1 |
38 |
julius |
/* Register renaming for the GNU compiler.
|
2 |
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
14 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
15 |
|
|
License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "rtl.h"
|
26 |
|
|
#include "tm_p.h"
|
27 |
|
|
#include "insn-config.h"
|
28 |
|
|
#include "regs.h"
|
29 |
|
|
#include "addresses.h"
|
30 |
|
|
#include "hard-reg-set.h"
|
31 |
|
|
#include "basic-block.h"
|
32 |
|
|
#include "reload.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "recog.h"
|
36 |
|
|
#include "flags.h"
|
37 |
|
|
#include "toplev.h"
|
38 |
|
|
#include "obstack.h"
|
39 |
|
|
#include "timevar.h"
|
40 |
|
|
#include "tree-pass.h"
|
41 |
|
|
|
42 |
|
|
struct du_chain
|
43 |
|
|
{
|
44 |
|
|
struct du_chain *next_chain;
|
45 |
|
|
struct du_chain *next_use;
|
46 |
|
|
|
47 |
|
|
rtx insn;
|
48 |
|
|
rtx *loc;
|
49 |
|
|
ENUM_BITFIELD(reg_class) cl : 16;
|
50 |
|
|
unsigned int need_caller_save_reg:1;
|
51 |
|
|
unsigned int earlyclobber:1;
|
52 |
|
|
};
|
53 |
|
|
|
54 |
|
|
enum scan_actions
|
55 |
|
|
{
|
56 |
|
|
terminate_all_read,
|
57 |
|
|
terminate_overlapping_read,
|
58 |
|
|
terminate_write,
|
59 |
|
|
terminate_dead,
|
60 |
|
|
mark_read,
|
61 |
|
|
mark_write,
|
62 |
|
|
/* mark_access is for marking the destination regs in
|
63 |
|
|
REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
|
64 |
|
|
note is updated properly. */
|
65 |
|
|
mark_access
|
66 |
|
|
};
|
67 |
|
|
|
68 |
|
|
static const char * const scan_actions_name[] =
|
69 |
|
|
{
|
70 |
|
|
"terminate_all_read",
|
71 |
|
|
"terminate_overlapping_read",
|
72 |
|
|
"terminate_write",
|
73 |
|
|
"terminate_dead",
|
74 |
|
|
"mark_read",
|
75 |
|
|
"mark_write",
|
76 |
|
|
"mark_access"
|
77 |
|
|
};
|
78 |
|
|
|
79 |
|
|
static struct obstack rename_obstack;
|
80 |
|
|
|
81 |
|
|
static void do_replace (struct du_chain *, int);
|
82 |
|
|
static void scan_rtx_reg (rtx, rtx *, enum reg_class,
|
83 |
|
|
enum scan_actions, enum op_type, int);
|
84 |
|
|
static void scan_rtx_address (rtx, rtx *, enum reg_class,
|
85 |
|
|
enum scan_actions, enum machine_mode);
|
86 |
|
|
static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
|
87 |
|
|
enum op_type, int);
|
88 |
|
|
static struct du_chain *build_def_use (basic_block);
|
89 |
|
|
static void dump_def_use_chain (struct du_chain *);
|
90 |
|
|
static void note_sets (rtx, rtx, void *);
|
91 |
|
|
static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
|
92 |
|
|
static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
|
93 |
|
|
struct du_chain *);
|
94 |
|
|
|
95 |
|
|
/* Called through note_stores from update_life. Find sets of registers, and
|
96 |
|
|
record them in *DATA (which is actually a HARD_REG_SET *). */
|
97 |
|
|
|
98 |
|
|
static void
|
99 |
|
|
note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
|
100 |
|
|
{
|
101 |
|
|
HARD_REG_SET *pset = (HARD_REG_SET *) data;
|
102 |
|
|
unsigned int regno;
|
103 |
|
|
int nregs;
|
104 |
|
|
|
105 |
|
|
if (GET_CODE (x) == SUBREG)
|
106 |
|
|
x = SUBREG_REG (x);
|
107 |
|
|
if (!REG_P (x))
|
108 |
|
|
return;
|
109 |
|
|
regno = REGNO (x);
|
110 |
|
|
nregs = hard_regno_nregs[regno][GET_MODE (x)];
|
111 |
|
|
|
112 |
|
|
/* There must not be pseudos at this point. */
|
113 |
|
|
gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
|
114 |
|
|
|
115 |
|
|
while (nregs-- > 0)
|
116 |
|
|
SET_HARD_REG_BIT (*pset, regno + nregs);
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
/* Clear all registers from *PSET for which a note of kind KIND can be found
|
120 |
|
|
in the list NOTES. */
|
121 |
|
|
|
122 |
|
|
static void
|
123 |
|
|
clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
|
124 |
|
|
{
|
125 |
|
|
rtx note;
|
126 |
|
|
for (note = notes; note; note = XEXP (note, 1))
|
127 |
|
|
if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
|
128 |
|
|
{
|
129 |
|
|
rtx reg = XEXP (note, 0);
|
130 |
|
|
unsigned int regno = REGNO (reg);
|
131 |
|
|
int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
132 |
|
|
|
133 |
|
|
/* There must not be pseudos at this point. */
|
134 |
|
|
gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
|
135 |
|
|
|
136 |
|
|
while (nregs-- > 0)
|
137 |
|
|
CLEAR_HARD_REG_BIT (*pset, regno + nregs);
|
138 |
|
|
}
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/* For a def-use chain CHAIN in basic block B, find which registers overlap
|
142 |
|
|
its lifetime and set the corresponding bits in *PSET. */
|
143 |
|
|
|
144 |
|
|
static void
|
145 |
|
|
merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
|
146 |
|
|
struct du_chain *chain)
|
147 |
|
|
{
|
148 |
|
|
struct du_chain *t = chain;
|
149 |
|
|
rtx insn;
|
150 |
|
|
HARD_REG_SET live;
|
151 |
|
|
|
152 |
|
|
REG_SET_TO_HARD_REG_SET (live, b->il.rtl->global_live_at_start);
|
153 |
|
|
insn = BB_HEAD (b);
|
154 |
|
|
while (t)
|
155 |
|
|
{
|
156 |
|
|
/* Search forward until the next reference to the register to be
|
157 |
|
|
renamed. */
|
158 |
|
|
while (insn != t->insn)
|
159 |
|
|
{
|
160 |
|
|
if (INSN_P (insn))
|
161 |
|
|
{
|
162 |
|
|
clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
|
163 |
|
|
note_stores (PATTERN (insn), note_sets, (void *) &live);
|
164 |
|
|
/* Only record currently live regs if we are inside the
|
165 |
|
|
reg's live range. */
|
166 |
|
|
if (t != chain)
|
167 |
|
|
IOR_HARD_REG_SET (*pset, live);
|
168 |
|
|
clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
|
169 |
|
|
}
|
170 |
|
|
insn = NEXT_INSN (insn);
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
IOR_HARD_REG_SET (*pset, live);
|
174 |
|
|
|
175 |
|
|
/* For the last reference, also merge in all registers set in the
|
176 |
|
|
same insn.
