1 |
38 |
julius |
/* Register to Stack convert for GNU compiler.
|
2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
3 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
14 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
15 |
|
|
License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* This pass converts stack-like registers from the "flat register
|
22 |
|
|
file" model that gcc uses, to a stack convention that the 387 uses.
|
23 |
|
|
|
24 |
|
|
* The form of the input:
|
25 |
|
|
|
26 |
|
|
On input, the function consists of insn that have had their
|
27 |
|
|
registers fully allocated to a set of "virtual" registers. Note that
|
28 |
|
|
the word "virtual" is used differently here than elsewhere in gcc: for
|
29 |
|
|
each virtual stack reg, there is a hard reg, but the mapping between
|
30 |
|
|
them is not known until this pass is run. On output, hard register
|
31 |
|
|
numbers have been substituted, and various pop and exchange insns have
|
32 |
|
|
been emitted. The hard register numbers and the virtual register
|
33 |
|
|
numbers completely overlap - before this pass, all stack register
|
34 |
|
|
numbers are virtual, and afterward they are all hard.
|
35 |
|
|
|
36 |
|
|
The virtual registers can be manipulated normally by gcc, and their
|
37 |
|
|
semantics are the same as for normal registers. After the hard
|
38 |
|
|
register numbers are substituted, the semantics of an insn containing
|
39 |
|
|
stack-like regs are not the same as for an insn with normal regs: for
|
40 |
|
|
instance, it is not safe to delete an insn that appears to be a no-op
|
41 |
|
|
move. In general, no insn containing hard regs should be changed
|
42 |
|
|
after this pass is done.
|
43 |
|
|
|
44 |
|
|
* The form of the output:
|
45 |
|
|
|
46 |
|
|
After this pass, hard register numbers represent the distance from
|
47 |
|
|
the current top of stack to the desired register. A reference to
|
48 |
|
|
FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
|
49 |
|
|
represents the register just below that, and so forth. Also, REG_DEAD
|
50 |
|
|
notes indicate whether or not a stack register should be popped.
|
51 |
|
|
|
52 |
|
|
A "swap" insn looks like a parallel of two patterns, where each
|
53 |
|
|
pattern is a SET: one sets A to B, the other B to A.
|
54 |
|
|
|
55 |
|
|
A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
|
56 |
|
|
and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
|
57 |
|
|
will replace the existing stack top, not push a new value.
|
58 |
|
|
|
59 |
|
|
A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
|
60 |
|
|
SET_SRC is REG or MEM.
|
61 |
|
|
|
62 |
|
|
The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
|
63 |
|
|
appears ambiguous. As a special case, the presence of a REG_DEAD note
|
64 |
|
|
for FIRST_STACK_REG differentiates between a load insn and a pop.
|
65 |
|
|
|
66 |
|
|
If a REG_DEAD is present, the insn represents a "pop" that discards
|
67 |
|
|
the top of the register stack. If there is no REG_DEAD note, then the
|
68 |
|
|
insn represents a "dup" or a push of the current top of stack onto the
|
69 |
|
|
stack.
|
70 |
|
|
|
71 |
|
|
* Methodology:
|
72 |
|
|
|
73 |
|
|
Existing REG_DEAD and REG_UNUSED notes for stack registers are
|
74 |
|
|
deleted and recreated from scratch. REG_DEAD is never created for a
|
75 |
|
|
SET_DEST, only REG_UNUSED.
|
76 |
|
|
|
77 |
|
|
* asm_operands:
|
78 |
|
|
|
79 |
|
|
There are several rules on the usage of stack-like regs in
|
80 |
|
|
asm_operands insns. These rules apply only to the operands that are
|
81 |
|
|
stack-like regs:
|
82 |
|
|
|
83 |
|
|
1. Given a set of input regs that die in an asm_operands, it is
|
84 |
|
|
necessary to know which are implicitly popped by the asm, and
|
85 |
|
|
which must be explicitly popped by gcc.
|
86 |
|
|
|
87 |
|
|
An input reg that is implicitly popped by the asm must be
|
88 |
|
|
explicitly clobbered, unless it is constrained to match an
|
89 |
|
|
output operand.
|
90 |
|
|
|
91 |
|
|
2. For any input reg that is implicitly popped by an asm, it is
|
92 |
|
|
necessary to know how to adjust the stack to compensate for the pop.
|
93 |
|
|
If any non-popped input is closer to the top of the reg-stack than
|
94 |
|
|
the implicitly popped reg, it would not be possible to know what the
|
95 |
|
|
stack looked like - it's not clear how the rest of the stack "slides
|
96 |
|
|
up".
|
97 |
|
|
|
98 |
|
|
All implicitly popped input regs must be closer to the top of
|
99 |
|
|
the reg-stack than any input that is not implicitly popped.
|
100 |
|
|
|
101 |
|
|
3. It is possible that if an input dies in an insn, reload might
|
102 |
|
|
use the input reg for an output reload. Consider this example:
|
103 |
|
|
|
104 |
|
|
asm ("foo" : "=t" (a) : "f" (b));
|
105 |
|
|
|
106 |
|
|
This asm says that input B is not popped by the asm, and that
|
107 |
|
|
the asm pushes a result onto the reg-stack, i.e., the stack is one
|
108 |
|
|
deeper after the asm than it was before. But, it is possible that
|
109 |
|
|
reload will think that it can use the same reg for both the input and
|
110 |
|
|
the output, if input B dies in this insn.
|
111 |
|
|
|
112 |
|
|
If any input operand uses the "f" constraint, all output reg
|
113 |
|
|
constraints must use the "&" earlyclobber.
|
114 |
|
|
|
115 |
|
|
The asm above would be written as
|
116 |
|
|
|
117 |
|
|
asm ("foo" : "=&t" (a) : "f" (b));
|
118 |
|
|
|
119 |
|
|
4. Some operands need to be in particular places on the stack. All
|
120 |
|
|
output operands fall in this category - there is no other way to
|
121 |
|
|
know which regs the outputs appear in unless the user indicates
|
122 |
|
|
this in the constraints.
|
123 |
|
|
|
124 |
|
|
Output operands must specifically indicate which reg an output
|
125 |
|
|
appears in after an asm. "=f" is not allowed: the operand
|
126 |
|
|
constraints must select a class with a single reg.
|
127 |
|
|
|
128 |
|
|
5. Output operands may not be "inserted" between existing stack regs.
|
129 |
|
|
Since no 387 opcode uses a read/write operand, all output operands
|
130 |
|
|
are dead before the asm_operands, and are pushed by the asm_operands.
|
131 |
|
|
It makes no sense to push anywhere but the top of the reg-stack.
|
132 |
|
|
|
133 |
|
|
Output operands must start at the top of the reg-stack: output
|
134 |
|
|
operands may not "skip" a reg.
|
135 |
|
|
|
136 |
|
|
6. Some asm statements may need extra stack space for internal
|
137 |
|
|
calculations. This can be guaranteed by clobbering stack registers
|
138 |
|
|
unrelated to the inputs and outputs.
|
139 |
|
|
|
140 |
|
|
Here are a couple of reasonable asms to want to write. This asm
|
141 |
|
|
takes one input, which is internally popped, and produces two outputs.
|
142 |
|
|
|
143 |
|
|
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
|
144 |
|
|
|
145 |
|
|
This asm takes two inputs, which are popped by the fyl2xp1 opcode,
|
146 |
|
|
and replaces them with one output. The user must code the "st(1)"
|
147 |
|
|
clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
|
148 |
|
|
|
149 |
|
|
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
|
150 |
|
|
|
151 |
|
|
*/
|
152 |
|
|
|
153 |
|
|
#include "config.h"
|
154 |
|
|
#include "system.h"
|
155 |
|
|
#include "coretypes.h"
|
156 |
|
|
#include "tm.h"
|
157 |
|
|
#include "tree.h"
|
158 |
|
|
#include "rtl.h"
|
159 |
|
|
#include "tm_p.h"
|
160 |
|
|
#include "function.h"
|
161 |
|
|
#include "insn-config.h"
|
162 |
|
|
#include "regs.h"
|
163 |
|
|
#include "hard-reg-set.h"
|
164 |
|
|
#include "flags.h"
|
165 |
|
|
#include "toplev.h"
|
166 |
|
|
#include "recog.h"
|
167 |
|
|
#include "output.h"
|
168 |
|
|
#include "basic-block.h"
|
169 |
|
|
#include "varray.h"
|
170 |
|
|
#include "reload.h"
|
171 |
|
|
#include "ggc.h"
|
172 |
|
|
#include "timevar.h"
|
173 |
|
|
#include "tree-pass.h"
|
174 |
|
|
#include "target.h"
|
175 |
|
|
#include "vecprim.h"
|
176 |
|
|
|
177 |
|
|
#ifdef STACK_REGS
|
178 |
|
|
|
179 |
|
|
/* We use this array to cache info about insns, because otherwise we
|
180 |
|
|
spend too much time in stack_regs_mentioned_p.
|
181 |
|
|
|
182 |
|
|
Indexed by insn UIDs. A value of zero is uninitialized, one indicates
|
183 |
|
|
the insn uses stack registers, two indicates the insn does not use
|
184 |
|
|
stack registers. */
|
185 |
|
|
static VEC(char,heap) *stack_regs_mentioned_data;
|
186 |
|
|
|
187 |
|
|
#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
|
188 |
|
|
|
189 |
|
|
int regstack_completed = 0;
|
190 |
|
|
|
191 |
|
|
/* This is the basic stack record. TOP is an index into REG[] such
|
192 |
|
|
that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
|
193 |
|
|
|
194 |
|
|
If TOP is -2, REG[] is not yet initialized. Stack initialization
|
195 |
|
|
consists of placing each live reg in array `reg' and setting `top'
|
196 |
|
|
appropriately.
|
197 |
|
|
|
198 |
|
|
REG_SET indicates which registers are live. */
|
199 |
|
|
|
200 |
|
|
typedef struct stack_def
|
201 |
|
|
{
|
202 |
|
|
int top; /* index to top stack element */
|
203 |
|
|
HARD_REG_SET reg_set; /* set of live registers */
|
204 |
|
|
unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
|
205 |
|
|
} *stack;
|
206 |
|
|
|
207 |
|
|
/* This is used to carry information about basic blocks. It is
|
208 |
|
|
attached to the AUX field of the standard CFG block. */
|
209 |
|
|
|
210 |
|
|
typedef struct block_info_def
|
211 |
|
|
{
|
212 |
|
|
struct stack_def stack_in; /* Input stack configuration. */
|
213 |
|
|
struct stack_def stack_out; /* Output stack configuration. */
|
214 |
|
|
HARD_REG_SET out_reg_set; /* Stack regs live on output. */
|
215 |
|
|
int done; /* True if block already converted. */
|
216 |
|
|
int predecessors; /* Number of predecessors that need
|
217 |
|
|
to be visited. */
|
218 |
|
|
} *block_info;
|
219 |
|
|
|
220 |
|
|
#define BLOCK_INFO(B) ((block_info) (B)->aux)
|
221 |
|
|
|
222 |
|
|
/* Passed to change_stack to indicate where to emit insns. */
|
223 |
|
|
enum emit_where
|
224 |
|
|
{
|
225 |
|
|
EMIT_AFTER,
|
226 |
|
|
EMIT_BEFORE
|
227 |
|
|
};
|
228 |
|
|
|
229 |
|
|
/* The block we're currently working on. */
|
230 |
|
|
static basic_block current_block;
|
231 |
|
|
|
232 |
|
|
/* In the current_block, whether we're processing the first register
|
233 |
|
|
stack or call instruction, i.e. the regstack is currently the
|
234 |
|
|
same as BLOCK_INFO(current_block)->stack_in. */
|
235 |
|
|
static bool starting_stack_p;
|
236 |
|
|
|
237 |
|
|
/* This is the register file for all register after conversion. */
|
238 |
|
|
static rtx
|
239 |
|
|
FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
|
240 |
|
|
|
241 |
|
|
#define FP_MODE_REG(regno,mode) \
|
242 |
|
|
(FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
|
243 |
|
|
|
244 |
|
|
/* Used to initialize uninitialized registers. */
|
245 |
|
|
static rtx not_a_num;
|
246 |
|
|
|
247 |
|
|
/* Forward declarations */
|
248 |
|
|
|
249 |
|
|
static int stack_regs_mentioned_p (rtx pat);
|
250 |
|
|
static void pop_stack (stack, int);
|
251 |
|
|
static rtx *get_true_reg (rtx *);
|
252 |
|
|
|
253 |
|
|
static int check_asm_stack_operands (rtx);
|
254 |
|
|
static int get_asm_operand_n_inputs (rtx);
|
255 |
|
|
static rtx stack_result (tree);
|
256 |
|
|
static void replace_reg (rtx *, int);
|
257 |
|
|
static void remove_regno_note (rtx, enum reg_note, unsigned int);
|
258 |
|
|
static int get_hard_regnum (stack, rtx);
|
259 |
|
|
static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
|
260 |
|
|
static void swap_to_top(rtx, stack, rtx, rtx);
|
261 |
|
|
static bool move_for_stack_reg (rtx, stack, rtx);
|
262 |
|
|
static bool move_nan_for_stack_reg (rtx, stack, rtx);
|
263 |
|
|
static int swap_rtx_condition_1 (rtx);
|
264 |
|
|
static int swap_rtx_condition (rtx);
|
265 |
|
|
static void compare_for_stack_reg (rtx, stack, rtx);
|
266 |
|
|
static bool subst_stack_regs_pat (rtx, stack, rtx);
|
267 |
|
|
static void subst_asm_stack_regs (rtx, stack);
|
268 |
|
|
static bool subst_stack_regs (rtx, stack);
|
269 |
|
|
static void change_stack (rtx, stack, stack, enum emit_where);
|
270 |
|
|
static void print_stack (FILE *, stack);
|
271 |
|
|
static rtx next_flags_user (rtx);
|
272 |
|
|
|
273 |
|
|
/* Return nonzero if any stack register is mentioned somewhere within PAT. */
|
274 |
|
|
|
275 |
|
|
static int
|
276 |
|
|
stack_regs_mentioned_p (rtx pat)
|
277 |
|
|
{
|
278 |
|
|
const char *fmt;
|
279 |
|
|
int i;
|
280 |
|
|
|
281 |
|
|
if (STACK_REG_P (pat))
|
282 |
|
|
return 1;
|
283 |
|
|
|
284 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (pat));
|
285 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
|
286 |
|
|
{
|
287 |
|
|
if (fmt[i] == 'E')
|
288 |
|
|
{
|
289 |
|
|
int j;
|
290 |
|
|
|
291 |
|
|
for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
|
292 |
|
|
if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
|
293 |
|
|
return 1;
|
294 |
|
|
}
|
295 |
|
|
else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
|
296 |
|
|
return 1;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
return 0;
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
/* Return nonzero if INSN mentions stacked registers, else return zero. */
|
303 |
|
|
|
304 |
|
|
int
|
305 |
|
|
stack_regs_mentioned (rtx insn)
|
306 |
|
|
{
|
307 |
|
|
unsigned int uid, max;
|
308 |
|
|
int test;
|
309 |
|
|
|
310 |
|
|
if (! INSN_P (insn) || !stack_regs_mentioned_data)
|
311 |
|
|
return 0;
|
312 |
|
|
|
313 |
|
|
uid = INSN_UID (insn);
|
314 |
|
|
max = VEC_length (char, stack_regs_mentioned_data);
|
315 |
|
|
if (uid >= max)
|
316 |
|
|
{
|
317 |
|
|
char *p;
|
318 |
|
|
unsigned int old_max = max;
|
319 |
|
|
|
320 |
|
|
/* Allocate some extra size to avoid too many reallocs, but
|
321 |
|
|
do not grow too quickly. */
|
322 |
|
|
max = uid + uid / 20 + 1;
|
323 |
|
|
VEC_safe_grow (char, heap, stack_regs_mentioned_data, max);
|
324 |
|
|
p = VEC_address (char, stack_regs_mentioned_data);
|
325 |
|
|
memset (&p[old_max], 0,
|
326 |
|
|
sizeof (char) * (max - old_max));
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
test = VEC_index (char, stack_regs_mentioned_data, uid);
|
330 |
|
|
if (test == 0)
|
331 |
|
|
{
|
332 |
|
|
/* This insn has yet to be examined. Do so now. */
|
333 |
|
|
test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
|
334 |
|
|
VEC_replace (char, stack_regs_mentioned_data, uid, test);
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
return test == 1;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
static rtx ix86_flags_rtx;
|
341 |
|
|
|
342 |
|
|
static rtx
|
343 |
|
|
next_flags_user (rtx insn)
|
344 |
|
|
{
|
345 |
|
|
/* Search forward looking for the first use of this value.
|
346 |
|
|
Stop at block boundaries. */
|
347 |
|
|
|
348 |
|
|
while (insn != BB_END (current_block))
|
349 |
|
|
{
|
350 |
|
|
insn = NEXT_INSN (insn);
|
351 |
|
|
|
352 |
|
|
if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
|
353 |
|
|
return insn;
|
354 |
|
|
|
355 |
|
|
if (CALL_P (insn))
|
356 |
|
|
return NULL_RTX;
|
357 |
|
|
}
|
358 |
|
|
return NULL_RTX;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
/* Reorganize the stack into ascending numbers, before this insn. */
|
362 |
|
|
|
363 |
|
|
static void
|
364 |
|
|
straighten_stack (rtx insn, stack regstack)
|
365 |
|
|
{
|
366 |
|
|
struct stack_def temp_stack;
|
367 |
|
|
int top;
|
368 |
|
|
|
369 |
|
|
/* If there is only a single register on the stack, then the stack is
|
370 |
|
|
already in increasing order and no reorganization is needed.
