1 |
38 |
julius |
/* Compute register class preferences for pseudo-registers.
|
2 |
|
|
Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
|
3 |
|
|
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
/* This file contains two passes of the compiler: reg_scan and reg_class.
|
24 |
|
|
It also defines some tables of information about the hardware registers
|
25 |
|
|
and a function init_reg_sets to initialize the tables. */
|
26 |
|
|
|
27 |
|
|
#include "config.h"
|
28 |
|
|
#include "system.h"
|
29 |
|
|
#include "coretypes.h"
|
30 |
|
|
#include "tm.h"
|
31 |
|
|
#include "hard-reg-set.h"
|
32 |
|
|
#include "rtl.h"
|
33 |
|
|
#include "expr.h"
|
34 |
|
|
#include "tm_p.h"
|
35 |
|
|
#include "flags.h"
|
36 |
|
|
#include "basic-block.h"
|
37 |
|
|
#include "regs.h"
|
38 |
|
|
#include "addresses.h"
|
39 |
|
|
#include "function.h"
|
40 |
|
|
#include "insn-config.h"
|
41 |
|
|
#include "recog.h"
|
42 |
|
|
#include "reload.h"
|
43 |
|
|
#include "real.h"
|
44 |
|
|
#include "toplev.h"
|
45 |
|
|
#include "output.h"
|
46 |
|
|
#include "ggc.h"
|
47 |
|
|
#include "timevar.h"
|
48 |
|
|
#include "hashtab.h"
|
49 |
|
|
#include "target.h"
|
50 |
|
|
|
51 |
|
|
static void init_reg_sets_1 (void);
|
52 |
|
|
static void init_reg_autoinc (void);
|
53 |
|
|
|
54 |
|
|
/* If we have auto-increment or auto-decrement and we can have secondary
|
55 |
|
|
reloads, we are not allowed to use classes requiring secondary
|
56 |
|
|
reloads for pseudos auto-incremented since reload can't handle it. */
|
57 |
|
|
/* We leave it to target hooks to decide if we have secondary reloads, so
|
58 |
|
|
assume that we might have them. */
|
59 |
|
|
#if defined(AUTO_INC_DEC) /* */
|
60 |
|
|
#define FORBIDDEN_INC_DEC_CLASSES
|
61 |
|
|
#endif
|
62 |
|
|
|
63 |
|
|
/* Register tables used by many passes. */
|
64 |
|
|
|
65 |
|
|
/* Indexed by hard register number, contains 1 for registers
|
66 |
|
|
that are fixed use (stack pointer, pc, frame pointer, etc.).
|
67 |
|
|
These are the registers that cannot be used to allocate
|
68 |
|
|
a pseudo reg for general use. */
|
69 |
|
|
|
70 |
|
|
char fixed_regs[FIRST_PSEUDO_REGISTER];
|
71 |
|
|
|
72 |
|
|
/* Same info as a HARD_REG_SET. */
|
73 |
|
|
|
74 |
|
|
HARD_REG_SET fixed_reg_set;
|
75 |
|
|
|
76 |
|
|
/* Data for initializing the above. */
|
77 |
|
|
|
78 |
|
|
static const char initial_fixed_regs[] = FIXED_REGISTERS;
|
79 |
|
|
|
80 |
|
|
/* Indexed by hard register number, contains 1 for registers
|
81 |
|
|
that are fixed use or are clobbered by function calls.
|
82 |
|
|
These are the registers that cannot be used to allocate
|
83 |
|
|
a pseudo reg whose life crosses calls unless we are able
|
84 |
|
|
to save/restore them across the calls. */
|
85 |
|
|
|
86 |
|
|
char call_used_regs[FIRST_PSEUDO_REGISTER];
|
87 |
|
|
|
88 |
|
|
/* Same info as a HARD_REG_SET. */
|
89 |
|
|
|
90 |
|
|
HARD_REG_SET call_used_reg_set;
|
91 |
|
|
|
92 |
|
|
/* HARD_REG_SET of registers we want to avoid caller saving. */
|
93 |
|
|
HARD_REG_SET losing_caller_save_reg_set;
|
94 |
|
|
|
95 |
|
|
/* Data for initializing the above. */
|
96 |
|
|
|
97 |
|
|
static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
|
98 |
|
|
|
99 |
|
|
/* This is much like call_used_regs, except it doesn't have to
|
100 |
|
|
be a superset of FIXED_REGISTERS. This vector indicates
|
101 |
|
|
what is really call clobbered, and is used when defining
|
102 |
|
|
regs_invalidated_by_call. */
|
103 |
|
|
|
104 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
105 |
|
|
char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
|
106 |
|
|
#endif
|
107 |
|
|
|
108 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
109 |
|
|
#define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
|
110 |
|
|
#else
|
111 |
|
|
#define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
|
112 |
|
|
#endif
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
/* Indexed by hard register number, contains 1 for registers that are
|
116 |
|
|
fixed use or call used registers that cannot hold quantities across
|
117 |
|
|
calls even if we are willing to save and restore them. call fixed
|
118 |
|
|
registers are a subset of call used registers. */
|
119 |
|
|
|
120 |
|
|
char call_fixed_regs[FIRST_PSEUDO_REGISTER];
|
121 |
|
|
|
122 |
|
|
/* The same info as a HARD_REG_SET. */
|
123 |
|
|
|
124 |
|
|
HARD_REG_SET call_fixed_reg_set;
|
125 |
|
|
|
126 |
|
|
/* Indexed by hard register number, contains 1 for registers
|
127 |
|
|
that are being used for global register decls.
|
128 |
|
|
These must be exempt from ordinary flow analysis
|
129 |
|
|
and are also considered fixed. */
|
130 |
|
|
|
131 |
|
|
char global_regs[FIRST_PSEUDO_REGISTER];
|
132 |
|
|
|
133 |
|
|
/* Contains 1 for registers that are set or clobbered by calls. */
|
134 |
|
|
/* ??? Ideally, this would be just call_used_regs plus global_regs, but
|
135 |
|
|
for someone's bright idea to have call_used_regs strictly include
|
136 |
|
|
fixed_regs. Which leaves us guessing as to the set of fixed_regs
|
137 |
|
|
that are actually preserved. We know for sure that those associated
|
138 |
|
|
with the local stack frame are safe, but scant others. */
|
139 |
|
|
|
140 |
|
|
HARD_REG_SET regs_invalidated_by_call;
|
141 |
|
|
|
142 |
|
|
/* Table of register numbers in the order in which to try to use them. */
|
143 |
|
|
#ifdef REG_ALLOC_ORDER
|
144 |
|
|
int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
|
145 |
|
|
|
146 |
|
|
/* The inverse of reg_alloc_order. */
|
147 |
|
|
int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
|
148 |
|
|
#endif
|
149 |
|
|
|
150 |
|
|
/* For each reg class, a HARD_REG_SET saying which registers are in it. */
|
151 |
|
|
|
152 |
|
|
HARD_REG_SET reg_class_contents[N_REG_CLASSES];
|
153 |
|
|
|
154 |
|
|
/* The same information, but as an array of unsigned ints. We copy from
|
155 |
|
|
these unsigned ints to the table above. We do this so the tm.h files
|
156 |
|
|
do not have to be aware of the wordsize for machines with <= 64 regs.
|
157 |
|
|
Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
|
158 |
|
|
|
159 |
|
|
#define N_REG_INTS \
|
160 |
|
|
((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
|
161 |
|
|
|
162 |
|
|
static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
|
163 |
|
|
= REG_CLASS_CONTENTS;
|
164 |
|
|
|
165 |
|
|
/* For each reg class, number of regs it contains. */
|
166 |
|
|
|
167 |
|
|
unsigned int reg_class_size[N_REG_CLASSES];
|
168 |
|
|
|
169 |
|
|
/* For each reg class, table listing all the containing classes. */
|
170 |
|
|
|
171 |
|
|
static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
|
172 |
|
|
|
173 |
|
|
/* For each reg class, table listing all the classes contained in it. */
|
174 |
|
|
|
175 |
|
|
static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
|
176 |
|
|
|
177 |
|
|
/* For each pair of reg classes,
|
178 |
|
|
a largest reg class contained in their union. */
|
179 |
|
|
|
180 |
|
|
enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
|
181 |
|
|
|
182 |
|
|
/* For each pair of reg classes,
|
183 |
|
|
the smallest reg class containing their union. */
|
184 |
|
|
|
185 |
|
|
enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
|
186 |
|
|
|
187 |
|
|
/* Array containing all of the register names. */
|
188 |
|
|
|
189 |
|
|
const char * reg_names[] = REGISTER_NAMES;
|
190 |
|
|
|
191 |
|
|
/* Array containing all of the register class names. */
|
192 |
|
|
|
193 |
|
|
const char * reg_class_names[] = REG_CLASS_NAMES;
|
194 |
|
|
|
195 |
|
|
/* For each hard register, the widest mode object that it can contain.
|
196 |
|
|
This will be a MODE_INT mode if the register can hold integers. Otherwise
|
197 |
|
|
it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
|
198 |
|
|
register. */
|
199 |
|
|
|
200 |
|
|
enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
|
201 |
|
|
|
202 |
|
|
/* 1 if there is a register of given mode. */
|
203 |
|
|
|
204 |
|
|
bool have_regs_of_mode [MAX_MACHINE_MODE];
|
205 |
|
|
|
206 |
|
|
/* 1 if class does contain register of given mode. */
|
207 |
|
|
|
208 |
|
|
static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
|
209 |
|
|
|
210 |
|
|
/* Maximum cost of moving from a register in one class to a register in
|
211 |
|
|
another class. Based on REGISTER_MOVE_COST. */
|
212 |
|
|
|
213 |
|
|
static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
|
214 |
|
|
|
215 |
|
|
/* Similar, but here we don't have to move if the first index is a subset
|
216 |
|
|
of the second so in that case the cost is zero. */
|
217 |
|
|
|
218 |
|
|
static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
|
219 |
|
|
|
220 |
|
|
/* Similar, but here we don't have to move if the first index is a superset
|
221 |
|
|
of the second so in that case the cost is zero. */
|
222 |
|
|
|
223 |
|
|
static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
|
224 |
|
|
|
225 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
226 |
|
|
|
227 |
|
|
/* These are the classes that regs which are auto-incremented or decremented
|
228 |
|
|
cannot be put in. */
|
229 |
|
|
|
230 |
|
|
static int forbidden_inc_dec_class[N_REG_CLASSES];
|
231 |
|
|
|
232 |
|
|
/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
|
233 |
|
|
context. */
|
234 |
|
|
|
235 |
|
|
static char *in_inc_dec;
|
236 |
|
|
|
237 |
|
|
#endif /* FORBIDDEN_INC_DEC_CLASSES */
|
238 |
|
|
|
239 |
|
|
/* Sample MEM values for use by memory_move_secondary_cost. */
|
240 |
|
|
|
241 |
|
|
static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
|
242 |
|
|
|
243 |
|
|
/* Linked list of reg_info structures allocated for reg_n_info array.
|
244 |
|
|
Grouping all of the allocated structures together in one lump
|
245 |
|
|
means only one call to bzero to clear them, rather than n smaller
|
246 |
|
|
calls. */
|
247 |
|
|
struct reg_info_data {
|
248 |
|
|
struct reg_info_data *next; /* next set of reg_info structures */
|
249 |
|
|
size_t min_index; /* minimum index # */
|
250 |
|
|
size_t max_index; /* maximum index # */
|
251 |
|
|
char used_p; /* nonzero if this has been used previously */
|
252 |
|
|
reg_info data[1]; /* beginning of the reg_info data */
|
253 |
|
|
};
|
254 |
|
|
|
255 |
|
|
static struct reg_info_data *reg_info_head;
|
256 |
|
|
|
257 |
|
|
/* No more global register variables may be declared; true once
|
258 |
|
|
regclass has been initialized. */
|
259 |
|
|
|
260 |
|
|
static int no_global_reg_vars = 0;
|
261 |
|
|
|
262 |
|
|
/* Specify number of hard registers given machine mode occupy. */
|
263 |
|
|
unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
|
264 |
|
|
|
265 |
|
|
/* Function called only once to initialize the above data on reg usage.
|
266 |
|
|
Once this is done, various switches may override. */
|
267 |
|
|
|
268 |
|
|
void
|
269 |
|
|
init_reg_sets (void)
|
270 |
|
|
{
|
271 |
|
|
int i, j;
|
272 |
|
|
|
273 |
|
|
/* First copy the register information from the initial int form into
|
274 |
|
|
the regsets. */
|
275 |
|
|
|
276 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
277 |
|
|
{
|
278 |
|
|
CLEAR_HARD_REG_SET (reg_class_contents[i]);
|
279 |
|
|
|
280 |
|
|
/* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
|
281 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
282 |
|
|
if (int_reg_class_contents[i][j / 32]
|
283 |
|
|
& ((unsigned) 1 << (j % 32)))
|
284 |
|
|
SET_HARD_REG_BIT (reg_class_contents[i], j);
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* Sanity check: make sure the target macros FIXED_REGISTERS and
|
288 |
|
|
CALL_USED_REGISTERS had the right number of initializers. */
|
289 |
|
|
gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
|
290 |
|
|
gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
|
291 |
|
|
|
292 |
|
|
memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
|
293 |
|
|
memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
|
294 |
|
|
memset (global_regs, 0, sizeof global_regs);
|
295 |
|
|
|
296 |
|
|
#ifdef REG_ALLOC_ORDER
|
297 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
298 |
|
|
inv_reg_alloc_order[reg_alloc_order[i]] = i;
|
299 |
|
|
#endif
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
/* After switches have been processed, which perhaps alter
|
303 |
|
|
`fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
|
304 |
|
|
|
305 |
|
|
static void
|
306 |
|
|
init_reg_sets_1 (void)
|
307 |
|
|
{
|
308 |
|
|
unsigned int i, j;
|
309 |
|
|
unsigned int /* enum machine_mode */ m;
|
310 |
|
|
|
311 |
|
|
/* This macro allows the fixed or call-used registers
|
312 |
|
|
and the register classes to depend on target flags. */
|
313 |
|
|
|
314 |
|
|
#ifdef CONDITIONAL_REGISTER_USAGE
|
315 |
|
|
CONDITIONAL_REGISTER_USAGE;
|
316 |
|
|
#endif
|
317 |
|
|
|
318 |
|
|
/* Compute number of hard regs in each class. */
|
319 |
|
|
|
320 |
|
|
memset (reg_class_size, 0, sizeof reg_class_size);
|
321 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
322 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
323 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
|
324 |
|
|
reg_class_size[i]++;
|
325 |
|
|
|
326 |
|
|
/* Initialize the table of subunions.
|
327 |
|
|
reg_class_subunion[I][J] gets the largest-numbered reg-class
|
328 |
|
|
that is contained in the union of classes I and J. */
|
329 |
|
|
|
330 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
331 |
|
|
{
|
332 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
333 |
|
|
{
|
334 |
|
|
HARD_REG_SET c;
|
335 |
|
|
int k;
|
336 |
|
|
|
337 |
|
|
COPY_HARD_REG_SET (c, reg_class_contents[i]);
|
338 |
|
|
IOR_HARD_REG_SET (c, reg_class_contents[j]);
|
339 |
|
|
for (k = 0; k < N_REG_CLASSES; k++)
|
340 |
|
|
{
|
341 |
|
|
GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
|
342 |
|
|
subclass1);
|
343 |
|
|
continue;
|
344 |
|
|
|
345 |
|
|
subclass1:
|
346 |
|
|
/* Keep the largest subclass. */ /* SPEE 900308 */
|
347 |
|
|
GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
|
348 |
|
|
reg_class_contents[(int) reg_class_subunion[i][j]],
|
349 |
|
|
subclass2);
|
350 |
|
|
reg_class_subunion[i][j] = (enum reg_class) k;
|
351 |
|
|
subclass2:
|
352 |
|
|
;
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
/* Initialize the table of superunions.
