, 0), 1),
1481
                           (REG_P (r1) || GET_CODE (r1) == SUBREG))
1482
                       && no_conflict_p (insn, r0, r1))
1483
                win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1484
 
1485
              /* If we did combine something, show the register number
1486
                 in question so that we know to ignore its death.  */
1487
              if (win)
1488
                no_conflict_combined_regno = REGNO (r1);
1489
            }
1490
 
1491
          /* If registers were just tied, set COMBINED_REGNO
1492
             to the number of the register used in this insn
1493
             that was tied to the register set in this insn.
1494
             This register's qty should not be "killed".  */
1495
 
1496
          if (win)
1497
            {
1498
              while (GET_CODE (r1) == SUBREG)
1499
                r1 = SUBREG_REG (r1);
1500
              combined_regno = REGNO (r1);
1501
            }
1502
 
1503
          /* Mark the death of everything that dies in this instruction,
1504
             except for anything that was just combined.  */
1505
 
1506
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1507
            if (REG_NOTE_KIND (link) == REG_DEAD
1508
                && REG_P (XEXP (link, 0))
1509
                && combined_regno != (int) REGNO (XEXP (link, 0))
1510
                && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1511
                    || ! find_reg_note (insn, REG_NO_CONFLICT,
1512
                                        XEXP (link, 0))))
1513
              wipe_dead_reg (XEXP (link, 0), 0);
1514
 
1515
          /* Allocate qty numbers for all registers local to this block
1516
             that are born (set) in this instruction.
1517
             A pseudo that already has a qty is not changed.  */
1518
 
1519
          note_stores (PATTERN (insn), reg_is_set, NULL);
1520
 
1521
          /* If anything is set in this insn and then unused, mark it as dying
1522
             after this insn, so it will conflict with our outputs.  This
1523
             can't match with something that combined, and it doesn't matter
1524
             if it did.  Do this after the calls to reg_is_set since these
1525
             die after, not during, the current insn.  */
1526
 
1527
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1528
            if (REG_NOTE_KIND (link) == REG_UNUSED
1529
                && REG_P (XEXP (link, 0)))
1530
              wipe_dead_reg (XEXP (link, 0), 1);
1531
 
1532
          /* If this is an insn that has a REG_RETVAL note pointing at a
1533
             CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1534
             block, so clear any register number that combined within it.  */
1535
          if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1536
              && NONJUMP_INSN_P (XEXP (note, 0))
1537
              && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1538
            no_conflict_combined_regno = -1;
1539
        }
1540
 
1541
      /* Set the registers live after INSN_NUMBER.  Note that we never
1542
         record the registers live before the block's first insn, since no
1543
         pseudos we care about are live before that insn.  */
1544
 
1545
      IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1546
      IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1547
 
1548
      if (insn == BB_END (BASIC_BLOCK (b)))
1549
        break;
1550
 
1551
      insn = NEXT_INSN (insn);
1552
    }
1553
 
1554
  /* Now every register that is local to this basic block
1555
     should have been given a quantity, or else -1 meaning ignore it.
1556
     Every quantity should have a known birth and death.
1557
 
1558
     Order the qtys so we assign them registers in order of the
1559
     number of suggested registers they need so we allocate those with
1560
     the most restrictive needs first.  */
1561
 
1562
  qty_order = XNEWVEC (int, next_qty);
1563
  for (i = 0; i < next_qty; i++)
1564
    qty_order[i] = i;
1565
 
1566
#define EXCHANGE(I1, I2)  \
1567
  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1568
 
1569
  switch (next_qty)
1570
    {
1571
    case 3:
1572
      /* Make qty_order[2] be the one to allocate last.  */
1573
      if (qty_sugg_compare (0, 1) > 0)
1574
        EXCHANGE (0, 1);
1575
      if (qty_sugg_compare (1, 2) > 0)
1576
        EXCHANGE (2, 1);
1577
 
1578
      /* ... Fall through ...  */
1579
    case 2:
1580
      /* Put the best one to allocate in qty_order[0].  */
1581
      if (qty_sugg_compare (0, 1) > 0)
1582
        EXCHANGE (0, 1);
1583
 
1584
      /* ... Fall through ...  */
1585
 
1586
    case 1:
1587
    case 0:
1588
      /* Nothing to do here.  */
1589
      break;
1590
 
1591
    default:
1592
      qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1593
    }
1594
 
1595
  /* Try to put each quantity in a suggested physical register, if it has one.
1596
     This may cause registers to be allocated that otherwise wouldn't be, but
1597
     this seems acceptable in local allocation (unlike global allocation).  */
1598
  for (i = 0; i < next_qty; i++)
1599
    {
1600
      q = qty_order[i];
1601
      if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1602
        qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1603
                                         0, 1, qty[q].birth, qty[q].death);
1604
      else
1605
        qty[q].phys_reg = -1;
1606
    }
1607
 