|
177 |
|
|
@@@ We only have take earlyclobbered sets into account. */
|
178 |
|
|
if (! t->next_use)
|
179 |
|
|
note_stores (PATTERN (insn), note_sets, (void *) pset);
|
180 |
|
|
|
181 |
|
|
t = t->next_use;
|
182 |
|
|
}
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/* Perform register renaming on the current function. */
|
186 |
|
|
|
187 |
|
|
static void
|
188 |
|
|
regrename_optimize (void)
|
189 |
|
|
{
|
190 |
|
|
int tick[FIRST_PSEUDO_REGISTER];
|
191 |
|
|
int this_tick = 0;
|
192 |
|
|
basic_block bb;
|
193 |
|
|
char *first_obj;
|
194 |
|
|
|
195 |
|
|
memset (tick, 0, sizeof tick);
|
196 |
|
|
|
197 |
|
|
gcc_obstack_init (&rename_obstack);
|
198 |
|
|
first_obj = obstack_alloc (&rename_obstack, 0);
|
199 |
|
|
|
200 |
|
|
FOR_EACH_BB (bb)
|
201 |
|
|
{
|
202 |
|
|
struct du_chain *all_chains = 0;
|
203 |
|
|
HARD_REG_SET unavailable;
|
204 |
|
|
HARD_REG_SET regs_seen;
|
205 |
|
|
|
206 |
|
|
CLEAR_HARD_REG_SET (unavailable);
|
207 |
|
|
|
208 |
|
|
if (dump_file)
|
209 |
|
|
fprintf (dump_file, "\nBasic block %d:\n", bb->index);
|
210 |
|
|
|
211 |
|
|
all_chains = build_def_use (bb);
|
212 |
|
|
|
213 |
|
|
if (dump_file)
|
214 |
|
|
dump_def_use_chain (all_chains);
|
215 |
|
|
|
216 |
|
|
CLEAR_HARD_REG_SET (unavailable);
|
217 |
|
|
/* Don't clobber traceback for noreturn functions. */
|
218 |
|
|
if (frame_pointer_needed)
|
219 |
|
|
{
|
220 |
|
|
int i;
|
221 |
|
|
|
222 |
|
|
for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
|
223 |
|
|
SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
|
224 |
|
|
|
225 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
226 |
|
|
for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
|
227 |
|
|
SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
|
228 |
|
|
#endif
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
CLEAR_HARD_REG_SET (regs_seen);
|
232 |
|
|
while (all_chains)
|
233 |
|
|
{
|
234 |
|
|
int new_reg, best_new_reg;
|
235 |
|
|
int n_uses;
|
236 |
|
|
struct du_chain *this = all_chains;
|
237 |
|
|
struct du_chain *tmp, *last;
|
238 |
|
|
HARD_REG_SET this_unavailable;
|
239 |
|
|
int reg = REGNO (*this->loc);
|
240 |
|
|
int i;
|
241 |
|
|
|
242 |
|
|
all_chains = this->next_chain;
|
243 |
|
|
|
244 |
|
|
best_new_reg = reg;
|
245 |
|
|
|
246 |
|
|
#if 0 /* This just disables optimization opportunities. */
|
247 |
|
|
/* Only rename once we've seen the reg more than once. */
|
248 |
|
|
if (! TEST_HARD_REG_BIT (regs_seen, reg))
|
249 |
|
|
{
|
250 |
|
|
SET_HARD_REG_BIT (regs_seen, reg);
|
251 |
|
|
continue;
|
252 |
|
|
}
|
253 |
|
|
#endif
|
254 |
|
|
|
255 |
|
|
if (fixed_regs[reg] || global_regs[reg]
|
256 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
257 |
|
|
|| (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
|
258 |
|
|
#else
|
259 |
|
|
|| (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
|
260 |
|
|
#endif
|
261 |
|
|
)
|
262 |
|
|
continue;
|
263 |
|
|
|
264 |
|
|
COPY_HARD_REG_SET (this_unavailable, unavailable);
|
265 |
|
|
|
266 |
|
|
/* Find last entry on chain (which has the need_caller_save bit),
|
267 |
|
|
count number of uses, and narrow the set of registers we can
|
268 |
|
|
use for renaming. */
|
269 |
|
|
n_uses = 0;
|
270 |
|
|
for (last = this; last->next_use; last = last->next_use)
|
271 |
|
|
{
|
272 |
|
|
n_uses++;
|
273 |
|
|
IOR_COMPL_HARD_REG_SET (this_unavailable,
|
274 |
|
|
reg_class_contents[last->cl]);
|
275 |
|
|
}
|
276 |
|
|
if (n_uses < 1)
|
277 |
|
|
continue;
|
278 |
|
|
|
279 |
|
|
IOR_COMPL_HARD_REG_SET (this_unavailable,
|
280 |
|
|
reg_class_contents[last->cl]);
|
281 |
|
|
|
282 |
|
|
if (this->need_caller_save_reg)
|
283 |
|
|
IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
|
284 |
|
|
|
285 |
|
|
merge_overlapping_regs (bb, &this_unavailable, this);
|
286 |
|
|
|
287 |
|
|
/* Now potential_regs is a reasonable approximation, let's
|
288 |
|
|
have a closer look at each register still in there. */
|
289 |
|
|
for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
|
290 |
|
|
{
|
291 |
|
|
int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
|
292 |
|
|
|
293 |
|
|
for (i = nregs - 1; i >= 0; --i)
|
294 |
|
|
if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
|
295 |
|
|
|| fixed_regs[new_reg + i]
|
296 |
|
|
|| global_regs[new_reg + i]
|
297 |
|
|
/* Can't use regs which aren't saved by the prologue. */
|
298 |
|
|
|| (! regs_ever_live[new_reg + i]
|
299 |
|
|
&& ! call_used_regs[new_reg + i])
|
300 |
|
|
#ifdef LEAF_REGISTERS
|
301 |
|
|
/* We can't use a non-leaf register if we're in a
|
302 |
|
|
leaf function. */
|
303 |
|
|
|| (current_function_is_leaf
|
304 |
|
|
&& !LEAF_REGISTERS[new_reg + i])
|
305 |
|
|
#endif
|
306 |
|
|
#ifdef HARD_REGNO_RENAME_OK
|
307 |
|
|
|| ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
|
308 |
|
|
#endif
|
309 |
|
|
)
|
310 |
|
|
break;
|
311 |
|
|
if (i >= 0)
|
312 |
|
|
continue;
|
313 |
|
|
|
314 |
|
|
/* See whether it accepts all modes that occur in
|
315 |
|
|
definition and uses. */
|
316 |
|
|
for (tmp = this; tmp; tmp = tmp->next_use)
|
317 |
|
|
if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
|
318 |
|
|
|| (tmp->need_caller_save_reg
|
319 |
|
|
&& ! (HARD_REGNO_CALL_PART_CLOBBERED
|
320 |
|
|
(reg, GET_MODE (*tmp->loc)))
|
321 |
|
|
&& (HARD_REGNO_CALL_PART_CLOBBERED
|
322 |
|
|
(new_reg, GET_MODE (*tmp->loc)))))
|
323 |
|
|
break;
|
324 |
|
|
if (! tmp)
|
325 |
|
|
{
|
326 |
|
|
if (tick[best_new_reg] > tick[new_reg])
|
327 |
|
|
best_new_reg = new_reg;
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
if (dump_file)
|
332 |
|
|
{
|
333 |
|
|
fprintf (dump_file, "Register %s in insn %d",
|
334 |
|
|
reg_names[reg], INSN_UID (last->insn));
|
335 |
|
|
if (last->need_caller_save_reg)
|
336 |
|
|
fprintf (dump_file, " crosses a call");
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
if (best_new_reg == reg)
|
340 |
|
|
{
|
341 |
|
|
tick[reg] = ++this_tick;
|
342 |
|
|
if (dump_file)
|
343 |
|
|
fprintf (dump_file, "; no available better choice\n");
|
344 |
|
|
continue;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
do_replace (this, best_new_reg);
|
348 |
|
|
tick[best_new_reg] = ++this_tick;
|
349 |
|
|
regs_ever_live[best_new_reg] = 1;
|
350 |
|
|
|
351 |
|
|
if (dump_file)
|
352 |
|
|
fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
obstack_free (&rename_obstack, first_obj);
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
obstack_free (&rename_obstack, NULL);
|
359 |
|
|
|
360 |
|
|
if (dump_file)
|
361 |
|
|
fputc ('\n', dump_file);
|
362 |
|
|
|
363 |
|
|
count_or_remove_death_notes (NULL, 1);
|
364 |
|
|
update_life_info (NULL, UPDATE_LIFE_LOCAL,
|
365 |
|
|
PROP_DEATH_NOTES);
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
static void
|
369 |
|
|
do_replace (struct du_chain *chain, int reg)
|
370 |
|
|
{
|
371 |
|
|
while (chain)
|
372 |
|
|
{
|
373 |
|
|
unsigned int regno = ORIGINAL_REGNO (*chain->loc);
|
374 |
|
|
struct reg_attrs * attr = REG_ATTRS (*chain->loc);
|
375 |
|
|
|
376 |
|
|
*chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
|
377 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
378 |
|
|
ORIGINAL_REGNO (*chain->loc) = regno;
|
379 |
|
|
REG_ATTRS (*chain->loc) = attr;
|
380 |
|
|
chain = chain->next_use;
|
381 |
|
|
}
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
|
385 |
|
|
static struct du_chain *open_chains;
|
386 |
|
|
static struct du_chain *closed_chains;
|
387 |
|
|
|
388 |
|
|
static void
|
389 |
|
|
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
|
390 |
|
|
enum scan_actions action, enum op_type type, int earlyclobber)
|
391 |
|
|
{
|
392 |
|
|
struct du_chain **p;
|
393 |
|
|
rtx x = *loc;
|
394 |
|
|
enum machine_mode mode = GET_MODE (x);
|
395 |
|
|
int this_regno = REGNO (x);
|
396 |
|
|
int this_nregs = hard_regno_nregs[this_regno][mode];
|
397 |
|
|
|
398 |
|
|
if (action == mark_write)
|
399 |
|
|
{
|
400 |
|
|
if (type == OP_OUT)
|
401 |
|
|
{
|
402 |
|
|
struct du_chain *this
|
403 |
|
|
= obstack_alloc (&rename_obstack, sizeof (struct du_chain));
|
404 |
|
|
this->next_use = 0;
|
405 |
|
|
this->next_chain = open_chains;
|
406 |
|
|
this->loc = loc;
|
407 |
|
|
this->insn = insn;
|
408 |
|
|
this->cl = cl;
|
409 |
|
|
this->need_caller_save_reg = 0;
|
410 |
|
|
this->earlyclobber = earlyclobber;
|
411 |
|
|
open_chains = this;
|
412 |
|
|
}
|
413 |
|
|
return;
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
|
417 |
|
|
return;
|
418 |
|
|
|
419 |
|
|
for (p = &open_chains; *p;)
|
420 |
|
|
{
|
421 |
|
|
struct du_chain *this = *p;
|
422 |
|
|
|
423 |
|
|
/* Check if the chain has been terminated if it has then skip to
|
424 |
|
|
the next chain.