|
371 |
|
|
|
372 |
|
|
Similarly if the stack is empty. */
|
373 |
|
|
if (regstack->top <= 0)
|
374 |
|
|
return;
|
375 |
|
|
|
376 |
|
|
COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
|
377 |
|
|
|
378 |
|
|
for (top = temp_stack.top = regstack->top; top >= 0; top--)
|
379 |
|
|
temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
|
380 |
|
|
|
381 |
|
|
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
/* Pop a register from the stack. */
|
385 |
|
|
|
386 |
|
|
static void
|
387 |
|
|
pop_stack (stack regstack, int regno)
|
388 |
|
|
{
|
389 |
|
|
int top = regstack->top;
|
390 |
|
|
|
391 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
|
392 |
|
|
regstack->top--;
|
393 |
|
|
/* If regno was not at the top of stack then adjust stack. */
|
394 |
|
|
if (regstack->reg [top] != regno)
|
395 |
|
|
{
|
396 |
|
|
int i;
|
397 |
|
|
for (i = regstack->top; i >= 0; i--)
|
398 |
|
|
if (regstack->reg [i] == regno)
|
399 |
|
|
{
|
400 |
|
|
int j;
|
401 |
|
|
for (j = i; j < top; j++)
|
402 |
|
|
regstack->reg [j] = regstack->reg [j + 1];
|
403 |
|
|
break;
|
404 |
|
|
}
|
405 |
|
|
}
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* Return a pointer to the REG expression within PAT. If PAT is not a
|
409 |
|
|
REG, possible enclosed by a conversion rtx, return the inner part of
|
410 |
|
|
PAT that stopped the search. */
|
411 |
|
|
|
412 |
|
|
static rtx *
|
413 |
|
|
get_true_reg (rtx *pat)
|
414 |
|
|
{
|
415 |
|
|
for (;;)
|
416 |
|
|
switch (GET_CODE (*pat))
|
417 |
|
|
{
|
418 |
|
|
case SUBREG:
|
419 |
|
|
/* Eliminate FP subregister accesses in favor of the
|
420 |
|
|
actual FP register in use. */
|
421 |
|
|
{
|
422 |
|
|
rtx subreg;
|
423 |
|
|
if (FP_REG_P (subreg = SUBREG_REG (*pat)))
|
424 |
|
|
{
|
425 |
|
|
int regno_off = subreg_regno_offset (REGNO (subreg),
|
426 |
|
|
GET_MODE (subreg),
|
427 |
|
|
SUBREG_BYTE (*pat),
|
428 |
|
|
GET_MODE (*pat));
|
429 |
|
|
*pat = FP_MODE_REG (REGNO (subreg) + regno_off,
|
430 |
|
|
GET_MODE (subreg));
|
431 |
|
|
default:
|
432 |
|
|
return pat;
|
433 |
|
|
}
|
434 |
|
|
}
|
435 |
|
|
case FLOAT:
|
436 |
|
|
case FIX:
|
437 |
|
|
case FLOAT_EXTEND:
|
438 |
|
|
pat = & XEXP (*pat, 0);
|
439 |
|
|
break;
|
440 |
|
|
|
441 |
|
|
case FLOAT_TRUNCATE:
|
442 |
|
|
if (!flag_unsafe_math_optimizations)
|
443 |
|
|
return pat;
|
444 |
|
|
pat = & XEXP (*pat, 0);
|
445 |
|
|
break;
|
446 |
|
|
}
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
/* Set if we find any malformed asms in a block. */
|
450 |
|
|
static bool any_malformed_asm;
|
451 |
|
|
|
452 |
|
|
/* There are many rules that an asm statement for stack-like regs must
|
453 |
|
|
follow. Those rules are explained at the top of this file: the rule
|
454 |
|
|
numbers below refer to that explanation. */
|
455 |
|
|
|
456 |
|
|
static int
|
457 |
|
|
check_asm_stack_operands (rtx insn)
|
458 |
|
|
{
|
459 |
|
|
int i;
|
460 |
|
|
int n_clobbers;
|
461 |
|
|
int malformed_asm = 0;
|
462 |
|
|
rtx body = PATTERN (insn);
|
463 |
|
|
|
464 |
|
|
char reg_used_as_output[FIRST_PSEUDO_REGISTER];
|
465 |
|
|
char implicitly_dies[FIRST_PSEUDO_REGISTER];
|
466 |
|
|
int alt;
|
467 |
|
|
|
468 |
|
|
rtx *clobber_reg = 0;
|
469 |
|
|
int n_inputs, n_outputs;
|
470 |
|
|
|
471 |
|
|
/* Find out what the constraints require. If no constraint
|
472 |
|
|
alternative matches, this asm is malformed. */
|
473 |
|
|
extract_insn (insn);
|
474 |
|
|
constrain_operands (1);
|
475 |
|
|
alt = which_alternative;
|
476 |
|
|
|
477 |
|
|
preprocess_constraints ();
|
478 |
|
|
|
479 |
|
|
n_inputs = get_asm_operand_n_inputs (body);
|
480 |
|
|
n_outputs = recog_data.n_operands - n_inputs;
|
481 |
|
|
|
482 |
|
|
if (alt < 0)
|
483 |
|
|
{
|
484 |
|
|
malformed_asm = 1;
|
485 |
|
|
/* Avoid further trouble with this insn. */
|
486 |
|
|
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
487 |
|
|
return 0;
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/* Strip SUBREGs here to make the following code simpler. */
|
491 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
492 |
|
|
if (GET_CODE (recog_data.operand[i]) == SUBREG
|
493 |
|
|
&& REG_P (SUBREG_REG (recog_data.operand[i])))
|
494 |
|
|
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
495 |
|
|
|
496 |
|
|
/* Set up CLOBBER_REG. */
|
497 |
|
|
|
498 |
|
|
n_clobbers = 0;
|
499 |
|
|
|
500 |
|
|
if (GET_CODE (body) == PARALLEL)
|
501 |
|
|
{
|
502 |
|
|
clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
|
503 |
|
|
|
504 |
|
|
for (i = 0; i < XVECLEN (body, 0); i++)
|
505 |
|
|
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
506 |
|
|
{
|
507 |
|
|
rtx clobber = XVECEXP (body, 0, i);
|
508 |
|
|
rtx reg = XEXP (clobber, 0);
|
509 |
|
|
|
510 |
|
|
if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
|
511 |
|
|
reg = SUBREG_REG (reg);
|
512 |
|
|
|
513 |
|
|
if (STACK_REG_P (reg))
|
514 |
|
|
{
|
515 |
|
|
clobber_reg[n_clobbers] = reg;
|
516 |
|
|
n_clobbers++;
|
517 |
|
|
}
|
518 |
|
|
}
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
/* Enforce rule #4: Output operands must specifically indicate which
|
522 |
|
|
reg an output appears in after an asm. "=f" is not allowed: the
|
523 |
|
|
operand constraints must select a class with a single reg.
|
524 |
|
|
|
525 |
|
|
Also enforce rule #5: Output operands must start at the top of
|
526 |
|
|
the reg-stack: output operands may not "skip" a reg. */
|
527 |
|
|
|
528 |
|
|
memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
|
529 |
|
|
for (i = 0; i < n_outputs; i++)
|
530 |
|
|
if (STACK_REG_P (recog_data.operand[i]))
|
531 |
|
|
{
|
532 |
|
|
if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
|
533 |
|
|
{
|
534 |
|
|
error_for_asm (insn, "output constraint %d must specify a single register", i);
|
535 |
|
|
malformed_asm = 1;
|
536 |
|
|
}
|
537 |
|
|
else
|
538 |
|
|
{
|
539 |
|
|
int j;
|
540 |
|
|
|
541 |
|
|
for (j = 0; j < n_clobbers; j++)
|
542 |
|
|
if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
|
543 |
|
|
{
|
544 |
|
|
error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
|
545 |
|
|
i, reg_names [REGNO (clobber_reg[j])]);
|
546 |
|
|
malformed_asm = 1;
|
547 |
|
|
break;
|
548 |
|
|
}
|
549 |
|
|
if (j == n_clobbers)
|
550 |
|
|
reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
|
551 |
|
|
}
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
|
555 |
|
|
/* Search for first non-popped reg. */
|
556 |
|
|
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
|
557 |
|
|
if (! reg_used_as_output[i])
|
558 |
|
|
break;
|
559 |
|
|
|
560 |
|
|
/* If there are any other popped regs, that's an error. */
|
561 |
|
|
for (; i < LAST_STACK_REG + 1; i++)
|
562 |
|
|
if (reg_used_as_output[i])
|
563 |
|
|
break;
|
564 |
|
|
|
565 |
|
|
if (i != LAST_STACK_REG + 1)
|
566 |
|
|
{
|
567 |
|
|
error_for_asm (insn, "output regs must be grouped at top of stack");
|
568 |
|
|
malformed_asm = 1;
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* Enforce rule #2: All implicitly popped input regs must be closer
|
572 |
|
|
to the top of the reg-stack than any input that is not implicitly
|
573 |
|
|
popped. */
|
574 |
|
|
|
575 |
|
|
memset (implicitly_dies, 0, sizeof (implicitly_dies));
|
576 |
|
|
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
577 |
|
|
if (STACK_REG_P (recog_data.operand[i]))
|
578 |
|
|
{
|
579 |
|
|
/* An input reg is implicitly popped if it is tied to an
|
580 |
|
|
output, or if there is a CLOBBER for it. */
|
581 |
|
|
int j;
|
582 |
|
|
|
583 |
|
|
for (j = 0; j < n_clobbers; j++)
|
584 |
|
|
if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
|
585 |
|
|
break;
|
586 |
|
|
|
587 |
|
|
if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
|
588 |
|
|
implicitly_dies[REGNO (recog_data.operand[i])] = 1;
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
/* Search for first non-popped reg. */
|
592 |
|
|
for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
|
593 |
|
|
if (! implicitly_dies[i])
|
594 |
|
|
break;
|
595 |
|
|
|
596 |
|
|
/* If there are any other popped regs, that's an error. */
|
597 |
|
|
for (; i < LAST_STACK_REG + 1; i++)
|
598 |
|
|
if (implicitly_dies[i])
|
599 |
|
|
break;
|
600 |
|
|
|
601 |
|
|
if (i != LAST_STACK_REG + 1)
|
602 |
|
|
{
|
603 |
|
|
error_for_asm (insn,
|
604 |
|
|
"implicitly popped regs must be grouped at top of stack");
|
605 |
|
|
malformed_asm = 1;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Enforce rule #3: If any input operand uses the "f" constraint, all
|
609 |
|
|
output constraints must use the "&" earlyclobber.
|
610 |
|
|
|
611 |
|
|
??? Detect this more deterministically by having constrain_asm_operands
|
612 |
|
|
record any earlyclobber. */
|
613 |
|
|
|
614 |
|
|
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
615 |
|
|
if (recog_op_alt[i][alt].matches == -1)
|
616 |
|
|
{
|
617 |
|
|
int j;
|
618 |
|
|
|
619 |
|
|
for (j = 0; j < n_outputs; j++)
|
620 |
|
|
if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
|
621 |
|
|
{
|
622 |
|
|
error_for_asm (insn,
|
623 |
|
|
"output operand %d must use %<&%> constraint", j);
|
624 |
|
|
malformed_asm = 1;
|
625 |
|
|
}
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
if (malformed_asm)
|
629 |
|
|
{
|
630 |
|
|
/* Avoid further trouble with this insn. */
|
631 |
|
|
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
632 |
|
|
any_malformed_asm = true;
|
633 |
|
|
return 0;
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
return 1;
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
/* Calculate the number of inputs and outputs in BODY, an
|
640 |
|
|
asm_operands. N_OPERANDS is the total number of operands, and
|
641 |
|
|
N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
|
642 |
|
|
placed. */
|
643 |
|
|
|
644 |
|
|
static int
|
645 |
|
|
get_asm_operand_n_inputs (rtx body)
|
646 |
|
|
{
|
647 |
|
|
switch (GET_CODE (body))
|
648 |
|
|
{
|
649 |
|
|
case SET:
|
650 |
|
|
gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
|
651 |
|
|
return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
|
652 |
|
|
|
653 |
|
|
case ASM_OPERANDS:
|
654 |
|
|
return ASM_OPERANDS_INPUT_LENGTH (body);
|
655 |
|
|
|
656 |
|
|
case PARALLEL:
|
657 |
|
|
return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
|
658 |
|
|
|
659 |
|
|
default:
|
660 |
|
|
gcc_unreachable ();
|
661 |
|
|
}
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/* If current function returns its result in an fp stack register,
|
665 |
|
|
return the REG. Otherwise, return 0. */
|
666 |
|
|
|
667 |
|
|
static rtx
|
668 |
|
|
stack_result (tree decl)
|
669 |
|
|
{
|
670 |
|
|
rtx result;
|
671 |
|
|
|
672 |
|
|
/* If the value is supposed to be returned in memory, then clearly
|
673 |
|
|
it is not returned in a stack register. */
|
674 |
|
|
if (aggregate_value_p (DECL_RESULT (decl), decl))
|
675 |
|
|
return 0;
|
676 |
|
|
|
677 |
|
|
result = DECL_RTL_IF_SET (DECL_RESULT (decl));
|
678 |
|
|
if (result != 0)
|
679 |
|
|
result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
|
680 |
|
|
decl, true);
|
681 |
|
|
|
682 |
|
|
return result != 0 && STACK_REG_P (result) ? result : 0;
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
|
686 |
|
|
/*
|
687 |
|
|
* This section deals with stack register substitution, and forms the second
|
688 |
|
|
* pass over the RTL.
|
689 |
|
|
*/
|
690 |
|
|
|
691 |
|
|
/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
|
692 |
|
|
the desired hard REGNO. */
|
693 |
|
|
|
694 |
|
|
static void
|
695 |
|
|
replace_reg (rtx *reg, int regno)
|
696 |
|
|
{
|
697 |
|
|
gcc_assert (regno >= FIRST_STACK_REG);
|
698 |
|
|
gcc_assert (regno <= LAST_STACK_REG);
|
699 |
|
|
gcc_assert (STACK_REG_P (*reg));
|
700 |
|
|
|
701 |
|
|
gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
|
702 |
|
|
|| GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
|
703 |
|
|
|
704 |
|
|
*reg = FP_MODE_REG (regno, GET_MODE (*reg));
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/* Remove a note of type NOTE, which must be found, for register
|
708 |
|
|
number REGNO from INSN. Remove only one such note. */
|
709 |
|
|
|
710 |
|
|
static void
|
711 |
|
|
remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
|
712 |
|
|
{
|
713 |
|
|
rtx *note_link, this;
|
714 |
|
|
|
715 |
|
|
note_link = ®_NOTES (insn);
|
716 |
|
|
for (this = *note_link; this; this = XEXP (this, 1))
|
717 |
|
|
if (REG_NOTE_KIND (this) == note
|
718 |
|
|
&& REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
|
719 |
|
|
{
|
720 |
|
|
*note_link = XEXP (this, 1);
|
721 |
|
|
return;
|
722 |
|
|
}
|
723 |
|
|
else
|
724 |
|
|
note_link = &XEXP (this, 1);
|
725 |
|
|
|
726 |
|
|
gcc_unreachable ();
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
/* Find the hard register number of virtual register REG in REGSTACK.
|
730 |
|
|
The hard register number is relative to the top of the stack. -1 is
|
731 |
|
|
returned if the register is not found. */
|
732 |
|
|
|
733 |
|
|
static int
|
734 |
|
|
get_hard_regnum (stack regstack, rtx reg)
|
735 |
|
|
{
|
736 |
|
|
int i;
|
737 |
|
|
|
738 |
|
|
gcc_assert (STACK_REG_P (reg));
|
739 |
|
|
|
740 |
|
|
for (i = regstack->top; i >= 0; i--)
|
741 |
|
|
if (regstack->reg[i] == REGNO (reg))
|
742 |
|
|
break;
|
743 |
|
|
|
744 |
|
|
return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
/* Emit an insn to pop virtual register REG before or after INSN.
|
748 |
|
|
REGSTACK is the stack state after INSN and is updated to reflect this
|
749 |
|
|
pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
|
750 |
|
|
is represented as a SET whose destination is the register to be popped
|
751 |
|
|
and source is the top of stack. A death note for the top of stack
|
752 |
|
|
cases the movdf pattern to pop. */
|
753 |
|
|
|
754 |
|
|
static rtx
|
755 |
|
|
emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
|
756 |
|
|
{
|
757 |
|
|
rtx pop_insn, pop_rtx;
|
758 |
|
|
int hard_regno;
|
759 |
|
|
|
760 |
|
|
/* For complex types take care to pop both halves. These may survive in
|
761 |
|
|
CLOBBER and USE expressions. */
|
762 |
|
|
if (COMPLEX_MODE_P (GET_MODE (reg)))
|
763 |
|
|
{
|
764 |
|
|
rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
|
765 |
|
|
rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
|
766 |
|
|
|
767 |
|
|
pop_insn = NULL_RTX;
|
768 |
|
|
if (get_hard_regnum (regstack, reg1) >= 0)
|
769 |
|
|
pop_insn = emit_pop_insn (insn, regstack, reg1, where);
|
770 |
|
|
if (get_hard_regnum (regstack, reg2) >= 0)
|
771 |
|
|
pop_insn = emit_pop_insn (insn, regstack, reg2, where);
|
772 |
|
|
gcc_assert (pop_insn);
|
773 |
|
|
return pop_insn;
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
hard_regno = get_hard_regnum (regstack, reg);
|
777 |
|
|
|
778 |
|
|
gcc_assert (hard_regno >= FIRST_STACK_REG);
|
779 |
|
|
|
780 |
|
|
pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
|
781 |
|
|
FP_MODE_REG (FIRST_STACK_REG, DFmode));
|
782 |
|
|
|
783 |
|
|
if (where == EMIT_AFTER)
|
784 |
|
|
pop_insn = emit_insn_after (pop_rtx, insn);
|
785 |
|
|
else
|
786 |
|
|
pop_insn = emit_insn_before (pop_rtx, insn);
|
787 |
|
|
|
788 |
|
|
REG_NOTES (pop_insn)
|
789 |
|
|
= gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
|
790 |
|
|
REG_NOTES (pop_insn));
|
791 |
|
|
|
792 |
|
|
regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
|
793 |
|
|
= regstack->reg[regstack->top];
|
794 |
|
|
regstack->top -= 1;
|
795 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
|
796 |
|
|
|
797 |
|
|
return pop_insn;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
/* Emit an insn before or after INSN to swap virtual register REG with
|
801 |
|
|
the top of stack. REGSTACK is the stack state before the swap, and
|
802 |
|
|
is updated to reflect the swap. A swap insn is represented as a
|
803 |
|
|
PARALLEL of two patterns: each pattern moves one reg to the other.
