1 |
38 |
julius |
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "toplev.h"
|
28 |
|
|
|
29 |
|
|
/* Include insn-config.h before expr.h so that HAVE_conditional_move
|
30 |
|
|
is properly defined. */
|
31 |
|
|
#include "insn-config.h"
|
32 |
|
|
#include "rtl.h"
|
33 |
|
|
#include "tree.h"
|
34 |
|
|
#include "tm_p.h"
|
35 |
|
|
#include "flags.h"
|
36 |
|
|
#include "function.h"
|
37 |
|
|
#include "except.h"
|
38 |
|
|
#include "expr.h"
|
39 |
|
|
#include "optabs.h"
|
40 |
|
|
#include "libfuncs.h"
|
41 |
|
|
#include "recog.h"
|
42 |
|
|
#include "reload.h"
|
43 |
|
|
#include "ggc.h"
|
44 |
|
|
#include "real.h"
|
45 |
|
|
#include "basic-block.h"
|
46 |
|
|
#include "target.h"
|
47 |
|
|
|
48 |
|
|
/* Each optab contains info on how this target machine
|
49 |
|
|
can perform a particular operation
|
50 |
|
|
for all sizes and kinds of operands.
|
51 |
|
|
|
52 |
|
|
The operation to be performed is often specified
|
53 |
|
|
by passing one of these optabs as an argument.
|
54 |
|
|
|
55 |
|
|
See expr.h for documentation of these optabs. */
|
56 |
|
|
|
57 |
|
|
optab optab_table[OTI_MAX];
|
58 |
|
|
|
59 |
|
|
rtx libfunc_table[LTI_MAX];
|
60 |
|
|
|
61 |
|
|
/* Tables of patterns for converting one mode to another. */
|
62 |
|
|
convert_optab convert_optab_table[COI_MAX];
|
63 |
|
|
|
64 |
|
|
/* Contains the optab used for each rtx code. */
|
65 |
|
|
optab code_to_optab[NUM_RTX_CODE + 1];
|
66 |
|
|
|
67 |
|
|
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
68 |
|
|
gives the gen_function to make a branch to test that condition. */
|
69 |
|
|
|
70 |
|
|
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
|
71 |
|
|
|
72 |
|
|
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
73 |
|
|
gives the insn code to make a store-condition insn
|
74 |
|
|
to test that condition. */
|
75 |
|
|
|
76 |
|
|
enum insn_code setcc_gen_code[NUM_RTX_CODE];
|
77 |
|
|
|
78 |
|
|
#ifdef HAVE_conditional_move
|
79 |
|
|
/* Indexed by the machine mode, gives the insn code to make a conditional
|
80 |
|
|
move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
|
81 |
|
|
setcc_gen_code to cut down on the number of named patterns. Consider a day
|
82 |
|
|
when a lot more rtx codes are conditional (eg: for the ARM). */
|
83 |
|
|
|
84 |
|
|
enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
|
85 |
|
|
#endif
|
86 |
|
|
|
87 |
|
|
/* Indexed by the machine mode, gives the insn code for vector conditional
|
88 |
|
|
operation. */
|
89 |
|
|
|
90 |
|
|
enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
|
91 |
|
|
enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
|
92 |
|
|
|
93 |
|
|
/* The insn generating function can not take an rtx_code argument.
|
94 |
|
|
TRAP_RTX is used as an rtx argument. Its code is replaced with
|
95 |
|
|
the code to be used in the trap insn and all other fields are ignored. */
|
96 |
|
|
static GTY(()) rtx trap_rtx;
|
97 |
|
|
|
98 |
|
|
static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
|
99 |
|
|
static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
|
100 |
|
|
int);
|
101 |
|
|
static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
|
102 |
|
|
enum machine_mode *, int *,
|
103 |
|
|
enum can_compare_purpose);
|
104 |
|
|
static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
|
105 |
|
|
int *);
|
106 |
|
|
static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
|
107 |
|
|
static optab new_optab (void);
|
108 |
|
|
static convert_optab new_convert_optab (void);
|
109 |
|
|
static inline optab init_optab (enum rtx_code);
|
110 |
|
|
static inline optab init_optabv (enum rtx_code);
|
111 |
|
|
static inline convert_optab init_convert_optab (enum rtx_code);
|
112 |
|
|
static void init_libfuncs (optab, int, int, const char *, int);
|
113 |
|
|
static void init_integral_libfuncs (optab, const char *, int);
|
114 |
|
|
static void init_floating_libfuncs (optab, const char *, int);
|
115 |
|
|
static void init_interclass_conv_libfuncs (convert_optab, const char *,
|
116 |
|
|
enum mode_class, enum mode_class);
|
117 |
|
|
static void init_intraclass_conv_libfuncs (convert_optab, const char *,
|
118 |
|
|
enum mode_class, bool);
|
119 |
|
|
static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
|
120 |
|
|
enum rtx_code, int, rtx);
|
121 |
|
|
static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
|
122 |
|
|
enum machine_mode *, int *);
|
123 |
|
|
static rtx widen_clz (enum machine_mode, rtx, rtx);
|
124 |
|
|
static rtx expand_parity (enum machine_mode, rtx, rtx);
|
125 |
|
|
static enum rtx_code get_rtx_code (enum tree_code, bool);
|
126 |
|
|
static rtx vector_compare_rtx (tree, bool, enum insn_code);
|
127 |
|
|
|
128 |
|
|
#ifndef HAVE_conditional_trap
|
129 |
|
|
#define HAVE_conditional_trap 0
|
130 |
|
|
#define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX)
|
131 |
|
|
#endif
|
132 |
|
|
|
133 |
|
|
/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
|
134 |
|
|
the result of operation CODE applied to OP0 (and OP1 if it is a binary
|
135 |
|
|
operation).
|
136 |
|
|
|
137 |
|
|
If the last insn does not set TARGET, don't do anything, but return 1.
|
138 |
|
|
|
139 |
|
|
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
|
140 |
|
|
don't add the REG_EQUAL note but return 0. Our caller can then try
|
141 |
|
|
again, ensuring that TARGET is not one of the operands. */
|
142 |
|
|
|
143 |
|
|
static int
|
144 |
|
|
add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
|
145 |
|
|
{
|
146 |
|
|
rtx last_insn, insn, set;
|
147 |
|
|
rtx note;
|
148 |
|
|
|
149 |
|
|
gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
|
150 |
|
|
|
151 |
|
|
if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
|
152 |
|
|
&& GET_RTX_CLASS (code) != RTX_BIN_ARITH
|
153 |
|
|
&& GET_RTX_CLASS (code) != RTX_COMM_COMPARE
|
154 |
|
|
&& GET_RTX_CLASS (code) != RTX_COMPARE
|
155 |
|
|
&& GET_RTX_CLASS (code) != RTX_UNARY)
|
156 |
|
|
return 1;
|
157 |
|
|
|
158 |
|
|
if (GET_CODE (target) == ZERO_EXTRACT)
|
159 |
|
|
return 1;
|
160 |
|
|
|
161 |
|
|
for (last_insn = insns;
|
162 |
|
|
NEXT_INSN (last_insn) != NULL_RTX;
|
163 |
|
|
last_insn = NEXT_INSN (last_insn))
|
164 |
|
|
;
|
165 |
|
|
|
166 |
|
|
set = single_set (last_insn);
|
167 |
|
|
if (set == NULL_RTX)
|
168 |
|
|
return 1;
|
169 |
|
|
|
170 |
|
|
if (! rtx_equal_p (SET_DEST (set), target)
|
171 |
|
|
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
|
172 |
|
|
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|
173 |
|
|
|| ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
|
174 |
|
|
return 1;
|
175 |
|
|
|
176 |
|
|
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
|
177 |
|
|
besides the last insn. */
|
178 |
|
|
if (reg_overlap_mentioned_p (target, op0)
|
179 |
|
|
|| (op1 && reg_overlap_mentioned_p (target, op1)))
|
180 |
|
|
{
|
181 |
|
|
insn = PREV_INSN (last_insn);
|
182 |
|
|
while (insn != NULL_RTX)
|
183 |
|
|
{
|
184 |
|
|
if (reg_set_p (target, insn))
|
185 |
|
|
return 0;
|
186 |
|
|
|
187 |
|
|
insn = PREV_INSN (insn);
|
188 |
|
|
}
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
if (GET_RTX_CLASS (code) == RTX_UNARY)
|
192 |
|
|
note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
|
193 |
|
|
else
|
194 |
|
|
note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
|
195 |
|
|
|
196 |
|
|
set_unique_reg_note (last_insn, REG_EQUAL, note);
|
197 |
|
|
|
198 |
|
|
return 1;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
|
202 |
|
|
says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
|
203 |
|
|
not actually do a sign-extend or zero-extend, but can leave the
|
204 |
|
|
higher-order bits of the result rtx undefined, for example, in the case
|
205 |
|
|
of logical operations, but not right shifts. */
|
206 |
|
|
|
207 |
|
|
static rtx
|
208 |
|
|
widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
|
209 |
|
|
int unsignedp, int no_extend)
|
210 |
|
|
{
|
211 |
|
|
rtx result;
|
212 |
|
|
|
213 |
|
|
/* If we don't have to extend and this is a constant, return it. */
|
214 |
|
|
if (no_extend && GET_MODE (op) == VOIDmode)
|
215 |
|
|
return op;
|
216 |
|
|
|
217 |
|
|
/* If we must extend do so. If OP is a SUBREG for a promoted object, also
|
218 |
|
|
extend since it will be more efficient to do so unless the signedness of
|
219 |
|
|
a promoted object differs from our extension. */
|
220 |
|
|
if (! no_extend
|
221 |
|
|
|| (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
|
222 |
|
|
&& SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
|
223 |
|
|
return convert_modes (mode, oldmode, op, unsignedp);
|
224 |
|
|
|
225 |
|
|
/* If MODE is no wider than a single word, we return a paradoxical
|
226 |
|
|
SUBREG. */
|
227 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
228 |
|
|
return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
|
229 |
|
|
|
230 |
|
|
/* Otherwise, get an object of MODE, clobber it, and set the low-order
|
231 |
|
|
part to OP. */
|
232 |
|
|
|
233 |
|
|
result = gen_reg_rtx (mode);
|
234 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
|
235 |
|
|
emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
|
236 |
|
|
return result;
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
/* Return the optab used for computing the operation given by
|
240 |
|
|
the tree code, CODE. This function is not always usable (for
|
241 |
|
|
example, it cannot give complete results for multiplication
|
242 |
|
|
or division) but probably ought to be relied on more widely
|
243 |
|
|
throughout the expander. */
|
244 |
|
|
optab
|
245 |
|
|
optab_for_tree_code (enum tree_code code, tree type)
|
246 |
|
|
{
|
247 |
|
|
bool trapv;
|
248 |
|
|
switch (code)
|
249 |
|
|
{
|
250 |
|
|
case BIT_AND_EXPR:
|
251 |
|
|
return and_optab;
|
252 |
|
|
|
253 |
|
|
case BIT_IOR_EXPR:
|
254 |
|
|
return ior_optab;
|
255 |
|
|
|
256 |
|
|
case BIT_NOT_EXPR:
|
257 |
|
|
return one_cmpl_optab;
|
258 |
|
|
|
259 |
|
|
case BIT_XOR_EXPR:
|
260 |
|
|
return xor_optab;
|
261 |
|
|
|
262 |
|
|
case TRUNC_MOD_EXPR:
|
263 |
|
|
case CEIL_MOD_EXPR:
|
264 |
|
|
case FLOOR_MOD_EXPR:
|
265 |
|
|
case ROUND_MOD_EXPR:
|
266 |
|
|
return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
|
267 |
|
|
|
268 |
|
|
case RDIV_EXPR:
|
269 |
|
|
case TRUNC_DIV_EXPR:
|
270 |
|
|
case CEIL_DIV_EXPR:
|
271 |
|
|
case FLOOR_DIV_EXPR:
|
272 |
|
|
case ROUND_DIV_EXPR:
|
273 |
|
|
case EXACT_DIV_EXPR:
|
274 |
|
|
return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
|
275 |
|
|
|
276 |
|
|
case LSHIFT_EXPR:
|
277 |
|
|
return ashl_optab;
|
278 |
|
|
|
279 |
|
|
case RSHIFT_EXPR:
|
280 |
|
|
return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
|
281 |
|
|
|
282 |
|
|
case LROTATE_EXPR:
|
283 |
|
|
return rotl_optab;
|
284 |
|
|
|
285 |
|
|
case RROTATE_EXPR:
|
286 |
|
|
return rotr_optab;
|
287 |
|
|
|
288 |
|
|
case MAX_EXPR:
|
289 |
|
|
return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
|
290 |
|
|
|
291 |
|
|
case MIN_EXPR:
|
292 |
|
|
return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
|
293 |
|
|
|
294 |
|
|
case REALIGN_LOAD_EXPR:
|
295 |
|
|
return vec_realign_load_optab;
|
296 |
|
|
|
297 |
|
|
case WIDEN_SUM_EXPR:
|
298 |
|
|
return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
|
299 |
|
|
|
300 |
|
|
case DOT_PROD_EXPR:
|
301 |
|
|
return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
|
302 |
|
|
|
303 |
|
|
case REDUC_MAX_EXPR:
|
304 |
|
|
return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
|
305 |
|
|
|
306 |
|
|
case REDUC_MIN_EXPR:
|
307 |
|
|
return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
|
308 |
|
|
|
309 |
|
|
case REDUC_PLUS_EXPR:
|
310 |
|
|
return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
|
311 |
|
|
|
312 |
|
|
case VEC_LSHIFT_EXPR:
|
313 |
|
|
return vec_shl_optab;
|
314 |
|
|
|
315 |
|
|
case VEC_RSHIFT_EXPR:
|
316 |
|
|
return vec_shr_optab;
|
317 |
|
|
|
318 |
|
|
default:
|
319 |
|
|
break;
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
|
323 |
|
|
switch (code)
|
324 |
|
|
{
|
325 |
|
|
case PLUS_EXPR:
|
326 |
|
|
return trapv ? addv_optab : add_optab;
|
327 |
|
|
|
328 |
|
|
case MINUS_EXPR:
|
329 |
|
|
return trapv ? subv_optab : sub_optab;
|
330 |
|
|
|
331 |
|
|
case MULT_EXPR:
|
332 |
|
|
return trapv ? smulv_optab : smul_optab;
|
333 |
|
|
|
334 |
|
|
case NEGATE_EXPR:
|
335 |
|
|
return trapv ? negv_optab : neg_optab;
|
336 |
|
|
|
337 |
|
|
case ABS_EXPR:
|
338 |
|
|
return trapv ? absv_optab : abs_optab;
|
339 |
|
|
|
340 |
|
|
default:
|
341 |
|
|
return NULL;
|
342 |
|
|
}
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
|
346 |
|
|
/* Expand vector widening operations.
|
347 |
|
|
|
348 |
|
|
There are two different classes of operations handled here:
|
349 |
|
|
1) Operations whose result is wider than all the arguments to the operation.
|
350 |
|
|
Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
|
351 |
|
|
In this case OP0 and optionally OP1 would be initialized,
|
352 |
|
|
but WIDE_OP wouldn't (not relevant for this case).
|
353 |
|
|
2) Operations whose result is of the same size as the last argument to the
|
354 |
|
|
operation, but wider than all the other arguments to the operation.
|
355 |
|
|
Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
|
356 |
|
|
In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
|
357 |
|
|
|
358 |
|
|
E.g, when called to expand the following operations, this is how
|
359 |
|
|
the arguments will be initialized:
|
360 |
|
|
nops OP0 OP1 WIDE_OP
|
361 |
|
|
widening-sum 2 oprnd0 - oprnd1
|
362 |
|
|
widening-dot-product 3 oprnd0 oprnd1 oprnd2
|
363 |
|
|
widening-mult 2 oprnd0 oprnd1 -
|
364 |
|
|
type-promotion (vec-unpack) 1 oprnd0 - - */
|
365 |
|
|
|
366 |
|
|
rtx
|
367 |
|
|
expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
|
368 |
|
|
int unsignedp)
|
369 |
|
|
{
|
370 |
|
|
tree oprnd0, oprnd1, oprnd2;
|
371 |
|
|
enum machine_mode wmode = 0, tmode0, tmode1 = 0;
|
372 |
|
|
optab widen_pattern_optab;
|
373 |
|
|
int icode;
|
374 |
|
|
enum machine_mode xmode0, xmode1 = 0, wxmode = 0;
|
375 |
|
|
rtx temp;
|
376 |
|
|
rtx pat;
|
377 |
|
|
rtx xop0, xop1, wxop;
|
378 |
|
|
int nops = TREE_CODE_LENGTH (TREE_CODE (exp));
|
379 |
|
|
|
380 |
|
|
oprnd0 = TREE_OPERAND (exp, 0);
|
381 |
|
|
tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
|
382 |
|
|
widen_pattern_optab =
|
383 |
|
|
optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0));
|
384 |
|
|
icode = (int) widen_pattern_optab->handlers[(int) tmode0].insn_code;
|
385 |
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
386 |
|
|
xmode0 = insn_data[icode].operand[1].mode;
|
387 |
|
|
|
388 |
|
|
if (nops >= 2)
|
389 |
|
|
{
|
390 |
|
|
oprnd1 = TREE_OPERAND (exp, 1);
|
391 |
|
|
tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
|
392 |
|
|
xmode1 = insn_data[icode].operand[2].mode;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* The last operand is of a wider mode than the rest of the operands. */
|
396 |
|
|
if (nops == 2)
|
397 |
|
|
{
|
398 |
|
|
wmode = tmode1;
|
399 |
|
|
wxmode = xmode1;
|
400 |
|
|
}
|
401 |
|
|
else if (nops == 3)
|
402 |
|
|
{
|
403 |
|
|
gcc_assert (tmode1 == tmode0);
|
404 |
|
|
gcc_assert (op1);
|
405 |
|
|
oprnd2 = TREE_OPERAND (exp, 2);
|
406 |
|
|
wmode = TYPE_MODE (TREE_TYPE (oprnd2));
|
407 |
|
|
wxmode = insn_data[icode].operand[3].mode;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
if (!wide_op)
|
411 |
|
|
wmode = wxmode = insn_data[icode].operand[0].mode;
|
412 |
|
|
|
413 |
|
|
if (!target
|
414 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, wmode))
|
415 |
|
|
temp = gen_reg_rtx (wmode);
|
416 |
|
|
else
|
417 |
|
|
temp = target;
|
418 |
|
|
|
419 |
|
|
xop0 = op0;
|
420 |
|
|
xop1 = op1;
|
421 |
|
|
wxop = wide_op;
|
422 |
|
|
|
423 |
|
|
/* In case the insn wants input operands in modes different from
|
424 |
|
|
those of the actual operands, convert the operands. It would
|
425 |
|
|
seem that we don't need to convert CONST_INTs, but we do, so
|
426 |
|
|
that they're properly zero-extended, sign-extended or truncated
|
427 |
|
|
for their mode. */
|
428 |
|
|
|
429 |
|
|
if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
|
430 |
|
|
xop0 = convert_modes (xmode0,
|
431 |
|
|
GET_MODE (op0) != VOIDmode
|
432 |
|
|
? GET_MODE (op0)
|
433 |
|
|
: tmode0,
|
434 |
|
|
xop0, unsignedp);
|
435 |
|
|
|
436 |
|
|
if (op1)
|
437 |
|
|
if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
|
438 |
|
|
xop1 = convert_modes (xmode1,
|
439 |
|
|
GET_MODE (op1) != VOIDmode
|
440 |
|
|
? GET_MODE (op1)
|
441 |
|
|
: tmode1,
|
442 |
|
|
xop1, unsignedp);
|
443 |
|
|
|
444 |
|
|
if (wide_op)
|
445 |
|
|
if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
|
446 |
|
|
wxop = convert_modes (wxmode,
|
447 |
|
|
GET_MODE (wide_op) != VOIDmode
|
448 |
|
|
? GET_MODE (wide_op)
|
449 |
|
|
: wmode,
|
450 |
|
|
wxop, unsignedp);
|
451 |
|
|
|
452 |
|
|
/* Now, if insn's predicates don't allow our operands, put them into
|
453 |
|
|
pseudo regs. */
|
454 |
|
|
|
455 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
|
456 |
|
|
&& xmode0 != VOIDmode)
|
457 |
|
|
xop0 = copy_to_mode_reg (xmode0, xop0);
|
458 |
|
|
|
459 |
|
|
if (op1)
|
460 |
|
|
{
|
461 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
|
462 |
|
|
&& xmode1 != VOIDmode)
|
463 |
|
|
xop1 = copy_to_mode_reg (xmode1, xop1);
|
464 |
|
|
|
465 |
|
|
if (wide_op)
|
466 |
|
|
{
|
467 |
|
|
if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
|
468 |
|
|
&& wxmode != VOIDmode)
|
469 |
|
|
wxop = copy_to_mode_reg (wxmode, wxop);
|
470 |
|
|
|
471 |
|
|
pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
|
472 |
|
|
}
|
473 |
|
|
else
|
474 |
|
|
pat = GEN_FCN (icode) (temp, xop0, xop1);
|
475 |
|
|
}
|
476 |
|
|
else
|
477 |
|
|
{
|
478 |
|
|
if (wide_op)
|
479 |
|
|
{
|
480 |
|
|
if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
|
481 |
|
|
&& wxmode != VOIDmode)
|
482 |
|
|
wxop = copy_to_mode_reg (wxmode, wxop);
|
483 |
|
|
|
484 |
|
|
pat = GEN_FCN (icode) (temp, xop0, wxop);
|
485 |
|
|
}
|
486 |
|
|
else
|
487 |
|
|
pat = GEN_FCN (icode) (temp, xop0);
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
emit_insn (pat);
|
491 |
|
|
return temp;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Generate code to perform an operation specified by TERNARY_OPTAB
|
495 |
|
|
on operands OP0, OP1 and OP2, with result having machine-mode MODE.
|
496 |
|
|
|
497 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
498 |
|
|
to perform the operation. It says to use zero-extension.
|
499 |
|
|
|
500 |
|
|
If TARGET is nonzero, the value
|
501 |
|
|
is generated there, if it is convenient to do so.
|
502 |
|
|
In all cases an rtx is returned for the locus of the value;
|
503 |
|
|
this may or may not be TARGET. */
|
504 |
|
|
|
505 |
|
|
rtx
|
506 |
|
|
expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
|
507 |
|
|
rtx op1, rtx op2, rtx target, int unsignedp)
|
508 |
|
|
{
|
509 |
|
|
int icode = (int) ternary_optab->handlers[(int) mode].insn_code;
|
510 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
511 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
512 |
|
|
enum machine_mode mode2 = insn_data[icode].operand[3].mode;
|
513 |
|
|
rtx temp;
|
514 |
|
|
rtx pat;
|
515 |
|
|
rtx xop0 = op0, xop1 = op1, xop2 = op2;
|
516 |
|
|
|
517 |
|
|
gcc_assert (ternary_optab->handlers[(int) mode].insn_code
|
518 |
|
|
!= CODE_FOR_nothing);
|
519 |
|
|
|
520 |
|
|
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
521 |
|
|
temp = gen_reg_rtx (mode);
|
522 |
|
|
else
|
523 |
|
|
temp = target;
|
524 |
|
|
|
525 |
|
|
/* In case the insn wants input operands in modes different from
|
526 |
|
|
those of the actual operands, convert the operands. It would
|
527 |
|
|
seem that we don't need to convert CONST_INTs, but we do, so
|
528 |
|
|
that they're properly zero-extended, sign-extended or truncated
|
529 |
|
|
for their mode. */
|
530 |
|
|
|
531 |
|
|
if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
|
532 |
|
|
xop0 = convert_modes (mode0,
|
533 |
|
|
GET_MODE (op0) != VOIDmode
|
534 |
|
|
? GET_MODE (op0)
|
535 |
|
|
: mode,
|
536 |
|
|
xop0, unsignedp);
|
537 |
|
|
|
538 |
|
|
if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
|
539 |
|
|
xop1 = convert_modes (mode1,
|
540 |
|
|
GET_MODE (op1) != VOIDmode
|
541 |
|
|
? GET_MODE (op1)
|
542 |
|
|
: mode,
|
543 |
|
|
xop1, unsignedp);
|
544 |
|
|
|
545 |
|
|
if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
|
546 |
|
|
xop2 = convert_modes (mode2,
|
547 |
|
|
GET_MODE (op2) != VOIDmode
|
548 |
|
|
? GET_MODE (op2)
|
549 |
|
|
: mode,
|
550 |
|
|
xop2, unsignedp);
|
551 |
|
|
|
552 |
|
|
/* Now, if insn's predicates don't allow our operands, put them into
|
553 |
|
|
pseudo regs. */
|
554 |
|
|
|
555 |
|
|
if (!insn_data[icode].operand[1].predicate (xop0, mode0)
|
556 |
|
|
&& mode0 != VOIDmode)
|
557 |
|
|
xop0 = copy_to_mode_reg (mode0, xop0);
|
558 |
|
|
|
559 |
|
|
if (!insn_data[icode].operand[2].predicate (xop1, mode1)
|
560 |
|
|
&& mode1 != VOIDmode)
|
561 |
|
|
xop1 = copy_to_mode_reg (mode1, xop1);
|
562 |
|
|
|
563 |
|
|
if (!insn_data[icode].operand[3].predicate (xop2, mode2)
|
564 |
|
|
&& mode2 != VOIDmode)
|
565 |
|
|
xop2 = copy_to_mode_reg (mode2, xop2);
|
566 |
|
|
|
567 |
|
|
pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
|
568 |
|
|
|
569 |
|
|
emit_insn (pat);
|
570 |
|
|
return temp;
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
|
574 |
|
|
/* Like expand_binop, but return a constant rtx if the result can be
|
575 |
|
|
calculated at compile time. The arguments and return value are
|
576 |
|
|
otherwise the same as for expand_binop. */
|
577 |
|
|
|
578 |
|
|
static rtx
|
579 |
|
|
simplify_expand_binop (enum machine_mode mode, optab binoptab,
|
580 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp,
|
581 |
|
|
enum optab_methods methods)
|
582 |
|
|
{
|
583 |
|
|
if (CONSTANT_P (op0) && CONSTANT_P (op1))
|
584 |
|
|
{
|
585 |
|
|
rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
|
586 |
|
|
|
587 |
|
|
if (x)
|
588 |
|
|
return x;
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
/* Like simplify_expand_binop, but always put the result in TARGET.
|
595 |
|
|
Return true if the expansion succeeded. */
|
596 |
|
|
|
597 |
|
|
bool
|
598 |
|
|
force_expand_binop (enum machine_mode mode, optab binoptab,
|
599 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp,
|
600 |
|
|
enum optab_methods methods)
|
601 |
|
|
{
|
602 |
|
|
rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
|
603 |
|
|
target, unsignedp, methods);
|
604 |
|
|
if (x == 0)
|
605 |
|
|
return false;
|
606 |
|
|
if (x != target)
|
607 |
|
|
emit_move_insn (target, x);
|
608 |
|
|
return true;
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
|
612 |
|
|
|
613 |
|
|
rtx
|
614 |
|
|
expand_vec_shift_expr (tree vec_shift_expr, rtx target)
|
615 |
|
|
{
|
616 |
|
|
enum insn_code icode;
|
617 |
|
|
rtx rtx_op1, rtx_op2;
|
618 |
|
|
enum machine_mode mode1;
|
619 |
|
|
enum machine_mode mode2;
|
620 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
|
621 |
|
|
tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
|
622 |
|
|
tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
|
623 |
|
|
optab shift_optab;
|
624 |
|
|
rtx pat;
|
625 |
|
|
|
626 |
|
|
switch (TREE_CODE (vec_shift_expr))
|
627 |
|
|
{
|
628 |
|
|
case VEC_RSHIFT_EXPR:
|
629 |
|
|
shift_optab = vec_shr_optab;
|
630 |
|
|
break;
|
631 |
|
|
case VEC_LSHIFT_EXPR:
|
632 |
|
|
shift_optab = vec_shl_optab;
|
633 |
|
|
break;
|
634 |
|
|
default:
|
635 |
|
|
gcc_unreachable ();
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
icode = (int) shift_optab->handlers[(int) mode].insn_code;
|
639 |
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
640 |
|
|
|
641 |
|
|
mode1 = insn_data[icode].operand[1].mode;
|
642 |
|
|
mode2 = insn_data[icode].operand[2].mode;
|
643 |
|
|
|
644 |
|
|
rtx_op1 = expand_expr (vec_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
645 |
|
|
if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
|
646 |
|
|
&& mode1 != VOIDmode)
|
647 |
|
|
rtx_op1 = force_reg (mode1, rtx_op1);
|
648 |
|
|
|
649 |
|
|
rtx_op2 = expand_expr (shift_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
650 |
|
|
if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
|
651 |
|
|
&& mode2 != VOIDmode)
|
652 |
|
|
rtx_op2 = force_reg (mode2, rtx_op2);
|
653 |
|
|
|
654 |
|
|
if (!target
|
655 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, mode))
|
656 |
|
|
target = gen_reg_rtx (mode);
|
657 |
|
|
|
658 |
|
|
/* Emit instruction */
|
659 |
|
|
pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
|
660 |
|
|
gcc_assert (pat);
|
661 |
|
|
emit_insn (pat);
|
662 |
|
|
|
663 |
|
|
return target;
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
/* This subroutine of expand_doubleword_shift handles the cases in which
|
667 |
|
|
the effective shift value is >= BITS_PER_WORD. The arguments and return
|
668 |
|
|
value are the same as for the parent routine, except that SUPERWORD_OP1
|
669 |
|
|
is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
|
670 |
|
|
INTO_TARGET may be null if the caller has decided to calculate it. */
|
671 |
|
|
|
672 |
|
|
static bool
|
673 |
|
|
expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
|
674 |
|
|
rtx outof_target, rtx into_target,
|
675 |
|
|
int unsignedp, enum optab_methods methods)
|
676 |
|
|
{
|
677 |
|
|
if (into_target != 0)
|
678 |
|
|
if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
|
679 |
|
|
into_target, unsignedp, methods))
|
680 |
|
|
return false;
|
681 |
|
|
|
682 |
|
|
if (outof_target != 0)
|
683 |
|
|
{
|
684 |
|
|
/* For a signed right shift, we must fill OUTOF_TARGET with copies
|
685 |
|
|
of the sign bit, otherwise we must fill it with zeros. */
|
686 |
|
|
if (binoptab != ashr_optab)
|
687 |
|
|
emit_move_insn (outof_target, CONST0_RTX (word_mode));
|
688 |
|
|
else
|
689 |
|
|
if (!force_expand_binop (word_mode, binoptab,
|
690 |
|
|
outof_input, GEN_INT (BITS_PER_WORD - 1),
|
691 |
|
|
outof_target, unsignedp, methods))
|
692 |
|
|
return false;
|
693 |
|
|
}
|
694 |
|
|
return true;
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/* This subroutine of expand_doubleword_shift handles the cases in which
|
698 |
|
|
the effective shift value is < BITS_PER_WORD. The arguments and return
|
699 |
|
|
value are the same as for the parent routine. */
|
700 |
|
|
|
701 |
|
|
static bool
|
702 |
|
|
expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
|
703 |
|
|
rtx outof_input, rtx into_input, rtx op1,
|
704 |
|
|
rtx outof_target, rtx into_target,
|
705 |
|
|
int unsignedp, enum optab_methods methods,
|
706 |
|
|
unsigned HOST_WIDE_INT shift_mask)
|
707 |
|
|
{
|
708 |
|
|
optab reverse_unsigned_shift, unsigned_shift;
|
709 |
|
|
rtx tmp, carries;
|
710 |
|
|
|
711 |
|
|
reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
|
712 |
|
|
unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
|
713 |
|
|
|
714 |
|
|
/* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
|
715 |
|
|
We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
|
716 |
|
|
the opposite direction to BINOPTAB. */
|
717 |
|
|
if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
|
718 |
|
|
{
|
719 |
|
|
carries = outof_input;
|
720 |
|
|
tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
|
721 |
|
|
tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
|
722 |
|
|
0, true, methods);
|
723 |
|
|
}
|
724 |
|
|
else
|
725 |
|
|
{
|
726 |
|
|
/* We must avoid shifting by BITS_PER_WORD bits since that is either
|
727 |
|
|
the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
|
728 |
|
|
has unknown behavior. Do a single shift first, then shift by the
|
729 |
|
|
remainder. It's OK to use ~OP1 as the remainder if shift counts
|
730 |
|
|
are truncated to the mode size. */
|
731 |
|
|
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
732 |
|
|
outof_input, const1_rtx, 0, unsignedp, methods);
|
733 |
|
|
if (shift_mask == BITS_PER_WORD - 1)
|
734 |
|
|
{
|
735 |
|
|
tmp = immed_double_const (-1, -1, op1_mode);
|
736 |
|
|
tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
|
737 |
|
|
0, true, methods);
|
738 |
|
|
}
|
739 |
|
|
else
|
740 |
|
|
{
|
741 |
|
|
tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
|
742 |
|
|
tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
|
743 |
|
|
0, true, methods);
|
744 |
|
|
}
|
745 |
|
|
}
|
746 |
|
|
if (tmp == 0 || carries == 0)
|
747 |
|
|
return false;
|
748 |
|
|
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
749 |
|
|
carries, tmp, 0, unsignedp, methods);
|
750 |
|
|
if (carries == 0)
|
751 |
|
|
return false;
|
752 |
|
|
|
753 |
|
|
/* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
|
754 |
|
|
so the result can go directly into INTO_TARGET if convenient. */
|
755 |
|
|
tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
|
756 |
|
|
into_target, unsignedp, methods);
|
757 |
|
|
if (tmp == 0)
|
758 |
|
|
return false;
|
759 |
|
|
|
760 |
|
|
/* Now OR in the bits carried over from OUTOF_INPUT. */
|
761 |
|
|
if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
|
762 |
|
|
into_target, unsignedp, methods))
|
763 |
|
|
return false;
|
764 |
|
|
|
765 |
|
|
/* Use a standard word_mode shift for the out-of half. */
|
766 |
|
|
if (outof_target != 0)
|
767 |
|
|
if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
|
768 |
|
|
outof_target, unsignedp, methods))
|
769 |
|
|
return false;
|
770 |
|
|
|
771 |
|
|
return true;
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
|
775 |
|
|
#ifdef HAVE_conditional_move
|
776 |
|
|
/* Try implementing expand_doubleword_shift using conditional moves.
|
777 |
|
|
The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
|
778 |
|
|
otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
|
779 |
|
|
are the shift counts to use in the former and latter case. All other
|
780 |
|
|
arguments are the same as the parent routine. */
|
781 |
|
|
|
782 |
|
|
static bool
|
783 |
|
|
expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
|
784 |
|
|
enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
|
785 |
|
|
rtx outof_input, rtx into_input,
|
786 |
|
|
rtx subword_op1, rtx superword_op1,
|
787 |
|
|
rtx outof_target, rtx into_target,
|
788 |
|
|
int unsignedp, enum optab_methods methods,
|
789 |
|
|
unsigned HOST_WIDE_INT shift_mask)
|
790 |
|
|
{
|
791 |
|
|
rtx outof_superword, into_superword;
|
792 |
|
|
|
793 |
|
|
/* Put the superword version of the output into OUTOF_SUPERWORD and
|
794 |
|
|
INTO_SUPERWORD. */
|
795 |
|
|
outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
|
796 |
|
|
if (outof_target != 0 && subword_op1 == superword_op1)
|
797 |
|
|
{
|
798 |
|
|
/* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
|
799 |
|
|
OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
|
800 |
|
|
into_superword = outof_target;
|
801 |
|
|
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
802 |
|
|
outof_superword, 0, unsignedp, methods))
|
803 |
|
|
return false;
|
804 |
|
|
}
|
805 |
|
|
else
|
806 |
|
|
{
|
807 |
|
|
into_superword = gen_reg_rtx (word_mode);
|
808 |
|
|
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
809 |
|
|
outof_superword, into_superword,
|
810 |
|
|
unsignedp, methods))
|
811 |
|
|
return false;
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
/* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
|
815 |
|
|
if (!expand_subword_shift (op1_mode, binoptab,
|
816 |
|
|
outof_input, into_input, subword_op1,
|
817 |
|
|
outof_target, into_target,
|
818 |
|
|
unsignedp, methods, shift_mask))
|
819 |
|
|
return false;
|
820 |
|
|
|
821 |
|
|
/* Select between them. Do the INTO half first because INTO_SUPERWORD
|
822 |
|
|
might be the current value of OUTOF_TARGET. */
|
823 |
|
|
if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
|
824 |
|
|
into_target, into_superword, word_mode, false))
|
825 |
|
|
return false;
|
826 |
|
|
|
827 |
|
|
if (outof_target != 0)
|
828 |
|
|
if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
|
829 |
|
|
outof_target, outof_superword,
|
830 |
|
|
word_mode, false))
|
831 |
|
|
return false;
|
832 |
|
|
|
833 |
|
|
return true;
|
834 |
|
|
}
|
835 |
|
|
#endif
|
836 |
|
|
|
837 |
|
|
/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
|
838 |
|
|
OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
|
839 |
|
|
input operand; the shift moves bits in the direction OUTOF_INPUT->
|
840 |
|
|
INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
|
841 |
|
|
of the target. OP1 is the shift count and OP1_MODE is its mode.
|
842 |
|
|
If OP1 is constant, it will have been truncated as appropriate
|
843 |
|
|
and is known to be nonzero.
|
844 |
|
|
|
845 |
|
|
If SHIFT_MASK is zero, the result of word shifts is undefined when the
|
846 |
|
|
shift count is outside the range [0, BITS_PER_WORD). This routine must
|
847 |
|
|
avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
|
848 |
|
|
|
849 |
|
|
If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
|
850 |
|
|
masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
|
851 |
|
|
fill with zeros or sign bits as appropriate.
|
852 |
|
|
|
853 |
|
|
If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
|
854 |
|
|
a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
|
855 |
|
|
Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
|
856 |
|
|
In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
|
857 |
|
|
are undefined.
|
858 |
|
|
|
859 |
|
|
BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
|
860 |
|
|
may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
|
861 |
|
|
OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
|
862 |
|
|
function wants to calculate it itself.