1608
  /* Order the qtys so we assign them registers in order of
1609
     decreasing length of life.  Normally call qsort, but if we
1610
     have only a very small number of quantities, sort them ourselves.  */
1611
 
1612
  for (i = 0; i < next_qty; i++)
1613
    qty_order[i] = i;
1614
 
1615
#define EXCHANGE(I1, I2)  \
1616
  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1617
 
1618
  switch (next_qty)
1619
    {
1620
    case 3:
1621
      /* Make qty_order[2] be the one to allocate last.  */
1622
      if (qty_compare (0, 1) > 0)
1623
        EXCHANGE (0, 1);
1624
      if (qty_compare (1, 2) > 0)
1625
        EXCHANGE (2, 1);
1626
 
1627
      /* ... Fall through ...  */
1628
    case 2:
1629
      /* Put the best one to allocate in qty_order[0].  */
1630
      if (qty_compare (0, 1) > 0)
1631
        EXCHANGE (0, 1);
1632
 
1633
      /* ... Fall through ...  */
1634
 
1635
    case 1:
1636
    case 0:
1637
      /* Nothing to do here.  */
1638
      break;
1639
 
1640
    default:
1641
      qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1642
    }
1643
 
1644
  /* Now for each qty that is not a hardware register,
1645
     look for a hardware register to put it in.
1646
     First try the register class that is cheapest for this qty,
1647
     if there is more than one class.  */
1648
 
1649
  for (i = 0; i < next_qty; i++)
1650
    {
1651
      q = qty_order[i];
1652
      if (qty[q].phys_reg < 0)
1653
        {
1654
#ifdef INSN_SCHEDULING
1655
          /* These values represent the adjusted lifetime of a qty so
1656
             that it conflicts with qtys which appear near the start/end
1657
             of this qty's lifetime.
1658
 
1659
             The purpose behind extending the lifetime of this qty is to
1660
             discourage the register allocator from creating false
1661
             dependencies.
1662
 
1663
             The adjustment value is chosen to indicate that this qty
1664
             conflicts with all the qtys in the instructions immediately
1665
             before and after the lifetime of this qty.
1666
 
1667
             Experiments have shown that higher values tend to hurt
1668
             overall code performance.
1669
 
1670
             If allocation using the extended lifetime fails we will try
1671
             again with the qty's unadjusted lifetime.  */
1672
          int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1673
          int fake_death = MIN (insn_number * 2 + 1,
1674
                                qty[q].death + 2 - qty[q].death % 2);
1675
#endif
1676
 
1677
          if (N_REG_CLASSES > 1)
1678
            {
1679
#ifdef INSN_SCHEDULING
1680
              /* We try to avoid using hard registers allocated to qtys which
1681
                 are born immediately after this qty or die immediately before
1682
                 this qty.
1683
 
1684
                 This optimization is only appropriate when we will run
1685
                 a scheduling pass after reload and we are not optimizing
1686
                 for code size.  */
1687
              if (flag_schedule_insns_after_reload
1688
                  && !optimize_size
1689
                  && !SMALL_REGISTER_CLASSES)
1690
                {
1691
                  qty[q].phys_reg = find_free_reg (qty[q].min_class,
1692
                                                   qty[q].mode, q, 0, 0,
1693
                                                   fake_birth, fake_death);
1694
                  if (qty[q].phys_reg >= 0)
1695
                    continue;
1696
                }
1697
#endif
1698
              qty[q].phys_reg = find_free_reg (qty[q].min_class,
1699
                                               qty[q].mode, q, 0, 0,
1700
                                               qty[q].birth, qty[q].death);
1701
              if (qty[q].phys_reg >= 0)
1702
                continue;
1703
            }
1704
 
1705
#ifdef INSN_SCHEDULING
1706
          /* Similarly, avoid false dependencies.  */
1707
          if (flag_schedule_insns_after_reload
1708
              && !optimize_size
1709
              && !SMALL_REGISTER_CLASSES
1710
              && qty[q].alternate_class != NO_REGS)
1711
            qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1712
                                             qty[q].mode, q, 0, 0,
1713
                                             fake_birth, fake_death);
1714
#endif
1715
          if (qty[q].alternate_class != NO_REGS)
1716
            qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1717
                                             qty[q].mode, q, 0, 0,
1718
                                             qty[q].birth, qty[q].death);
1719
        }
1720
    }
1721
 
1722
  /* Now propagate the register assignments
1723
     to the pseudo regs belonging to the qtys.  */
1724
 
1725
  for (q = 0; q < next_qty; q++)
1726
    if (qty[q].phys_reg >= 0)
1727
      {
1728
        for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1729
          reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1730
      }
1731
 
1732
  /* Clean up.  */
1733
  free (regs_live_at);
1734
  free (qty_order);
1735
}
1736
 