|
804 |
|
|
|
805 |
|
|
If REG is already at the top of the stack, no insn is emitted. */
|
806 |
|
|
|
807 |
|
|
static void
|
808 |
|
|
emit_swap_insn (rtx insn, stack regstack, rtx reg)
|
809 |
|
|
{
|
810 |
|
|
int hard_regno;
|
811 |
|
|
rtx swap_rtx;
|
812 |
|
|
int tmp, other_reg; /* swap regno temps */
|
813 |
|
|
rtx i1; /* the stack-reg insn prior to INSN */
|
814 |
|
|
rtx i1set = NULL_RTX; /* the SET rtx within I1 */
|
815 |
|
|
|
816 |
|
|
hard_regno = get_hard_regnum (regstack, reg);
|
817 |
|
|
|
818 |
|
|
if (hard_regno == FIRST_STACK_REG)
|
819 |
|
|
return;
|
820 |
|
|
if (hard_regno == -1)
|
821 |
|
|
{
|
822 |
|
|
/* Something failed if the register wasn't on the stack. If we had
|
823 |
|
|
malformed asms, we zapped the instruction itself, but that didn't
|
824 |
|
|
produce the same pattern of register sets as before. To prevent
|
825 |
|
|
further failure, adjust REGSTACK to include REG at TOP. */
|
826 |
|
|
gcc_assert (any_malformed_asm);
|
827 |
|
|
regstack->reg[++regstack->top] = REGNO (reg);
|
828 |
|
|
return;
|
829 |
|
|
}
|
830 |
|
|
gcc_assert (hard_regno >= FIRST_STACK_REG);
|
831 |
|
|
|
832 |
|
|
other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
|
833 |
|
|
|
834 |
|
|
tmp = regstack->reg[other_reg];
|
835 |
|
|
regstack->reg[other_reg] = regstack->reg[regstack->top];
|
836 |
|
|
regstack->reg[regstack->top] = tmp;
|
837 |
|
|
|
838 |
|
|
/* Find the previous insn involving stack regs, but don't pass a
|
839 |
|
|
block boundary. */
|
840 |
|
|
i1 = NULL;
|
841 |
|
|
if (current_block && insn != BB_HEAD (current_block))
|
842 |
|
|
{
|
843 |
|
|
rtx tmp = PREV_INSN (insn);
|
844 |
|
|
rtx limit = PREV_INSN (BB_HEAD (current_block));
|
845 |
|
|
while (tmp != limit)
|
846 |
|
|
{
|
847 |
|
|
if (LABEL_P (tmp)
|
848 |
|
|
|| CALL_P (tmp)
|
849 |
|
|
|| NOTE_INSN_BASIC_BLOCK_P (tmp)
|
850 |
|
|
|| (NONJUMP_INSN_P (tmp)
|
851 |
|
|
&& stack_regs_mentioned (tmp)))
|
852 |
|
|
{
|
853 |
|
|
i1 = tmp;
|
854 |
|
|
break;
|
855 |
|
|
}
|
856 |
|
|
tmp = PREV_INSN (tmp);
|
857 |
|
|
}
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
if (i1 != NULL_RTX
|
861 |
|
|
&& (i1set = single_set (i1)) != NULL_RTX)
|
862 |
|
|
{
|
863 |
|
|
rtx i1src = *get_true_reg (&SET_SRC (i1set));
|
864 |
|
|
rtx i1dest = *get_true_reg (&SET_DEST (i1set));
|
865 |
|
|
|
866 |
|
|
/* If the previous register stack push was from the reg we are to
|
867 |
|
|
swap with, omit the swap. */
|
868 |
|
|
|
869 |
|
|
if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
|
870 |
|
|
&& REG_P (i1src)
|
871 |
|
|
&& REGNO (i1src) == (unsigned) hard_regno - 1
|
872 |
|
|
&& find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
|
873 |
|
|
return;
|
874 |
|
|
|
875 |
|
|
/* If the previous insn wrote to the reg we are to swap with,
|
876 |
|
|
omit the swap. */
|
877 |
|
|
|
878 |
|
|
if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
|
879 |
|
|
&& REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
|
880 |
|
|
&& find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
|
881 |
|
|
return;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
/* Avoid emitting the swap if this is the first register stack insn
|
885 |
|
|
of the current_block. Instead update the current_block's stack_in
|
886 |
|
|
and let compensate edges take care of this for us. */
|
887 |
|
|
if (current_block && starting_stack_p)
|
888 |
|
|
{
|
889 |
|
|
BLOCK_INFO (current_block)->stack_in = *regstack;
|
890 |
|
|
starting_stack_p = false;
|
891 |
|
|
return;
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
|
895 |
|
|
FP_MODE_REG (FIRST_STACK_REG, XFmode));
|
896 |
|
|
|
897 |
|
|
if (i1)
|
898 |
|
|
emit_insn_after (swap_rtx, i1);
|
899 |
|
|
else if (current_block)
|
900 |
|
|
emit_insn_before (swap_rtx, BB_HEAD (current_block));
|
901 |
|
|
else
|
902 |
|
|
emit_insn_before (swap_rtx, insn);
|
903 |
|
|
}
|
904 |
|
|
|
905 |
|
|
/* Emit an insns before INSN to swap virtual register SRC1 with
|
906 |
|
|
the top of stack and virtual register SRC2 with second stack
|
907 |
|
|
slot. REGSTACK is the stack state before the swaps, and
|
908 |
|
|
is updated to reflect the swaps. A swap insn is represented as a
|
909 |
|
|
PARALLEL of two patterns: each pattern moves one reg to the other.
|
910 |
|
|
|
911 |
|
|
If SRC1 and/or SRC2 are already at the right place, no swap insn
|
912 |
|
|
is emitted. */
|
913 |
|
|
|
914 |
|
|
static void
|
915 |
|
|
swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
|
916 |
|
|
{
|
917 |
|
|
struct stack_def temp_stack;
|
918 |
|
|
int regno, j, k, temp;
|
919 |
|
|
|
920 |
|
|
temp_stack = *regstack;
|
921 |
|
|
|
922 |
|
|
/* Place operand 1 at the top of stack. */
|
923 |
|
|
regno = get_hard_regnum (&temp_stack, src1);
|
924 |
|
|
gcc_assert (regno >= 0);
|
925 |
|
|
if (regno != FIRST_STACK_REG)
|
926 |
|
|
{
|
927 |
|
|
k = temp_stack.top - (regno - FIRST_STACK_REG);
|
928 |
|
|
j = temp_stack.top;
|
929 |
|
|
|
930 |
|
|
temp = temp_stack.reg[k];
|
931 |
|
|
temp_stack.reg[k] = temp_stack.reg[j];
|
932 |
|
|
temp_stack.reg[j] = temp;
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
/* Place operand 2 next on the stack. */
|
936 |
|
|
regno = get_hard_regnum (&temp_stack, src2);
|
937 |
|
|
gcc_assert (regno >= 0);
|
938 |
|
|
if (regno != FIRST_STACK_REG + 1)
|
939 |
|
|
{
|
940 |
|
|
k = temp_stack.top - (regno - FIRST_STACK_REG);
|
941 |
|
|
j = temp_stack.top - 1;
|
942 |
|
|
|
943 |
|
|
temp = temp_stack.reg[k];
|
944 |
|
|
temp_stack.reg[k] = temp_stack.reg[j];
|
945 |
|
|
temp_stack.reg[j] = temp;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
/* Handle a move to or from a stack register in PAT, which is in INSN.
|
952 |
|
|
REGSTACK is the current stack. Return whether a control flow insn
|
953 |
|
|
was deleted in the process. */
|
954 |
|
|
|
955 |
|
|
static bool
|
956 |
|
|
move_for_stack_reg (rtx insn, stack regstack, rtx pat)
|
957 |
|
|
{
|
958 |
|
|
rtx *psrc = get_true_reg (&SET_SRC (pat));
|
959 |
|
|
rtx *pdest = get_true_reg (&SET_DEST (pat));
|
960 |
|
|
rtx src, dest;
|
961 |
|
|
rtx note;
|
962 |
|
|
bool control_flow_insn_deleted = false;
|
963 |
|
|
|
964 |
|
|
src = *psrc; dest = *pdest;
|
965 |
|
|
|
966 |
|
|
if (STACK_REG_P (src) && STACK_REG_P (dest))
|
967 |
|
|
{
|
968 |
|
|
/* Write from one stack reg to another. If SRC dies here, then
|
969 |
|
|
just change the register mapping and delete the insn. */
|
970 |
|
|
|
971 |
|
|
note = find_regno_note (insn, REG_DEAD, REGNO (src));
|
972 |
|
|
if (note)
|
973 |
|
|
{
|
974 |
|
|
int i;
|
975 |
|
|
|
976 |
|
|
/* If this is a no-op move, there must not be a REG_DEAD note. */
|
977 |
|
|
gcc_assert (REGNO (src) != REGNO (dest));
|
978 |
|
|
|
979 |
|
|
for (i = regstack->top; i >= 0; i--)
|
980 |
|
|
if (regstack->reg[i] == REGNO (src))
|
981 |
|
|
break;
|
982 |
|
|
|
983 |
|
|
/* The destination must be dead, or life analysis is borked. */
|
984 |
|
|
gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
|
985 |
|
|
|
986 |
|
|
/* If the source is not live, this is yet another case of
|
987 |
|
|
uninitialized variables. Load up a NaN instead. */
|
988 |
|
|
if (i < 0)
|
989 |
|
|
return move_nan_for_stack_reg (insn, regstack, dest);
|
990 |
|
|
|
991 |
|
|
/* It is possible that the dest is unused after this insn.
|
992 |
|
|
If so, just pop the src. */
|
993 |
|
|
|
994 |
|
|
if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
|
995 |
|
|
emit_pop_insn (insn, regstack, src, EMIT_AFTER);
|
996 |
|
|
else
|
997 |
|
|
{
|
998 |
|
|
regstack->reg[i] = REGNO (dest);
|
999 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
|
1000 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
control_flow_insn_deleted |= control_flow_insn_p (insn);
|
1004 |
|
|
delete_insn (insn);
|
1005 |
|
|
return control_flow_insn_deleted;
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* The source reg does not die. */
|
1009 |
|
|
|
1010 |
|
|
/* If this appears to be a no-op move, delete it, or else it
|
1011 |
|
|
will confuse the machine description output patterns. But if
|
1012 |
|
|
it is REG_UNUSED, we must pop the reg now, as per-insn processing
|
1013 |
|
|
for REG_UNUSED will not work for deleted insns. */
|
1014 |
|
|
|
1015 |
|
|
if (REGNO (src) == REGNO (dest))
|
1016 |
|
|
{
|
1017 |
|
|
if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
|
1018 |
|
|
emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
|
1019 |
|
|
|
1020 |
|
|
control_flow_insn_deleted |= control_flow_insn_p (insn);
|
1021 |
|
|
delete_insn (insn);
|
1022 |
|
|
return control_flow_insn_deleted;
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
/* The destination ought to be dead. */
|
1026 |
|
|
gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
|
1027 |
|
|
|
1028 |
|
|
replace_reg (psrc, get_hard_regnum (regstack, src));
|
1029 |
|
|
|
1030 |
|
|
regstack->reg[++regstack->top] = REGNO (dest);
|
1031 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
|
1032 |
|
|
replace_reg (pdest, FIRST_STACK_REG);
|
1033 |
|
|
}
|
1034 |
|
|
else if (STACK_REG_P (src))
|
1035 |
|
|
{
|
1036 |
|
|
/* Save from a stack reg to MEM, or possibly integer reg. Since
|
1037 |
|
|
only top of stack may be saved, emit an exchange first if
|
1038 |
|
|
needs be. */
|
1039 |
|
|
|
1040 |
|
|
emit_swap_insn (insn, regstack, src);
|
1041 |
|
|
|
1042 |
|
|
note = find_regno_note (insn, REG_DEAD, REGNO (src));
|
1043 |
|
|
if (note)
|
1044 |
|
|
{
|
1045 |
|
|
replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
|
1046 |
|
|
regstack->top--;
|
1047 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
|
1048 |
|
|
}
|
1049 |
|
|
else if ((GET_MODE (src) == XFmode)
|
1050 |
|
|
&& regstack->top < REG_STACK_SIZE - 1)
|
1051 |
|
|
{
|
1052 |
|
|
/* A 387 cannot write an XFmode value to a MEM without
|
1053 |
|
|
clobbering the source reg. The output code can handle
|
1054 |
|
|
this by reading back the value from the MEM.
|
1055 |
|
|
But it is more efficient to use a temp register if one is
|
1056 |
|
|
available. Push the source value here if the register
|
1057 |
|
|
stack is not full, and then write the value to memory via
|
1058 |
|
|
a pop. */
|
1059 |
|
|
rtx push_rtx;
|
1060 |
|
|
rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
|
1061 |
|
|
|
1062 |
|
|
push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
|
1063 |
|
|
emit_insn_before (push_rtx, insn);
|
1064 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
|
1065 |
|
|
REG_NOTES (insn));
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
replace_reg (psrc, FIRST_STACK_REG);
|
1069 |
|
|
}
|
1070 |
|
|
else
|
1071 |
|
|
{
|
1072 |
|
|
gcc_assert (STACK_REG_P (dest));
|
1073 |
|
|
|
1074 |
|
|
/* Load from MEM, or possibly integer REG or constant, into the
|
1075 |
|
|
stack regs. The actual target is always the top of the
|
1076 |
|
|
stack. The stack mapping is changed to reflect that DEST is
|
1077 |
|
|
now at top of stack. */
|
1078 |
|
|
|
1079 |
|
|
/* The destination ought to be dead. */
|
1080 |
|
|
gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
|
1081 |
|
|
|
1082 |
|
|
gcc_assert (regstack->top < REG_STACK_SIZE);
|
1083 |
|
|
|
1084 |
|
|
regstack->reg[++regstack->top] = REGNO (dest);
|
1085 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
|
1086 |
|
|
replace_reg (pdest, FIRST_STACK_REG);
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
return control_flow_insn_deleted;
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
/* A helper function which replaces INSN with a pattern that loads up
|
1093 |
|
|
a NaN into DEST, then invokes move_for_stack_reg. */
|
1094 |
|
|
|
1095 |
|
|
static bool
|
1096 |
|
|
move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
|
1097 |
|
|
{
|
1098 |
|
|
rtx pat;
|
1099 |
|
|
|
1100 |
|
|
dest = FP_MODE_REG (REGNO (dest), SFmode);
|
1101 |
|
|
pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
|
1102 |
|
|
PATTERN (insn) = pat;
|
1103 |
|
|
INSN_CODE (insn) = -1;
|
1104 |
|
|
|
1105 |
|
|
return move_for_stack_reg (insn, regstack, pat);
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
/* Swap the condition on a branch, if there is one. Return true if we
|
1109 |
|
|
found a condition to swap. False if the condition was not used as
|
1110 |
|
|
such. */
|
1111 |
|
|
|
1112 |
|
|
static int
|
1113 |
|
|
swap_rtx_condition_1 (rtx pat)
|
1114 |
|
|
{
|
1115 |
|
|
const char *fmt;
|
1116 |
|
|
int i, r = 0;
|
1117 |
|
|
|
1118 |
|
|
if (COMPARISON_P (pat))
|
1119 |
|
|
{
|
1120 |
|
|
PUT_CODE (pat, swap_condition (GET_CODE (pat)));
|
1121 |
|
|
r = 1;
|
1122 |
|
|
}
|
1123 |
|
|
else
|
1124 |
|
|
{
|
1125 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (pat));
|
1126 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
|
1127 |
|
|
{
|
1128 |
|
|
if (fmt[i] == 'E')
|
1129 |
|
|
{
|
1130 |
|
|
int j;
|
1131 |
|
|
|
1132 |
|
|
for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
|
1133 |
|
|
r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
|
1134 |
|
|
}
|
1135 |
|
|
else if (fmt[i] == 'e')
|
1136 |
|
|
r |= swap_rtx_condition_1 (XEXP (pat, i));
|
1137 |
|
|
}
|
1138 |
|
|
}
|
1139 |
|
|
|
1140 |
|
|
return r;
|
1141 |
|
|
}
|
1142 |
|
|
|
1143 |
|
|
static int
|
1144 |
|
|
swap_rtx_condition (rtx insn)
|
1145 |
|
|
{
|
1146 |
|
|
rtx pat = PATTERN (insn);
|
1147 |
|
|
|
1148 |
|
|
/* We're looking for a single set to cc0 or an HImode temporary. */
|
1149 |
|
|
|
1150 |
|
|
if (GET_CODE (pat) == SET
|
1151 |
|
|
&& REG_P (SET_DEST (pat))
|
1152 |
|
|
&& REGNO (SET_DEST (pat)) == FLAGS_REG)
|
1153 |
|
|
{
|
1154 |
|
|
insn = next_flags_user (insn);
|
1155 |
|
|
if (insn == NULL_RTX)
|
1156 |
|
|
return 0;
|
1157 |
|
|
pat = PATTERN (insn);
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/* See if this is, or ends in, a fnstsw. If so, we're not doing anything
|
1161 |
|
|
with the cc value right now. We may be able to search for one
|
1162 |
|
|
though. */
|
1163 |
|
|
|
1164 |
|
|
if (GET_CODE (pat) == SET
|
1165 |
|
|
&& GET_CODE (SET_SRC (pat)) == UNSPEC
|
1166 |
|
|
&& XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
|
1167 |
|
|
{
|
1168 |
|
|
rtx dest = SET_DEST (pat);
|
1169 |
|
|
|
1170 |
|
|
/* Search forward looking for the first use of this value.
|
1171 |
|
|
Stop at block boundaries. */
|
1172 |
|
|
while (insn != BB_END (current_block))
|
1173 |
|
|
{
|
1174 |
|
|
insn = NEXT_INSN (insn);
|
1175 |
|
|
if (INSN_P (insn) && reg_mentioned_p (dest, insn))
|
1176 |
|
|
break;
|
1177 |
|
|
if (CALL_P (insn))
|
1178 |
|
|
return 0;
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
/* We haven't found it. */
|
1182 |
|
|
if (insn == BB_END (current_block))
|
1183 |
|
|
return 0;
|
1184 |
|
|
|
1185 |
|
|
/* So we've found the insn using this value. If it is anything
|
1186 |
|
|
other than sahf or the value does not die (meaning we'd have
|
1187 |
|
|
to search further), then we must give up. */
|
1188 |
|
|
pat = PATTERN (insn);
|
1189 |
|
|
if (GET_CODE (pat) != SET
|
1190 |
|
|
|| GET_CODE (SET_SRC (pat)) != UNSPEC
|
1191 |
|
|
|| XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
|
1192 |
|
|
|| ! dead_or_set_p (insn, dest))
|
1193 |
|
|
return 0;
|
1194 |
|
|
|
1195 |
|
|
/* Now we are prepared to handle this as a normal cc0 setter. */
|
1196 |
|
|
insn = next_flags_user (insn);
|
1197 |
|
|
if (insn == NULL_RTX)
|
1198 |
|
|
return 0;
|
1199 |
|
|
pat = PATTERN (insn);
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
if (swap_rtx_condition_1 (pat))
|
1203 |
|
|
{
|
1204 |
|
|
int fail = 0;
|
1205 |
|
|
INSN_CODE (insn) = -1;
|
1206 |
|
|
if (recog_memoized (insn) == -1)
|
1207 |
|
|
fail = 1;
|
1208 |
|
|
/* In case the flags don't die here, recurse to try fix
|
1209 |
|
|
following user too. */
|
1210 |
|
|
else if (! dead_or_set_p (insn, ix86_flags_rtx))
|
1211 |
|
|
{
|
1212 |
|
|
insn = next_flags_user (insn);
|
1213 |
|
|
if (!insn || !swap_rtx_condition (insn))
|
1214 |
|
|
fail = 1;
|
1215 |
|
|
}
|
1216 |
|
|
if (fail)
|
1217 |
|
|
{
|
1218 |
|
|
swap_rtx_condition_1 (pat);
|
1219 |
|
|
return 0;
|
1220 |
|
|
}
|
1221 |
|
|
return 1;
|
1222 |
|
|
}
|
1223 |
|
|
return 0;
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
/* Handle a comparison. Special care needs to be taken to avoid
|
1227 |
|
|
causing comparisons that a 387 cannot do correctly, such as EQ.