|
863 |
|
|
|
864 |
|
|
Return true if the shift could be successfully synthesized. */
|
865 |
|
|
|
866 |
|
|
static bool
|
867 |
|
|
expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
|
868 |
|
|
rtx outof_input, rtx into_input, rtx op1,
|
869 |
|
|
rtx outof_target, rtx into_target,
|
870 |
|
|
int unsignedp, enum optab_methods methods,
|
871 |
|
|
unsigned HOST_WIDE_INT shift_mask)
|
872 |
|
|
{
|
873 |
|
|
rtx superword_op1, tmp, cmp1, cmp2;
|
874 |
|
|
rtx subword_label, done_label;
|
875 |
|
|
enum rtx_code cmp_code;
|
876 |
|
|
|
877 |
|
|
/* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
|
878 |
|
|
fill the result with sign or zero bits as appropriate. If so, the value
|
879 |
|
|
of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
|
880 |
|
|
this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
|
881 |
|
|
and INTO_INPUT), then emit code to set up OUTOF_TARGET.
|
882 |
|
|
|
883 |
|
|
This isn't worthwhile for constant shifts since the optimizers will
|
884 |
|
|
cope better with in-range shift counts. */
|
885 |
|
|
if (shift_mask >= BITS_PER_WORD
|
886 |
|
|
&& outof_target != 0
|
887 |
|
|
&& !CONSTANT_P (op1))
|
888 |
|
|
{
|
889 |
|
|
if (!expand_doubleword_shift (op1_mode, binoptab,
|
890 |
|
|
outof_input, into_input, op1,
|
891 |
|
|
0, into_target,
|
892 |
|
|
unsignedp, methods, shift_mask))
|
893 |
|
|
return false;
|
894 |
|
|
if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
|
895 |
|
|
outof_target, unsignedp, methods))
|
896 |
|
|
return false;
|
897 |
|
|
return true;
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
/* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
|
901 |
|
|
is true when the effective shift value is less than BITS_PER_WORD.
|
902 |
|
|
Set SUPERWORD_OP1 to the shift count that should be used to shift
|
903 |
|
|
OUTOF_INPUT into INTO_TARGET when the condition is false. */
|
904 |
|
|
tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
|
905 |
|
|
if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
|
906 |
|
|
{
|
907 |
|
|
/* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
|
908 |
|
|
is a subword shift count. */
|
909 |
|
|
cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
|
910 |
|
|
0, true, methods);
|
911 |
|
|
cmp2 = CONST0_RTX (op1_mode);
|
912 |
|
|
cmp_code = EQ;
|
913 |
|
|
superword_op1 = op1;
|
914 |
|
|
}
|
915 |
|
|
else
|
916 |
|
|
{
|
917 |
|
|
/* Set CMP1 to OP1 - BITS_PER_WORD. */
|
918 |
|
|
cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
|
919 |
|
|
0, true, methods);
|
920 |
|
|
cmp2 = CONST0_RTX (op1_mode);
|
921 |
|
|
cmp_code = LT;
|
922 |
|
|
superword_op1 = cmp1;
|
923 |
|
|
}
|
924 |
|
|
if (cmp1 == 0)
|
925 |
|
|
return false;
|
926 |
|
|
|
927 |
|
|
/* If we can compute the condition at compile time, pick the
|
928 |
|
|
appropriate subroutine. */
|
929 |
|
|
tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
|
930 |
|
|
if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
|
931 |
|
|
{
|
932 |
|
|
if (tmp == const0_rtx)
|
933 |
|
|
return expand_superword_shift (binoptab, outof_input, superword_op1,
|
934 |
|
|
outof_target, into_target,
|
935 |
|
|
unsignedp, methods);
|
936 |
|
|
else
|
937 |
|
|
return expand_subword_shift (op1_mode, binoptab,
|
938 |
|
|
outof_input, into_input, op1,
|
939 |
|
|
outof_target, into_target,
|
940 |
|
|
unsignedp, methods, shift_mask);
|
941 |
|
|
}
|
942 |
|
|
|
943 |
|
|
#ifdef HAVE_conditional_move
|
944 |
|
|
/* Try using conditional moves to generate straight-line code. */
|
945 |
|
|
{
|
946 |
|
|
rtx start = get_last_insn ();
|
947 |
|
|
if (expand_doubleword_shift_condmove (op1_mode, binoptab,
|
948 |
|
|
cmp_code, cmp1, cmp2,
|
949 |
|
|
outof_input, into_input,
|
950 |
|
|
op1, superword_op1,
|
951 |
|
|
outof_target, into_target,
|
952 |
|
|
unsignedp, methods, shift_mask))
|
953 |
|
|
return true;
|
954 |
|
|
delete_insns_since (start);
|
955 |
|
|
}
|
956 |
|
|
#endif
|
957 |
|
|
|
958 |
|
|
/* As a last resort, use branches to select the correct alternative. */
|
959 |
|
|
subword_label = gen_label_rtx ();
|
960 |
|
|
done_label = gen_label_rtx ();
|
961 |
|
|
|
962 |
|
|
NO_DEFER_POP;
|
963 |
|
|
do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
|
964 |
|
|
0, 0, subword_label);
|
965 |
|
|
OK_DEFER_POP;
|
966 |
|
|
|
967 |
|
|
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
968 |
|
|
outof_target, into_target,
|
969 |
|
|
unsignedp, methods))
|
970 |
|
|
return false;
|
971 |
|
|
|
972 |
|
|
emit_jump_insn (gen_jump (done_label));
|
973 |
|
|
emit_barrier ();
|
974 |
|
|
emit_label (subword_label);
|
975 |
|
|
|
976 |
|
|
if (!expand_subword_shift (op1_mode, binoptab,
|
977 |
|
|
outof_input, into_input, op1,
|
978 |
|
|
outof_target, into_target,
|
979 |
|
|
unsignedp, methods, shift_mask))
|
980 |
|
|
return false;
|
981 |
|
|
|
982 |
|
|
emit_label (done_label);
|
983 |
|
|
return true;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
/* Subroutine of expand_binop. Perform a double word multiplication of
|
987 |
|
|
operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
|
988 |
|
|
as the target's word_mode. This function return NULL_RTX if anything
|
989 |
|
|
goes wrong, in which case it may have already emitted instructions
|
990 |
|
|
which need to be deleted.
|
991 |
|
|
|
992 |
|
|
If we want to multiply two two-word values and have normal and widening
|
993 |
|
|
multiplies of single-word values, we can do this with three smaller
|
994 |
|
|
multiplications. Note that we do not make a REG_NO_CONFLICT block here
|
995 |
|
|
because we are not operating on one word at a time.
|
996 |
|
|
|
997 |
|
|
The multiplication proceeds as follows:
|
998 |
|
|
_______________________
|
999 |
|
|
[__op0_high_|__op0_low__]
|
1000 |
|
|
_______________________
|
1001 |
|
|
* [__op1_high_|__op1_low__]
|
1002 |
|
|
_______________________________________________
|
1003 |
|
|
_______________________
|
1004 |
|
|
(1) [__op0_low__*__op1_low__]
|
1005 |
|
|
_______________________
|
1006 |
|
|
(2a) [__op0_low__*__op1_high_]
|
1007 |
|
|
_______________________
|
1008 |
|
|
(2b) [__op0_high_*__op1_low__]
|
1009 |
|
|
_______________________
|
1010 |
|
|
(3) [__op0_high_*__op1_high_]
|
1011 |
|
|
|
1012 |
|
|
|
1013 |
|
|
This gives a 4-word result. Since we are only interested in the
|
1014 |
|
|
lower 2 words, partial result (3) and the upper words of (2a) and
|
1015 |
|
|
(2b) don't need to be calculated. Hence (2a) and (2b) can be
|
1016 |
|
|
calculated using non-widening multiplication.
|
1017 |
|
|
|
1018 |
|
|
(1), however, needs to be calculated with an unsigned widening
|
1019 |
|
|
multiplication. If this operation is not directly supported we
|
1020 |
|
|
try using a signed widening multiplication and adjust the result.
|
1021 |
|
|
This adjustment works as follows:
|
1022 |
|
|
|
1023 |
|
|
If both operands are positive then no adjustment is needed.
|
1024 |
|
|
|
1025 |
|
|
If the operands have different signs, for example op0_low < 0 and
|
1026 |
|
|
op1_low >= 0, the instruction treats the most significant bit of
|
1027 |
|
|
op0_low as a sign bit instead of a bit with significance
|
1028 |
|
|
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
|
1029 |
|
|
with 2**BITS_PER_WORD - op0_low, and two's complements the
|
1030 |
|
|
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
|
1031 |
|
|
the result.
|
1032 |
|
|
|
1033 |
|
|
Similarly, if both operands are negative, we need to add
|
1034 |
|
|
(op0_low + op1_low) * 2**BITS_PER_WORD.
|
1035 |
|
|
|
1036 |
|
|
We use a trick to adjust quickly. We logically shift op0_low right
|
1037 |
|
|
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
|
1038 |
|
|
op0_high (op1_high) before it is used to calculate 2b (2a). If no
|
1039 |
|
|
logical shift exists, we do an arithmetic right shift and subtract
|
1040 |
|
|
the 0 or -1. */
|
1041 |
|
|
|
1042 |
|
|
static rtx
|
1043 |
|
|
expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
1044 |
|
|
bool umulp, enum optab_methods methods)
|
1045 |
|
|
{
|
1046 |
|
|
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
|
1047 |
|
|
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
|
1048 |
|
|
rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
|
1049 |
|
|
rtx product, adjust, product_high, temp;
|
1050 |
|
|
|
1051 |
|
|
rtx op0_high = operand_subword_force (op0, high, mode);
|
1052 |
|
|
rtx op0_low = operand_subword_force (op0, low, mode);
|
1053 |
|
|
rtx op1_high = operand_subword_force (op1, high, mode);
|
1054 |
|
|
rtx op1_low = operand_subword_force (op1, low, mode);
|
1055 |
|
|
|
1056 |
|
|
/* If we're using an unsigned multiply to directly compute the product
|
1057 |
|
|
of the low-order words of the operands and perform any required
|
1058 |
|
|
adjustments of the operands, we begin by trying two more multiplications
|
1059 |
|
|
and then computing the appropriate sum.
|
1060 |
|
|
|
1061 |
|
|
We have checked above that the required addition is provided.
|
1062 |
|
|
Full-word addition will normally always succeed, especially if
|
1063 |
|
|
it is provided at all, so we don't worry about its failure. The
|
1064 |
|
|
multiplication may well fail, however, so we do handle that. */
|
1065 |
|
|
|
1066 |
|
|
if (!umulp)
|
1067 |
|
|
{
|
1068 |
|
|
/* ??? This could be done with emit_store_flag where available. */
|
1069 |
|
|
temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
|
1070 |
|
|
NULL_RTX, 1, methods);
|
1071 |
|
|
if (temp)
|
1072 |
|
|
op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
|
1073 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1074 |
|
|
else
|
1075 |
|
|
{
|
1076 |
|
|
temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
|
1077 |
|
|
NULL_RTX, 0, methods);
|
1078 |
|
|
if (!temp)
|
1079 |
|
|
return NULL_RTX;
|
1080 |
|
|
op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
|
1081 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
if (!op0_high)
|
1085 |
|
|
return NULL_RTX;
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
|
1089 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1090 |
|
|
if (!adjust)
|
1091 |
|
|
return NULL_RTX;
|
1092 |
|
|
|
1093 |
|
|
/* OP0_HIGH should now be dead. */
|
1094 |
|
|
|
1095 |
|
|
if (!umulp)
|
1096 |
|
|
{
|
1097 |
|
|
/* ??? This could be done with emit_store_flag where available. */
|
1098 |
|
|
temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
|
1099 |
|
|
NULL_RTX, 1, methods);
|
1100 |
|
|
if (temp)
|
1101 |
|
|
op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
|
1102 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1103 |
|
|
else
|
1104 |
|
|
{
|
1105 |
|
|
temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
|
1106 |
|
|
NULL_RTX, 0, methods);
|
1107 |
|
|
if (!temp)
|
1108 |
|
|
return NULL_RTX;
|
1109 |
|
|
op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
|
1110 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
if (!op1_high)
|
1114 |
|
|
return NULL_RTX;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
|
1118 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1119 |
|
|
if (!temp)
|
1120 |
|
|
return NULL_RTX;
|
1121 |
|
|
|
1122 |
|
|
/* OP1_HIGH should now be dead. */
|
1123 |
|
|
|
1124 |
|
|
adjust = expand_binop (word_mode, add_optab, adjust, temp,
|
1125 |
|
|
adjust, 0, OPTAB_DIRECT);
|
1126 |
|
|
|
1127 |
|
|
if (target && !REG_P (target))
|
1128 |
|
|
target = NULL_RTX;
|
1129 |
|
|
|
1130 |
|
|
if (umulp)
|
1131 |
|
|
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
|
1132 |
|
|
target, 1, OPTAB_DIRECT);
|
1133 |
|
|
else
|
1134 |
|
|
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
|
1135 |
|
|
target, 1, OPTAB_DIRECT);
|
1136 |
|
|
|
1137 |
|
|
if (!product)
|
1138 |
|
|
return NULL_RTX;
|
1139 |
|
|
|
1140 |
|
|
product_high = operand_subword (product, high, 1, mode);
|
1141 |
|
|
adjust = expand_binop (word_mode, add_optab, product_high, adjust,
|
1142 |
|
|
REG_P (product_high) ? product_high : adjust,
|
1143 |
|
|
0, OPTAB_DIRECT);
|
1144 |
|
|
emit_move_insn (product_high, adjust);
|
1145 |
|
|
return product;
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
/* Wrapper around expand_binop which takes an rtx code to specify
|
1149 |
|
|
the operation to perform, not an optab pointer. All other
|
1150 |
|
|
arguments are the same. */
|
1151 |
|
|
rtx
|
1152 |
|
|
expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
|
1153 |
|
|
rtx op1, rtx target, int unsignedp,
|
1154 |
|
|
enum optab_methods methods)
|
1155 |
|
|
{
|
1156 |
|
|
optab binop = code_to_optab[(int) code];
|
1157 |
|
|
gcc_assert (binop);
|
1158 |
|
|
|
1159 |
|
|
return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
/* Return whether OP0 and OP1 should be swapped when expanding a commutative
|
1163 |
|
|
binop. Order them according to commutative_operand_precedence and, if
|
1164 |
|
|
possible, try to put TARGET or a pseudo first. */
|
1165 |
|
|
static bool
|
1166 |
|
|
swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
|
1167 |
|
|
{
|
1168 |
|
|
int op0_prec = commutative_operand_precedence (op0);
|
1169 |
|
|
int op1_prec = commutative_operand_precedence (op1);
|
1170 |
|
|
|
1171 |
|
|
if (op0_prec < op1_prec)
|
1172 |
|
|
return true;
|
1173 |
|
|
|
1174 |
|
|
if (op0_prec > op1_prec)
|
1175 |
|
|
return false;
|
1176 |
|
|
|
1177 |
|
|
/* With equal precedence, both orders are ok, but it is better if the
|
1178 |
|
|
first operand is TARGET, or if both TARGET and OP0 are pseudos. */
|
1179 |
|
|
if (target == 0 || REG_P (target))
|
1180 |
|
|
return (REG_P (op1) && !REG_P (op0)) || target == op1;
|
1181 |
|
|
else
|
1182 |
|
|
return rtx_equal_p (op1, target);
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
|
1186 |
|
|
/* Generate code to perform an operation specified by BINOPTAB
|
1187 |
|
|
on operands OP0 and OP1, with result having machine-mode MODE.
|
1188 |
|
|
|
1189 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
1190 |
|
|
to perform the operation. It says to use zero-extension.
|
1191 |
|
|
|
1192 |
|
|
If TARGET is nonzero, the value
|
1193 |
|
|
is generated there, if it is convenient to do so.
|
1194 |
|
|
In all cases an rtx is returned for the locus of the value;
|
1195 |
|
|
this may or may not be TARGET. */
|
1196 |
|
|
|
1197 |
|
|
rtx
|
1198 |
|
|
expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
|
1199 |
|
|
rtx target, int unsignedp, enum optab_methods methods)
|
1200 |
|
|
{
|
1201 |
|
|
enum optab_methods next_methods
|
1202 |
|
|
= (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
|
1203 |
|
|
? OPTAB_WIDEN : methods);
|
1204 |
|
|
enum mode_class class;
|
1205 |
|
|
enum machine_mode wider_mode;
|
1206 |
|
|
rtx temp;
|
1207 |
|
|
int commutative_op = 0;
|
1208 |
|
|
int shift_op = (binoptab->code == ASHIFT
|
1209 |
|
|
|| binoptab->code == ASHIFTRT
|
1210 |
|
|
|| binoptab->code == LSHIFTRT
|
1211 |
|
|
|| binoptab->code == ROTATE
|
1212 |
|
|
|| binoptab->code == ROTATERT);
|
1213 |
|
|
rtx entry_last = get_last_insn ();
|
1214 |
|
|
rtx last;
|
1215 |
|
|
bool first_pass_p = true;
|
1216 |
|
|
|
1217 |
|
|
class = GET_MODE_CLASS (mode);
|
1218 |
|
|
|
1219 |
|
|
/* If subtracting an integer constant, convert this into an addition of
|
1220 |
|
|
the negated constant. */
|
1221 |
|
|
|
1222 |
|
|
if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
|
1223 |
|
|
{
|
1224 |
|
|
op1 = negate_rtx (mode, op1);
|
1225 |
|
|
binoptab = add_optab;
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
/* If we are inside an appropriately-short loop and we are optimizing,
|
1229 |
|
|
force expensive constants into a register. */
|
1230 |
|
|
if (CONSTANT_P (op0) && optimize
|
1231 |
|
|
&& rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
|
1232 |
|
|
{
|
1233 |
|
|
if (GET_MODE (op0) != VOIDmode)
|
1234 |
|
|
op0 = convert_modes (mode, VOIDmode, op0, unsignedp);
|
1235 |
|
|
op0 = force_reg (mode, op0);
|
1236 |
|
|
}
|
1237 |
|
|
|
1238 |
|
|
if (CONSTANT_P (op1) && optimize
|
1239 |
|
|
&& ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
|
1240 |
|
|
{
|
1241 |
|
|
if (GET_MODE (op1) != VOIDmode)
|
1242 |
|
|
op1 = convert_modes (mode, VOIDmode, op1, unsignedp);
|
1243 |
|
|
op1 = force_reg (mode, op1);
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
/* Record where to delete back to if we backtrack. */
|
1247 |
|
|
last = get_last_insn ();
|
1248 |
|
|
|
1249 |
|
|
/* If operation is commutative,
|
1250 |
|
|
try to make the first operand a register.
|
1251 |
|
|
Even better, try to make it the same as the target.
|
1252 |
|
|
Also try to make the last operand a constant. */
|
1253 |
|
|
if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
|
1254 |
|
|
|| binoptab == smul_widen_optab
|
1255 |
|
|
|| binoptab == umul_widen_optab
|
1256 |
|
|
|| binoptab == smul_highpart_optab
|
1257 |
|
|
|| binoptab == umul_highpart_optab)
|
1258 |
|
|
{
|
1259 |
|
|
commutative_op = 1;
|
1260 |
|
|
|
1261 |
|
|
if (swap_commutative_operands_with_target (target, op0, op1))
|
1262 |
|
|
{
|
1263 |
|
|
temp = op1;
|
1264 |
|
|
op1 = op0;
|
1265 |
|
|
op0 = temp;
|
1266 |
|
|
}
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
retry:
|
1270 |
|
|
|
1271 |
|
|
/* If we can do it with a three-operand insn, do so. */
|
1272 |
|
|
|
1273 |
|
|
if (methods != OPTAB_MUST_WIDEN
|
1274 |
|
|
&& binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
1275 |
|
|
{
|
1276 |
|
|
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
1277 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
1278 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
1279 |
|
|
rtx pat;
|
1280 |
|
|
rtx xop0 = op0, xop1 = op1;
|
1281 |
|
|
|
1282 |
|
|
if (target)
|
1283 |
|
|
temp = target;
|
1284 |
|
|
else
|
1285 |
|
|
temp = gen_reg_rtx (mode);
|
1286 |
|
|
|
1287 |
|
|
/* If it is a commutative operator and the modes would match
|
1288 |
|
|
if we would swap the operands, we can save the conversions. */
|
1289 |
|
|
if (commutative_op)
|
1290 |
|
|
{
|
1291 |
|
|
if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
|
1292 |
|
|
&& GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
|
1293 |
|
|
{
|
1294 |
|
|
rtx tmp;
|
1295 |
|
|
|
1296 |
|
|
tmp = op0; op0 = op1; op1 = tmp;
|
1297 |
|
|
tmp = xop0; xop0 = xop1; xop1 = tmp;
|
1298 |
|
|
}
|
1299 |
|
|
}
|
1300 |
|
|
|
1301 |
|
|
/* In case the insn wants input operands in modes different from
|
1302 |
|
|
those of the actual operands, convert the operands. It would
|
1303 |
|
|
seem that we don't need to convert CONST_INTs, but we do, so
|
1304 |
|
|
that they're properly zero-extended, sign-extended or truncated
|
1305 |
|
|
for their mode. */
|
1306 |
|
|
|
1307 |
|
|
if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
|
1308 |
|
|
xop0 = convert_modes (mode0,
|
1309 |
|
|
GET_MODE (op0) != VOIDmode
|
1310 |
|
|
? GET_MODE (op0)
|
1311 |
|
|
: mode,
|
1312 |
|
|
xop0, unsignedp);
|
1313 |
|
|
|
1314 |
|
|
if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
|
1315 |
|
|
xop1 = convert_modes (mode1,
|
1316 |
|
|
GET_MODE (op1) != VOIDmode
|
1317 |
|
|
? GET_MODE (op1)
|
1318 |
|
|
: mode,
|
1319 |
|
|
xop1, unsignedp);
|
1320 |
|
|
|
1321 |
|
|
/* Now, if insn's predicates don't allow our operands, put them into
|
1322 |
|
|
pseudo regs. */
|
1323 |
|
|
|
1324 |
|
|
if (!insn_data[icode].operand[1].predicate (xop0, mode0)
|
1325 |
|
|
&& mode0 != VOIDmode)
|
1326 |
|
|
xop0 = copy_to_mode_reg (mode0, xop0);
|
1327 |
|
|
|
1328 |
|
|
if (!insn_data[icode].operand[2].predicate (xop1, mode1)
|
1329 |
|
|
&& mode1 != VOIDmode)
|
1330 |
|
|
xop1 = copy_to_mode_reg (mode1, xop1);
|
1331 |
|
|
|
1332 |
|
|
if (!insn_data[icode].operand[0].predicate (temp, mode))
|
1333 |
|
|
temp = gen_reg_rtx (mode);
|
1334 |
|
|
|
1335 |
|
|
pat = GEN_FCN (icode) (temp, xop0, xop1);
|
1336 |
|
|
if (pat)
|
1337 |
|
|
{
|
1338 |
|
|
/* If PAT is composed of more than one insn, try to add an appropriate
|
1339 |
|
|
REG_EQUAL note to it. If we can't because TEMP conflicts with an
|
1340 |
|
|
operand, call ourselves again, this time without a target. */
|
1341 |
|
|
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
|
1342 |
|
|
&& ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
|
1343 |
|
|
{
|
1344 |
|
|
delete_insns_since (last);
|
1345 |
|
|
return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
|
1346 |
|
|
unsignedp, methods);
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
emit_insn (pat);
|
1350 |
|
|
return temp;
|
1351 |
|
|
}
|
1352 |
|
|
else
|
1353 |
|
|
delete_insns_since (last);
|
1354 |
|
|
}
|
1355 |
|
|
|
1356 |
|
|
/* If we were trying to rotate by a constant value, and that didn't
|
1357 |
|
|
work, try rotating the other direction before falling back to
|
1358 |
|
|
shifts and bitwise-or. */
|
1359 |
|
|
if (first_pass_p
|
1360 |
|
|
&& (binoptab == rotl_optab || binoptab == rotr_optab)
|
1361 |
|
|
&& class == MODE_INT
|
1362 |
|
|
&& GET_CODE (op1) == CONST_INT
|
1363 |
|
|
&& INTVAL (op1) > 0
|
1364 |
|
|
&& (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
|
1365 |
|
|
{
|
1366 |
|
|
first_pass_p = false;
|
1367 |
|
|
op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
|
1368 |
|
|
binoptab = binoptab == rotl_optab ? rotr_optab : rotl_optab;
|
1369 |
|
|
goto retry;
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
/* If this is a multiply, see if we can do a widening operation that
|
1373 |
|
|
takes operands of this mode and makes a wider mode. */
|
1374 |
|
|
|
1375 |
|
|
if (binoptab == smul_optab
|
1376 |
|
|
&& GET_MODE_WIDER_MODE (mode) != VOIDmode
|
1377 |
|
|
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
|
1378 |
|
|
->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
|
1379 |
|
|
!= CODE_FOR_nothing))
|
1380 |
|
|
{
|
1381 |
|
|
temp = expand_binop (GET_MODE_WIDER_MODE (mode),
|
1382 |
|
|
unsignedp ? umul_widen_optab : smul_widen_optab,
|
1383 |
|
|
op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
|
1384 |
|
|
|
1385 |
|
|
if (temp != 0)
|
1386 |
|
|
{
|
1387 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
1388 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
1389 |
|
|
GET_MODE_BITSIZE (GET_MODE (temp))))
|
1390 |
|
|
return gen_lowpart (mode, temp);
|
1391 |
|
|
else
|
1392 |
|
|
return convert_to_mode (mode, temp, unsignedp);
|
1393 |
|
|
}
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
/* Look for a wider mode of the same class for which we think we
|
1397 |
|
|
can open-code the operation. Check for a widening multiply at the
|
1398 |
|
|
wider mode as well. */
|
1399 |
|
|
|
1400 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class)
|
1401 |
|
|
&& methods != OPTAB_DIRECT && methods != OPTAB_LIB)
|
1402 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
1403 |
|
|
wider_mode != VOIDmode;
|
1404 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
1405 |
|
|
{
|
1406 |
|
|
if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
|
1407 |
|
|
|| (binoptab == smul_optab
|
1408 |
|
|
&& GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
|
1409 |
|
|
&& (((unsignedp ? umul_widen_optab : smul_widen_optab)
|
1410 |
|
|
->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
|
1411 |
|
|
!= CODE_FOR_nothing)))
|
1412 |
|
|
{
|
1413 |
|
|
rtx xop0 = op0, xop1 = op1;
|
1414 |
|
|
int no_extend = 0;
|
1415 |
|
|
|
1416 |
|
|
/* For certain integer operations, we need not actually extend
|
1417 |
|
|
the narrow operands, as long as we will truncate
|
1418 |
|
|
the results to the same narrowness. */
|
1419 |
|
|
|
1420 |
|
|
if ((binoptab == ior_optab || binoptab == and_optab
|
1421 |
|
|
|| binoptab == xor_optab
|
1422 |
|
|
|| binoptab == add_optab || binoptab == sub_optab
|
1423 |
|
|
|| binoptab == smul_optab || binoptab == ashl_optab)
|
1424 |
|
|
&& class == MODE_INT)
|
1425 |
|
|
no_extend = 1;
|
1426 |
|
|
|
1427 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
|
1428 |
|
|
|
1429 |
|
|
/* The second operand of a shift must always be extended. */
|
1430 |
|
|
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
1431 |
|
|
no_extend && binoptab != ashl_optab);
|
1432 |
|
|
|
1433 |
|
|
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
1434 |
|
|
unsignedp, OPTAB_DIRECT);
|
1435 |
|
|
if (temp)
|
1436 |
|
|
{
|
1437 |
|
|
if (class != MODE_INT
|
1438 |
|
|
|| !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
1439 |
|
|
GET_MODE_BITSIZE (wider_mode)))
|
1440 |
|
|
{
|
1441 |
|
|
if (target == 0)
|
1442 |
|
|
target = gen_reg_rtx (mode);
|
1443 |
|
|
convert_move (target, temp, 0);
|
1444 |
|
|
return target;
|
1445 |
|
|
}
|
1446 |
|
|
else
|
1447 |
|
|
return gen_lowpart (mode, temp);
|
1448 |
|
|
}
|
1449 |
|
|
else
|
1450 |
|
|
delete_insns_since (last);
|
1451 |
|
|
}
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
/* These can be done a word at a time. */
|
1455 |
|
|
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
|
1456 |
|
|
&& class == MODE_INT
|
1457 |
|
|
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
1458 |
|
|
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
1459 |
|
|
{
|
1460 |
|
|
int i;
|
1461 |
|
|
rtx insns;
|
1462 |
|
|
rtx equiv_value;
|
1463 |
|
|
|
1464 |
|
|
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
1465 |
|
|
won't be accurate, so use a new target. */
|
1466 |
|
|
if (target == 0 || target == op0 || target == op1)
|
1467 |
|
|
target = gen_reg_rtx (mode);
|
1468 |
|
|
|
1469 |
|
|
start_sequence ();
|
1470 |
|
|
|
1471 |
|
|
/* Do the actual arithmetic. */
|
1472 |
|
|
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
1473 |
|
|
{
|
1474 |
|
|
rtx target_piece = operand_subword (target, i, 1, mode);
|
1475 |
|
|
rtx x = expand_binop (word_mode, binoptab,
|
1476 |
|
|
operand_subword_force (op0, i, mode),
|
1477 |
|
|
operand_subword_force (op1, i, mode),
|
1478 |
|
|
target_piece, unsignedp, next_methods);
|
1479 |
|
|
|
1480 |
|
|
if (x == 0)
|
1481 |
|
|
break;
|
1482 |
|
|
|
1483 |
|
|
if (target_piece != x)
|
1484 |
|
|
emit_move_insn (target_piece, x);
|
1485 |
|
|
}
|
1486 |
|
|
|
1487 |
|
|
insns = get_insns ();
|
1488 |
|
|
end_sequence ();
|
1489 |
|
|
|
1490 |
|
|
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
|
1491 |
|
|
{
|
1492 |
|
|
if (binoptab->code != UNKNOWN)
|
1493 |
|
|
equiv_value
|
1494 |
|
|
= gen_rtx_fmt_ee (binoptab->code, mode,
|
1495 |
|
|
copy_rtx (op0), copy_rtx (op1));
|
1496 |
|
|
else
|
1497 |
|
|
equiv_value = 0;
|
1498 |
|
|
|
1499 |
|
|
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
1500 |
|
|
return target;
|
1501 |
|
|
}
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
/* Synthesize double word shifts from single word shifts. */
|
1505 |
|
|
if ((binoptab == lshr_optab || binoptab == ashl_optab
|
1506 |
|
|
|| binoptab == ashr_optab)
|
1507 |
|
|
&& class == MODE_INT
|
1508 |
|
|
&& (GET_CODE (op1) == CONST_INT || !optimize_size)
|
1509 |
|
|
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
1510 |
|
|
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
1511 |
|
|
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
1512 |
|
|
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
1513 |
|
|
{
|
1514 |
|
|
unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
|
1515 |
|
|
enum machine_mode op1_mode;
|
1516 |
|
|
|
1517 |
|
|
double_shift_mask = targetm.shift_truncation_mask (mode);
|
1518 |
|
|
shift_mask = targetm.shift_truncation_mask (word_mode);
|
1519 |
|
|
op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
|
1520 |
|
|
|
1521 |
|
|
/* Apply the truncation to constant shifts. */
|
1522 |
|
|
if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
|
1523 |
|
|
op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
|
1524 |
|
|
|
1525 |
|
|
if (op1 == CONST0_RTX (op1_mode))
|
1526 |
|
|
return op0;
|
1527 |
|
|
|
1528 |
|
|
/* Make sure that this is a combination that expand_doubleword_shift
|
1529 |
|
|
can handle. See the comments there for details. */
|
1530 |
|
|
if (double_shift_mask == 0
|
1531 |
|
|
|| (shift_mask == BITS_PER_WORD - 1
|
1532 |
|
|
&& double_shift_mask == BITS_PER_WORD * 2 - 1))
|
1533 |
|
|
{
|
1534 |
|
|
rtx insns, equiv_value;
|
1535 |
|
|
rtx into_target, outof_target;
|
1536 |
|
|
rtx into_input, outof_input;
|
1537 |
|
|
int left_shift, outof_word;
|
1538 |
|
|
|
1539 |
|
|
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
1540 |
|
|
won't be accurate, so use a new target. */
|
1541 |
|
|
if (target == 0 || target == op0 || target == op1)
|
1542 |
|
|
target = gen_reg_rtx (mode);
|
1543 |
|
|
|
1544 |
|
|
start_sequence ();
|
1545 |
|
|
|
1546 |
|
|
/* OUTOF_* is the word we are shifting bits away from, and
|
1547 |
|
|
INTO_* is the word that we are shifting bits towards, thus
|
1548 |
|
|
they differ depending on the direction of the shift and
|
1549 |
|
|
WORDS_BIG_ENDIAN. */
|
1550 |
|
|
|
1551 |
|
|
left_shift = binoptab == ashl_optab;
|
1552 |
|
|
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
1553 |
|
|
|
1554 |
|
|
outof_target = operand_subword (target, outof_word, 1, mode);
|
1555 |
|
|
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
1556 |
|
|
|
1557 |
|
|
outof_input = operand_subword_force (op0, outof_word, mode);
|
1558 |
|
|
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
1559 |
|
|
|
1560 |
|
|
if (expand_doubleword_shift (op1_mode, binoptab,
|
1561 |
|
|
outof_input, into_input, op1,
|
1562 |
|
|
outof_target, into_target,
|
1563 |
|
|
unsignedp, next_methods, shift_mask))
|
1564 |
|
|
{
|
1565 |
|
|
insns = get_insns ();
|
1566 |
|
|
end_sequence ();
|
1567 |
|
|
|
1568 |
|
|
equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
|
1569 |
|
|
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
1570 |
|
|
return target;
|
1571 |
|
|
}
|
1572 |
|
|
end_sequence ();
|
1573 |
|
|
}
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
/* Synthesize double word rotates from single word shifts. */
|
1577 |
|
|
if ((binoptab == rotl_optab || binoptab == rotr_optab)
|
1578 |
|
|
&& class == MODE_INT
|
1579 |
|
|
&& GET_CODE (op1) == CONST_INT
|
1580 |
|
|
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
1581 |
|
|
&& ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
1582 |
|
|
&& lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
1583 |
|
|
{
|
1584 |
|
|
rtx insns;
|
1585 |
|
|
rtx into_target, outof_target;
|
1586 |
|
|
rtx into_input, outof_input;
|
1587 |
|
|
rtx inter;
|
1588 |
|
|
int shift_count, left_shift, outof_word;
|
1589 |
|
|
|
1590 |
|
|
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
1591 |
|
|
won't be accurate, so use a new target. Do this also if target is not
|
1592 |
|
|
a REG, first because having a register instead may open optimization
|
1593 |
|
|
opportunities, and second because if target and op0 happen to be MEMs
|
1594 |
|
|
designating the same location, we would risk clobbering it too early
|
1595 |
|
|
in the code sequence we generate below. */
|
1596 |
|
|
if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
|
1597 |
|
|
target = gen_reg_rtx (mode);
|
1598 |
|
|
|
1599 |
|
|
start_sequence ();
|
1600 |
|
|
|
1601 |
|
|
shift_count = INTVAL (op1);
|
1602 |
|
|
|
1603 |
|
|
/* OUTOF_* is the word we are shifting bits away from, and
|
1604 |
|
|
INTO_* is the word that we are shifting bits towards, thus
|
1605 |
|
|
they differ depending on the direction of the shift and
|
1606 |
|
|
WORDS_BIG_ENDIAN. */
|
1607 |
|
|
|
1608 |
|
|
left_shift = (binoptab == rotl_optab);
|
1609 |
|
|
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
1610 |
|
|
|
1611 |
|
|
outof_target = operand_subword (target, outof_word, 1, mode);
|
1612 |
|
|
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
1613 |
|
|
|
1614 |
|
|
outof_input = operand_subword_force (op0, outof_word, mode);
|
1615 |
|
|
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
1616 |
|
|
|
1617 |
|
|
if (shift_count == BITS_PER_WORD)
|
1618 |
|
|
{
|
1619 |
|
|
/* This is just a word swap. */
|
1620 |
|
|
emit_move_insn (outof_target, into_input);
|
1621 |
|
|
emit_move_insn (into_target, outof_input);
|
1622 |
|
|
inter = const0_rtx;
|
1623 |
|
|
}
|
1624 |
|
|
else
|
1625 |
|
|
{
|
1626 |
|
|
rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
|
1627 |
|
|
rtx first_shift_count, second_shift_count;
|
1628 |
|
|
optab reverse_unsigned_shift, unsigned_shift;
|
1629 |
|
|
|
1630 |
|
|
reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
1631 |
|
|
? lshr_optab : ashl_optab);
|
1632 |
|
|
|
1633 |
|
|
unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
1634 |
|
|
? ashl_optab : lshr_optab);
|
1635 |
|
|
|
1636 |
|
|
if (shift_count > BITS_PER_WORD)
|
1637 |
|
|
{
|
1638 |
|
|
first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
|
1639 |
|
|
second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
|
1640 |
|
|
}
|
1641 |
|
|
else
|
1642 |
|
|
{
|
1643 |
|
|
first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
|
1644 |
|
|
second_shift_count = GEN_INT (shift_count);
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
into_temp1 = expand_binop (word_mode, unsigned_shift,
|
1648 |
|
|
outof_input, first_shift_count,
|
1649 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1650 |
|
|
into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
1651 |
|
|
into_input, second_shift_count,
|
1652 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1653 |
|
|
|
1654 |
|
|
if (into_temp1 != 0 && into_temp2 != 0)
|
1655 |
|
|
inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
|
1656 |
|
|
into_target, unsignedp, next_methods);
|
1657 |
|
|
else
|
1658 |
|
|
inter = 0;
|
1659 |
|
|
|
1660 |
|
|
if (inter != 0 && inter != into_target)
|
1661 |
|
|
emit_move_insn (into_target, inter);
|
1662 |
|
|
|
1663 |
|
|
outof_temp1 = expand_binop (word_mode, unsigned_shift,
|
1664 |
|
|
into_input, first_shift_count,
|
1665 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1666 |
|
|
outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
1667 |
|
|
outof_input, second_shift_count,
|
1668 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1669 |
|
|
|
1670 |
|
|
if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
|
1671 |
|
|
inter = expand_binop (word_mode, ior_optab,
|
1672 |
|
|
outof_temp1, outof_temp2,
|
1673 |
|
|
outof_target, unsignedp, next_methods);
|
1674 |
|
|
|
1675 |
|
|
if (inter != 0 && inter != outof_target)
|
1676 |
|
|
emit_move_insn (outof_target, inter);
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
insns = get_insns ();
|
1680 |
|
|
end_sequence ();
|
1681 |
|
|
|
1682 |
|
|
if (inter != 0)
|
1683 |
|
|
{
|
1684 |
|
|
/* One may be tempted to wrap the insns in a REG_NO_CONFLICT
|
1685 |
|
|
block to help the register allocator a bit. But a multi-word
|
1686 |
|
|
rotate will need all the input bits when setting the output
|
1687 |
|
|
bits, so there clearly is a conflict between the input and
|
1688 |
|
|
output registers. So we can't use a no-conflict block here. */
|
1689 |
|
|
emit_insn (insns);
|
1690 |
|
|
return target;
|
1691 |
|
|
}
|
1692 |
|
|
}
|
1693 |
|
|
|
1694 |
|
|
/* These can be done a word at a time by propagating carries. */
|
1695 |
|
|
if ((binoptab == add_optab || binoptab == sub_optab)
|
1696 |
|
|
&& class == MODE_INT
|
1697 |
|
|
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
|
1698 |
|
|
&& binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
1699 |
|
|
{
|
1700 |
|
|
unsigned int i;
|
1701 |
|
|
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
|
1702 |
|
|
const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
|
1703 |
|
|
rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
|
1704 |
|
|
rtx xop0, xop1, xtarget;
|
1705 |
|
|
|
1706 |
|
|
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
|
1707 |
|
|
value is one of those, use it. Otherwise, use 1 since it is the
|
1708 |
|
|
one easiest to get. */
|
1709 |
|
|
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
1710 |
|
|
int normalizep = STORE_FLAG_VALUE;
|
1711 |
|
|
#else
|
1712 |
|
|
int normalizep = 1;
|
1713 |
|
|
#endif
|
1714 |
|
|
|
1715 |
|
|
/* Prepare the operands. */
|
1716 |
|
|
xop0 = force_reg (mode, op0);
|
1717 |
|
|
xop1 = force_reg (mode, op1);
|
1718 |
|
|
|
1719 |
|
|
xtarget = gen_reg_rtx (mode);
|
1720 |
|
|
|
1721 |
|
|
if (target == 0 || !REG_P (target))
|
1722 |
|
|
target = xtarget;
|
1723 |
|
|
|
1724 |
|
|
/* Indicate for flow that the entire target reg is being set. */
|
1725 |
|
|
if (REG_P (target))
|
1726 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
|
1727 |
|
|
|
1728 |
|
|
/* Do the actual arithmetic. */
|
1729 |
|
|
for (i = 0; i < nwords; i++)
|
1730 |
|
|
{
|
1731 |
|
|
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
1732 |
|
|
rtx target_piece = operand_subword (xtarget, index, 1, mode);
|
1733 |
|
|
rtx op0_piece = operand_subword_force (xop0, index, mode);
|
1734 |
|
|
rtx op1_piece = operand_subword_force (xop1, index, mode);
|
1735 |
|
|
rtx x;
|
1736 |
|
|
|
1737 |
|
|
/* Main add/subtract of the input operands. */
|
1738 |
|
|
x = expand_binop (word_mode, binoptab,
|
1739 |
|
|
op0_piece, op1_piece,
|
1740 |
|
|
target_piece, unsignedp, next_methods);
|
1741 |
|
|
if (x == 0)
|
1742 |
|
|
break;
|
1743 |
|
|
|
1744 |
|
|
if (i + 1 < nwords)
|
1745 |
|
|
{
|
1746 |
|
|
/* Store carry from main add/subtract. */
|
1747 |
|
|
carry_out = gen_reg_rtx (word_mode);
|
1748 |
|
|
carry_out = emit_store_flag_force (carry_out,
|
1749 |
|
|
(binoptab == add_optab
|
1750 |
|
|
? LT : GT),
|
1751 |
|
|
x, op0_piece,
|
1752 |
|
|
word_mode, 1, normalizep);
|
1753 |
|
|
}
|
1754 |
|
|
|
1755 |
|
|
if (i > 0)
|
1756 |
|
|
{
|
1757 |
|
|
rtx newx;
|
1758 |
|
|
|
1759 |
|
|
/* Add/subtract previous carry to main result. */
|
1760 |
|
|
newx = expand_binop (word_mode,
|
1761 |
|
|
normalizep == 1 ? binoptab : otheroptab,
|
1762 |
|
|
x, carry_in,
|
1763 |
|
|
NULL_RTX, 1, next_methods);
|
1764 |
|
|
|
1765 |
|
|
if (i + 1 < nwords)
|
1766 |
|
|
{
|
1767 |
|
|
/* Get out carry from adding/subtracting carry in. */
|
1768 |
|
|
rtx carry_tmp = gen_reg_rtx (word_mode);
|
1769 |
|
|
carry_tmp = emit_store_flag_force (carry_tmp,
|
1770 |
|
|
(binoptab == add_optab
|
1771 |
|
|
? LT : GT),
|
1772 |
|
|
newx, x,
|
1773 |
|
|
word_mode, 1, normalizep);
|
1774 |
|
|
|
1775 |
|
|
/* Logical-ior the two poss. carry together. */
|
1776 |
|
|
carry_out = expand_binop (word_mode, ior_optab,
|
1777 |
|
|
carry_out, carry_tmp,
|
1778 |
|
|
carry_out, 0, next_methods);
|
1779 |
|
|
if (carry_out == 0)
|
1780 |
|
|
break;
|
1781 |
|
|
}
|
1782 |
|
|
emit_move_insn (target_piece, newx);
|
1783 |
|
|
}
|
1784 |
|
|
else
|
1785 |
|
|
{
|
1786 |
|
|
if (x != target_piece)
|
1787 |
|
|
emit_move_insn (target_piece, x);
|
1788 |
|
|
}
|
1789 |
|
|
|
1790 |
|
|
carry_in = carry_out;
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
|
1794 |
|
|
{
|
1795 |
|
|
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
1796 |
|
|
|| ! rtx_equal_p (target, xtarget))
|
1797 |
|
|
{
|
1798 |
|
|
rtx temp = emit_move_insn (target, xtarget);
|
1799 |
|
|
|
1800 |
|
|
set_unique_reg_note (temp,
|
1801 |
|
|
REG_EQUAL,
|
1802 |
|
|
gen_rtx_fmt_ee (binoptab->code, mode,
|
1803 |
|
|
copy_rtx (xop0),
|
1804 |
|
|
copy_rtx (xop1)));
|
1805 |
|
|
}
|
1806 |
|
|
else
|
1807 |
|
|
target = xtarget;
|
1808 |
|
|
|
1809 |
|
|
return target;
|
1810 |
|
|
}
|
1811 |
|
|
|
1812 |
|
|
else
|
1813 |
|
|
delete_insns_since (last);
|
1814 |
|
|
}
|
1815 |
|
|
|
1816 |
|
|
/* Attempt to synthesize double word multiplies using a sequence of word
|
1817 |
|
|
mode multiplications. We first attempt to generate a sequence using a
|
1818 |
|
|
more efficient unsigned widening multiply, and if that fails we then
|
1819 |
|
|
try using a signed widening multiply. */
|
1820 |
|
|
|
1821 |
|
|
if (binoptab == smul_optab
|
1822 |
|
|
&& class == MODE_INT
|
1823 |
|
|
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
1824 |
|
|
&& smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
|
1825 |
|
|
&& add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
1826 |
|
|
{
|
1827 |
|
|
rtx product = NULL_RTX;
|
1828 |
|
|
|
1829 |
|
|
if (umul_widen_optab->handlers[(int) mode].insn_code
|
1830 |
|
|
!= CODE_FOR_nothing)
|
1831 |
|
|
{
|
1832 |
|
|
product = expand_doubleword_mult (mode, op0, op1, target,
|
1833 |
|
|
true, methods);
|
1834 |
|
|
if (!product)
|
1835 |
|
|
delete_insns_since (last);
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
if (product == NULL_RTX
|
1839 |
|
|
&& smul_widen_optab->handlers[(int) mode].insn_code
|
1840 |
|
|
!= CODE_FOR_nothing)
|
1841 |
|
|
{
|
1842 |
|
|
product = expand_doubleword_mult (mode, op0, op1, target,
|
1843 |
|
|
false, methods);
|
1844 |
|
|
if (!product)
|
1845 |
|
|
delete_insns_since (last);
|
1846 |
|
|
}
|
1847 |
|
|
|
1848 |
|
|
if (product != NULL_RTX)
|
1849 |
|
|
{
|
1850 |
|
|
if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
1851 |
|
|
{
|
1852 |
|
|
temp = emit_move_insn (target ? target : product, product);
|
1853 |
|
|
set_unique_reg_note (temp,
|
1854 |
|
|
REG_EQUAL,
|
1855 |
|
|
gen_rtx_fmt_ee (MULT, mode,
|
1856 |
|
|
copy_rtx (op0),
|
1857 |
|
|
copy_rtx (op1)));
|
1858 |
|
|
}
|
1859 |
|
|
return product;
|
1860 |
|
|
}
|
1861 |
|
|
}
|
1862 |
|
|
|
1863 |
|
|
/* It can't be open-coded in this mode.