|
358 |
|
|
reg_class_superunion[I][J] gets the smallest-numbered reg-class
|
359 |
|
|
containing the union of classes I and J. */
|
360 |
|
|
|
361 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
362 |
|
|
{
|
363 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
364 |
|
|
{
|
365 |
|
|
HARD_REG_SET c;
|
366 |
|
|
int k;
|
367 |
|
|
|
368 |
|
|
COPY_HARD_REG_SET (c, reg_class_contents[i]);
|
369 |
|
|
IOR_HARD_REG_SET (c, reg_class_contents[j]);
|
370 |
|
|
for (k = 0; k < N_REG_CLASSES; k++)
|
371 |
|
|
GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
|
372 |
|
|
|
373 |
|
|
superclass:
|
374 |
|
|
reg_class_superunion[i][j] = (enum reg_class) k;
|
375 |
|
|
}
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/* Initialize the tables of subclasses and superclasses of each reg class.
|
379 |
|
|
First clear the whole table, then add the elements as they are found. */
|
380 |
|
|
|
381 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
382 |
|
|
{
|
383 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
384 |
|
|
{
|
385 |
|
|
reg_class_superclasses[i][j] = LIM_REG_CLASSES;
|
386 |
|
|
reg_class_subclasses[i][j] = LIM_REG_CLASSES;
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
391 |
|
|
{
|
392 |
|
|
if (i == (int) NO_REGS)
|
393 |
|
|
continue;
|
394 |
|
|
|
395 |
|
|
for (j = i + 1; j < N_REG_CLASSES; j++)
|
396 |
|
|
{
|
397 |
|
|
enum reg_class *p;
|
398 |
|
|
|
399 |
|
|
GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
|
400 |
|
|
subclass);
|
401 |
|
|
continue;
|
402 |
|
|
subclass:
|
403 |
|
|
/* Reg class I is a subclass of J.
|
404 |
|
|
Add J to the table of superclasses of I. */
|
405 |
|
|
p = ®_class_superclasses[i][0];
|
406 |
|
|
while (*p != LIM_REG_CLASSES) p++;
|
407 |
|
|
*p = (enum reg_class) j;
|
408 |
|
|
/* Add I to the table of superclasses of J. */
|
409 |
|
|
p = ®_class_subclasses[j][0];
|
410 |
|
|
while (*p != LIM_REG_CLASSES) p++;
|
411 |
|
|
*p = (enum reg_class) i;
|
412 |
|
|
}
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/* Initialize "constant" tables. */
|
416 |
|
|
|
417 |
|
|
CLEAR_HARD_REG_SET (fixed_reg_set);
|
418 |
|
|
CLEAR_HARD_REG_SET (call_used_reg_set);
|
419 |
|
|
CLEAR_HARD_REG_SET (call_fixed_reg_set);
|
420 |
|
|
CLEAR_HARD_REG_SET (regs_invalidated_by_call);
|
421 |
|
|
|
422 |
|
|
memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
|
423 |
|
|
|
424 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
425 |
|
|
{
|
426 |
|
|
/* call_used_regs must include fixed_regs. */
|
427 |
|
|
gcc_assert (!fixed_regs[i] || call_used_regs[i]);
|
428 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
429 |
|
|
/* call_used_regs must include call_really_used_regs. */
|
430 |
|
|
gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
|
431 |
|
|
#endif
|
432 |
|
|
|
433 |
|
|
if (fixed_regs[i])
|
434 |
|
|
SET_HARD_REG_BIT (fixed_reg_set, i);
|
435 |
|
|
|
436 |
|
|
if (call_used_regs[i])
|
437 |
|
|
SET_HARD_REG_BIT (call_used_reg_set, i);
|
438 |
|
|
if (call_fixed_regs[i])
|
439 |
|
|
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
440 |
|
|
if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
|
441 |
|
|
SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
|
442 |
|
|
|
443 |
|
|
/* There are a couple of fixed registers that we know are safe to
|
444 |
|
|
exclude from being clobbered by calls:
|
445 |
|
|
|
446 |
|
|
The frame pointer is always preserved across calls. The arg pointer
|
447 |
|
|
is if it is fixed. The stack pointer usually is, unless
|
448 |
|
|
RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
|
449 |
|
|
If we are generating PIC code, the PIC offset table register is
|
450 |
|
|
preserved across calls, though the target can override that. */
|
451 |
|
|
|
452 |
|
|
if (i == STACK_POINTER_REGNUM)
|
453 |
|
|
;
|
454 |
|
|
else if (global_regs[i])
|
455 |
|
|
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
456 |
|
|
else if (i == FRAME_POINTER_REGNUM)
|
457 |
|
|
;
|
458 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
459 |
|
|
else if (i == HARD_FRAME_POINTER_REGNUM)
|
460 |
|
|
;
|
461 |
|
|
#endif
|
462 |
|
|
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
463 |
|
|
else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
|
464 |
|
|
;
|
465 |
|
|
#endif
|
466 |
|
|
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|
467 |
|
|
else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
|
468 |
|
|
;
|
469 |
|
|
#endif
|
470 |
|
|
else if (CALL_REALLY_USED_REGNO_P (i))
|
471 |
|
|
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
|
475 |
|
|
memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
|
476 |
|
|
for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
|
477 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
478 |
|
|
if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
|
479 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
480 |
|
|
if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
|
481 |
|
|
&& HARD_REGNO_MODE_OK (j, m))
|
482 |
|
|
{
|
483 |
|
|
contains_reg_of_mode [i][m] = 1;
|
484 |
|
|
have_regs_of_mode [m] = 1;
|
485 |
|
|
break;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
/* Initialize the move cost table. Find every subset of each class
|
489 |
|
|
and take the maximum cost of moving any subset to any other. */
|
490 |
|
|
|
491 |
|
|
for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
|
492 |
|
|
if (have_regs_of_mode [m])
|
493 |
|
|
{
|
494 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
495 |
|
|
if (contains_reg_of_mode [i][m])
|
496 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
497 |
|
|
{
|
498 |
|
|
int cost;
|
499 |
|
|
enum reg_class *p1, *p2;
|
500 |
|
|
|
501 |
|
|
if (!contains_reg_of_mode [j][m])
|
502 |
|
|
{
|
503 |
|
|
move_cost[m][i][j] = 65536;
|
504 |
|
|
may_move_in_cost[m][i][j] = 65536;
|
505 |
|
|
may_move_out_cost[m][i][j] = 65536;
|
506 |
|
|
}
|
507 |
|
|
else
|
508 |
|
|
{
|
509 |
|
|
cost = REGISTER_MOVE_COST (m, i, j);
|
510 |
|
|
|
511 |
|
|
for (p2 = ®_class_subclasses[j][0];
|
512 |
|
|
*p2 != LIM_REG_CLASSES;
|
513 |
|
|
p2++)
|
514 |
|
|
if (*p2 != i && contains_reg_of_mode [*p2][m])
|
515 |
|
|
cost = MAX (cost, move_cost [m][i][*p2]);
|
516 |
|
|
|
517 |
|
|
for (p1 = ®_class_subclasses[i][0];
|
518 |
|
|
*p1 != LIM_REG_CLASSES;
|
519 |
|
|
p1++)
|
520 |
|
|
if (*p1 != j && contains_reg_of_mode [*p1][m])
|
521 |
|
|
cost = MAX (cost, move_cost [m][*p1][j]);
|
522 |
|
|
|
523 |
|
|
move_cost[m][i][j] = cost;
|
524 |
|
|
|
525 |
|
|
if (reg_class_subset_p (i, j))
|
526 |
|
|
may_move_in_cost[m][i][j] = 0;
|
527 |
|
|
else
|
528 |
|
|
may_move_in_cost[m][i][j] = cost;
|
529 |
|
|
|
530 |
|
|
if (reg_class_subset_p (j, i))
|
531 |
|
|
may_move_out_cost[m][i][j] = 0;
|
532 |
|
|
else
|
533 |
|
|
may_move_out_cost[m][i][j] = cost;
|
534 |
|
|
}
|
535 |
|
|
}
|
536 |
|
|
else
|
537 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
538 |
|
|
{
|
539 |
|
|
move_cost[m][i][j] = 65536;
|
540 |
|
|
may_move_in_cost[m][i][j] = 65536;
|
541 |
|
|
may_move_out_cost[m][i][j] = 65536;
|
542 |
|
|
}
|
543 |
|
|
}
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* Compute the table of register modes.
|
547 |
|
|
These values are used to record death information for individual registers
|
548 |
|
|
(as opposed to a multi-register mode). */
|
549 |
|
|
|
550 |
|
|
void
|
551 |
|
|
init_reg_modes_once (void)
|
552 |
|
|
{
|
553 |
|
|
int i, j;
|
554 |
|
|
|
555 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
556 |
|
|
for (j = 0; j < MAX_MACHINE_MODE; j++)
|
557 |
|
|
hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
|
558 |
|
|
|
559 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
560 |
|
|
{
|
561 |
|
|
reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
|
562 |
|
|
|
563 |
|
|
/* If we couldn't find a valid mode, just use the previous mode.
|
564 |
|
|
??? One situation in which we need to do this is on the mips where
|
565 |
|
|
HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
|
566 |
|
|
to use DF mode for the even registers and VOIDmode for the odd
|
567 |
|
|
(for the cpu models where the odd ones are inaccessible). */
|
568 |
|
|
if (reg_raw_mode[i] == VOIDmode)
|
569 |
|
|
reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
|
570 |
|
|
}
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
/* Finish initializing the register sets and
|
574 |
|
|
initialize the register modes. */
|
575 |
|
|
|
576 |
|
|
void
|
577 |
|
|
init_regs (void)
|
578 |
|
|
{
|
579 |
|
|
/* This finishes what was started by init_reg_sets, but couldn't be done
|
580 |
|
|
until after register usage was specified. */
|
581 |
|
|
init_reg_sets_1 ();
|
582 |
|
|
|
583 |
|
|
init_reg_autoinc ();
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
/* Initialize some fake stack-frame MEM references for use in
|
587 |
|
|
memory_move_secondary_cost. */
|
588 |
|
|
|
589 |
|
|
void
|
590 |
|
|
init_fake_stack_mems (void)
|
591 |
|
|
{
|
592 |
|
|
{
|
593 |
|
|
int i;
|
594 |
|
|
|
595 |
|
|
for (i = 0; i < MAX_MACHINE_MODE; i++)
|
596 |
|
|
top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
|
597 |
|
|
}
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
|
601 |
|
|
/* Compute extra cost of moving registers to/from memory due to reloads.
|
602 |
|
|
Only needed if secondary reloads are required for memory moves. */
|
603 |
|
|
|
604 |
|
|
int
|
605 |
|
|
memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
|
606 |
|
|
{
|
607 |
|
|
enum reg_class altclass;
|
608 |
|
|
int partial_cost = 0;
|
609 |
|
|
/* We need a memory reference to feed to SECONDARY... macros. */
|
610 |
|
|
/* mem may be unused even if the SECONDARY_ macros are defined. */
|
611 |
|
|
rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
|
612 |
|
|
|
613 |
|
|
|
614 |
|
|
altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
|
615 |
|
|
|
616 |
|
|
if (altclass == NO_REGS)
|
617 |
|
|
return 0;
|
618 |
|
|
|
619 |
|
|
if (in)
|
620 |
|
|
partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
|
621 |
|
|
else
|
622 |
|
|
partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
|
623 |
|
|
|
624 |
|
|
if (class == altclass)
|
625 |
|
|
/* This isn't simply a copy-to-temporary situation. Can't guess
|
626 |
|
|
what it is, so MEMORY_MOVE_COST really ought not to be calling
|
627 |
|
|
here in that case.
|
628 |
|
|
|
629 |
|
|
I'm tempted to put in an assert here, but returning this will
|
630 |
|
|
probably only give poor estimates, which is what we would've
|
631 |
|
|
had before this code anyways. */
|
632 |
|
|
return partial_cost;
|
633 |
|
|
|
634 |
|
|
/* Check if the secondary reload register will also need a
|
635 |
|
|
secondary reload. */
|
636 |
|
|
return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
/* Return a machine mode that is legitimate for hard reg REGNO and large
|
640 |
|
|
enough to save nregs. If we can't find one, return VOIDmode.
|
641 |
|
|
If CALL_SAVED is true, only consider modes that are call saved. */
|
642 |
|
|
|
643 |
|
|
enum machine_mode
|
644 |
|
|
choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
|
645 |
|
|
unsigned int nregs, bool call_saved)
|
646 |
|
|
{
|
647 |
|
|
unsigned int /* enum machine_mode */ m;
|
648 |
|
|
enum machine_mode found_mode = VOIDmode, mode;
|
649 |
|
|
|
650 |
|
|
/* We first look for the largest integer mode that can be validly
|
651 |
|
|
held in REGNO. If none, we look for the largest floating-point mode.
|
652 |
|
|
If we still didn't find a valid mode, try CCmode. */
|
653 |
|
|
|
654 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
655 |
|
|
mode != VOIDmode;
|
656 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
657 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
658 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
659 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
660 |
|
|
found_mode = mode;
|
661 |
|
|
|
662 |
|
|
if (found_mode != VOIDmode)
|
663 |
|
|
return found_mode;
|
664 |
|
|
|
665 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
|
666 |
|
|
mode != VOIDmode;
|
667 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
668 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
669 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
670 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
671 |
|
|
found_mode = mode;
|
672 |
|
|
|
673 |
|
|
if (found_mode != VOIDmode)
|
674 |
|
|
return found_mode;
|
675 |
|
|
|
676 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
|
677 |
|
|
mode != VOIDmode;
|
678 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
679 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
680 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
681 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
682 |
|
|
found_mode = mode;
|
683 |
|
|
|
684 |
|
|
if (found_mode != VOIDmode)
|
685 |
|
|
return found_mode;
|
686 |
|
|
|
687 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
|
688 |
|
|
mode != VOIDmode;
|
689 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
690 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
691 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
692 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
693 |
|
|
found_mode = mode;
|
694 |
|
|
|
695 |
|
|
if (found_mode != VOIDmode)
|
696 |
|
|
return found_mode;
|
697 |
|
|
|
698 |
|
|
/* Iterate over all of the CCmodes. */
|
699 |
|
|
for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
|
700 |
|
|
{
|
701 |
|
|
mode = (enum machine_mode) m;
|
702 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
703 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
704 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
705 |
|
|
return mode;
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
/* We can't find a mode valid for this register. */
|
709 |
|
|
return VOIDmode;
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* Specify the usage characteristics of the register named NAME.