|
1228 |
|
|
|
1229 |
|
|
Also, a pop insn may need to be emitted. The 387 does have an
|
1230 |
|
|
`fcompp' insn that can pop two regs, but it is sometimes too expensive
|
1231 |
|
|
to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
|
1232 |
|
|
set up. */
|
1233 |
|
|
|
1234 |
|
|
static void
|
1235 |
|
|
compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
|
1236 |
|
|
{
|
1237 |
|
|
rtx *src1, *src2;
|
1238 |
|
|
rtx src1_note, src2_note;
|
1239 |
|
|
|
1240 |
|
|
src1 = get_true_reg (&XEXP (pat_src, 0));
|
1241 |
|
|
src2 = get_true_reg (&XEXP (pat_src, 1));
|
1242 |
|
|
|
1243 |
|
|
/* ??? If fxch turns out to be cheaper than fstp, give priority to
|
1244 |
|
|
registers that die in this insn - move those to stack top first. */
|
1245 |
|
|
if ((! STACK_REG_P (*src1)
|
1246 |
|
|
|| (STACK_REG_P (*src2)
|
1247 |
|
|
&& get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
|
1248 |
|
|
&& swap_rtx_condition (insn))
|
1249 |
|
|
{
|
1250 |
|
|
rtx temp;
|
1251 |
|
|
temp = XEXP (pat_src, 0);
|
1252 |
|
|
XEXP (pat_src, 0) = XEXP (pat_src, 1);
|
1253 |
|
|
XEXP (pat_src, 1) = temp;
|
1254 |
|
|
|
1255 |
|
|
src1 = get_true_reg (&XEXP (pat_src, 0));
|
1256 |
|
|
src2 = get_true_reg (&XEXP (pat_src, 1));
|
1257 |
|
|
|
1258 |
|
|
INSN_CODE (insn) = -1;
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
/* We will fix any death note later. */
|
1262 |
|
|
|
1263 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1264 |
|
|
|
1265 |
|
|
if (STACK_REG_P (*src2))
|
1266 |
|
|
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
1267 |
|
|
else
|
1268 |
|
|
src2_note = NULL_RTX;
|
1269 |
|
|
|
1270 |
|
|
emit_swap_insn (insn, regstack, *src1);
|
1271 |
|
|
|
1272 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1273 |
|
|
|
1274 |
|
|
if (STACK_REG_P (*src2))
|
1275 |
|
|
replace_reg (src2, get_hard_regnum (regstack, *src2));
|
1276 |
|
|
|
1277 |
|
|
if (src1_note)
|
1278 |
|
|
{
|
1279 |
|
|
pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
|
1280 |
|
|
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
1281 |
|
|
}
|
1282 |
|
|
|
1283 |
|
|
/* If the second operand dies, handle that. But if the operands are
|
1284 |
|
|
the same stack register, don't bother, because only one death is
|
1285 |
|
|
needed, and it was just handled. */
|
1286 |
|
|
|
1287 |
|
|
if (src2_note
|
1288 |
|
|
&& ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
|
1289 |
|
|
&& REGNO (*src1) == REGNO (*src2)))
|
1290 |
|
|
{
|
1291 |
|
|
/* As a special case, two regs may die in this insn if src2 is
|
1292 |
|
|
next to top of stack and the top of stack also dies. Since
|
1293 |
|
|
we have already popped src1, "next to top of stack" is really
|
1294 |
|
|
at top (FIRST_STACK_REG) now. */
|
1295 |
|
|
|
1296 |
|
|
if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
|
1297 |
|
|
&& src1_note)
|
1298 |
|
|
{
|
1299 |
|
|
pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
|
1300 |
|
|
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
|
1301 |
|
|
}
|
1302 |
|
|
else
|
1303 |
|
|
{
|
1304 |
|
|
/* The 386 can only represent death of the first operand in
|
1305 |
|
|
the case handled above. In all other cases, emit a separate
|
1306 |
|
|
pop and remove the death note from here. */
|
1307 |
|
|
|
1308 |
|
|
/* link_cc0_insns (insn); */
|
1309 |
|
|
|
1310 |
|
|
remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
|
1311 |
|
|
|
1312 |
|
|
emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
|
1313 |
|
|
EMIT_AFTER);
|
1314 |
|
|
}
|
1315 |
|
|
}
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
/* Substitute new registers in PAT, which is part of INSN. REGSTACK
|
1319 |
|
|
is the current register layout. Return whether a control flow insn
|
1320 |
|
|
was deleted in the process. */
|
1321 |
|
|
|
1322 |
|
|
static bool
|
1323 |
|
|
subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
|
1324 |
|
|
{
|
1325 |
|
|
rtx *dest, *src;
|
1326 |
|
|
bool control_flow_insn_deleted = false;
|
1327 |
|
|
|
1328 |
|
|
switch (GET_CODE (pat))
|
1329 |
|
|
{
|
1330 |
|
|
case USE:
|
1331 |
|
|
/* Deaths in USE insns can happen in non optimizing compilation.
|
1332 |
|
|
Handle them by popping the dying register. */
|
1333 |
|
|
src = get_true_reg (&XEXP (pat, 0));
|
1334 |
|
|
if (STACK_REG_P (*src)
|
1335 |
|
|
&& find_regno_note (insn, REG_DEAD, REGNO (*src)))
|
1336 |
|
|
{
|
1337 |
|
|
emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
|
1338 |
|
|
return control_flow_insn_deleted;
|
1339 |
|
|
}
|
1340 |
|
|
/* ??? Uninitialized USE should not happen. */
|
1341 |
|
|
else
|
1342 |
|
|
gcc_assert (get_hard_regnum (regstack, *src) != -1);
|
1343 |
|
|
break;
|
1344 |
|
|
|
1345 |
|
|
case CLOBBER:
|
1346 |
|
|
{
|
1347 |
|
|
rtx note;
|
1348 |
|
|
|
1349 |
|
|
dest = get_true_reg (&XEXP (pat, 0));
|
1350 |
|
|
if (STACK_REG_P (*dest))
|
1351 |
|
|
{
|
1352 |
|
|
note = find_reg_note (insn, REG_DEAD, *dest);
|
1353 |
|
|
|
1354 |
|
|
if (pat != PATTERN (insn))
|
1355 |
|
|
{
|
1356 |
|
|
/* The fix_truncdi_1 pattern wants to be able to allocate
|
1357 |
|
|
its own scratch register. It does this by clobbering
|
1358 |
|
|
an fp reg so that it is assured of an empty reg-stack
|
1359 |
|
|
register. If the register is live, kill it now.
|
1360 |
|
|
Remove the DEAD/UNUSED note so we don't try to kill it
|
1361 |
|
|
later too. */
|
1362 |
|
|
|
1363 |
|
|
if (note)
|
1364 |
|
|
emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
|
1365 |
|
|
else
|
1366 |
|
|
{
|
1367 |
|
|
note = find_reg_note (insn, REG_UNUSED, *dest);
|
1368 |
|
|
gcc_assert (note);
|
1369 |
|
|
}
|
1370 |
|
|
remove_note (insn, note);
|
1371 |
|
|
replace_reg (dest, FIRST_STACK_REG + 1);
|
1372 |
|
|
}
|
1373 |
|
|
else
|
1374 |
|
|
{
|
1375 |
|
|
/* A top-level clobber with no REG_DEAD, and no hard-regnum
|
1376 |
|
|
indicates an uninitialized value. Because reload removed
|
1377 |
|
|
all other clobbers, this must be due to a function
|
1378 |
|
|
returning without a value. Load up a NaN. */
|
1379 |
|
|
|
1380 |
|
|
if (!note)
|
1381 |
|
|
{
|
1382 |
|
|
rtx t = *dest;
|
1383 |
|
|
if (COMPLEX_MODE_P (GET_MODE (t)))
|
1384 |
|
|
{
|
1385 |
|
|
rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
|
1386 |
|
|
if (get_hard_regnum (regstack, u) == -1)
|
1387 |
|
|
{
|
1388 |
|
|
rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
|
1389 |
|
|
rtx insn2 = emit_insn_before (pat2, insn);
|
1390 |
|
|
control_flow_insn_deleted
|
1391 |
|
|
|= move_nan_for_stack_reg (insn2, regstack, u);
|
1392 |
|
|
}
|
1393 |
|
|
}
|
1394 |
|
|
if (get_hard_regnum (regstack, t) == -1)
|
1395 |
|
|
control_flow_insn_deleted
|
1396 |
|
|
|= move_nan_for_stack_reg (insn, regstack, t);
|
1397 |
|
|
}
|
1398 |
|
|
}
|
1399 |
|
|
}
|
1400 |
|
|
break;
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
case SET:
|
1404 |
|
|
{
|
1405 |
|
|
rtx *src1 = (rtx *) 0, *src2;
|
1406 |
|
|
rtx src1_note, src2_note;
|
1407 |
|
|
rtx pat_src;
|
1408 |
|
|
|
1409 |
|
|
dest = get_true_reg (&SET_DEST (pat));
|
1410 |
|
|
src = get_true_reg (&SET_SRC (pat));
|
1411 |
|
|
pat_src = SET_SRC (pat);
|
1412 |
|
|
|
1413 |
|
|
/* See if this is a `movM' pattern, and handle elsewhere if so. */
|
1414 |
|
|
if (STACK_REG_P (*src)
|
1415 |
|
|
|| (STACK_REG_P (*dest)
|
1416 |
|
|
&& (REG_P (*src) || MEM_P (*src)
|
1417 |
|
|
|| GET_CODE (*src) == CONST_DOUBLE)))
|
1418 |
|
|
{
|
1419 |
|
|
control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
|
1420 |
|
|
break;
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
switch (GET_CODE (pat_src))
|
1424 |
|
|
{
|
1425 |
|
|
case COMPARE:
|
1426 |
|
|
compare_for_stack_reg (insn, regstack, pat_src);
|
1427 |
|
|
break;
|
1428 |
|
|
|
1429 |
|
|
case CALL:
|
1430 |
|
|
{
|
1431 |
|
|
int count;
|
1432 |
|
|
for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
|
1433 |
|
|
--count >= 0;)
|
1434 |
|
|
{
|
1435 |
|
|
regstack->reg[++regstack->top] = REGNO (*dest) + count;
|
1436 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
|
1437 |
|
|
}
|
1438 |
|
|
}
|
1439 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1440 |
|
|
break;
|
1441 |
|
|
|
1442 |
|
|
case REG:
|
1443 |
|
|
/* This is a `tstM2' case. */
|
1444 |
|
|
gcc_assert (*dest == cc0_rtx);
|
1445 |
|
|
src1 = src;
|
1446 |
|
|
|
1447 |
|
|
/* Fall through. */
|
1448 |
|
|
|
1449 |
|
|
case FLOAT_TRUNCATE:
|
1450 |
|
|
case SQRT:
|
1451 |
|
|
case ABS:
|
1452 |
|
|
case NEG:
|
1453 |
|
|
/* These insns only operate on the top of the stack. DEST might
|
1454 |
|
|
be cc0_rtx if we're processing a tstM pattern. Also, it's
|
1455 |
|
|
possible that the tstM case results in a REG_DEAD note on the
|
1456 |
|
|
source. */
|
1457 |
|
|
|
1458 |
|
|
if (src1 == 0)
|
1459 |
|
|
src1 = get_true_reg (&XEXP (pat_src, 0));
|
1460 |
|
|
|
1461 |
|
|
emit_swap_insn (insn, regstack, *src1);
|
1462 |
|
|
|
1463 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1464 |
|
|
|
1465 |
|
|
if (STACK_REG_P (*dest))
|
1466 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1467 |
|
|
|
1468 |
|
|
if (src1_note)
|
1469 |
|
|
{
|
1470 |
|
|
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
1471 |
|
|
regstack->top--;
|
1472 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
|
1473 |
|
|
}
|
1474 |
|
|
|
1475 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1476 |
|
|
break;
|
1477 |
|
|
|
1478 |
|
|
case MINUS:
|
1479 |
|
|
case DIV:
|
1480 |
|
|
/* On i386, reversed forms of subM3 and divM3 exist for
|
1481 |
|
|
MODE_FLOAT, so the same code that works for addM3 and mulM3
|
1482 |
|
|
can be used. */
|
1483 |
|
|
case MULT:
|
1484 |
|
|
case PLUS:
|
1485 |
|
|
/* These insns can accept the top of stack as a destination
|
1486 |
|
|
from a stack reg or mem, or can use the top of stack as a
|
1487 |
|
|
source and some other stack register (possibly top of stack)
|
1488 |
|
|
as a destination. */
|
1489 |
|
|
|
1490 |
|
|
src1 = get_true_reg (&XEXP (pat_src, 0));
|
1491 |
|
|
src2 = get_true_reg (&XEXP (pat_src, 1));
|
1492 |
|
|
|
1493 |
|
|
/* We will fix any death note later. */
|
1494 |
|
|
|
1495 |
|
|
if (STACK_REG_P (*src1))
|
1496 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1497 |
|
|
else
|
1498 |
|
|
src1_note = NULL_RTX;
|
1499 |
|
|
if (STACK_REG_P (*src2))
|
1500 |
|
|
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
1501 |
|
|
else
|
1502 |
|
|
src2_note = NULL_RTX;
|
1503 |
|
|
|
1504 |
|
|
/* If either operand is not a stack register, then the dest
|
1505 |
|
|
must be top of stack. */
|
1506 |
|
|
|
1507 |
|
|
if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
|
1508 |
|
|
emit_swap_insn (insn, regstack, *dest);
|
1509 |
|
|
else
|
1510 |
|
|
{
|
1511 |
|
|
/* Both operands are REG. If neither operand is already
|
1512 |
|
|
at the top of stack, choose to make the one that is the dest
|
1513 |
|
|
the new top of stack. */
|
1514 |
|
|
|
1515 |
|
|
int src1_hard_regnum, src2_hard_regnum;
|
1516 |
|
|
|
1517 |
|
|
src1_hard_regnum = get_hard_regnum (regstack, *src1);
|
1518 |
|
|
src2_hard_regnum = get_hard_regnum (regstack, *src2);
|
1519 |
|
|
gcc_assert (src1_hard_regnum != -1);
|
1520 |
|
|
gcc_assert (src2_hard_regnum != -1);
|
1521 |
|
|
|
1522 |
|
|
if (src1_hard_regnum != FIRST_STACK_REG
|
1523 |
|
|
&& src2_hard_regnum != FIRST_STACK_REG)
|
1524 |
|
|
emit_swap_insn (insn, regstack, *dest);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
if (STACK_REG_P (*src1))
|
1528 |
|
|
replace_reg (src1, get_hard_regnum (regstack, *src1));
|
1529 |
|
|
if (STACK_REG_P (*src2))
|
1530 |
|
|
replace_reg (src2, get_hard_regnum (regstack, *src2));
|
1531 |
|
|
|
1532 |
|
|
if (src1_note)
|
1533 |
|
|
{
|
1534 |
|
|
rtx src1_reg = XEXP (src1_note, 0);
|
1535 |
|
|
|
1536 |
|
|
/* If the register that dies is at the top of stack, then
|
1537 |
|
|
the destination is somewhere else - merely substitute it.
|
1538 |
|
|
But if the reg that dies is not at top of stack, then
|
1539 |
|
|
move the top of stack to the dead reg, as though we had
|
1540 |
|
|
done the insn and then a store-with-pop. */
|
1541 |
|
|
|
1542 |
|
|
if (REGNO (src1_reg) == regstack->reg[regstack->top])
|
1543 |
|
|
{
|
1544 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1545 |
|
|
replace_reg (dest, get_hard_regnum (regstack, *dest));
|
1546 |
|
|
}
|
1547 |
|
|
else
|
1548 |
|
|
{
|
1549 |
|
|
int regno = get_hard_regnum (regstack, src1_reg);
|
1550 |
|
|
|
1551 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1552 |
|
|
replace_reg (dest, regno);
|
1553 |
|
|
|
1554 |
|
|
regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
|
1555 |
|
|
= regstack->reg[regstack->top];
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
1559 |
|
|
REGNO (XEXP (src1_note, 0)));
|
1560 |
|
|
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
1561 |
|
|
regstack->top--;
|
1562 |
|
|
}
|
1563 |
|
|
else if (src2_note)
|
1564 |
|
|
{
|
1565 |
|
|
rtx src2_reg = XEXP (src2_note, 0);
|
1566 |
|
|
if (REGNO (src2_reg) == regstack->reg[regstack->top])
|
1567 |
|
|
{
|
1568 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1569 |
|
|
replace_reg (dest, get_hard_regnum (regstack, *dest));
|
1570 |
|
|
}
|
1571 |
|
|
else
|
1572 |
|
|
{
|
1573 |
|
|
int regno = get_hard_regnum (regstack, src2_reg);
|
1574 |
|
|
|
1575 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1576 |
|
|
replace_reg (dest, regno);
|
1577 |
|
|
|
1578 |
|
|
regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
|
1579 |
|
|
= regstack->reg[regstack->top];
|
1580 |
|
|
}
|
1581 |
|
|
|
1582 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
1583 |
|
|
REGNO (XEXP (src2_note, 0)));
|
1584 |
|
|
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
|
1585 |
|
|
regstack->top--;
|
1586 |
|
|
}
|
1587 |
|
|
else
|
1588 |
|
|
{
|
1589 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1590 |
|
|
replace_reg (dest, get_hard_regnum (regstack, *dest));
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
/* Keep operand 1 matching with destination. */
|
1594 |
|
|
if (COMMUTATIVE_ARITH_P (pat_src)
|
1595 |
|
|
&& REG_P (*src1) && REG_P (*src2)
|
1596 |
|
|
&& REGNO (*src1) != REGNO (*dest))
|
1597 |
|
|
{
|
1598 |
|
|
int tmp = REGNO (*src1);
|
1599 |
|
|
replace_reg (src1, REGNO (*src2));
|
1600 |
|
|
replace_reg (src2, tmp);
|
1601 |
|
|
}
|
1602 |
|
|
break;
|
1603 |
|
|
|
1604 |
|
|
case UNSPEC:
|
1605 |
|
|
switch (XINT (pat_src, 1))
|
1606 |
|
|
{
|
1607 |
|
|
case UNSPEC_FIST:
|
1608 |
|
|
|
1609 |
|
|
case UNSPEC_FIST_FLOOR:
|
1610 |
|
|
case UNSPEC_FIST_CEIL:
|
1611 |
|
|
|
1612 |
|
|
/* These insns only operate on the top of the stack. */
|
1613 |
|
|
|
1614 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1615 |
|
|
emit_swap_insn (insn, regstack, *src1);
|
1616 |
|
|
|
1617 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1618 |
|
|
|
1619 |
|
|
if (STACK_REG_P (*dest))
|
1620 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1621 |
|
|
|
1622 |
|
|
if (src1_note)
|
1623 |
|
|
{
|
1624 |
|
|
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
1625 |
|
|
regstack->top--;
|
1626 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1630 |
|
|
break;
|
1631 |
|
|
|
1632 |
|
|
case UNSPEC_SIN:
|
1633 |
|
|
case UNSPEC_COS:
|
1634 |
|
|
case UNSPEC_FRNDINT:
|
1635 |
|
|
case UNSPEC_F2XM1:
|
1636 |
|
|
|
1637 |
|
|
case UNSPEC_FRNDINT_FLOOR:
|
1638 |
|
|
case UNSPEC_FRNDINT_CEIL:
|
1639 |
|
|
case UNSPEC_FRNDINT_TRUNC:
|
1640 |
|
|
case UNSPEC_FRNDINT_MASK_PM:
|
1641 |
|
|
|
1642 |
|
|
/* These insns only operate on the top of the stack. */
|
1643 |
|
|
|
1644 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1645 |
|
|
|
1646 |
|
|
emit_swap_insn (insn, regstack, *src1);
|
1647 |
|
|
|
1648 |
|
|
/* Input should never die, it is
|
1649 |
|
|
replaced with output. */
|
1650 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1651 |
|
|
gcc_assert (!src1_note);
|
1652 |
|
|
|
1653 |
|
|
if (STACK_REG_P (*dest))
|
1654 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1655 |
|
|
|
1656 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1657 |
|
|
break;
|
1658 |
|
|
|
1659 |
|
|
case UNSPEC_FPATAN:
|
1660 |
|
|
case UNSPEC_FYL2X:
|
1661 |
|
|
case UNSPEC_FYL2XP1:
|
1662 |
|
|
/* These insns operate on the top two stack slots. */
|
1663 |
|
|
|
1664 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1665 |
|
|
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
1666 |
|
|
|
1667 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1668 |
|
|
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
1669 |
|
|
|
1670 |
|
|
swap_to_top (insn, regstack, *src1, *src2);
|
1671 |
|
|
|
1672 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1673 |
|
|
replace_reg (src2, FIRST_STACK_REG + 1);
|
1674 |
|
|
|
1675 |
|
|
if (src1_note)
|
1676 |
|
|
replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
|
1677 |
|
|
if (src2_note)
|
1678 |
|
|
replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
|
1679 |
|
|
|
1680 |
|
|
/* Pop both input operands from the stack. */
|
1681 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
1682 |
|
|
regstack->reg[regstack->top]);
|
1683 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
1684 |
|
|
regstack->reg[regstack->top - 1]);
|
1685 |
|
|
regstack->top -= 2;
|
1686 |
|
|
|
1687 |
|
|
/* Push the result back onto the stack. */
|
1688 |
|
|
regstack->reg[++regstack->top] = REGNO (*dest);
|
1689 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1690 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1691 |
|
|
break;
|
1692 |
|
|
|
1693 |
|
|
case UNSPEC_FSCALE_FRACT:
|
1694 |
|
|
case UNSPEC_FPREM_F:
|
1695 |
|
|
case UNSPEC_FPREM1_F:
|
1696 |
|
|
/* These insns operate on the top two stack slots.