|
1864 |
|
|
Use a library call if one is available and caller says that's ok. */
|
1865 |
|
|
|
1866 |
|
|
if (binoptab->handlers[(int) mode].libfunc
|
1867 |
|
|
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
|
1868 |
|
|
{
|
1869 |
|
|
rtx insns;
|
1870 |
|
|
rtx op1x = op1;
|
1871 |
|
|
enum machine_mode op1_mode = mode;
|
1872 |
|
|
rtx value;
|
1873 |
|
|
|
1874 |
|
|
start_sequence ();
|
1875 |
|
|
|
1876 |
|
|
if (shift_op)
|
1877 |
|
|
{
|
1878 |
|
|
op1_mode = word_mode;
|
1879 |
|
|
/* Specify unsigned here,
|
1880 |
|
|
since negative shift counts are meaningless. */
|
1881 |
|
|
op1x = convert_to_mode (word_mode, op1, 1);
|
1882 |
|
|
}
|
1883 |
|
|
|
1884 |
|
|
if (GET_MODE (op0) != VOIDmode
|
1885 |
|
|
&& GET_MODE (op0) != mode)
|
1886 |
|
|
op0 = convert_to_mode (mode, op0, unsignedp);
|
1887 |
|
|
|
1888 |
|
|
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
1889 |
|
|
if the libcall is cse'd or moved. */
|
1890 |
|
|
value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
|
1891 |
|
|
NULL_RTX, LCT_CONST, mode, 2,
|
1892 |
|
|
op0, mode, op1x, op1_mode);
|
1893 |
|
|
|
1894 |
|
|
insns = get_insns ();
|
1895 |
|
|
end_sequence ();
|
1896 |
|
|
|
1897 |
|
|
target = gen_reg_rtx (mode);
|
1898 |
|
|
emit_libcall_block (insns, target, value,
|
1899 |
|
|
gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
|
1900 |
|
|
|
1901 |
|
|
return target;
|
1902 |
|
|
}
|
1903 |
|
|
|
1904 |
|
|
delete_insns_since (last);
|
1905 |
|
|
|
1906 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
1907 |
|
|
|
1908 |
|
|
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|
1909 |
|
|
|| methods == OPTAB_MUST_WIDEN))
|
1910 |
|
|
{
|
1911 |
|
|
/* Caller says, don't even try. */
|
1912 |
|
|
delete_insns_since (entry_last);
|
1913 |
|
|
return 0;
|
1914 |
|
|
}
|
1915 |
|
|
|
1916 |
|
|
/* Compute the value of METHODS to pass to recursive calls.
|
1917 |
|
|
Don't allow widening to be tried recursively. */
|
1918 |
|
|
|
1919 |
|
|
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
|
1920 |
|
|
|
1921 |
|
|
/* Look for a wider mode of the same class for which it appears we can do
|
1922 |
|
|
the operation. */
|
1923 |
|
|
|
1924 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
1925 |
|
|
{
|
1926 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
1927 |
|
|
wider_mode != VOIDmode;
|
1928 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
1929 |
|
|
{
|
1930 |
|
|
if ((binoptab->handlers[(int) wider_mode].insn_code
|
1931 |
|
|
!= CODE_FOR_nothing)
|
1932 |
|
|
|| (methods == OPTAB_LIB
|
1933 |
|
|
&& binoptab->handlers[(int) wider_mode].libfunc))
|
1934 |
|
|
{
|
1935 |
|
|
rtx xop0 = op0, xop1 = op1;
|
1936 |
|
|
int no_extend = 0;
|
1937 |
|
|
|
1938 |
|
|
/* For certain integer operations, we need not actually extend
|
1939 |
|
|
the narrow operands, as long as we will truncate
|
1940 |
|
|
the results to the same narrowness. */
|
1941 |
|
|
|
1942 |
|
|
if ((binoptab == ior_optab || binoptab == and_optab
|
1943 |
|
|
|| binoptab == xor_optab
|
1944 |
|
|
|| binoptab == add_optab || binoptab == sub_optab
|
1945 |
|
|
|| binoptab == smul_optab || binoptab == ashl_optab)
|
1946 |
|
|
&& class == MODE_INT)
|
1947 |
|
|
no_extend = 1;
|
1948 |
|
|
|
1949 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode,
|
1950 |
|
|
unsignedp, no_extend);
|
1951 |
|
|
|
1952 |
|
|
/* The second operand of a shift must always be extended. */
|
1953 |
|
|
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
1954 |
|
|
no_extend && binoptab != ashl_optab);
|
1955 |
|
|
|
1956 |
|
|
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
1957 |
|
|
unsignedp, methods);
|
1958 |
|
|
if (temp)
|
1959 |
|
|
{
|
1960 |
|
|
if (class != MODE_INT
|
1961 |
|
|
|| !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
1962 |
|
|
GET_MODE_BITSIZE (wider_mode)))
|
1963 |
|
|
{
|
1964 |
|
|
if (target == 0)
|
1965 |
|
|
target = gen_reg_rtx (mode);
|
1966 |
|
|
convert_move (target, temp, 0);
|
1967 |
|
|
return target;
|
1968 |
|
|
}
|
1969 |
|
|
else
|
1970 |
|
|
return gen_lowpart (mode, temp);
|
1971 |
|
|
}
|
1972 |
|
|
else
|
1973 |
|
|
delete_insns_since (last);
|
1974 |
|
|
}
|
1975 |
|
|
}
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
delete_insns_since (entry_last);
|
1979 |
|
|
return 0;
|
1980 |
|
|
}
|
1981 |
|
|
|
1982 |
|
|
/* Expand a binary operator which has both signed and unsigned forms.
|
1983 |
|
|
UOPTAB is the optab for unsigned operations, and SOPTAB is for
|
1984 |
|
|
signed operations.
|
1985 |
|
|
|
1986 |
|
|
If we widen unsigned operands, we may use a signed wider operation instead
|
1987 |
|
|
of an unsigned wider operation, since the result would be the same. */
|
1988 |
|
|
|
1989 |
|
|
rtx
|
1990 |
|
|
sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
|
1991 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp,
|
1992 |
|
|
enum optab_methods methods)
|
1993 |
|
|
{
|
1994 |
|
|
rtx temp;
|
1995 |
|
|
optab direct_optab = unsignedp ? uoptab : soptab;
|
1996 |
|
|
struct optab wide_soptab;
|
1997 |
|
|
|
1998 |
|
|
/* Do it without widening, if possible. */
|
1999 |
|
|
temp = expand_binop (mode, direct_optab, op0, op1, target,
|
2000 |
|
|
unsignedp, OPTAB_DIRECT);
|
2001 |
|
|
if (temp || methods == OPTAB_DIRECT)
|
2002 |
|
|
return temp;
|
2003 |
|
|
|
2004 |
|
|
/* Try widening to a signed int. Make a fake signed optab that
|
2005 |
|
|
hides any signed insn for direct use. */
|
2006 |
|
|
wide_soptab = *soptab;
|
2007 |
|
|
wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
|
2008 |
|
|
wide_soptab.handlers[(int) mode].libfunc = 0;
|
2009 |
|
|
|
2010 |
|
|
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
2011 |
|
|
unsignedp, OPTAB_WIDEN);
|
2012 |
|
|
|
2013 |
|
|
/* For unsigned operands, try widening to an unsigned int. */
|
2014 |
|
|
if (temp == 0 && unsignedp)
|
2015 |
|
|
temp = expand_binop (mode, uoptab, op0, op1, target,
|
2016 |
|
|
unsignedp, OPTAB_WIDEN);
|
2017 |
|
|
if (temp || methods == OPTAB_WIDEN)
|
2018 |
|
|
return temp;
|
2019 |
|
|
|
2020 |
|
|
/* Use the right width lib call if that exists. */
|
2021 |
|
|
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
|
2022 |
|
|
if (temp || methods == OPTAB_LIB)
|
2023 |
|
|
return temp;
|
2024 |
|
|
|
2025 |
|
|
/* Must widen and use a lib call, use either signed or unsigned. */
|
2026 |
|
|
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
2027 |
|
|
unsignedp, methods);
|
2028 |
|
|
if (temp != 0)
|
2029 |
|
|
return temp;
|
2030 |
|
|
if (unsignedp)
|
2031 |
|
|
return expand_binop (mode, uoptab, op0, op1, target,
|
2032 |
|
|
unsignedp, methods);
|
2033 |
|
|
return 0;
|
2034 |
|
|
}
|
2035 |
|
|
|
2036 |
|
|
/* Generate code to perform an operation specified by UNOPPTAB
|
2037 |
|
|
on operand OP0, with two results to TARG0 and TARG1.
|
2038 |
|
|
We assume that the order of the operands for the instruction
|
2039 |
|
|
is TARG0, TARG1, OP0.
|
2040 |
|
|
|
2041 |
|
|
Either TARG0 or TARG1 may be zero, but what that means is that
|
2042 |
|
|
the result is not actually wanted. We will generate it into
|
2043 |
|
|
a dummy pseudo-reg and discard it. They may not both be zero.
|
2044 |
|
|
|
2045 |
|
|
Returns 1 if this operation can be performed; 0 if not. */
|
2046 |
|
|
|
2047 |
|
|
int
|
2048 |
|
|
expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
|
2049 |
|
|
int unsignedp)
|
2050 |
|
|
{
|
2051 |
|
|
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
2052 |
|
|
enum mode_class class;
|
2053 |
|
|
enum machine_mode wider_mode;
|
2054 |
|
|
rtx entry_last = get_last_insn ();
|
2055 |
|
|
rtx last;
|
2056 |
|
|
|
2057 |
|
|
class = GET_MODE_CLASS (mode);
|
2058 |
|
|
|
2059 |
|
|
if (!targ0)
|
2060 |
|
|
targ0 = gen_reg_rtx (mode);
|
2061 |
|
|
if (!targ1)
|
2062 |
|
|
targ1 = gen_reg_rtx (mode);
|
2063 |
|
|
|
2064 |
|
|
/* Record where to go back to if we fail. */
|
2065 |
|
|
last = get_last_insn ();
|
2066 |
|
|
|
2067 |
|
|
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
2068 |
|
|
{
|
2069 |
|
|
int icode = (int) unoptab->handlers[(int) mode].insn_code;
|
2070 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[2].mode;
|
2071 |
|
|
rtx pat;
|
2072 |
|
|
rtx xop0 = op0;
|
2073 |
|
|
|
2074 |
|
|
if (GET_MODE (xop0) != VOIDmode
|
2075 |
|
|
&& GET_MODE (xop0) != mode0)
|
2076 |
|
|
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
2077 |
|
|
|
2078 |
|
|
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
2079 |
|
|
if (!insn_data[icode].operand[2].predicate (xop0, mode0))
|
2080 |
|
|
xop0 = copy_to_mode_reg (mode0, xop0);
|
2081 |
|
|
|
2082 |
|
|
/* We could handle this, but we should always be called with a pseudo
|
2083 |
|
|
for our targets and all insns should take them as outputs. */
|
2084 |
|
|
gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
|
2085 |
|
|
gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
|
2086 |
|
|
|
2087 |
|
|
pat = GEN_FCN (icode) (targ0, targ1, xop0);
|
2088 |
|
|
if (pat)
|
2089 |
|
|
{
|
2090 |
|
|
emit_insn (pat);
|
2091 |
|
|
return 1;
|
2092 |
|
|
}
|
2093 |
|
|
else
|
2094 |
|
|
delete_insns_since (last);
|
2095 |
|
|
}
|
2096 |
|
|
|
2097 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
2098 |
|
|
|
2099 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
2100 |
|
|
{
|
2101 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2102 |
|
|
wider_mode != VOIDmode;
|
2103 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2104 |
|
|
{
|
2105 |
|
|
if (unoptab->handlers[(int) wider_mode].insn_code
|
2106 |
|
|
!= CODE_FOR_nothing)
|
2107 |
|
|
{
|
2108 |
|
|
rtx t0 = gen_reg_rtx (wider_mode);
|
2109 |
|
|
rtx t1 = gen_reg_rtx (wider_mode);
|
2110 |
|
|
rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
2111 |
|
|
|
2112 |
|
|
if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
|
2113 |
|
|
{
|
2114 |
|
|
convert_move (targ0, t0, unsignedp);
|
2115 |
|
|
convert_move (targ1, t1, unsignedp);
|
2116 |
|
|
return 1;
|
2117 |
|
|
}
|
2118 |
|
|
else
|
2119 |
|
|
delete_insns_since (last);
|
2120 |
|
|
}
|
2121 |
|
|
}
|
2122 |
|
|
}
|
2123 |
|
|
|
2124 |
|
|
delete_insns_since (entry_last);
|
2125 |
|
|
return 0;
|
2126 |
|
|
}
|
2127 |
|
|
|
2128 |
|
|
/* Generate code to perform an operation specified by BINOPTAB
|
2129 |
|
|
on operands OP0 and OP1, with two results to TARG1 and TARG2.
|
2130 |
|
|
We assume that the order of the operands for the instruction
|
2131 |
|
|
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
|
2132 |
|
|
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
|
2133 |
|
|
|
2134 |
|
|
Either TARG0 or TARG1 may be zero, but what that means is that
|
2135 |
|
|
the result is not actually wanted. We will generate it into
|
2136 |
|
|
a dummy pseudo-reg and discard it. They may not both be zero.
|
2137 |
|
|
|
2138 |
|
|
Returns 1 if this operation can be performed; 0 if not. */
|
2139 |
|
|
|
2140 |
|
|
int
|
2141 |
|
|
expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
|
2142 |
|
|
int unsignedp)
|
2143 |
|
|
{
|
2144 |
|
|
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
2145 |
|
|
enum mode_class class;
|
2146 |
|
|
enum machine_mode wider_mode;
|
2147 |
|
|
rtx entry_last = get_last_insn ();
|
2148 |
|
|
rtx last;
|
2149 |
|
|
|
2150 |
|
|
class = GET_MODE_CLASS (mode);
|
2151 |
|
|
|
2152 |
|
|
/* If we are inside an appropriately-short loop and we are optimizing,
|
2153 |
|
|
force expensive constants into a register. */
|
2154 |
|
|
if (CONSTANT_P (op0) && optimize
|
2155 |
|
|
&& rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
|
2156 |
|
|
op0 = force_reg (mode, op0);
|
2157 |
|
|
|
2158 |
|
|
if (CONSTANT_P (op1) && optimize
|
2159 |
|
|
&& rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
|
2160 |
|
|
op1 = force_reg (mode, op1);
|
2161 |
|
|
|
2162 |
|
|
if (!targ0)
|
2163 |
|
|
targ0 = gen_reg_rtx (mode);
|
2164 |
|
|
if (!targ1)
|
2165 |
|
|
targ1 = gen_reg_rtx (mode);
|
2166 |
|
|
|
2167 |
|
|
/* Record where to go back to if we fail. */
|
2168 |
|
|
last = get_last_insn ();
|
2169 |
|
|
|
2170 |
|
|
if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
2171 |
|
|
{
|
2172 |
|
|
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
2173 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
2174 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
2175 |
|
|
rtx pat;
|
2176 |
|
|
rtx xop0 = op0, xop1 = op1;
|
2177 |
|
|
|
2178 |
|
|
/* In case the insn wants input operands in modes different from
|
2179 |
|
|
those of the actual operands, convert the operands. It would
|
2180 |
|
|
seem that we don't need to convert CONST_INTs, but we do, so
|
2181 |
|
|
that they're properly zero-extended, sign-extended or truncated
|
2182 |
|
|
for their mode. */
|
2183 |
|
|
|
2184 |
|
|
if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
|
2185 |
|
|
xop0 = convert_modes (mode0,
|
2186 |
|
|
GET_MODE (op0) != VOIDmode
|
2187 |
|
|
? GET_MODE (op0)
|
2188 |
|
|
: mode,
|
2189 |
|
|
xop0, unsignedp);
|
2190 |
|
|
|
2191 |
|
|
if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
|
2192 |
|
|
xop1 = convert_modes (mode1,
|
2193 |
|
|
GET_MODE (op1) != VOIDmode
|
2194 |
|
|
? GET_MODE (op1)
|
2195 |
|
|
: mode,
|
2196 |
|
|
xop1, unsignedp);
|
2197 |
|
|
|
2198 |
|
|
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
2199 |
|
|
if (!insn_data[icode].operand[1].predicate (xop0, mode0))
|
2200 |
|
|
xop0 = copy_to_mode_reg (mode0, xop0);
|
2201 |
|
|
|
2202 |
|
|
if (!insn_data[icode].operand[2].predicate (xop1, mode1))
|
2203 |
|
|
xop1 = copy_to_mode_reg (mode1, xop1);
|
2204 |
|
|
|
2205 |
|
|
/* We could handle this, but we should always be called with a pseudo
|
2206 |
|
|
for our targets and all insns should take them as outputs. */
|
2207 |
|
|
gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
|
2208 |
|
|
gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
|
2209 |
|
|
|
2210 |
|
|
pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
|
2211 |
|
|
if (pat)
|
2212 |
|
|
{
|
2213 |
|
|
emit_insn (pat);
|
2214 |
|
|
return 1;
|
2215 |
|
|
}
|
2216 |
|
|
else
|
2217 |
|
|
delete_insns_since (last);
|
2218 |
|
|
}
|
2219 |
|
|
|
2220 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
2221 |
|
|
|
2222 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
2223 |
|
|
{
|
2224 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2225 |
|
|
wider_mode != VOIDmode;
|
2226 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2227 |
|
|
{
|
2228 |
|
|
if (binoptab->handlers[(int) wider_mode].insn_code
|
2229 |
|
|
!= CODE_FOR_nothing)
|
2230 |
|
|
{
|
2231 |
|
|
rtx t0 = gen_reg_rtx (wider_mode);
|
2232 |
|
|
rtx t1 = gen_reg_rtx (wider_mode);
|
2233 |
|
|
rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
2234 |
|
|
rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
|
2235 |
|
|
|
2236 |
|
|
if (expand_twoval_binop (binoptab, cop0, cop1,
|
2237 |
|
|
t0, t1, unsignedp))
|
2238 |
|
|
{
|
2239 |
|
|
convert_move (targ0, t0, unsignedp);
|
2240 |
|
|
convert_move (targ1, t1, unsignedp);
|
2241 |
|
|
return 1;
|
2242 |
|
|
}
|
2243 |
|
|
else
|
2244 |
|
|
delete_insns_since (last);
|
2245 |
|
|
}
|
2246 |
|
|
}
|
2247 |
|
|
}
|
2248 |
|
|
|
2249 |
|
|
delete_insns_since (entry_last);
|
2250 |
|
|
return 0;
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
/* Expand the two-valued library call indicated by BINOPTAB, but
|
2254 |
|
|
preserve only one of the values. If TARG0 is non-NULL, the first
|
2255 |
|
|
value is placed into TARG0; otherwise the second value is placed
|
2256 |
|
|
into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
|
2257 |
|
|
value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
|
2258 |
|
|
This routine assumes that the value returned by the library call is
|
2259 |
|
|
as if the return value was of an integral mode twice as wide as the
|
2260 |
|
|
mode of OP0. Returns 1 if the call was successful. */
|
2261 |
|
|
|
2262 |
|
|
bool
|
2263 |
|
|
expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
|
2264 |
|
|
rtx targ0, rtx targ1, enum rtx_code code)
|
2265 |
|
|
{
|
2266 |
|
|
enum machine_mode mode;
|
2267 |
|
|
enum machine_mode libval_mode;
|
2268 |
|
|
rtx libval;
|
2269 |
|
|
rtx insns;
|
2270 |
|
|
|
2271 |
|
|
/* Exactly one of TARG0 or TARG1 should be non-NULL. */
|
2272 |
|
|
gcc_assert (!targ0 != !targ1);
|
2273 |
|
|
|
2274 |
|
|
mode = GET_MODE (op0);
|
2275 |
|
|
if (!binoptab->handlers[(int) mode].libfunc)
|
2276 |
|
|
return false;
|
2277 |
|
|
|
2278 |
|
|
/* The value returned by the library function will have twice as
|
2279 |
|
|
many bits as the nominal MODE. */
|
2280 |
|
|
libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
|
2281 |
|
|
MODE_INT);
|
2282 |
|
|
start_sequence ();
|
2283 |
|
|
libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
|
2284 |
|
|
NULL_RTX, LCT_CONST,
|
2285 |
|
|
libval_mode, 2,
|
2286 |
|
|
op0, mode,
|
2287 |
|
|
op1, mode);
|
2288 |
|
|
/* Get the part of VAL containing the value that we want. */
|
2289 |
|
|
libval = simplify_gen_subreg (mode, libval, libval_mode,
|
2290 |
|
|
targ0 ? 0 : GET_MODE_SIZE (mode));
|
2291 |
|
|
insns = get_insns ();
|
2292 |
|
|
end_sequence ();
|
2293 |
|
|
/* Move the into the desired location. */
|
2294 |
|
|
emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
|
2295 |
|
|
gen_rtx_fmt_ee (code, mode, op0, op1));
|
2296 |
|
|
|
2297 |
|
|
return true;
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
|
2301 |
|
|
/* Wrapper around expand_unop which takes an rtx code to specify
|
2302 |
|
|
the operation to perform, not an optab pointer. All other
|
2303 |
|
|
arguments are the same. */
|
2304 |
|
|
rtx
|
2305 |
|
|
expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
|
2306 |
|
|
rtx target, int unsignedp)
|
2307 |
|
|
{
|
2308 |
|
|
optab unop = code_to_optab[(int) code];
|
2309 |
|
|
gcc_assert (unop);
|
2310 |
|
|
|
2311 |
|
|
return expand_unop (mode, unop, op0, target, unsignedp);
|
2312 |
|
|
}
|
2313 |
|
|
|
2314 |
|
|
/* Try calculating
|
2315 |
|
|
(clz:narrow x)
|
2316 |
|
|
as
|
2317 |
|
|
(clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
|
2318 |
|
|
static rtx
|
2319 |
|
|
widen_clz (enum machine_mode mode, rtx op0, rtx target)
|
2320 |
|
|
{
|
2321 |
|
|
enum mode_class class = GET_MODE_CLASS (mode);
|
2322 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
2323 |
|
|
{
|
2324 |
|
|
enum machine_mode wider_mode;
|
2325 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2326 |
|
|
wider_mode != VOIDmode;
|
2327 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2328 |
|
|
{
|
2329 |
|
|
if (clz_optab->handlers[(int) wider_mode].insn_code
|
2330 |
|
|
!= CODE_FOR_nothing)
|
2331 |
|
|
{
|
2332 |
|
|
rtx xop0, temp, last;
|
2333 |
|
|
|
2334 |
|
|
last = get_last_insn ();
|
2335 |
|
|
|
2336 |
|
|
if (target == 0)
|
2337 |
|
|
target = gen_reg_rtx (mode);
|
2338 |
|
|
xop0 = widen_operand (op0, wider_mode, mode, true, false);
|
2339 |
|
|
temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
|
2340 |
|
|
if (temp != 0)
|
2341 |
|
|
temp = expand_binop (wider_mode, sub_optab, temp,
|
2342 |
|
|
GEN_INT (GET_MODE_BITSIZE (wider_mode)
|
2343 |
|
|
- GET_MODE_BITSIZE (mode)),
|
2344 |
|
|
target, true, OPTAB_DIRECT);
|
2345 |
|
|
if (temp == 0)
|
2346 |
|
|
delete_insns_since (last);
|
2347 |
|
|
|
2348 |
|
|
return temp;
|
2349 |
|
|
}
|
2350 |
|
|
}
|
2351 |
|
|
}
|
2352 |
|
|
return 0;
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
/* Try calculating (parity x) as (and (popcount x) 1), where
|
2356 |
|
|
popcount can also be done in a wider mode. */
|
2357 |
|
|
static rtx
|
2358 |
|
|
expand_parity (enum machine_mode mode, rtx op0, rtx target)
|
2359 |
|
|
{
|
2360 |
|
|
enum mode_class class = GET_MODE_CLASS (mode);
|
2361 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
2362 |
|
|
{
|
2363 |
|
|
enum machine_mode wider_mode;
|
2364 |
|
|
for (wider_mode = mode; wider_mode != VOIDmode;
|
2365 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2366 |
|
|
{
|
2367 |
|
|
if (popcount_optab->handlers[(int) wider_mode].insn_code
|
2368 |
|
|
!= CODE_FOR_nothing)
|
2369 |
|
|
{
|
2370 |
|
|
rtx xop0, temp, last;
|
2371 |
|
|
|
2372 |
|
|
last = get_last_insn ();
|
2373 |
|
|
|
2374 |
|
|
if (target == 0)
|
2375 |
|
|
target = gen_reg_rtx (mode);
|
2376 |
|
|
xop0 = widen_operand (op0, wider_mode, mode, true, false);
|
2377 |
|
|
temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
|
2378 |
|
|
true);
|
2379 |
|
|
if (temp != 0)
|
2380 |
|
|
temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
|
2381 |
|
|
target, true, OPTAB_DIRECT);
|
2382 |
|
|
if (temp == 0)
|
2383 |
|
|
delete_insns_since (last);
|
2384 |
|
|
|
2385 |
|
|
return temp;
|
2386 |
|
|
}
|
2387 |
|
|
}
|
2388 |
|
|
}
|
2389 |
|
|
return 0;
|
2390 |
|
|
}
|
2391 |
|
|
|
2392 |
|
|
/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
|
2393 |
|
|
conditions, VAL may already be a SUBREG against which we cannot generate
|
2394 |
|
|
a further SUBREG. In this case, we expect forcing the value into a
|
2395 |
|
|
register will work around the situation. */
|
2396 |
|
|
|
2397 |
|
|
static rtx
|
2398 |
|
|
lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
|
2399 |
|
|
enum machine_mode imode)
|
2400 |
|
|
{
|
2401 |
|
|
rtx ret;
|
2402 |
|
|
ret = lowpart_subreg (omode, val, imode);
|
2403 |
|
|
if (ret == NULL)
|
2404 |
|
|
{
|
2405 |
|
|
val = force_reg (imode, val);
|
2406 |
|
|
ret = lowpart_subreg (omode, val, imode);
|
2407 |
|
|
gcc_assert (ret != NULL);
|
2408 |
|
|
}
|
2409 |
|
|
return ret;
|
2410 |
|
|
}
|
2411 |
|
|
|
2412 |
|
|
/* Expand a floating point absolute value or negation operation via a
|
2413 |
|
|
logical operation on the sign bit. */
|
2414 |
|
|
|
2415 |
|
|
static rtx
|
2416 |
|
|
expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
|
2417 |
|
|
rtx op0, rtx target)
|
2418 |
|
|
{
|
2419 |
|
|
const struct real_format *fmt;
|
2420 |
|
|
int bitpos, word, nwords, i;
|
2421 |
|
|
enum machine_mode imode;
|
2422 |
|
|
HOST_WIDE_INT hi, lo;
|
2423 |
|
|
rtx temp, insns;
|
2424 |
|
|
|
2425 |
|
|
/* The format has to have a simple sign bit. */
|
2426 |
|
|
fmt = REAL_MODE_FORMAT (mode);
|
2427 |
|
|
if (fmt == NULL)
|
2428 |
|
|
return NULL_RTX;
|
2429 |
|
|
|
2430 |
|
|
bitpos = fmt->signbit_rw;
|
2431 |
|
|
if (bitpos < 0)
|
2432 |
|
|
return NULL_RTX;
|
2433 |
|
|
|
2434 |
|
|
/* Don't create negative zeros if the format doesn't support them. */
|
2435 |
|
|
if (code == NEG && !fmt->has_signed_zero)
|
2436 |
|
|
return NULL_RTX;
|
2437 |
|
|
|
2438 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
2439 |
|
|
{
|
2440 |
|
|
imode = int_mode_for_mode (mode);
|
2441 |
|
|
if (imode == BLKmode)
|
2442 |
|
|
return NULL_RTX;
|
2443 |
|
|
word = 0;
|
2444 |
|
|
nwords = 1;
|
2445 |
|
|
}
|
2446 |
|
|
else
|
2447 |
|
|
{
|
2448 |
|
|
imode = word_mode;
|
2449 |
|
|
|
2450 |
|
|
if (FLOAT_WORDS_BIG_ENDIAN)
|
2451 |
|
|
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
2452 |
|
|
else
|
2453 |
|
|
word = bitpos / BITS_PER_WORD;
|
2454 |
|
|
bitpos = bitpos % BITS_PER_WORD;
|
2455 |
|
|
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
2456 |
|
|
}
|
2457 |
|
|
|
2458 |
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
2459 |
|
|
{
|
2460 |
|
|
hi = 0;
|
2461 |
|
|
lo = (HOST_WIDE_INT) 1 << bitpos;
|
2462 |
|
|
}
|
2463 |
|
|
else
|
2464 |
|
|
{
|
2465 |
|
|
hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
2466 |
|
|
lo = 0;
|
2467 |
|
|
}
|
2468 |
|
|
if (code == ABS)
|
2469 |
|
|
lo = ~lo, hi = ~hi;
|
2470 |
|
|
|
2471 |
|
|
if (target == 0 || target == op0)
|
2472 |
|
|
target = gen_reg_rtx (mode);
|
2473 |
|
|
|
2474 |
|
|
if (nwords > 1)
|
2475 |
|
|
{
|
2476 |
|
|
start_sequence ();
|
2477 |
|
|
|
2478 |
|
|
for (i = 0; i < nwords; ++i)
|
2479 |
|
|
{
|
2480 |
|
|
rtx targ_piece = operand_subword (target, i, 1, mode);
|
2481 |
|
|
rtx op0_piece = operand_subword_force (op0, i, mode);
|
2482 |
|
|
|
2483 |
|
|
if (i == word)
|
2484 |
|
|
{
|
2485 |
|
|
temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
|
2486 |
|
|
op0_piece,
|
2487 |
|
|
immed_double_const (lo, hi, imode),
|
2488 |
|
|
targ_piece, 1, OPTAB_LIB_WIDEN);
|
2489 |
|
|
if (temp != targ_piece)
|
2490 |
|
|
emit_move_insn (targ_piece, temp);
|
2491 |
|
|
}
|
2492 |
|
|
else
|
2493 |
|
|
emit_move_insn (targ_piece, op0_piece);
|
2494 |
|
|
}
|
2495 |
|
|
|
2496 |
|
|
insns = get_insns ();
|
2497 |
|
|
end_sequence ();
|
2498 |
|
|
|
2499 |
|
|
temp = gen_rtx_fmt_e (code, mode, copy_rtx (op0));
|
2500 |
|
|
emit_no_conflict_block (insns, target, op0, NULL_RTX, temp);
|
2501 |
|
|
}
|
2502 |
|
|
else
|
2503 |
|
|
{
|
2504 |
|
|
temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
|
2505 |
|
|
gen_lowpart (imode, op0),
|
2506 |
|
|
immed_double_const (lo, hi, imode),
|
2507 |
|
|
gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
|
2508 |
|
|
target = lowpart_subreg_maybe_copy (mode, temp, imode);
|
2509 |
|
|
|
2510 |
|
|
set_unique_reg_note (get_last_insn (), REG_EQUAL,
|
2511 |
|
|
gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
|
2512 |
|
|
}
|
2513 |
|
|
|
2514 |
|
|
return target;
|
2515 |
|
|
}
|
2516 |
|
|
|
2517 |
|
|
/* Generate code to perform an operation specified by UNOPTAB
|
2518 |
|
|
on operand OP0, with result having machine-mode MODE.