|
713 |
|
|
It should be a fixed register if FIXED and a
|
714 |
|
|
call-used register if CALL_USED. */
|
715 |
|
|
|
716 |
|
|
void
|
717 |
|
|
fix_register (const char *name, int fixed, int call_used)
|
718 |
|
|
{
|
719 |
|
|
int i;
|
720 |
|
|
|
721 |
|
|
/* Decode the name and update the primary form of
|
722 |
|
|
the register info. */
|
723 |
|
|
|
724 |
|
|
if ((i = decode_reg_name (name)) >= 0)
|
725 |
|
|
{
|
726 |
|
|
if ((i == STACK_POINTER_REGNUM
|
727 |
|
|
#ifdef HARD_FRAME_POINTER_REGNUM
|
728 |
|
|
|| i == HARD_FRAME_POINTER_REGNUM
|
729 |
|
|
#else
|
730 |
|
|
|| i == FRAME_POINTER_REGNUM
|
731 |
|
|
#endif
|
732 |
|
|
)
|
733 |
|
|
&& (fixed == 0 || call_used == 0))
|
734 |
|
|
{
|
735 |
|
|
static const char * const what_option[2][2] = {
|
736 |
|
|
{ "call-saved", "call-used" },
|
737 |
|
|
{ "no-such-option", "fixed" }};
|
738 |
|
|
|
739 |
|
|
error ("can't use '%s' as a %s register", name,
|
740 |
|
|
what_option[fixed][call_used]);
|
741 |
|
|
}
|
742 |
|
|
else
|
743 |
|
|
{
|
744 |
|
|
fixed_regs[i] = fixed;
|
745 |
|
|
call_used_regs[i] = call_used;
|
746 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
747 |
|
|
if (fixed == 0)
|
748 |
|
|
call_really_used_regs[i] = call_used;
|
749 |
|
|
#endif
|
750 |
|
|
}
|
751 |
|
|
}
|
752 |
|
|
else
|
753 |
|
|
{
|
754 |
|
|
warning (0, "unknown register name: %s", name);
|
755 |
|
|
}
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
/* Mark register number I as global. */
|
759 |
|
|
|
760 |
|
|
void
|
761 |
|
|
globalize_reg (int i)
|
762 |
|
|
{
|
763 |
|
|
if (fixed_regs[i] == 0 && no_global_reg_vars)
|
764 |
|
|
error ("global register variable follows a function definition");
|
765 |
|
|
|
766 |
|
|
if (global_regs[i])
|
767 |
|
|
{
|
768 |
|
|
warning (0, "register used for two global register variables");
|
769 |
|
|
return;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
if (call_used_regs[i] && ! fixed_regs[i])
|
773 |
|
|
warning (0, "call-clobbered register used for global register variable");
|
774 |
|
|
|
775 |
|
|
global_regs[i] = 1;
|
776 |
|
|
|
777 |
|
|
/* If we're globalizing the frame pointer, we need to set the
|
778 |
|
|
appropriate regs_invalidated_by_call bit, even if it's already
|
779 |
|
|
set in fixed_regs. */
|
780 |
|
|
if (i != STACK_POINTER_REGNUM)
|
781 |
|
|
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
782 |
|
|
|
783 |
|
|
/* If already fixed, nothing else to do. */
|
784 |
|
|
if (fixed_regs[i])
|
785 |
|
|
return;
|
786 |
|
|
|
787 |
|
|
fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
|
788 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
789 |
|
|
call_really_used_regs[i] = 1;
|
790 |
|
|
#endif
|
791 |
|
|
|
792 |
|
|
SET_HARD_REG_BIT (fixed_reg_set, i);
|
793 |
|
|
SET_HARD_REG_BIT (call_used_reg_set, i);
|
794 |
|
|
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
/* Now the data and code for the `regclass' pass, which happens
|
798 |
|
|
just before local-alloc. */
|
799 |
|
|
|
800 |
|
|
/* The `costs' struct records the cost of using a hard register of each class
|
801 |
|
|
and of using memory for each pseudo. We use this data to set up
|
802 |
|
|
register class preferences. */
|
803 |
|
|
|
804 |
|
|
struct costs
|
805 |
|
|
{
|
806 |
|
|
int cost[N_REG_CLASSES];
|
807 |
|
|
int mem_cost;
|
808 |
|
|
};
|
809 |
|
|
|
810 |
|
|
/* Structure used to record preferences of given pseudo. */
|
811 |
|
|
struct reg_pref
|
812 |
|
|
{
|
813 |
|
|
/* (enum reg_class) prefclass is the preferred class. May be
|
814 |
|
|
NO_REGS if no class is better than memory. */
|
815 |
|
|
char prefclass;
|
816 |
|
|
|
817 |
|
|
/* altclass is a register class that we should use for allocating
|
818 |
|
|
pseudo if no register in the preferred class is available.
|
819 |
|
|
If no register in this class is available, memory is preferred.
|
820 |
|
|
|
821 |
|
|
It might appear to be more general to have a bitmask of classes here,
|
822 |
|
|
but since it is recommended that there be a class corresponding to the
|
823 |
|
|
union of most major pair of classes, that generality is not required. */
|
824 |
|
|
char altclass;
|
825 |
|
|
};
|
826 |
|
|
|
827 |
|
|
/* Record the cost of each class for each pseudo. */
|
828 |
|
|
|
829 |
|
|
static struct costs *costs;
|
830 |
|
|
|
831 |
|
|
/* Initialized once, and used to initialize cost values for each insn. */
|
832 |
|
|
|
833 |
|
|
static struct costs init_cost;
|
834 |
|
|
|
835 |
|
|
/* Record preferences of each pseudo.
|
836 |
|
|
This is available after `regclass' is run. */
|
837 |
|
|
|
838 |
|
|
static struct reg_pref *reg_pref;
|
839 |
|
|
|
840 |
|
|
/* Allocated buffers for reg_pref. */
|
841 |
|
|
|
842 |
|
|
static struct reg_pref *reg_pref_buffer;
|
843 |
|
|
|
844 |
|
|
/* Frequency of executions of current insn. */
|
845 |
|
|
|
846 |
|
|
static int frequency;
|
847 |
|
|
|
848 |
|
|
static rtx scan_one_insn (rtx, int);
|
849 |
|
|
static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
|
850 |
|
|
static void dump_regclass (FILE *);
|
851 |
|
|
static void record_reg_classes (int, int, rtx *, enum machine_mode *,
|
852 |
|
|
const char **, rtx, struct costs *,
|
853 |
|
|
struct reg_pref *);
|
854 |
|
|
static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
|
855 |
|
|
secondary_reload_info *);
|
856 |
|
|
static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
|
857 |
|
|
enum rtx_code, int);
|
858 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
859 |
|
|
static int auto_inc_dec_reg_p (rtx, enum machine_mode);
|
860 |
|
|
#endif
|
861 |
|
|
static void reg_scan_mark_refs (rtx, rtx, int);
|
862 |
|
|
|
863 |
|
|
/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
|
864 |
|
|
|
865 |
|
|
static inline bool
|
866 |
|
|
ok_for_index_p_nonstrict (rtx reg)
|
867 |
|
|
{
|
868 |
|
|
unsigned regno = REGNO (reg);
|
869 |
|
|
return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/* A version of regno_ok_for_base_p for use during regclass, when all pseudos
|
873 |
|
|
should count as OK. Arguments as for regno_ok_for_base_p. */
|
874 |
|
|
|
875 |
|
|
static inline bool
|
876 |
|
|
ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
|
877 |
|
|
enum rtx_code outer_code, enum rtx_code index_code)
|
878 |
|
|
{
|
879 |
|
|
unsigned regno = REGNO (reg);
|
880 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
881 |
|
|
return true;
|
882 |
|
|
|
883 |
|
|
return ok_for_base_p_1 (regno, mode, outer_code, index_code);
|
884 |
|
|
}
|
885 |
|
|
|
886 |
|
|
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
|
887 |
|
|
This function is sometimes called before the info has been computed.
|
888 |
|
|
When that happens, just return GENERAL_REGS, which is innocuous. */
|
889 |
|
|
|
890 |
|
|
enum reg_class
|
891 |
|
|
reg_preferred_class (int regno)
|
892 |
|
|
{
|
893 |
|
|
if (reg_pref == 0)
|
894 |
|
|
return GENERAL_REGS;
|
895 |
|
|
return (enum reg_class) reg_pref[regno].prefclass;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
enum reg_class
|
899 |
|
|
reg_alternate_class (int regno)
|
900 |
|
|
{
|
901 |
|
|
if (reg_pref == 0)
|
902 |
|
|
return ALL_REGS;
|
903 |
|
|
|
904 |
|
|
return (enum reg_class) reg_pref[regno].altclass;
|
905 |
|
|
}
|
906 |
|
|
|
907 |
|
|
/* Initialize some global data for this pass. */
|
908 |
|
|
|
909 |
|
|
void
|
910 |
|
|
regclass_init (void)
|
911 |
|
|
{
|
912 |
|
|
int i;
|
913 |
|
|
|
914 |
|
|
init_cost.mem_cost = 10000;
|
915 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
916 |
|
|
init_cost.cost[i] = 10000;
|
917 |
|
|
|
918 |
|
|
/* This prevents dump_flow_info from losing if called
|
919 |
|
|
before regclass is run. */
|
920 |
|
|
reg_pref = NULL;
|
921 |
|
|
|
922 |
|
|
/* No more global register variables may be declared. */
|
923 |
|
|
no_global_reg_vars = 1;
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
/* Dump register costs. */
|
927 |
|
|
static void
|
928 |
|
|
dump_regclass (FILE *dump)
|
929 |
|
|
{
|
930 |
|
|
int i;
|
931 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
932 |
|
|
{
|
933 |
|
|
int /* enum reg_class */ class;
|
934 |
|
|
if (REG_N_REFS (i))
|
935 |
|
|
{
|
936 |
|
|
fprintf (dump, " Register %i costs:", i);
|
937 |
|
|
for (class = 0; class < (int) N_REG_CLASSES; class++)
|
938 |
|
|
if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
|
939 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
940 |
|
|
&& (!in_inc_dec[i]
|
941 |
|
|
|| !forbidden_inc_dec_class[(enum reg_class) class])
|
942 |
|
|
#endif
|
943 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
944 |
|
|
&& ! invalid_mode_change_p (i, (enum reg_class) class,
|
945 |
|
|
PSEUDO_REGNO_MODE (i))
|
946 |
|
|
#endif
|
947 |
|
|
)
|
948 |
|
|
fprintf (dump, " %s:%i", reg_class_names[class],
|
949 |
|
|
costs[i].cost[(enum reg_class) class]);
|
950 |
|
|
fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
|
951 |
|
|
}
|
952 |
|
|
}
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
|
956 |
|
|
/* Calculate the costs of insn operands. */
|
957 |
|
|
|
958 |
|
|
static void
|
959 |
|
|
record_operand_costs (rtx insn, struct costs *op_costs,
|
960 |
|
|
struct reg_pref *reg_pref)
|
961 |
|
|
{
|
962 |
|
|
const char *constraints[MAX_RECOG_OPERANDS];
|
963 |
|
|
enum machine_mode modes[MAX_RECOG_OPERANDS];
|
964 |
|
|
int i;
|
965 |
|
|
|
966 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
967 |
|
|
{
|
968 |
|
|
constraints[i] = recog_data.constraints[i];
|
969 |
|
|
modes[i] = recog_data.operand_mode[i];
|
970 |
|
|
}
|
971 |
|
|
|
972 |
|
|
/* If we get here, we are set up to record the costs of all the
|
973 |
|
|
operands for this insn. Start by initializing the costs.
|
974 |
|
|
Then handle any address registers. Finally record the desired
|
975 |
|
|
classes for any pseudos, doing it twice if some pair of
|
976 |
|
|
operands are commutative. */
|
977 |
|
|
|
978 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
979 |
|
|
{
|
980 |
|
|
op_costs[i] = init_cost;
|
981 |
|
|
|
982 |
|
|
if (GET_CODE (recog_data.operand[i]) == SUBREG)
|
983 |
|
|
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
984 |
|
|
|
985 |
|
|
if (MEM_P (recog_data.operand[i]))
|
986 |
|
|
record_address_regs (GET_MODE (recog_data.operand[i]),
|
987 |
|
|
XEXP (recog_data.operand[i], 0),
|
988 |
|
|
0, MEM, SCRATCH, frequency * 2);
|
989 |
|
|
else if (constraints[i][0] == 'p'
|
990 |
|
|
|| EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
|
991 |
|
|
record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
|
992 |
|
|
SCRATCH, frequency * 2);
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
/* Check for commutative in a separate loop so everything will
|
996 |
|
|
have been initialized. We must do this even if one operand
|
997 |
|
|
is a constant--see addsi3 in m68k.md. */
|
998 |
|
|
|
999 |
|
|
for (i = 0; i < (int) recog_data.n_operands - 1; i++)
|
1000 |
|
|
if (constraints[i][0] == '%')
|
1001 |
|
|
{
|
1002 |
|
|
const char *xconstraints[MAX_RECOG_OPERANDS];
|
1003 |
|
|
int j;
|
1004 |
|
|
|
1005 |
|
|
/* Handle commutative operands by swapping the constraints.
|
1006 |
|
|
We assume the modes are the same. */
|
1007 |
|
|
|
1008 |
|
|
for (j = 0; j < recog_data.n_operands; j++)
|
1009 |
|
|
xconstraints[j] = constraints[j];
|
1010 |
|
|
|
1011 |
|
|
xconstraints[i] = constraints[i+1];
|
1012 |
|
|
xconstraints[i+1] = constraints[i];
|
1013 |
|
|
record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
|
1014 |
|
|
recog_data.operand, modes,
|
1015 |
|
|
xconstraints, insn, op_costs, reg_pref);
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
|
1019 |
|
|
recog_data.operand, modes,
|
1020 |
|
|
constraints, insn, op_costs, reg_pref);
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
/* Subroutine of regclass, processes one insn INSN. Scan it and record each
|
1024 |
|
|
time it would save code to put a certain register in a certain class.
|
1025 |
|
|
PASS, when nonzero, inhibits some optimizations which need only be done
|
1026 |
|
|
once.
|
1027 |
|
|
Return the last insn processed, so that the scan can be continued from
|
1028 |
|
|
there. */
|
1029 |
|
|
|
1030 |
|
|
static rtx
|
1031 |
|
|
scan_one_insn (rtx insn, int pass)
|
1032 |
|
|
{
|
1033 |
|
|
enum rtx_code pat_code;
|
1034 |
|
|
rtx set, note;
|
1035 |
|
|
int i, j;
|
1036 |
|
|
struct costs op_costs[MAX_RECOG_OPERANDS];
|
1037 |
|
|
|
1038 |
|
|
if (!INSN_P (insn))
|
1039 |
|
|
return insn;
|
1040 |
|
|
|
1041 |
|
|
pat_code = GET_CODE (PATTERN (insn));
|
1042 |
|
|
if (pat_code == USE
|
1043 |
|
|
|| pat_code == CLOBBER
|
1044 |
|
|
|| pat_code == ASM_INPUT
|
1045 |
|
|
|| pat_code == ADDR_VEC
|
1046 |
|
|
|| pat_code == ADDR_DIFF_VEC)
|
1047 |
|
|
return insn;
|
1048 |
|
|
|
1049 |
|
|
set = single_set (insn);
|
1050 |
|
|
extract_insn (insn);
|
1051 |
|
|
|
1052 |
|
|
/* If this insn loads a parameter from its stack slot, then
|
1053 |
|
|
it represents a savings, rather than a cost, if the
|
1054 |
|
|
parameter is stored in memory. Record this fact. */
|
1055 |
|
|
|
1056 |
|
|
if (set != 0 && REG_P (SET_DEST (set))
|
1057 |
|
|
&& MEM_P (SET_SRC (set))
|
1058 |
|
|
&& (note = find_reg_note (insn, REG_EQUIV,
|
1059 |
|
|
NULL_RTX)) != 0
|
1060 |
|
|
&& MEM_P (XEXP (note, 0)))
|
1061 |
|
|
{
|
1062 |
|
|
costs[REGNO (SET_DEST (set))].mem_cost
|
1063 |
|
|
-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
|
1064 |
|
|
GENERAL_REGS, 1)
|
1065 |
|
|
* frequency);
|
1066 |
|
|
record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
|
1067 |
|
|
0, MEM, SCRATCH, frequency * 2);
|
1068 |
|
|
return insn;
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
/* Improve handling of two-address insns such as
|
1072 |
|
|
(set X (ashift CONST Y)) where CONST must be made to
|
1073 |
|
|
match X. Change it into two insns: (set X CONST)
|
1074 |
|
|
(set X (ashift X Y)). If we left this for reloading, it
|
1075 |
|
|
would probably get three insns because X and Y might go
|
1076 |
|
|
in the same place. This prevents X and Y from receiving
|
1077 |
|
|
the same hard reg.