|
425 |
|
|
|
426 |
|
|
This can happen when we've already appended the location to
|
427 |
|
|
the chain in Step 3, but are trying to hide in-out operands
|
428 |
|
|
from terminate_write in Step 5. */
|
429 |
|
|
|
430 |
|
|
if (*this->loc == cc0_rtx)
|
431 |
|
|
p = &this->next_chain;
|
432 |
|
|
else
|
433 |
|
|
{
|
434 |
|
|
int regno = REGNO (*this->loc);
|
435 |
|
|
int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
|
436 |
|
|
int exact_match = (regno == this_regno && nregs == this_nregs);
|
437 |
|
|
|
438 |
|
|
if (regno + nregs <= this_regno
|
439 |
|
|
|| this_regno + this_nregs <= regno)
|
440 |
|
|
{
|
441 |
|
|
p = &this->next_chain;
|
442 |
|
|
continue;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
if (action == mark_read || action == mark_access)
|
446 |
|
|
{
|
447 |
|
|
gcc_assert (exact_match);
|
448 |
|
|
|
449 |
|
|
/* ??? Class NO_REGS can happen if the md file makes use of
|
450 |
|
|
EXTRA_CONSTRAINTS to match registers. Which is arguably
|
451 |
|
|
wrong, but there we are. Since we know not what this may
|
452 |
|
|
be replaced with, terminate the chain. */
|
453 |
|
|
if (cl != NO_REGS)
|
454 |
|
|
{
|
455 |
|
|
this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
|
456 |
|
|
this->next_use = 0;
|
457 |
|
|
this->next_chain = (*p)->next_chain;
|
458 |
|
|
this->loc = loc;
|
459 |
|
|
this->insn = insn;
|
460 |
|
|
this->cl = cl;
|
461 |
|
|
this->need_caller_save_reg = 0;
|
462 |
|
|
while (*p)
|
463 |
|
|
p = &(*p)->next_use;
|
464 |
|
|
*p = this;
|
465 |
|
|
return;
|
466 |
|
|
}
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
if (action != terminate_overlapping_read || ! exact_match)
|
470 |
|
|
{
|
471 |
|
|
struct du_chain *next = this->next_chain;
|
472 |
|
|
|
473 |
|
|
/* Whether the terminated chain can be used for renaming
|
474 |
|
|
depends on the action and this being an exact match.
|
475 |
|
|
In either case, we remove this element from open_chains. */
|
476 |
|
|
|
477 |
|
|
if ((action == terminate_dead || action == terminate_write)
|
478 |
|
|
&& exact_match)
|
479 |
|
|
{
|
480 |
|
|
this->next_chain = closed_chains;
|
481 |
|
|
closed_chains = this;
|
482 |
|
|
if (dump_file)
|
483 |
|
|
fprintf (dump_file,
|
484 |
|
|
"Closing chain %s at insn %d (%s)\n",
|
485 |
|
|
reg_names[REGNO (*this->loc)], INSN_UID (insn),
|
486 |
|
|
scan_actions_name[(int) action]);
|
487 |
|
|
}
|
488 |
|
|
else
|
489 |
|
|
{
|
490 |
|
|
if (dump_file)
|
491 |
|
|
fprintf (dump_file,
|
492 |
|
|
"Discarding chain %s at insn %d (%s)\n",
|
493 |
|
|
reg_names[REGNO (*this->loc)], INSN_UID (insn),
|
494 |
|
|
scan_actions_name[(int) action]);
|
495 |
|
|
}
|
496 |
|
|
*p = next;
|
497 |
|
|
}
|
498 |
|
|
else
|
499 |
|
|
p = &this->next_chain;
|
500 |
|
|
}
|
501 |
|
|
}
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
/* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
|
505 |
|
|
BASE_REG_CLASS depending on how the register is being considered. */
|
506 |
|
|
|
507 |
|
|
static void
|
508 |
|
|
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
|
509 |
|
|
enum scan_actions action, enum machine_mode mode)
|
510 |
|
|
{
|
511 |
|
|
rtx x = *loc;
|
512 |
|
|
RTX_CODE code = GET_CODE (x);
|
513 |
|
|
const char *fmt;
|
514 |
|
|
int i, j;
|
515 |
|
|
|
516 |
|
|
if (action == mark_write || action == mark_access)
|
517 |
|
|
return;
|
518 |
|
|
|
519 |
|
|
switch (code)
|
520 |
|
|
{
|
521 |
|
|
case PLUS:
|
522 |
|
|
{
|
523 |
|
|
rtx orig_op0 = XEXP (x, 0);
|
524 |
|
|
rtx orig_op1 = XEXP (x, 1);
|
525 |
|
|
RTX_CODE code0 = GET_CODE (orig_op0);
|
526 |
|
|
RTX_CODE code1 = GET_CODE (orig_op1);
|
527 |
|
|
rtx op0 = orig_op0;
|
528 |
|
|
rtx op1 = orig_op1;
|
529 |
|
|
rtx *locI = NULL;
|
530 |
|
|
rtx *locB = NULL;
|
531 |
|
|
enum rtx_code index_code = SCRATCH;
|
532 |
|
|
|
533 |
|
|
if (GET_CODE (op0) == SUBREG)
|
534 |
|
|
{
|
535 |
|
|
op0 = SUBREG_REG (op0);
|
536 |
|
|
code0 = GET_CODE (op0);
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
if (GET_CODE (op1) == SUBREG)
|
540 |
|
|
{
|
541 |
|
|
op1 = SUBREG_REG (op1);
|
542 |
|
|
code1 = GET_CODE (op1);
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
|
546 |
|
|
|| code0 == ZERO_EXTEND || code1 == MEM)
|
547 |
|
|
{
|
548 |
|
|
locI = &XEXP (x, 0);
|
549 |
|
|
locB = &XEXP (x, 1);
|
550 |
|
|
index_code = GET_CODE (*locI);
|
551 |
|
|
}
|
552 |
|
|
else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
|
553 |
|
|
|| code1 == ZERO_EXTEND || code0 == MEM)
|
554 |
|
|
{
|
555 |
|
|
locI = &XEXP (x, 1);
|
556 |
|
|
locB = &XEXP (x, 0);
|
557 |
|
|
index_code = GET_CODE (*locI);
|
558 |
|
|
}
|
559 |
|
|
else if (code0 == CONST_INT || code0 == CONST
|
560 |
|
|
|| code0 == SYMBOL_REF || code0 == LABEL_REF)
|
561 |
|
|
{
|
562 |
|
|
locB = &XEXP (x, 1);
|
563 |
|
|
index_code = GET_CODE (XEXP (x, 0));
|
564 |
|
|
}
|
565 |
|
|
else if (code1 == CONST_INT || code1 == CONST
|
566 |
|
|
|| code1 == SYMBOL_REF || code1 == LABEL_REF)
|
567 |
|
|
{
|
568 |
|
|
locB = &XEXP (x, 0);
|
569 |
|
|
index_code = GET_CODE (XEXP (x, 1));
|
570 |
|
|
}
|
571 |
|
|
else if (code0 == REG && code1 == REG)
|
572 |
|
|
{
|
573 |
|
|
int index_op;
|
574 |
|
|
unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
|
575 |
|
|
|
576 |
|
|
if (REGNO_OK_FOR_INDEX_P (regno0)
|
577 |
|
|
&& regno_ok_for_base_p (regno1, mode, PLUS, REG))
|
578 |
|
|
index_op = 0;
|
579 |
|
|
else if (REGNO_OK_FOR_INDEX_P (regno1)
|
580 |
|
|
&& regno_ok_for_base_p (regno0, mode, PLUS, REG))
|
581 |
|
|
index_op = 1;
|
582 |
|
|
else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
|
583 |
|
|
index_op = 0;
|
584 |
|
|
else if (regno_ok_for_base_p (regno0, mode, PLUS, REG))
|
585 |
|
|
index_op = 1;
|
586 |
|
|
else if (REGNO_OK_FOR_INDEX_P (regno1))
|
587 |
|
|
index_op = 1;
|
588 |
|
|
else
|
589 |
|
|
index_op = 0;
|
590 |
|
|
|
591 |
|
|
locI = &XEXP (x, index_op);
|
592 |
|
|
locB = &XEXP (x, !index_op);
|
593 |
|
|
index_code = GET_CODE (*locI);
|
594 |
|
|
}
|
595 |
|
|
else if (code0 == REG)
|
596 |
|
|
{
|
597 |
|
|
locI = &XEXP (x, 0);
|
598 |
|
|
locB = &XEXP (x, 1);
|
599 |
|
|
index_code = GET_CODE (*locI);
|
600 |
|
|
}
|
601 |
|
|
else if (code1 == REG)
|
602 |
|
|
{
|
603 |
|
|
locI = &XEXP (x, 1);
|
604 |
|
|
locB = &XEXP (x, 0);
|
605 |
|
|
index_code = GET_CODE (*locI);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
if (locI)
|
609 |
|
|
scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
|
610 |
|
|
if (locB)
|
611 |
|
|
scan_rtx_address (insn, locB, base_reg_class (mode, PLUS, index_code),
|
612 |
|
|
action, mode);
|
613 |
|
|
|
614 |
|
|
return;
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
case POST_INC:
|
618 |
|
|
case POST_DEC:
|
619 |
|
|
case POST_MODIFY:
|
620 |
|
|
case PRE_INC:
|
621 |
|
|
case PRE_DEC:
|
622 |
|
|
case PRE_MODIFY:
|