|
2519 |
|
|
|
2520 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
2521 |
|
|
to perform the operation. It says to use zero-extension.
|
2522 |
|
|
|
2523 |
|
|
If TARGET is nonzero, the value
|
2524 |
|
|
is generated there, if it is convenient to do so.
|
2525 |
|
|
In all cases an rtx is returned for the locus of the value;
|
2526 |
|
|
this may or may not be TARGET. */
|
2527 |
|
|
|
2528 |
|
|
rtx
|
2529 |
|
|
expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
|
2530 |
|
|
int unsignedp)
|
2531 |
|
|
{
|
2532 |
|
|
enum mode_class class;
|
2533 |
|
|
enum machine_mode wider_mode;
|
2534 |
|
|
rtx temp;
|
2535 |
|
|
rtx last = get_last_insn ();
|
2536 |
|
|
rtx pat;
|
2537 |
|
|
|
2538 |
|
|
class = GET_MODE_CLASS (mode);
|
2539 |
|
|
|
2540 |
|
|
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
2541 |
|
|
{
|
2542 |
|
|
int icode = (int) unoptab->handlers[(int) mode].insn_code;
|
2543 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
2544 |
|
|
rtx xop0 = op0;
|
2545 |
|
|
|
2546 |
|
|
if (target)
|
2547 |
|
|
temp = target;
|
2548 |
|
|
else
|
2549 |
|
|
temp = gen_reg_rtx (mode);
|
2550 |
|
|
|
2551 |
|
|
if (GET_MODE (xop0) != VOIDmode
|
2552 |
|
|
&& GET_MODE (xop0) != mode0)
|
2553 |
|
|
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
2554 |
|
|
|
2555 |
|
|
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
|
2556 |
|
|
|
2557 |
|
|
if (!insn_data[icode].operand[1].predicate (xop0, mode0))
|
2558 |
|
|
xop0 = copy_to_mode_reg (mode0, xop0);
|
2559 |
|
|
|
2560 |
|
|
if (!insn_data[icode].operand[0].predicate (temp, mode))
|
2561 |
|
|
temp = gen_reg_rtx (mode);
|
2562 |
|
|
|
2563 |
|
|
pat = GEN_FCN (icode) (temp, xop0);
|
2564 |
|
|
if (pat)
|
2565 |
|
|
{
|
2566 |
|
|
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
|
2567 |
|
|
&& ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
|
2568 |
|
|
{
|
2569 |
|
|
delete_insns_since (last);
|
2570 |
|
|
return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
|
2571 |
|
|
}
|
2572 |
|
|
|
2573 |
|
|
emit_insn (pat);
|
2574 |
|
|
|
2575 |
|
|
return temp;
|
2576 |
|
|
}
|
2577 |
|
|
else
|
2578 |
|
|
delete_insns_since (last);
|
2579 |
|
|
}
|
2580 |
|
|
|
2581 |
|
|
/* It can't be done in this mode. Can we open-code it in a wider mode? */
|
2582 |
|
|
|
2583 |
|
|
/* Widening clz needs special treatment. */
|
2584 |
|
|
if (unoptab == clz_optab)
|
2585 |
|
|
{
|
2586 |
|
|
temp = widen_clz (mode, op0, target);
|
2587 |
|
|
if (temp)
|
2588 |
|
|
return temp;
|
2589 |
|
|
else
|
2590 |
|
|
goto try_libcall;
|
2591 |
|
|
}
|
2592 |
|
|
|
2593 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
2594 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2595 |
|
|
wider_mode != VOIDmode;
|
2596 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2597 |
|
|
{
|
2598 |
|
|
if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
|
2599 |
|
|
{
|
2600 |
|
|
rtx xop0 = op0;
|
2601 |
|
|
|
2602 |
|
|
/* For certain operations, we need not actually extend
|
2603 |
|
|
the narrow operand, as long as we will truncate the
|
2604 |
|
|
results to the same narrowness. */
|
2605 |
|
|
|
2606 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
2607 |
|
|
(unoptab == neg_optab
|
2608 |
|
|
|| unoptab == one_cmpl_optab)
|
2609 |
|
|
&& class == MODE_INT);
|
2610 |
|
|
|
2611 |
|
|
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
2612 |
|
|
unsignedp);
|
2613 |
|
|
|
2614 |
|
|
if (temp)
|
2615 |
|
|
{
|
2616 |
|
|
if (class != MODE_INT
|
2617 |
|
|
|| !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
|
2618 |
|
|
GET_MODE_BITSIZE (wider_mode)))
|
2619 |
|
|
{
|
2620 |
|
|
if (target == 0)
|
2621 |
|
|
target = gen_reg_rtx (mode);
|
2622 |
|
|
convert_move (target, temp, 0);
|
2623 |
|
|
return target;
|
2624 |
|
|
}
|
2625 |
|
|
else
|
2626 |
|
|
return gen_lowpart (mode, temp);
|
2627 |
|
|
}
|
2628 |
|
|
else
|
2629 |
|
|
delete_insns_since (last);
|
2630 |
|
|
}
|
2631 |
|
|
}
|
2632 |
|
|
|
2633 |
|
|
/* These can be done a word at a time. */
|
2634 |
|
|
if (unoptab == one_cmpl_optab
|
2635 |
|
|
&& class == MODE_INT
|
2636 |
|
|
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
2637 |
|
|
&& unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
|
2638 |
|
|
{
|
2639 |
|
|
int i;
|
2640 |
|
|
rtx insns;
|
2641 |
|
|
|
2642 |
|
|
if (target == 0 || target == op0)
|
2643 |
|
|
target = gen_reg_rtx (mode);
|
2644 |
|
|
|
2645 |
|
|
start_sequence ();
|
2646 |
|
|
|
2647 |
|
|
/* Do the actual arithmetic. */
|
2648 |
|
|
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
2649 |
|
|
{
|
2650 |
|
|
rtx target_piece = operand_subword (target, i, 1, mode);
|
2651 |
|
|
rtx x = expand_unop (word_mode, unoptab,
|
2652 |
|
|
operand_subword_force (op0, i, mode),
|
2653 |
|
|
target_piece, unsignedp);
|
2654 |
|
|
|
2655 |
|
|
if (target_piece != x)
|
2656 |
|
|
emit_move_insn (target_piece, x);
|
2657 |
|
|
}
|
2658 |
|
|
|
2659 |
|
|
insns = get_insns ();
|
2660 |
|
|
end_sequence ();
|
2661 |
|
|
|
2662 |
|
|
emit_no_conflict_block (insns, target, op0, NULL_RTX,
|
2663 |
|
|
gen_rtx_fmt_e (unoptab->code, mode,
|
2664 |
|
|
copy_rtx (op0)));
|
2665 |
|
|
return target;
|
2666 |
|
|
}
|
2667 |
|
|
|
2668 |
|
|
if (unoptab->code == NEG)
|
2669 |
|
|
{
|
2670 |
|
|
/* Try negating floating point values by flipping the sign bit. */
|
2671 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
2672 |
|
|
{
|
2673 |
|
|
temp = expand_absneg_bit (NEG, mode, op0, target);
|
2674 |
|
|
if (temp)
|
2675 |
|
|
return temp;
|
2676 |
|
|
}
|
2677 |
|
|
|
2678 |
|
|
/* If there is no negation pattern, and we have no negative zero,
|
2679 |
|
|
try subtracting from zero. */
|
2680 |
|
|
if (!HONOR_SIGNED_ZEROS (mode))
|
2681 |
|
|
{
|
2682 |
|
|
temp = expand_binop (mode, (unoptab == negv_optab
|
2683 |
|
|
? subv_optab : sub_optab),
|
2684 |
|
|
CONST0_RTX (mode), op0, target,
|
2685 |
|
|
unsignedp, OPTAB_DIRECT);
|
2686 |
|
|
if (temp)
|
2687 |
|
|
return temp;
|
2688 |
|
|
}
|
2689 |
|
|
}
|
2690 |
|
|
|
2691 |
|
|
/* Try calculating parity (x) as popcount (x) % 2. */
|
2692 |
|
|
if (unoptab == parity_optab)
|
2693 |
|
|
{
|
2694 |
|
|
temp = expand_parity (mode, op0, target);
|
2695 |
|
|
if (temp)
|
2696 |
|
|
return temp;
|
2697 |
|
|
}
|
2698 |
|
|
|
2699 |
|
|
try_libcall:
|
2700 |
|
|
/* Now try a library call in this mode. */
|
2701 |
|
|
if (unoptab->handlers[(int) mode].libfunc)
|
2702 |
|
|
{
|
2703 |
|
|
rtx insns;
|
2704 |
|
|
rtx value;
|
2705 |
|
|
enum machine_mode outmode = mode;
|
2706 |
|
|
|
2707 |
|
|
/* All of these functions return small values. Thus we choose to
|
2708 |
|
|
have them return something that isn't a double-word. */
|
2709 |
|
|
if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
|
2710 |
|
|
|| unoptab == popcount_optab || unoptab == parity_optab)
|
2711 |
|
|
outmode
|
2712 |
|
|
= GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
|
2713 |
|
|
|
2714 |
|
|
start_sequence ();
|
2715 |
|
|
|
2716 |
|
|
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
2717 |
|
|
if the libcall is cse'd or moved. */
|
2718 |
|
|
value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
|
2719 |
|
|
NULL_RTX, LCT_CONST, outmode,
|
2720 |
|
|
1, op0, mode);
|
2721 |
|
|
insns = get_insns ();
|
2722 |
|
|
end_sequence ();
|
2723 |
|
|
|
2724 |
|
|
target = gen_reg_rtx (outmode);
|
2725 |
|
|
emit_libcall_block (insns, target, value,
|
2726 |
|
|
gen_rtx_fmt_e (unoptab->code, outmode, op0));
|
2727 |
|
|
|
2728 |
|
|
return target;
|
2729 |
|
|
}
|
2730 |
|
|
|
2731 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
2732 |
|
|
|
2733 |
|
|
if (CLASS_HAS_WIDER_MODES_P (class))
|
2734 |
|
|
{
|
2735 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2736 |
|
|
wider_mode != VOIDmode;
|
2737 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2738 |
|
|
{
|
2739 |
|
|
if ((unoptab->handlers[(int) wider_mode].insn_code
|
2740 |
|
|
!= CODE_FOR_nothing)
|
2741 |
|
|
|| unoptab->handlers[(int) wider_mode].libfunc)
|
2742 |
|
|
{
|
2743 |
|
|
rtx xop0 = op0;
|
2744 |
|
|
|
2745 |
|
|
/* For certain operations, we need not actually extend
|
2746 |
|
|
the narrow operand, as long as we will truncate the
|
2747 |
|
|
results to the same narrowness. */
|
2748 |
|
|
|
2749 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
2750 |
|
|
(unoptab == neg_optab
|
2751 |
|
|
|| unoptab == one_cmpl_optab)
|
2752 |
|
|
&& class == MODE_INT);
|
2753 |
|
|
|
2754 |
|
|
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
2755 |
|
|
unsignedp);
|
2756 |
|
|
|
2757 |
|
|
/* If we are generating clz using wider mode, adjust the
|
2758 |
|
|
result. */
|
2759 |
|
|
if (unoptab == clz_optab && temp != 0)
|
2760 |
|
|
temp = expand_binop (wider_mode, sub_optab, temp,
|
2761 |
|
|
GEN_INT (GET_MODE_BITSIZE (wider_mode)
|
2762 |
|
|
- GET_MODE_BITSIZE (mode)),
|
2763 |
|
|
target, true, OPTAB_DIRECT);
|
2764 |
|
|
|
2765 |
|
|
if (temp)
|
2766 |
|
|
{
|
2767 |
|
|
if (class != MODE_INT)
|
2768 |
|
|
{
|
2769 |
|
|
if (target == 0)
|
2770 |
|
|
target = gen_reg_rtx (mode);
|
2771 |
|
|
convert_move (target, temp, 0);
|
2772 |
|
|
return target;
|
2773 |
|
|
}
|
2774 |
|
|
else
|
2775 |
|
|
return gen_lowpart (mode, temp);
|
2776 |
|
|
}
|
2777 |
|
|
else
|
2778 |
|
|
delete_insns_since (last);
|
2779 |
|
|
}
|
2780 |
|
|
}
|
2781 |
|
|
}
|
2782 |
|
|
|
2783 |
|
|
/* One final attempt at implementing negation via subtraction,
|
2784 |
|
|
this time allowing widening of the operand. */
|
2785 |
|
|
if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
|
2786 |
|
|
{
|
2787 |
|
|
rtx temp;
|
2788 |
|
|
temp = expand_binop (mode,
|
2789 |
|
|
unoptab == negv_optab ? subv_optab : sub_optab,
|
2790 |
|
|
CONST0_RTX (mode), op0,
|
2791 |
|
|
target, unsignedp, OPTAB_LIB_WIDEN);
|
2792 |
|
|
if (temp)
|
2793 |
|
|
return temp;
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
return 0;
|
2797 |
|
|
}
|
2798 |
|
|
|
2799 |
|
|
/* Emit code to compute the absolute value of OP0, with result to
|
2800 |
|
|
TARGET if convenient. (TARGET may be 0.) The return value says
|
2801 |
|
|
where the result actually is to be found.
|
2802 |
|
|
|
2803 |
|
|
MODE is the mode of the operand; the mode of the result is
|
2804 |
|
|
different but can be deduced from MODE.
|
2805 |
|
|
|
2806 |
|
|
*/
|
2807 |
|
|
|
2808 |
|
|
rtx
|
2809 |
|
|
expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
|
2810 |
|
|
int result_unsignedp)
|
2811 |
|
|
{
|
2812 |
|
|
rtx temp;
|
2813 |
|
|
|
2814 |
|
|
if (! flag_trapv)
|
2815 |
|
|
result_unsignedp = 1;
|
2816 |
|
|
|
2817 |
|
|
/* First try to do it with a special abs instruction. */
|
2818 |
|
|
temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
|
2819 |
|
|
op0, target, 0);
|
2820 |
|
|
if (temp != 0)
|
2821 |
|
|
return temp;
|
2822 |
|
|
|
2823 |
|
|
/* For floating point modes, try clearing the sign bit. */
|
2824 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
2825 |
|
|
{
|
2826 |
|
|
temp = expand_absneg_bit (ABS, mode, op0, target);
|
2827 |
|
|
if (temp)
|
2828 |
|
|
return temp;
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
/* If we have a MAX insn, we can do this as MAX (x, -x). */
|
2832 |
|
|
if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
2833 |
|
|
&& !HONOR_SIGNED_ZEROS (mode))
|
2834 |
|
|
{
|
2835 |
|
|
rtx last = get_last_insn ();
|
2836 |
|
|
|
2837 |
|
|
temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
|
2838 |
|
|
if (temp != 0)
|
2839 |
|
|
temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
|
2840 |
|
|
OPTAB_WIDEN);
|
2841 |
|
|
|
2842 |
|
|
if (temp != 0)
|
2843 |
|
|
return temp;
|
2844 |
|
|
|
2845 |
|
|
delete_insns_since (last);
|
2846 |
|
|
}
|
2847 |
|
|
|
2848 |
|
|
/* If this machine has expensive jumps, we can do integer absolute
|
2849 |
|
|
value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
|
2850 |
|
|
where W is the width of MODE. */
|
2851 |
|
|
|
2852 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
|
2853 |
|
|
{
|
2854 |
|
|
rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
|
2855 |
|
|
size_int (GET_MODE_BITSIZE (mode) - 1),
|
2856 |
|
|
NULL_RTX, 0);
|
2857 |
|
|
|
2858 |
|
|
temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
|
2859 |
|
|
OPTAB_LIB_WIDEN);
|
2860 |
|
|
if (temp != 0)
|
2861 |
|
|
temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
|
2862 |
|
|
temp, extended, target, 0, OPTAB_LIB_WIDEN);
|
2863 |
|
|
|
2864 |
|
|
if (temp != 0)
|
2865 |
|
|
return temp;
|
2866 |
|
|
}
|
2867 |
|
|
|
2868 |
|
|
return NULL_RTX;
|
2869 |
|
|
}
|
2870 |
|
|
|
2871 |
|
|
rtx
|
2872 |
|
|
expand_abs (enum machine_mode mode, rtx op0, rtx target,
|
2873 |
|
|
int result_unsignedp, int safe)
|
2874 |
|
|
{
|
2875 |
|
|
rtx temp, op1;
|
2876 |
|
|
|
2877 |
|
|
if (! flag_trapv)
|
2878 |
|
|
result_unsignedp = 1;
|
2879 |
|
|
|
2880 |
|
|
temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
|
2881 |
|
|
if (temp != 0)
|
2882 |
|
|
return temp;
|
2883 |
|
|
|
2884 |
|
|
/* If that does not win, use conditional jump and negate. */
|
2885 |
|
|
|
2886 |
|
|
/* It is safe to use the target if it is the same
|
2887 |
|
|
as the source if this is also a pseudo register */
|
2888 |
|
|
if (op0 == target && REG_P (op0)
|
2889 |
|
|
&& REGNO (op0) >= FIRST_PSEUDO_REGISTER)
|
2890 |
|
|
safe = 1;
|
2891 |
|
|
|
2892 |
|
|
op1 = gen_label_rtx ();
|
2893 |
|
|
if (target == 0 || ! safe
|
2894 |
|
|
|| GET_MODE (target) != mode
|
2895 |
|
|
|| (MEM_P (target) && MEM_VOLATILE_P (target))
|
2896 |
|
|
|| (REG_P (target)
|
2897 |
|
|
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
2898 |
|
|
target = gen_reg_rtx (mode);
|
2899 |
|
|
|
2900 |
|
|
emit_move_insn (target, op0);
|
2901 |
|
|
NO_DEFER_POP;
|
2902 |
|
|
|
2903 |
|
|
do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
|
2904 |
|
|
NULL_RTX, NULL_RTX, op1);
|
2905 |
|
|
|
2906 |
|
|
op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
|
2907 |
|
|
target, target, 0);
|
2908 |
|
|
if (op0 != target)
|
2909 |
|
|
emit_move_insn (target, op0);
|
2910 |
|
|
emit_label (op1);
|
2911 |
|
|
OK_DEFER_POP;
|
2912 |
|
|
return target;
|
2913 |
|
|
}
|
2914 |
|
|
|
2915 |
|
|
/* A subroutine of expand_copysign, perform the copysign operation using the
|
2916 |
|
|
abs and neg primitives advertised to exist on the target. The assumption
|
2917 |
|
|
is that we have a split register file, and leaving op0 in fp registers,
|
2918 |
|
|
and not playing with subregs so much, will help the register allocator. */
|
2919 |
|
|
|
2920 |
|
|
static rtx
|
2921 |
|
|
expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
2922 |
|
|
int bitpos, bool op0_is_abs)
|
2923 |
|
|
{
|
2924 |
|
|
enum machine_mode imode;
|
2925 |
|
|
HOST_WIDE_INT hi, lo;
|
2926 |
|
|
int word;
|
2927 |
|
|
rtx label;
|
2928 |
|
|
|
2929 |
|
|
if (target == op1)
|
2930 |
|
|
target = NULL_RTX;
|
2931 |
|
|
|
2932 |
|
|
if (!op0_is_abs)
|
2933 |
|
|
{
|
2934 |
|
|
op0 = expand_unop (mode, abs_optab, op0, target, 0);
|
2935 |
|
|
if (op0 == NULL)
|
2936 |
|
|
return NULL_RTX;
|
2937 |
|
|
target = op0;
|
2938 |
|
|
}
|
2939 |
|
|
else
|
2940 |
|
|
{
|
2941 |
|
|
if (target == NULL_RTX)
|
2942 |
|
|
target = copy_to_reg (op0);
|
2943 |
|
|
else
|
2944 |
|
|
emit_move_insn (target, op0);
|
2945 |
|
|
}
|
2946 |
|
|
|
2947 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
2948 |
|
|
{
|
2949 |
|
|
imode = int_mode_for_mode (mode);
|
2950 |
|
|
if (imode == BLKmode)
|
2951 |
|
|
return NULL_RTX;
|
2952 |
|
|
op1 = gen_lowpart (imode, op1);
|
2953 |
|
|
}
|
2954 |
|
|
else
|
2955 |
|
|
{
|
2956 |
|
|
imode = word_mode;
|
2957 |
|
|
if (FLOAT_WORDS_BIG_ENDIAN)
|
2958 |
|
|
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
2959 |
|
|
else
|
2960 |
|
|
word = bitpos / BITS_PER_WORD;
|
2961 |
|
|
bitpos = bitpos % BITS_PER_WORD;
|
2962 |
|
|
op1 = operand_subword_force (op1, word, mode);
|
2963 |
|
|
}
|
2964 |
|
|
|
2965 |
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
2966 |
|
|
{
|
2967 |
|
|
hi = 0;
|
2968 |
|
|
lo = (HOST_WIDE_INT) 1 << bitpos;
|
2969 |
|
|
}
|
2970 |
|
|
else
|
2971 |
|
|
{
|
2972 |
|
|
hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
2973 |
|
|
lo = 0;
|
2974 |
|
|
}
|
2975 |
|
|
|
2976 |
|
|
op1 = expand_binop (imode, and_optab, op1,
|
2977 |
|
|
immed_double_const (lo, hi, imode),
|
2978 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
2979 |
|
|
|
2980 |
|
|
label = gen_label_rtx ();
|
2981 |
|
|
emit_cmp_and_jump_insns (op1, const0_rtx, EQ, NULL_RTX, imode, 1, label);
|
2982 |
|
|
|
2983 |
|
|
if (GET_CODE (op0) == CONST_DOUBLE)
|
2984 |
|
|
op0 = simplify_unary_operation (NEG, mode, op0, mode);
|
2985 |
|
|
else
|
2986 |
|
|
op0 = expand_unop (mode, neg_optab, op0, target, 0);
|
2987 |
|
|
if (op0 != target)
|
2988 |
|
|
emit_move_insn (target, op0);
|
2989 |
|
|
|
2990 |
|
|
emit_label (label);
|
2991 |
|
|
|
2992 |
|
|
return target;
|
2993 |
|
|
}
|
2994 |
|
|
|
2995 |
|
|
|
2996 |
|
|
/* A subroutine of expand_copysign, perform the entire copysign operation
|
2997 |
|
|
with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
|
2998 |
|
|
is true if op0 is known to have its sign bit clear. */
|
2999 |
|
|
|
3000 |
|
|
static rtx
|
3001 |
|
|
expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
3002 |
|
|
int bitpos, bool op0_is_abs)
|
3003 |
|
|
{
|
3004 |
|
|
enum machine_mode imode;
|
3005 |
|
|
HOST_WIDE_INT hi, lo;
|
3006 |
|
|
int word, nwords, i;
|
3007 |
|
|
rtx temp, insns;
|
3008 |
|
|
|
3009 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
3010 |
|
|
{
|
3011 |
|
|
imode = int_mode_for_mode (mode);
|
3012 |
|
|
if (imode == BLKmode)
|
3013 |
|
|
return NULL_RTX;
|
3014 |
|
|
word = 0;
|
3015 |
|
|
nwords = 1;
|
3016 |
|
|
}
|
3017 |
|
|
else
|
3018 |
|
|
{
|
3019 |
|
|
imode = word_mode;
|
3020 |
|
|
|
3021 |
|
|
if (FLOAT_WORDS_BIG_ENDIAN)
|
3022 |
|
|
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
3023 |
|
|
else
|
3024 |
|
|
word = bitpos / BITS_PER_WORD;
|
3025 |
|
|
bitpos = bitpos % BITS_PER_WORD;
|
3026 |
|
|
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
3027 |
|
|
}
|
3028 |
|
|
|
3029 |
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
3030 |
|
|
{
|
3031 |
|
|
hi = 0;
|
3032 |
|
|
lo = (HOST_WIDE_INT) 1 << bitpos;
|
3033 |
|
|
}
|
3034 |
|
|
else
|
3035 |
|
|
{
|
3036 |
|
|
hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
3037 |
|
|
lo = 0;
|
3038 |
|
|
}
|
3039 |
|
|
|
3040 |
|
|
if (target == 0 || target == op0 || target == op1)
|
3041 |
|
|
target = gen_reg_rtx (mode);
|
3042 |
|
|
|
3043 |
|
|
if (nwords > 1)
|
3044 |
|
|
{
|
3045 |
|
|
start_sequence ();
|
3046 |
|
|
|
3047 |
|
|
for (i = 0; i < nwords; ++i)
|
3048 |
|
|
{
|
3049 |
|
|
rtx targ_piece = operand_subword (target, i, 1, mode);
|
3050 |
|
|
rtx op0_piece = operand_subword_force (op0, i, mode);
|
3051 |
|
|
|
3052 |
|
|
if (i == word)
|
3053 |
|
|
{
|
3054 |
|
|
if (!op0_is_abs)
|
3055 |
|
|
op0_piece = expand_binop (imode, and_optab, op0_piece,
|
3056 |
|
|
immed_double_const (~lo, ~hi, imode),
|
3057 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3058 |
|
|
|
3059 |
|
|
op1 = expand_binop (imode, and_optab,
|
3060 |
|
|
operand_subword_force (op1, i, mode),
|
3061 |
|
|
immed_double_const (lo, hi, imode),
|
3062 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3063 |
|
|
|
3064 |
|
|
temp = expand_binop (imode, ior_optab, op0_piece, op1,
|
3065 |
|
|
targ_piece, 1, OPTAB_LIB_WIDEN);
|
3066 |
|
|
if (temp != targ_piece)
|
3067 |
|
|
emit_move_insn (targ_piece, temp);
|
3068 |
|
|
}
|
3069 |
|
|
else
|
3070 |
|
|
emit_move_insn (targ_piece, op0_piece);
|
3071 |
|
|
}
|
3072 |
|
|
|
3073 |
|
|
insns = get_insns ();
|
3074 |
|
|
end_sequence ();
|
3075 |
|
|
|
3076 |
|
|
emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
|
3077 |
|
|
}
|
3078 |
|
|
else
|
3079 |
|
|
{
|
3080 |
|
|
op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
|
3081 |
|
|
immed_double_const (lo, hi, imode),
|
3082 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3083 |
|
|
|
3084 |
|
|
op0 = gen_lowpart (imode, op0);
|
3085 |
|
|
if (!op0_is_abs)
|
3086 |
|
|
op0 = expand_binop (imode, and_optab, op0,
|
3087 |
|
|
immed_double_const (~lo, ~hi, imode),
|
3088 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3089 |
|
|
|
3090 |
|
|
temp = expand_binop (imode, ior_optab, op0, op1,
|
3091 |
|
|
gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
|
3092 |
|
|
target = lowpart_subreg_maybe_copy (mode, temp, imode);
|
3093 |
|
|
}
|
3094 |
|
|
|
3095 |
|
|
return target;
|
3096 |
|
|
}
|
3097 |
|
|
|
3098 |
|
|
/* Expand the C99 copysign operation. OP0 and OP1 must be the same
|
3099 |
|
|
scalar floating point mode. Return NULL if we do not know how to
|
3100 |
|
|
expand the operation inline. */
|
3101 |
|
|
|
3102 |
|
|
rtx
|
3103 |
|
|
expand_copysign (rtx op0, rtx op1, rtx target)
|
3104 |
|
|
{
|
3105 |
|
|
enum machine_mode mode = GET_MODE (op0);
|
3106 |
|
|
const struct real_format *fmt;
|
3107 |
|
|
bool op0_is_abs;
|
3108 |
|
|
rtx temp;
|
3109 |
|
|
|
3110 |
|
|
gcc_assert (SCALAR_FLOAT_MODE_P (mode));
|
3111 |
|
|
gcc_assert (GET_MODE (op1) == mode);
|
3112 |
|
|
|
3113 |
|
|
/* First try to do it with a special instruction. */
|
3114 |
|
|
temp = expand_binop (mode, copysign_optab, op0, op1,
|
3115 |
|
|
target, 0, OPTAB_DIRECT);
|
3116 |
|
|
if (temp)
|
3117 |
|
|
return temp;
|
3118 |
|
|
|
3119 |
|
|
fmt = REAL_MODE_FORMAT (mode);
|
3120 |
|
|
if (fmt == NULL || !fmt->has_signed_zero)
|
3121 |
|
|
return NULL_RTX;
|
3122 |
|
|
|
3123 |
|
|
op0_is_abs = false;
|
3124 |
|
|
if (GET_CODE (op0) == CONST_DOUBLE)
|
3125 |
|
|
{
|
3126 |
|
|
if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
|
3127 |
|
|
op0 = simplify_unary_operation (ABS, mode, op0, mode);
|
3128 |
|
|
op0_is_abs = true;
|
3129 |
|
|
}
|
3130 |
|
|
|
3131 |
|
|
if (fmt->signbit_ro >= 0
|
3132 |
|
|
&& (GET_CODE (op0) == CONST_DOUBLE
|
3133 |
|
|
|| (neg_optab->handlers[mode].insn_code != CODE_FOR_nothing
|
3134 |
|
|
&& abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)))
|
3135 |
|
|
{
|
3136 |
|
|
temp = expand_copysign_absneg (mode, op0, op1, target,
|
3137 |
|
|
fmt->signbit_ro, op0_is_abs);
|
3138 |
|
|
if (temp)
|
3139 |
|
|
return temp;
|
3140 |
|
|
}
|
3141 |
|
|
|
3142 |
|
|
if (fmt->signbit_rw < 0)
|
3143 |
|
|
return NULL_RTX;
|
3144 |
|
|
return expand_copysign_bit (mode, op0, op1, target,
|
3145 |
|
|
fmt->signbit_rw, op0_is_abs);
|
3146 |
|
|
}
|
3147 |
|
|
|
3148 |
|
|
/* Generate an instruction whose insn-code is INSN_CODE,
|
3149 |
|
|
with two operands: an output TARGET and an input OP0.
|
3150 |
|
|
TARGET *must* be nonzero, and the output is always stored there.
|
3151 |
|
|
CODE is an rtx code such that (CODE OP0) is an rtx that describes
|
3152 |
|
|
the value that is stored into TARGET. */
|
3153 |
|
|
|
3154 |
|
|
void
|
3155 |
|
|
emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
|
3156 |
|
|
{
|
3157 |
|
|
rtx temp;
|
3158 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
3159 |
|
|
rtx pat;
|
3160 |
|
|
|
3161 |
|
|
temp = target;
|
3162 |
|
|
|
3163 |
|
|
/* Now, if insn does not accept our operands, put them into pseudos. */
|
3164 |
|
|
|
3165 |
|
|
if (!insn_data[icode].operand[1].predicate (op0, mode0))
|
3166 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
3167 |
|
|
|
3168 |
|
|
if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
|
3169 |
|
|
temp = gen_reg_rtx (GET_MODE (temp));
|
3170 |
|
|
|
3171 |
|
|
pat = GEN_FCN (icode) (temp, op0);
|
3172 |
|
|
|
3173 |
|
|
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
|
3174 |
|
|
add_equal_note (pat, temp, code, op0, NULL_RTX);
|
3175 |
|
|
|
3176 |
|
|
emit_insn (pat);
|
3177 |
|
|
|
3178 |
|
|
if (temp != target)
|
3179 |
|
|
emit_move_insn (target, temp);
|
3180 |
|
|
}
|
3181 |
|
|
|
3182 |
|
|
struct no_conflict_data
|
3183 |
|
|
{
|
3184 |
|
|
rtx target, first, insn;
|
3185 |
|
|
bool must_stay;
|
3186 |
|
|
};
|
3187 |
|
|
|
3188 |
|
|
/* Called via note_stores by emit_no_conflict_block and emit_libcall_block.
|
3189 |
|
|
Set P->must_stay if the currently examined clobber / store has to stay
|
3190 |
|
|
in the list of insns that constitute the actual no_conflict block /
|
3191 |
|
|
libcall block. */
|
3192 |
|
|
static void
|
3193 |
|
|
no_conflict_move_test (rtx dest, rtx set, void *p0)
|
3194 |
|
|
{
|
3195 |
|
|
struct no_conflict_data *p= p0;
|
3196 |
|
|
|
3197 |
|
|
/* If this inns directly contributes to setting the target, it must stay. */
|
3198 |
|
|
if (reg_overlap_mentioned_p (p->target, dest))
|
3199 |
|
|
p->must_stay = true;
|
3200 |
|
|
/* If we haven't committed to keeping any other insns in the list yet,
|
3201 |
|
|
there is nothing more to check. */
|
3202 |
|
|
else if (p->insn == p->first)
|
3203 |
|
|
return;
|
3204 |
|
|
/* If this insn sets / clobbers a register that feeds one of the insns
|
3205 |
|
|
already in the list, this insn has to stay too. */
|
3206 |
|
|
else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
|
3207 |
|
|
|| (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
|
3208 |
|
|
|| reg_used_between_p (dest, p->first, p->insn)
|
3209 |
|
|
/* Likewise if this insn depends on a register set by a previous
|
3210 |
|
|
insn in the list, or if it sets a result (presumably a hard
|
3211 |
|
|
register) that is set or clobbered by a previous insn.
|
3212 |
|
|
N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
|
3213 |
|
|
SET_DEST perform the former check on the address, and the latter
|
3214 |
|
|
check on the MEM. */
|
3215 |
|
|
|| (GET_CODE (set) == SET
|
3216 |
|
|
&& (modified_in_p (SET_SRC (set), p->first)
|
3217 |
|
|
|| modified_in_p (SET_DEST (set), p->first)
|
3218 |
|
|
|| modified_between_p (SET_SRC (set), p->first, p->insn)
|
3219 |
|
|
|| modified_between_p (SET_DEST (set), p->first, p->insn))))
|
3220 |
|
|
p->must_stay = true;
|
3221 |
|
|
}
|
3222 |
|
|
|
3223 |
|
|
/* Encapsulate the block starting at FIRST and ending with LAST, which is
|
3224 |
|
|
logically equivalent to EQUIV, so it gets manipulated as a unit if it
|
3225 |
|
|
is possible to do so. */
|
3226 |
|
|
|
3227 |
|
|
static void
|
3228 |
|
|
maybe_encapsulate_block (rtx first, rtx last, rtx equiv)
|
3229 |
|
|
{
|
3230 |
|
|
if (!flag_non_call_exceptions || !may_trap_p (equiv))
|
3231 |
|
|
{
|
3232 |
|
|
/* We can't attach the REG_LIBCALL and REG_RETVAL notes when the
|
3233 |
|
|
encapsulated region would not be in one basic block, i.e. when
|
3234 |
|
|
there is a control_flow_insn_p insn between FIRST and LAST. */
|
3235 |
|
|
bool attach_libcall_retval_notes = true;
|
3236 |
|
|
rtx insn, next = NEXT_INSN (last);
|
3237 |
|
|
|
3238 |
|
|
for (insn = first; insn != next; insn = NEXT_INSN (insn))
|
3239 |
|
|
if (control_flow_insn_p (insn))
|
3240 |
|
|
{
|
3241 |
|
|
attach_libcall_retval_notes = false;
|
3242 |
|
|
break;
|
3243 |
|
|
}
|
3244 |
|
|
|
3245 |
|
|
if (attach_libcall_retval_notes)
|
3246 |
|
|
{
|
3247 |
|
|
REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
|
3248 |
|
|
REG_NOTES (first));
|
3249 |
|
|
REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
|
3250 |
|
|
REG_NOTES (last));
|
3251 |
|
|
}
|
3252 |
|
|
}
|
3253 |
|
|
}
|
3254 |
|
|
|
3255 |
|
|
/* Emit code to perform a series of operations on a multi-word quantity, one
|
3256 |
|
|
word at a time.
|
3257 |
|
|
|
3258 |
|
|
Such a block is preceded by a CLOBBER of the output, consists of multiple
|
3259 |
|
|
insns, each setting one word of the output, and followed by a SET copying
|
3260 |
|
|
the output to itself.
|
3261 |
|
|
|
3262 |
|
|
Each of the insns setting words of the output receives a REG_NO_CONFLICT
|
3263 |
|
|
note indicating that it doesn't conflict with the (also multi-word)
|
3264 |
|
|
inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
|
3265 |
|
|
notes.
|
3266 |
|
|
|
3267 |
|
|
INSNS is a block of code generated to perform the operation, not including
|
3268 |
|
|
the CLOBBER and final copy. All insns that compute intermediate values
|
3269 |
|
|
are first emitted, followed by the block as described above.
|
3270 |
|
|
|
3271 |
|
|
TARGET, OP0, and OP1 are the output and inputs of the operations,
|
3272 |
|
|
respectively. OP1 may be zero for a unary operation.
|
3273 |
|
|
|
3274 |
|
|
EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
|
3275 |
|
|
on the last insn.
|
3276 |
|
|
|
3277 |
|
|
If TARGET is not a register, INSNS is simply emitted with no special
|
3278 |
|
|
processing. Likewise if anything in INSNS is not an INSN or if
|
3279 |
|
|
there is a libcall block inside INSNS.