|
1078 |
|
|
|
1079 |
|
|
We can only do this if the modes of operands 0 and 1
|
1080 |
|
|
(which might not be the same) are tieable and we only need
|
1081 |
|
|
do this during our first pass. */
|
1082 |
|
|
|
1083 |
|
|
if (pass == 0 && optimize
|
1084 |
|
|
&& recog_data.n_operands >= 3
|
1085 |
|
|
&& recog_data.constraints[1][0] == '0'
|
1086 |
|
|
&& recog_data.constraints[1][1] == 0
|
1087 |
|
|
&& CONSTANT_P (recog_data.operand[1])
|
1088 |
|
|
&& ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
|
1089 |
|
|
&& ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
|
1090 |
|
|
&& REG_P (recog_data.operand[0])
|
1091 |
|
|
&& MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
|
1092 |
|
|
recog_data.operand_mode[1]))
|
1093 |
|
|
{
|
1094 |
|
|
rtx previnsn = prev_real_insn (insn);
|
1095 |
|
|
rtx dest
|
1096 |
|
|
= gen_lowpart (recog_data.operand_mode[1],
|
1097 |
|
|
recog_data.operand[0]);
|
1098 |
|
|
rtx newinsn
|
1099 |
|
|
= emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
|
1100 |
|
|
|
1101 |
|
|
/* If this insn was the start of a basic block,
|
1102 |
|
|
include the new insn in that block.
|
1103 |
|
|
We need not check for code_label here;
|
1104 |
|
|
while a basic block can start with a code_label,
|
1105 |
|
|
INSN could not be at the beginning of that block. */
|
1106 |
|
|
if (previnsn == 0 || JUMP_P (previnsn))
|
1107 |
|
|
{
|
1108 |
|
|
basic_block b;
|
1109 |
|
|
FOR_EACH_BB (b)
|
1110 |
|
|
if (insn == BB_HEAD (b))
|
1111 |
|
|
BB_HEAD (b) = newinsn;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
/* This makes one more setting of new insns's dest. */
|
1115 |
|
|
REG_N_SETS (REGNO (recog_data.operand[0]))++;
|
1116 |
|
|
REG_N_REFS (REGNO (recog_data.operand[0]))++;
|
1117 |
|
|
REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
|
1118 |
|
|
|
1119 |
|
|
*recog_data.operand_loc[1] = recog_data.operand[0];
|
1120 |
|
|
REG_N_REFS (REGNO (recog_data.operand[0]))++;
|
1121 |
|
|
REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
|
1122 |
|
|
for (i = recog_data.n_dups - 1; i >= 0; i--)
|
1123 |
|
|
if (recog_data.dup_num[i] == 1)
|
1124 |
|
|
{
|
1125 |
|
|
*recog_data.dup_loc[i] = recog_data.operand[0];
|
1126 |
|
|
REG_N_REFS (REGNO (recog_data.operand[0]))++;
|
1127 |
|
|
REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
return PREV_INSN (newinsn);
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
record_operand_costs (insn, op_costs, reg_pref);
|
1134 |
|
|
|
1135 |
|
|
/* Now add the cost for each operand to the total costs for
|
1136 |
|
|
its register. */
|
1137 |
|
|
|
1138 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
1139 |
|
|
if (REG_P (recog_data.operand[i])
|
1140 |
|
|
&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
|
1141 |
|
|
{
|
1142 |
|
|
int regno = REGNO (recog_data.operand[i]);
|
1143 |
|
|
struct costs *p = &costs[regno], *q = &op_costs[i];
|
1144 |
|
|
|
1145 |
|
|
p->mem_cost += q->mem_cost * frequency;
|
1146 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
1147 |
|
|
p->cost[j] += q->cost[j] * frequency;
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
return insn;
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* Initialize information about which register classes can be used for
|
1154 |
|
|
pseudos that are auto-incremented or auto-decremented. */
|
1155 |
|
|
|
1156 |
|
|
static void
|
1157 |
|
|
init_reg_autoinc (void)
|
1158 |
|
|
{
|
1159 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
1160 |
|
|
int i;
|
1161 |
|
|
|
1162 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
1163 |
|
|
{
|
1164 |
|
|
rtx r = gen_rtx_raw_REG (VOIDmode, 0);
|
1165 |
|
|
enum machine_mode m;
|
1166 |
|
|
int j;
|
1167 |
|
|
|
1168 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
1169 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
|
1170 |
|
|
{
|
1171 |
|
|
REGNO (r) = j;
|
1172 |
|
|
|
1173 |
|
|
for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
|
1174 |
|
|
m = (enum machine_mode) ((int) m + 1))
|
1175 |
|
|
if (HARD_REGNO_MODE_OK (j, m))
|
1176 |
|
|
{
|
1177 |
|
|
/* ??? There are two assumptions here; that the base class does not
|
1178 |
|
|
depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
|
1179 |
|
|
that it does not depend on the machine mode of the memory
|
1180 |
|
|
reference. */
|
1181 |
|
|
enum reg_class base_class
|
1182 |
|
|
= base_reg_class (VOIDmode, POST_INC, SCRATCH);
|
1183 |
|
|
|
1184 |
|
|
PUT_MODE (r, m);
|
1185 |
|
|
|
1186 |
|
|
/* If a register is not directly suitable for an
|
1187 |
|
|
auto-increment or decrement addressing mode and
|
1188 |
|
|
requires secondary reloads, disallow its class from
|
1189 |
|
|
being used in such addresses. */
|
1190 |
|
|
|
1191 |
|
|
if ((secondary_reload_class (1, base_class, m, r)
|
1192 |
|
|
|| secondary_reload_class (1, base_class, m, r))
|
1193 |
|
|
&& ! auto_inc_dec_reg_p (r, m))
|
1194 |
|
|
forbidden_inc_dec_class[i] = 1;
|
1195 |
|
|
}
|
1196 |
|
|
}
|
1197 |
|
|
}
|
1198 |
|
|
#endif /* FORBIDDEN_INC_DEC_CLASSES */
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
/* This is a pass of the compiler that scans all instructions
|
1202 |
|
|
and calculates the preferred class for each pseudo-register.
|
1203 |
|
|
This information can be accessed later by calling `reg_preferred_class'.
|
1204 |
|
|
This pass comes just before local register allocation. */
|
1205 |
|
|
|
1206 |
|
|
void
|
1207 |
|
|
regclass (rtx f, int nregs)
|
1208 |
|
|
{
|
1209 |
|
|
rtx insn;
|
1210 |
|
|
int i;
|
1211 |
|
|
int pass;
|
1212 |
|
|
|
1213 |
|
|
init_recog ();
|
1214 |
|
|
|
1215 |
|
|
costs = XNEWVEC (struct costs, nregs);
|
1216 |
|
|
|
1217 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
1218 |
|
|
|
1219 |
|
|
in_inc_dec = XNEWVEC (char, nregs);
|
1220 |
|
|
|
1221 |
|
|
#endif /* FORBIDDEN_INC_DEC_CLASSES */
|
1222 |
|
|
|
1223 |
|
|
/* Normally we scan the insns once and determine the best class to use for
|
1224 |
|
|
each register. However, if -fexpensive_optimizations are on, we do so
|
1225 |
|
|
twice, the second time using the tentative best classes to guide the
|
1226 |
|
|
selection. */
|
1227 |
|
|
|
1228 |
|
|
for (pass = 0; pass <= flag_expensive_optimizations; pass++)
|
1229 |
|
|
{
|
1230 |
|
|
basic_block bb;
|
1231 |
|
|
|
1232 |
|
|
if (dump_file)
|
1233 |
|
|
fprintf (dump_file, "\n\nPass %i\n\n",pass);
|
1234 |
|
|
/* Zero out our accumulation of the cost of each class for each reg. */
|
1235 |
|
|
|
1236 |
|
|
memset (costs, 0, nregs * sizeof (struct costs));
|
1237 |
|
|
|
1238 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
1239 |
|
|
memset (in_inc_dec, 0, nregs);
|
1240 |
|
|
#endif
|
1241 |
|
|
|
1242 |
|
|
/* Scan the instructions and record each time it would
|
1243 |
|
|
save code to put a certain register in a certain class. */
|
1244 |
|
|
|
1245 |
|
|
if (!optimize)
|
1246 |
|
|
{
|
1247 |
|
|
frequency = REG_FREQ_MAX;
|
1248 |
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
1249 |
|
|
insn = scan_one_insn (insn, pass);
|
1250 |
|
|
}
|
1251 |
|
|
else
|
1252 |
|
|
FOR_EACH_BB (bb)
|
1253 |
|
|
{
|
1254 |
|
|
/* Show that an insn inside a loop is likely to be executed three
|
1255 |
|
|
times more than insns outside a loop. This is much more
|
1256 |
|
|
aggressive than the assumptions made elsewhere and is being
|
1257 |
|
|
tried as an experiment. */
|
1258 |
|
|
frequency = REG_FREQ_FROM_BB (bb);
|
1259 |
|
|
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
1260 |
|
|
{
|
1261 |
|
|
insn = scan_one_insn (insn, pass);
|
1262 |
|
|
if (insn == BB_END (bb))
|
1263 |
|
|
break;
|
1264 |
|
|
}
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
/* Now for each register look at how desirable each class is
|
1268 |
|
|
and find which class is preferred. Store that in
|
1269 |
|
|
`prefclass'. Record in `altclass' the largest register
|
1270 |
|
|
class any of whose registers is better than memory. */
|
1271 |
|
|
|
1272 |
|
|
if (pass == 0)
|
1273 |
|
|
reg_pref = reg_pref_buffer;
|
1274 |
|
|
|
1275 |
|
|
if (dump_file)
|
1276 |
|
|
{
|
1277 |
|
|
dump_regclass (dump_file);
|
1278 |
|
|
fprintf (dump_file,"\n");
|
1279 |
|
|
}
|
1280 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
|
1281 |
|
|
{
|
1282 |
|
|
int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
|
1283 |
|
|
enum reg_class best = ALL_REGS, alt = NO_REGS;
|
1284 |
|
|
/* This is an enum reg_class, but we call it an int
|
1285 |
|
|
to save lots of casts. */
|
1286 |
|
|
int class;
|
1287 |
|
|
struct costs *p = &costs[i];
|
1288 |
|
|
|
1289 |
|
|
/* In non-optimizing compilation REG_N_REFS is not initialized
|
1290 |
|
|
yet. */
|
1291 |
|
|
if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
|
1292 |
|
|
continue;
|
1293 |
|
|
|
1294 |
|
|
for (class = (int) ALL_REGS - 1; class > 0; class--)
|
1295 |
|
|
{
|
1296 |
|
|
/* Ignore classes that are too small for this operand or
|
1297 |
|
|
invalid for an operand that was auto-incremented. */
|
1298 |
|
|
if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
|
1299 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
1300 |
|
|
|| (in_inc_dec[i] && forbidden_inc_dec_class[class])
|
1301 |
|
|
#endif
|
1302 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1303 |
|
|
|| invalid_mode_change_p (i, (enum reg_class) class,
|
1304 |
|
|
PSEUDO_REGNO_MODE (i))
|
1305 |
|
|
#endif
|
1306 |
|
|
)
|
1307 |
|
|
;
|
1308 |
|
|
else if (p->cost[class] < best_cost)
|
1309 |
|
|
{
|
1310 |
|
|
best_cost = p->cost[class];
|
1311 |
|
|
best = (enum reg_class) class;
|
1312 |
|
|
}
|
1313 |
|
|
else if (p->cost[class] == best_cost)
|
1314 |
|
|
best = reg_class_subunion[(int) best][class];
|
1315 |
|
|
}
|
1316 |
|
|
|
1317 |
|
|
/* If no register class is better than memory, use memory. */
|
1318 |
|
|
if (p->mem_cost < best_cost)
|
1319 |
|
|
best = NO_REGS;
|
1320 |
|
|
|
1321 |
|
|
/* Record the alternate register class; i.e., a class for which
|
1322 |
|
|
every register in it is better than using memory. If adding a
|
1323 |
|
|
class would make a smaller class (i.e., no union of just those
|
1324 |
|
|
classes exists), skip that class. The major unions of classes
|
1325 |
|
|
should be provided as a register class. Don't do this if we
|
1326 |
|
|
will be doing it again later. */
|
1327 |
|
|
|
1328 |
|
|
if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
|
1329 |
|
|
for (class = 0; class < N_REG_CLASSES; class++)
|
1330 |
|
|
if (p->cost[class] < p->mem_cost
|
1331 |
|
|
&& (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
|
1332 |
|
|
> reg_class_size[(int) alt])
|
1333 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
1334 |
|
|
&& ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
|
1335 |
|
|
#endif
|
1336 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1337 |
|
|
&& ! invalid_mode_change_p (i, (enum reg_class) class,
|
1338 |
|
|
PSEUDO_REGNO_MODE (i))
|
1339 |
|
|
#endif
|
1340 |
|
|
)
|
1341 |
|
|
alt = reg_class_subunion[(int) alt][class];
|
1342 |
|
|
|
1343 |
|
|
/* If we don't add any classes, nothing to try. */
|
1344 |
|
|
if (alt == best)
|
1345 |
|
|
alt = NO_REGS;
|
1346 |
|
|
|
1347 |
|
|
if (dump_file
|
1348 |
|
|
&& (reg_pref[i].prefclass != (int) best
|
1349 |
|
|
|| reg_pref[i].altclass != (int) alt))
|
1350 |
|
|
{
|
1351 |
|
|
fprintf (dump_file, " Register %i", i);
|
1352 |
|
|
if (alt == ALL_REGS || best == ALL_REGS)
|
1353 |
|
|
fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
|
1354 |
|
|
else if (alt == NO_REGS)
|
1355 |
|
|
fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
|
1356 |
|
|
else
|
1357 |
|
|
fprintf (dump_file, " pref %s, else %s\n",
|
1358 |
|
|
reg_class_names[(int) best],
|
1359 |
|
|
reg_class_names[(int) alt]);
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
/* We cast to (int) because (char) hits bugs in some compilers. */
|
1363 |
|
|
reg_pref[i].prefclass = (int) best;
|
1364 |
|
|
reg_pref[i].altclass = (int) alt;
|
1365 |
|
|
}
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
1369 |
|
|
free (in_inc_dec);
|
1370 |
|
|
#endif
|
1371 |
|
|
free (costs);
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
/* Record the cost of using memory or registers of various classes for
|
1375 |
|
|
the operands in INSN.
|
1376 |
|
|
|
1377 |
|
|
N_ALTS is the number of alternatives.
|
1378 |
|
|
|
1379 |
|
|
N_OPS is the number of operands.
|
1380 |
|
|
|
1381 |
|
|
OPS is an array of the operands.
|
1382 |
|
|
|
1383 |
|
|
MODES are the modes of the operands, in case any are VOIDmode.
|
1384 |
|
|
|
1385 |
|
|
CONSTRAINTS are the constraints to use for the operands. This array
|
1386 |
|
|
is modified by this procedure.
|
1387 |
|
|
|
1388 |
|
|
This procedure works alternative by alternative. For each alternative
|
1389 |
|
|
we assume that we will be able to allocate all pseudos to their ideal
|
1390 |
|
|
register class and calculate the cost of using that alternative. Then
|
1391 |
|
|
we compute for each operand that is a pseudo-register, the cost of
|
1392 |
|
|
having the pseudo allocated to each register class and using it in that
|
1393 |
|
|
alternative. To this cost is added the cost of the alternative.