623 |
|
|
#ifndef AUTO_INC_DEC
|
624 |
|
|
/* If the target doesn't claim to handle autoinc, this must be
|
625 |
|
|
something special, like a stack push. Kill this chain. */
|
626 |
|
|
action = terminate_all_read;
|
627 |
|
|
#endif
|
628 |
|
|
break;
|
629 |
|
|
|
630 |
|
|
case MEM:
|
631 |
|
|
scan_rtx_address (insn, &XEXP (x, 0),
|
632 |
|
|
base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
|
633 |
|
|
GET_MODE (x));
|
634 |
|
|
return;
|
635 |
|
|
|
636 |
|
|
case REG:
|
637 |
|
|
scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
|
638 |
|
|
return;
|
639 |
|
|
|
640 |
|
|
default:
|
641 |
|
|
break;
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
fmt = GET_RTX_FORMAT (code);
|
645 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
646 |
|
|
{
|
647 |
|
|
if (fmt[i] == 'e')
|
648 |
|
|
scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
|
649 |
|
|
else if (fmt[i] == 'E')
|
650 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
651 |
|
|
scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
|
652 |
|
|
}
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
static void
|
656 |
|
|
scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
|
657 |
|
|
enum scan_actions action, enum op_type type, int earlyclobber)
|
658 |
|
|
{
|
659 |
|
|
const char *fmt;
|
660 |
|
|
rtx x = *loc;
|
661 |
|
|
enum rtx_code code = GET_CODE (x);
|
662 |
|
|
int i, j;
|
663 |
|
|
|
664 |
|
|
code = GET_CODE (x);
|
665 |
|
|
switch (code)
|
666 |
|
|
{
|
667 |
|
|
case CONST:
|
668 |
|
|
case CONST_INT:
|
669 |
|
|
case CONST_DOUBLE:
|
670 |
|
|
case CONST_VECTOR:
|
671 |
|
|
case SYMBOL_REF:
|
672 |
|
|
case LABEL_REF:
|
673 |
|
|
case CC0:
|
674 |
|
|
case PC:
|
675 |
|
|
return;
|
676 |
|
|
|
677 |
|
|
case REG:
|
678 |
|
|
scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
|
679 |
|
|
return;
|
680 |
|
|
|
681 |
|
|
case MEM:
|
682 |
|
|
scan_rtx_address (insn, &XEXP (x, 0),
|
683 |
|
|
base_reg_class (GET_MODE (x), MEM, SCRATCH), action,
|
684 |
|
|
GET_MODE (x));
|
685 |
|
|
return;
|
686 |
|
|
|
687 |
|
|
case SET:
|
688 |
|
|
scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
|
689 |
|
|
scan_rtx (insn, &SET_DEST (x), cl, action,
|
690 |
|
|
GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
|
691 |
|
|
return;
|
692 |
|
|
|
693 |
|
|
case STRICT_LOW_PART:
|
694 |
|
|
scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
|
695 |
|
|
return;
|
696 |
|
|
|
697 |
|
|
case ZERO_EXTRACT:
|
698 |
|
|
case SIGN_EXTRACT:
|
699 |
|
|
scan_rtx (insn, &XEXP (x, 0), cl, action,
|
700 |
|
|
type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
|
701 |
|
|
scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
|
702 |
|
|
scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
|
703 |
|
|
return;
|
704 |
|
|
|
705 |
|
|
case POST_INC:
|
706 |
|
|
case PRE_INC:
|
707 |
|
|
case POST_DEC:
|
708 |
|
|
case PRE_DEC:
|
709 |
|
|
case POST_MODIFY:
|
710 |
|
|
case PRE_MODIFY:
|
711 |
|
|
/* Should only happen inside MEM. */
|
712 |
|
|
gcc_unreachable ();
|
713 |
|
|
|
714 |
|
|
case CLOBBER:
|
715 |
|
|
scan_rtx (insn, &SET_DEST (x), cl, action,
|
716 |
|
|
GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
|
717 |
|
|
return;
|
718 |
|
|
|
719 |
|
|
case EXPR_LIST:
|
720 |
|
|
scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
|
721 |
|
|
if (XEXP (x, 1))
|
722 |
|
|
scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
|
723 |
|
|
return;
|
724 |
|
|
|
725 |
|
|
default:
|
726 |
|
|
break;
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
fmt = GET_RTX_FORMAT (code);
|
730 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
731 |
|
|
{
|
732 |
|
|
if (fmt[i] == 'e')
|
733 |
|
|
scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
|
734 |
|
|
else if (fmt[i] == 'E')
|
735 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
736 |
|
|
scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
|
737 |
|
|
}
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
/* Build def/use chain. */
|
741 |
|
|
|
742 |
|
|
static struct du_chain *
|
743 |
|
|
build_def_use (basic_block bb)
|
744 |
|
|
{
|
745 |
|
|
rtx insn;
|
746 |
|
|
|
747 |
|
|
open_chains = closed_chains = NULL;
|
748 |
|
|
|
749 |
|
|
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
750 |
|
|
{
|
751 |
|
|
if (INSN_P (insn))
|
752 |
|
|
{
|
753 |
|
|
int n_ops;
|
754 |
|
|
rtx note;
|
755 |
|
|
rtx old_operands[MAX_RECOG_OPERANDS];
|
756 |
|
|
rtx old_dups[MAX_DUP_OPERANDS];
|
757 |
|
|
int i, icode;
|
758 |
|
|
int alt;
|
759 |
|
|
int predicated;
|
760 |
|
|
|
761 |
|
|
/* Process the insn, determining its effect on the def-use
|
762 |
|
|
chains. We perform the following steps with the register
|
763 |
|
|
references in the insn:
|
764 |
|
|
(1) Any read that overlaps an open chain, but doesn't exactly
|
765 |
|
|
match, causes that chain to be closed. We can't deal
|
766 |
|
|
with overlaps yet.
|
767 |
|
|
(2) Any read outside an operand causes any chain it overlaps
|
768 |
|
|
with to be closed, since we can't replace it.
|
769 |
|
|
(3) Any read inside an operand is added if there's already
|
770 |
|
|
an open chain for it.
|
771 |
|
|
(4) For any REG_DEAD note we find, close open chains that
|
772 |
|
|
overlap it.
|
773 |
|
|
(5) For any write we find, close open chains that overlap it.
|
774 |
|
|
(6) For any write we find in an operand, make a new chain.
|
775 |
|
|
(7) For any REG_UNUSED, close any chains we just opened. */
|
776 |
|
|
|
777 |
|
|
icode = recog_memoized (insn);
|
778 |
|
|
extract_insn (insn);
|
779 |
|
|
if (! constrain_operands (1))
|
780 |
|
|
fatal_insn_not_found (insn);
|
781 |
|
|
preprocess_constraints ();
|
782 |
|
|
alt = which_alternative;
|
783 |
|
|
n_ops = recog_data.n_operands;
|
784 |
|
|
|
785 |
|
|
/* Simplify the code below by rewriting things to reflect
|
786 |
|
|
matching constraints. Also promote OP_OUT to OP_INOUT
|
787 |
|
|
in predicated instructions. */
|
788 |
|
|
|
789 |
|
|
predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
|
790 |
|
|
for (i = 0; i < n_ops; ++i)
|
791 |
|
|
{
|
792 |
|
|
int matches = recog_op_alt[i][alt].matches;
|
793 |
|
|
if (matches >= 0)
|
794 |
|
|
recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
|
795 |
|
|
if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
|
796 |
|
|
|| (predicated && recog_data.operand_type[i] == OP_OUT))
|
797 |
|
|
recog_data.operand_type[i] = OP_INOUT;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
/* Step 1: Close chains for which we have overlapping reads. */
|
801 |
|
|
for (i = 0; i < n_ops; i++)
|
802 |
|
|
scan_rtx (insn, recog_data.operand_loc[i],
|
803 |
|
|
NO_REGS, terminate_overlapping_read,
|
804 |
|
|
recog_data.operand_type[i], 0);
|
805 |
|
|
|
806 |
|
|
/* Step 2: Close chains for which we have reads outside operands.