|
3280 |
|
|
|
3281 |
|
|
The final insn emitted is returned. */
|
3282 |
|
|
|
3283 |
|
|
rtx
|
3284 |
|
|
emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
|
3285 |
|
|
{
|
3286 |
|
|
rtx prev, next, first, last, insn;
|
3287 |
|
|
|
3288 |
|
|
if (!REG_P (target) || reload_in_progress)
|
3289 |
|
|
return emit_insn (insns);
|
3290 |
|
|
else
|
3291 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
3292 |
|
|
if (!NONJUMP_INSN_P (insn)
|
3293 |
|
|
|| find_reg_note (insn, REG_LIBCALL, NULL_RTX))
|
3294 |
|
|
return emit_insn (insns);
|
3295 |
|
|
|
3296 |
|
|
/* First emit all insns that do not store into words of the output and remove
|
3297 |
|
|
these from the list. */
|
3298 |
|
|
for (insn = insns; insn; insn = next)
|
3299 |
|
|
{
|
3300 |
|
|
rtx note;
|
3301 |
|
|
struct no_conflict_data data;
|
3302 |
|
|
|
3303 |
|
|
next = NEXT_INSN (insn);
|
3304 |
|
|
|
3305 |
|
|
/* Some ports (cris) create a libcall regions at their own. We must
|
3306 |
|
|
avoid any potential nesting of LIBCALLs. */
|
3307 |
|
|
if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
|
3308 |
|
|
remove_note (insn, note);
|
3309 |
|
|
if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
|
3310 |
|
|
remove_note (insn, note);
|
3311 |
|
|
|
3312 |
|
|
data.target = target;
|
3313 |
|
|
data.first = insns;
|
3314 |
|
|
data.insn = insn;
|
3315 |
|
|
data.must_stay = 0;
|
3316 |
|
|
note_stores (PATTERN (insn), no_conflict_move_test, &data);
|
3317 |
|
|
if (! data.must_stay)
|
3318 |
|
|
{
|
3319 |
|
|
if (PREV_INSN (insn))
|
3320 |
|
|
NEXT_INSN (PREV_INSN (insn)) = next;
|
3321 |
|
|
else
|
3322 |
|
|
insns = next;
|
3323 |
|
|
|
3324 |
|
|
if (next)
|
3325 |
|
|
PREV_INSN (next) = PREV_INSN (insn);
|
3326 |
|
|
|
3327 |
|
|
add_insn (insn);
|
3328 |
|
|
}
|
3329 |
|
|
}
|
3330 |
|
|
|
3331 |
|
|
prev = get_last_insn ();
|
3332 |
|
|
|
3333 |
|
|
/* Now write the CLOBBER of the output, followed by the setting of each
|
3334 |
|
|
of the words, followed by the final copy. */
|
3335 |
|
|
if (target != op0 && target != op1)
|
3336 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
|
3337 |
|
|
|
3338 |
|
|
for (insn = insns; insn; insn = next)
|
3339 |
|
|
{
|
3340 |
|
|
next = NEXT_INSN (insn);
|
3341 |
|
|
add_insn (insn);
|
3342 |
|
|
|
3343 |
|
|
if (op1 && REG_P (op1))
|
3344 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
|
3345 |
|
|
REG_NOTES (insn));
|
3346 |
|
|
|
3347 |
|
|
if (op0 && REG_P (op0))
|
3348 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
|
3349 |
|
|
REG_NOTES (insn));
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
|
3353 |
|
|
!= CODE_FOR_nothing)
|
3354 |
|
|
{
|
3355 |
|
|
last = emit_move_insn (target, target);
|
3356 |
|
|
if (equiv)
|
3357 |
|
|
set_unique_reg_note (last, REG_EQUAL, equiv);
|
3358 |
|
|
}
|
3359 |
|
|
else
|
3360 |
|
|
{
|
3361 |
|
|
last = get_last_insn ();
|
3362 |
|
|
|
3363 |
|
|
/* Remove any existing REG_EQUAL note from "last", or else it will
|
3364 |
|
|
be mistaken for a note referring to the full contents of the
|
3365 |
|
|
alleged libcall value when found together with the REG_RETVAL
|
3366 |
|
|
note added below. An existing note can come from an insn
|
3367 |
|
|
expansion at "last". */
|
3368 |
|
|
remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
|
3369 |
|
|
}
|
3370 |
|
|
|
3371 |
|
|
if (prev == 0)
|
3372 |
|
|
first = get_insns ();
|
3373 |
|
|
else
|
3374 |
|
|
first = NEXT_INSN (prev);
|
3375 |
|
|
|
3376 |
|
|
maybe_encapsulate_block (first, last, equiv);
|
3377 |
|
|
|
3378 |
|
|
return last;
|
3379 |
|
|
}
|
3380 |
|
|
|
3381 |
|
|
/* Emit code to make a call to a constant function or a library call.
|
3382 |
|
|
|
3383 |
|
|
INSNS is a list containing all insns emitted in the call.
|
3384 |
|
|
These insns leave the result in RESULT. Our block is to copy RESULT
|
3385 |
|
|
to TARGET, which is logically equivalent to EQUIV.
|
3386 |
|
|
|
3387 |
|
|
We first emit any insns that set a pseudo on the assumption that these are
|
3388 |
|
|
loading constants into registers; doing so allows them to be safely cse'ed
|
3389 |
|
|
between blocks. Then we emit all the other insns in the block, followed by
|
3390 |
|
|
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
|
3391 |
|
|
note with an operand of EQUIV.
|
3392 |
|
|
|
3393 |
|
|
Moving assignments to pseudos outside of the block is done to improve
|
3394 |
|
|
the generated code, but is not required to generate correct code,
|
3395 |
|
|
hence being unable to move an assignment is not grounds for not making
|
3396 |
|
|
a libcall block. There are two reasons why it is safe to leave these
|
3397 |
|
|
insns inside the block: First, we know that these pseudos cannot be
|
3398 |
|
|
used in generated RTL outside the block since they are created for
|
3399 |
|
|
temporary purposes within the block. Second, CSE will not record the
|
3400 |
|
|
values of anything set inside a libcall block, so we know they must
|
3401 |
|
|
be dead at the end of the block.
|
3402 |
|
|
|
3403 |
|
|
Except for the first group of insns (the ones setting pseudos), the
|
3404 |
|
|
block is delimited by REG_RETVAL and REG_LIBCALL notes. */
|
3405 |
|
|
|
3406 |
|
|
void
|
3407 |
|
|
emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
|
3408 |
|
|
{
|
3409 |
|
|
rtx final_dest = target;
|
3410 |
|
|
rtx prev, next, first, last, insn;
|
3411 |
|
|
|
3412 |
|
|
/* If this is a reg with REG_USERVAR_P set, then it could possibly turn
|
3413 |
|
|
into a MEM later. Protect the libcall block from this change. */
|
3414 |
|
|
if (! REG_P (target) || REG_USERVAR_P (target))
|
3415 |
|
|
target = gen_reg_rtx (GET_MODE (target));
|
3416 |
|
|
|
3417 |
|
|
/* If we're using non-call exceptions, a libcall corresponding to an
|
3418 |
|
|
operation that may trap may also trap. */
|
3419 |
|
|
if (flag_non_call_exceptions && may_trap_p (equiv))
|
3420 |
|
|
{
|
3421 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
3422 |
|
|
if (CALL_P (insn))
|
3423 |
|
|
{
|
3424 |
|
|
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
3425 |
|
|
|
3426 |
|
|
if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
|
3427 |
|
|
remove_note (insn, note);
|
3428 |
|
|
}
|
3429 |
|
|
}
|
3430 |
|
|
else
|
3431 |
|
|
/* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
|
3432 |
|
|
reg note to indicate that this call cannot throw or execute a nonlocal
|
3433 |
|
|
goto (unless there is already a REG_EH_REGION note, in which case
|
3434 |
|
|
we update it). */
|
3435 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
3436 |
|
|
if (CALL_P (insn))
|
3437 |
|
|
{
|
3438 |
|
|
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
3439 |
|
|
|
3440 |
|
|
if (note != 0)
|
3441 |
|
|
XEXP (note, 0) = constm1_rtx;
|
3442 |
|
|
else
|
3443 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
|
3444 |
|
|
REG_NOTES (insn));
|
3445 |
|
|
}
|
3446 |
|
|
|
3447 |
|
|
/* First emit all insns that set pseudos. Remove them from the list as
|
3448 |
|
|
we go. Avoid insns that set pseudos which were referenced in previous
|
3449 |
|
|
insns. These can be generated by move_by_pieces, for example,
|
3450 |
|
|
to update an address. Similarly, avoid insns that reference things
|
3451 |
|
|
set in previous insns. */
|
3452 |
|
|
|
3453 |
|
|
for (insn = insns; insn; insn = next)
|
3454 |
|
|
{
|
3455 |
|
|
rtx set = single_set (insn);
|
3456 |
|
|
rtx note;
|
3457 |
|
|
|
3458 |
|
|
/* Some ports (cris) create a libcall regions at their own. We must
|
3459 |
|
|
avoid any potential nesting of LIBCALLs. */
|
3460 |
|
|
if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
|
3461 |
|
|
remove_note (insn, note);
|
3462 |
|
|
if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
|
3463 |
|
|
remove_note (insn, note);
|
3464 |
|
|
|
3465 |
|
|
next = NEXT_INSN (insn);
|
3466 |
|
|
|
3467 |
|
|
if (set != 0 && REG_P (SET_DEST (set))
|
3468 |
|
|
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
3469 |
|
|
{
|
3470 |
|
|
struct no_conflict_data data;
|
3471 |
|
|
|
3472 |
|
|
data.target = const0_rtx;
|
3473 |
|
|
data.first = insns;
|
3474 |
|
|
data.insn = insn;
|
3475 |
|
|
data.must_stay = 0;
|
3476 |
|
|
note_stores (PATTERN (insn), no_conflict_move_test, &data);
|
3477 |
|
|
if (! data.must_stay)
|
3478 |
|
|
{
|
3479 |
|
|
if (PREV_INSN (insn))
|
3480 |
|
|
NEXT_INSN (PREV_INSN (insn)) = next;
|
3481 |
|
|
else
|
3482 |
|
|
insns = next;
|
3483 |
|
|
|
3484 |
|
|
if (next)
|
3485 |
|
|
PREV_INSN (next) = PREV_INSN (insn);
|
3486 |
|
|
|
3487 |
|
|
add_insn (insn);
|
3488 |
|
|
}
|
3489 |
|
|
}
|
3490 |
|
|
|
3491 |
|
|
/* Some ports use a loop to copy large arguments onto the stack.
|
3492 |
|
|
Don't move anything outside such a loop. */
|
3493 |
|
|
if (LABEL_P (insn))
|
3494 |
|
|
break;
|
3495 |
|
|
}
|
3496 |
|
|
|
3497 |
|
|
prev = get_last_insn ();
|
3498 |
|
|
|
3499 |
|
|
/* Write the remaining insns followed by the final copy. */
|
3500 |
|
|
|
3501 |
|
|
for (insn = insns; insn; insn = next)
|
3502 |
|
|
{
|
3503 |
|
|
next = NEXT_INSN (insn);
|
3504 |
|
|
|
3505 |
|
|
add_insn (insn);
|
3506 |
|
|
}
|
3507 |
|
|
|
3508 |
|
|
last = emit_move_insn (target, result);
|
3509 |
|
|
if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
|
3510 |
|
|
!= CODE_FOR_nothing)
|
3511 |
|
|
set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
|
3512 |
|
|
else
|
3513 |
|
|
{
|
3514 |
|
|
/* Remove any existing REG_EQUAL note from "last", or else it will
|
3515 |
|
|
be mistaken for a note referring to the full contents of the
|
3516 |
|
|
libcall value when found together with the REG_RETVAL note added
|
3517 |
|
|
below. An existing note can come from an insn expansion at
|
3518 |
|
|
"last". */
|
3519 |
|
|
remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
|
3520 |
|
|
}
|
3521 |
|
|
|
3522 |
|
|
if (final_dest != target)
|
3523 |
|
|
emit_move_insn (final_dest, target);
|
3524 |
|
|
|
3525 |
|
|
if (prev == 0)
|
3526 |
|
|
first = get_insns ();
|
3527 |
|
|
else
|
3528 |
|
|
first = NEXT_INSN (prev);
|
3529 |
|
|
|
3530 |
|
|
maybe_encapsulate_block (first, last, equiv);
|
3531 |
|
|
}
|
3532 |
|
|
|
3533 |
|
|
/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
|
3534 |
|
|
PURPOSE describes how this comparison will be used. CODE is the rtx
|
3535 |
|
|
comparison code we will be using.
|
3536 |
|
|
|
3537 |
|
|
??? Actually, CODE is slightly weaker than that. A target is still
|
3538 |
|
|
required to implement all of the normal bcc operations, but not
|
3539 |
|
|
required to implement all (or any) of the unordered bcc operations. */
|
3540 |
|
|
|
3541 |
|
|
int
|
3542 |
|
|
can_compare_p (enum rtx_code code, enum machine_mode mode,
|
3543 |
|
|
enum can_compare_purpose purpose)
|
3544 |
|
|
{
|
3545 |
|
|
do
|
3546 |
|
|
{
|
3547 |
|
|
if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
3548 |
|
|
{
|
3549 |
|
|
if (purpose == ccp_jump)
|
3550 |
|
|
return bcc_gen_fctn[(int) code] != NULL;
|
3551 |
|
|
else if (purpose == ccp_store_flag)
|
3552 |
|
|
return setcc_gen_code[(int) code] != CODE_FOR_nothing;
|
3553 |
|
|
else
|
3554 |
|
|
/* There's only one cmov entry point, and it's allowed to fail. */
|
3555 |
|
|
return 1;
|
3556 |
|
|
}
|
3557 |
|
|
if (purpose == ccp_jump
|
3558 |
|
|
&& cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
3559 |
|
|
return 1;
|
3560 |
|
|
if (purpose == ccp_cmov
|
3561 |
|
|
&& cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
3562 |
|
|
return 1;
|
3563 |
|
|
if (purpose == ccp_store_flag
|
3564 |
|
|
&& cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
3565 |
|
|
return 1;
|
3566 |
|
|
mode = GET_MODE_WIDER_MODE (mode);
|
3567 |
|
|
}
|
3568 |
|
|
while (mode != VOIDmode);
|
3569 |
|
|
|
3570 |
|
|
return 0;
|
3571 |
|
|
}
|
3572 |
|
|
|
3573 |
|
|
/* This function is called when we are going to emit a compare instruction that
|
3574 |
|
|
compares the values found in *PX and *PY, using the rtl operator COMPARISON.
|
3575 |
|
|
|
3576 |
|
|
*PMODE is the mode of the inputs (in case they are const_int).
|
3577 |
|
|
*PUNSIGNEDP nonzero says that the operands are unsigned;
|
3578 |
|
|
this matters if they need to be widened.
|
3579 |
|
|
|
3580 |
|
|
If they have mode BLKmode, then SIZE specifies the size of both operands.
|
3581 |
|
|
|
3582 |
|
|
This function performs all the setup necessary so that the caller only has
|
3583 |
|
|
to emit a single comparison insn. This setup can involve doing a BLKmode
|
3584 |
|
|
comparison or emitting a library call to perform the comparison if no insn
|
3585 |
|
|
is available to handle it.
|
3586 |
|
|
The values which are passed in through pointers can be modified; the caller
|
3587 |
|
|
should perform the comparison on the modified values. Constant
|
3588 |
|
|
comparisons must have already been folded. */
|
3589 |
|
|
|
3590 |
|
|
static void
|
3591 |
|
|
prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
|
3592 |
|
|
enum machine_mode *pmode, int *punsignedp,
|
3593 |
|
|
enum can_compare_purpose purpose)
|
3594 |
|
|
{
|
3595 |
|
|
enum machine_mode mode = *pmode;
|
3596 |
|
|
rtx x = *px, y = *py;
|
3597 |
|
|
int unsignedp = *punsignedp;
|
3598 |
|
|
|
3599 |
|
|
/* If we are inside an appropriately-short loop and we are optimizing,
|
3600 |
|
|
force expensive constants into a register. */
|
3601 |
|
|
if (CONSTANT_P (x) && optimize
|
3602 |
|
|
&& rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
|
3603 |
|
|
x = force_reg (mode, x);
|
3604 |
|
|
|
3605 |
|
|
if (CONSTANT_P (y) && optimize
|
3606 |
|
|
&& rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
|
3607 |
|
|
y = force_reg (mode, y);
|
3608 |
|
|
|
3609 |
|
|
#ifdef HAVE_cc0
|
3610 |
|
|
/* Make sure if we have a canonical comparison. The RTL
|
3611 |
|
|
documentation states that canonical comparisons are required only
|
3612 |
|
|
for targets which have cc0. */
|
3613 |
|
|
gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
|
3614 |
|
|
#endif
|
3615 |
|
|
|
3616 |
|
|
/* Don't let both operands fail to indicate the mode. */
|
3617 |
|
|
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
|
3618 |
|
|
x = force_reg (mode, x);
|
3619 |
|
|
|
3620 |
|
|
/* Handle all BLKmode compares. */
|
3621 |
|
|
|
3622 |
|
|
if (mode == BLKmode)
|
3623 |
|
|
{
|
3624 |
|
|
enum machine_mode cmp_mode, result_mode;
|
3625 |
|
|
enum insn_code cmp_code;
|
3626 |
|
|
tree length_type;
|
3627 |
|
|
rtx libfunc;
|
3628 |
|
|
rtx result;
|
3629 |
|
|
rtx opalign
|
3630 |
|
|
= GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
|
3631 |
|
|
|
3632 |
|
|
gcc_assert (size);
|
3633 |
|
|
|
3634 |
|
|
/* Try to use a memory block compare insn - either cmpstr
|
3635 |
|
|
or cmpmem will do. */
|
3636 |
|
|
for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
3637 |
|
|
cmp_mode != VOIDmode;
|
3638 |
|
|
cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
|
3639 |
|
|
{
|
3640 |
|
|
cmp_code = cmpmem_optab[cmp_mode];
|
3641 |
|
|
if (cmp_code == CODE_FOR_nothing)
|
3642 |
|
|
cmp_code = cmpstr_optab[cmp_mode];
|
3643 |
|
|
if (cmp_code == CODE_FOR_nothing)
|
3644 |
|
|
cmp_code = cmpstrn_optab[cmp_mode];
|
3645 |
|
|
if (cmp_code == CODE_FOR_nothing)
|
3646 |
|
|
continue;
|
3647 |
|
|
|
3648 |
|
|
/* Must make sure the size fits the insn's mode. */
|
3649 |
|
|
if ((GET_CODE (size) == CONST_INT
|
3650 |
|
|
&& INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
|
3651 |
|
|
|| (GET_MODE_BITSIZE (GET_MODE (size))
|
3652 |
|
|
> GET_MODE_BITSIZE (cmp_mode)))
|
3653 |
|
|
continue;
|
3654 |
|
|
|
3655 |
|
|
result_mode = insn_data[cmp_code].operand[0].mode;
|
3656 |
|
|
result = gen_reg_rtx (result_mode);
|
3657 |
|
|
size = convert_to_mode (cmp_mode, size, 1);
|
3658 |
|
|
emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
|
3659 |
|
|
|
3660 |
|
|
*px = result;
|
3661 |
|
|
*py = const0_rtx;
|
3662 |
|
|
*pmode = result_mode;
|
3663 |
|
|
return;
|
3664 |
|
|
}
|
3665 |
|
|
|
3666 |
|
|
/* Otherwise call a library function, memcmp. */
|
3667 |
|
|
libfunc = memcmp_libfunc;
|
3668 |
|
|
length_type = sizetype;
|
3669 |
|
|
result_mode = TYPE_MODE (integer_type_node);
|
3670 |
|
|
cmp_mode = TYPE_MODE (length_type);
|
3671 |
|
|
size = convert_to_mode (TYPE_MODE (length_type), size,
|
3672 |
|
|
TYPE_UNSIGNED (length_type));
|
3673 |
|
|
|
3674 |
|
|
result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
|
3675 |
|
|
result_mode, 3,
|
3676 |
|
|
XEXP (x, 0), Pmode,
|
3677 |
|
|
XEXP (y, 0), Pmode,
|
3678 |
|
|
size, cmp_mode);
|
3679 |
|
|
*px = result;
|
3680 |
|
|
*py = const0_rtx;
|
3681 |
|
|
*pmode = result_mode;
|
3682 |
|
|
return;
|
3683 |
|
|
}
|
3684 |
|
|
|
3685 |
|
|
/* Don't allow operands to the compare to trap, as that can put the
|
3686 |
|
|
compare and branch in different basic blocks. */
|
3687 |
|
|
if (flag_non_call_exceptions)
|
3688 |
|
|
{
|
3689 |
|
|
if (may_trap_p (x))
|
3690 |
|
|
x = force_reg (mode, x);
|
3691 |
|
|
if (may_trap_p (y))
|
3692 |
|
|
y = force_reg (mode, y);
|
3693 |
|
|
}
|
3694 |
|
|
|
3695 |
|
|
*px = x;
|
3696 |
|
|
*py = y;
|
3697 |
|
|
if (can_compare_p (*pcomparison, mode, purpose))
|
3698 |
|
|
return;
|
3699 |
|
|
|
3700 |
|
|
/* Handle a lib call just for the mode we are using. */
|
3701 |
|
|
|
3702 |
|
|
if (cmp_optab->handlers[(int) mode].libfunc && !SCALAR_FLOAT_MODE_P (mode))
|
3703 |
|
|
{
|
3704 |
|
|
rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
|
3705 |
|
|
rtx result;
|
3706 |
|
|
|
3707 |
|
|
/* If we want unsigned, and this mode has a distinct unsigned
|
3708 |
|
|
comparison routine, use that. */
|
3709 |
|
|
if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
|
3710 |
|
|
libfunc = ucmp_optab->handlers[(int) mode].libfunc;
|
3711 |
|
|
|
3712 |
|
|
result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
|
3713 |
|
|
word_mode, 2, x, mode, y, mode);
|
3714 |
|
|
|
3715 |
|
|
/* There are two kinds of comparison routines. Biased routines
|
3716 |
|
|
return 0/1/2, and unbiased routines return -1/0/1. Other parts
|
3717 |
|
|
of gcc expect that the comparison operation is equivalent
|
3718 |
|
|
to the modified comparison. For signed comparisons compare the
|
3719 |
|
|
result against 1 in the biased case, and zero in the unbiased
|
3720 |
|
|
case. For unsigned comparisons always compare against 1 after
|
3721 |
|
|
biasing the unbiased result by adding 1. This gives us a way to
|
3722 |
|
|
represent LTU. */
|
3723 |
|
|
*px = result;
|
3724 |
|
|
*pmode = word_mode;
|
3725 |
|
|
*py = const1_rtx;
|
3726 |
|
|
|
3727 |
|
|
if (!TARGET_LIB_INT_CMP_BIASED)
|
3728 |
|
|
{
|
3729 |
|
|
if (*punsignedp)
|
3730 |
|
|
*px = plus_constant (result, 1);
|
3731 |
|
|
else
|
3732 |
|
|
*py = const0_rtx;
|
3733 |
|
|
}
|
3734 |
|
|
return;
|
3735 |
|
|
}
|
3736 |
|
|
|
3737 |
|
|
gcc_assert (SCALAR_FLOAT_MODE_P (mode));
|
3738 |
|
|
prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
|
3739 |
|
|
}
|
3740 |
|
|
|
3741 |
|
|
/* Before emitting an insn with code ICODE, make sure that X, which is going
|
3742 |
|
|
to be used for operand OPNUM of the insn, is converted from mode MODE to
|
3743 |
|
|
WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
|
3744 |
|
|
that it is accepted by the operand predicate. Return the new value. */
|
3745 |
|
|
|
3746 |
|
|
static rtx
|
3747 |
|
|
prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
|
3748 |
|
|
enum machine_mode wider_mode, int unsignedp)
|
3749 |
|
|
{
|
3750 |
|
|
if (mode != wider_mode)
|
3751 |
|
|
x = convert_modes (wider_mode, mode, x, unsignedp);
|
3752 |
|
|
|
3753 |
|
|
if (!insn_data[icode].operand[opnum].predicate
|
3754 |
|
|
(x, insn_data[icode].operand[opnum].mode))
|
3755 |
|
|
{
|
3756 |
|
|
if (no_new_pseudos)
|
3757 |
|
|
return NULL_RTX;
|
3758 |
|
|
x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
|
3759 |
|
|
}
|
3760 |
|
|
|
3761 |
|
|
return x;
|
3762 |
|
|
}
|
3763 |
|
|
|
3764 |
|
|
/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
|
3765 |
|
|
we can do the comparison.
|
3766 |
|
|
The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
|
3767 |
|
|
be NULL_RTX which indicates that only a comparison is to be generated. */
|
3768 |
|
|
|
3769 |
|
|
static void
|
3770 |
|
|
emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
|
3771 |
|
|
enum rtx_code comparison, int unsignedp, rtx label)
|
3772 |
|
|
{
|
3773 |
|
|
rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
|
3774 |
|
|
enum mode_class class = GET_MODE_CLASS (mode);
|
3775 |
|
|
enum machine_mode wider_mode = mode;
|
3776 |
|
|
|
3777 |
|
|
/* Try combined insns first. */
|
3778 |
|
|
do
|
3779 |
|
|
{
|
3780 |
|
|
enum insn_code icode;
|
3781 |
|
|
PUT_MODE (test, wider_mode);
|
3782 |
|
|
|
3783 |
|
|
if (label)
|
3784 |
|
|
{
|
3785 |
|
|
icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
|
3786 |
|
|
|
3787 |
|
|
if (icode != CODE_FOR_nothing
|
3788 |
|
|
&& insn_data[icode].operand[0].predicate (test, wider_mode))
|
3789 |
|
|
{
|
3790 |
|
|
x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
|
3791 |
|
|
y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
|
3792 |
|
|
emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
|
3793 |
|
|
return;
|
3794 |
|
|
}
|
3795 |
|
|
}
|
3796 |
|
|
|
3797 |
|
|
/* Handle some compares against zero. */
|
3798 |
|
|
icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
|
3799 |
|
|
if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
|
3800 |
|
|
{
|
3801 |
|
|
x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
|
3802 |
|
|
emit_insn (GEN_FCN (icode) (x));
|
3803 |
|
|
if (label)
|
3804 |
|
|
emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
|
3805 |
|
|
return;
|
3806 |
|
|
}
|
3807 |
|
|
|
3808 |
|
|
/* Handle compares for which there is a directly suitable insn. */
|
3809 |
|
|
|
3810 |
|
|
icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
|
3811 |
|
|
if (icode != CODE_FOR_nothing)
|
3812 |
|
|
{
|
3813 |
|
|
x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
|
3814 |
|
|
y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
|
3815 |
|
|
emit_insn (GEN_FCN (icode) (x, y));
|
3816 |
|
|
if (label)
|
3817 |
|
|
emit_jump_insn (bcc_gen_fctn[(int) comparison] (label));
|
3818 |
|
|
return;
|
3819 |
|
|
}
|
3820 |
|
|
|
3821 |
|
|
if (!CLASS_HAS_WIDER_MODES_P (class))
|
3822 |
|
|
break;
|
3823 |
|
|
|
3824 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode);
|
3825 |
|
|
}
|
3826 |
|
|
while (wider_mode != VOIDmode);
|
3827 |
|
|
|
3828 |
|
|
gcc_unreachable ();
|
3829 |
|
|
}
|
3830 |
|
|
|
3831 |
|
|
/* Generate code to compare X with Y so that the condition codes are
|
3832 |
|
|
set and to jump to LABEL if the condition is true. If X is a
|
3833 |
|
|
constant and Y is not a constant, then the comparison is swapped to
|
3834 |
|
|
ensure that the comparison RTL has the canonical form.
|
3835 |
|
|
|
3836 |
|
|
UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
|
3837 |
|
|
need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
|
3838 |
|
|
the proper branch condition code.
|
3839 |
|
|
|
3840 |
|
|
If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
|
3841 |
|
|
|
3842 |
|
|
MODE is the mode of the inputs (in case they are const_int).
|
3843 |
|
|
|
3844 |
|
|
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
|
3845 |
|
|
be passed unchanged to emit_cmp_insn, then potentially converted into an
|
3846 |
|
|
unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
|
3847 |
|
|
|
3848 |
|
|
void
|
3849 |
|
|
emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
|
3850 |
|
|
enum machine_mode mode, int unsignedp, rtx label)
|
3851 |
|
|
{
|
3852 |
|
|
rtx op0 = x, op1 = y;
|
3853 |
|
|
|
3854 |
|
|
/* Swap operands and condition to ensure canonical RTL. */
|
3855 |
|
|
if (swap_commutative_operands_p (x, y))
|
3856 |
|
|
{
|
3857 |
|
|
/* If we're not emitting a branch, this means some caller
|
3858 |
|
|
is out of sync. */
|
3859 |
|
|
gcc_assert (label);
|
3860 |
|
|
|
3861 |
|
|
op0 = y, op1 = x;
|
3862 |
|
|
comparison = swap_condition (comparison);
|
3863 |
|
|
}
|
3864 |
|
|
|
3865 |
|
|
#ifdef HAVE_cc0
|
3866 |
|
|
/* If OP0 is still a constant, then both X and Y must be constants.
|
3867 |
|
|
Force X into a register to create canonical RTL. */
|
3868 |
|
|
if (CONSTANT_P (op0))
|
3869 |
|
|
op0 = force_reg (mode, op0);
|
3870 |
|
|
#endif
|
3871 |
|
|
|
3872 |
|
|
if (unsignedp)
|
3873 |
|
|
comparison = unsigned_condition (comparison);
|
3874 |
|
|
|
3875 |
|
|
prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
|
3876 |
|
|
ccp_jump);
|
3877 |
|
|
emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
|
3878 |
|
|
}
|
3879 |
|
|
|
3880 |
|
|
/* Like emit_cmp_and_jump_insns, but generate only the comparison. */
|
3881 |
|
|
|
3882 |
|
|
void
|
3883 |
|
|
emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
|
3884 |
|
|
enum machine_mode mode, int unsignedp)
|
3885 |
|
|
{
|
3886 |
|
|
emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
|
3887 |
|
|
}
|
3888 |
|
|
|
3889 |
|
|
/* Emit a library call comparison between floating point X and Y.
|
3890 |
|
|
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
|
3891 |
|
|
|
3892 |
|
|
static void
|
3893 |
|
|
prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
|
3894 |
|
|
enum machine_mode *pmode, int *punsignedp)
|
3895 |
|
|
{
|
3896 |
|
|
enum rtx_code comparison = *pcomparison;
|
3897 |
|
|
enum rtx_code swapped = swap_condition (comparison);
|
3898 |
|
|
enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
|
3899 |
|
|
rtx x = *px;
|
3900 |
|
|
rtx y = *py;
|
3901 |
|
|
enum machine_mode orig_mode = GET_MODE (x);
|
3902 |
|
|
enum machine_mode mode;
|
3903 |
|
|
rtx value, target, insns, equiv;
|
3904 |
|
|
rtx libfunc = 0;
|
3905 |
|
|
bool reversed_p = false;
|
3906 |
|
|
|
3907 |
|
|
for (mode = orig_mode;
|
3908 |
|
|
mode != VOIDmode;
|
3909 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
3910 |
|
|
{
|
3911 |
|
|
if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
|
3912 |
|
|
break;
|
3913 |
|
|
|
3914 |
|
|
if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
|
3915 |
|
|
{
|
3916 |
|
|
rtx tmp;
|
3917 |
|
|
tmp = x; x = y; y = tmp;
|
3918 |
|
|
comparison = swapped;
|
3919 |
|
|
break;
|
3920 |
|
|
}
|
3921 |
|
|
|
3922 |
|
|
if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc)
|
3923 |
|
|
&& FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
|
3924 |
|
|
{
|
3925 |
|
|
comparison = reversed;
|
3926 |
|
|
reversed_p = true;
|
3927 |
|
|
break;
|
3928 |
|
|
}
|
3929 |
|
|
}
|
3930 |
|
|
|
3931 |
|
|
gcc_assert (mode != VOIDmode);
|
3932 |
|
|
|
3933 |
|
|
if (mode != orig_mode)
|
3934 |
|
|
{
|
3935 |
|
|
x = convert_to_mode (mode, x, 0);
|
3936 |
|
|
y = convert_to_mode (mode, y, 0);
|
3937 |
|
|
}
|
3938 |
|
|
|
3939 |
|
|
/* Attach a REG_EQUAL note describing the semantics of the libcall to
|
3940 |
|
|
the RTL. The allows the RTL optimizers to delete the libcall if the
|
3941 |
|
|
condition can be determined at compile-time. */
|
3942 |
|
|
if (comparison == UNORDERED)
|
3943 |
|
|
{
|
3944 |
|
|
rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
|
3945 |
|
|
equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
|
3946 |
|
|
equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
|
3947 |
|
|
temp, const_true_rtx, equiv);
|
3948 |
|
|
}
|
3949 |
|
|
else
|
3950 |
|
|
{
|
3951 |
|
|
equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
|
3952 |
|
|
if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
|
3953 |
|
|
{
|
3954 |
|
|
rtx true_rtx, false_rtx;
|
3955 |
|
|
|
3956 |
|
|
switch (comparison)
|
3957 |
|
|
{
|
3958 |
|
|
case EQ:
|
3959 |
|
|
true_rtx = const0_rtx;
|
3960 |
|
|
false_rtx = const_true_rtx;
|
3961 |
|
|
break;
|
3962 |
|
|
|
3963 |
|
|
case NE:
|
3964 |
|
|
true_rtx = const_true_rtx;
|
3965 |
|
|
false_rtx = const0_rtx;
|
3966 |
|
|
break;
|
3967 |
|
|
|
3968 |
|
|
case GT:
|
3969 |
|
|
true_rtx = const1_rtx;
|
3970 |
|
|
false_rtx = const0_rtx;
|
3971 |
|
|
break;
|
3972 |
|
|
|
3973 |
|
|
case GE:
|
3974 |
|
|
true_rtx = const0_rtx;
|
3975 |
|
|
false_rtx = constm1_rtx;
|
3976 |
|
|
break;
|
3977 |
|
|
|
3978 |
|
|
case LT:
|
3979 |
|
|
true_rtx = constm1_rtx;
|
3980 |
|
|
false_rtx = const0_rtx;
|
3981 |
|
|
break;
|
3982 |
|
|
|
3983 |
|
|
case LE:
|
3984 |
|
|
true_rtx = const0_rtx;
|
3985 |
|
|
false_rtx = const1_rtx;
|
3986 |
|
|
break;
|
3987 |
|
|
|
3988 |
|
|
default:
|
3989 |
|
|
gcc_unreachable ();
|
3990 |
|
|
}
|
3991 |
|
|
equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
|
3992 |
|
|
equiv, true_rtx, false_rtx);
|
3993 |
|
|
}
|
3994 |
|
|
}
|
3995 |
|
|
|
3996 |
|
|
start_sequence ();
|
3997 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
3998 |
|
|
word_mode, 2, x, mode, y, mode);
|
3999 |
|
|
insns = get_insns ();
|
4000 |
|
|
end_sequence ();
|
4001 |
|
|
|
4002 |
|
|
target = gen_reg_rtx (word_mode);
|
4003 |
|
|
emit_libcall_block (insns, target, value, equiv);
|
4004 |
|
|
|
4005 |
|
|
if (comparison == UNORDERED
|
4006 |
|
|
|| FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
|
4007 |
|
|
comparison = reversed_p ? EQ : NE;
|
4008 |
|
|
|
4009 |
|
|
*px = target;
|
4010 |
|
|
*py = const0_rtx;
|
4011 |
|
|
*pmode = word_mode;
|
4012 |
|
|
*pcomparison = comparison;
|
4013 |
|
|
*punsignedp = 0;
|
4014 |
|
|
}
|
4015 |
|
|
|
4016 |
|
|
/* Generate code to indirectly jump to a location given in the rtx LOC. */
|
4017 |
|
|
|
4018 |
|
|
void
|
4019 |
|
|
emit_indirect_jump (rtx loc)
|
4020 |
|
|
{
|
4021 |
|
|
if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
|
4022 |
|
|
(loc, Pmode))
|
4023 |
|
|
loc = copy_to_mode_reg (Pmode, loc);
|
4024 |
|
|
|
4025 |
|
|
emit_jump_insn (gen_indirect_jump (loc));
|
4026 |
|
|
emit_barrier ();
|
4027 |
|
|
}
|
4028 |
|
|
|
4029 |
|
|
#ifdef HAVE_conditional_move
|
4030 |
|
|
|
4031 |
|
|
/* Emit a conditional move instruction if the machine supports one for that
|
4032 |
|
|
condition and machine mode.
|
4033 |
|
|
|
4034 |
|
|
OP0 and OP1 are the operands that should be compared using CODE. CMODE is
|
4035 |
|
|
the mode to use should they be constants. If it is VOIDmode, they cannot
|
4036 |
|
|
both be constants.
|
4037 |
|
|
|
4038 |
|
|
OP2 should be stored in TARGET if the comparison is true, otherwise OP3
|
4039 |
|
|
should be stored there. MODE is the mode to use should they be constants.
|
4040 |
|
|
If it is VOIDmode, they cannot both be constants.