1737
/* Compare two quantities' priority for getting real registers.
1738
   We give shorter-lived quantities higher priority.
1739
   Quantities with more references are also preferred, as are quantities that
1740
   require multiple registers.  This is the identical prioritization as
1741
   done by global-alloc.
1742
 
1743
   We used to give preference to registers with *longer* lives, but using
1744
   the same algorithm in both local- and global-alloc can speed up execution
1745
   of some programs by as much as a factor of three!  */
1746
 
1747
/* Note that the quotient will never be bigger than
1748
   the value of floor_log2 times the maximum number of
1749
   times a register can occur in one insn (surely less than 100)
1750
   weighted by frequency (max REG_FREQ_MAX).
1751
   Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1752
   QTY_CMP_PRI is also used by qty_sugg_compare.  */
1753
 
1754
#define QTY_CMP_PRI(q)          \
1755
  ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1756
          / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1757
 
1758
static int
1759
qty_compare (int q1, int q2)
1760
{
1761
  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1762
}
1763
 
1764
static int
1765
qty_compare_1 (const void *q1p, const void *q2p)
1766
{
1767
  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1768
  int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1769
 
1770
  if (tem != 0)
1771
    return tem;
1772
 
1773
  /* If qtys are equally good, sort by qty number,
1774
     so that the results of qsort leave nothing to chance.  */
1775
  return q1 - q2;
1776
}
1777
 
1778
/* Compare two quantities' priority for getting real registers.  This version
1779
   is called for quantities that have suggested hard registers.  First priority
1780
   goes to quantities that have copy preferences, then to those that have
1781
   normal preferences.  Within those groups, quantities with the lower
1782
   number of preferences have the highest priority.  Of those, we use the same
1783
   algorithm as above.  */
1784
 
1785
#define QTY_CMP_SUGG(q)         \
1786
  (qty_phys_num_copy_sugg[q]            \
1787
    ? qty_phys_num_copy_sugg[q] \
1788
    : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1789
 
1790
static int
1791
qty_sugg_compare (int q1, int q2)
1792
{
1793
  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1794
 
1795
  if (tem != 0)
1796
    return tem;
1797
 
1798
  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1799
}
1800
 
1801
static int
1802
qty_sugg_compare_1 (const void *q1p, const void *q2p)
1803
{
1804
  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1805
  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1806
 
1807
  if (tem != 0)
1808
    return tem;
1809
 
1810
  tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1811
  if (tem != 0)
1812
    return tem;
1813
 
1814
  /* If qtys are equally good, sort by qty number,
1815
     so that the results of qsort leave nothing to chance.  */
1816
  return q1 - q2;
1817
}
1818
 
1819
#undef QTY_CMP_SUGG
1820
#undef QTY_CMP_PRI
1821
 
1822
/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1823
   Returns 1 if have done so, or 0 if cannot.
1824
 
1825
   Combining registers means marking them as having the same quantity
1826
   and adjusting the offsets within the quantity if either of
1827
   them is a SUBREG.
1828
 
1829
   We don't actually combine a hard reg with a pseudo; instead
1830
   we just record the hard reg as the suggestion for the pseudo's quantity.
1831
   If we really combined them, we could lose if the pseudo lives
1832
   across an insn that clobbers the hard reg (eg, movmem).
1833
 
1834
   ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1835
   there is no REG_DEAD note on INSN.  This occurs during the processing
1836
   of REG_NO_CONFLICT blocks.
1837
 
1838
   MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1839
   SETREG or if the input and output must share a register.
1840
   In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1841
 
1842
   There are elaborate checks for the validity of combining.  */
1843
 
1844
static int
1845
combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1846
              rtx insn, int already_dead)
1847
{
1848
  int ureg, sreg;
1849
  int offset = 0;
1850
  int usize, ssize;
1851
  int sqty;
1852
 
1853
  /* Determine the numbers and sizes of registers being used.  If a subreg
1854
     is present that does not change the entire register, don't consider
1855
     this a copy insn.  */
1856
 
1857
  while (GET_CODE (usedreg) == SUBREG)
1858
    {
1859
      rtx subreg = SUBREG_REG (usedreg);
1860
 
1861
      if (REG_P (subreg))
1862
        {
1863
          if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1864
            may_save_copy = 0;
1865
 
1866
          if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1867
            offset += subreg_regno_offset (REGNO (subreg),
1868
                                           GET_MODE (subreg),
1869
                                           SUBREG_BYTE (usedreg),
1870
                                           GET_MODE (usedreg));
1871
          else
1872
            offset += (SUBREG_BYTE (usedreg)
1873
                      / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1874
        }
1875
 
1876
      usedreg = subreg;
1877
    }
1878
 
1879
  if (!REG_P (usedreg))
1880
    return 0;
1881
 
1882
  ureg = REGNO (usedreg);
1883
  if (ureg < FIRST_PSEUDO_REGISTER)
1884
    usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1885
  else
1886
    usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1887
              + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1888
             / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1889
 