|
1394 |
|
|
|
1395 |
|
|
The cost of each class for this insn is its lowest cost among all the
|
1396 |
|
|
alternatives. */
|
1397 |
|
|
|
1398 |
|
|
static void
|
1399 |
|
|
record_reg_classes (int n_alts, int n_ops, rtx *ops,
|
1400 |
|
|
enum machine_mode *modes, const char **constraints,
|
1401 |
|
|
rtx insn, struct costs *op_costs,
|
1402 |
|
|
struct reg_pref *reg_pref)
|
1403 |
|
|
{
|
1404 |
|
|
int alt;
|
1405 |
|
|
int i, j;
|
1406 |
|
|
rtx set;
|
1407 |
|
|
|
1408 |
|
|
/* Process each alternative, each time minimizing an operand's cost with
|
1409 |
|
|
the cost for each operand in that alternative. */
|
1410 |
|
|
|
1411 |
|
|
for (alt = 0; alt < n_alts; alt++)
|
1412 |
|
|
{
|
1413 |
|
|
struct costs this_op_costs[MAX_RECOG_OPERANDS];
|
1414 |
|
|
int alt_fail = 0;
|
1415 |
|
|
int alt_cost = 0;
|
1416 |
|
|
enum reg_class classes[MAX_RECOG_OPERANDS];
|
1417 |
|
|
int allows_mem[MAX_RECOG_OPERANDS];
|
1418 |
|
|
int class;
|
1419 |
|
|
|
1420 |
|
|
for (i = 0; i < n_ops; i++)
|
1421 |
|
|
{
|
1422 |
|
|
const char *p = constraints[i];
|
1423 |
|
|
rtx op = ops[i];
|
1424 |
|
|
enum machine_mode mode = modes[i];
|
1425 |
|
|
int allows_addr = 0;
|
1426 |
|
|
int win = 0;
|
1427 |
|
|
unsigned char c;
|
1428 |
|
|
|
1429 |
|
|
/* Initially show we know nothing about the register class. */
|
1430 |
|
|
classes[i] = NO_REGS;
|
1431 |
|
|
allows_mem[i] = 0;
|
1432 |
|
|
|
1433 |
|
|
/* If this operand has no constraints at all, we can conclude
|
1434 |
|
|
nothing about it since anything is valid. */
|
1435 |
|
|
|
1436 |
|
|
if (*p == 0)
|
1437 |
|
|
{
|
1438 |
|
|
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
1439 |
|
|
memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
|
1440 |
|
|
|
1441 |
|
|
continue;
|
1442 |
|
|
}
|
1443 |
|
|
|
1444 |
|
|
/* If this alternative is only relevant when this operand
|
1445 |
|
|
matches a previous operand, we do different things depending
|
1446 |
|
|
on whether this operand is a pseudo-reg or not. We must process
|
1447 |
|
|
any modifiers for the operand before we can make this test. */
|
1448 |
|
|
|
1449 |
|
|
while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
|
1450 |
|
|
p++;
|
1451 |
|
|
|
1452 |
|
|
if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
|
1453 |
|
|
{
|
1454 |
|
|
/* Copy class and whether memory is allowed from the matching
|
1455 |
|
|
alternative. Then perform any needed cost computations
|
1456 |
|
|
and/or adjustments. */
|
1457 |
|
|
j = p[0] - '0';
|
1458 |
|
|
classes[i] = classes[j];
|
1459 |
|
|
allows_mem[i] = allows_mem[j];
|
1460 |
|
|
|
1461 |
|
|
if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
|
1462 |
|
|
{
|
1463 |
|
|
/* If this matches the other operand, we have no added
|
1464 |
|
|
cost and we win. */
|
1465 |
|
|
if (rtx_equal_p (ops[j], op))
|
1466 |
|
|
win = 1;
|
1467 |
|
|
|
1468 |
|
|
/* If we can put the other operand into a register, add to
|
1469 |
|
|
the cost of this alternative the cost to copy this
|
1470 |
|
|
operand to the register used for the other operand. */
|
1471 |
|
|
|
1472 |
|
|
else if (classes[j] != NO_REGS)
|
1473 |
|
|
{
|
1474 |
|
|
alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
|
1475 |
|
|
win = 1;
|
1476 |
|
|
}
|
1477 |
|
|
}
|
1478 |
|
|
else if (!REG_P (ops[j])
|
1479 |
|
|
|| REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
|
1480 |
|
|
{
|
1481 |
|
|
/* This op is a pseudo but the one it matches is not. */
|
1482 |
|
|
|
1483 |
|
|
/* If we can't put the other operand into a register, this
|
1484 |
|
|
alternative can't be used. */
|
1485 |
|
|
|
1486 |
|
|
if (classes[j] == NO_REGS)
|
1487 |
|
|
alt_fail = 1;
|
1488 |
|
|
|
1489 |
|
|
/* Otherwise, add to the cost of this alternative the cost
|
1490 |
|
|
to copy the other operand to the register used for this
|
1491 |
|
|
operand. */
|
1492 |
|
|
|
1493 |
|
|
else
|
1494 |
|
|
alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
|
1495 |
|
|
}
|
1496 |
|
|
else
|
1497 |
|
|
{
|
1498 |
|
|
/* The costs of this operand are not the same as the other
|
1499 |
|
|
operand since move costs are not symmetric. Moreover,
|
1500 |
|
|
if we cannot tie them, this alternative needs to do a
|
1501 |
|
|
copy, which is one instruction. */
|
1502 |
|
|
|
1503 |
|
|
struct costs *pp = &this_op_costs[i];
|
1504 |
|
|
|
1505 |
|
|
for (class = 0; class < N_REG_CLASSES; class++)
|
1506 |
|
|
pp->cost[class]
|
1507 |
|
|
= ((recog_data.operand_type[i] != OP_OUT
|
1508 |
|
|
? may_move_in_cost[mode][class][(int) classes[i]]
|
1509 |
|
|
: 0)
|
1510 |
|
|
+ (recog_data.operand_type[i] != OP_IN
|
1511 |
|
|
? may_move_out_cost[mode][(int) classes[i]][class]
|
1512 |
|
|
: 0));
|
1513 |
|
|
|
1514 |
|
|
/* If the alternative actually allows memory, make things
|
1515 |
|
|
a bit cheaper since we won't need an extra insn to
|
1516 |
|
|
load it. */
|
1517 |
|
|
|
1518 |
|
|
pp->mem_cost
|
1519 |
|
|
= ((recog_data.operand_type[i] != OP_IN
|
1520 |
|
|
? MEMORY_MOVE_COST (mode, classes[i], 0)
|
1521 |
|
|
: 0)
|
1522 |
|
|
+ (recog_data.operand_type[i] != OP_OUT
|
1523 |
|
|
? MEMORY_MOVE_COST (mode, classes[i], 1)
|
1524 |
|
|
: 0) - allows_mem[i]);
|
1525 |
|
|
|
1526 |
|
|
/* If we have assigned a class to this register in our
|
1527 |
|
|
first pass, add a cost to this alternative corresponding
|
1528 |
|
|
to what we would add if this register were not in the
|
1529 |
|
|
appropriate class. */
|
1530 |
|
|
|
1531 |
|
|
if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
|
1532 |
|
|
alt_cost
|
1533 |
|
|
+= (may_move_in_cost[mode]
|
1534 |
|
|
[(unsigned char) reg_pref[REGNO (op)].prefclass]
|
1535 |
|
|
[(int) classes[i]]);
|
1536 |
|
|
|
1537 |
|
|
if (REGNO (ops[i]) != REGNO (ops[j])
|
1538 |
|
|
&& ! find_reg_note (insn, REG_DEAD, op))
|
1539 |
|
|
alt_cost += 2;
|
1540 |
|
|
|
1541 |
|
|
/* This is in place of ordinary cost computation
|
1542 |
|
|
for this operand, so skip to the end of the
|
1543 |
|
|
alternative (should be just one character). */
|
1544 |
|
|
while (*p && *p++ != ',')
|
1545 |
|
|
;
|
1546 |
|
|
|
1547 |
|
|
constraints[i] = p;
|
1548 |
|
|
continue;
|
1549 |
|
|
}
|
1550 |
|
|
}
|
1551 |
|
|
|
1552 |
|
|
/* Scan all the constraint letters. See if the operand matches
|
1553 |
|
|
any of the constraints. Collect the valid register classes
|
1554 |
|
|
and see if this operand accepts memory. */
|
1555 |
|
|
|
1556 |
|
|
while ((c = *p))
|
1557 |
|
|
{
|
1558 |
|
|
switch (c)
|
1559 |
|
|
{
|
1560 |
|
|
case ',':
|
1561 |
|
|
break;
|
1562 |
|
|
case '*':
|
1563 |
|
|
/* Ignore the next letter for this pass. */
|
1564 |
|
|
c = *++p;
|
1565 |
|
|
break;
|
1566 |
|
|
|
1567 |
|
|
case '?':
|
1568 |
|
|
alt_cost += 2;
|
1569 |
|
|
case '!': case '#': case '&':
|
1570 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
1571 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
1572 |
|
|
break;
|
1573 |
|
|
|
1574 |
|
|
case 'p':
|
1575 |
|
|
allows_addr = 1;
|
1576 |
|
|
win = address_operand (op, GET_MODE (op));
|
1577 |
|
|
/* We know this operand is an address, so we want it to be
|
1578 |
|
|
allocated to a register that can be the base of an
|
1579 |
|
|
address, i.e. BASE_REG_CLASS. */
|
1580 |
|
|
classes[i]
|
1581 |
|
|
= reg_class_subunion[(int) classes[i]]
|
1582 |
|
|
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
1583 |
|
|
break;
|
1584 |
|
|
|
1585 |
|
|
case 'm': case 'o': case 'V':
|
1586 |
|
|
/* It doesn't seem worth distinguishing between offsettable
|
1587 |
|
|
and non-offsettable addresses here. */
|
1588 |
|
|
allows_mem[i] = 1;
|
1589 |
|
|
if (MEM_P (op))
|
1590 |
|
|
win = 1;
|
1591 |
|
|
break;
|
1592 |
|
|
|
1593 |
|
|
case '<':
|
1594 |
|
|
if (MEM_P (op)
|
1595 |
|
|
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
1596 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
|
1597 |
|
|
win = 1;
|
1598 |
|
|
break;
|
1599 |
|
|
|
1600 |
|
|
case '>':
|
1601 |
|
|
if (MEM_P (op)
|
1602 |
|
|
&& (GET_CODE (XEXP (op, 0)) == PRE_INC
|
1603 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_INC))
|
1604 |
|
|
win = 1;
|
1605 |
|
|
break;
|
1606 |
|
|
|
1607 |
|
|
case 'E':
|
1608 |
|
|
case 'F':
|
1609 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
1610 |
|
|
|| (GET_CODE (op) == CONST_VECTOR
|
1611 |
|
|
&& (GET_MODE_CLASS (GET_MODE (op))
|
1612 |
|
|
== MODE_VECTOR_FLOAT)))
|
1613 |
|
|
win = 1;
|
1614 |
|
|
break;
|
1615 |
|
|
|
1616 |
|
|
case 'G':
|
1617 |
|
|
case 'H':
|
1618 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
1619 |
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
|
1620 |
|
|
win = 1;
|
1621 |
|
|
break;
|
1622 |
|
|
|
1623 |
|
|
case 's':
|
1624 |
|
|
if (GET_CODE (op) == CONST_INT
|
1625 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
1626 |
|
|
&& GET_MODE (op) == VOIDmode))
|
1627 |
|
|
break;
|
1628 |
|
|
case 'i':
|
1629 |
|
|
if (CONSTANT_P (op)
|
1630 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
|
1631 |
|
|
win = 1;
|
1632 |
|
|
break;
|
1633 |
|
|
|
1634 |
|
|
case 'n':
|
1635 |
|
|
if (GET_CODE (op) == CONST_INT
|
1636 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
1637 |
|
|
&& GET_MODE (op) == VOIDmode))
|
1638 |
|
|
win = 1;
|
1639 |
|
|
break;
|
1640 |
|
|
|
1641 |
|
|
case 'I':
|
1642 |
|
|
case 'J':
|
1643 |
|
|
case 'K':
|
1644 |
|
|
case 'L':
|
1645 |
|
|
case 'M':
|
1646 |
|
|
case 'N':
|
1647 |
|
|
case 'O':
|
1648 |
|
|
case 'P':
|
1649 |
|
|
if (GET_CODE (op) == CONST_INT
|
1650 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
|
1651 |
|
|
win = 1;
|
1652 |
|
|
break;
|
1653 |
|
|
|
1654 |
|
|
case 'X':
|
1655 |
|
|
win = 1;
|
1656 |
|
|
break;
|
1657 |
|
|
|
1658 |
|
|
case 'g':
|
1659 |
|
|
if (MEM_P (op)
|
1660 |
|
|
|| (CONSTANT_P (op)
|
1661 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
|
1662 |
|
|
win = 1;
|
1663 |
|
|
allows_mem[i] = 1;
|
1664 |
|
|
case 'r':
|
1665 |
|
|
classes[i]
|
1666 |
|
|
= reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
|
1667 |
|
|
break;
|
1668 |
|
|
|
1669 |
|
|
default:
|
1670 |
|
|
if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
|
1671 |
|
|
classes[i]
|
1672 |
|
|
= reg_class_subunion[(int) classes[i]]
|
1673 |
|
|
[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
|
1674 |
|
|
#ifdef EXTRA_CONSTRAINT_STR
|
1675 |
|
|
else if (EXTRA_CONSTRAINT_STR (op, c, p))
|
1676 |
|
|
win = 1;
|
1677 |
|
|
|
1678 |
|
|
if (EXTRA_MEMORY_CONSTRAINT (c, p))
|
1679 |
|
|
{
|
1680 |
|
|
/* Every MEM can be reloaded to fit. */
|
1681 |
|
|
allows_mem[i] = 1;
|
1682 |
|
|
if (MEM_P (op))
|
1683 |
|
|
win = 1;
|
1684 |
|
|
}
|
1685 |
|
|
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
1686 |
|
|
{
|
1687 |
|
|
/* Every address can be reloaded to fit. */
|
1688 |
|
|
allows_addr = 1;
|
1689 |
|
|
if (address_operand (op, GET_MODE (op)))
|
1690 |
|
|
win = 1;
|
1691 |
|
|
/* We know this operand is an address, so we want it to
|
1692 |
|
|
be allocated to a register that can be the base of an
|
1693 |
|
|
address, i.e. BASE_REG_CLASS. */
|
1694 |
|
|
classes[i]
|
1695 |
|
|
= reg_class_subunion[(int) classes[i]]
|
1696 |
|
|
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
|
1697 |
|
|
}
|
1698 |
|
|
#endif
|
1699 |
|
|
break;
|
1700 |
|
|
}
|
1701 |
|
|
p += CONSTRAINT_LEN (c, p);
|
1702 |
|
|
if (c == ',')
|
1703 |
|
|
break;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
constraints[i] = p;
|
1707 |
|
|
|
1708 |
|
|
/* How we account for this operand now depends on whether it is a
|
1709 |
|
|
pseudo register or not. If it is, we first check if any
|
1710 |
|
|
register classes are valid. If not, we ignore this alternative,
|
1711 |
|
|
since we want to assume that all pseudos get allocated for
|
1712 |
|
|
register preferencing. If some register class is valid, compute
|
1713 |
|
|
the costs of moving the pseudo into that class. */
|
1714 |
|
|
|
1715 |
|
|
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
1716 |
|
|
{
|
1717 |
|
|
if (classes[i] == NO_REGS)
|
1718 |
|
|
{
|
1719 |
|
|
/* We must always fail if the operand is a REG, but
|
1720 |
|
|
we did not find a suitable class.