|
4041 |
|
|
|
4042 |
|
|
The result is either TARGET (perhaps modified) or NULL_RTX if the operation
|
4043 |
|
|
is not supported. */
|
4044 |
|
|
|
4045 |
|
|
rtx
|
4046 |
|
|
emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
4047 |
|
|
enum machine_mode cmode, rtx op2, rtx op3,
|
4048 |
|
|
enum machine_mode mode, int unsignedp)
|
4049 |
|
|
{
|
4050 |
|
|
rtx tem, subtarget, comparison, insn;
|
4051 |
|
|
enum insn_code icode;
|
4052 |
|
|
enum rtx_code reversed;
|
4053 |
|
|
|
4054 |
|
|
/* If one operand is constant, make it the second one. Only do this
|
4055 |
|
|
if the other operand is not constant as well. */
|
4056 |
|
|
|
4057 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
4058 |
|
|
{
|
4059 |
|
|
tem = op0;
|
4060 |
|
|
op0 = op1;
|
4061 |
|
|
op1 = tem;
|
4062 |
|
|
code = swap_condition (code);
|
4063 |
|
|
}
|
4064 |
|
|
|
4065 |
|
|
/* get_condition will prefer to generate LT and GT even if the old
|
4066 |
|
|
comparison was against zero, so undo that canonicalization here since
|
4067 |
|
|
comparisons against zero are cheaper. */
|
4068 |
|
|
if (code == LT && op1 == const1_rtx)
|
4069 |
|
|
code = LE, op1 = const0_rtx;
|
4070 |
|
|
else if (code == GT && op1 == constm1_rtx)
|
4071 |
|
|
code = GE, op1 = const0_rtx;
|
4072 |
|
|
|
4073 |
|
|
if (cmode == VOIDmode)
|
4074 |
|
|
cmode = GET_MODE (op0);
|
4075 |
|
|
|
4076 |
|
|
if (swap_commutative_operands_p (op2, op3)
|
4077 |
|
|
&& ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
|
4078 |
|
|
!= UNKNOWN))
|
4079 |
|
|
{
|
4080 |
|
|
tem = op2;
|
4081 |
|
|
op2 = op3;
|
4082 |
|
|
op3 = tem;
|
4083 |
|
|
code = reversed;
|
4084 |
|
|
}
|
4085 |
|
|
|
4086 |
|
|
if (mode == VOIDmode)
|
4087 |
|
|
mode = GET_MODE (op2);
|
4088 |
|
|
|
4089 |
|
|
icode = movcc_gen_code[mode];
|
4090 |
|
|
|
4091 |
|
|
if (icode == CODE_FOR_nothing)
|
4092 |
|
|
return 0;
|
4093 |
|
|
|
4094 |
|
|
if (!target)
|
4095 |
|
|
target = gen_reg_rtx (mode);
|
4096 |
|
|
|
4097 |
|
|
subtarget = target;
|
4098 |
|
|
|
4099 |
|
|
/* If the insn doesn't accept these operands, put them in pseudos. */
|
4100 |
|
|
|
4101 |
|
|
if (!insn_data[icode].operand[0].predicate
|
4102 |
|
|
(subtarget, insn_data[icode].operand[0].mode))
|
4103 |
|
|
subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
|
4104 |
|
|
|
4105 |
|
|
if (!insn_data[icode].operand[2].predicate
|
4106 |
|
|
(op2, insn_data[icode].operand[2].mode))
|
4107 |
|
|
op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
|
4108 |
|
|
|
4109 |
|
|
if (!insn_data[icode].operand[3].predicate
|
4110 |
|
|
(op3, insn_data[icode].operand[3].mode))
|
4111 |
|
|
op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
|
4112 |
|
|
|
4113 |
|
|
/* Everything should now be in the suitable form, so emit the compare insn
|
4114 |
|
|
and then the conditional move. */
|
4115 |
|
|
|
4116 |
|
|
comparison
|
4117 |
|
|
= compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
|
4118 |
|
|
|
4119 |
|
|
/* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
|
4120 |
|
|
/* We can get const0_rtx or const_true_rtx in some circumstances. Just
|
4121 |
|
|
return NULL and let the caller figure out how best to deal with this
|
4122 |
|
|
situation. */
|
4123 |
|
|
if (GET_CODE (comparison) != code)
|
4124 |
|
|
return NULL_RTX;
|
4125 |
|
|
|
4126 |
|
|
insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
|
4127 |
|
|
|
4128 |
|
|
/* If that failed, then give up. */
|
4129 |
|
|
if (insn == 0)
|
4130 |
|
|
return 0;
|
4131 |
|
|
|
4132 |
|
|
emit_insn (insn);
|
4133 |
|
|
|
4134 |
|
|
if (subtarget != target)
|
4135 |
|
|
convert_move (target, subtarget, 0);
|
4136 |
|
|
|
4137 |
|
|
return target;
|
4138 |
|
|
}
|
4139 |
|
|
|
4140 |
|
|
/* Return nonzero if a conditional move of mode MODE is supported.
|
4141 |
|
|
|
4142 |
|
|
This function is for combine so it can tell whether an insn that looks
|
4143 |
|
|
like a conditional move is actually supported by the hardware. If we
|
4144 |
|
|
guess wrong we lose a bit on optimization, but that's it. */
|
4145 |
|
|
/* ??? sparc64 supports conditionally moving integers values based on fp
|
4146 |
|
|
comparisons, and vice versa. How do we handle them? */
|
4147 |
|
|
|
4148 |
|
|
int
|
4149 |
|
|
can_conditionally_move_p (enum machine_mode mode)
|
4150 |
|
|
{
|
4151 |
|
|
if (movcc_gen_code[mode] != CODE_FOR_nothing)
|
4152 |
|
|
return 1;
|
4153 |
|
|
|
4154 |
|
|
return 0;
|
4155 |
|
|
}
|
4156 |
|
|
|
4157 |
|
|
#endif /* HAVE_conditional_move */
|
4158 |
|
|
|
4159 |
|
|
/* Emit a conditional addition instruction if the machine supports one for that
|
4160 |
|
|
condition and machine mode.
|
4161 |
|
|
|
4162 |
|
|
OP0 and OP1 are the operands that should be compared using CODE. CMODE is
|
4163 |
|
|
the mode to use should they be constants. If it is VOIDmode, they cannot
|
4164 |
|
|
both be constants.
|
4165 |
|
|
|
4166 |
|
|
OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
|
4167 |
|
|
should be stored there. MODE is the mode to use should they be constants.
|
4168 |
|
|
If it is VOIDmode, they cannot both be constants.
|
4169 |
|
|
|
4170 |
|
|
The result is either TARGET (perhaps modified) or NULL_RTX if the operation
|
4171 |
|
|
is not supported. */
|
4172 |
|
|
|
4173 |
|
|
rtx
|
4174 |
|
|
emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
4175 |
|
|
enum machine_mode cmode, rtx op2, rtx op3,
|
4176 |
|
|
enum machine_mode mode, int unsignedp)
|
4177 |
|
|
{
|
4178 |
|
|
rtx tem, subtarget, comparison, insn;
|
4179 |
|
|
enum insn_code icode;
|
4180 |
|
|
enum rtx_code reversed;
|
4181 |
|
|
|
4182 |
|
|
/* If one operand is constant, make it the second one. Only do this
|
4183 |
|
|
if the other operand is not constant as well. */
|
4184 |
|
|
|
4185 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
4186 |
|
|
{
|
4187 |
|
|
tem = op0;
|
4188 |
|
|
op0 = op1;
|
4189 |
|
|
op1 = tem;
|
4190 |
|
|
code = swap_condition (code);
|
4191 |
|
|
}
|
4192 |
|
|
|
4193 |
|
|
/* get_condition will prefer to generate LT and GT even if the old
|
4194 |
|
|
comparison was against zero, so undo that canonicalization here since
|
4195 |
|
|
comparisons against zero are cheaper. */
|
4196 |
|
|
if (code == LT && op1 == const1_rtx)
|
4197 |
|
|
code = LE, op1 = const0_rtx;
|
4198 |
|
|
else if (code == GT && op1 == constm1_rtx)
|
4199 |
|
|
code = GE, op1 = const0_rtx;
|
4200 |
|
|
|
4201 |
|
|
if (cmode == VOIDmode)
|
4202 |
|
|
cmode = GET_MODE (op0);
|
4203 |
|
|
|
4204 |
|
|
if (swap_commutative_operands_p (op2, op3)
|
4205 |
|
|
&& ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
|
4206 |
|
|
!= UNKNOWN))
|
4207 |
|
|
{
|
4208 |
|
|
tem = op2;
|
4209 |
|
|
op2 = op3;
|
4210 |
|
|
op3 = tem;
|
4211 |
|
|
code = reversed;
|
4212 |
|
|
}
|
4213 |
|
|
|
4214 |
|
|
if (mode == VOIDmode)
|
4215 |
|
|
mode = GET_MODE (op2);
|
4216 |
|
|
|
4217 |
|
|
icode = addcc_optab->handlers[(int) mode].insn_code;
|
4218 |
|
|
|
4219 |
|
|
if (icode == CODE_FOR_nothing)
|
4220 |
|
|
return 0;
|
4221 |
|
|
|
4222 |
|
|
if (!target)
|
4223 |
|
|
target = gen_reg_rtx (mode);
|
4224 |
|
|
|
4225 |
|
|
/* If the insn doesn't accept these operands, put them in pseudos. */
|
4226 |
|
|
|
4227 |
|
|
if (!insn_data[icode].operand[0].predicate
|
4228 |
|
|
(target, insn_data[icode].operand[0].mode))
|
4229 |
|
|
subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
|
4230 |
|
|
else
|
4231 |
|
|
subtarget = target;
|
4232 |
|
|
|
4233 |
|
|
if (!insn_data[icode].operand[2].predicate
|
4234 |
|
|
(op2, insn_data[icode].operand[2].mode))
|
4235 |
|
|
op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
|
4236 |
|
|
|
4237 |
|
|
if (!insn_data[icode].operand[3].predicate
|
4238 |
|
|
(op3, insn_data[icode].operand[3].mode))
|
4239 |
|
|
op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
|
4240 |
|
|
|
4241 |
|
|
/* Everything should now be in the suitable form, so emit the compare insn
|
4242 |
|
|
and then the conditional move. */
|
4243 |
|
|
|
4244 |
|
|
comparison
|
4245 |
|
|
= compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
|
4246 |
|
|
|
4247 |
|
|
/* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
|
4248 |
|
|
/* We can get const0_rtx or const_true_rtx in some circumstances. Just
|
4249 |
|
|
return NULL and let the caller figure out how best to deal with this
|
4250 |
|
|
situation. */
|
4251 |
|
|
if (GET_CODE (comparison) != code)
|
4252 |
|
|
return NULL_RTX;
|
4253 |
|
|
|
4254 |
|
|
insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
|
4255 |
|
|
|
4256 |
|
|
/* If that failed, then give up. */
|
4257 |
|
|
if (insn == 0)
|
4258 |
|
|
return 0;
|
4259 |
|
|
|
4260 |
|
|
emit_insn (insn);
|
4261 |
|
|
|
4262 |
|
|
if (subtarget != target)
|
4263 |
|
|
convert_move (target, subtarget, 0);
|
4264 |
|
|
|
4265 |
|
|
return target;
|
4266 |
|
|
}
|
4267 |
|
|
|
4268 |
|
|
/* These functions attempt to generate an insn body, rather than
|
4269 |
|
|
emitting the insn, but if the gen function already emits them, we
|
4270 |
|
|
make no attempt to turn them back into naked patterns. */
|
4271 |
|
|
|
4272 |
|
|
/* Generate and return an insn body to add Y to X. */
|
4273 |
|
|
|
4274 |
|
|
rtx
|
4275 |
|
|
gen_add2_insn (rtx x, rtx y)
|
4276 |
|
|
{
|
4277 |
|
|
int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
|
4278 |
|
|
|
4279 |
|
|
gcc_assert (insn_data[icode].operand[0].predicate
|
4280 |
|
|
(x, insn_data[icode].operand[0].mode));
|
4281 |
|
|
gcc_assert (insn_data[icode].operand[1].predicate
|
4282 |
|
|
(x, insn_data[icode].operand[1].mode));
|
4283 |
|
|
gcc_assert (insn_data[icode].operand[2].predicate
|
4284 |
|
|
(y, insn_data[icode].operand[2].mode));
|
4285 |
|
|
|
4286 |
|
|
return GEN_FCN (icode) (x, x, y);
|
4287 |
|
|
}
|
4288 |
|
|
|
4289 |
|
|
/* Generate and return an insn body to add r1 and c,
|
4290 |
|
|
storing the result in r0. */
|
4291 |
|
|
rtx
|
4292 |
|
|
gen_add3_insn (rtx r0, rtx r1, rtx c)
|
4293 |
|
|
{
|
4294 |
|
|
int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
|
4295 |
|
|
|
4296 |
|
|
if (icode == CODE_FOR_nothing
|
4297 |
|
|
|| !(insn_data[icode].operand[0].predicate
|
4298 |
|
|
(r0, insn_data[icode].operand[0].mode))
|
4299 |
|
|
|| !(insn_data[icode].operand[1].predicate
|
4300 |
|
|
(r1, insn_data[icode].operand[1].mode))
|
4301 |
|
|
|| !(insn_data[icode].operand[2].predicate
|
4302 |
|
|
(c, insn_data[icode].operand[2].mode)))
|
4303 |
|
|
return NULL_RTX;
|
4304 |
|
|
|
4305 |
|
|
return GEN_FCN (icode) (r0, r1, c);
|
4306 |
|
|
}
|
4307 |
|
|
|
4308 |
|
|
int
|
4309 |
|
|
have_add2_insn (rtx x, rtx y)
|
4310 |
|
|
{
|
4311 |
|
|
int icode;
|
4312 |
|
|
|
4313 |
|
|
gcc_assert (GET_MODE (x) != VOIDmode);
|
4314 |
|
|
|
4315 |
|
|
icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
|
4316 |
|
|
|
4317 |
|
|
if (icode == CODE_FOR_nothing)
|
4318 |
|
|
return 0;
|
4319 |
|
|
|
4320 |
|
|
if (!(insn_data[icode].operand[0].predicate
|
4321 |
|
|
(x, insn_data[icode].operand[0].mode))
|
4322 |
|
|
|| !(insn_data[icode].operand[1].predicate
|
4323 |
|
|
(x, insn_data[icode].operand[1].mode))
|
4324 |
|
|
|| !(insn_data[icode].operand[2].predicate
|
4325 |
|
|
(y, insn_data[icode].operand[2].mode)))
|
4326 |
|
|
return 0;
|
4327 |
|
|
|
4328 |
|
|
return 1;
|
4329 |
|
|
}
|
4330 |
|
|
|
4331 |
|
|
/* Generate and return an insn body to subtract Y from X. */
|
4332 |
|
|
|
4333 |
|
|
rtx
|
4334 |
|
|
gen_sub2_insn (rtx x, rtx y)
|
4335 |
|
|
{
|
4336 |
|
|
int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
|
4337 |
|
|
|
4338 |
|
|
gcc_assert (insn_data[icode].operand[0].predicate
|
4339 |
|
|
(x, insn_data[icode].operand[0].mode));
|
4340 |
|
|
gcc_assert (insn_data[icode].operand[1].predicate
|
4341 |
|
|
(x, insn_data[icode].operand[1].mode));
|
4342 |
|
|
gcc_assert (insn_data[icode].operand[2].predicate
|
4343 |
|
|
(y, insn_data[icode].operand[2].mode));
|
4344 |
|
|
|
4345 |
|
|
return GEN_FCN (icode) (x, x, y);
|
4346 |
|
|
}
|
4347 |
|
|
|
4348 |
|
|
/* Generate and return an insn body to subtract r1 and c,
|
4349 |
|
|
storing the result in r0. */
|
4350 |
|
|
rtx
|
4351 |
|
|
gen_sub3_insn (rtx r0, rtx r1, rtx c)
|
4352 |
|
|
{
|
4353 |
|
|
int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
|
4354 |
|
|
|
4355 |
|
|
if (icode == CODE_FOR_nothing
|
4356 |
|
|
|| !(insn_data[icode].operand[0].predicate
|
4357 |
|
|
(r0, insn_data[icode].operand[0].mode))
|
4358 |
|
|
|| !(insn_data[icode].operand[1].predicate
|
4359 |
|
|
(r1, insn_data[icode].operand[1].mode))
|
4360 |
|
|
|| !(insn_data[icode].operand[2].predicate
|
4361 |
|
|
(c, insn_data[icode].operand[2].mode)))
|
4362 |
|
|
return NULL_RTX;
|
4363 |
|
|
|
4364 |
|
|
return GEN_FCN (icode) (r0, r1, c);
|
4365 |
|
|
}
|
4366 |
|
|
|
4367 |
|
|
int
|
4368 |
|
|
have_sub2_insn (rtx x, rtx y)
|
4369 |
|
|
{
|
4370 |
|
|
int icode;
|
4371 |
|
|
|
4372 |
|
|
gcc_assert (GET_MODE (x) != VOIDmode);
|
4373 |
|
|
|
4374 |
|
|
icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
|
4375 |
|
|
|
4376 |
|
|
if (icode == CODE_FOR_nothing)
|
4377 |
|
|
return 0;
|
4378 |
|
|
|
4379 |
|
|
if (!(insn_data[icode].operand[0].predicate
|
4380 |
|
|
(x, insn_data[icode].operand[0].mode))
|
4381 |
|
|
|| !(insn_data[icode].operand[1].predicate
|
4382 |
|
|
(x, insn_data[icode].operand[1].mode))
|
4383 |
|
|
|| !(insn_data[icode].operand[2].predicate
|
4384 |
|
|
(y, insn_data[icode].operand[2].mode)))
|
4385 |
|
|
return 0;
|
4386 |
|
|
|
4387 |
|
|
return 1;
|
4388 |
|
|
}
|
4389 |
|
|
|
4390 |
|
|
/* Generate the body of an instruction to copy Y into X.
|
4391 |
|
|
It may be a list of insns, if one insn isn't enough. */
|
4392 |
|
|
|
4393 |
|
|
rtx
|
4394 |
|
|
gen_move_insn (rtx x, rtx y)
|
4395 |
|
|
{
|
4396 |
|
|
rtx seq;
|
4397 |
|
|
|
4398 |
|
|
start_sequence ();
|
4399 |
|
|
emit_move_insn_1 (x, y);
|
4400 |
|
|
seq = get_insns ();
|
4401 |
|
|
end_sequence ();
|
4402 |
|
|
return seq;
|
4403 |
|
|
}
|
4404 |
|
|
|
4405 |
|
|
/* Return the insn code used to extend FROM_MODE to TO_MODE.
|
4406 |
|
|
UNSIGNEDP specifies zero-extension instead of sign-extension. If
|
4407 |
|
|
no such operation exists, CODE_FOR_nothing will be returned. */
|
4408 |
|
|
|
4409 |
|
|
enum insn_code
|
4410 |
|
|
can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
|
4411 |
|
|
int unsignedp)
|
4412 |
|
|
{
|
4413 |
|
|
convert_optab tab;
|
4414 |
|
|
#ifdef HAVE_ptr_extend
|
4415 |
|
|
if (unsignedp < 0)
|
4416 |
|
|
return CODE_FOR_ptr_extend;
|
4417 |
|
|
#endif
|
4418 |
|
|
|
4419 |
|
|
tab = unsignedp ? zext_optab : sext_optab;
|
4420 |
|
|
return tab->handlers[to_mode][from_mode].insn_code;
|
4421 |
|
|
}
|
4422 |
|
|
|
4423 |
|
|
/* Generate the body of an insn to extend Y (with mode MFROM)
|
4424 |
|
|
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
|
4425 |
|
|
|
4426 |
|
|
rtx
|
4427 |
|
|
gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
|
4428 |
|
|
enum machine_mode mfrom, int unsignedp)
|
4429 |
|
|
{
|
4430 |
|
|
enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
|
4431 |
|
|
return GEN_FCN (icode) (x, y);
|
4432 |
|
|
}
|
4433 |
|
|
|
4434 |
|
|
/* can_fix_p and can_float_p say whether the target machine
|
4435 |
|
|
can directly convert a given fixed point type to
|
4436 |
|
|
a given floating point type, or vice versa.
|
4437 |
|
|
The returned value is the CODE_FOR_... value to use,
|
4438 |
|
|
or CODE_FOR_nothing if these modes cannot be directly converted.
|
4439 |
|
|
|
4440 |
|
|
*TRUNCP_PTR is set to 1 if it is necessary to output
|
4441 |
|
|
an explicit FTRUNC insn before the fix insn; otherwise 0. */
|
4442 |
|
|
|
4443 |
|
|
static enum insn_code
|
4444 |
|
|
can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
|
4445 |
|
|
int unsignedp, int *truncp_ptr)
|
4446 |
|
|
{
|
4447 |
|
|
convert_optab tab;
|
4448 |
|
|
enum insn_code icode;
|
4449 |
|
|
|
4450 |
|
|
tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
|
4451 |
|
|
icode = tab->handlers[fixmode][fltmode].insn_code;
|
4452 |
|
|
if (icode != CODE_FOR_nothing)
|
4453 |
|
|
{
|
4454 |
|
|
*truncp_ptr = 0;
|
4455 |
|
|
return icode;
|
4456 |
|
|
}
|
4457 |
|
|
|
4458 |
|
|
/* FIXME: This requires a port to define both FIX and FTRUNC pattern
|
4459 |
|
|
for this to work. We need to rework the fix* and ftrunc* patterns
|
4460 |
|
|
and documentation. */
|
4461 |
|
|
tab = unsignedp ? ufix_optab : sfix_optab;
|
4462 |
|
|
icode = tab->handlers[fixmode][fltmode].insn_code;
|
4463 |
|
|
if (icode != CODE_FOR_nothing
|
4464 |
|
|
&& ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
|
4465 |
|
|
{
|
4466 |
|
|
*truncp_ptr = 1;
|
4467 |
|
|
return icode;
|
4468 |
|
|
}
|
4469 |
|
|
|
4470 |
|
|
*truncp_ptr = 0;
|
4471 |
|
|
return CODE_FOR_nothing;
|
4472 |
|
|
}
|
4473 |
|
|
|
4474 |
|
|
static enum insn_code
|
4475 |
|
|
can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
|
4476 |
|
|
int unsignedp)
|
4477 |
|
|
{
|
4478 |
|
|
convert_optab tab;
|
4479 |
|
|
|
4480 |
|
|
tab = unsignedp ? ufloat_optab : sfloat_optab;
|
4481 |
|
|
return tab->handlers[fltmode][fixmode].insn_code;
|
4482 |
|
|
}
|
4483 |
|
|
|
4484 |
|
|
/* Generate code to convert FROM to floating point
|
4485 |
|
|
and store in TO. FROM must be fixed point and not VOIDmode.
|
4486 |
|
|
UNSIGNEDP nonzero means regard FROM as unsigned.
|
4487 |
|
|
Normally this is done by correcting the final value
|
4488 |
|
|
if it is negative. */
|
4489 |
|
|
|
4490 |
|
|
void
|
4491 |
|
|
expand_float (rtx to, rtx from, int unsignedp)
|
4492 |
|
|
{
|
4493 |
|
|
enum insn_code icode;
|
4494 |
|
|
rtx target = to;
|
4495 |
|
|
enum machine_mode fmode, imode;
|
4496 |
|
|
bool can_do_signed = false;
|
4497 |
|
|
|
4498 |
|
|
/* Crash now, because we won't be able to decide which mode to use. */
|
4499 |
|
|
gcc_assert (GET_MODE (from) != VOIDmode);
|
4500 |
|
|
|
4501 |
|
|
/* Look for an insn to do the conversion. Do it in the specified
|
4502 |
|
|
modes if possible; otherwise convert either input, output or both to
|
4503 |
|
|
wider mode. If the integer mode is wider than the mode of FROM,
|
4504 |
|
|
we can do the conversion signed even if the input is unsigned. */
|
4505 |
|
|
|
4506 |
|
|
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
4507 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
4508 |
|
|
for (imode = GET_MODE (from); imode != VOIDmode;
|
4509 |
|
|
imode = GET_MODE_WIDER_MODE (imode))
|
4510 |
|
|
{
|
4511 |
|
|
int doing_unsigned = unsignedp;
|
4512 |
|
|
|
4513 |
|
|
if (fmode != GET_MODE (to)
|
4514 |
|
|
&& significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
|
4515 |
|
|
continue;
|
4516 |
|
|
|
4517 |
|
|
icode = can_float_p (fmode, imode, unsignedp);
|
4518 |
|
|
if (icode == CODE_FOR_nothing && unsignedp)
|
4519 |
|
|
{
|
4520 |
|
|
enum insn_code scode = can_float_p (fmode, imode, 0);
|
4521 |
|
|
if (scode != CODE_FOR_nothing)
|
4522 |
|
|
can_do_signed = true;
|
4523 |
|
|
if (imode != GET_MODE (from))
|
4524 |
|
|
icode = scode, doing_unsigned = 0;
|
4525 |
|
|
}
|
4526 |
|
|
|
4527 |
|
|
if (icode != CODE_FOR_nothing)
|
4528 |
|
|
{
|
4529 |
|
|
if (imode != GET_MODE (from))
|
4530 |
|
|
from = convert_to_mode (imode, from, unsignedp);
|
4531 |
|
|
|
4532 |
|
|
if (fmode != GET_MODE (to))
|
4533 |
|
|
target = gen_reg_rtx (fmode);
|
4534 |
|
|
|
4535 |
|
|
emit_unop_insn (icode, target, from,
|
4536 |
|
|
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
|
4537 |
|
|
|
4538 |
|
|
if (target != to)
|
4539 |
|
|
convert_move (to, target, 0);
|
4540 |
|
|
return;
|
4541 |
|
|
}
|
4542 |
|
|
}
|
4543 |
|
|
|
4544 |
|
|
/* Unsigned integer, and no way to convert directly. For binary
|
4545 |
|
|
floating point modes, convert as signed, then conditionally adjust
|
4546 |
|
|
the result. */
|
4547 |
|
|
if (unsignedp && can_do_signed && !DECIMAL_FLOAT_MODE_P (GET_MODE (to)))
|
4548 |
|
|
{
|
4549 |
|
|
rtx label = gen_label_rtx ();
|
4550 |
|
|
rtx temp;
|
4551 |
|
|
REAL_VALUE_TYPE offset;
|
4552 |
|
|
|
4553 |
|
|
/* Look for a usable floating mode FMODE wider than the source and at
|
4554 |
|
|
least as wide as the target. Using FMODE will avoid rounding woes
|
4555 |
|
|
with unsigned values greater than the signed maximum value. */
|
4556 |
|
|
|
4557 |
|
|
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
4558 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
4559 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
|
4560 |
|
|
&& can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
|
4561 |
|
|
break;
|
4562 |
|
|
|
4563 |
|
|
if (fmode == VOIDmode)
|
4564 |
|
|
{
|
4565 |
|
|
/* There is no such mode. Pretend the target is wide enough. */
|
4566 |
|
|
fmode = GET_MODE (to);
|
4567 |
|
|
|
4568 |
|
|
/* Avoid double-rounding when TO is narrower than FROM. */
|
4569 |
|
|
if ((significand_size (fmode) + 1)
|
4570 |
|
|
< GET_MODE_BITSIZE (GET_MODE (from)))
|
4571 |
|
|
{
|
4572 |
|
|
rtx temp1;
|
4573 |
|
|
rtx neglabel = gen_label_rtx ();
|
4574 |
|
|
|
4575 |
|
|
/* Don't use TARGET if it isn't a register, is a hard register,
|
4576 |
|
|
or is the wrong mode. */
|
4577 |
|
|
if (!REG_P (target)
|
4578 |
|
|
|| REGNO (target) < FIRST_PSEUDO_REGISTER
|
4579 |
|
|
|| GET_MODE (target) != fmode)
|
4580 |
|
|
target = gen_reg_rtx (fmode);
|
4581 |
|
|
|
4582 |
|
|
imode = GET_MODE (from);
|
4583 |
|
|
do_pending_stack_adjust ();
|
4584 |
|
|
|
4585 |
|
|
/* Test whether the sign bit is set. */
|
4586 |
|
|
emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
|
4587 |
|
|
0, neglabel);
|
4588 |
|
|
|
4589 |
|
|
/* The sign bit is not set. Convert as signed. */
|
4590 |
|
|
expand_float (target, from, 0);
|
4591 |
|
|
emit_jump_insn (gen_jump (label));
|
4592 |
|
|
emit_barrier ();
|
4593 |
|
|
|
4594 |
|
|
/* The sign bit is set.
|
4595 |
|
|
Convert to a usable (positive signed) value by shifting right
|
4596 |
|
|
one bit, while remembering if a nonzero bit was shifted
|
4597 |
|
|
out; i.e., compute (from & 1) | (from >> 1). */
|
4598 |
|
|
|
4599 |
|
|
emit_label (neglabel);
|
4600 |
|
|
temp = expand_binop (imode, and_optab, from, const1_rtx,
|
4601 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
4602 |
|
|
temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
|
4603 |
|
|
NULL_RTX, 1);
|
4604 |
|
|
temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
|
4605 |
|
|
OPTAB_LIB_WIDEN);
|
4606 |
|
|
expand_float (target, temp, 0);
|
4607 |
|
|
|
4608 |
|
|
/* Multiply by 2 to undo the shift above. */
|
4609 |
|
|
temp = expand_binop (fmode, add_optab, target, target,
|
4610 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
4611 |
|
|
if (temp != target)
|
4612 |
|
|
emit_move_insn (target, temp);
|
4613 |
|
|
|
4614 |
|
|
do_pending_stack_adjust ();
|
4615 |
|
|
emit_label (label);
|
4616 |
|
|
goto done;
|
4617 |
|
|
}
|
4618 |
|
|
}
|
4619 |
|
|
|
4620 |
|
|
/* If we are about to do some arithmetic to correct for an
|
4621 |
|
|
unsigned operand, do it in a pseudo-register. */
|
4622 |
|
|
|
4623 |
|
|
if (GET_MODE (to) != fmode
|
4624 |
|
|
|| !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
|
4625 |
|
|
target = gen_reg_rtx (fmode);
|
4626 |
|
|
|
4627 |
|
|
/* Convert as signed integer to floating. */
|
4628 |
|
|
expand_float (target, from, 0);
|
4629 |
|
|
|
4630 |
|
|
/* If FROM is negative (and therefore TO is negative),
|
4631 |
|
|
correct its value by 2**bitwidth. */
|
4632 |
|
|
|
4633 |
|
|
do_pending_stack_adjust ();
|
4634 |
|
|
emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
|
4635 |
|
|
0, label);
|
4636 |
|
|
|
4637 |
|
|
|
4638 |
|
|
real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
|
4639 |
|
|
temp = expand_binop (fmode, add_optab, target,
|
4640 |
|
|
CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
|
4641 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
4642 |
|
|
if (temp != target)
|
4643 |
|
|
emit_move_insn (target, temp);
|
4644 |
|
|
|
4645 |
|
|
do_pending_stack_adjust ();
|
4646 |
|
|
emit_label (label);
|
4647 |
|
|
goto done;
|
4648 |
|
|
}
|
4649 |
|
|
|
4650 |
|
|
/* No hardware instruction available; call a library routine. */
|
4651 |
|
|
{
|
4652 |
|
|
rtx libfunc;
|
4653 |
|
|
rtx insns;
|
4654 |
|
|
rtx value;
|
4655 |
|
|
convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
|
4656 |
|
|
|
4657 |
|
|
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
|
4658 |
|
|
from = convert_to_mode (SImode, from, unsignedp);
|
4659 |
|
|
|
4660 |
|
|
libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
|
4661 |
|
|
gcc_assert (libfunc);
|
4662 |
|
|
|
4663 |
|
|
start_sequence ();
|
4664 |
|
|
|
4665 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
4666 |
|
|
GET_MODE (to), 1, from,
|
4667 |
|
|
GET_MODE (from));
|
4668 |
|
|
insns = get_insns ();
|
4669 |
|
|
end_sequence ();
|
4670 |
|
|
|
4671 |
|
|
emit_libcall_block (insns, target, value,
|
4672 |
|
|
gen_rtx_FLOAT (GET_MODE (to), from));
|
4673 |
|
|
}
|
4674 |
|
|
|
4675 |
|
|
done:
|
4676 |
|
|
|
4677 |
|
|
/* Copy result to requested destination
|
4678 |
|
|
if we have been computing in a temp location. */
|
4679 |
|
|
|
4680 |
|
|
if (target != to)
|
4681 |
|
|
{
|
4682 |
|
|
if (GET_MODE (target) == GET_MODE (to))
|
4683 |
|
|
emit_move_insn (to, target);
|
4684 |
|
|
else
|
4685 |
|
|
convert_move (to, target, 0);
|
4686 |
|
|
}
|
4687 |
|
|
}
|
4688 |
|
|
|
4689 |
|
|
/* Generate code to convert FROM to fixed point and store in TO. FROM
|
4690 |
|
|
must be floating point. */
|
4691 |
|
|
|
4692 |
|
|
void
|
4693 |
|
|
expand_fix (rtx to, rtx from, int unsignedp)
|
4694 |
|
|
{
|
4695 |
|
|
enum insn_code icode;
|
4696 |
|
|
rtx target = to;
|
4697 |
|
|
enum machine_mode fmode, imode;
|
4698 |
|
|
int must_trunc = 0;
|
4699 |
|
|
|
4700 |
|
|
/* We first try to find a pair of modes, one real and one integer, at
|
4701 |
|
|
least as wide as FROM and TO, respectively, in which we can open-code
|
4702 |
|
|
this conversion. If the integer mode is wider than the mode of TO,
|
4703 |
|
|
we can do the conversion either signed or unsigned. */
|
4704 |
|
|
|
4705 |
|
|
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
4706 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
4707 |
|
|
for (imode = GET_MODE (to); imode != VOIDmode;
|
4708 |
|
|
imode = GET_MODE_WIDER_MODE (imode))
|
4709 |
|
|
{
|
4710 |
|
|
int doing_unsigned = unsignedp;
|
4711 |
|
|
|
4712 |
|
|
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
|
4713 |
|
|
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
|
4714 |
|
|
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
|
4715 |
|
|
|
4716 |
|
|
if (icode != CODE_FOR_nothing)
|
4717 |
|
|
{
|
4718 |
|
|
if (fmode != GET_MODE (from))
|
4719 |
|
|
from = convert_to_mode (fmode, from, 0);
|
4720 |
|
|
|
4721 |
|
|
if (must_trunc)
|
4722 |
|
|
{
|
4723 |
|
|
rtx temp = gen_reg_rtx (GET_MODE (from));
|
4724 |
|
|
from = expand_unop (GET_MODE (from), ftrunc_optab, from,
|
4725 |
|
|
temp, 0);
|
4726 |
|
|
}
|
4727 |
|
|
|
4728 |
|
|
if (imode != GET_MODE (to))
|
4729 |
|
|
target = gen_reg_rtx (imode);
|
4730 |
|
|
|
4731 |
|
|
emit_unop_insn (icode, target, from,
|
4732 |
|
|
doing_unsigned ? UNSIGNED_FIX : FIX);
|
4733 |
|
|
if (target != to)
|
4734 |
|
|
convert_move (to, target, unsignedp);
|
4735 |
|
|
return;
|
4736 |
|
|
}
|
4737 |
|
|
}
|
4738 |
|
|
|
4739 |
|
|
/* For an unsigned conversion, there is one more way to do it.
|
4740 |
|
|
If we have a signed conversion, we generate code that compares
|
4741 |
|
|
the real value to the largest representable positive number. If if
|
4742 |
|
|
is smaller, the conversion is done normally. Otherwise, subtract
|
4743 |
|
|
one plus the highest signed number, convert, and add it back.
|
4744 |
|
|
|
4745 |
|
|
We only need to check all real modes, since we know we didn't find
|
4746 |
|
|
anything with a wider integer mode.
|
4747 |
|
|
|
4748 |
|
|
This code used to extend FP value into mode wider than the destination.
|
4749 |
|
|
This is not needed. Consider, for instance conversion from SFmode
|
4750 |
|
|
into DImode.
|
4751 |
|
|
|
4752 |
|
|
The hot path through the code is dealing with inputs smaller than 2^63
|
4753 |
|
|
and doing just the conversion, so there is no bits to lose.