1890
  while (GET_CODE (setreg) == SUBREG)
1891
    {
1892
      rtx subreg = SUBREG_REG (setreg);
1893
 
1894
      if (REG_P (subreg))
1895
        {
1896
          if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1897
            may_save_copy = 0;
1898
 
1899
          if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1900
            offset -= subreg_regno_offset (REGNO (subreg),
1901
                                           GET_MODE (subreg),
1902
                                           SUBREG_BYTE (setreg),
1903
                                           GET_MODE (setreg));
1904
          else
1905
            offset -= (SUBREG_BYTE (setreg)
1906
                      / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1907
        }
1908
 
1909
      setreg = subreg;
1910
    }
1911
 
1912
  if (!REG_P (setreg))
1913
    return 0;
1914
 
1915
  sreg = REGNO (setreg);
1916
  if (sreg < FIRST_PSEUDO_REGISTER)
1917
    ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1918
  else
1919
    ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1920
              + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1921
             / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1922
 
1923
  /* If UREG is a pseudo-register that hasn't already been assigned a
1924
     quantity number, it means that it is not local to this block or dies
1925
     more than once.  In either event, we can't do anything with it.  */
1926
  if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1927
      /* Do not combine registers unless one fits within the other.  */
1928
      || (offset > 0 && usize + offset > ssize)
1929
      || (offset < 0 && usize + offset < ssize)
1930
      /* Do not combine with a smaller already-assigned object
1931
         if that smaller object is already combined with something bigger.  */
1932
      || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1933
          && usize < qty[reg_qty[ureg]].size)
1934
      /* Can't combine if SREG is not a register we can allocate.  */
1935
      || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1936
      /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1937
         These have already been taken care of.  This probably wouldn't
1938
         combine anyway, but don't take any chances.  */
1939
      || (ureg >= FIRST_PSEUDO_REGISTER
1940
          && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1941
      /* Don't tie something to itself.  In most cases it would make no
1942
         difference, but it would screw up if the reg being tied to itself
1943
         also dies in this insn.  */
1944
      || ureg == sreg
1945
      /* Don't try to connect two different hardware registers.  */
1946
      || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1947
      /* Don't connect two different machine modes if they have different
1948
         implications as to which registers may be used.  */
1949
      || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1950
    return 0;
1951
 
1952
  /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1953
     qty_phys_sugg for the pseudo instead of tying them.
1954
 
1955
     Return "failure" so that the lifespan of UREG is terminated here;
1956
     that way the two lifespans will be disjoint and nothing will prevent
1957
     the pseudo reg from being given this hard reg.  */
1958
 
1959
  if (ureg < FIRST_PSEUDO_REGISTER)
1960
    {
1961
      /* Allocate a quantity number so we have a place to put our
1962
         suggestions.  */
1963
      if (reg_qty[sreg] == -2)
1964
        reg_is_born (setreg, 2 * insn_number);
1965
 
1966
      if (reg_qty[sreg] >= 0)
1967
        {
1968
          if (may_save_copy
1969
              && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1970
            {
1971
              SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1972
              qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1973
            }
1974
          else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1975
            {
1976
              SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1977
              qty_phys_num_sugg[reg_qty[sreg]]++;
1978
            }
1979
        }
1980
      return 0;
1981
    }
1982
 
1983
  /* Similarly for SREG a hard register and UREG a pseudo register.  */
1984
 
1985
  if (sreg < FIRST_PSEUDO_REGISTER)
1986
    {
1987
      if (may_save_copy
1988
          && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1989
        {
1990
          SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1991
          qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1992
        }
1993
      else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1994
        {
1995
          SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1996
          qty_phys_num_sugg[reg_qty[ureg]]++;
1997
        }
1998
      return 0;
1999
    }
2000
 
2001
  /* At this point we know that SREG and UREG are both pseudos.
2002
     Do nothing if SREG already has a quantity or is a register that we
2003
     don't allocate.  */
2004
  if (reg_qty[sreg] >= -1
2005
      /* If we are not going to let any regs live across calls,
2006
         don't tie a call-crossing reg to a non-call-crossing reg.  */
2007
      || (current_function_has_nonlocal_label
2008
          && ((REG_N_CALLS_CROSSED (ureg) > 0)
2009
              != (REG_N_CALLS_CROSSED (sreg) > 0))))
2010
    return 0;
2011
 
2012
  /* We don't already know about SREG, so tie it to UREG
2013
     if this is the last use of UREG, provided the classes they want
2014
     are compatible.  */
2015
 
2016
  if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2017
      && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2018
    {
2019
      /* Add SREG to UREG's quantity.  */
2020
      sqty = reg_qty[ureg];
2021
      reg_qty[sreg] = sqty;
2022
      reg_offset[sreg] = reg_offset[ureg] + offset;
2023
      reg_next_in_qty[sreg] = qty[sqty].first_reg;
2024
      qty[sqty].first_reg = sreg;
2025
 