|
1721 |
|
|
|
1722 |
|
|
Otherwise we may perform an uninitialized read
|
1723 |
|
|
from this_op_costs after the `continue' statement
|
1724 |
|
|
below. */
|
1725 |
|
|
alt_fail = 1;
|
1726 |
|
|
}
|
1727 |
|
|
else
|
1728 |
|
|
{
|
1729 |
|
|
struct costs *pp = &this_op_costs[i];
|
1730 |
|
|
|
1731 |
|
|
for (class = 0; class < N_REG_CLASSES; class++)
|
1732 |
|
|
pp->cost[class]
|
1733 |
|
|
= ((recog_data.operand_type[i] != OP_OUT
|
1734 |
|
|
? may_move_in_cost[mode][class][(int) classes[i]]
|
1735 |
|
|
: 0)
|
1736 |
|
|
+ (recog_data.operand_type[i] != OP_IN
|
1737 |
|
|
? may_move_out_cost[mode][(int) classes[i]][class]
|
1738 |
|
|
: 0));
|
1739 |
|
|
|
1740 |
|
|
/* If the alternative actually allows memory, make things
|
1741 |
|
|
a bit cheaper since we won't need an extra insn to
|
1742 |
|
|
load it. */
|
1743 |
|
|
|
1744 |
|
|
pp->mem_cost
|
1745 |
|
|
= ((recog_data.operand_type[i] != OP_IN
|
1746 |
|
|
? MEMORY_MOVE_COST (mode, classes[i], 0)
|
1747 |
|
|
: 0)
|
1748 |
|
|
+ (recog_data.operand_type[i] != OP_OUT
|
1749 |
|
|
? MEMORY_MOVE_COST (mode, classes[i], 1)
|
1750 |
|
|
: 0) - allows_mem[i]);
|
1751 |
|
|
|
1752 |
|
|
/* If we have assigned a class to this register in our
|
1753 |
|
|
first pass, add a cost to this alternative corresponding
|
1754 |
|
|
to what we would add if this register were not in the
|
1755 |
|
|
appropriate class. */
|
1756 |
|
|
|
1757 |
|
|
if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
|
1758 |
|
|
alt_cost
|
1759 |
|
|
+= (may_move_in_cost[mode]
|
1760 |
|
|
[(unsigned char) reg_pref[REGNO (op)].prefclass]
|
1761 |
|
|
[(int) classes[i]]);
|
1762 |
|
|
}
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
/* Otherwise, if this alternative wins, either because we
|
1766 |
|
|
have already determined that or if we have a hard register of
|
1767 |
|
|
the proper class, there is no cost for this alternative. */
|
1768 |
|
|
|
1769 |
|
|
else if (win
|
1770 |
|
|
|| (REG_P (op)
|
1771 |
|
|
&& reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
|
1772 |
|
|
;
|
1773 |
|
|
|
1774 |
|
|
/* If registers are valid, the cost of this alternative includes
|
1775 |
|
|
copying the object to and/or from a register. */
|
1776 |
|
|
|
1777 |
|
|
else if (classes[i] != NO_REGS)
|
1778 |
|
|
{
|
1779 |
|
|
if (recog_data.operand_type[i] != OP_OUT)
|
1780 |
|
|
alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
|
1781 |
|
|
|
1782 |
|
|
if (recog_data.operand_type[i] != OP_IN)
|
1783 |
|
|
alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
|
1784 |
|
|
}
|
1785 |
|
|
|
1786 |
|
|
/* The only other way this alternative can be used is if this is a
|
1787 |
|
|
constant that could be placed into memory. */
|
1788 |
|
|
|
1789 |
|
|
else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
|
1790 |
|
|
alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
|
1791 |
|
|
else
|
1792 |
|
|
alt_fail = 1;
|
1793 |
|
|
}
|
1794 |
|
|
|
1795 |
|
|
if (alt_fail)
|
1796 |
|
|
continue;
|
1797 |
|
|
|
1798 |
|
|
/* Finally, update the costs with the information we've calculated
|
1799 |
|
|
about this alternative. */
|
1800 |
|
|
|
1801 |
|
|
for (i = 0; i < n_ops; i++)
|
1802 |
|
|
if (REG_P (ops[i])
|
1803 |
|
|
&& REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
|
1804 |
|
|
{
|
1805 |
|
|
struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
|
1806 |
|
|
int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
|
1807 |
|
|
|
1808 |
|
|
pp->mem_cost = MIN (pp->mem_cost,
|
1809 |
|
|
(qq->mem_cost + alt_cost) * scale);
|
1810 |
|
|
|
1811 |
|
|
for (class = 0; class < N_REG_CLASSES; class++)
|
1812 |
|
|
pp->cost[class] = MIN (pp->cost[class],
|
1813 |
|
|
(qq->cost[class] + alt_cost) * scale);
|
1814 |
|
|
}
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
/* If this insn is a single set copying operand 1 to operand 0
|
1818 |
|
|
and one operand is a pseudo with the other a hard reg or a pseudo
|
1819 |
|
|
that prefers a register that is in its own register class then
|
1820 |
|
|
we may want to adjust the cost of that register class to -1.
|
1821 |
|
|
|
1822 |
|
|
Avoid the adjustment if the source does not die to avoid stressing of
|
1823 |
|
|
register allocator by preferrencing two colliding registers into single
|
1824 |
|
|
class.
|
1825 |
|
|
|
1826 |
|
|
Also avoid the adjustment if a copy between registers of the class
|
1827 |
|
|
is expensive (ten times the cost of a default copy is considered
|
1828 |
|
|
arbitrarily expensive). This avoids losing when the preferred class
|
1829 |
|
|
is very expensive as the source of a copy instruction. */
|
1830 |
|
|
|
1831 |
|
|
if ((set = single_set (insn)) != 0
|
1832 |
|
|
&& ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
|
1833 |
|
|
&& REG_P (ops[0]) && REG_P (ops[1])
|
1834 |
|
|
&& find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
|
1835 |
|
|
for (i = 0; i <= 1; i++)
|
1836 |
|
|
if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
|
1837 |
|
|
{
|
1838 |
|
|
unsigned int regno = REGNO (ops[!i]);
|
1839 |
|
|
enum machine_mode mode = GET_MODE (ops[!i]);
|
1840 |
|
|
int class;
|
1841 |
|
|
unsigned int nr;
|
1842 |
|
|
|
1843 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
|
1844 |
|
|
&& reg_pref[regno].prefclass != NO_REGS)
|
1845 |
|
|
{
|
1846 |
|
|
enum reg_class pref = reg_pref[regno].prefclass;
|
1847 |
|
|
|
1848 |
|
|
if ((reg_class_size[(unsigned char) pref]
|
1849 |
|
|
== (unsigned) CLASS_MAX_NREGS (pref, mode))
|
1850 |
|
|
&& REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
|
1851 |
|
|
op_costs[i].cost[(unsigned char) pref] = -1;
|
1852 |
|
|
}
|
1853 |
|
|
else if (regno < FIRST_PSEUDO_REGISTER)
|
1854 |
|
|
for (class = 0; class < N_REG_CLASSES; class++)
|
1855 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
1856 |
|
|
&& reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
|
1857 |
|
|
{
|
1858 |
|
|
if (reg_class_size[class] == 1)
|
1859 |
|
|
op_costs[i].cost[class] = -1;
|
1860 |
|
|
else
|
1861 |
|
|
{
|
1862 |
|
|
for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
|
1863 |
|
|
{
|
1864 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[class],
|
1865 |
|
|
regno + nr))
|
1866 |
|
|
break;
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
if (nr == (unsigned) hard_regno_nregs[regno][mode])
|
1870 |
|
|
op_costs[i].cost[class] = -1;
|
1871 |
|
|
}
|
1872 |
|
|
}
|
1873 |
|
|
}
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
|
1877 |
|
|
TO_P is zero) a register of class CLASS in mode MODE.
|
1878 |
|
|
|
1879 |
|
|
X must not be a pseudo. */
|
1880 |
|
|
|
1881 |
|
|
static int
|
1882 |
|
|
copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
|
1883 |
|
|
secondary_reload_info *prev_sri)
|
1884 |
|
|
{
|
1885 |
|
|
enum reg_class secondary_class = NO_REGS;
|
1886 |
|
|
secondary_reload_info sri;
|
1887 |
|
|
|
1888 |
|
|
/* If X is a SCRATCH, there is actually nothing to move since we are
|
1889 |
|
|
assuming optimal allocation. */
|
1890 |
|
|
|
1891 |
|
|
if (GET_CODE (x) == SCRATCH)
|
1892 |
|
|
return 0;
|
1893 |
|
|
|
1894 |
|
|
/* Get the class we will actually use for a reload. */
|
1895 |
|
|
class = PREFERRED_RELOAD_CLASS (x, class);
|
1896 |
|
|
|
1897 |
|
|
/* If we need a secondary reload for an intermediate, the
|
1898 |
|
|
cost is that to load the input into the intermediate register, then
|
1899 |
|
|
to copy it. */
|
1900 |
|
|
|
1901 |
|
|
sri.prev_sri = prev_sri;
|
1902 |
|
|
sri.extra_cost = 0;
|
1903 |
|
|
secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
|
1904 |
|
|
|
1905 |
|
|
if (secondary_class != NO_REGS)
|
1906 |
|
|
return (move_cost[mode][(int) secondary_class][(int) class]
|
1907 |
|
|
+ sri.extra_cost
|
1908 |
|
|
+ copy_cost (x, mode, secondary_class, to_p, &sri));
|
1909 |
|
|
|
1910 |
|
|
/* For memory, use the memory move cost, for (hard) registers, use the
|
1911 |
|
|
cost to move between the register classes, and use 2 for everything
|
1912 |
|
|
else (constants). */
|
1913 |
|
|
|
1914 |
|
|
if (MEM_P (x) || class == NO_REGS)
|
1915 |
|
|
return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
|
1916 |
|
|
|
1917 |
|
|
else if (REG_P (x))
|
1918 |
|
|
return (sri.extra_cost
|
1919 |
|
|
+ move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
|
1920 |
|
|
|
1921 |
|
|
else
|
1922 |
|
|
/* If this is a constant, we may eventually want to call rtx_cost here. */
|
1923 |
|
|
return sri.extra_cost + COSTS_N_INSNS (1);
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
/* Record the pseudo registers we must reload into hard registers
|
1927 |
|
|
in a subexpression of a memory address, X.
|
1928 |
|
|
|
1929 |
|
|
If CONTEXT is 0, we are looking at the base part of an address, otherwise we
|
1930 |
|
|
are looking at the index part.
|
1931 |
|
|
|
1932 |
|
|
MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
|
1933 |
|
|
give the context that the rtx appears in. These three arguments are
|
1934 |
|
|
passed down to base_reg_class.
|
1935 |
|
|
|
1936 |
|
|
SCALE is twice the amount to multiply the cost by (it is twice so we
|
1937 |
|
|
can represent half-cost adjustments). */
|
1938 |
|
|
|
1939 |
|
|
static void
|
1940 |
|
|
record_address_regs (enum machine_mode mode, rtx x, int context,
|
1941 |
|
|
enum rtx_code outer_code, enum rtx_code index_code,
|
1942 |
|
|
int scale)
|
1943 |
|
|
{
|
1944 |
|
|
enum rtx_code code = GET_CODE (x);
|
1945 |
|
|
enum reg_class class;
|
1946 |
|
|
|
1947 |
|
|
if (context == 1)
|
1948 |
|
|
class = INDEX_REG_CLASS;
|
1949 |
|
|
else
|
1950 |
|
|
class = base_reg_class (mode, outer_code, index_code);
|
1951 |
|
|
|
1952 |
|
|
switch (code)
|
1953 |
|
|
{
|
1954 |
|
|
case CONST_INT:
|
1955 |
|
|
case CONST:
|
1956 |
|
|
case CC0:
|
1957 |
|
|
case PC:
|
1958 |
|
|
case SYMBOL_REF:
|
1959 |
|
|
case LABEL_REF:
|
1960 |
|
|
return;
|
1961 |
|
|
|
1962 |
|
|
case PLUS:
|
1963 |
|
|
/* When we have an address that is a sum,
|
1964 |
|
|
we must determine whether registers are "base" or "index" regs.
|
1965 |
|
|
If there is a sum of two registers, we must choose one to be
|
1966 |
|
|
the "base". Luckily, we can use the REG_POINTER to make a good
|
1967 |
|
|
choice most of the time. We only need to do this on machines
|
1968 |
|
|
that can have two registers in an address and where the base
|
1969 |
|
|
and index register classes are different.