|
4754 |
|
|
|
4755 |
|
|
In the other path we know the value is positive in the range 2^63..2^64-1
|
4756 |
|
|
inclusive. (as for other imput overflow happens and result is undefined)
|
4757 |
|
|
So we know that the most important bit set in mantissa corresponds to
|
4758 |
|
|
2^63. The subtraction of 2^63 should not generate any rounding as it
|
4759 |
|
|
simply clears out that bit. The rest is trivial. */
|
4760 |
|
|
|
4761 |
|
|
if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
|
4762 |
|
|
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
4763 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
4764 |
|
|
if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
|
4765 |
|
|
&must_trunc))
|
4766 |
|
|
{
|
4767 |
|
|
int bitsize;
|
4768 |
|
|
REAL_VALUE_TYPE offset;
|
4769 |
|
|
rtx limit, lab1, lab2, insn;
|
4770 |
|
|
|
4771 |
|
|
bitsize = GET_MODE_BITSIZE (GET_MODE (to));
|
4772 |
|
|
real_2expN (&offset, bitsize - 1);
|
4773 |
|
|
limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
|
4774 |
|
|
lab1 = gen_label_rtx ();
|
4775 |
|
|
lab2 = gen_label_rtx ();
|
4776 |
|
|
|
4777 |
|
|
if (fmode != GET_MODE (from))
|
4778 |
|
|
from = convert_to_mode (fmode, from, 0);
|
4779 |
|
|
|
4780 |
|
|
/* See if we need to do the subtraction. */
|
4781 |
|
|
do_pending_stack_adjust ();
|
4782 |
|
|
emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
|
4783 |
|
|
0, lab1);
|
4784 |
|
|
|
4785 |
|
|
/* If not, do the signed "fix" and branch around fixup code. */
|
4786 |
|
|
expand_fix (to, from, 0);
|
4787 |
|
|
emit_jump_insn (gen_jump (lab2));
|
4788 |
|
|
emit_barrier ();
|
4789 |
|
|
|
4790 |
|
|
/* Otherwise, subtract 2**(N-1), convert to signed number,
|
4791 |
|
|
then add 2**(N-1). Do the addition using XOR since this
|
4792 |
|
|
will often generate better code. */
|
4793 |
|
|
emit_label (lab1);
|
4794 |
|
|
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
|
4795 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
4796 |
|
|
expand_fix (to, target, 0);
|
4797 |
|
|
target = expand_binop (GET_MODE (to), xor_optab, to,
|
4798 |
|
|
gen_int_mode
|
4799 |
|
|
((HOST_WIDE_INT) 1 << (bitsize - 1),
|
4800 |
|
|
GET_MODE (to)),
|
4801 |
|
|
to, 1, OPTAB_LIB_WIDEN);
|
4802 |
|
|
|
4803 |
|
|
if (target != to)
|
4804 |
|
|
emit_move_insn (to, target);
|
4805 |
|
|
|
4806 |
|
|
emit_label (lab2);
|
4807 |
|
|
|
4808 |
|
|
if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
|
4809 |
|
|
!= CODE_FOR_nothing)
|
4810 |
|
|
{
|
4811 |
|
|
/* Make a place for a REG_NOTE and add it. */
|
4812 |
|
|
insn = emit_move_insn (to, to);
|
4813 |
|
|
set_unique_reg_note (insn,
|
4814 |
|
|
REG_EQUAL,
|
4815 |
|
|
gen_rtx_fmt_e (UNSIGNED_FIX,
|
4816 |
|
|
GET_MODE (to),
|
4817 |
|
|
copy_rtx (from)));
|
4818 |
|
|
}
|
4819 |
|
|
|
4820 |
|
|
return;
|
4821 |
|
|
}
|
4822 |
|
|
|
4823 |
|
|
/* We can't do it with an insn, so use a library call. But first ensure
|
4824 |
|
|
that the mode of TO is at least as wide as SImode, since those are the
|
4825 |
|
|
only library calls we know about. */
|
4826 |
|
|
|
4827 |
|
|
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
|
4828 |
|
|
{
|
4829 |
|
|
target = gen_reg_rtx (SImode);
|
4830 |
|
|
|
4831 |
|
|
expand_fix (target, from, unsignedp);
|
4832 |
|
|
}
|
4833 |
|
|
else
|
4834 |
|
|
{
|
4835 |
|
|
rtx insns;
|
4836 |
|
|
rtx value;
|
4837 |
|
|
rtx libfunc;
|
4838 |
|
|
|
4839 |
|
|
convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
|
4840 |
|
|
libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
|
4841 |
|
|
gcc_assert (libfunc);
|
4842 |
|
|
|
4843 |
|
|
start_sequence ();
|
4844 |
|
|
|
4845 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
4846 |
|
|
GET_MODE (to), 1, from,
|
4847 |
|
|
GET_MODE (from));
|
4848 |
|
|
insns = get_insns ();
|
4849 |
|
|
end_sequence ();
|
4850 |
|
|
|
4851 |
|
|
emit_libcall_block (insns, target, value,
|
4852 |
|
|
gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
|
4853 |
|
|
GET_MODE (to), from));
|
4854 |
|
|
}
|
4855 |
|
|
|
4856 |
|
|
if (target != to)
|
4857 |
|
|
{
|
4858 |
|
|
if (GET_MODE (to) == GET_MODE (target))
|
4859 |
|
|
emit_move_insn (to, target);
|
4860 |
|
|
else
|
4861 |
|
|
convert_move (to, target, 0);
|
4862 |
|
|
}
|
4863 |
|
|
}
|
4864 |
|
|
|
4865 |
|
|
/* Report whether we have an instruction to perform the operation
|
4866 |
|
|
specified by CODE on operands of mode MODE. */
|
4867 |
|
|
int
|
4868 |
|
|
have_insn_for (enum rtx_code code, enum machine_mode mode)
|
4869 |
|
|
{
|
4870 |
|
|
return (code_to_optab[(int) code] != 0
|
4871 |
|
|
&& (code_to_optab[(int) code]->handlers[(int) mode].insn_code
|
4872 |
|
|
!= CODE_FOR_nothing));
|
4873 |
|
|
}
|
4874 |
|
|
|
4875 |
|
|
/* Create a blank optab. */
|
4876 |
|
|
static optab
|
4877 |
|
|
new_optab (void)
|
4878 |
|
|
{
|
4879 |
|
|
int i;
|
4880 |
|
|
optab op = ggc_alloc (sizeof (struct optab));
|
4881 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
4882 |
|
|
{
|
4883 |
|
|
op->handlers[i].insn_code = CODE_FOR_nothing;
|
4884 |
|
|
op->handlers[i].libfunc = 0;
|
4885 |
|
|
}
|
4886 |
|
|
|
4887 |
|
|
return op;
|
4888 |
|
|
}
|
4889 |
|
|
|
4890 |
|
|
static convert_optab
|
4891 |
|
|
new_convert_optab (void)
|
4892 |
|
|
{
|
4893 |
|
|
int i, j;
|
4894 |
|
|
convert_optab op = ggc_alloc (sizeof (struct convert_optab));
|
4895 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
4896 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
4897 |
|
|
{
|
4898 |
|
|
op->handlers[i][j].insn_code = CODE_FOR_nothing;
|
4899 |
|
|
op->handlers[i][j].libfunc = 0;
|
4900 |
|
|
}
|
4901 |
|
|
return op;
|
4902 |
|
|
}
|
4903 |
|
|
|
4904 |
|
|
/* Same, but fill in its code as CODE, and write it into the
|
4905 |
|
|
code_to_optab table. */
|
4906 |
|
|
static inline optab
|
4907 |
|
|
init_optab (enum rtx_code code)
|
4908 |
|
|
{
|
4909 |
|
|
optab op = new_optab ();
|
4910 |
|
|
op->code = code;
|
4911 |
|
|
code_to_optab[(int) code] = op;
|
4912 |
|
|
return op;
|
4913 |
|
|
}
|
4914 |
|
|
|
4915 |
|
|
/* Same, but fill in its code as CODE, and do _not_ write it into
|
4916 |
|
|
the code_to_optab table. */
|
4917 |
|
|
static inline optab
|
4918 |
|
|
init_optabv (enum rtx_code code)
|
4919 |
|
|
{
|
4920 |
|
|
optab op = new_optab ();
|
4921 |
|
|
op->code = code;
|
4922 |
|
|
return op;
|
4923 |
|
|
}
|
4924 |
|
|
|
4925 |
|
|
/* Conversion optabs never go in the code_to_optab table. */
|
4926 |
|
|
static inline convert_optab
|
4927 |
|
|
init_convert_optab (enum rtx_code code)
|
4928 |
|
|
{
|
4929 |
|
|
convert_optab op = new_convert_optab ();
|
4930 |
|
|
op->code = code;
|
4931 |
|
|
return op;
|
4932 |
|
|
}
|
4933 |
|
|
|
4934 |
|
|
/* Initialize the libfunc fields of an entire group of entries in some
|
4935 |
|
|
optab. Each entry is set equal to a string consisting of a leading
|
4936 |
|
|
pair of underscores followed by a generic operation name followed by
|
4937 |
|
|
a mode name (downshifted to lowercase) followed by a single character
|
4938 |
|
|
representing the number of operands for the given operation (which is
|
4939 |
|
|
usually one of the characters '2', '3', or '4').
|
4940 |
|
|
|
4941 |
|
|
OPTABLE is the table in which libfunc fields are to be initialized.
|
4942 |
|
|
FIRST_MODE is the first machine mode index in the given optab to
|
4943 |
|
|
initialize.
|
4944 |
|
|
LAST_MODE is the last machine mode index in the given optab to
|
4945 |
|
|
initialize.
|
4946 |
|
|
OPNAME is the generic (string) name of the operation.
|
4947 |
|
|
SUFFIX is the character which specifies the number of operands for
|
4948 |
|
|
the given generic operation.
|
4949 |
|
|
*/
|
4950 |
|
|
|
4951 |
|
|
static void
|
4952 |
|
|
init_libfuncs (optab optable, int first_mode, int last_mode,
|
4953 |
|
|
const char *opname, int suffix)
|
4954 |
|
|
{
|
4955 |
|
|
int mode;
|
4956 |
|
|
unsigned opname_len = strlen (opname);
|
4957 |
|
|
|
4958 |
|
|
for (mode = first_mode; (int) mode <= (int) last_mode;
|
4959 |
|
|
mode = (enum machine_mode) ((int) mode + 1))
|
4960 |
|
|
{
|
4961 |
|
|
const char *mname = GET_MODE_NAME (mode);
|
4962 |
|
|
unsigned mname_len = strlen (mname);
|
4963 |
|
|
char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
|
4964 |
|
|
char *p;
|
4965 |
|
|
const char *q;
|
4966 |
|
|
|
4967 |
|
|
p = libfunc_name;
|
4968 |
|
|
*p++ = '_';
|
4969 |
|
|
*p++ = '_';
|
4970 |
|
|
for (q = opname; *q; )
|
4971 |
|
|
*p++ = *q++;
|
4972 |
|
|
for (q = mname; *q; q++)
|
4973 |
|
|
*p++ = TOLOWER (*q);
|
4974 |
|
|
*p++ = suffix;
|
4975 |
|
|
*p = '\0';
|
4976 |
|
|
|
4977 |
|
|
optable->handlers[(int) mode].libfunc
|
4978 |
|
|
= init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
|
4979 |
|
|
}
|
4980 |
|
|
}
|
4981 |
|
|
|
4982 |
|
|
/* Initialize the libfunc fields of an entire group of entries in some
|
4983 |
|
|
optab which correspond to all integer mode operations. The parameters
|
4984 |
|
|
have the same meaning as similarly named ones for the `init_libfuncs'
|
4985 |
|
|
routine. (See above). */
|
4986 |
|
|
|
4987 |
|
|
static void
|
4988 |
|
|
init_integral_libfuncs (optab optable, const char *opname, int suffix)
|
4989 |
|
|
{
|
4990 |
|
|
int maxsize = 2*BITS_PER_WORD;
|
4991 |
|
|
if (maxsize < LONG_LONG_TYPE_SIZE)
|
4992 |
|
|
maxsize = LONG_LONG_TYPE_SIZE;
|
4993 |
|
|
init_libfuncs (optable, word_mode,
|
4994 |
|
|
mode_for_size (maxsize, MODE_INT, 0),
|
4995 |
|
|
opname, suffix);
|
4996 |
|
|
}
|
4997 |
|
|
|
4998 |
|
|
/* Initialize the libfunc fields of an entire group of entries in some
|
4999 |
|
|
optab which correspond to all real mode operations. The parameters
|
5000 |
|
|
have the same meaning as similarly named ones for the `init_libfuncs'
|
5001 |
|
|
routine. (See above). */
|
5002 |
|
|
|
5003 |
|
|
static void
|
5004 |
|
|
init_floating_libfuncs (optab optable, const char *opname, int suffix)
|
5005 |
|
|
{
|
5006 |
|
|
init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
|
5007 |
|
|
init_libfuncs (optable, MIN_MODE_DECIMAL_FLOAT, MAX_MODE_DECIMAL_FLOAT,
|
5008 |
|
|
opname, suffix);
|
5009 |
|
|
}
|
5010 |
|
|
|
5011 |
|
|
/* Initialize the libfunc fields of an entire group of entries of an
|
5012 |
|
|
inter-mode-class conversion optab. The string formation rules are
|
5013 |
|
|
similar to the ones for init_libfuncs, above, but instead of having
|
5014 |
|
|
a mode name and an operand count these functions have two mode names
|
5015 |
|
|
and no operand count. */
|
5016 |
|
|
static void
|
5017 |
|
|
init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
|
5018 |
|
|
enum mode_class from_class,
|
5019 |
|
|
enum mode_class to_class)
|
5020 |
|
|
{
|
5021 |
|
|
enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
|
5022 |
|
|
enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
|
5023 |
|
|
size_t opname_len = strlen (opname);
|
5024 |
|
|
size_t max_mname_len = 0;
|
5025 |
|
|
|
5026 |
|
|
enum machine_mode fmode, tmode;
|
5027 |
|
|
const char *fname, *tname;
|
5028 |
|
|
const char *q;
|
5029 |
|
|
char *libfunc_name, *suffix;
|
5030 |
|
|
char *p;
|
5031 |
|
|
|
5032 |
|
|
for (fmode = first_from_mode;
|
5033 |
|
|
fmode != VOIDmode;
|
5034 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
5035 |
|
|
max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
|
5036 |
|
|
|
5037 |
|
|
for (tmode = first_to_mode;
|
5038 |
|
|
tmode != VOIDmode;
|
5039 |
|
|
tmode = GET_MODE_WIDER_MODE (tmode))
|
5040 |
|
|
max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
|
5041 |
|
|
|
5042 |
|
|
libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
|
5043 |
|
|
libfunc_name[0] = '_';
|
5044 |
|
|
libfunc_name[1] = '_';
|
5045 |
|
|
memcpy (&libfunc_name[2], opname, opname_len);
|
5046 |
|
|
suffix = libfunc_name + opname_len + 2;
|
5047 |
|
|
|
5048 |
|
|
for (fmode = first_from_mode; fmode != VOIDmode;
|
5049 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
5050 |
|
|
for (tmode = first_to_mode; tmode != VOIDmode;
|
5051 |
|
|
tmode = GET_MODE_WIDER_MODE (tmode))
|
5052 |
|
|
{
|
5053 |
|
|
fname = GET_MODE_NAME (fmode);
|
5054 |
|
|
tname = GET_MODE_NAME (tmode);
|
5055 |
|
|
|
5056 |
|
|
p = suffix;
|
5057 |
|
|
for (q = fname; *q; p++, q++)
|
5058 |
|
|
*p = TOLOWER (*q);
|
5059 |
|
|
for (q = tname; *q; p++, q++)
|
5060 |
|
|
*p = TOLOWER (*q);
|
5061 |
|
|
|
5062 |
|
|
*p = '\0';
|
5063 |
|
|
|
5064 |
|
|
tab->handlers[tmode][fmode].libfunc
|
5065 |
|
|
= init_one_libfunc (ggc_alloc_string (libfunc_name,
|
5066 |
|
|
p - libfunc_name));
|
5067 |
|
|
}
|
5068 |
|
|
}
|
5069 |
|
|
|
5070 |
|
|
/* Initialize the libfunc fields of an entire group of entries of an
|
5071 |
|
|
intra-mode-class conversion optab. The string formation rules are
|
5072 |
|
|
similar to the ones for init_libfunc, above. WIDENING says whether
|
5073 |
|
|
the optab goes from narrow to wide modes or vice versa. These functions
|
5074 |
|
|
have two mode names _and_ an operand count. */
|
5075 |
|
|
static void
|
5076 |
|
|
init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
|
5077 |
|
|
enum mode_class class, bool widening)
|
5078 |
|
|
{
|
5079 |
|
|
enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
|
5080 |
|
|
size_t opname_len = strlen (opname);
|
5081 |
|
|
size_t max_mname_len = 0;
|
5082 |
|
|
|
5083 |
|
|
enum machine_mode nmode, wmode;
|
5084 |
|
|
const char *nname, *wname;
|
5085 |
|
|
const char *q;
|
5086 |
|
|
char *libfunc_name, *suffix;
|
5087 |
|
|
char *p;
|
5088 |
|
|
|
5089 |
|
|
for (nmode = first_mode; nmode != VOIDmode;
|
5090 |
|
|
nmode = GET_MODE_WIDER_MODE (nmode))
|
5091 |
|
|
max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
|
5092 |
|
|
|
5093 |
|
|
libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
|
5094 |
|
|
libfunc_name[0] = '_';
|
5095 |
|
|
libfunc_name[1] = '_';
|
5096 |
|
|
memcpy (&libfunc_name[2], opname, opname_len);
|
5097 |
|
|
suffix = libfunc_name + opname_len + 2;
|
5098 |
|
|
|
5099 |
|
|
for (nmode = first_mode; nmode != VOIDmode;
|
5100 |
|
|
nmode = GET_MODE_WIDER_MODE (nmode))
|
5101 |
|
|
for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
|
5102 |
|
|
wmode = GET_MODE_WIDER_MODE (wmode))
|
5103 |
|
|
{
|
5104 |
|
|
nname = GET_MODE_NAME (nmode);
|
5105 |
|
|
wname = GET_MODE_NAME (wmode);
|
5106 |
|
|
|
5107 |
|
|
p = suffix;
|
5108 |
|
|
for (q = widening ? nname : wname; *q; p++, q++)
|
5109 |
|
|
*p = TOLOWER (*q);
|
5110 |
|
|
for (q = widening ? wname : nname; *q; p++, q++)
|
5111 |
|
|
*p = TOLOWER (*q);
|
5112 |
|
|
|
5113 |
|
|
*p++ = '2';
|
5114 |
|
|
*p = '\0';
|
5115 |
|
|
|
5116 |
|
|
tab->handlers[widening ? wmode : nmode]
|
5117 |
|
|
[widening ? nmode : wmode].libfunc
|
5118 |
|
|
= init_one_libfunc (ggc_alloc_string (libfunc_name,
|
5119 |
|
|
p - libfunc_name));
|
5120 |
|
|
}
|
5121 |
|
|
}
|
5122 |
|
|
|
5123 |
|
|
|
5124 |
|
|
rtx
|
5125 |
|
|
init_one_libfunc (const char *name)
|
5126 |
|
|
{
|
5127 |
|
|
rtx symbol;
|
5128 |
|
|
|
5129 |
|
|
/* Create a FUNCTION_DECL that can be passed to
|
5130 |
|
|
targetm.encode_section_info. */
|
5131 |
|
|
/* ??? We don't have any type information except for this is
|
5132 |
|
|
a function. Pretend this is "int foo()". */
|
5133 |
|
|
tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
|
5134 |
|
|
build_function_type (integer_type_node, NULL_TREE));
|
5135 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
5136 |
|
|
DECL_EXTERNAL (decl) = 1;
|
5137 |
|
|
TREE_PUBLIC (decl) = 1;
|
5138 |
|
|
|
5139 |
|
|
symbol = XEXP (DECL_RTL (decl), 0);
|
5140 |
|
|
|
5141 |
|
|
/* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
|
5142 |
|
|
are the flags assigned by targetm.encode_section_info. */
|
5143 |
|
|
SET_SYMBOL_REF_DECL (symbol, 0);
|
5144 |
|
|
|
5145 |
|
|
return symbol;
|
5146 |
|
|
}
|
5147 |
|
|
|
5148 |
|
|
/* Call this to reset the function entry for one optab (OPTABLE) in mode
|
5149 |
|
|
MODE to NAME, which should be either 0 or a string constant. */
|
5150 |
|
|
void
|
5151 |
|
|
set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
|
5152 |
|
|
{
|
5153 |
|
|
if (name)
|
5154 |
|
|
optable->handlers[mode].libfunc = init_one_libfunc (name);
|
5155 |
|
|
else
|
5156 |
|
|
optable->handlers[mode].libfunc = 0;
|
5157 |
|
|
}
|
5158 |
|
|
|
5159 |
|
|
/* Call this to reset the function entry for one conversion optab
|
5160 |
|
|
(OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
|
5161 |
|
|
either 0 or a string constant. */
|
5162 |
|
|
void
|
5163 |
|
|
set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
|
5164 |
|
|
enum machine_mode fmode, const char *name)
|
5165 |
|
|
{
|
5166 |
|
|
if (name)
|
5167 |
|
|
optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
|
5168 |
|
|
else
|
5169 |
|
|
optable->handlers[tmode][fmode].libfunc = 0;
|
5170 |
|
|
}
|
5171 |
|
|
|
5172 |
|
|
/* Call this once to initialize the contents of the optabs
|
5173 |
|
|
appropriately for the current target machine. */
|
5174 |
|
|
|
5175 |
|
|
void
|
5176 |
|
|
init_optabs (void)
|
5177 |
|
|
{
|
5178 |
|
|
unsigned int i;
|
5179 |
|
|
|
5180 |
|
|
/* Start by initializing all tables to contain CODE_FOR_nothing. */
|
5181 |
|
|
|
5182 |
|
|
for (i = 0; i < NUM_RTX_CODE; i++)
|
5183 |
|
|
setcc_gen_code[i] = CODE_FOR_nothing;
|
5184 |
|
|
|
5185 |
|
|
#ifdef HAVE_conditional_move
|
5186 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
5187 |
|
|
movcc_gen_code[i] = CODE_FOR_nothing;
|
5188 |
|
|
#endif
|
5189 |
|
|
|
5190 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
5191 |
|
|
{
|
5192 |
|
|
vcond_gen_code[i] = CODE_FOR_nothing;
|
5193 |
|
|
vcondu_gen_code[i] = CODE_FOR_nothing;
|
5194 |
|
|
}
|
5195 |
|
|
|
5196 |
|
|
add_optab = init_optab (PLUS);
|
5197 |
|
|
addv_optab = init_optabv (PLUS);
|
5198 |
|
|
sub_optab = init_optab (MINUS);
|
5199 |
|
|
subv_optab = init_optabv (MINUS);
|
5200 |
|
|
smul_optab = init_optab (MULT);
|
5201 |
|
|
smulv_optab = init_optabv (MULT);
|
5202 |
|
|
smul_highpart_optab = init_optab (UNKNOWN);
|
5203 |
|
|
umul_highpart_optab = init_optab (UNKNOWN);
|
5204 |
|
|
smul_widen_optab = init_optab (UNKNOWN);
|
5205 |
|
|
umul_widen_optab = init_optab (UNKNOWN);
|
5206 |
|
|
usmul_widen_optab = init_optab (UNKNOWN);
|
5207 |
|
|
sdiv_optab = init_optab (DIV);
|
5208 |
|
|
sdivv_optab = init_optabv (DIV);
|
5209 |
|
|
sdivmod_optab = init_optab (UNKNOWN);
|
5210 |
|
|
udiv_optab = init_optab (UDIV);
|
5211 |
|
|
udivmod_optab = init_optab (UNKNOWN);
|
5212 |
|
|
smod_optab = init_optab (MOD);
|
5213 |
|
|
umod_optab = init_optab (UMOD);
|
5214 |
|
|
fmod_optab = init_optab (UNKNOWN);
|
5215 |
|
|
drem_optab = init_optab (UNKNOWN);
|
5216 |
|
|
ftrunc_optab = init_optab (UNKNOWN);
|
5217 |
|
|
and_optab = init_optab (AND);
|
5218 |
|
|
ior_optab = init_optab (IOR);
|
5219 |
|
|
xor_optab = init_optab (XOR);
|
5220 |
|
|
ashl_optab = init_optab (ASHIFT);
|
5221 |
|
|
ashr_optab = init_optab (ASHIFTRT);
|
5222 |
|
|
lshr_optab = init_optab (LSHIFTRT);
|
5223 |
|
|
rotl_optab = init_optab (ROTATE);
|
5224 |
|
|
rotr_optab = init_optab (ROTATERT);
|
5225 |
|
|
smin_optab = init_optab (SMIN);
|
5226 |
|
|
smax_optab = init_optab (SMAX);
|
5227 |
|
|
umin_optab = init_optab (UMIN);
|
5228 |
|
|
umax_optab = init_optab (UMAX);
|
5229 |
|
|
pow_optab = init_optab (UNKNOWN);
|
5230 |
|
|
atan2_optab = init_optab (UNKNOWN);
|
5231 |
|
|
|
5232 |
|
|
/* These three have codes assigned exclusively for the sake of
|
5233 |
|
|
have_insn_for. */
|
5234 |
|
|
mov_optab = init_optab (SET);
|
5235 |
|
|
movstrict_optab = init_optab (STRICT_LOW_PART);
|
5236 |
|
|
cmp_optab = init_optab (COMPARE);
|
5237 |
|
|
|
5238 |
|
|
ucmp_optab = init_optab (UNKNOWN);
|
5239 |
|
|
tst_optab = init_optab (UNKNOWN);
|
5240 |
|
|
|
5241 |
|
|
eq_optab = init_optab (EQ);
|
5242 |
|
|
ne_optab = init_optab (NE);
|
5243 |
|
|
gt_optab = init_optab (GT);
|
5244 |
|
|
ge_optab = init_optab (GE);
|
5245 |
|
|
lt_optab = init_optab (LT);
|
5246 |
|
|
le_optab = init_optab (LE);
|
5247 |
|
|
unord_optab = init_optab (UNORDERED);
|
5248 |
|
|
|
5249 |
|
|
neg_optab = init_optab (NEG);
|
5250 |
|
|
negv_optab = init_optabv (NEG);
|
5251 |
|
|
abs_optab = init_optab (ABS);
|
5252 |
|
|
absv_optab = init_optabv (ABS);
|
5253 |
|
|
addcc_optab = init_optab (UNKNOWN);
|
5254 |
|
|
one_cmpl_optab = init_optab (NOT);
|
5255 |
|
|
ffs_optab = init_optab (FFS);
|
5256 |
|
|
clz_optab = init_optab (CLZ);
|
5257 |
|
|
ctz_optab = init_optab (CTZ);
|
5258 |
|
|
popcount_optab = init_optab (POPCOUNT);
|
5259 |
|
|
parity_optab = init_optab (PARITY);
|
5260 |
|
|
sqrt_optab = init_optab (SQRT);
|
5261 |
|
|
floor_optab = init_optab (UNKNOWN);
|
5262 |
|
|
lfloor_optab = init_optab (UNKNOWN);
|
5263 |
|
|
ceil_optab = init_optab (UNKNOWN);
|
5264 |
|
|
lceil_optab = init_optab (UNKNOWN);
|
5265 |
|
|
round_optab = init_optab (UNKNOWN);
|
5266 |
|
|
btrunc_optab = init_optab (UNKNOWN);
|
5267 |
|
|
nearbyint_optab = init_optab (UNKNOWN);
|
5268 |
|
|
rint_optab = init_optab (UNKNOWN);
|
5269 |
|
|
lrint_optab = init_optab (UNKNOWN);
|
5270 |
|
|
sincos_optab = init_optab (UNKNOWN);
|
5271 |
|
|
sin_optab = init_optab (UNKNOWN);
|
5272 |
|
|
asin_optab = init_optab (UNKNOWN);
|
5273 |
|
|
cos_optab = init_optab (UNKNOWN);
|
5274 |
|
|
acos_optab = init_optab (UNKNOWN);
|
5275 |
|
|
exp_optab = init_optab (UNKNOWN);
|
5276 |
|
|
exp10_optab = init_optab (UNKNOWN);
|
5277 |
|
|
exp2_optab = init_optab (UNKNOWN);
|
5278 |
|
|
expm1_optab = init_optab (UNKNOWN);
|
5279 |
|
|
ldexp_optab = init_optab (UNKNOWN);
|
5280 |
|
|
logb_optab = init_optab (UNKNOWN);
|
5281 |
|
|
ilogb_optab = init_optab (UNKNOWN);
|
5282 |
|
|
log_optab = init_optab (UNKNOWN);
|
5283 |
|
|
log10_optab = init_optab (UNKNOWN);
|
5284 |
|
|
log2_optab = init_optab (UNKNOWN);
|
5285 |
|
|
log1p_optab = init_optab (UNKNOWN);
|
5286 |
|
|
tan_optab = init_optab (UNKNOWN);
|
5287 |
|
|
atan_optab = init_optab (UNKNOWN);
|
5288 |
|
|
copysign_optab = init_optab (UNKNOWN);
|
5289 |
|
|
|
5290 |
|
|
strlen_optab = init_optab (UNKNOWN);
|
5291 |
|
|
cbranch_optab = init_optab (UNKNOWN);
|
5292 |
|
|
cmov_optab = init_optab (UNKNOWN);
|
5293 |
|
|
cstore_optab = init_optab (UNKNOWN);
|
5294 |
|
|
push_optab = init_optab (UNKNOWN);
|
5295 |
|
|
|
5296 |
|
|
reduc_smax_optab = init_optab (UNKNOWN);
|
5297 |
|
|
reduc_umax_optab = init_optab (UNKNOWN);
|
5298 |
|
|
reduc_smin_optab = init_optab (UNKNOWN);
|
5299 |
|
|
reduc_umin_optab = init_optab (UNKNOWN);
|
5300 |
|
|
reduc_splus_optab = init_optab (UNKNOWN);
|
5301 |
|
|
reduc_uplus_optab = init_optab (UNKNOWN);
|
5302 |
|
|
|
5303 |
|
|
ssum_widen_optab = init_optab (UNKNOWN);
|
5304 |
|
|
usum_widen_optab = init_optab (UNKNOWN);
|
5305 |
|
|
sdot_prod_optab = init_optab (UNKNOWN);
|
5306 |
|
|
udot_prod_optab = init_optab (UNKNOWN);
|
5307 |
|
|
|
5308 |
|
|
vec_extract_optab = init_optab (UNKNOWN);
|
5309 |
|
|
vec_set_optab = init_optab (UNKNOWN);
|
5310 |
|
|
vec_init_optab = init_optab (UNKNOWN);
|
5311 |
|
|
vec_shl_optab = init_optab (UNKNOWN);
|
5312 |
|
|
vec_shr_optab = init_optab (UNKNOWN);
|
5313 |
|
|
vec_realign_load_optab = init_optab (UNKNOWN);
|
5314 |
|
|
movmisalign_optab = init_optab (UNKNOWN);
|
5315 |
|
|
|
5316 |
|
|
powi_optab = init_optab (UNKNOWN);
|
5317 |
|
|
|
5318 |
|
|
/* Conversions. */
|
5319 |
|
|
sext_optab = init_convert_optab (SIGN_EXTEND);
|
5320 |
|
|
zext_optab = init_convert_optab (ZERO_EXTEND);
|
5321 |
|
|
trunc_optab = init_convert_optab (TRUNCATE);
|
5322 |
|
|
sfix_optab = init_convert_optab (FIX);
|
5323 |
|
|
ufix_optab = init_convert_optab (UNSIGNED_FIX);
|
5324 |
|
|
sfixtrunc_optab = init_convert_optab (UNKNOWN);
|
5325 |
|
|
ufixtrunc_optab = init_convert_optab (UNKNOWN);
|
5326 |
|
|
sfloat_optab = init_convert_optab (FLOAT);
|
5327 |
|
|
ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
|
5328 |
|
|
|
5329 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
5330 |
|
|
{
|
5331 |
|
|
movmem_optab[i] = CODE_FOR_nothing;
|
5332 |
|
|
cmpstr_optab[i] = CODE_FOR_nothing;
|
5333 |
|
|
cmpstrn_optab[i] = CODE_FOR_nothing;
|
5334 |
|
|
cmpmem_optab[i] = CODE_FOR_nothing;
|
5335 |
|
|
setmem_optab[i] = CODE_FOR_nothing;
|
5336 |
|
|
|
5337 |
|
|
sync_add_optab[i] = CODE_FOR_nothing;
|
5338 |
|
|
sync_sub_optab[i] = CODE_FOR_nothing;
|
5339 |
|
|
sync_ior_optab[i] = CODE_FOR_nothing;
|
5340 |
|
|
sync_and_optab[i] = CODE_FOR_nothing;
|
5341 |
|
|
sync_xor_optab[i] = CODE_FOR_nothing;
|
5342 |
|
|
sync_nand_optab[i] = CODE_FOR_nothing;
|
5343 |
|
|
sync_old_add_optab[i] = CODE_FOR_nothing;
|
5344 |
|
|
sync_old_sub_optab[i] = CODE_FOR_nothing;
|
5345 |
|
|
sync_old_ior_optab[i] = CODE_FOR_nothing;
|
5346 |
|
|
sync_old_and_optab[i] = CODE_FOR_nothing;
|
5347 |
|
|
sync_old_xor_optab[i] = CODE_FOR_nothing;
|
5348 |
|
|
sync_old_nand_optab[i] = CODE_FOR_nothing;
|
5349 |
|
|
sync_new_add_optab[i] = CODE_FOR_nothing;
|
5350 |
|
|
sync_new_sub_optab[i] = CODE_FOR_nothing;
|
5351 |
|
|
sync_new_ior_optab[i] = CODE_FOR_nothing;
|
5352 |
|
|
sync_new_and_optab[i] = CODE_FOR_nothing;
|
5353 |
|
|
sync_new_xor_optab[i] = CODE_FOR_nothing;
|
5354 |
|
|
sync_new_nand_optab[i] = CODE_FOR_nothing;
|
5355 |
|
|
sync_compare_and_swap[i] = CODE_FOR_nothing;
|
5356 |
|
|
sync_compare_and_swap_cc[i] = CODE_FOR_nothing;
|
5357 |
|
|
sync_lock_test_and_set[i] = CODE_FOR_nothing;
|
5358 |
|
|
sync_lock_release[i] = CODE_FOR_nothing;
|
5359 |
|
|
|
5360 |
|
|
reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
|
5361 |
|
|
}
|
5362 |
|
|
|
5363 |
|
|
/* Fill in the optabs with the insns we support. */
|
5364 |
|
|
init_all_optabs ();
|
5365 |
|
|
|
5366 |
|
|
/* Initialize the optabs with the names of the library functions. */
|
5367 |
|
|
init_integral_libfuncs (add_optab, "add", '3');
|
5368 |
|
|
init_floating_libfuncs (add_optab, "add", '3');
|
5369 |
|
|
init_integral_libfuncs (addv_optab, "addv", '3');
|
5370 |
|
|
init_floating_libfuncs (addv_optab, "add", '3');
|
5371 |
|
|
init_integral_libfuncs (sub_optab, "sub", '3');
|
5372 |
|
|
init_floating_libfuncs (sub_optab, "sub", '3');
|
5373 |
|
|
init_integral_libfuncs (subv_optab, "subv", '3');
|
5374 |
|
|
init_floating_libfuncs (subv_optab, "sub", '3');
|
5375 |
|
|
init_integral_libfuncs (smul_optab, "mul", '3');
|
5376 |
|
|
init_floating_libfuncs (smul_optab, "mul", '3');
|
5377 |
|
|
init_integral_libfuncs (smulv_optab, "mulv", '3');
|
5378 |
|
|
init_floating_libfuncs (smulv_optab, "mul", '3');
|
5379 |
|
|
init_integral_libfuncs (sdiv_optab, "div", '3');
|
5380 |
|
|
init_floating_libfuncs (sdiv_optab, "div", '3');
|
5381 |
|
|
init_integral_libfuncs (sdivv_optab, "divv", '3');
|
5382 |
|
|
init_integral_libfuncs (udiv_optab, "udiv", '3');
|
5383 |
|
|
init_integral_libfuncs (sdivmod_optab, "divmod", '4');
|
5384 |
|
|
init_integral_libfuncs (udivmod_optab, "udivmod", '4');
|
5385 |
|
|
init_integral_libfuncs (smod_optab, "mod", '3');
|
5386 |
|
|
init_integral_libfuncs (umod_optab, "umod", '3');
|
5387 |
|
|
init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
|
5388 |
|
|
init_integral_libfuncs (and_optab, "and", '3');
|
5389 |
|
|
init_integral_libfuncs (ior_optab, "ior", '3');
|
5390 |
|
|
init_integral_libfuncs (xor_optab, "xor", '3');
|
5391 |
|
|
init_integral_libfuncs (ashl_optab, "ashl", '3');
|
5392 |
|
|
init_integral_libfuncs (ashr_optab, "ashr", '3');
|
5393 |
|
|
init_integral_libfuncs (lshr_optab, "lshr", '3');
|
5394 |
|
|
init_integral_libfuncs (smin_optab, "min", '3');
|
5395 |
|
|
init_floating_libfuncs (smin_optab, "min", '3');
|
5396 |
|
|
init_integral_libfuncs (smax_optab, "max", '3');
|
5397 |
|
|
init_floating_libfuncs (smax_optab, "max", '3');
|
5398 |
|
|
init_integral_libfuncs (umin_optab, "umin", '3');
|
5399 |
|
|
init_integral_libfuncs (umax_optab, "umax", '3');
|
5400 |
|
|
init_integral_libfuncs (neg_optab, "neg", '2');
|
5401 |
|
|
init_floating_libfuncs (neg_optab, "neg", '2');
|
5402 |
|
|
init_integral_libfuncs (negv_optab, "negv", '2');
|
5403 |
|
|
init_floating_libfuncs (negv_optab, "neg", '2');
|
5404 |
|
|
init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
|
5405 |
|
|
init_integral_libfuncs (ffs_optab, "ffs", '2');
|
5406 |
|
|
init_integral_libfuncs (clz_optab, "clz", '2');
|
5407 |
|
|
init_integral_libfuncs (ctz_optab, "ctz", '2');
|
5408 |
|
|
init_integral_libfuncs (popcount_optab, "popcount", '2');
|
5409 |
|
|
init_integral_libfuncs (parity_optab, "parity", '2');
|
5410 |
|
|
|
5411 |
|
|
/* Comparison libcalls for integers MUST come in pairs,
|
5412 |
|
|
signed/unsigned. */
|
5413 |
|
|
init_integral_libfuncs (cmp_optab, "cmp", '2');
|
5414 |
|
|
init_integral_libfuncs (ucmp_optab, "ucmp", '2');
|
5415 |
|
|
init_floating_libfuncs (cmp_optab, "cmp", '2');
|
5416 |
|
|
|
5417 |
|
|
/* EQ etc are floating point only. */
|
5418 |
|
|
init_floating_libfuncs (eq_optab, "eq", '2');
|
5419 |
|
|
init_floating_libfuncs (ne_optab, "ne", '2');
|
5420 |
|
|
init_floating_libfuncs (gt_optab, "gt", '2');
|
5421 |
|
|
init_floating_libfuncs (ge_optab, "ge", '2');
|
5422 |
|
|
init_floating_libfuncs (lt_optab, "lt", '2');
|
5423 |
|
|
init_floating_libfuncs (le_optab, "le", '2');
|
5424 |
|
|
init_floating_libfuncs (unord_optab, "unord", '2');
|
5425 |
|
|
|
5426 |
|
|
init_floating_libfuncs (powi_optab, "powi", '2');
|
5427 |
|
|
|
5428 |
|
|
/* Conversions. */
|
5429 |
|
|
init_interclass_conv_libfuncs (sfloat_optab, "float",
|
5430 |
|
|
MODE_INT, MODE_FLOAT);
|
5431 |
|
|
init_interclass_conv_libfuncs (sfloat_optab, "float",
|
5432 |
|
|
MODE_INT, MODE_DECIMAL_FLOAT);
|
5433 |
|
|
init_interclass_conv_libfuncs (ufloat_optab, "floatun",
|
5434 |
|
|
MODE_INT, MODE_FLOAT);
|
5435 |
|
|
init_interclass_conv_libfuncs (ufloat_optab, "floatun",
|
5436 |
|
|
MODE_INT, MODE_DECIMAL_FLOAT);
|
5437 |
|
|
init_interclass_conv_libfuncs (sfix_optab, "fix",
|
5438 |
|
|
MODE_FLOAT, MODE_INT);
|
5439 |
|
|
init_interclass_conv_libfuncs (sfix_optab, "fix",
|
5440 |
|
|
MODE_DECIMAL_FLOAT, MODE_INT);
|
5441 |
|
|
init_interclass_conv_libfuncs (ufix_optab, "fixuns",
|
5442 |
|
|
MODE_FLOAT, MODE_INT);
|
5443 |
|
|
init_interclass_conv_libfuncs (ufix_optab, "fixuns",
|
5444 |
|
|
MODE_DECIMAL_FLOAT, MODE_INT);
|
5445 |
|
|
init_interclass_conv_libfuncs (ufloat_optab, "floatuns",
|
5446 |
|
|
MODE_INT, MODE_DECIMAL_FLOAT);
|
5447 |
|
|
|
5448 |
|
|
/* sext_optab is also used for FLOAT_EXTEND. */
|
5449 |
|
|
init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
|
5450 |
|
|
init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, true);
|
5451 |
|
|
init_interclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, MODE_DECIMAL_FLOAT);
|
5452 |
|
|
init_interclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, MODE_FLOAT);
|
5453 |
|
|
init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
|
5454 |
|
|
init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, false);
|
5455 |
|
|
init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, MODE_DECIMAL_FLOAT);
|
5456 |
|
|
init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, MODE_FLOAT);
|
5457 |
|
|
|
5458 |
|
|
/* Use cabs for double complex abs, since systems generally have cabs.