2026
      /* If SREG's reg class is smaller, set qty[SQTY].min_class.  */
2027
      update_qty_class (sqty, sreg);
2028
 
2029
      /* Update info about quantity SQTY.  */
2030
      qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2031
      qty[sqty].n_throwing_calls_crossed
2032
        += REG_N_THROWING_CALLS_CROSSED (sreg);
2033
      qty[sqty].n_refs += REG_N_REFS (sreg);
2034
      qty[sqty].freq += REG_FREQ (sreg);
2035
      if (usize < ssize)
2036
        {
2037
          int i;
2038
 
2039
          for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2040
            reg_offset[i] -= offset;
2041
 
2042
          qty[sqty].size = ssize;
2043
          qty[sqty].mode = GET_MODE (setreg);
2044
        }
2045
    }
2046
  else
2047
    return 0;
2048
 
2049
  return 1;
2050
}
2051
 
2052
/* Return 1 if the preferred class of REG allows it to be tied
2053
   to a quantity or register whose class is CLASS.
2054
   True if REG's reg class either contains or is contained in CLASS.  */
2055
 
2056
static int
2057
reg_meets_class_p (int reg, enum reg_class class)
2058
{
2059
  enum reg_class rclass = reg_preferred_class (reg);
2060
  return (reg_class_subset_p (rclass, class)
2061
          || reg_class_subset_p (class, rclass));
2062
}
2063
 
2064
/* Update the class of QTYNO assuming that REG is being tied to it.  */
2065
 
2066
static void
2067
update_qty_class (int qtyno, int reg)
2068
{
2069
  enum reg_class rclass = reg_preferred_class (reg);
2070
  if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2071
    qty[qtyno].min_class = rclass;
2072
 
2073
  rclass = reg_alternate_class (reg);
2074
  if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2075
    qty[qtyno].alternate_class = rclass;
2076
}
2077
 
2078
/* Handle something which alters the value of an rtx REG.
2079
 
2080
   REG is whatever is set or clobbered.  SETTER is the rtx that
2081
   is modifying the register.
2082
 
2083
   If it is not really a register, we do nothing.
2084
   The file-global variables `this_insn' and `this_insn_number'
2085
   carry info from `block_alloc'.  */
2086
 
2087
static void
2088
reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2089
{
2090
  /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2091
     a hard register.  These may actually not exist any more.  */
2092
 
2093
  if (GET_CODE (reg) != SUBREG
2094
      && !REG_P (reg))
2095
    return;
2096
 
2097
  /* Mark this register as being born.  If it is used in a CLOBBER, mark
2098
     it as being born halfway between the previous insn and this insn so that
2099
     it conflicts with our inputs but not the outputs of the previous insn.  */
2100
 
2101
  reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2102
}
2103
 
2104
/* Handle beginning of the life of register REG.
2105
   BIRTH is the index at which this is happening.  */
2106
 
2107
static void
2108
reg_is_born (rtx reg, int birth)
2109
{
2110
  int regno;
2111
 
2112
  if (GET_CODE (reg) == SUBREG)
2113
    {
2114
      regno = REGNO (SUBREG_REG (reg));
2115
      if (regno < FIRST_PSEUDO_REGISTER)
2116
        regno = subreg_regno (reg);
2117
    }
2118
  else
2119
    regno = REGNO (reg);
2120
 
2121
  if (regno < FIRST_PSEUDO_REGISTER)
2122
    {
2123
      mark_life (regno, GET_MODE (reg), 1);
2124
 
2125
      /* If the register was to have been born earlier that the present
2126
         insn, mark it as live where it is actually born.  */
2127
      if (birth < 2 * this_insn_number)
2128
        post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2129
    }
2130
  else
2131
    {
2132
      if (reg_qty[regno] == -2)
2133
        alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2134
 
2135
      /* If this register has a quantity number, show that it isn't dead.  */
2136
      if (reg_qty[regno] >= 0)
2137
        qty[reg_qty[regno]].death = -1;
2138
    }
2139
}
2140
 
2141
/* Record the death of REG in the current insn.  If OUTPUT_P is nonzero,
2142
   REG is an output that is dying (i.e., it is never used), otherwise it
2143
   is an input (the normal case).
2144
   If OUTPUT_P is 1, then we extend the life past the end of this insn.  */
2145
 
2146
static void
2147
wipe_dead_reg (rtx reg, int output_p)
2148
{
2149
  int regno = REGNO (reg);
2150
 
2151
  /* If this insn has multiple results,
2152
     and the dead reg is used in one of the results,
2153
     extend its life to after this insn,
2154
     so it won't get allocated together with any other result of this insn.
2155
 