|
1697 |
|
|
first part of double input, double output insn. */
|
1698 |
|
|
|
1699 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1700 |
|
|
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
1701 |
|
|
|
1702 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1703 |
|
|
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
1704 |
|
|
|
1705 |
|
|
/* Inputs should never die, they are
|
1706 |
|
|
replaced with outputs. */
|
1707 |
|
|
gcc_assert (!src1_note);
|
1708 |
|
|
gcc_assert (!src2_note);
|
1709 |
|
|
|
1710 |
|
|
swap_to_top (insn, regstack, *src1, *src2);
|
1711 |
|
|
|
1712 |
|
|
/* Push the result back onto stack. Empty stack slot
|
1713 |
|
|
will be filled in second part of insn. */
|
1714 |
|
|
if (STACK_REG_P (*dest)) {
|
1715 |
|
|
regstack->reg[regstack->top] = REGNO (*dest);
|
1716 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1717 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1718 |
|
|
}
|
1719 |
|
|
|
1720 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1721 |
|
|
replace_reg (src2, FIRST_STACK_REG + 1);
|
1722 |
|
|
break;
|
1723 |
|
|
|
1724 |
|
|
case UNSPEC_FSCALE_EXP:
|
1725 |
|
|
case UNSPEC_FPREM_U:
|
1726 |
|
|
case UNSPEC_FPREM1_U:
|
1727 |
|
|
/* These insns operate on the top two stack slots./
|
1728 |
|
|
second part of double input, double output insn. */
|
1729 |
|
|
|
1730 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1731 |
|
|
src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
|
1732 |
|
|
|
1733 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1734 |
|
|
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
1735 |
|
|
|
1736 |
|
|
/* Inputs should never die, they are
|
1737 |
|
|
replaced with outputs. */
|
1738 |
|
|
gcc_assert (!src1_note);
|
1739 |
|
|
gcc_assert (!src2_note);
|
1740 |
|
|
|
1741 |
|
|
swap_to_top (insn, regstack, *src1, *src2);
|
1742 |
|
|
|
1743 |
|
|
/* Push the result back onto stack. Fill empty slot from
|
1744 |
|
|
first part of insn and fix top of stack pointer. */
|
1745 |
|
|
if (STACK_REG_P (*dest)) {
|
1746 |
|
|
regstack->reg[regstack->top - 1] = REGNO (*dest);
|
1747 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1748 |
|
|
replace_reg (dest, FIRST_STACK_REG + 1);
|
1749 |
|
|
}
|
1750 |
|
|
|
1751 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1752 |
|
|
replace_reg (src2, FIRST_STACK_REG + 1);
|
1753 |
|
|
break;
|
1754 |
|
|
|
1755 |
|
|
case UNSPEC_SINCOS_COS:
|
1756 |
|
|
case UNSPEC_TAN_ONE:
|
1757 |
|
|
case UNSPEC_XTRACT_FRACT:
|
1758 |
|
|
/* These insns operate on the top two stack slots,
|
1759 |
|
|
first part of one input, double output insn. */
|
1760 |
|
|
|
1761 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1762 |
|
|
|
1763 |
|
|
emit_swap_insn (insn, regstack, *src1);
|
1764 |
|
|
|
1765 |
|
|
/* Input should never die, it is
|
1766 |
|
|
replaced with output. */
|
1767 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1768 |
|
|
gcc_assert (!src1_note);
|
1769 |
|
|
|
1770 |
|
|
/* Push the result back onto stack. Empty stack slot
|
1771 |
|
|
will be filled in second part of insn. */
|
1772 |
|
|
if (STACK_REG_P (*dest)) {
|
1773 |
|
|
regstack->reg[regstack->top + 1] = REGNO (*dest);
|
1774 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1775 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1779 |
|
|
break;
|
1780 |
|
|
|
1781 |
|
|
case UNSPEC_SINCOS_SIN:
|
1782 |
|
|
case UNSPEC_TAN_TAN:
|
1783 |
|
|
case UNSPEC_XTRACT_EXP:
|
1784 |
|
|
/* These insns operate on the top two stack slots,
|
1785 |
|
|
second part of one input, double output insn. */
|
1786 |
|
|
|
1787 |
|
|
src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
|
1788 |
|
|
|
1789 |
|
|
emit_swap_insn (insn, regstack, *src1);
|
1790 |
|
|
|
1791 |
|
|
/* Input should never die, it is
|
1792 |
|
|
replaced with output. */
|
1793 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1794 |
|
|
gcc_assert (!src1_note);
|
1795 |
|
|
|
1796 |
|
|
/* Push the result back onto stack. Fill empty slot from
|
1797 |
|
|
first part of insn and fix top of stack pointer. */
|
1798 |
|
|
if (STACK_REG_P (*dest)) {
|
1799 |
|
|
regstack->reg[regstack->top] = REGNO (*dest);
|
1800 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1801 |
|
|
replace_reg (dest, FIRST_STACK_REG + 1);
|
1802 |
|
|
|
1803 |
|
|
regstack->top++;
|
1804 |
|
|
}
|
1805 |
|
|
|
1806 |
|
|
replace_reg (src1, FIRST_STACK_REG);
|
1807 |
|
|
break;
|
1808 |
|
|
|
1809 |
|
|
case UNSPEC_SAHF:
|
1810 |
|
|
/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
|
1811 |
|
|
The combination matches the PPRO fcomi instruction. */
|
1812 |
|
|
|
1813 |
|
|
pat_src = XVECEXP (pat_src, 0, 0);
|
1814 |
|
|
gcc_assert (GET_CODE (pat_src) == UNSPEC);
|
1815 |
|
|
gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
|
1816 |
|
|
/* Fall through. */
|
1817 |
|
|
|
1818 |
|
|
case UNSPEC_FNSTSW:
|
1819 |
|
|
/* Combined fcomp+fnstsw generated for doing well with
|
1820 |
|
|
CSE. When optimizing this would have been broken
|
1821 |
|
|
up before now. */
|
1822 |
|
|
|
1823 |
|
|
pat_src = XVECEXP (pat_src, 0, 0);
|
1824 |
|
|
gcc_assert (GET_CODE (pat_src) == COMPARE);
|
1825 |
|
|
|
1826 |
|
|
compare_for_stack_reg (insn, regstack, pat_src);
|
1827 |
|
|
break;
|
1828 |
|
|
|
1829 |
|
|
default:
|
1830 |
|
|
gcc_unreachable ();
|
1831 |
|
|
}
|
1832 |
|
|
break;
|
1833 |
|
|
|
1834 |
|
|
case IF_THEN_ELSE:
|
1835 |
|
|
/* This insn requires the top of stack to be the destination. */
|
1836 |
|
|
|
1837 |
|
|
src1 = get_true_reg (&XEXP (pat_src, 1));
|
1838 |
|
|
src2 = get_true_reg (&XEXP (pat_src, 2));
|
1839 |
|
|
|
1840 |
|
|
src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
|
1841 |
|
|
src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
|
1842 |
|
|
|
1843 |
|
|
/* If the comparison operator is an FP comparison operator,
|
1844 |
|
|
it is handled correctly by compare_for_stack_reg () who
|
1845 |
|
|
will move the destination to the top of stack. But if the
|
1846 |
|
|
comparison operator is not an FP comparison operator, we
|
1847 |
|
|
have to handle it here. */
|
1848 |
|
|
if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
|
1849 |
|
|
&& REGNO (*dest) != regstack->reg[regstack->top])
|
1850 |
|
|
{
|
1851 |
|
|
/* In case one of operands is the top of stack and the operands
|
1852 |
|
|
dies, it is safe to make it the destination operand by
|
1853 |
|
|
reversing the direction of cmove and avoid fxch. */
|
1854 |
|
|
if ((REGNO (*src1) == regstack->reg[regstack->top]
|
1855 |
|
|
&& src1_note)
|
1856 |
|
|
|| (REGNO (*src2) == regstack->reg[regstack->top]
|
1857 |
|
|
&& src2_note))
|
1858 |
|
|
{
|
1859 |
|
|
int idx1 = (get_hard_regnum (regstack, *src1)
|
1860 |
|
|
- FIRST_STACK_REG);
|
1861 |
|
|
int idx2 = (get_hard_regnum (regstack, *src2)
|
1862 |
|
|
- FIRST_STACK_REG);
|
1863 |
|
|
|
1864 |
|
|
/* Make reg-stack believe that the operands are already
|
1865 |
|
|
swapped on the stack */
|
1866 |
|
|
regstack->reg[regstack->top - idx1] = REGNO (*src2);
|
1867 |
|
|
regstack->reg[regstack->top - idx2] = REGNO (*src1);
|
1868 |
|
|
|
1869 |
|
|
/* Reverse condition to compensate the operand swap.
|
1870 |
|
|
i386 do have comparison always reversible. */
|
1871 |
|
|
PUT_CODE (XEXP (pat_src, 0),
|
1872 |
|
|
reversed_comparison_code (XEXP (pat_src, 0), insn));
|
1873 |
|
|
}
|
1874 |
|
|
else
|
1875 |
|
|
emit_swap_insn (insn, regstack, *dest);
|
1876 |
|
|
}
|
1877 |
|
|
|
1878 |
|
|
{
|
1879 |
|
|
rtx src_note [3];
|
1880 |
|
|
int i;
|
1881 |
|
|
|
1882 |
|
|
src_note[0] = 0;
|
1883 |
|
|
src_note[1] = src1_note;
|
1884 |
|
|
src_note[2] = src2_note;
|
1885 |
|
|
|
1886 |
|
|
if (STACK_REG_P (*src1))
|
1887 |
|
|
replace_reg (src1, get_hard_regnum (regstack, *src1));
|
1888 |
|
|
if (STACK_REG_P (*src2))
|
1889 |
|
|
replace_reg (src2, get_hard_regnum (regstack, *src2));
|
1890 |
|
|
|
1891 |
|
|
for (i = 1; i <= 2; i++)
|
1892 |
|
|
if (src_note [i])
|
1893 |
|
|
{
|
1894 |
|
|
int regno = REGNO (XEXP (src_note[i], 0));
|
1895 |
|
|
|
1896 |
|
|
/* If the register that dies is not at the top of
|
1897 |
|
|
stack, then move the top of stack to the dead reg.
|
1898 |
|
|
Top of stack should never die, as it is the
|
1899 |
|
|
destination. */
|
1900 |
|
|
gcc_assert (regno != regstack->reg[regstack->top]);
|
1901 |
|
|
remove_regno_note (insn, REG_DEAD, regno);
|
1902 |
|
|
emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
|
1903 |
|
|
EMIT_AFTER);
|
1904 |
|
|
}
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
/* Make dest the top of stack. Add dest to regstack if
|
1908 |
|
|
not present. */
|
1909 |
|
|
if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
|
1910 |
|
|
regstack->reg[++regstack->top] = REGNO (*dest);
|
1911 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
|
1912 |
|
|
replace_reg (dest, FIRST_STACK_REG);
|
1913 |
|
|
break;
|
1914 |
|
|
|
1915 |
|
|
default:
|
1916 |
|
|
gcc_unreachable ();
|
1917 |
|
|
}
|
1918 |
|
|
break;
|
1919 |
|
|
}
|
1920 |
|
|
|
1921 |
|
|
default:
|
1922 |
|
|
break;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
return control_flow_insn_deleted;
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
/* Substitute hard regnums for any stack regs in INSN, which has
|
1929 |
|
|
N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
|
1930 |
|
|
before the insn, and is updated with changes made here.
|
1931 |
|
|
|
1932 |
|
|
There are several requirements and assumptions about the use of
|
1933 |
|
|
stack-like regs in asm statements. These rules are enforced by
|
1934 |
|
|
record_asm_stack_regs; see comments there for details. Any
|
1935 |
|
|
asm_operands left in the RTL at this point may be assume to meet the
|
1936 |
|
|
requirements, since record_asm_stack_regs removes any problem asm. */
|
1937 |
|
|
|
1938 |
|
|
static void
|
1939 |
|
|
subst_asm_stack_regs (rtx insn, stack regstack)
|
1940 |
|
|
{
|
1941 |
|
|
rtx body = PATTERN (insn);
|
1942 |
|
|
int alt;
|
1943 |
|
|
|
1944 |
|
|
rtx *note_reg; /* Array of note contents */
|
1945 |
|
|
rtx **note_loc; /* Address of REG field of each note */
|
1946 |
|
|
enum reg_note *note_kind; /* The type of each note */
|
1947 |
|
|
|
1948 |
|
|
rtx *clobber_reg = 0;
|
1949 |
|
|
rtx **clobber_loc = 0;
|
1950 |
|
|
|
1951 |
|
|
struct stack_def temp_stack;
|
1952 |
|
|
int n_notes;
|
1953 |
|
|
int n_clobbers;
|
1954 |
|
|
rtx note;
|
1955 |
|
|
int i;
|
1956 |
|
|
int n_inputs, n_outputs;
|
1957 |
|
|
|
1958 |
|
|
if (! check_asm_stack_operands (insn))
|
1959 |
|
|
return;
|
1960 |
|
|
|
1961 |
|
|
/* Find out what the constraints required. If no constraint
|
1962 |
|
|
alternative matches, that is a compiler bug: we should have caught
|
1963 |
|
|
such an insn in check_asm_stack_operands. */
|
1964 |
|
|
extract_insn (insn);
|
1965 |
|
|
constrain_operands (1);
|
1966 |
|
|
alt = which_alternative;
|
1967 |
|
|
|
1968 |
|
|
preprocess_constraints ();
|
1969 |
|
|
|
1970 |
|
|
n_inputs = get_asm_operand_n_inputs (body);
|
1971 |
|
|
n_outputs = recog_data.n_operands - n_inputs;
|
1972 |
|
|
|
1973 |
|
|
gcc_assert (alt >= 0);
|
1974 |
|
|
|
1975 |
|
|
/* Strip SUBREGs here to make the following code simpler. */
|
1976 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
1977 |
|
|
if (GET_CODE (recog_data.operand[i]) == SUBREG
|
1978 |
|
|
&& REG_P (SUBREG_REG (recog_data.operand[i])))
|
1979 |
|
|
{
|
1980 |
|
|
recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
|
1981 |
|
|
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
1982 |
|
|
}
|
1983 |
|
|
|
1984 |
|
|
/* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
|
1985 |
|
|
|
1986 |
|
|
for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1987 |
|
|
i++;
|
1988 |
|
|
|
1989 |
|
|
note_reg = alloca (i * sizeof (rtx));
|
1990 |
|
|
note_loc = alloca (i * sizeof (rtx *));
|
1991 |
|
|
note_kind = alloca (i * sizeof (enum reg_note));
|
1992 |
|
|
|
1993 |
|
|
n_notes = 0;
|
1994 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1995 |
|
|
{
|
1996 |
|
|
rtx reg = XEXP (note, 0);
|
1997 |
|
|
rtx *loc = & XEXP (note, 0);
|
1998 |
|
|
|
1999 |
|
|
if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
|
2000 |
|
|
{
|
2001 |
|
|
loc = & SUBREG_REG (reg);
|
2002 |
|
|
reg = SUBREG_REG (reg);
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
if (STACK_REG_P (reg)
|
2006 |
|
|
&& (REG_NOTE_KIND (note) == REG_DEAD
|
2007 |
|
|
|| REG_NOTE_KIND (note) == REG_UNUSED))
|
2008 |
|
|
{
|
2009 |
|
|
note_reg[n_notes] = reg;
|
2010 |
|
|
note_loc[n_notes] = loc;
|
2011 |
|
|
note_kind[n_notes] = REG_NOTE_KIND (note);
|
2012 |
|
|
n_notes++;
|
2013 |
|
|
}
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
/* Set up CLOBBER_REG and CLOBBER_LOC. */
|
2017 |
|
|
|
2018 |
|
|
n_clobbers = 0;
|
2019 |
|
|
|
2020 |
|
|
if (GET_CODE (body) == PARALLEL)
|
2021 |
|
|
{
|
2022 |
|
|
clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
|
2023 |
|
|
clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
|
2024 |
|
|
|
2025 |
|
|
for (i = 0; i < XVECLEN (body, 0); i++)
|
2026 |
|
|
if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
2027 |
|
|
{
|
2028 |
|
|
rtx clobber = XVECEXP (body, 0, i);
|
2029 |
|
|
rtx reg = XEXP (clobber, 0);
|
2030 |
|
|
rtx *loc = & XEXP (clobber, 0);
|
2031 |
|
|
|
2032 |
|
|
if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
|
2033 |
|
|
{
|
2034 |
|
|
loc = & SUBREG_REG (reg);
|
2035 |
|
|
reg = SUBREG_REG (reg);
|
2036 |
|
|
}
|
2037 |
|
|
|
2038 |
|
|
if (STACK_REG_P (reg))
|
2039 |
|
|
{
|
2040 |
|
|
clobber_reg[n_clobbers] = reg;
|
2041 |
|
|
clobber_loc[n_clobbers] = loc;
|
2042 |
|
|
n_clobbers++;
|
2043 |
|
|
}
|
2044 |
|
|
}
|
2045 |
|
|
}
|
2046 |
|
|
|
2047 |
|
|
temp_stack = *regstack;
|
2048 |
|
|
|
2049 |
|
|
/* Put the input regs into the desired place in TEMP_STACK. */
|
2050 |
|
|
|
2051 |
|
|
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
2052 |
|
|
if (STACK_REG_P (recog_data.operand[i])
|
2053 |
|
|
&& reg_class_subset_p (recog_op_alt[i][alt].cl,
|
2054 |
|
|
FLOAT_REGS)
|
2055 |
|
|
&& recog_op_alt[i][alt].cl != FLOAT_REGS)
|
2056 |
|
|
{
|
2057 |
|
|
/* If an operand needs to be in a particular reg in
|
2058 |
|
|
FLOAT_REGS, the constraint was either 't' or 'u'. Since
|
2059 |
|
|
these constraints are for single register classes, and
|
2060 |
|
|
reload guaranteed that operand[i] is already in that class,
|
2061 |
|
|
we can just use REGNO (recog_data.operand[i]) to know which
|
2062 |
|
|
actual reg this operand needs to be in. */
|
2063 |
|
|
|
2064 |
|
|
int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
|
2065 |
|
|
|
2066 |
|
|
gcc_assert (regno >= 0);
|
2067 |
|
|
|
2068 |
|
|
if ((unsigned int) regno != REGNO (recog_data.operand[i]))
|
2069 |
|
|
{
|
2070 |
|
|
/* recog_data.operand[i] is not in the right place. Find
|
2071 |
|
|
it and swap it with whatever is already in I's place.