|
807 |
|
|
We do this by munging all operands into CC0, and closing
|
808 |
|
|
everything remaining. */
|
809 |
|
|
|
810 |
|
|
for (i = 0; i < n_ops; i++)
|
811 |
|
|
{
|
812 |
|
|
old_operands[i] = recog_data.operand[i];
|
813 |
|
|
/* Don't squash match_operator or match_parallel here, since
|
814 |
|
|
we don't know that all of the contained registers are
|
815 |
|
|
reachable by proper operands. */
|
816 |
|
|
if (recog_data.constraints[i][0] == '\0')
|
817 |
|
|
continue;
|
818 |
|
|
*recog_data.operand_loc[i] = cc0_rtx;
|
819 |
|
|
}
|
820 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
821 |
|
|
{
|
822 |
|
|
int dup_num = recog_data.dup_num[i];
|
823 |
|
|
|
824 |
|
|
old_dups[i] = *recog_data.dup_loc[i];
|
825 |
|
|
*recog_data.dup_loc[i] = cc0_rtx;
|
826 |
|
|
|
827 |
|
|
/* For match_dup of match_operator or match_parallel, share
|
828 |
|
|
them, so that we don't miss changes in the dup. */
|
829 |
|
|
if (icode >= 0
|
830 |
|
|
&& insn_data[icode].operand[dup_num].eliminable == 0)
|
831 |
|
|
old_dups[i] = recog_data.operand[dup_num];
|
832 |
|
|
}
|
833 |
|
|
|
834 |
|
|
scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
|
835 |
|
|
OP_IN, 0);
|
836 |
|
|
|
837 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
838 |
|
|
*recog_data.dup_loc[i] = old_dups[i];
|
839 |
|
|
for (i = 0; i < n_ops; i++)
|
840 |
|
|
*recog_data.operand_loc[i] = old_operands[i];
|
841 |
|
|
|
842 |
|
|
/* Step 2B: Can't rename function call argument registers. */
|
843 |
|
|
if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
|
844 |
|
|
scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
|
845 |
|
|
NO_REGS, terminate_all_read, OP_IN, 0);
|
846 |
|
|
|
847 |
|
|
/* Step 2C: Can't rename asm operands that were originally
|
848 |
|
|
hard registers. */
|
849 |
|
|
if (asm_noperands (PATTERN (insn)) > 0)
|
850 |
|
|
for (i = 0; i < n_ops; i++)
|
851 |
|
|
{
|
852 |
|
|
rtx *loc = recog_data.operand_loc[i];
|
853 |
|
|
rtx op = *loc;
|
854 |
|
|
|
855 |
|
|
if (REG_P (op)
|
856 |
|
|
&& REGNO (op) == ORIGINAL_REGNO (op)
|
857 |
|
|
&& (recog_data.operand_type[i] == OP_IN
|
858 |
|
|
|| recog_data.operand_type[i] == OP_INOUT))
|
859 |
|
|
scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
/* Step 3: Append to chains for reads inside operands. */
|
863 |
|
|
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
864 |
|
|
{
|
865 |
|
|
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
866 |
|
|
rtx *loc = (i < n_ops
|
867 |
|
|
? recog_data.operand_loc[opn]
|
868 |
|
|
: recog_data.dup_loc[i - n_ops]);
|
869 |
|
|
enum reg_class cl = recog_op_alt[opn][alt].cl;
|
870 |
|
|
enum op_type type = recog_data.operand_type[opn];
|
871 |
|
|
|
872 |
|
|
/* Don't scan match_operand here, since we've no reg class
|
873 |
|
|
information to pass down. Any operands that we could
|
874 |
|
|
substitute in will be represented elsewhere. */
|
875 |
|
|
if (recog_data.constraints[opn][0] == '\0')
|
876 |
|
|
continue;
|
877 |
|
|
|
878 |
|
|
if (recog_op_alt[opn][alt].is_address)
|
879 |
|
|
scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
|
880 |
|
|
else
|
881 |
|
|
scan_rtx (insn, loc, cl, mark_read, type, 0);
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
/* Step 3B: Record updates for regs in REG_INC notes, and
|
885 |
|
|
source regs in REG_FRAME_RELATED_EXPR notes. */
|
886 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
887 |
|
|
if (REG_NOTE_KIND (note) == REG_INC
|
888 |
|
|
|| REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
|
889 |
|
|
scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
|
890 |
|
|
OP_INOUT, 0);
|
891 |
|
|
|
892 |
|
|
/* Step 4: Close chains for registers that die here. */
|
893 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
894 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD)
|
895 |
|
|
scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
|
896 |
|
|
OP_IN, 0);
|
897 |
|
|
|
898 |
|
|
/* Step 4B: If this is a call, any chain live at this point
|
899 |
|
|
requires a caller-saved reg. */
|
900 |
|
|
if (CALL_P (insn))
|
901 |
|
|
{
|
902 |
|
|
struct du_chain *p;
|
903 |
|
|
for (p = open_chains; p; p = p->next_chain)
|
904 |
|
|
p->need_caller_save_reg = 1;
|
905 |
|
|
}
|
906 |
|
|
|
907 |
|
|
/* Step 5: Close open chains that overlap writes. Similar to
|
908 |
|
|
step 2, we hide in-out operands, since we do not want to
|
909 |
|
|
close these chains. */
|
910 |
|
|
|
911 |
|
|
for (i = 0; i < n_ops; i++)
|
912 |
|
|
{
|
913 |
|
|
old_operands[i] = recog_data.operand[i];
|
914 |
|
|
if (recog_data.operand_type[i] == OP_INOUT)
|
915 |
|
|
*recog_data.operand_loc[i] = cc0_rtx;
|
916 |
|
|
}
|
917 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
918 |
|
|
{
|
919 |
|
|
int opn = recog_data.dup_num[i];
|
920 |
|
|
old_dups[i] = *recog_data.dup_loc[i];
|
921 |
|
|
if (recog_data.operand_type[opn] == OP_INOUT)
|
922 |
|
|
*recog_data.dup_loc[i] = cc0_rtx;
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
|
926 |
|
|
|
927 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
928 |
|
|
*recog_data.dup_loc[i] = old_dups[i];
|
929 |
|
|
for (i = 0; i < n_ops; i++)
|
930 |
|
|
*recog_data.operand_loc[i] = old_operands[i];
|
931 |
|
|
|
932 |
|
|
/* Step 6: Begin new chains for writes inside operands. */
|
933 |
|
|
/* ??? Many targets have output constraints on the SET_DEST
|
934 |
|
|
of a call insn, which is stupid, since these are certainly
|
935 |
|
|
ABI defined hard registers. Don't change calls at all.