|
1970 |
|
|
|
1971 |
|
|
??? This code used to set REGNO_POINTER_FLAG in some cases, but
|
1972 |
|
|
that seems bogus since it should only be set when we are sure
|
1973 |
|
|
the register is being used as a pointer. */
|
1974 |
|
|
|
1975 |
|
|
{
|
1976 |
|
|
rtx arg0 = XEXP (x, 0);
|
1977 |
|
|
rtx arg1 = XEXP (x, 1);
|
1978 |
|
|
enum rtx_code code0 = GET_CODE (arg0);
|
1979 |
|
|
enum rtx_code code1 = GET_CODE (arg1);
|
1980 |
|
|
|
1981 |
|
|
/* Look inside subregs. */
|
1982 |
|
|
if (code0 == SUBREG)
|
1983 |
|
|
arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
|
1984 |
|
|
if (code1 == SUBREG)
|
1985 |
|
|
arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
|
1986 |
|
|
|
1987 |
|
|
/* If this machine only allows one register per address, it must
|
1988 |
|
|
be in the first operand. */
|
1989 |
|
|
|
1990 |
|
|
if (MAX_REGS_PER_ADDRESS == 1)
|
1991 |
|
|
record_address_regs (mode, arg0, 0, PLUS, code1, scale);
|
1992 |
|
|
|
1993 |
|
|
/* If index and base registers are the same on this machine, just
|
1994 |
|
|
record registers in any non-constant operands. We assume here,
|
1995 |
|
|
as well as in the tests below, that all addresses are in
|
1996 |
|
|
canonical form. */
|
1997 |
|
|
|
1998 |
|
|
else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
|
1999 |
|
|
{
|
2000 |
|
|
record_address_regs (mode, arg0, context, PLUS, code1, scale);
|
2001 |
|
|
if (! CONSTANT_P (arg1))
|
2002 |
|
|
record_address_regs (mode, arg1, context, PLUS, code0, scale);
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
/* If the second operand is a constant integer, it doesn't change
|
2006 |
|
|
what class the first operand must be. */
|
2007 |
|
|
|
2008 |
|
|
else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
|
2009 |
|
|
record_address_regs (mode, arg0, context, PLUS, code1, scale);
|
2010 |
|
|
|
2011 |
|
|
/* If the second operand is a symbolic constant, the first operand
|
2012 |
|
|
must be an index register. */
|
2013 |
|
|
|
2014 |
|
|
else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
|
2015 |
|
|
record_address_regs (mode, arg0, 1, PLUS, code1, scale);
|
2016 |
|
|
|
2017 |
|
|
/* If both operands are registers but one is already a hard register
|
2018 |
|
|
of index or reg-base class, give the other the class that the
|
2019 |
|
|
hard register is not. */
|
2020 |
|
|
|
2021 |
|
|
else if (code0 == REG && code1 == REG
|
2022 |
|
|
&& REGNO (arg0) < FIRST_PSEUDO_REGISTER
|
2023 |
|
|
&& (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
|
2024 |
|
|
|| ok_for_index_p_nonstrict (arg0)))
|
2025 |
|
|
record_address_regs (mode, arg1,
|
2026 |
|
|
ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
|
2027 |
|
|
? 1 : 0,
|
2028 |
|
|
PLUS, REG, scale);
|
2029 |
|
|
else if (code0 == REG && code1 == REG
|
2030 |
|
|
&& REGNO (arg1) < FIRST_PSEUDO_REGISTER
|
2031 |
|
|
&& (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
|
2032 |
|
|
|| ok_for_index_p_nonstrict (arg1)))
|
2033 |
|
|
record_address_regs (mode, arg0,
|
2034 |
|
|
ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
|
2035 |
|
|
? 1 : 0,
|
2036 |
|
|
PLUS, REG, scale);
|
2037 |
|
|
|
2038 |
|
|
/* If one operand is known to be a pointer, it must be the base
|
2039 |
|
|
with the other operand the index. Likewise if the other operand
|
2040 |
|
|
is a MULT. */
|
2041 |
|
|
|
2042 |
|
|
else if ((code0 == REG && REG_POINTER (arg0))
|
2043 |
|
|
|| code1 == MULT)
|
2044 |
|
|
{
|
2045 |
|
|
record_address_regs (mode, arg0, 0, PLUS, code1, scale);
|
2046 |
|
|
record_address_regs (mode, arg1, 1, PLUS, code0, scale);
|
2047 |
|
|
}
|
2048 |
|
|
else if ((code1 == REG && REG_POINTER (arg1))
|
2049 |
|
|
|| code0 == MULT)
|
2050 |
|
|
{
|
2051 |
|
|
record_address_regs (mode, arg0, 1, PLUS, code1, scale);
|
2052 |
|
|
record_address_regs (mode, arg1, 0, PLUS, code0, scale);
|
2053 |
|
|
}
|
2054 |
|
|
|
2055 |
|
|
/* Otherwise, count equal chances that each might be a base
|
2056 |
|
|
or index register. This case should be rare. */
|
2057 |
|
|
|
2058 |
|
|
else
|
2059 |
|
|
{
|
2060 |
|
|
record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
|
2061 |
|
|
record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
|
2062 |
|
|
record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
|
2063 |
|
|
record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
|
2064 |
|
|
}
|
2065 |
|
|
}
|
2066 |
|
|
break;
|
2067 |
|
|
|
2068 |
|
|
/* Double the importance of a pseudo register that is incremented
|
2069 |
|
|
or decremented, since it would take two extra insns
|
2070 |
|
|
if it ends up in the wrong place. */
|
2071 |
|
|
case POST_MODIFY:
|
2072 |
|
|
case PRE_MODIFY:
|
2073 |
|
|
record_address_regs (mode, XEXP (x, 0), 0, code,
|
2074 |
|
|
GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
|
2075 |
|
|
if (REG_P (XEXP (XEXP (x, 1), 1)))
|
2076 |
|
|
record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
|
2077 |
|
|
2 * scale);
|
2078 |
|
|
break;
|
2079 |
|
|
|
2080 |
|
|
case POST_INC:
|
2081 |
|
|
case PRE_INC:
|
2082 |
|
|
case POST_DEC:
|
2083 |
|
|
case PRE_DEC:
|
2084 |
|
|
/* Double the importance of a pseudo register that is incremented
|
2085 |
|
|
or decremented, since it would take two extra insns
|
2086 |
|
|
if it ends up in the wrong place. If the operand is a pseudo,
|
2087 |
|
|
show it is being used in an INC_DEC context. */
|
2088 |
|
|
|
2089 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
2090 |
|
|
if (REG_P (XEXP (x, 0))
|
2091 |
|
|
&& REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
|
2092 |
|
|
in_inc_dec[REGNO (XEXP (x, 0))] = 1;
|
2093 |
|
|
#endif
|
2094 |
|
|
|
2095 |
|
|
record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
|
2096 |
|
|
break;
|
2097 |
|
|
|
2098 |
|
|
case REG:
|
2099 |
|
|
{
|
2100 |
|
|
struct costs *pp = &costs[REGNO (x)];
|
2101 |
|
|
int i;
|
2102 |
|
|
|
2103 |
|
|
pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
|
2104 |
|
|
|
2105 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
2106 |
|
|
pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
|
2107 |
|
|
}
|
2108 |
|
|
break;
|
2109 |
|
|
|
2110 |
|
|
default:
|
2111 |
|
|
{
|
2112 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
2113 |
|
|
int i;
|
2114 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2115 |
|
|
if (fmt[i] == 'e')
|
2116 |
|
|
record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
|
2117 |
|
|
scale);
|
2118 |
|
|
}
|
2119 |
|
|
}
|
2120 |
|
|
}
|
2121 |
|
|
|
2122 |
|
|
#ifdef FORBIDDEN_INC_DEC_CLASSES
|
2123 |
|
|
|
2124 |
|
|
/* Return 1 if REG is valid as an auto-increment memory reference
|
2125 |
|
|
to an object of MODE. */
|
2126 |
|
|
|
2127 |
|
|
static int
|
2128 |
|
|
auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
|
2129 |
|
|
{
|
2130 |
|
|
if (HAVE_POST_INCREMENT
|
2131 |
|
|
&& memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
|
2132 |
|
|
return 1;
|
2133 |
|
|
|
2134 |
|
|
if (HAVE_POST_DECREMENT
|
2135 |
|
|
&& memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
|
2136 |
|
|
return 1;
|
2137 |
|
|
|
2138 |
|
|
if (HAVE_PRE_INCREMENT
|
2139 |
|
|
&& memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
|
2140 |
|
|
return 1;
|
2141 |
|
|
|
2142 |
|
|
if (HAVE_PRE_DECREMENT
|
2143 |
|
|
&& memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
|
2144 |
|
|
return 1;
|
2145 |
|
|
|
2146 |
|
|
return 0;
|
2147 |
|
|
}
|
2148 |
|
|
#endif
|
2149 |
|
|
|
2150 |
|
|
static short *renumber;
|
2151 |
|
|
static size_t regno_allocated;
|
2152 |
|
|
static unsigned int reg_n_max;
|
2153 |
|
|
|
2154 |
|
|
/* Allocate enough space to hold NUM_REGS registers for the tables used for
|
2155 |
|
|
reg_scan and flow_analysis that are indexed by the register number. If
|
2156 |
|
|
NEW_P is nonzero, initialize all of the registers, otherwise only
|
2157 |
|
|
initialize the new registers allocated. The same table is kept from
|
2158 |
|
|
function to function, only reallocating it when we need more room. If
|
2159 |
|
|
RENUMBER_P is nonzero, allocate the reg_renumber array also. */
|
2160 |
|
|
|
2161 |
|
|
void
|
2162 |
|
|
allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
|
2163 |
|
|
{
|
2164 |
|
|
size_t size_info;
|
2165 |
|
|
size_t size_renumber;
|
2166 |
|
|
size_t min = (new_p) ? 0 : reg_n_max;
|
2167 |
|
|
struct reg_info_data *reg_data;
|
2168 |
|
|
|
2169 |
|
|
if (num_regs > regno_allocated)
|
2170 |
|
|
{
|
2171 |
|
|
size_t old_allocated = regno_allocated;
|
2172 |
|
|
|
2173 |
|
|
regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
|
2174 |
|
|
size_renumber = regno_allocated * sizeof (short);
|
2175 |
|
|
|
2176 |
|
|
if (!reg_n_info)
|
2177 |
|
|
{
|
2178 |
|
|
reg_n_info = VEC_alloc (reg_info_p, heap, regno_allocated);
|
2179 |
|
|
VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
|
2180 |
|
|
memset (VEC_address (reg_info_p, reg_n_info), 0,
|
2181 |
|
|
sizeof (reg_info_p) * regno_allocated);
|
2182 |
|
|
renumber = xmalloc (size_renumber);
|
2183 |
|
|
reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
|
2184 |
|
|
}
|
2185 |
|
|
else
|
2186 |
|
|
{
|
2187 |
|
|
size_t old_length = VEC_length (reg_info_p, reg_n_info);
|
2188 |
|
|
if (old_length < regno_allocated)
|
2189 |
|
|
{
|
2190 |
|
|
reg_info_p *addr;
|
2191 |
|
|
VEC_safe_grow (reg_info_p, heap, reg_n_info, regno_allocated);
|
2192 |
|
|
addr = VEC_address (reg_info_p, reg_n_info);
|
2193 |
|
|
memset (&addr[old_length], 0,
|
2194 |
|
|
sizeof (reg_info_p) * (regno_allocated - old_length));
|
2195 |
|
|
}
|
2196 |
|
|
else if (regno_allocated < old_length)
|
2197 |
|
|
{
|
2198 |
|
|
VEC_truncate (reg_info_p, reg_n_info, regno_allocated);
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
if (new_p) /* If we're zapping everything, no need to realloc. */
|
2202 |
|
|
{
|
2203 |
|
|
free ((char *) renumber);
|
2204 |
|
|
free ((char *) reg_pref);
|
2205 |
|
|
renumber = xmalloc (size_renumber);
|
2206 |
|
|
reg_pref_buffer = XNEWVEC (struct reg_pref, regno_allocated);
|
2207 |
|
|
}
|
2208 |
|
|
|
2209 |
|
|
else
|
2210 |
|
|
{
|
2211 |
|
|
renumber = xrealloc (renumber, size_renumber);
|
2212 |
|
|
reg_pref_buffer = (struct reg_pref *) xrealloc (reg_pref_buffer,
|
2213 |
|
|
regno_allocated
|
2214 |
|
|
* sizeof (struct reg_pref));
|
2215 |
|
|
}
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
|
2219 |
|
|
+ sizeof (struct reg_info_data) - sizeof (reg_info);
|
2220 |
|
|
reg_data = xcalloc (size_info, 1);
|
2221 |
|
|
reg_data->min_index = old_allocated;
|
2222 |
|
|
reg_data->max_index = regno_allocated - 1;
|
2223 |
|
|
reg_data->next = reg_info_head;
|
2224 |
|
|
reg_info_head = reg_data;
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
reg_n_max = num_regs;
|
2228 |
|
|
if (min < num_regs)
|
2229 |
|
|
{
|
2230 |
|
|
/* Loop through each of the segments allocated for the actual
|
2231 |
|
|
reg_info pages, and set up the pointers, zero the pages, etc. */
|
2232 |
|
|
for (reg_data = reg_info_head;
|
2233 |
|
|
reg_data && reg_data->max_index >= min;
|
2234 |
|
|
reg_data = reg_data->next)
|
2235 |
|
|
{
|
2236 |
|
|
size_t min_index = reg_data->min_index;
|
2237 |
|
|
size_t max_index = reg_data->max_index;
|
2238 |
|
|
size_t max = MIN (max_index, num_regs);
|
2239 |
|
|
size_t local_min = min - min_index;
|
2240 |
|
|
size_t i;
|
2241 |
|
|
|
2242 |
|
|
if (reg_data->min_index > num_regs)
|
2243 |
|
|
continue;
|
2244 |
|
|
|
2245 |
|
|
if (min < min_index)
|
2246 |
|
|
local_min = 0;
|
2247 |
|
|
if (!reg_data->used_p) /* page just allocated with calloc */
|
2248 |
|
|
reg_data->used_p = 1; /* no need to zero */
|
2249 |
|
|
else
|
2250 |
|
|
memset (®_data->data[local_min], 0,
|
2251 |
|
|
sizeof (reg_info) * (max - min_index - local_min + 1));
|
2252 |
|
|
|
2253 |
|
|
for (i = min_index+local_min; i <= max; i++)
|
2254 |
|
|
{
|
2255 |
|
|
VEC_replace (reg_info_p, reg_n_info, i,
|
2256 |
|
|
®_data->data[i-min_index]);
|
2257 |
|
|
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
|
2258 |
|
|
renumber[i] = -1;
|
2259 |
|
|
reg_pref_buffer[i].prefclass = (char) NO_REGS;
|
2260 |
|
|
reg_pref_buffer[i].altclass = (char) NO_REGS;
|
2261 |
|
|
}
|
2262 |
|
|
}
|
2263 |
|
|
}
|
2264 |
|
|
|
2265 |
|
|
/* If {pref,alt}class have already been allocated, update the pointers to
|
2266 |
|
|
the newly realloced ones. */
|
2267 |
|
|
if (reg_pref)
|
2268 |
|
|
reg_pref = reg_pref_buffer;
|
2269 |
|
|
|
2270 |
|
|
if (renumber_p)
|
2271 |
|
|
reg_renumber = renumber;
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
/* Free up the space allocated by allocate_reg_info. */
|
2275 |
|
|
void
|
2276 |
|
|
free_reg_info (void)
|
2277 |
|
|
{
|
2278 |
|
|
if (reg_n_info)
|
2279 |
|
|
{
|
2280 |
|
|
struct reg_info_data *reg_data;
|
2281 |
|
|
struct reg_info_data *reg_next;
|
2282 |
|
|
|
2283 |
|
|
VEC_free (reg_info_p, heap, reg_n_info);
|
2284 |
|
|
for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
|
2285 |
|
|
{
|
2286 |
|
|
reg_next = reg_data->next;
|
2287 |
|
|
free ((char *) reg_data);
|
2288 |
|
|
}
|
2289 |
|
|
|
2290 |
|
|
free (reg_pref_buffer);
|
2291 |
|
|
reg_pref_buffer = (struct reg_pref *) 0;
|
2292 |
|
|
reg_info_head = (struct reg_info_data *) 0;
|
2293 |
|
|
renumber = (short *) 0;
|
2294 |
|
|
}
|
2295 |
|
|
regno_allocated = 0;
|
2296 |
|
|
reg_n_max = 0;
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
/* This is the `regscan' pass of the compiler, run just before cse
|
2300 |
|
|
and again just before loop.
|
2301 |
|
|
|
2302 |
|
|
It finds the first and last use of each pseudo-register
|
2303 |
|
|
and records them in the vectors regno_first_uid, regno_last_uid
|
2304 |
|
|
and counts the number of sets in the vector reg_n_sets.
|
2305 |
|
|
|
2306 |
|
|
REPEAT is nonzero the second time this is called. */
|
2307 |
|
|
|
2308 |
|
|
/* Maximum number of parallel sets and clobbers in any insn in this fn.
|
2309 |
|
|
Always at least 3, since the combiner could put that many together
|
2310 |
|
|
and we want this to remain correct for all the remaining passes.
|
2311 |
|
|
This corresponds to the maximum number of times note_stores will call
|
2312 |
|
|
a function for any insn. */
|
2313 |
|
|
|
2314 |
|
|
int max_parallel;
|
2315 |
|
|
|
2316 |
|
|
/* Used as a temporary to record the largest number of registers in
|
2317 |
|
|
PARALLEL in a SET_DEST. This is added to max_parallel. */
|
2318 |
|
|
|
2319 |
|
|
static int max_set_parallel;
|
2320 |
|
|
|
2321 |
|
|
void
|
2322 |
|
|
reg_scan (rtx f, unsigned int nregs)
|
2323 |
|
|
{
|
2324 |
|
|
rtx insn;
|
2325 |
|
|
|
2326 |
|
|
timevar_push (TV_REG_SCAN);
|
2327 |
|
|
|
2328 |
|
|
allocate_reg_info (nregs, TRUE, FALSE);
|
2329 |
|
|
max_parallel = 3;
|
2330 |
|
|
max_set_parallel = 0;
|
2331 |
|
|
|
2332 |
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
2333 |
|
|
if (INSN_P (insn))
|
2334 |
|
|
{
|
2335 |
|
|
rtx pat = PATTERN (insn);
|
2336 |
|
|
if (GET_CODE (pat) == PARALLEL
|
2337 |
|
|
&& XVECLEN (pat, 0) > max_parallel)
|
2338 |
|
|
max_parallel = XVECLEN (pat, 0);
|
2339 |
|
|
reg_scan_mark_refs (pat, insn, 0);
|
2340 |
|
|
|
2341 |
|
|
if (REG_NOTES (insn))
|
2342 |
|
|
reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
|
2343 |
|
|
}
|
2344 |
|
|
|
2345 |
|
|
max_parallel += max_set_parallel;
|
2346 |
|
|
|
2347 |
|
|
timevar_pop (TV_REG_SCAN);
|
2348 |
|
|
}
|
2349 |
|
|
|
2350 |
|
|
/* X is the expression to scan. INSN is the insn it appears in.