|
2072 |
|
|
K is where recog_data.operand[i] is now. J is where it
|
2073 |
|
|
should be. */
|
2074 |
|
|
int j, k, temp;
|
2075 |
|
|
|
2076 |
|
|
k = temp_stack.top - (regno - FIRST_STACK_REG);
|
2077 |
|
|
j = (temp_stack.top
|
2078 |
|
|
- (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
|
2079 |
|
|
|
2080 |
|
|
temp = temp_stack.reg[k];
|
2081 |
|
|
temp_stack.reg[k] = temp_stack.reg[j];
|
2082 |
|
|
temp_stack.reg[j] = temp;
|
2083 |
|
|
}
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
/* Emit insns before INSN to make sure the reg-stack is in the right
|
2087 |
|
|
order. */
|
2088 |
|
|
|
2089 |
|
|
change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
|
2090 |
|
|
|
2091 |
|
|
/* Make the needed input register substitutions. Do death notes and
|
2092 |
|
|
clobbers too, because these are for inputs, not outputs. */
|
2093 |
|
|
|
2094 |
|
|
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
2095 |
|
|
if (STACK_REG_P (recog_data.operand[i]))
|
2096 |
|
|
{
|
2097 |
|
|
int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
|
2098 |
|
|
|
2099 |
|
|
gcc_assert (regnum >= 0);
|
2100 |
|
|
|
2101 |
|
|
replace_reg (recog_data.operand_loc[i], regnum);
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
for (i = 0; i < n_notes; i++)
|
2105 |
|
|
if (note_kind[i] == REG_DEAD)
|
2106 |
|
|
{
|
2107 |
|
|
int regnum = get_hard_regnum (regstack, note_reg[i]);
|
2108 |
|
|
|
2109 |
|
|
gcc_assert (regnum >= 0);
|
2110 |
|
|
|
2111 |
|
|
replace_reg (note_loc[i], regnum);
|
2112 |
|
|
}
|
2113 |
|
|
|
2114 |
|
|
for (i = 0; i < n_clobbers; i++)
|
2115 |
|
|
{
|
2116 |
|
|
/* It's OK for a CLOBBER to reference a reg that is not live.
|
2117 |
|
|
Don't try to replace it in that case. */
|
2118 |
|
|
int regnum = get_hard_regnum (regstack, clobber_reg[i]);
|
2119 |
|
|
|
2120 |
|
|
if (regnum >= 0)
|
2121 |
|
|
{
|
2122 |
|
|
/* Sigh - clobbers always have QImode. But replace_reg knows
|
2123 |
|
|
that these regs can't be MODE_INT and will assert. Just put
|
2124 |
|
|
the right reg there without calling replace_reg. */
|
2125 |
|
|
|
2126 |
|
|
*clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
|
2127 |
|
|
}
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
/* Now remove from REGSTACK any inputs that the asm implicitly popped. */
|
2131 |
|
|
|
2132 |
|
|
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
2133 |
|
|
if (STACK_REG_P (recog_data.operand[i]))
|
2134 |
|
|
{
|
2135 |
|
|
/* An input reg is implicitly popped if it is tied to an
|
2136 |
|
|
output, or if there is a CLOBBER for it. */
|
2137 |
|
|
int j;
|
2138 |
|
|
|
2139 |
|
|
for (j = 0; j < n_clobbers; j++)
|
2140 |
|
|
if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
|
2141 |
|
|
break;
|
2142 |
|
|
|
2143 |
|
|
if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
|
2144 |
|
|
{
|
2145 |
|
|
/* recog_data.operand[i] might not be at the top of stack.
|
2146 |
|
|
But that's OK, because all we need to do is pop the
|
2147 |
|
|
right number of regs off of the top of the reg-stack.
|
2148 |
|
|
record_asm_stack_regs guaranteed that all implicitly
|
2149 |
|
|
popped regs were grouped at the top of the reg-stack. */
|
2150 |
|
|
|
2151 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set,
|
2152 |
|
|
regstack->reg[regstack->top]);
|
2153 |
|
|
regstack->top--;
|
2154 |
|
|
}
|
2155 |
|
|
}
|
2156 |
|
|
|
2157 |
|
|
/* Now add to REGSTACK any outputs that the asm implicitly pushed.
|
2158 |
|
|
Note that there isn't any need to substitute register numbers.
|
2159 |
|
|
??? Explain why this is true. */
|
2160 |
|
|
|
2161 |
|
|
for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
|
2162 |
|
|
{
|
2163 |
|
|
/* See if there is an output for this hard reg. */
|
2164 |
|
|
int j;
|
2165 |
|
|
|
2166 |
|
|
for (j = 0; j < n_outputs; j++)
|
2167 |
|
|
if (STACK_REG_P (recog_data.operand[j])
|
2168 |
|
|
&& REGNO (recog_data.operand[j]) == (unsigned) i)
|
2169 |
|
|
{
|
2170 |
|
|
regstack->reg[++regstack->top] = i;
|
2171 |
|
|
SET_HARD_REG_BIT (regstack->reg_set, i);
|
2172 |
|
|
break;
|
2173 |
|
|
}
|
2174 |
|
|
}
|
2175 |
|
|
|
2176 |
|
|
/* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
|
2177 |
|
|
input that the asm didn't implicitly pop. If the asm didn't
|
2178 |
|
|
implicitly pop an input reg, that reg will still be live.
|
2179 |
|
|
|
2180 |
|
|
Note that we can't use find_regno_note here: the register numbers
|
2181 |
|
|
in the death notes have already been substituted. */
|
2182 |
|
|
|
2183 |
|
|
for (i = 0; i < n_outputs; i++)
|
2184 |
|
|
if (STACK_REG_P (recog_data.operand[i]))
|
2185 |
|
|
{
|
2186 |
|
|
int j;
|
2187 |
|
|
|
2188 |
|
|
for (j = 0; j < n_notes; j++)
|
2189 |
|
|
if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
|
2190 |
|
|
&& note_kind[j] == REG_UNUSED)
|
2191 |
|
|
{
|
2192 |
|
|
insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
|
2193 |
|
|
EMIT_AFTER);
|
2194 |
|
|
break;
|
2195 |
|
|
}
|
2196 |
|
|
}
|
2197 |
|
|
|
2198 |
|
|
for (i = n_outputs; i < n_outputs + n_inputs; i++)
|
2199 |
|
|
if (STACK_REG_P (recog_data.operand[i]))
|
2200 |
|
|
{
|
2201 |
|
|
int j;
|
2202 |
|
|
|
2203 |
|
|
for (j = 0; j < n_notes; j++)
|
2204 |
|
|
if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
|
2205 |
|
|
&& note_kind[j] == REG_DEAD
|
2206 |
|
|
&& TEST_HARD_REG_BIT (regstack->reg_set,
|
2207 |
|
|
REGNO (recog_data.operand[i])))
|
2208 |
|
|
{
|
2209 |
|
|
insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
|
2210 |
|
|
EMIT_AFTER);
|
2211 |
|
|
break;
|
2212 |
|
|
}
|
2213 |
|
|
}
|
2214 |
|
|
}
|
2215 |
|
|
|
2216 |
|
|
/* Substitute stack hard reg numbers for stack virtual registers in
|
2217 |
|
|
INSN. Non-stack register numbers are not changed. REGSTACK is the
|
2218 |
|
|
current stack content. Insns may be emitted as needed to arrange the
|
2219 |
|
|
stack for the 387 based on the contents of the insn. Return whether
|
2220 |
|
|
a control flow insn was deleted in the process. */
|
2221 |
|
|
|
2222 |
|
|
static bool
|
2223 |
|
|
subst_stack_regs (rtx insn, stack regstack)
|
2224 |
|
|
{
|
2225 |
|
|
rtx *note_link, note;
|
2226 |
|
|
bool control_flow_insn_deleted = false;
|
2227 |
|
|
int i;
|
2228 |
|
|
|
2229 |
|
|
if (CALL_P (insn))
|
2230 |
|
|
{
|
2231 |
|
|
int top = regstack->top;
|
2232 |
|
|
|
2233 |
|
|
/* If there are any floating point parameters to be passed in
|
2234 |
|
|
registers for this call, make sure they are in the right
|
2235 |
|
|
order. */
|
2236 |
|
|
|
2237 |
|
|
if (top >= 0)
|
2238 |
|
|
{
|
2239 |
|
|
straighten_stack (insn, regstack);
|
2240 |
|
|
|
2241 |
|
|
/* Now mark the arguments as dead after the call. */
|
2242 |
|
|
|
2243 |
|
|
while (regstack->top >= 0)
|
2244 |
|
|
{
|
2245 |
|
|
CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
|
2246 |
|
|
regstack->top--;
|
2247 |
|
|
}
|
2248 |
|
|
}
|
2249 |
|
|
}
|
2250 |
|
|
|
2251 |
|
|
/* Do the actual substitution if any stack regs are mentioned.
|
2252 |
|
|
Since we only record whether entire insn mentions stack regs, and
|
2253 |
|
|
subst_stack_regs_pat only works for patterns that contain stack regs,
|
2254 |
|
|
we must check each pattern in a parallel here. A call_value_pop could
|
2255 |
|
|
fail otherwise. */
|
2256 |
|
|
|
2257 |
|
|
if (stack_regs_mentioned (insn))
|
2258 |
|
|
{
|
2259 |
|
|
int n_operands = asm_noperands (PATTERN (insn));
|
2260 |
|
|
if (n_operands >= 0)
|
2261 |
|
|
{
|
2262 |
|
|
/* This insn is an `asm' with operands. Decode the operands,
|
2263 |
|
|
decide how many are inputs, and do register substitution.
|
2264 |
|
|
Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
|
2265 |
|
|
|
2266 |
|
|
subst_asm_stack_regs (insn, regstack);
|
2267 |
|
|
return control_flow_insn_deleted;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
2271 |
|
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
2272 |
|
|
{
|
2273 |
|
|
if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
|
2274 |
|
|
{
|
2275 |
|
|
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
|
2276 |
|
|
XVECEXP (PATTERN (insn), 0, i)
|
2277 |
|
|
= shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
|
2278 |
|
|
control_flow_insn_deleted
|
2279 |
|
|
|= subst_stack_regs_pat (insn, regstack,
|
2280 |
|
|
XVECEXP (PATTERN (insn), 0, i));
|
2281 |
|
|
}
|
2282 |
|
|
}
|
2283 |
|
|
else
|
2284 |
|
|
control_flow_insn_deleted
|
2285 |
|
|
|= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
|
2286 |
|
|
}
|
2287 |
|
|
|
2288 |
|
|
/* subst_stack_regs_pat may have deleted a no-op insn. If so, any
|
2289 |
|
|
REG_UNUSED will already have been dealt with, so just return. */
|
2290 |
|
|
|
2291 |
|
|
if (NOTE_P (insn) || INSN_DELETED_P (insn))
|
2292 |
|
|
return control_flow_insn_deleted;
|
2293 |
|
|
|
2294 |
|
|
/* If this a noreturn call, we can't insert pop insns after it.
|
2295 |
|
|
Instead, reset the stack state to empty. */
|
2296 |
|
|
if (CALL_P (insn)
|
2297 |
|
|
&& find_reg_note (insn, REG_NORETURN, NULL))
|
2298 |
|
|
{
|
2299 |
|
|
regstack->top = -1;
|
2300 |
|
|
CLEAR_HARD_REG_SET (regstack->reg_set);
|
2301 |
|
|
return control_flow_insn_deleted;
|
2302 |
|
|
}
|
2303 |
|
|
|
2304 |
|
|
/* If there is a REG_UNUSED note on a stack register on this insn,
|
2305 |
|
|
the indicated reg must be popped. The REG_UNUSED note is removed,
|
2306 |
|
|
since the form of the newly emitted pop insn references the reg,
|
2307 |
|
|
making it no longer `unset'. */
|
2308 |
|
|
|
2309 |
|
|
note_link = ®_NOTES (insn);
|
2310 |
|
|
for (note = *note_link; note; note = XEXP (note, 1))
|
2311 |
|
|
if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
|
2312 |
|
|
{
|
2313 |
|
|
*note_link = XEXP (note, 1);
|
2314 |
|
|
insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
|
2315 |
|
|
}
|
2316 |
|
|
else
|
2317 |
|
|
note_link = &XEXP (note, 1);
|
2318 |
|
|
|
2319 |
|
|
return control_flow_insn_deleted;
|
2320 |
|
|
}
|
2321 |
|
|
|
2322 |
|
|
/* Change the organization of the stack so that it fits a new basic
|
2323 |
|
|
block. Some registers might have to be popped, but there can never be
|
2324 |
|
|
a register live in the new block that is not now live.
|
2325 |
|
|
|
2326 |
|
|
Insert any needed insns before or after INSN, as indicated by
|
2327 |
|
|
WHERE. OLD is the original stack layout, and NEW is the desired
|
2328 |
|
|
form. OLD is updated to reflect the code emitted, i.e., it will be
|
2329 |
|
|
the same as NEW upon return.
|
2330 |
|
|
|
2331 |
|
|
This function will not preserve block_end[]. But that information
|
2332 |
|
|
is no longer needed once this has executed. */
|
2333 |
|
|
|
2334 |
|
|
static void
|
2335 |
|
|
change_stack (rtx insn, stack old, stack new, enum emit_where where)
|
2336 |
|
|
{
|
2337 |
|
|
int reg;
|
2338 |
|
|
int update_end = 0;
|
2339 |
|
|
|
2340 |
|
|
/* Stack adjustments for the first insn in a block update the
|
2341 |
|
|
current_block's stack_in instead of inserting insns directly.
|
2342 |
|
|
compensate_edges will add the necessary code later. */
|
2343 |
|
|
if (current_block
|
2344 |
|
|
&& starting_stack_p
|
2345 |
|
|
&& where == EMIT_BEFORE)
|
2346 |
|
|
{
|
2347 |
|
|
BLOCK_INFO (current_block)->stack_in = *new;
|
2348 |
|
|
starting_stack_p = false;
|
2349 |
|
|
*old = *new;
|
2350 |
|
|
return;
|
2351 |
|
|
}
|
2352 |
|
|
|
2353 |
|
|
/* We will be inserting new insns "backwards". If we are to insert
|
2354 |
|
|
after INSN, find the next insn, and insert before it. */
|
2355 |
|
|
|
2356 |
|
|
if (where == EMIT_AFTER)
|
2357 |
|
|
{
|
2358 |
|
|
if (current_block && BB_END (current_block) == insn)
|
2359 |
|
|
update_end = 1;
|
2360 |
|
|
insn = NEXT_INSN (insn);
|
2361 |
|
|
}
|
2362 |
|
|
|
2363 |
|
|
/* Pop any registers that are not needed in the new block. */
|
2364 |
|
|
|
2365 |
|
|
/* If the destination block's stack already has a specified layout
|
2366 |
|
|
and contains two or more registers, use a more intelligent algorithm
|
2367 |
|
|
to pop registers that minimizes the number number of fxchs below. */
|
2368 |
|
|
if (new->top > 0)
|
2369 |
|
|
{
|
2370 |
|
|
bool slots[REG_STACK_SIZE];
|
2371 |
|
|
int pops[REG_STACK_SIZE];
|
2372 |
|
|
int next, dest, topsrc;
|
2373 |
|
|
|
2374 |
|
|
/* First pass to determine the free slots. */
|
2375 |
|
|
for (reg = 0; reg <= new->top; reg++)
|
2376 |
|
|
slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
|
2377 |
|
|
|
2378 |
|
|
/* Second pass to allocate preferred slots. */
|
2379 |
|
|
topsrc = -1;
|
2380 |
|
|
for (reg = old->top; reg > new->top; reg--)
|
2381 |
|
|
if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
|
2382 |
|
|
{
|
2383 |
|
|
dest = -1;
|
2384 |
|
|
for (next = 0; next <= new->top; next++)
|
2385 |
|
|
if (!slots[next] && new->reg[next] == old->reg[reg])
|
2386 |
|
|
{
|
2387 |
|
|
/* If this is a preference for the new top of stack, record
|
2388 |
|
|
the fact by remembering it's old->reg in topsrc. */
|
2389 |
|
|
if (next == new->top)
|
2390 |
|
|
topsrc = reg;
|
2391 |
|
|
slots[next] = true;
|
2392 |
|
|
dest = next;
|
2393 |
|
|
break;
|
2394 |
|
|
}
|
2395 |
|
|
pops[reg] = dest;
|
2396 |
|
|
}
|
2397 |
|
|
else
|
2398 |
|
|
pops[reg] = reg;
|
2399 |
|
|
|
2400 |
|
|
/* Intentionally, avoid placing the top of stack in it's correct
|
2401 |
|
|
location, if we still need to permute the stack below and we
|
2402 |
|
|
can usefully place it somewhere else. This is the case if any
|
2403 |
|
|
slot is still unallocated, in which case we should place the
|
2404 |
|
|
top of stack there. */
|
2405 |
|
|
if (topsrc != -1)
|
2406 |
|
|
for (reg = 0; reg < new->top; reg++)
|
2407 |
|
|
if (!slots[reg])
|
2408 |
|
|
{
|
2409 |
|
|
pops[topsrc] = reg;
|
2410 |
|
|
slots[new->top] = false;
|
2411 |
|
|
slots[reg] = true;
|
2412 |
|
|
break;
|
2413 |
|
|
}
|
2414 |
|
|
|
2415 |
|
|
/* Third pass allocates remaining slots and emits pop insns. */
|
2416 |
|
|
next = new->top;
|
2417 |
|
|
for (reg = old->top; reg > new->top; reg--)
|
2418 |
|
|
{
|
2419 |
|
|
dest = pops[reg];
|
2420 |
|
|
if (dest == -1)
|
2421 |
|
|
{
|
2422 |
|
|
/* Find next free slot. */
|
2423 |
|
|
while (slots[next])
|
2424 |
|
|
next--;
|
2425 |
|
|
dest = next--;
|
2426 |
|
|
}
|
2427 |
|
|
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
|
2428 |
|
|
EMIT_BEFORE);
|
2429 |
|
|
}
|
2430 |
|
|
}
|
2431 |
|
|
else
|
2432 |
|
|
{
|
2433 |
|
|
/* The following loop attempts to maximize the number of times we
|
2434 |
|
|
pop the top of the stack, as this permits the use of the faster
|
2435 |
|
|
ffreep instruction on platforms that support it. */
|
2436 |
|
|
int live, next;
|
2437 |
|
|
|
2438 |
|
|
live = 0;
|
2439 |
|
|
for (reg = 0; reg <= old->top; reg++)
|
2440 |
|
|
if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
|
2441 |
|
|
live++;
|
2442 |
|
|
|
2443 |
|
|
next = live;
|
2444 |
|
|
while (old->top >= live)
|
2445 |
|
|
if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
|
2446 |
|
|
{
|
2447 |
|
|
while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
|
2448 |
|
|
next--;
|
2449 |
|
|
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
|
2450 |
|
|
EMIT_BEFORE);
|
2451 |
|
|
}
|
2452 |
|
|
else
|
2453 |
|
|
emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
|
2454 |
|
|
EMIT_BEFORE);
|
2455 |
|
|
}
|
2456 |
|
|
|
2457 |
|
|
if (new->top == -2)
|
2458 |
|
|
{
|
2459 |
|
|
/* If the new block has never been processed, then it can inherit
|
2460 |
|
|
the old stack order. */
|
2461 |
|
|
|
2462 |
|
|
new->top = old->top;
|
2463 |
|
|
memcpy (new->reg, old->reg, sizeof (new->reg));
|
2464 |
|
|
}
|
2465 |
|
|
else
|
2466 |
|
|
{
|
2467 |
|
|
/* This block has been entered before, and we must match the
|
2468 |
|
|
previously selected stack order. */
|
2469 |
|
|
|
2470 |
|
|
/* By now, the only difference should be the order of the stack,
|
2471 |
|
|
not their depth or liveliness. */
|
2472 |
|
|
|
2473 |
|
|
GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
|
2474 |
|
|
gcc_unreachable ();
|
2475 |
|
|
win:
|
2476 |
|
|
gcc_assert (old->top == new->top);
|
2477 |
|
|
|
2478 |
|
|
/* If the stack is not empty (new->top != -1), loop here emitting
|
2479 |
|
|
swaps until the stack is correct.