2156
     It is unsafe to use !single_set here since it will ignore an unused
2157
     output.  Just because an output is unused does not mean the compiler
2158
     can assume the side effect will not occur.   Consider if REG appears
2159
     in the address of an output and we reload the output.  If we allocate
2160
     REG to the same hard register as an unused output we could set the hard
2161
     register before the output reload insn.  */
2162
  if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2163
      && multiple_sets (this_insn))
2164
    {
2165
      int i;
2166
      for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2167
        {
2168
          rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2169
          if (GET_CODE (set) == SET
2170
              && !REG_P (SET_DEST (set))
2171
              && !rtx_equal_p (reg, SET_DEST (set))
2172
              && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2173
            output_p = 1;
2174
        }
2175
    }
2176
 
2177
  /* If this register is used in an auto-increment address, then extend its
2178
     life to after this insn, so that it won't get allocated together with
2179
     the result of this insn.  */
2180
  if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2181
    output_p = 1;
2182
 
2183
  if (regno < FIRST_PSEUDO_REGISTER)
2184
    {
2185
      mark_life (regno, GET_MODE (reg), 0);
2186
 
2187
      /* If a hard register is dying as an output, mark it as in use at
2188
         the beginning of this insn (the above statement would cause this
2189
         not to happen).  */
2190
      if (output_p)
2191
        post_mark_life (regno, GET_MODE (reg), 1,
2192
                        2 * this_insn_number, 2 * this_insn_number + 1);
2193
    }
2194
 
2195
  else if (reg_qty[regno] >= 0)
2196
    qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2197
}
2198
 
2199
/* Find a block of SIZE words of hard regs in reg_class CLASS
2200
   that can hold something of machine-mode MODE
2201
     (but actually we test only the first of the block for holding MODE)
2202
   and still free between insn BORN_INDEX and insn DEAD_INDEX,
2203
   and return the number of the first of them.
2204
   Return -1 if such a block cannot be found.
2205
   If QTYNO crosses calls, insist on a register preserved by calls,
2206
   unless ACCEPT_CALL_CLOBBERED is nonzero.
2207
 
2208
   If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2209
   register is available.  If not, return -1.  */
2210
 
2211
static int
2212
find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2213
               int accept_call_clobbered, int just_try_suggested,
2214
               int born_index, int dead_index)
2215
{
2216
  int i, ins;
2217
  HARD_REG_SET first_used, used;
2218
#ifdef ELIMINABLE_REGS
2219
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2220
#endif
2221
 
2222
  /* Validate our parameters.  */
2223
  gcc_assert (born_index >= 0 && born_index <= dead_index);
2224
 
2225
  /* Don't let a pseudo live in a reg across a function call
2226
     if we might get a nonlocal goto.  */
2227
  if (current_function_has_nonlocal_label
2228
      && qty[qtyno].n_calls_crossed > 0)
2229
    return -1;
2230
 
2231
  if (accept_call_clobbered)
2232
    COPY_HARD_REG_SET (used, call_fixed_reg_set);
2233
  else if (qty[qtyno].n_calls_crossed == 0)
2234
    COPY_HARD_REG_SET (used, fixed_reg_set);
2235
  else
2236
    COPY_HARD_REG_SET (used, call_used_reg_set);
2237
 
2238
  if (accept_call_clobbered)
2239
    IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2240
 
2241
  for (ins = born_index; ins < dead_index; ins++)
2242
    IOR_HARD_REG_SET (used, regs_live_at[ins]);
2243
 
2244
  IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2245
 
2246
  /* Don't use the frame pointer reg in local-alloc even if
2247
     we may omit the frame pointer, because if we do that and then we
2248
     need a frame pointer, reload won't know how to move the pseudo
2249
     to another hard reg.  It can move only regs made by global-alloc.
2250
 
2251
     This is true of any register that can be eliminated.  */
2252
#ifdef ELIMINABLE_REGS
2253
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2254
    SET_HARD_REG_BIT (used, eliminables[i].from);
2255
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2256
  /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2257
     that it might be eliminated into.  */
2258
  SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2259
#endif
2260
#else
2261
  SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2262
#endif
2263
 
2264
#ifdef CANNOT_CHANGE_MODE_CLASS
2265
  cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2266
#endif
2267
 
2268
  /* Normally, the registers that can be used for the first register in
2269
     a multi-register quantity are the same as those that can be used for
2270
     subsequent registers.  However, if just trying suggested registers,
2271
     restrict our consideration to them.  If there are copy-suggested
2272
     register, try them.  Otherwise, try the arithmetic-suggested
2273
     registers.  */
2274
  COPY_HARD_REG_SET (first_used, used);
2275
 
2276
  if (just_try_suggested)
2277
    {
2278
      if (qty_phys_num_copy_sugg[qtyno] != 0)
2279
        IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2280
      else
2281
        IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2282
    }
2283
 
2284
  /* If all registers are excluded, we can't do anything.  */
2285
  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2286
 