|
2351 |
|
|
NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
|
2352 |
|
|
|
2353 |
|
|
static void
|
2354 |
|
|
reg_scan_mark_refs (rtx x, rtx insn, int note_flag)
|
2355 |
|
|
{
|
2356 |
|
|
enum rtx_code code;
|
2357 |
|
|
rtx dest;
|
2358 |
|
|
rtx note;
|
2359 |
|
|
|
2360 |
|
|
if (!x)
|
2361 |
|
|
return;
|
2362 |
|
|
code = GET_CODE (x);
|
2363 |
|
|
switch (code)
|
2364 |
|
|
{
|
2365 |
|
|
case CONST:
|
2366 |
|
|
case CONST_INT:
|
2367 |
|
|
case CONST_DOUBLE:
|
2368 |
|
|
case CONST_VECTOR:
|
2369 |
|
|
case CC0:
|
2370 |
|
|
case PC:
|
2371 |
|
|
case SYMBOL_REF:
|
2372 |
|
|
case LABEL_REF:
|
2373 |
|
|
case ADDR_VEC:
|
2374 |
|
|
case ADDR_DIFF_VEC:
|
2375 |
|
|
return;
|
2376 |
|
|
|
2377 |
|
|
case REG:
|
2378 |
|
|
{
|
2379 |
|
|
unsigned int regno = REGNO (x);
|
2380 |
|
|
|
2381 |
|
|
if (!note_flag)
|
2382 |
|
|
REGNO_LAST_UID (regno) = INSN_UID (insn);
|
2383 |
|
|
if (REGNO_FIRST_UID (regno) == 0)
|
2384 |
|
|
REGNO_FIRST_UID (regno) = INSN_UID (insn);
|
2385 |
|
|
}
|
2386 |
|
|
break;
|
2387 |
|
|
|
2388 |
|
|
case EXPR_LIST:
|
2389 |
|
|
if (XEXP (x, 0))
|
2390 |
|
|
reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
|
2391 |
|
|
if (XEXP (x, 1))
|
2392 |
|
|
reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
|
2393 |
|
|
break;
|
2394 |
|
|
|
2395 |
|
|
case INSN_LIST:
|
2396 |
|
|
if (XEXP (x, 1))
|
2397 |
|
|
reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
|
2398 |
|
|
break;
|
2399 |
|
|
|
2400 |
|
|
case CLOBBER:
|
2401 |
|
|
{
|
2402 |
|
|
rtx reg = XEXP (x, 0);
|
2403 |
|
|
if (REG_P (reg))
|
2404 |
|
|
{
|
2405 |
|
|
REG_N_SETS (REGNO (reg))++;
|
2406 |
|
|
REG_N_REFS (REGNO (reg))++;
|
2407 |
|
|
}
|
2408 |
|
|
else if (MEM_P (reg))
|
2409 |
|
|
reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag);
|
2410 |
|
|
}
|
2411 |
|
|
break;
|
2412 |
|
|
|
2413 |
|
|
case SET:
|
2414 |
|
|
/* Count a set of the destination if it is a register. */
|
2415 |
|
|
for (dest = SET_DEST (x);
|
2416 |
|
|
GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
|
2417 |
|
|
|| GET_CODE (dest) == ZERO_EXTEND;
|
2418 |
|
|
dest = XEXP (dest, 0))
|
2419 |
|
|
;
|
2420 |
|
|
|
2421 |
|
|
/* For a PARALLEL, record the number of things (less the usual one for a
|
2422 |
|
|
SET) that are set. */
|
2423 |
|
|
if (GET_CODE (dest) == PARALLEL)
|
2424 |
|
|
max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
|
2425 |
|
|
|
2426 |
|
|
if (REG_P (dest))
|
2427 |
|
|
{
|
2428 |
|
|
REG_N_SETS (REGNO (dest))++;
|
2429 |
|
|
REG_N_REFS (REGNO (dest))++;
|
2430 |
|
|
}
|
2431 |
|
|
|
2432 |
|
|
/* If this is setting a pseudo from another pseudo or the sum of a
|
2433 |
|
|
pseudo and a constant integer and the other pseudo is known to be
|
2434 |
|
|
a pointer, set the destination to be a pointer as well.
|
2435 |
|
|
|
2436 |
|
|
Likewise if it is setting the destination from an address or from a
|
2437 |
|
|
value equivalent to an address or to the sum of an address and
|
2438 |
|
|
something else.
|
2439 |
|
|
|
2440 |
|
|
But don't do any of this if the pseudo corresponds to a user
|
2441 |
|
|
variable since it should have already been set as a pointer based
|
2442 |
|
|
on the type. */
|
2443 |
|
|
|
2444 |
|
|
if (REG_P (SET_DEST (x))
|
2445 |
|
|
&& REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
|
2446 |
|
|
/* If the destination pseudo is set more than once, then other
|
2447 |
|
|
sets might not be to a pointer value (consider access to a
|
2448 |
|
|
union in two threads of control in the presence of global
|
2449 |
|
|
optimizations). So only set REG_POINTER on the destination
|
2450 |
|
|
pseudo if this is the only set of that pseudo. */
|
2451 |
|
|
&& REG_N_SETS (REGNO (SET_DEST (x))) == 1
|
2452 |
|
|
&& ! REG_USERVAR_P (SET_DEST (x))
|
2453 |
|
|
&& ! REG_POINTER (SET_DEST (x))
|
2454 |
|
|
&& ((REG_P (SET_SRC (x))
|
2455 |
|
|
&& REG_POINTER (SET_SRC (x)))
|
2456 |
|
|
|| ((GET_CODE (SET_SRC (x)) == PLUS
|
2457 |
|
|
|| GET_CODE (SET_SRC (x)) == LO_SUM)
|
2458 |
|
|
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
|
2459 |
|
|
&& REG_P (XEXP (SET_SRC (x), 0))
|
2460 |
|
|
&& REG_POINTER (XEXP (SET_SRC (x), 0)))
|
2461 |
|
|
|| GET_CODE (SET_SRC (x)) == CONST
|
2462 |
|
|
|| GET_CODE (SET_SRC (x)) == SYMBOL_REF
|
2463 |
|
|
|| GET_CODE (SET_SRC (x)) == LABEL_REF
|
2464 |
|
|
|| (GET_CODE (SET_SRC (x)) == HIGH
|
2465 |
|
|
&& (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
|
2466 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
|
2467 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
|
2468 |
|
|
|| ((GET_CODE (SET_SRC (x)) == PLUS
|
2469 |
|
|
|| GET_CODE (SET_SRC (x)) == LO_SUM)
|
2470 |
|
|
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
|
2471 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
|
2472 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
|
2473 |
|
|
|| ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
|
2474 |
|
|
&& (GET_CODE (XEXP (note, 0)) == CONST
|
2475 |
|
|
|| GET_CODE (XEXP (note, 0)) == SYMBOL_REF
|
2476 |
|
|
|| GET_CODE (XEXP (note, 0)) == LABEL_REF))))
|
2477 |
|
|
REG_POINTER (SET_DEST (x)) = 1;
|
2478 |
|
|
|
2479 |
|
|
/* If this is setting a register from a register or from a simple
|
2480 |
|
|
conversion of a register, propagate REG_EXPR. */
|
2481 |
|
|
if (REG_P (dest))
|
2482 |
|
|
{
|
2483 |
|
|
rtx src = SET_SRC (x);
|
2484 |
|
|
|
2485 |
|
|
while (GET_CODE (src) == SIGN_EXTEND
|
2486 |
|
|
|| GET_CODE (src) == ZERO_EXTEND
|
2487 |
|
|
|| GET_CODE (src) == TRUNCATE
|
2488 |
|
|
|| (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
|
2489 |
|
|
src = XEXP (src, 0);
|
2490 |
|
|
|
2491 |
|
|
if (!REG_ATTRS (dest) && REG_P (src))
|
2492 |
|
|
REG_ATTRS (dest) = REG_ATTRS (src);
|
2493 |
|
|
if (!REG_ATTRS (dest) && MEM_P (src))
|
2494 |
|
|
set_reg_attrs_from_mem (dest, src);
|
2495 |
|
|
}
|
2496 |
|
|
|
2497 |
|
|
/* ... fall through ... */
|
2498 |
|
|
|
2499 |
|
|
default:
|
2500 |
|
|
{
|
2501 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
2502 |
|
|
int i;
|
2503 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2504 |
|
|
{
|
2505 |
|
|
if (fmt[i] == 'e')
|
2506 |
|
|
reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
|
2507 |
|
|
else if (fmt[i] == 'E' && XVEC (x, i) != 0)
|
2508 |
|
|
{
|
2509 |
|
|
int j;
|
2510 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
2511 |
|
|
reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
|
2512 |
|
|
}
|
2513 |
|
|
}
|
2514 |
|
|
}
|
2515 |
|
|
}
|
2516 |
|
|
}
|
2517 |
|
|
|
2518 |
|
|
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
|
2519 |
|
|
is also in C2. */
|
2520 |
|
|
|
2521 |
|
|
int
|
2522 |
|
|
reg_class_subset_p (enum reg_class c1, enum reg_class c2)
|
2523 |
|
|
{
|
2524 |
|
|
if (c1 == c2) return 1;
|
2525 |
|
|
|
2526 |
|
|
if (c2 == ALL_REGS)
|
2527 |
|
|
win:
|
2528 |
|
|
return 1;
|
2529 |
|
|
GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
|
2530 |
|
|
reg_class_contents[(int) c2],
|
2531 |
|
|
win);
|
2532 |
|
|
return 0;
|
2533 |
|
|
}
|
2534 |
|
|
|
2535 |
|
|
/* Return nonzero if there is a register that is in both C1 and C2. */
|
2536 |
|
|
|
2537 |
|
|
int
|
2538 |
|
|
reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
|
2539 |
|
|
{
|
2540 |
|
|
HARD_REG_SET c;
|
2541 |
|
|
|
2542 |
|
|
if (c1 == c2) return 1;
|
2543 |
|
|
|
2544 |
|
|
if (c1 == ALL_REGS || c2 == ALL_REGS)
|
2545 |
|
|
return 1;
|
2546 |
|
|
|
2547 |
|
|
COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
|
2548 |
|
|
AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
|
2549 |
|
|
|
2550 |
|
|
GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
|
2551 |
|
|
return 1;
|
2552 |
|
|
|
2553 |
|
|
lose:
|
2554 |
|
|
return 0;
|
2555 |
|
|
}
|
2556 |
|
|
|
2557 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
2558 |
|
|
|
2559 |
|
|
struct subregs_of_mode_node
|
2560 |
|
|
{
|
2561 |
|
|
unsigned int block;
|
2562 |
|
|
unsigned char modes[MAX_MACHINE_MODE];
|
2563 |
|
|
};
|
2564 |
|
|
|
2565 |
|
|
static htab_t subregs_of_mode;
|
2566 |
|
|
|
2567 |
|
|
static hashval_t
|
2568 |
|
|
som_hash (const void *x)
|
2569 |
|
|
{
|
2570 |
|
|
const struct subregs_of_mode_node *a = x;
|
2571 |
|
|
return a->block;
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
static int
|
2575 |
|
|
som_eq (const void *x, const void *y)
|
2576 |
|
|
{
|
2577 |
|
|
const struct subregs_of_mode_node *a = x;
|
2578 |
|
|
const struct subregs_of_mode_node *b = y;
|
2579 |
|
|
return a->block == b->block;
|
2580 |
|
|
}
|
2581 |
|
|
|
2582 |
|
|
void
|
2583 |
|
|
init_subregs_of_mode (void)
|
2584 |
|
|
{
|
2585 |
|
|
if (subregs_of_mode)
|
2586 |
|
|
htab_empty (subregs_of_mode);
|
2587 |
|
|
else
|
2588 |
|
|
subregs_of_mode = htab_create (100, som_hash, som_eq, free);
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
void
|
2592 |
|
|
record_subregs_of_mode (rtx subreg)
|
2593 |
|
|
{
|
2594 |
|
|
struct subregs_of_mode_node dummy, *node;
|
2595 |
|
|
enum machine_mode mode;
|
2596 |
|
|
unsigned int regno;
|
2597 |
|
|
void **slot;
|
2598 |
|
|
|
2599 |
|
|
if (!REG_P (SUBREG_REG (subreg)))
|
2600 |
|
|
return;
|
2601 |
|
|
|
2602 |
|
|
regno = REGNO (SUBREG_REG (subreg));
|
2603 |
|
|
mode = GET_MODE (subreg);
|
2604 |
|
|
|
2605 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
2606 |
|
|
return;
|
2607 |
|
|
|
2608 |
|
|
dummy.block = regno & -8;
|
2609 |
|
|
slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
|
2610 |
|
|
dummy.block, INSERT);
|
2611 |
|
|
node = *slot;
|
2612 |
|
|
if (node == NULL)
|
2613 |
|
|
{
|
2614 |
|
|
node = XCNEW (struct subregs_of_mode_node);
|
2615 |
|
|
node->block = regno & -8;
|
2616 |
|
|
*slot = node;
|
2617 |
|
|
}
|
2618 |
|
|
|
2619 |
|
|
node->modes[mode] |= 1 << (regno & 7);
|
2620 |
|
|
}
|
2621 |
|
|
|
2622 |
|
|
/* Set bits in *USED which correspond to registers which can't change
|
2623 |
|
|
their mode from FROM to any mode in which REGNO was encountered. */
|
2624 |
|
|
|
2625 |
|
|
void
|
2626 |
|
|
cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
|
2627 |
|
|
unsigned int regno)
|
2628 |
|
|
{
|
2629 |
|
|
struct subregs_of_mode_node dummy, *node;
|
2630 |
|
|
enum machine_mode to;
|
2631 |
|
|
unsigned char mask;
|
2632 |
|
|
unsigned int i;
|
2633 |
|
|
|
2634 |
|
|
dummy.block = regno & -8;
|
2635 |
|
|
node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
|
2636 |
|
|
if (node == NULL)
|
2637 |
|
|
return;
|
2638 |
|
|
|
2639 |
|
|
mask = 1 << (regno & 7);
|
2640 |
|
|
for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
|
2641 |
|
|
if (node->modes[to] & mask)
|
2642 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
2643 |
|
|
if (!TEST_HARD_REG_BIT (*used, i)
|
2644 |
|
|
&& REG_CANNOT_CHANGE_MODE_P (i, from, to))
|
2645 |
|
|
SET_HARD_REG_BIT (*used, i);
|
2646 |
|
|
}
|
2647 |
|
|
|
2648 |
|
|
/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
|
2649 |
|
|
mode. */
|
2650 |
|
|
|
2651 |
|
|
bool
|
2652 |
|
|
invalid_mode_change_p (unsigned int regno, enum reg_class class,
|
2653 |
|
|
enum machine_mode from)
|
2654 |
|
|
{
|
2655 |
|
|
struct subregs_of_mode_node dummy, *node;
|
2656 |
|
|
enum machine_mode to;
|
2657 |
|
|
unsigned char mask;
|
2658 |
|
|
|
2659 |
|
|
dummy.block = regno & -8;
|
2660 |
|
|
node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
|
2661 |
|
|
if (node == NULL)
|
2662 |
|
|
return false;
|
2663 |
|
|
|
2664 |
|
|
mask = 1 << (regno & 7);
|
2665 |
|
|
for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
|
2666 |
|
|
if (node->modes[to] & mask)
|
2667 |
|
|
if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
|
2668 |
|
|
return true;
|
2669 |
|
|
|
2670 |
|
|
return false;
|
2671 |
|
|
}
|
2672 |
|
|
#endif /* CANNOT_CHANGE_MODE_CLASS */
|
2673 |
|
|
|
2674 |
|
|
#include "gt-regclass.h"
|