|
2480 |
|
|
|
2481 |
|
|
The worst case number of swaps emitted is N + 2, where N is the
|
2482 |
|
|
depth of the stack. In some cases, the reg at the top of
|
2483 |
|
|
stack may be correct, but swapped anyway in order to fix
|
2484 |
|
|
other regs. But since we never swap any other reg away from
|
2485 |
|
|
its correct slot, this algorithm will converge. */
|
2486 |
|
|
|
2487 |
|
|
if (new->top != -1)
|
2488 |
|
|
do
|
2489 |
|
|
{
|
2490 |
|
|
/* Swap the reg at top of stack into the position it is
|
2491 |
|
|
supposed to be in, until the correct top of stack appears. */
|
2492 |
|
|
|
2493 |
|
|
while (old->reg[old->top] != new->reg[new->top])
|
2494 |
|
|
{
|
2495 |
|
|
for (reg = new->top; reg >= 0; reg--)
|
2496 |
|
|
if (new->reg[reg] == old->reg[old->top])
|
2497 |
|
|
break;
|
2498 |
|
|
|
2499 |
|
|
gcc_assert (reg != -1);
|
2500 |
|
|
|
2501 |
|
|
emit_swap_insn (insn, old,
|
2502 |
|
|
FP_MODE_REG (old->reg[reg], DFmode));
|
2503 |
|
|
}
|
2504 |
|
|
|
2505 |
|
|
/* See if any regs remain incorrect. If so, bring an
|
2506 |
|
|
incorrect reg to the top of stack, and let the while loop
|
2507 |
|
|
above fix it. */
|
2508 |
|
|
|
2509 |
|
|
for (reg = new->top; reg >= 0; reg--)
|
2510 |
|
|
if (new->reg[reg] != old->reg[reg])
|
2511 |
|
|
{
|
2512 |
|
|
emit_swap_insn (insn, old,
|
2513 |
|
|
FP_MODE_REG (old->reg[reg], DFmode));
|
2514 |
|
|
break;
|
2515 |
|
|
}
|
2516 |
|
|
} while (reg >= 0);
|
2517 |
|
|
|
2518 |
|
|
/* At this point there must be no differences. */
|
2519 |
|
|
|
2520 |
|
|
for (reg = old->top; reg >= 0; reg--)
|
2521 |
|
|
gcc_assert (old->reg[reg] == new->reg[reg]);
|
2522 |
|
|
}
|
2523 |
|
|
|
2524 |
|
|
if (update_end)
|
2525 |
|
|
BB_END (current_block) = PREV_INSN (insn);
|
2526 |
|
|
}
|
2527 |
|
|
|
2528 |
|
|
/* Print stack configuration. */
|
2529 |
|
|
|
2530 |
|
|
static void
|
2531 |
|
|
print_stack (FILE *file, stack s)
|
2532 |
|
|
{
|
2533 |
|
|
if (! file)
|
2534 |
|
|
return;
|
2535 |
|
|
|
2536 |
|
|
if (s->top == -2)
|
2537 |
|
|
fprintf (file, "uninitialized\n");
|
2538 |
|
|
else if (s->top == -1)
|
2539 |
|
|
fprintf (file, "empty\n");
|
2540 |
|
|
else
|
2541 |
|
|
{
|
2542 |
|
|
int i;
|
2543 |
|
|
fputs ("[ ", file);
|
2544 |
|
|
for (i = 0; i <= s->top; ++i)
|
2545 |
|
|
fprintf (file, "%d ", s->reg[i]);
|
2546 |
|
|
fputs ("]\n", file);
|
2547 |
|
|
}
|
2548 |
|
|
}
|
2549 |
|
|
|
2550 |
|
|
/* This function was doing life analysis. We now let the regular live
|
2551 |
|
|
code do it's job, so we only need to check some extra invariants
|
2552 |
|
|
that reg-stack expects. Primary among these being that all registers
|
2553 |
|
|
are initialized before use.
|
2554 |
|
|
|
2555 |
|
|
The function returns true when code was emitted to CFG edges and
|
2556 |
|
|
commit_edge_insertions needs to be called. */
|
2557 |
|
|
|
2558 |
|
|
static int
|
2559 |
|
|
convert_regs_entry (void)
|
2560 |
|
|
{
|
2561 |
|
|
int inserted = 0;
|
2562 |
|
|
edge e;
|
2563 |
|
|
edge_iterator ei;
|
2564 |
|
|
|
2565 |
|
|
/* Load something into each stack register live at function entry.
|
2566 |
|
|
Such live registers can be caused by uninitialized variables or
|
2567 |
|
|
functions not returning values on all paths. In order to keep
|
2568 |
|
|
the push/pop code happy, and to not scrog the register stack, we
|
2569 |
|
|
must put something in these registers. Use a QNaN.
|
2570 |
|
|
|
2571 |
|
|
Note that we are inserting converted code here. This code is
|
2572 |
|
|
never seen by the convert_regs pass. */
|
2573 |
|
|
|
2574 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
2575 |
|
|
{
|
2576 |
|
|
basic_block block = e->dest;
|
2577 |
|
|
block_info bi = BLOCK_INFO (block);
|
2578 |
|
|
int reg, top = -1;
|
2579 |
|
|
|
2580 |
|
|
for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
|
2581 |
|
|
if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
|
2582 |
|
|
{
|
2583 |
|
|
rtx init;
|
2584 |
|
|
|
2585 |
|
|
bi->stack_in.reg[++top] = reg;
|
2586 |
|
|
|
2587 |
|
|
init = gen_rtx_SET (VOIDmode,
|
2588 |
|
|
FP_MODE_REG (FIRST_STACK_REG, SFmode),
|
2589 |
|
|
not_a_num);
|
2590 |
|
|
insert_insn_on_edge (init, e);
|
2591 |
|
|
inserted = 1;
|
2592 |
|
|
}
|
2593 |
|
|
|
2594 |
|
|
bi->stack_in.top = top;
|
2595 |
|
|
}
|
2596 |
|
|
|
2597 |
|
|
return inserted;
|
2598 |
|
|
}
|
2599 |
|
|
|
2600 |
|
|
/* Construct the desired stack for function exit. This will either
|
2601 |
|
|
be `empty', or the function return value at top-of-stack. */
|
2602 |
|
|
|
2603 |
|
|
static void
|
2604 |
|
|
convert_regs_exit (void)
|
2605 |
|
|
{
|
2606 |
|
|
int value_reg_low, value_reg_high;
|
2607 |
|
|
stack output_stack;
|
2608 |
|
|
rtx retvalue;
|
2609 |
|
|
|
2610 |
|
|
retvalue = stack_result (current_function_decl);
|
2611 |
|
|
value_reg_low = value_reg_high = -1;
|
2612 |
|
|
if (retvalue)
|
2613 |
|
|
{
|
2614 |
|
|
value_reg_low = REGNO (retvalue);
|
2615 |
|
|
value_reg_high = value_reg_low
|
2616 |
|
|
+ hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
|
2617 |
|
|
}
|
2618 |
|
|
|
2619 |
|
|
output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
|
2620 |
|
|
if (value_reg_low == -1)
|
2621 |
|
|
output_stack->top = -1;
|
2622 |
|
|
else
|
2623 |
|
|
{
|
2624 |
|
|
int reg;
|
2625 |
|
|
|
2626 |
|
|
output_stack->top = value_reg_high - value_reg_low;
|
2627 |
|
|
for (reg = value_reg_low; reg <= value_reg_high; ++reg)
|
2628 |
|
|
{
|
2629 |
|
|
output_stack->reg[value_reg_high - reg] = reg;
|
2630 |
|
|
SET_HARD_REG_BIT (output_stack->reg_set, reg);
|
2631 |
|
|
}
|
2632 |
|
|
}
|
2633 |
|
|
}
|
2634 |
|
|
|
2635 |
|
|
/* Copy the stack info from the end of edge E's source block to the
|
2636 |
|
|
start of E's destination block. */
|
2637 |
|
|
|
2638 |
|
|
static void
|
2639 |
|
|
propagate_stack (edge e)
|
2640 |
|
|
{
|
2641 |
|
|
stack src_stack = &BLOCK_INFO (e->src)->stack_out;
|
2642 |
|
|
stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
|
2643 |
|
|
int reg;
|
2644 |
|
|
|
2645 |
|
|
/* Preserve the order of the original stack, but check whether
|
2646 |
|
|
any pops are needed. */
|
2647 |
|
|
dest_stack->top = -1;
|
2648 |
|
|
for (reg = 0; reg <= src_stack->top; ++reg)
|
2649 |
|
|
if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
|
2650 |
|
|
dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
|
2651 |
|
|
}
|
2652 |
|
|
|
2653 |
|
|
|
2654 |
|
|
/* Adjust the stack of edge E's source block on exit to match the stack
|
2655 |
|
|
of it's target block upon input. The stack layouts of both blocks
|
2656 |
|
|
should have been defined by now. */
|
2657 |
|
|
|
2658 |
|
|
static bool
|
2659 |
|
|
compensate_edge (edge e)
|
2660 |
|
|
{
|
2661 |
|
|
basic_block source = e->src, target = e->dest;
|
2662 |
|
|
stack target_stack = &BLOCK_INFO (target)->stack_in;
|
2663 |
|
|
stack source_stack = &BLOCK_INFO (source)->stack_out;
|
2664 |
|
|
struct stack_def regstack;
|
2665 |
|
|
int reg;
|
2666 |
|
|
|
2667 |
|
|
if (dump_file)
|
2668 |
|
|
fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
|
2669 |
|
|
|
2670 |
|
|
gcc_assert (target_stack->top != -2);
|
2671 |
|
|
|
2672 |
|
|
/* Check whether stacks are identical. */
|
2673 |
|
|
if (target_stack->top == source_stack->top)
|
2674 |
|
|
{
|
2675 |
|
|
for (reg = target_stack->top; reg >= 0; --reg)
|
2676 |
|
|
if (target_stack->reg[reg] != source_stack->reg[reg])
|
2677 |
|
|
break;
|
2678 |
|
|
|
2679 |
|
|
if (reg == -1)
|
2680 |
|
|
{
|
2681 |
|
|
if (dump_file)
|
2682 |
|
|
fprintf (dump_file, "no changes needed\n");
|
2683 |
|
|
return false;
|
2684 |
|
|
}
|
2685 |
|
|
}
|
2686 |
|
|
|
2687 |
|
|
if (dump_file)
|
2688 |
|
|
{
|
2689 |
|
|
fprintf (dump_file, "correcting stack to ");
|
2690 |
|
|
print_stack (dump_file, target_stack);
|
2691 |
|
|
}
|
2692 |
|
|
|
2693 |
|
|
/* Abnormal calls may appear to have values live in st(0), but the
|
2694 |
|
|
abnormal return path will not have actually loaded the values. */
|
2695 |
|
|
if (e->flags & EDGE_ABNORMAL_CALL)
|
2696 |
|
|
{
|
2697 |
|
|
/* Assert that the lifetimes are as we expect -- one value
|
2698 |
|
|
live at st(0) on the end of the source block, and no
|
2699 |
|
|
values live at the beginning of the destination block.
|
2700 |
|
|
For complex return values, we may have st(1) live as well. */
|
2701 |
|
|
gcc_assert (source_stack->top == 0 || source_stack->top == 1);
|
2702 |
|
|
gcc_assert (target_stack->top == -1);
|
2703 |
|
|
return false;
|
2704 |
|
|
}
|
2705 |
|
|
|
2706 |
|
|
/* Handle non-call EH edges specially. The normal return path have
|
2707 |
|
|
values in registers. These will be popped en masse by the unwind
|
2708 |
|
|
library. */
|
2709 |
|
|
if (e->flags & EDGE_EH)
|
2710 |
|
|
{
|
2711 |
|
|
gcc_assert (target_stack->top == -1);
|
2712 |
|
|
return false;
|
2713 |
|
|
}
|
2714 |
|
|
|
2715 |
|
|
/* We don't support abnormal edges. Global takes care to
|
2716 |
|
|
avoid any live register across them, so we should never
|
2717 |
|
|
have to insert instructions on such edges. */
|
2718 |
|
|
gcc_assert (! (e->flags & EDGE_ABNORMAL));
|
2719 |
|
|
|
2720 |
|
|
/* Make a copy of source_stack as change_stack is destructive. */
|
2721 |
|
|
regstack = *source_stack;
|
2722 |
|
|
|
2723 |
|
|
/* It is better to output directly to the end of the block
|
2724 |
|
|
instead of to the edge, because emit_swap can do minimal
|
2725 |
|
|
insn scheduling. We can do this when there is only one
|
2726 |
|
|
edge out, and it is not abnormal. */
|
2727 |
|
|
if (EDGE_COUNT (source->succs) == 1)
|
2728 |
|
|
{
|
2729 |
|
|
current_block = source;
|
2730 |
|
|
change_stack (BB_END (source), ®stack, target_stack,
|
2731 |
|
|
(JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
|
2732 |
|
|
}
|
2733 |
|
|
else
|
2734 |
|
|
{
|
2735 |
|
|
rtx seq, after;
|
2736 |
|
|
|
2737 |
|
|
current_block = NULL;
|
2738 |
|
|
start_sequence ();
|
2739 |
|
|
|
2740 |
|
|
/* ??? change_stack needs some point to emit insns after. */
|
2741 |
|
|
after = emit_note (NOTE_INSN_DELETED);
|
2742 |
|
|
|
2743 |
|
|
change_stack (after, ®stack, target_stack, EMIT_BEFORE);
|
2744 |
|
|
|
2745 |
|
|
seq = get_insns ();
|
2746 |
|
|
end_sequence ();
|
2747 |
|
|
|
2748 |
|
|
insert_insn_on_edge (seq, e);
|
2749 |
|
|
return true;
|
2750 |
|
|
}
|
2751 |
|
|
return false;
|
2752 |
|
|
}
|
2753 |
|
|
|
2754 |
|
|
/* Traverse all non-entry edges in the CFG, and emit the necessary
|
2755 |
|
|
edge compensation code to change the stack from stack_out of the
|
2756 |
|
|
source block to the stack_in of the destination block. */
|
2757 |
|
|
|
2758 |
|
|
static bool
|
2759 |
|
|
compensate_edges (void)
|
2760 |
|
|
{
|
2761 |
|
|
bool inserted = false;
|
2762 |
|
|
basic_block bb;
|
2763 |
|
|
|
2764 |
|
|
starting_stack_p = false;
|
2765 |
|
|
|
2766 |
|
|
FOR_EACH_BB (bb)
|
2767 |
|
|
if (bb != ENTRY_BLOCK_PTR)
|
2768 |
|
|
{
|
2769 |
|
|
edge e;
|
2770 |
|
|
edge_iterator ei;
|
2771 |
|
|
|
2772 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2773 |
|
|
inserted |= compensate_edge (e);
|
2774 |
|
|
}
|
2775 |
|
|
return inserted;
|
2776 |
|
|
}
|
2777 |
|
|
|
2778 |
|
|
/* Select the better of two edges E1 and E2 to use to determine the
|
2779 |
|
|
stack layout for their shared destination basic block. This is
|
2780 |
|
|
typically the more frequently executed. The edge E1 may be NULL
|
2781 |
|
|
(in which case E2 is returned), but E2 is always non-NULL. */
|
2782 |
|
|
|
2783 |
|
|
static edge
|
2784 |
|
|
better_edge (edge e1, edge e2)
|
2785 |
|
|
{
|
2786 |
|
|
if (!e1)
|
2787 |
|
|
return e2;
|
2788 |
|
|
|
2789 |
|
|
if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
|
2790 |
|
|
return e1;
|
2791 |
|
|
if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
|
2792 |
|
|
return e2;
|
2793 |
|
|
|
2794 |
|
|
if (e1->count > e2->count)
|
2795 |
|
|
return e1;
|
2796 |
|
|
if (e1->count < e2->count)
|
2797 |
|
|
return e2;
|
2798 |
|
|
|
2799 |
|
|
/* Prefer critical edges to minimize inserting compensation code on
|
2800 |
|
|
critical edges. */
|
2801 |
|
|
|
2802 |
|
|
if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
|
2803 |
|
|
return EDGE_CRITICAL_P (e1) ? e1 : e2;
|
2804 |
|
|
|
2805 |
|
|
/* Avoid non-deterministic behavior. */
|
2806 |
|
|
return (e1->src->index < e2->src->index) ? e1 : e2;
|
2807 |
|
|
}
|
2808 |
|
|
|
2809 |
|
|
/* Convert stack register references in one block. */
|
2810 |
|
|
|
2811 |
|
|
static void
|
2812 |
|
|
convert_regs_1 (basic_block block)
|
2813 |
|
|
{
|
2814 |
|
|
struct stack_def regstack;
|
2815 |
|
|
block_info bi = BLOCK_INFO (block);
|
2816 |
|
|
int reg;
|
2817 |
|
|
rtx insn, next;
|
2818 |
|
|
bool control_flow_insn_deleted = false;
|
2819 |
|
|
|
2820 |
|
|
any_malformed_asm = false;
|
2821 |
|
|
|
2822 |
|
|
/* Choose an initial stack layout, if one hasn't already been chosen. */
|
2823 |
|
|
if (bi->stack_in.top == -2)
|
2824 |
|
|
{
|
2825 |
|
|
edge e, beste = NULL;
|
2826 |
|
|
edge_iterator ei;
|
2827 |
|
|
|
2828 |
|
|
/* Select the best incoming edge (typically the most frequent) to
|
2829 |
|
|
use as a template for this basic block. */
|
2830 |
|
|
FOR_EACH_EDGE (e, ei, block->preds)
|
2831 |
|
|
if (BLOCK_INFO (e->src)->done)
|
2832 |
|
|
beste = better_edge (beste, e);
|
2833 |
|
|
|
2834 |
|
|
if (beste)
|
2835 |
|
|
propagate_stack (beste);
|
2836 |
|
|
else
|
2837 |
|
|
{
|
2838 |
|
|
/* No predecessors. Create an arbitrary input stack. */
|
2839 |
|
|
bi->stack_in.top = -1;
|
2840 |
|
|
for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
|
2841 |
|
|
if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
|
2842 |
|
|
bi->stack_in.reg[++bi->stack_in.top] = reg;
|
2843 |
|
|
}
|
2844 |
|
|
}
|
2845 |
|
|
|
2846 |
|
|
if (dump_file)
|
2847 |
|
|
{
|
2848 |
|
|
fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
|
2849 |
|
|
print_stack (dump_file, &bi->stack_in);
|
2850 |
|
|
}
|
2851 |
|
|
|
2852 |
|
|
/* Process all insns in this block. Keep track of NEXT so that we
|
2853 |
|
|
don't process insns emitted while substituting in INSN. */
|
2854 |
|
|
current_block = block;
|
2855 |
|
|
next = BB_HEAD (block);
|
2856 |
|
|
regstack = bi->stack_in;
|
2857 |
|
|
starting_stack_p = true;
|
2858 |
|
|
|
2859 |
|
|
do
|
2860 |
|
|
{
|
2861 |
|
|
insn = next;
|
2862 |
|
|
next = NEXT_INSN (insn);
|
2863 |
|
|
|
2864 |
|
|
/* Ensure we have not missed a block boundary. */
|
2865 |
|
|
gcc_assert (next);
|
2866 |
|
|
if (insn == BB_END (block))
|
2867 |
|
|
next = NULL;
|
2868 |
|
|
|
2869 |
|
|
/* Don't bother processing unless there is a stack reg
|
2870 |
|
|
mentioned or if it's a CALL_INSN. */
|
2871 |
|
|
if (stack_regs_mentioned (insn)
|
2872 |
|
|
|| CALL_P (insn))
|
2873 |
|
|
{
|
2874 |
|
|
if (dump_file)
|
2875 |
|
|
{
|
2876 |
|
|
fprintf (dump_file, " insn %d input stack: ",
|
2877 |
|
|
INSN_UID (insn));
|
2878 |
|
|
print_stack (dump_file, ®stack);
|
2879 |
|
|
}
|
2880 |
|
|
control_flow_insn_deleted |= subst_stack_regs (insn, ®stack);
|
2881 |
|
|
starting_stack_p = false;
|
2882 |
|
|
}
|
2883 |
|
|
}
|
2884 |
|
|
while (next);
|
2885 |
|
|
|
2886 |
|
|
if (dump_file)
|
2887 |
|
|
{
|
2888 |
|
|
fprintf (dump_file, "Expected live registers [");
|
2889 |
|
|
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
|
2890 |
|
|
if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
|
2891 |
|
|
fprintf (dump_file, " %d", reg);
|
2892 |
|
|
fprintf (dump_file, " ]\nOutput stack: ");
|
2893 |
|
|
print_stack (dump_file, ®stack);
|
2894 |
|
|
}
|
2895 |
|
|
|
2896 |
|
|
insn = BB_END (block);
|
2897 |
|
|
if (JUMP_P (insn))
|
2898 |
|
|
insn = PREV_INSN (insn);
|
2899 |
|
|
|
2900 |
|
|
/* If the function is declared to return a value, but it returns one
|
2901 |
|
|
in only some cases, some registers might come live here. Emit
|
2902 |
|
|
necessary moves for them. */
|
2903 |
|
|
|
2904 |
|
|
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
|
2905 |
|
|
{
|
2906 |
|
|
if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
|
2907 |
|
|
&& ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
|
2908 |
|
|
{
|
2909 |
|
|
rtx set;
|
2910 |
|
|
|
2911 |
|
|
if (dump_file)
|
2912 |
|
|
fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
|
2913 |
|
|
|
2914 |
|
|
set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
|
2915 |
|
|
insn = emit_insn_after (set, insn);
|
2916 |
|
|
control_flow_insn_deleted |= subst_stack_regs (insn, ®stack);
|
2917 |
|
|
}
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/* Amongst the insns possibly deleted during the substitution process above,
|
2921 |
|
|
might have been the only trapping insn in the block. We purge the now
|
2922 |
|
|
possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
|
2923 |
|
|
called at the end of convert_regs. The order in which we process the
|
2924 |
|
|
blocks ensures that we never delete an already processed edge.