|
5459 |
|
|
Don't define any libcall for float complex, so that cabs will be used. */
|
5460 |
|
|
if (complex_double_type_node)
|
5461 |
|
|
abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
|
5462 |
|
|
= init_one_libfunc ("cabs");
|
5463 |
|
|
|
5464 |
|
|
/* The ffs function operates on `int'. */
|
5465 |
|
|
ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
|
5466 |
|
|
= init_one_libfunc ("ffs");
|
5467 |
|
|
|
5468 |
|
|
abort_libfunc = init_one_libfunc ("abort");
|
5469 |
|
|
memcpy_libfunc = init_one_libfunc ("memcpy");
|
5470 |
|
|
memmove_libfunc = init_one_libfunc ("memmove");
|
5471 |
|
|
memcmp_libfunc = init_one_libfunc ("memcmp");
|
5472 |
|
|
memset_libfunc = init_one_libfunc ("memset");
|
5473 |
|
|
setbits_libfunc = init_one_libfunc ("__setbits");
|
5474 |
|
|
|
5475 |
|
|
#ifndef DONT_USE_BUILTIN_SETJMP
|
5476 |
|
|
setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
|
5477 |
|
|
longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
|
5478 |
|
|
#else
|
5479 |
|
|
setjmp_libfunc = init_one_libfunc ("setjmp");
|
5480 |
|
|
longjmp_libfunc = init_one_libfunc ("longjmp");
|
5481 |
|
|
#endif
|
5482 |
|
|
unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
|
5483 |
|
|
unwind_sjlj_unregister_libfunc
|
5484 |
|
|
= init_one_libfunc ("_Unwind_SjLj_Unregister");
|
5485 |
|
|
|
5486 |
|
|
/* For function entry/exit instrumentation. */
|
5487 |
|
|
profile_function_entry_libfunc
|
5488 |
|
|
= init_one_libfunc ("__cyg_profile_func_enter");
|
5489 |
|
|
profile_function_exit_libfunc
|
5490 |
|
|
= init_one_libfunc ("__cyg_profile_func_exit");
|
5491 |
|
|
|
5492 |
|
|
gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
|
5493 |
|
|
|
5494 |
|
|
if (HAVE_conditional_trap)
|
5495 |
|
|
trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
|
5496 |
|
|
|
5497 |
|
|
/* Allow the target to add more libcalls or rename some, etc. */
|
5498 |
|
|
targetm.init_libfuncs ();
|
5499 |
|
|
}
|
5500 |
|
|
|
5501 |
|
|
#ifdef DEBUG
|
5502 |
|
|
|
5503 |
|
|
/* Print information about the current contents of the optabs on
|
5504 |
|
|
STDERR. */
|
5505 |
|
|
|
5506 |
|
|
static void
|
5507 |
|
|
debug_optab_libfuncs (void)
|
5508 |
|
|
{
|
5509 |
|
|
int i;
|
5510 |
|
|
int j;
|
5511 |
|
|
int k;
|
5512 |
|
|
|
5513 |
|
|
/* Dump the arithmetic optabs. */
|
5514 |
|
|
for (i = 0; i != (int) OTI_MAX; i++)
|
5515 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; ++j)
|
5516 |
|
|
{
|
5517 |
|
|
optab o;
|
5518 |
|
|
struct optab_handlers *h;
|
5519 |
|
|
|
5520 |
|
|
o = optab_table[i];
|
5521 |
|
|
h = &o->handlers[j];
|
5522 |
|
|
if (h->libfunc)
|
5523 |
|
|
{
|
5524 |
|
|
gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
|
5525 |
|
|
fprintf (stderr, "%s\t%s:\t%s\n",
|
5526 |
|
|
GET_RTX_NAME (o->code),
|
5527 |
|
|
GET_MODE_NAME (j),
|
5528 |
|
|
XSTR (h->libfunc, 0));
|
5529 |
|
|
}
|
5530 |
|
|
}
|
5531 |
|
|
|
5532 |
|
|
/* Dump the conversion optabs. */
|
5533 |
|
|
for (i = 0; i < (int) COI_MAX; ++i)
|
5534 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; ++j)
|
5535 |
|
|
for (k = 0; k < NUM_MACHINE_MODES; ++k)
|
5536 |
|
|
{
|
5537 |
|
|
convert_optab o;
|
5538 |
|
|
struct optab_handlers *h;
|
5539 |
|
|
|
5540 |
|
|
o = &convert_optab_table[i];
|
5541 |
|
|
h = &o->handlers[j][k];
|
5542 |
|
|
if (h->libfunc)
|
5543 |
|
|
{
|
5544 |
|
|
gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF);
|
5545 |
|
|
fprintf (stderr, "%s\t%s\t%s:\t%s\n",
|
5546 |
|
|
GET_RTX_NAME (o->code),
|
5547 |
|
|
GET_MODE_NAME (j),
|
5548 |
|
|
GET_MODE_NAME (k),
|
5549 |
|
|
XSTR (h->libfunc, 0));
|
5550 |
|
|
}
|
5551 |
|
|
}
|
5552 |
|
|
}
|
5553 |
|
|
|
5554 |
|
|
#endif /* DEBUG */
|
5555 |
|
|
|
5556 |
|
|
|
5557 |
|
|
/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
|
5558 |
|
|
CODE. Return 0 on failure. */
|
5559 |
|
|
|
5560 |
|
|
rtx
|
5561 |
|
|
gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
|
5562 |
|
|
rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
|
5563 |
|
|
{
|
5564 |
|
|
enum machine_mode mode = GET_MODE (op1);
|
5565 |
|
|
enum insn_code icode;
|
5566 |
|
|
rtx insn;
|
5567 |
|
|
|
5568 |
|
|
if (!HAVE_conditional_trap)
|
5569 |
|
|
return 0;
|
5570 |
|
|
|
5571 |
|
|
if (mode == VOIDmode)
|
5572 |
|
|
return 0;
|
5573 |
|
|
|
5574 |
|
|
icode = cmp_optab->handlers[(int) mode].insn_code;
|
5575 |
|
|
if (icode == CODE_FOR_nothing)
|
5576 |
|
|
return 0;
|
5577 |
|
|
|
5578 |
|
|
start_sequence ();
|
5579 |
|
|
op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
|
5580 |
|
|
op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
|
5581 |
|
|
if (!op1 || !op2)
|
5582 |
|
|
{
|
5583 |
|
|
end_sequence ();
|
5584 |
|
|
return 0;
|
5585 |
|
|
}
|
5586 |
|
|
emit_insn (GEN_FCN (icode) (op1, op2));
|
5587 |
|
|
|
5588 |
|
|
PUT_CODE (trap_rtx, code);
|
5589 |
|
|
gcc_assert (HAVE_conditional_trap);
|
5590 |
|
|
insn = gen_conditional_trap (trap_rtx, tcode);
|
5591 |
|
|
if (insn)
|
5592 |
|
|
{
|
5593 |
|
|
emit_insn (insn);
|
5594 |
|
|
insn = get_insns ();
|
5595 |
|
|
}
|
5596 |
|
|
end_sequence ();
|
5597 |
|
|
|
5598 |
|
|
return insn;
|
5599 |
|
|
}
|
5600 |
|
|
|
5601 |
|
|
/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
|
5602 |
|
|
or unsigned operation code. */
|
5603 |
|
|
|
5604 |
|
|
static enum rtx_code
|
5605 |
|
|
get_rtx_code (enum tree_code tcode, bool unsignedp)
|
5606 |
|
|
{
|
5607 |
|
|
enum rtx_code code;
|
5608 |
|
|
switch (tcode)
|
5609 |
|
|
{
|
5610 |
|
|
case EQ_EXPR:
|
5611 |
|
|
code = EQ;
|
5612 |
|
|
break;
|
5613 |
|
|
case NE_EXPR:
|
5614 |
|
|
code = NE;
|
5615 |
|
|
break;
|
5616 |
|
|
case LT_EXPR:
|
5617 |
|
|
code = unsignedp ? LTU : LT;
|
5618 |
|
|
break;
|
5619 |
|
|
case LE_EXPR:
|
5620 |
|
|
code = unsignedp ? LEU : LE;
|
5621 |
|
|
break;
|
5622 |
|
|
case GT_EXPR:
|
5623 |
|
|
code = unsignedp ? GTU : GT;
|
5624 |
|
|
break;
|
5625 |
|
|
case GE_EXPR:
|
5626 |
|
|
code = unsignedp ? GEU : GE;
|
5627 |
|
|
break;
|
5628 |
|
|
|
5629 |
|
|
case UNORDERED_EXPR:
|
5630 |
|
|
code = UNORDERED;
|
5631 |
|
|
break;
|
5632 |
|
|
case ORDERED_EXPR:
|
5633 |
|
|
code = ORDERED;
|
5634 |
|
|
break;
|
5635 |
|
|
case UNLT_EXPR:
|
5636 |
|
|
code = UNLT;
|
5637 |
|
|
break;
|
5638 |
|
|
case UNLE_EXPR:
|
5639 |
|
|
code = UNLE;
|
5640 |
|
|
break;
|
5641 |
|
|
case UNGT_EXPR:
|
5642 |
|
|
code = UNGT;
|
5643 |
|
|
break;
|
5644 |
|
|
case UNGE_EXPR:
|
5645 |
|
|
code = UNGE;
|
5646 |
|
|
break;
|
5647 |
|
|
case UNEQ_EXPR:
|
5648 |
|
|
code = UNEQ;
|
5649 |
|
|
break;
|
5650 |
|
|
case LTGT_EXPR:
|
5651 |
|
|
code = LTGT;
|
5652 |
|
|
break;
|
5653 |
|
|
|
5654 |
|
|
default:
|
5655 |
|
|
gcc_unreachable ();
|
5656 |
|
|
}
|
5657 |
|
|
return code;
|
5658 |
|
|
}
|
5659 |
|
|
|
5660 |
|
|
/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
|
5661 |
|
|
unsigned operators. Do not generate compare instruction. */
|
5662 |
|
|
|
5663 |
|
|
static rtx
|
5664 |
|
|
vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
|
5665 |
|
|
{
|
5666 |
|
|
enum rtx_code rcode;
|
5667 |
|
|
tree t_op0, t_op1;
|
5668 |
|
|
rtx rtx_op0, rtx_op1;
|
5669 |
|
|
|
5670 |
|
|
/* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
|
5671 |
|
|
ensures that condition is a relational operation. */
|
5672 |
|
|
gcc_assert (COMPARISON_CLASS_P (cond));
|
5673 |
|
|
|
5674 |
|
|
rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
|
5675 |
|
|
t_op0 = TREE_OPERAND (cond, 0);
|
5676 |
|
|
t_op1 = TREE_OPERAND (cond, 1);
|
5677 |
|
|
|
5678 |
|
|
/* Expand operands. */
|
5679 |
|
|
rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), 1);
|
5680 |
|
|
rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), 1);
|
5681 |
|
|
|
5682 |
|
|
if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
|
5683 |
|
|
&& GET_MODE (rtx_op0) != VOIDmode)
|
5684 |
|
|
rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
|
5685 |
|
|
|
5686 |
|
|
if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
|
5687 |
|
|
&& GET_MODE (rtx_op1) != VOIDmode)
|
5688 |
|
|
rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
|
5689 |
|
|
|
5690 |
|
|
return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
|
5691 |
|
|
}
|
5692 |
|
|
|
5693 |
|
|
/* Return insn code for VEC_COND_EXPR EXPR. */
|
5694 |
|
|
|
5695 |
|
|
static inline enum insn_code
|
5696 |
|
|
get_vcond_icode (tree expr, enum machine_mode mode)
|
5697 |
|
|
{
|
5698 |
|
|
enum insn_code icode = CODE_FOR_nothing;
|
5699 |
|
|
|
5700 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (expr)))
|
5701 |
|
|
icode = vcondu_gen_code[mode];
|
5702 |
|
|
else
|
5703 |
|
|
icode = vcond_gen_code[mode];
|
5704 |
|
|
return icode;
|
5705 |
|
|
}
|
5706 |
|
|
|
5707 |
|
|
/* Return TRUE iff, appropriate vector insns are available
|
5708 |
|
|
for vector cond expr expr in VMODE mode. */
|
5709 |
|
|
|
5710 |
|
|
bool
|
5711 |
|
|
expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
|
5712 |
|
|
{
|
5713 |
|
|
if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
|
5714 |
|
|
return false;
|
5715 |
|
|
return true;
|
5716 |
|
|
}
|
5717 |
|
|
|
5718 |
|
|
/* Generate insns for VEC_COND_EXPR. */
|
5719 |
|
|
|
5720 |
|
|
rtx
|
5721 |
|
|
expand_vec_cond_expr (tree vec_cond_expr, rtx target)
|
5722 |
|
|
{
|
5723 |
|
|
enum insn_code icode;
|
5724 |
|
|
rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
|
5725 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
|
5726 |
|
|
bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
|
5727 |
|
|
|
5728 |
|
|
icode = get_vcond_icode (vec_cond_expr, mode);
|
5729 |
|
|
if (icode == CODE_FOR_nothing)
|
5730 |
|
|
return 0;
|
5731 |
|
|
|
5732 |
|
|
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
5733 |
|
|
target = gen_reg_rtx (mode);
|
5734 |
|
|
|
5735 |
|
|
/* Get comparison rtx. First expand both cond expr operands. */
|
5736 |
|
|
comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
|
5737 |
|
|
unsignedp, icode);
|
5738 |
|
|
cc_op0 = XEXP (comparison, 0);
|
5739 |
|
|
cc_op1 = XEXP (comparison, 1);
|
5740 |
|
|
/* Expand both operands and force them in reg, if required. */
|
5741 |
|
|
rtx_op1 = expand_expr (TREE_OPERAND (vec_cond_expr, 1),
|
5742 |
|
|
NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
5743 |
|
|
if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
|
5744 |
|
|
&& mode != VOIDmode)
|
5745 |
|
|
rtx_op1 = force_reg (mode, rtx_op1);
|
5746 |
|
|
|
5747 |
|
|
rtx_op2 = expand_expr (TREE_OPERAND (vec_cond_expr, 2),
|
5748 |
|
|
NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
5749 |
|
|
if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
|
5750 |
|
|
&& mode != VOIDmode)
|
5751 |
|
|
rtx_op2 = force_reg (mode, rtx_op2);
|
5752 |
|
|
|
5753 |
|
|
/* Emit instruction! */
|
5754 |
|
|
emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
|
5755 |
|
|
comparison, cc_op0, cc_op1));
|
5756 |
|
|
|
5757 |
|
|
return target;
|
5758 |
|
|
}
|
5759 |
|
|
|
5760 |
|
|
|
5761 |
|
|
/* This is an internal subroutine of the other compare_and_swap expanders.
|
5762 |
|
|
MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
|
5763 |
|
|
operation. TARGET is an optional place to store the value result of
|
5764 |
|
|
the operation. ICODE is the particular instruction to expand. Return
|
5765 |
|
|
the result of the operation. */
|
5766 |
|
|
|
5767 |
|
|
static rtx
|
5768 |
|
|
expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
|
5769 |
|
|
rtx target, enum insn_code icode)
|
5770 |
|
|
{
|
5771 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
5772 |
|
|
rtx insn;
|
5773 |
|
|
|
5774 |
|
|
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
5775 |
|
|
target = gen_reg_rtx (mode);
|
5776 |
|
|
|
5777 |
|
|
if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
|
5778 |
|
|
old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
|
5779 |
|
|
if (!insn_data[icode].operand[2].predicate (old_val, mode))
|
5780 |
|
|
old_val = force_reg (mode, old_val);
|
5781 |
|
|
|
5782 |
|
|
if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
|
5783 |
|
|
new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
|
5784 |
|
|
if (!insn_data[icode].operand[3].predicate (new_val, mode))
|
5785 |
|
|
new_val = force_reg (mode, new_val);
|
5786 |
|
|
|
5787 |
|
|
insn = GEN_FCN (icode) (target, mem, old_val, new_val);
|
5788 |
|
|
if (insn == NULL_RTX)
|
5789 |
|
|
return NULL_RTX;
|
5790 |
|
|
emit_insn (insn);
|
5791 |
|
|
|
5792 |
|
|
return target;
|
5793 |
|
|
}
|
5794 |
|
|
|
5795 |
|
|
/* Expand a compare-and-swap operation and return its value. */
|
5796 |
|
|
|
5797 |
|
|
rtx
|
5798 |
|
|
expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
|
5799 |
|
|
{
|
5800 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
5801 |
|
|
enum insn_code icode = sync_compare_and_swap[mode];
|
5802 |
|
|
|
5803 |
|
|
if (icode == CODE_FOR_nothing)
|
5804 |
|
|
return NULL_RTX;
|
5805 |
|
|
|
5806 |
|
|
return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
|
5807 |
|
|
}
|
5808 |
|
|
|
5809 |
|
|
/* Expand a compare-and-swap operation and store true into the result if
|
5810 |
|
|
the operation was successful and false otherwise. Return the result.
|
5811 |
|
|
Unlike other routines, TARGET is not optional. */
|
5812 |
|
|
|
5813 |
|
|
rtx
|
5814 |
|
|
expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
|
5815 |
|
|
{
|
5816 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
5817 |
|
|
enum insn_code icode;
|
5818 |
|
|
rtx subtarget, label0, label1;
|
5819 |
|
|
|
5820 |
|
|
/* If the target supports a compare-and-swap pattern that simultaneously
|
5821 |
|
|
sets some flag for success, then use it. Otherwise use the regular
|
5822 |
|
|
compare-and-swap and follow that immediately with a compare insn. */
|
5823 |
|
|
icode = sync_compare_and_swap_cc[mode];
|
5824 |
|
|
switch (icode)
|
5825 |
|
|
{
|
5826 |
|
|
default:
|
5827 |
|
|
subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
|
5828 |
|
|
NULL_RTX, icode);
|
5829 |
|
|
if (subtarget != NULL_RTX)
|
5830 |
|
|
break;
|
5831 |
|
|
|
5832 |
|
|
/* FALLTHRU */
|
5833 |
|
|
case CODE_FOR_nothing:
|
5834 |
|
|
icode = sync_compare_and_swap[mode];
|
5835 |
|
|
if (icode == CODE_FOR_nothing)
|
5836 |
|
|
return NULL_RTX;
|
5837 |
|
|
|
5838 |
|
|
/* Ensure that if old_val == mem, that we're not comparing
|
5839 |
|
|
against an old value. */
|
5840 |
|
|
if (MEM_P (old_val))
|
5841 |
|
|
old_val = force_reg (mode, old_val);
|
5842 |
|
|
|
5843 |
|
|
subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
|
5844 |
|
|
NULL_RTX, icode);
|
5845 |
|
|
if (subtarget == NULL_RTX)
|
5846 |
|
|
return NULL_RTX;
|
5847 |
|
|
|
5848 |
|
|
emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true);
|
5849 |
|
|
}
|
5850 |
|
|
|
5851 |
|
|
/* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a
|
5852 |
|
|
setcc instruction from the beginning. We don't work too hard here,
|
5853 |
|
|
but it's nice to not be stupid about initial code gen either. */
|
5854 |
|
|
if (STORE_FLAG_VALUE == 1)
|
5855 |
|
|
{
|
5856 |
|
|
icode = setcc_gen_code[EQ];
|
5857 |
|
|
if (icode != CODE_FOR_nothing)
|
5858 |
|
|
{
|
5859 |
|
|
enum machine_mode cmode = insn_data[icode].operand[0].mode;
|
5860 |
|
|
rtx insn;
|
5861 |
|
|
|
5862 |
|
|
subtarget = target;
|
5863 |
|
|
if (!insn_data[icode].operand[0].predicate (target, cmode))
|
5864 |
|
|
subtarget = gen_reg_rtx (cmode);
|
5865 |
|
|
|
5866 |
|
|
insn = GEN_FCN (icode) (subtarget);
|
5867 |
|
|
if (insn)
|
5868 |
|
|
{
|
5869 |
|
|
emit_insn (insn);
|
5870 |
|
|
if (GET_MODE (target) != GET_MODE (subtarget))
|
5871 |
|
|
{
|
5872 |
|
|
convert_move (target, subtarget, 1);
|
5873 |
|
|
subtarget = target;
|
5874 |
|
|
}
|
5875 |
|
|
return subtarget;
|
5876 |
|
|
}
|
5877 |
|
|
}
|
5878 |
|
|
}
|
5879 |
|
|
|
5880 |
|
|
/* Without an appropriate setcc instruction, use a set of branches to
|
5881 |
|
|
get 1 and 0 stored into target. Presumably if the target has a
|
5882 |
|
|
STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt. */
|
5883 |
|
|
|
5884 |
|
|
label0 = gen_label_rtx ();
|
5885 |
|
|
label1 = gen_label_rtx ();
|
5886 |
|
|
|
5887 |
|
|
emit_jump_insn (bcc_gen_fctn[EQ] (label0));
|
5888 |
|
|
emit_move_insn (target, const0_rtx);
|
5889 |
|
|
emit_jump_insn (gen_jump (label1));
|
5890 |
|
|
emit_barrier ();
|
5891 |
|
|
emit_label (label0);
|
5892 |
|
|
emit_move_insn (target, const1_rtx);
|
5893 |
|
|
emit_label (label1);
|
5894 |
|
|
|
5895 |
|
|
return target;
|
5896 |
|
|
}
|
5897 |
|
|
|
5898 |
|
|
/* This is a helper function for the other atomic operations. This function
|
5899 |
|
|
emits a loop that contains SEQ that iterates until a compare-and-swap
|
5900 |
|
|
operation at the end succeeds. MEM is the memory to be modified. SEQ is
|
5901 |
|
|
a set of instructions that takes a value from OLD_REG as an input and
|
5902 |
|
|
produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
|
5903 |
|
|
set to the current contents of MEM. After SEQ, a compare-and-swap will
|
5904 |
|
|
attempt to update MEM with NEW_REG. The function returns true when the
|
5905 |
|
|
loop was generated successfully. */
|
5906 |
|
|
|
5907 |
|
|
static bool
|
5908 |
|
|
expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
|
5909 |
|
|
{
|
5910 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
5911 |
|
|
enum insn_code icode;
|
5912 |
|
|
rtx label, cmp_reg, subtarget;
|
5913 |
|
|
|
5914 |
|
|
/* The loop we want to generate looks like
|
5915 |
|
|
|
5916 |
|
|
cmp_reg = mem;
|
5917 |
|
|
label:
|
5918 |
|
|
old_reg = cmp_reg;
|
5919 |
|
|
seq;
|
5920 |
|
|
cmp_reg = compare-and-swap(mem, old_reg, new_reg)
|
5921 |
|
|
if (cmp_reg != old_reg)
|
5922 |
|
|
goto label;
|
5923 |
|
|
|
5924 |
|
|
Note that we only do the plain load from memory once. Subsequent
|
5925 |
|
|
iterations use the value loaded by the compare-and-swap pattern. */
|
5926 |
|
|
|
5927 |
|
|
label = gen_label_rtx ();
|
5928 |
|
|
cmp_reg = gen_reg_rtx (mode);
|
5929 |
|
|
|
5930 |
|
|
emit_move_insn (cmp_reg, mem);
|
5931 |
|
|
emit_label (label);
|
5932 |
|
|
emit_move_insn (old_reg, cmp_reg);
|
5933 |
|
|
if (seq)
|
5934 |
|
|
emit_insn (seq);
|
5935 |
|
|
|
5936 |
|
|
/* If the target supports a compare-and-swap pattern that simultaneously
|
5937 |
|
|
sets some flag for success, then use it. Otherwise use the regular
|
5938 |
|
|
compare-and-swap and follow that immediately with a compare insn. */
|
5939 |
|
|
icode = sync_compare_and_swap_cc[mode];
|
5940 |
|
|
switch (icode)
|
5941 |
|
|
{
|
5942 |
|
|
default:
|
5943 |
|
|
subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
|
5944 |
|
|
cmp_reg, icode);
|
5945 |
|
|
if (subtarget != NULL_RTX)
|
5946 |
|
|
{
|
5947 |
|
|
gcc_assert (subtarget == cmp_reg);
|
5948 |
|
|
break;
|
5949 |
|
|
}
|
5950 |
|
|
|
5951 |
|
|
/* FALLTHRU */
|
5952 |
|
|
case CODE_FOR_nothing:
|
5953 |
|
|
icode = sync_compare_and_swap[mode];
|
5954 |
|
|
if (icode == CODE_FOR_nothing)
|
5955 |
|
|
return false;
|
5956 |
|
|
|
5957 |
|
|
subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
|
5958 |
|
|
cmp_reg, icode);
|
5959 |
|
|
if (subtarget == NULL_RTX)
|
5960 |
|
|
return false;
|
5961 |
|
|
if (subtarget != cmp_reg)
|
5962 |
|
|
emit_move_insn (cmp_reg, subtarget);
|
5963 |
|
|
|
5964 |
|
|
emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true);
|
5965 |
|
|
}
|
5966 |
|
|
|
5967 |
|
|
/* ??? Mark this jump predicted not taken? */
|
5968 |
|
|
emit_jump_insn (bcc_gen_fctn[NE] (label));
|
5969 |
|
|
|
5970 |
|
|
return true;
|
5971 |
|
|
}
|
5972 |
|
|
|
5973 |
|
|
/* This function generates the atomic operation MEM CODE= VAL. In this
|
5974 |
|
|
case, we do not care about any resulting value. Returns NULL if we
|
5975 |
|
|
cannot generate the operation. */
|
5976 |
|
|
|
5977 |
|
|
rtx
|
5978 |
|
|
expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
|
5979 |
|
|
{
|
5980 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
5981 |
|
|
enum insn_code icode;
|
5982 |
|
|
rtx insn;
|
5983 |
|
|
|
5984 |
|
|
/* Look to see if the target supports the operation directly. */
|
5985 |
|
|
switch (code)
|
5986 |
|
|
{
|
5987 |
|
|
case PLUS:
|
5988 |
|
|
icode = sync_add_optab[mode];
|
5989 |
|
|
break;
|
5990 |
|
|
case IOR:
|
5991 |
|
|
icode = sync_ior_optab[mode];
|
5992 |
|
|
break;
|
5993 |
|
|
case XOR:
|
5994 |
|
|
icode = sync_xor_optab[mode];
|
5995 |
|
|
break;
|
5996 |
|
|
case AND:
|
5997 |
|
|
icode = sync_and_optab[mode];
|
5998 |
|
|
break;
|
5999 |
|
|
case NOT:
|
6000 |
|
|
icode = sync_nand_optab[mode];
|
6001 |
|
|
break;
|
6002 |
|
|
|
6003 |
|
|
case MINUS:
|
6004 |
|
|
icode = sync_sub_optab[mode];
|
6005 |
|
|
if (icode == CODE_FOR_nothing)
|
6006 |
|
|
{
|
6007 |
|
|
icode = sync_add_optab[mode];
|
6008 |
|
|
if (icode != CODE_FOR_nothing)
|
6009 |
|
|
{
|
6010 |
|
|
val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
|
6011 |
|
|
code = PLUS;
|
6012 |
|
|
}
|
6013 |
|
|
}
|
6014 |
|
|
break;
|
6015 |
|
|
|
6016 |
|
|
default:
|
6017 |
|
|
gcc_unreachable ();
|
6018 |
|
|
}
|
6019 |
|
|
|
6020 |
|
|
/* Generate the direct operation, if present. */
|
6021 |
|
|
if (icode != CODE_FOR_nothing)
|
6022 |
|
|
{
|
6023 |
|
|
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
6024 |
|
|
val = convert_modes (mode, GET_MODE (val), val, 1);
|
6025 |
|
|
if (!insn_data[icode].operand[1].predicate (val, mode))
|
6026 |
|
|
val = force_reg (mode, val);
|
6027 |
|
|
|
6028 |
|
|
insn = GEN_FCN (icode) (mem, val);
|
6029 |
|
|
if (insn)
|
6030 |
|
|
{
|
6031 |
|
|
emit_insn (insn);
|
6032 |
|
|
return const0_rtx;
|
6033 |
|
|
}
|
6034 |
|
|
}
|
6035 |
|
|
|
6036 |
|
|
/* Failing that, generate a compare-and-swap loop in which we perform the
|
6037 |
|
|
operation with normal arithmetic instructions. */
|
6038 |
|
|
if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
|
6039 |
|
|
{
|
6040 |
|
|
rtx t0 = gen_reg_rtx (mode), t1;
|
6041 |
|
|
|
6042 |
|
|
start_sequence ();
|
6043 |
|
|
|
6044 |
|
|
t1 = t0;
|
6045 |
|
|
if (code == NOT)
|
6046 |
|
|
{
|
6047 |
|
|
t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
|
6048 |
|
|
code = AND;
|
6049 |
|
|
}
|
6050 |
|
|
t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
|
6051 |
|
|
true, OPTAB_LIB_WIDEN);
|
6052 |
|
|
|
6053 |
|
|
insn = get_insns ();
|
6054 |
|
|
end_sequence ();
|
6055 |
|
|
|
6056 |
|
|
if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
|
6057 |
|
|
return const0_rtx;
|
6058 |
|
|
}
|
6059 |
|
|
|
6060 |
|
|
return NULL_RTX;
|
6061 |
|
|
}
|
6062 |
|
|
|
6063 |
|
|
/* This function generates the atomic operation MEM CODE= VAL. In this
|
6064 |
|
|
case, we do care about the resulting value: if AFTER is true then
|
6065 |
|
|
return the value MEM holds after the operation, if AFTER is false
|
6066 |
|
|
then return the value MEM holds before the operation. TARGET is an
|
6067 |
|
|
optional place for the result value to be stored. */
|
6068 |
|
|
|
6069 |
|
|
rtx
|
6070 |
|
|
expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
|
6071 |
|
|
bool after, rtx target)
|
6072 |
|
|
{
|
6073 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
6074 |
|
|
enum insn_code old_code, new_code, icode;
|
6075 |
|
|
bool compensate;
|
6076 |
|
|
rtx insn;
|
6077 |
|
|
|
6078 |
|
|
/* Look to see if the target supports the operation directly. */
|
6079 |
|
|
switch (code)
|
6080 |
|
|
{
|
6081 |
|
|
case PLUS:
|
6082 |
|
|
old_code = sync_old_add_optab[mode];
|
6083 |
|
|
new_code = sync_new_add_optab[mode];
|
6084 |
|
|
break;
|
6085 |
|
|
case IOR:
|
6086 |
|
|
old_code = sync_old_ior_optab[mode];
|
6087 |
|
|
new_code = sync_new_ior_optab[mode];
|
6088 |
|
|
break;
|
6089 |
|
|
case XOR:
|
6090 |
|
|
old_code = sync_old_xor_optab[mode];
|
6091 |
|
|
new_code = sync_new_xor_optab[mode];
|
6092 |
|
|
break;
|
6093 |
|
|
case AND:
|
6094 |
|
|
old_code = sync_old_and_optab[mode];
|
6095 |
|
|
new_code = sync_new_and_optab[mode];
|
6096 |
|
|
break;
|
6097 |
|
|
case NOT:
|
6098 |
|
|
old_code = sync_old_nand_optab[mode];
|
6099 |
|
|
new_code = sync_new_nand_optab[mode];
|
6100 |
|
|
break;
|
6101 |
|
|
|
6102 |
|
|
case MINUS:
|
6103 |
|
|
old_code = sync_old_sub_optab[mode];
|
6104 |
|
|
new_code = sync_new_sub_optab[mode];
|
6105 |
|
|
if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
|
6106 |
|
|
{
|
6107 |
|
|
old_code = sync_old_add_optab[mode];
|
6108 |
|
|
new_code = sync_new_add_optab[mode];
|
6109 |
|
|
if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
|
6110 |
|
|
{
|
6111 |
|
|
val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
|
6112 |
|
|
code = PLUS;
|
6113 |
|
|
}
|
6114 |
|
|
}
|
6115 |
|
|
break;
|
6116 |
|
|
|
6117 |
|
|
default:
|
6118 |
|
|
gcc_unreachable ();
|
6119 |
|
|
}
|
6120 |
|
|
|
6121 |
|
|
/* If the target does supports the proper new/old operation, great. But
|
6122 |
|
|
if we only support the opposite old/new operation, check to see if we
|
6123 |
|
|
can compensate. In the case in which the old value is supported, then
|
6124 |
|
|
we can always perform the operation again with normal arithmetic. In
|
6125 |
|
|
the case in which the new value is supported, then we can only handle
|
6126 |
|
|
this in the case the operation is reversible. */
|
6127 |
|
|
compensate = false;
|
6128 |
|
|
if (after)
|
6129 |
|
|
{
|
6130 |
|
|
icode = new_code;
|
6131 |
|
|
if (icode == CODE_FOR_nothing)
|
6132 |
|
|
{
|
6133 |
|
|
icode = old_code;
|
6134 |
|
|
if (icode != CODE_FOR_nothing)
|
6135 |
|
|
compensate = true;
|
6136 |
|
|
}
|
6137 |
|
|
}
|
6138 |
|
|
else
|
6139 |
|
|
{
|
6140 |
|
|
icode = old_code;
|
6141 |
|
|
if (icode == CODE_FOR_nothing
|
6142 |
|
|
&& (code == PLUS || code == MINUS || code == XOR))
|
6143 |
|
|
{
|
6144 |
|
|
icode = new_code;
|
6145 |
|
|
if (icode != CODE_FOR_nothing)
|
6146 |
|
|
compensate = true;
|
6147 |
|
|
}
|
6148 |
|
|
}
|
6149 |
|
|
|
6150 |
|
|
/* If we found something supported, great. */
|
6151 |
|
|
if (icode != CODE_FOR_nothing)
|
6152 |
|
|
{
|
6153 |
|
|
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
6154 |
|
|
target = gen_reg_rtx (mode);
|
6155 |
|
|
|
6156 |
|
|
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
6157 |
|
|
val = convert_modes (mode, GET_MODE (val), val, 1);
|
6158 |
|
|
if (!insn_data[icode].operand[2].predicate (val, mode))
|
6159 |
|
|
val = force_reg (mode, val);
|
6160 |
|
|
|
6161 |
|
|
insn = GEN_FCN (icode) (target, mem, val);
|
6162 |
|
|
if (insn)
|
6163 |
|
|
{
|
6164 |
|
|
emit_insn (insn);
|
6165 |
|
|
|
6166 |
|
|
/* If we need to compensate for using an operation with the
|
6167 |
|
|
wrong return value, do so now. */
|
6168 |
|
|
if (compensate)
|
6169 |
|
|
{
|
6170 |
|
|
if (!after)
|
6171 |
|
|
{
|
6172 |
|
|
if (code == PLUS)
|
6173 |
|
|
code = MINUS;
|
6174 |
|
|
else if (code == MINUS)
|
6175 |
|
|
code = PLUS;
|
6176 |
|
|
}
|
6177 |
|
|
|
6178 |
|
|
if (code == NOT)
|
6179 |
|
|
target = expand_simple_unop (mode, NOT, target, NULL_RTX, true);
|
6180 |
|
|
target = expand_simple_binop (mode, code, target, val, NULL_RTX,
|
6181 |
|
|
true, OPTAB_LIB_WIDEN);
|
6182 |
|
|
}
|
6183 |
|
|
|
6184 |
|
|
return target;
|
6185 |
|
|
}
|
6186 |
|
|
}
|
6187 |
|
|
|
6188 |
|
|
/* Failing that, generate a compare-and-swap loop in which we perform the
|
6189 |
|
|
operation with normal arithmetic instructions. */
|
6190 |
|
|
if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
|
6191 |
|
|
{
|
6192 |
|
|
rtx t0 = gen_reg_rtx (mode), t1;
|
6193 |
|
|
|
6194 |
|
|
if (!target || !register_operand (target, mode))
|
6195 |
|
|
target = gen_reg_rtx (mode);
|
6196 |
|
|
|
6197 |
|
|
start_sequence ();
|
6198 |
|
|
|
6199 |
|
|
if (!after)
|
6200 |
|
|
emit_move_insn (target, t0);
|
6201 |
|
|
t1 = t0;
|
6202 |
|
|
if (code == NOT)
|
6203 |
|
|
{
|
6204 |
|
|
t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true);
|
6205 |
|
|
code = AND;
|
6206 |
|
|
}
|
6207 |
|
|
t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
|
6208 |
|
|
true, OPTAB_LIB_WIDEN);
|
6209 |
|
|
if (after)
|
6210 |
|
|
emit_move_insn (target, t1);
|
6211 |
|
|
|
6212 |
|
|
insn = get_insns ();
|
6213 |
|
|
end_sequence ();
|
6214 |
|
|
|
6215 |
|
|
if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
|
6216 |
|
|
return target;
|
6217 |
|
|
}
|
6218 |
|
|
|
6219 |
|
|
return NULL_RTX;
|
6220 |
|
|
}
|
6221 |
|
|
|
6222 |
|
|
/* This function expands a test-and-set operation. Ideally we atomically
|
6223 |
|
|
store VAL in MEM and return the previous value in MEM. Some targets
|
6224 |
|
|
may not support this operation and only support VAL with the constant 1;
|
6225 |
|
|
in this case while the return value will be 0/1, but the exact value
|
6226 |
|
|
stored in MEM is target defined. TARGET is an option place to stick
|
6227 |
|
|
the return value. */
|
6228 |
|
|
|
6229 |
|
|
rtx
|
6230 |
|
|
expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
|
6231 |
|
|
{
|
6232 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
6233 |
|
|
enum insn_code icode;
|
6234 |
|
|
rtx insn;
|
6235 |
|
|
|
6236 |
|
|
/* If the target supports the test-and-set directly, great. */
|
6237 |
|
|
icode = sync_lock_test_and_set[mode];
|
6238 |
|
|
if (icode != CODE_FOR_nothing)
|
6239 |
|
|
{
|
6240 |
|
|
if (!target || !insn_data[icode].operand[0].predicate (target, mode))
|
6241 |
|
|
target = gen_reg_rtx (mode);
|
6242 |
|
|
|
6243 |
|
|
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
6244 |
|
|
val = convert_modes (mode, GET_MODE (val), val, 1);
|
6245 |
|
|
if (!insn_data[icode].operand[2].predicate (val, mode))
|
6246 |
|
|
val = force_reg (mode, val);
|
6247 |
|
|
|
6248 |
|
|
insn = GEN_FCN (icode) (target, mem, val);
|
6249 |
|
|
if (insn)
|
6250 |
|
|
{
|
6251 |
|
|
emit_insn (insn);
|
6252 |
|
|
return target;
|
6253 |
|
|
}
|
6254 |
|
|
}
|
6255 |
|
|
|
6256 |
|
|
/* Otherwise, use a compare-and-swap loop for the exchange. */
|
6257 |
|
|
if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
|
6258 |
|
|
{
|
6259 |
|
|
if (!target || !register_operand (target, mode))
|
6260 |
|
|
target = gen_reg_rtx (mode);
|
6261 |
|
|
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
6262 |
|
|
val = convert_modes (mode, GET_MODE (val), val, 1);
|
6263 |
|
|
if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
|
6264 |
|
|
return target;
|
6265 |
|
|
}
|
6266 |
|
|
|
6267 |
|
|
return NULL_RTX;
|
6268 |
|
|
}
|
6269 |
|
|
|
6270 |
|
|
#include "gt-optabs.h"
|