|
936 |
|
|
Similarly take special care for asm statement that originally
|
937 |
|
|
referenced hard registers. */
|
938 |
|
|
if (asm_noperands (PATTERN (insn)) > 0)
|
939 |
|
|
{
|
940 |
|
|
for (i = 0; i < n_ops; i++)
|
941 |
|
|
if (recog_data.operand_type[i] == OP_OUT)
|
942 |
|
|
{
|
943 |
|
|
rtx *loc = recog_data.operand_loc[i];
|
944 |
|
|
rtx op = *loc;
|
945 |
|
|
enum reg_class cl = recog_op_alt[i][alt].cl;
|
946 |
|
|
|
947 |
|
|
if (REG_P (op)
|
948 |
|
|
&& REGNO (op) == ORIGINAL_REGNO (op))
|
949 |
|
|
continue;
|
950 |
|
|
|
951 |
|
|
scan_rtx (insn, loc, cl, mark_write, OP_OUT,
|
952 |
|
|
recog_op_alt[i][alt].earlyclobber);
|
953 |
|
|
}
|
954 |
|
|
}
|
955 |
|
|
else if (!CALL_P (insn))
|
956 |
|
|
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
957 |
|
|
{
|
958 |
|
|
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
959 |
|
|
rtx *loc = (i < n_ops
|
960 |
|
|
? recog_data.operand_loc[opn]
|
961 |
|
|
: recog_data.dup_loc[i - n_ops]);
|
962 |
|
|
enum reg_class cl = recog_op_alt[opn][alt].cl;
|
963 |
|
|
|
964 |
|
|
if (recog_data.operand_type[opn] == OP_OUT)
|
965 |
|
|
scan_rtx (insn, loc, cl, mark_write, OP_OUT,
|
966 |
|
|
recog_op_alt[opn][alt].earlyclobber);
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
/* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
|
970 |
|
|
notes for update. */
|
971 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
972 |
|
|
if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
|
973 |
|
|
scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
|
974 |
|
|
OP_INOUT, 0);
|
975 |
|
|
|
976 |
|
|
/* Step 7: Close chains for registers that were never
|
977 |
|
|
really used here. */
|
978 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
979 |
|
|
if (REG_NOTE_KIND (note) == REG_UNUSED)
|
980 |
|
|
scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
|
981 |
|
|
OP_IN, 0);
|
982 |
|
|
}
|
983 |
|
|
if (insn == BB_END (bb))
|
984 |
|
|
break;
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
/* Since we close every chain when we find a REG_DEAD note, anything that
|
988 |
|
|
is still open lives past the basic block, so it can't be renamed. */
|
989 |
|
|
return closed_chains;
|
990 |
|
|
}
|
991 |
|
|
|
992 |
|
|
/* Dump all def/use chains in CHAINS to DUMP_FILE. They are
|
993 |
|
|
printed in reverse order as that's how we build them. */
|
994 |
|
|
|
995 |
|
|
static void
|
996 |
|
|
dump_def_use_chain (struct du_chain *chains)
|
997 |
|
|
{
|
998 |
|
|
while (chains)
|
999 |
|
|
{
|
1000 |
|
|
struct du_chain *this = chains;
|
1001 |
|
|
int r = REGNO (*this->loc);
|
1002 |
|
|
int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
|
1003 |
|
|
fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
|
1004 |
|
|
while (this)
|
1005 |
|
|
{
|
1006 |
|
|
fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
|
1007 |
|
|
reg_class_names[this->cl]);
|
1008 |
|
|
this = this->next_use;
|
1009 |
|
|
}
|
1010 |
|
|
fprintf (dump_file, "\n");
|
1011 |
|
|
chains = chains->next_chain;
|
1012 |
|
|
}
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
/* The following code does forward propagation of hard register copies.
|
1016 |
|
|
The object is to eliminate as many dependencies as possible, so that
|
1017 |
|
|
we have the most scheduling freedom. As a side effect, we also clean
|
1018 |
|
|
up some silly register allocation decisions made by reload. This
|
1019 |
|
|
code may be obsoleted by a new register allocator. */
|
1020 |
|
|
|
1021 |
|
|
/* For each register, we have a list of registers that contain the same
|
1022 |
|
|
value. The OLDEST_REGNO field points to the head of the list, and
|
1023 |
|
|
the NEXT_REGNO field runs through the list. The MODE field indicates
|
1024 |
|
|
what mode the data is known to be in; this field is VOIDmode when the
|
1025 |
|
|
register is not known to contain valid data. */
|
1026 |
|
|
|
1027 |
|
|
struct value_data_entry
|
1028 |
|
|
{
|
1029 |
|
|
enum machine_mode mode;
|
1030 |
|
|
unsigned int oldest_regno;
|
1031 |
|
|
unsigned int next_regno;
|
1032 |
|
|
};
|
1033 |
|
|
|
1034 |
|
|
struct value_data
|
1035 |
|
|
{
|
1036 |
|
|
struct value_data_entry e[FIRST_PSEUDO_REGISTER];
|
1037 |
|
|
unsigned int max_value_regs;
|
1038 |
|
|
};
|
1039 |
|
|
|
1040 |
|
|
static void kill_value_one_regno (unsigned, struct value_data *);
|
1041 |
|
|
static void kill_value_regno (unsigned, unsigned, struct value_data *);
|
1042 |
|
|
static void kill_value (rtx, struct value_data *);
|
1043 |
|
|
static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
|
1044 |
|
|
static void init_value_data (struct value_data *);
|
1045 |
|
|
static void kill_clobbered_value (rtx, rtx, void *);
|
1046 |
|
|
static void kill_set_value (rtx, rtx, void *);
|
1047 |
|
|
static int kill_autoinc_value (rtx *, void *);
|
1048 |
|
|
static void copy_value (rtx, rtx, struct value_data *);
|
1049 |
|
|
static bool mode_change_ok (enum machine_mode, enum machine_mode,
|
1050 |
|
|
unsigned int);
|
1051 |
|
|
static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
|
1052 |
|
|
enum machine_mode, unsigned int, unsigned int);
|
1053 |
|
|
static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
|
1054 |
|
|
static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
|
1055 |
|
|
struct value_data *);
|
1056 |
|
|
static bool replace_oldest_value_addr (rtx *, enum reg_class,
|
1057 |
|
|
enum machine_mode, rtx,
|
1058 |
|
|
struct value_data *);
|
1059 |
|
|
static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
|
1060 |
|
|
static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
|
1061 |
|
|
extern void debug_value_data (struct value_data *);
|
1062 |
|
|
#ifdef ENABLE_CHECKING
|
1063 |
|
|
static void validate_value_data (struct value_data *);
|
1064 |
|
|
#endif
|
1065 |
|
|
|
1066 |
|
|
/* Kill register REGNO. This involves removing it from any value
|
1067 |
|
|
lists, and resetting the value mode to VOIDmode. This is only a
|
1068 |
|
|
helper function; it does not handle any hard registers overlapping
|
1069 |
|
|
with REGNO. */
|
1070 |
|
|
|
1071 |
|
|
static void
|
1072 |
|
|
kill_value_one_regno (unsigned int regno, struct value_data *vd)
|
1073 |
|
|
{
|
1074 |
|
|
unsigned int i, next;
|
1075 |
|
|
|
1076 |
|
|
if (vd->e[regno].oldest_regno != regno)
|
1077 |
|
|
{
|
1078 |
|
|
for (i = vd->e[regno].oldest_regno;
|
1079 |
|
|
vd->e[i].next_regno != regno;
|
1080 |
|
|
i = vd->e[i].next_regno)
|
1081 |
|
|
continue;
|
1082 |
|
|
vd->e[i].next_regno = vd->e[regno].next_regno;
|
1083 |
|
|
}
|
1084 |
|
|
else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
|
1085 |
|
|
{
|
1086 |
|
|
for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
|
1087 |
|
|
vd->e[i].oldest_regno = next;
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
vd->e[regno].mode = VOIDmode;
|
1091 |
|
|
vd->e[regno].oldest_regno = regno;
|
1092 |
|
|
vd->e[regno].next_regno = INVALID_REGNUM;
|
1093 |
|
|
|
1094 |
|
|
#ifdef ENABLE_CHECKING
|
1095 |
|
|
validate_value_data (vd);
|
1096 |
|
|
#endif
|
1097 |
|
|
}
|
1098 |
|
|
|
1099 |
|
|
/* Kill the value in register REGNO for NREGS, and any other registers
|
1100 |
|
|
whose values overlap. */
|
1101 |
|
|
|
1102 |
|
|
static void
|
1103 |
|
|
kill_value_regno (unsigned int regno, unsigned int nregs,
|
1104 |
|
|
struct value_data *vd)
|
1105 |
|
|
{
|
1106 |
|
|
unsigned int j;
|
1107 |
|
|
|
1108 |
|
|
/* Kill the value we're told to kill. */
|
1109 |
|
|
for (j = 0; j < nregs; ++j)
|
1110 |
|
|
kill_value_one_regno (regno + j, vd);
|
1111 |
|
|
|
1112 |
|
|
/* Kill everything that overlapped what we're told to kill. */
|
1113 |
|
|
if (regno < vd->max_value_regs)
|
1114 |
|
|
j = 0;
|
1115 |
|
|
else
|
1116 |
|
|
j = regno - vd->max_value_regs;
|
1117 |
|
|
for (; j < regno; ++j)
|
1118 |
|
|
{
|
1119 |
|
|
unsigned int i, n;
|
1120 |
|
|
if (vd->e[j].mode == VOIDmode)
|
1121 |
|
|
continue;
|
1122 |
|
|
n = hard_regno_nregs[j][vd->e[j].mode];
|
1123 |
|
|
if (j + n > regno)
|
1124 |
|
|
for (i = 0; i < n; ++i)
|
1125 |
|
|
kill_value_one_regno (j + i, vd);
|
1126 |