|
2925 |
|
|
|
2926 |
|
|
Note that, at this point, the CFG may have been damaged by the emission
|
2927 |
|
|
of instructions after an abnormal call, which moves the basic block end
|
2928 |
|
|
(and is the reason why we call fixup_abnormal_edges later). So we must
|
2929 |
|
|
be sure that the trapping insn has been deleted before trying to purge
|
2930 |
|
|
dead edges, otherwise we risk purging valid edges.
|
2931 |
|
|
|
2932 |
|
|
??? We are normally supposed not to delete trapping insns, so we pretend
|
2933 |
|
|
that the insns deleted above don't actually trap. It would have been
|
2934 |
|
|
better to detect this earlier and avoid creating the EH edge in the first
|
2935 |
|
|
place, still, but we don't have enough information at that time. */
|
2936 |
|
|
|
2937 |
|
|
if (control_flow_insn_deleted)
|
2938 |
|
|
purge_dead_edges (block);
|
2939 |
|
|
|
2940 |
|
|
/* Something failed if the stack lives don't match. If we had malformed
|
2941 |
|
|
asms, we zapped the instruction itself, but that didn't produce the
|
2942 |
|
|
same pattern of register kills as before. */
|
2943 |
|
|
GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
|
2944 |
|
|
gcc_assert (any_malformed_asm);
|
2945 |
|
|
win:
|
2946 |
|
|
bi->stack_out = regstack;
|
2947 |
|
|
bi->done = true;
|
2948 |
|
|
}
|
2949 |
|
|
|
2950 |
|
|
/* Convert registers in all blocks reachable from BLOCK. */
|
2951 |
|
|
|
2952 |
|
|
static void
|
2953 |
|
|
convert_regs_2 (basic_block block)
|
2954 |
|
|
{
|
2955 |
|
|
basic_block *stack, *sp;
|
2956 |
|
|
|
2957 |
|
|
/* We process the blocks in a top-down manner, in a way such that one block
|
2958 |
|
|
is only processed after all its predecessors. The number of predecessors
|
2959 |
|
|
of every block has already been computed. */
|
2960 |
|
|
|
2961 |
|
|
stack = XNEWVEC (basic_block, n_basic_blocks);
|
2962 |
|
|
sp = stack;
|
2963 |
|
|
|
2964 |
|
|
*sp++ = block;
|
2965 |
|
|
|
2966 |
|
|
do
|
2967 |
|
|
{
|
2968 |
|
|
edge e;
|
2969 |
|
|
edge_iterator ei;
|
2970 |
|
|
|
2971 |
|
|
block = *--sp;
|
2972 |
|
|
|
2973 |
|
|
/* Processing BLOCK is achieved by convert_regs_1, which may purge
|
2974 |
|
|
some dead EH outgoing edge after the deletion of the trapping
|
2975 |
|
|
insn inside the block. Since the number of predecessors of
|
2976 |
|
|
BLOCK's successors was computed based on the initial edge set,
|
2977 |
|
|
we check the necessity to process some of these successors
|
2978 |
|
|
before such an edge deletion may happen. However, there is
|
2979 |
|
|
a pitfall: if BLOCK is the only predecessor of a successor and
|
2980 |
|
|
the edge between them happens to be deleted, the successor
|
2981 |
|
|
becomes unreachable and should not be processed. The problem
|
2982 |
|
|
is that there is no way to preventively detect this case so we
|
2983 |
|
|
stack the successor in all cases and hand over the task of
|
2984 |
|
|
fixing up the discrepancy to convert_regs_1. */
|
2985 |
|
|
|
2986 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2987 |
|
|
if (! (e->flags & EDGE_DFS_BACK))
|
2988 |
|
|
{
|
2989 |
|
|
BLOCK_INFO (e->dest)->predecessors--;
|
2990 |
|
|
if (!BLOCK_INFO (e->dest)->predecessors)
|
2991 |
|
|
*sp++ = e->dest;
|
2992 |
|
|
}
|
2993 |
|
|
|
2994 |
|
|
convert_regs_1 (block);
|
2995 |
|
|
}
|
2996 |
|
|
while (sp != stack);
|
2997 |
|
|
|
2998 |
|
|
free (stack);
|
2999 |
|
|
}
|
3000 |
|
|
|
3001 |
|
|
/* Traverse all basic blocks in a function, converting the register
|
3002 |
|
|
references in each insn from the "flat" register file that gcc uses,
|
3003 |
|
|
to the stack-like registers the 387 uses. */
|
3004 |
|
|
|
3005 |
|
|
static void
|
3006 |
|
|
convert_regs (void)
|
3007 |
|
|
{
|
3008 |
|
|
int inserted;
|
3009 |
|
|
basic_block b;
|
3010 |
|
|
edge e;
|
3011 |
|
|
edge_iterator ei;
|
3012 |
|
|
|
3013 |
|
|
/* Initialize uninitialized registers on function entry. */
|
3014 |
|
|
inserted = convert_regs_entry ();
|
3015 |
|
|
|
3016 |
|
|
/* Construct the desired stack for function exit. */
|
3017 |
|
|
convert_regs_exit ();
|
3018 |
|
|
BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
|
3019 |
|
|
|
3020 |
|
|
/* ??? Future: process inner loops first, and give them arbitrary
|
3021 |
|
|
initial stacks which emit_swap_insn can modify. This ought to
|
3022 |
|
|
prevent double fxch that often appears at the head of a loop. */
|
3023 |
|
|
|
3024 |
|
|
/* Process all blocks reachable from all entry points. */
|
3025 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
3026 |
|
|
convert_regs_2 (e->dest);
|
3027 |
|
|
|
3028 |
|
|
/* ??? Process all unreachable blocks. Though there's no excuse
|
3029 |
|
|
for keeping these even when not optimizing. */
|
3030 |
|
|
FOR_EACH_BB (b)
|
3031 |
|
|
{
|
3032 |
|
|
block_info bi = BLOCK_INFO (b);
|
3033 |
|
|
|
3034 |
|
|
if (! bi->done)
|
3035 |
|
|
convert_regs_2 (b);
|
3036 |
|
|
}
|
3037 |
|
|
|
3038 |
|
|
inserted |= compensate_edges ();
|
3039 |
|
|
|
3040 |
|
|
clear_aux_for_blocks ();
|
3041 |
|
|
|
3042 |
|
|
fixup_abnormal_edges ();
|
3043 |
|
|
if (inserted)
|
3044 |
|
|
commit_edge_insertions ();
|
3045 |
|
|
|
3046 |
|
|
if (dump_file)
|
3047 |
|
|
fputc ('\n', dump_file);
|
3048 |
|
|
}
|
3049 |
|
|
|
3050 |
|
|
/* Convert register usage from "flat" register file usage to a "stack
|
3051 |
|
|
register file. FILE is the dump file, if used.
|
3052 |
|
|
|
3053 |
|
|
Construct a CFG and run life analysis. Then convert each insn one
|
3054 |
|
|
by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
|
3055 |
|
|
code duplication created when the converter inserts pop insns on
|
3056 |
|
|
the edges. */
|
3057 |
|
|
|
3058 |
|
|
static bool
|
3059 |
|
|
reg_to_stack (void)
|
3060 |
|
|
{
|
3061 |
|
|
basic_block bb;
|
3062 |
|
|
int i;
|
3063 |
|
|
int max_uid;
|
3064 |
|
|
|
3065 |
|
|
/* Clean up previous run. */
|
3066 |
|
|
if (stack_regs_mentioned_data != NULL)
|
3067 |
|
|
VEC_free (char, heap, stack_regs_mentioned_data);
|
3068 |
|
|
|
3069 |
|
|
/* See if there is something to do. Flow analysis is quite
|
3070 |
|
|
expensive so we might save some compilation time. */
|
3071 |
|
|
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
3072 |
|
|
if (regs_ever_live[i])
|
3073 |
|
|
break;
|
3074 |
|
|
if (i > LAST_STACK_REG)
|
3075 |
|
|
return false;
|
3076 |
|
|
|
3077 |
|
|
/* Ok, floating point instructions exist. If not optimizing,
|
3078 |
|
|
build the CFG and run life analysis.
|
3079 |
|
|
Also need to rebuild life when superblock scheduling is done
|
3080 |
|
|
as it don't update liveness yet. */
|
3081 |
|
|
if (!optimize
|
3082 |
|
|
|| ((flag_sched2_use_superblocks || flag_sched2_use_traces)
|
3083 |
|
|
&& flag_schedule_insns_after_reload))
|
3084 |
|
|
{
|
3085 |
|
|
count_or_remove_death_notes (NULL, 1);
|
3086 |
|
|
life_analysis (PROP_DEATH_NOTES);
|
3087 |
|
|
}
|
3088 |
|
|
mark_dfs_back_edges ();
|
3089 |
|
|
|
3090 |
|
|
/* Set up block info for each basic block. */
|
3091 |
|
|
alloc_aux_for_blocks (sizeof (struct block_info_def));
|
3092 |
|
|
FOR_EACH_BB (bb)
|
3093 |
|
|
{
|
3094 |
|
|
block_info bi = BLOCK_INFO (bb);
|
3095 |
|
|
edge_iterator ei;
|
3096 |
|
|
edge e;
|
3097 |
|
|
int reg;
|
3098 |
|
|
|
3099 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
3100 |
|
|
if (!(e->flags & EDGE_DFS_BACK)
|
3101 |
|
|
&& e->src != ENTRY_BLOCK_PTR)
|
3102 |
|
|
bi->predecessors++;
|
3103 |
|
|
|
3104 |
|
|
/* Set current register status at last instruction `uninitialized'. */
|
3105 |
|
|
bi->stack_in.top = -2;
|
3106 |
|
|
|
3107 |
|
|
/* Copy live_at_end and live_at_start into temporaries. */
|
3108 |
|
|
for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
|
3109 |
|
|
{
|
3110 |
|
|
if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_end, reg))
|
3111 |
|
|
SET_HARD_REG_BIT (bi->out_reg_set, reg);
|
3112 |
|
|
if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
|
3113 |
|
|
SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
|
3114 |
|
|
}
|
3115 |
|
|
}
|
3116 |
|
|
|
3117 |
|
|
/* Create the replacement registers up front. */
|
3118 |
|
|
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
3119 |
|
|
{
|
3120 |
|
|
enum machine_mode mode;
|
3121 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
|
3122 |
|
|
mode != VOIDmode;
|
3123 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
3124 |
|
|
FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
|
3125 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
|
3126 |
|
|
mode != VOIDmode;
|
3127 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
3128 |
|
|
FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
|
3129 |
|
|
}
|
3130 |
|
|
|
3131 |
|
|
ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
|
3132 |
|
|
|
3133 |
|
|
/* A QNaN for initializing uninitialized variables.
|
3134 |
|
|
|
3135 |
|
|
??? We can't load from constant memory in PIC mode, because
|
3136 |
|
|
we're inserting these instructions before the prologue and
|
3137 |
|
|
the PIC register hasn't been set up. In that case, fall back
|
3138 |
|
|
on zero, which we can get from `ldz'. */
|
3139 |
|
|
|
3140 |
|
|
if (flag_pic)
|
3141 |
|
|
not_a_num = CONST0_RTX (SFmode);
|
3142 |
|
|
else
|
3143 |
|
|
{
|
3144 |
|
|
not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
|
3145 |
|
|
not_a_num = force_const_mem (SFmode, not_a_num);
|
3146 |
|
|
}
|
3147 |
|
|
|
3148 |
|
|
/* Allocate a cache for stack_regs_mentioned. */
|
3149 |
|
|
max_uid = get_max_uid ();
|
3150 |
|
|
stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
|
3151 |
|
|
memset (VEC_address (char, stack_regs_mentioned_data),
|
3152 |
|
|
0, sizeof (char) * max_uid + 1);
|
3153 |
|
|
|
3154 |
|
|
convert_regs ();
|
3155 |
|
|
|
3156 |
|
|
free_aux_for_blocks ();
|
3157 |
|
|
return true;
|
3158 |
|
|
}
|
3159 |
|
|
#endif /* STACK_REGS */
|
3160 |
|
|
|
3161 |
|
|
static bool
|
3162 |
|
|
gate_handle_stack_regs (void)
|
3163 |
|
|
{
|
3164 |
|
|
#ifdef STACK_REGS
|
3165 |
|
|
return 1;
|
3166 |
|
|
#else
|
3167 |
|
|
return 0;
|
3168 |
|
|
#endif
|
3169 |
|
|
}
|
3170 |
|
|
|
3171 |
|
|
/* Convert register usage from flat register file usage to a stack
|
3172 |
|
|
register file. */
|
3173 |
|
|
static unsigned int
|
3174 |
|
|
rest_of_handle_stack_regs (void)
|
3175 |
|
|
{
|
3176 |
|
|
#ifdef STACK_REGS
|
3177 |
|
|
if (reg_to_stack () && optimize)
|
3178 |
|
|
{
|
3179 |
|
|
regstack_completed = 1;
|
3180 |
|
|
if (cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK
|
3181 |
|
|
| (flag_crossjumping ? CLEANUP_CROSSJUMP : 0))
|
3182 |
|
|
&& (flag_reorder_blocks || flag_reorder_blocks_and_partition))
|
3183 |
|
|
{
|
3184 |
|
|
reorder_basic_blocks (0);
|
3185 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_POST_REGSTACK);
|
3186 |
|
|
}
|
3187 |
|
|
}
|
3188 |
|
|
else
|
3189 |
|
|
regstack_completed = 1;
|
3190 |
|
|
#endif
|
3191 |
|
|
return 0;
|
3192 |
|
|
}
|
3193 |
|
|
|
3194 |
|
|
struct tree_opt_pass pass_stack_regs =
|
3195 |
|
|
{
|
3196 |
|
|
"stack", /* name */
|
3197 |
|
|
gate_handle_stack_regs, /* gate */
|
3198 |
|
|
rest_of_handle_stack_regs, /* execute */
|
3199 |
|
|
NULL, /* sub */
|
3200 |
|
|
NULL, /* next */
|
3201 |
|
|
0, /* static_pass_number */
|
3202 |
|
|
TV_REG_STACK, /* tv_id */
|
3203 |
|
|
0, /* properties_required */
|
3204 |
|
|
0, /* properties_provided */
|
3205 |
|
|
0, /* properties_destroyed */
|
3206 |
|
|
0, /* todo_flags_start */
|
3207 |
|
|
TODO_dump_func |
|
3208 |
|
|
TODO_ggc_collect, /* todo_flags_finish */
|
3209 |
|
|
'k' /* letter */
|
3210 |
|
|
};
|