2287
  /* If at least one would be suitable, test each hard reg.  */
2288
 
2289
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2290
    {
2291
#ifdef REG_ALLOC_ORDER
2292
      int regno = reg_alloc_order[i];
2293
#else
2294
      int regno = i;
2295
#endif
2296
      if (! TEST_HARD_REG_BIT (first_used, regno)
2297
          && HARD_REGNO_MODE_OK (regno, mode)
2298
          && (qty[qtyno].n_calls_crossed == 0
2299
              || accept_call_clobbered
2300
              || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2301
        {
2302
          int j;
2303
          int size1 = hard_regno_nregs[regno][mode];
2304
          for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2305
          if (j == size1)
2306
            {
2307
              /* Mark that this register is in use between its birth and death
2308
                 insns.  */
2309
              post_mark_life (regno, mode, 1, born_index, dead_index);
2310
              return regno;
2311
            }
2312
#ifndef REG_ALLOC_ORDER
2313
          /* Skip starting points we know will lose.  */
2314
          i += j;
2315
#endif
2316
        }
2317
    }
2318
 
2319
 fail:
2320
  /* If we are just trying suggested register, we have just tried copy-
2321
     suggested registers, and there are arithmetic-suggested registers,
2322
     try them.  */
2323
 
2324
  /* If it would be profitable to allocate a call-clobbered register
2325
     and save and restore it around calls, do that.  */
2326
  if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2327
      && qty_phys_num_sugg[qtyno] != 0)
2328
    {
2329
      /* Don't try the copy-suggested regs again.  */
2330
      qty_phys_num_copy_sugg[qtyno] = 0;
2331
      return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2332
                            born_index, dead_index);
2333
    }
2334
 
2335
  /* We need not check to see if the current function has nonlocal
2336
     labels because we don't put any pseudos that are live over calls in
2337
     registers in that case.  Avoid putting pseudos crossing calls that
2338
     might throw into call used registers.  */
2339
 
2340
  if (! accept_call_clobbered
2341
      && flag_caller_saves
2342
      && ! just_try_suggested
2343
      && qty[qtyno].n_calls_crossed != 0
2344
      && qty[qtyno].n_throwing_calls_crossed == 0
2345
      && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2346
                                 qty[qtyno].n_calls_crossed))
2347
    {
2348
      i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2349
      if (i >= 0)
2350
        caller_save_needed = 1;
2351
      return i;
2352
    }
2353
  return -1;
2354
}
2355
 
2356
/* Mark that REGNO with machine-mode MODE is live starting from the current
2357
   insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2358
   is zero).  */
2359
 
2360
static void
2361
mark_life (int regno, enum machine_mode mode, int life)
2362
{
2363
  int j = hard_regno_nregs[regno][mode];
2364
  if (life)
2365
    while (--j >= 0)
2366
      SET_HARD_REG_BIT (regs_live, regno + j);
2367
  else
2368
    while (--j >= 0)
2369
      CLEAR_HARD_REG_BIT (regs_live, regno + j);
2370
}
2371
 
2372
/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2373
   is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2374
   to insn number DEATH (exclusive).  */
2375
 
2376
static void
2377
post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2378
                int death)
2379
{
2380
  int j = hard_regno_nregs[regno][mode];
2381
  HARD_REG_SET this_reg;
2382
 
2383
  CLEAR_HARD_REG_SET (this_reg);
2384
  while (--j >= 0)
2385
    SET_HARD_REG_BIT (this_reg, regno + j);
2386
 
2387
  if (life)
2388
    while (birth < death)
2389
      {
2390
        IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2391
        birth++;
2392
      }
2393
  else
2394
    while (birth < death)
2395
      {
2396
        AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2397
        birth++;
2398
      }
2399
}
2400
 
2401
/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2402
   is the register being clobbered, and R1 is a register being used in
2403
   the equivalent expression.
2404
 
2405
   If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2406
   in which it is used, return 1.
2407
 
2408
   Otherwise, return 0.  */
2409
 
2410
static int
2411
no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2412
{
2413
  int ok = 0;
2414
  rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2415
  rtx p, last;
2416
 
2417
  /* If R1 is a hard register, return 0 since we handle this case
2418
     when we scan the insns that actually use it.  */
2419
 
2420
  if (note == 0
2421
      || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2422
      || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2423
          && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2424
    return 0;
2425
 
2426
  last = XEXP (note, 0);
2427
 
2428
  for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2429
    if (INSN_P (p))
2430
      {
2431
        if (find_reg_note (p, REG_DEAD, r1))
2432
          ok = 1;
2433
 
2434
        /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2435
           some earlier optimization pass has inserted instructions into
2436
           the sequence, and it is not safe to perform this optimization.
2437
           Note that emit_no_conflict_block always ensures that this is
2438
           true when these sequences are created.  */
2439
        if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2440
          return 0;
2441
      }
2442
 
2443
  return ok;
2444
}
2445
 
2446
/* Return the number of alternatives for which the constraint string P
2447
   indicates that the operand must be equal to operand 0 and that no register
2448
   is acceptable.  */
2449
 