|
|
}
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
/* Kill X. This is a convenience function wrapping kill_value_regno
|
1130 |
|
|
so that we mind the mode the register is in. */
|
1131 |
|
|
|
1132 |
|
|
static void
|
1133 |
|
|
kill_value (rtx x, struct value_data *vd)
|
1134 |
|
|
{
|
1135 |
|
|
rtx orig_rtx = x;
|
1136 |
|
|
|
1137 |
|
|
if (GET_CODE (x) == SUBREG)
|
1138 |
|
|
{
|
1139 |
|
|
x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
|
1140 |
|
|
GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
|
1141 |
|
|
if (x == NULL_RTX)
|
1142 |
|
|
x = SUBREG_REG (orig_rtx);
|
1143 |
|
|
}
|
1144 |
|
|
if (REG_P (x))
|
1145 |
|
|
{
|
1146 |
|
|
unsigned int regno = REGNO (x);
|
1147 |
|
|
unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
|
1148 |
|
|
|
1149 |
|
|
kill_value_regno (regno, n, vd);
|
1150 |
|
|
}
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* Remember that REGNO is valid in MODE. */
|
1154 |
|
|
|
1155 |
|
|
static void
|
1156 |
|
|
set_value_regno (unsigned int regno, enum machine_mode mode,
|
1157 |
|
|
struct value_data *vd)
|
1158 |
|
|
{
|
1159 |
|
|
unsigned int nregs;
|
1160 |
|
|
|
1161 |
|
|
vd->e[regno].mode = mode;
|
1162 |
|
|
|
1163 |
|
|
nregs = hard_regno_nregs[regno][mode];
|
1164 |
|
|
if (nregs > vd->max_value_regs)
|
1165 |
|
|
vd->max_value_regs = nregs;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
/* Initialize VD such that there are no known relationships between regs. */
|
1169 |
|
|
|
1170 |
|
|
static void
|
1171 |
|
|
init_value_data (struct value_data *vd)
|
1172 |
|
|
{
|
1173 |
|
|
int i;
|
1174 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
1175 |
|
|
{
|
1176 |
|
|
vd->e[i].mode = VOIDmode;
|
1177 |
|
|
vd->e[i].oldest_regno = i;
|
1178 |
|
|
vd->e[i].next_regno = INVALID_REGNUM;
|
1179 |
|
|
}
|
1180 |
|
|
vd->max_value_regs = 0;
|
1181 |
|
|
}
|
1182 |
|
|
|
1183 |
|
|
/* Called through note_stores. If X is clobbered, kill its value. */
|
1184 |
|
|
|
1185 |
|
|
static void
|
1186 |
|
|
kill_clobbered_value (rtx x, rtx set, void *data)
|
1187 |
|
|
{
|
1188 |
|
|
struct value_data *vd = data;
|
1189 |
|
|
if (GET_CODE (set) == CLOBBER)
|
1190 |
|
|
kill_value (x, vd);
|
1191 |
|
|
}
|
1192 |
|
|
|
1193 |
|
|
/* Called through note_stores. If X is set, not clobbered, kill its
|
1194 |
|
|
current value and install it as the root of its own value list. */
|
1195 |
|
|
|
1196 |
|
|
static void
|
1197 |
|
|
kill_set_value (rtx x, rtx set, void *data)
|
1198 |
|
|
{
|
1199 |
|
|
struct value_data *vd = data;
|
1200 |
|
|
if (GET_CODE (set) != CLOBBER)
|
1201 |
|
|
{
|
1202 |
|
|
kill_value (x, vd);
|
1203 |
|
|
if (REG_P (x))
|
1204 |
|
|
set_value_regno (REGNO (x), GET_MODE (x), vd);
|
1205 |
|
|
}
|
1206 |
|
|
}
|
1207 |
|
|
|
1208 |
|
|
/* Called through for_each_rtx. Kill any register used as the base of an
|
1209 |
|
|
auto-increment expression, and install that register as the root of its
|
1210 |
|
|
own value list. */
|
1211 |
|
|
|
1212 |
|
|
static int
|
1213 |
|
|
kill_autoinc_value (rtx *px, void *data)
|
1214 |
|
|
{
|
1215 |
|
|
rtx x = *px;
|
1216 |
|
|
struct value_data *vd = data;
|
1217 |
|
|
|
1218 |
|
|
if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
|
1219 |
|
|
{
|
1220 |
|
|
x = XEXP (x, 0);
|
1221 |
|
|
kill_value (x, vd);
|
1222 |
|
|
set_value_regno (REGNO (x), Pmode, vd);
|
1223 |
|
|
return -1;
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
return 0;
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
/* Assert that SRC has been copied to DEST. Adjust the data structures
|
1230 |
|
|
to reflect that SRC contains an older copy of the shared value. */
|
1231 |
|
|
|
1232 |
|
|
static void
|
1233 |
|
|
copy_value (rtx dest, rtx src, struct value_data *vd)
|
1234 |
|
|
{
|
1235 |
|
|
unsigned int dr = REGNO (dest);
|
1236 |
|
|
unsigned int sr = REGNO (src);
|
1237 |
|
|
unsigned int dn, sn;
|
1238 |
|
|
unsigned int i;
|
1239 |
|
|
|
1240 |
|
|
/* ??? At present, it's possible to see noop sets. It'd be nice if
|
1241 |
|
|
this were cleaned up beforehand... */
|
1242 |
|
|
if (sr == dr)
|
1243 |
|
|
return;
|
1244 |
|
|
|
1245 |
|
|
/* Do not propagate copies to the stack pointer, as that can leave
|
1246 |
|
|
memory accesses with no scheduling dependency on the stack update. */
|
1247 |
|
|
if (dr == STACK_POINTER_REGNUM)
|
1248 |
|
|
return;
|
1249 |
|
|
|
1250 |
|
|
/* Likewise with the frame pointer, if we're using one. */
|
1251 |
|
|
if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
|
1252 |
|
|
return;
|
1253 |
|
|
|
1254 |
|
|
/* Do not propagate copies to fixed or global registers, patterns
|
1255 |
|
|
can be relying to see particular fixed register or users can
|
1256 |
|
|
expect the chosen global register in asm. */
|
1257 |
|
|
if (fixed_regs[dr] || global_regs[dr])
|
1258 |
|
|
return;
|
1259 |
|
|
|
1260 |
|
|
/* If SRC and DEST overlap, don't record anything. */
|
1261 |
|
|
dn = hard_regno_nregs[dr][GET_MODE (dest)];
|
1262 |
|
|
sn = hard_regno_nregs[sr][GET_MODE (dest)];
|
1263 |
|
|
if ((dr > sr && dr < sr + sn)
|
1264 |
|
|
|| (sr > dr && sr < dr + dn))
|
1265 |
|
|
return;
|
1266 |
|
|
|
1267 |
|
|
/* If SRC had no assigned mode (i.e. we didn't know it was live)
|
1268 |
|
|
assign it now and assume the value came from an input argument
|
1269 |
|
|
or somesuch. */
|
1270 |
|
|
if (vd->e[sr].mode == VOIDmode)
|
1271 |
|
|
set_value_regno (sr, vd->e[dr].mode, vd);
|
1272 |
|
|
|
1273 |
|
|
/* If we are narrowing the input to a smaller number of hard regs,
|
1274 |
|
|
and it is in big endian, we are really extracting a high part.
|
1275 |
|
|
Since we generally associate a low part of a value with the value itself,
|
1276 |
|
|
we must not do the same for the high part.
|
1277 |
|
|
Note we can still get low parts for the same mode combination through
|
1278 |
|
|
a two-step copy involving differently sized hard regs.
|
1279 |
|
|
Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
|
1280 |
|
|
(set (reg:DI r0) (reg:DI fr0))
|
1281 |
|
|
(set (reg:SI fr2) (reg:SI r0))
|
1282 |
|
|
loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
|
1283 |
|
|
(set (reg:SI fr2) (reg:SI fr0))
|
1284 |
|
|
loads the high part of (reg:DI fr0) into fr2.
|
1285 |
|
|
|
1286 |
|
|
We can't properly represent the latter case in our tables, so don't
|
1287 |
|
|
record anything then. */
|
1288 |
|
|
else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
|
1289 |
|
|
&& (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
|
1290 |
|
|
? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
|
1291 |
|
|
return;
|
1292 |
|
|
|
1293 |
|
|
/* If SRC had been assigned a mode narrower than the copy, we can't
|
1294 |
|
|
link DEST into the chain, because not all of the pieces of the
|
1295 |
|
|
copy came from oldest_regno. */
|
1296 |
|
|
else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
|
1297 |
|
|
return;
|
1298 |
|
|
|
1299 |
|
|
/* Link DR at the end of the value chain used by SR. */
|
1300 |
|
|
|
1301 |
|
|
vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
|
1302 |
|
|
|
1303 |
|
|
for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
|
1304 |
|
|
continue;
|
1305 |
|
|
vd->e[i].next_regno = dr;
|
1306 |
|
|
|
1307 |
|
|
#ifdef ENABLE_CHECKING
|
1308 |
|
|
validate_value_data (vd);
|
1309 |
|
|
#endif
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
/* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
|
1313 |
|
|
|
1314 |
|
|
static bool
|
1315 |
|
|
mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
|
1316 |
|
|
unsigned int regno ATTRIBUTE_UNUSED)
|
1317 |
|
|
{
|
1318 |
|
|
if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
|
1319 |
|
|
return false;
|
1320 |
|
|
|
1321 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1322 |
|
|
return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
|
1323 |
|
|
#endif
|
1324 |
|
|
|
1325 |
|
|
return true;
|
1326 |
|
|
}
|
1327 |
|
|
|
1328 |
|
|
/* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
|
1329 |
|
|
was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
|
1330 |
|
|
in NEW_MODE.