2450
static int
2451
requires_inout (const char *p)
2452
{
2453
  char c;
2454
  int found_zero = 0;
2455
  int reg_allowed = 0;
2456
  int num_matching_alts = 0;
2457
  int len;
2458
 
2459
  for ( ; (c = *p); p += len)
2460
    {
2461
      len = CONSTRAINT_LEN (c, p);
2462
      switch (c)
2463
        {
2464
        case '=':  case '+':  case '?':
2465
        case '#':  case '&':  case '!':
2466
        case '*':  case '%':
2467
        case 'm':  case '<':  case '>':  case 'V':  case 'o':
2468
        case 'E':  case 'F':  case 'G':  case 'H':
2469
        case 's':  case 'i':  case 'n':
2470
        case 'I':  case 'J':  case 'K':  case 'L':
2471
        case 'M':  case 'N':  case 'O':  case 'P':
2472
        case 'X':
2473
          /* These don't say anything we care about.  */
2474
          break;
2475
 
2476
        case ',':
2477
          if (found_zero && ! reg_allowed)
2478
            num_matching_alts++;
2479
 
2480
          found_zero = reg_allowed = 0;
2481
          break;
2482
 
2483
        case '0':
2484
          found_zero = 1;
2485
          break;
2486
 
2487
        case '1':  case '2':  case '3':  case '4': case '5':
2488
        case '6':  case '7':  case '8':  case '9':
2489
          /* Skip the balance of the matching constraint.  */
2490
          do
2491
            p++;
2492
          while (ISDIGIT (*p));
2493
          len = 0;
2494
          break;
2495
 
2496
        default:
2497
          if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2498
              && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2499
            break;
2500
          /* Fall through.  */
2501
        case 'p':
2502
        case 'g': case 'r':
2503
          reg_allowed = 1;
2504
          break;
2505
        }
2506
    }
2507
 
2508
  if (found_zero && ! reg_allowed)
2509
    num_matching_alts++;
2510
 
2511
  return num_matching_alts;
2512
}
2513
 
2514
void
2515
dump_local_alloc (FILE *file)
2516
{
2517
  int i;
2518
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2519
    if (reg_renumber[i] != -1)
2520
      fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2521
}
2522
 
2523
/* Run old register allocator.  Return TRUE if we must exit
2524
   rest_of_compilation upon return.  */
2525
static unsigned int
2526
rest_of_handle_local_alloc (void)
2527
{
2528
  int rebuild_notes;
2529
 
2530
  /* Determine if the current function is a leaf before running reload
2531
     since this can impact optimizations done by the prologue and
2532
     epilogue thus changing register elimination offsets.  */
2533
  current_function_is_leaf = leaf_function_p ();
2534
 
2535
  /* Allocate the reg_renumber array.  */
2536
  allocate_reg_info (max_regno, FALSE, TRUE);
2537
 
2538
  /* And the reg_equiv_memory_loc array.  */
2539
  VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
2540
  memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
2541
          sizeof (rtx) * max_regno);
2542
  reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
2543
 
2544
  allocate_initial_values (reg_equiv_memory_loc);
2545
 
2546
  regclass (get_insns (), max_reg_num ());
2547
  rebuild_notes = local_alloc ();
2548
 
2549
  /* Local allocation may have turned an indirect jump into a direct
2550
     jump.  If so, we must rebuild the JUMP_LABEL fields of jumping
2551
     instructions.  */
2552
  if (rebuild_notes)
2553
    {
2554
      timevar_push (TV_JUMP);
2555
 
2556
      rebuild_jump_labels (get_insns ());
2557
      purge_all_dead_edges ();
2558
      delete_unreachable_blocks ();
2559
 
2560
      timevar_pop (TV_JUMP);
2561
    }
2562
 
2563
  if (dump_file && (dump_flags & TDF_DETAILS))
2564
    {
2565
      timevar_push (TV_DUMP);
2566
      dump_flow_info (dump_file, dump_flags);
2567
      dump_local_alloc (dump_file);
2568
      timevar_pop (TV_DUMP);
2569
    }
2570
  return 0;
2571
}
2572
 
2573
struct tree_opt_pass pass_local_alloc =
2574
{
2575
  "lreg",                               /* name */
2576
  NULL,                                 /* gate */
2577
  rest_of_handle_local_alloc,           /* execute */
2578
  NULL,                                 /* sub */
2579
  NULL,                                 /* next */
2580
  0,                                    /* static_pass_number */
2581
  TV_LOCAL_ALLOC,                       /* tv_id */
2582
  0,                                    /* properties_required */
2583
  0,                                    /* properties_provided */
2584
  0,                                    /* properties_destroyed */
2585
  0,                                    /* todo_flags_start */
2586
  TODO_dump_func |
2587
  TODO_ggc_collect,                     /* todo_flags_finish */
2588
  'l'                                   /* letter */
2589
};
2590
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.