|
1331 |
|
|
Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
|
1332 |
|
|
|
1333 |
|
|
static rtx
|
1334 |
|
|
maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
|
1335 |
|
|
enum machine_mode new_mode, unsigned int regno,
|
1336 |
|
|
unsigned int copy_regno ATTRIBUTE_UNUSED)
|
1337 |
|
|
{
|
1338 |
|
|
if (orig_mode == new_mode)
|
1339 |
|
|
return gen_rtx_raw_REG (new_mode, regno);
|
1340 |
|
|
else if (mode_change_ok (orig_mode, new_mode, regno))
|
1341 |
|
|
{
|
1342 |
|
|
int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
|
1343 |
|
|
int use_nregs = hard_regno_nregs[copy_regno][new_mode];
|
1344 |
|
|
int copy_offset
|
1345 |
|
|
= GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
|
1346 |
|
|
int offset
|
1347 |
|
|
= GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
|
1348 |
|
|
int byteoffset = offset % UNITS_PER_WORD;
|
1349 |
|
|
int wordoffset = offset - byteoffset;
|
1350 |
|
|
|
1351 |
|
|
offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
|
1352 |
|
|
+ (BYTES_BIG_ENDIAN ? byteoffset : 0));
|
1353 |
|
|
return gen_rtx_raw_REG (new_mode,
|
1354 |
|
|
regno + subreg_regno_offset (regno, orig_mode,
|
1355 |
|
|
offset,
|
1356 |
|
|
new_mode));
|
1357 |
|
|
}
|
1358 |
|
|
return NULL_RTX;
|
1359 |
|
|
}
|
1360 |
|
|
|
1361 |
|
|
/* Find the oldest copy of the value contained in REGNO that is in
|
1362 |
|
|
register class CL and has mode MODE. If found, return an rtx
|
1363 |
|
|
of that oldest register, otherwise return NULL. */
|
1364 |
|
|
|
1365 |
|
|
static rtx
|
1366 |
|
|
find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
|
1367 |
|
|
{
|
1368 |
|
|
unsigned int regno = REGNO (reg);
|
1369 |
|
|
enum machine_mode mode = GET_MODE (reg);
|
1370 |
|
|
unsigned int i;
|
1371 |
|
|
|
1372 |
|
|
/* If we are accessing REG in some mode other that what we set it in,
|
1373 |
|
|
make sure that the replacement is valid. In particular, consider
|
1374 |
|
|
(set (reg:DI r11) (...))
|
1375 |
|
|
(set (reg:SI r9) (reg:SI r11))
|
1376 |
|
|
(set (reg:SI r10) (...))
|
1377 |
|
|
(set (...) (reg:DI r9))
|
1378 |
|
|
Replacing r9 with r11 is invalid. */
|
1379 |
|
|
if (mode != vd->e[regno].mode)
|
1380 |
|
|
{
|
1381 |
|
|
if (hard_regno_nregs[regno][mode]
|
1382 |
|
|
> hard_regno_nregs[regno][vd->e[regno].mode])
|
1383 |
|
|
return NULL_RTX;
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
|
1387 |
|
|
{
|
1388 |
|
|
enum machine_mode oldmode = vd->e[i].mode;
|
1389 |
|
|
rtx new;
|
1390 |
|
|
unsigned int last;
|
1391 |
|
|
|
1392 |
|
|
for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
|
1393 |
|
|
if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
|
1394 |
|
|
return NULL_RTX;
|
1395 |
|
|
|
1396 |
|
|
new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
|
1397 |
|
|
if (new)
|
1398 |
|
|
{
|
1399 |
|
|
ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
|
1400 |
|
|
REG_ATTRS (new) = REG_ATTRS (reg);
|
1401 |
|
|
return new;
|
1402 |
|
|
}
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
return NULL_RTX;
|
1406 |
|
|
}
|
1407 |
|
|
|
1408 |
|
|
/* If possible, replace the register at *LOC with the oldest register
|
1409 |
|
|
in register class CL. Return true if successfully replaced. */
|
1410 |
|
|
|
1411 |
|
|
static bool
|
1412 |
|
|
replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
|
1413 |
|
|
struct value_data *vd)
|
1414 |
|
|
{
|
1415 |
|
|
rtx new = find_oldest_value_reg (cl, *loc, vd);
|
1416 |
|
|
if (new)
|
1417 |
|
|
{
|
1418 |
|
|
if (dump_file)
|
1419 |
|
|
fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
|
1420 |
|
|
INSN_UID (insn), REGNO (*loc), REGNO (new));
|
1421 |
|
|
|
1422 |
|
|
validate_change (insn, loc, new, 1);
|
1423 |
|
|
return true;
|
1424 |
|
|
}
|
1425 |
|
|
return false;
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
/* Similar to replace_oldest_value_reg, but *LOC contains an address.
|
1429 |
|
|
Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
|
1430 |
|
|
BASE_REG_CLASS depending on how the register is being considered. */
|
1431 |
|
|
|
1432 |
|
|
static bool
|
1433 |
|
|
replace_oldest_value_addr (rtx *loc, enum reg_class cl,
|
1434 |
|
|
enum machine_mode mode, rtx insn,
|
1435 |
|
|
struct value_data *vd)
|
1436 |
|
|
{
|
1437 |
|
|
rtx x = *loc;
|
1438 |
|
|
RTX_CODE code = GET_CODE (x);
|
1439 |
|
|
const char *fmt;
|
1440 |
|
|
int i, j;
|
1441 |
|
|
bool changed = false;
|
1442 |
|
|
|
1443 |
|
|
switch (code)
|
1444 |
|
|
{
|
1445 |
|
|
case PLUS:
|
1446 |
|
|
{
|
1447 |
|
|
rtx orig_op0 = XEXP (x, 0);
|
1448 |
|
|
rtx orig_op1 = XEXP (x, 1);
|
1449 |
|
|
RTX_CODE code0 = GET_CODE (orig_op0);
|
1450 |
|
|
RTX_CODE code1 = GET_CODE (orig_op1);
|
1451 |
|
|
rtx op0 = orig_op0;
|
1452 |
|
|
rtx op1 = orig_op1;
|
1453 |
|
|
rtx *locI = NULL;
|
1454 |
|
|
rtx *locB = NULL;
|
1455 |
|
|
enum rtx_code index_code = SCRATCH;
|
1456 |
|
|
|
1457 |
|
|
if (GET_CODE (op0) == SUBREG)
|
1458 |
|
|
{
|
1459 |
|
|
op0 = SUBREG_REG (op0);
|
1460 |
|
|
code0 = GET_CODE (op0);
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
if (GET_CODE (op1) == SUBREG)
|
1464 |
|
|
{
|
1465 |
|
|
op1 = SUBREG_REG (op1);
|
1466 |
|
|
code1 = GET_CODE (op1);
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
|
1470 |
|
|
|| code0 == ZERO_EXTEND || code1 == MEM)
|
1471 |
|
|
{
|
1472 |
|
|
locI = &XEXP (x, 0);
|
1473 |
|
|
locB = &XEXP (x, 1);
|
1474 |
|
|
index_code = GET_CODE (*locI);
|
1475 |
|
|
}
|
1476 |
|
|
else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
|
1477 |
|
|
|| code1 == ZERO_EXTEND || code0 == MEM)
|
1478 |
|
|
{
|
1479 |
|
|
locI = &XEXP (x, 1);
|
1480 |
|
|
locB = &XEXP (x, 0);
|
1481 |
|
|
index_code = GET_CODE (*locI);
|
1482 |
|
|
}
|
1483 |
|
|
else if (code0 == CONST_INT || code0 == CONST
|
1484 |
|
|
|| code0 == SYMBOL_REF || code0 == LABEL_REF)
|
1485 |
|
|
{
|
1486 |
|
|
locB = &XEXP (x, 1);
|
1487 |
|
|
index_code = GET_CODE (XEXP (x, 0));
|
1488 |
|
|
}
|
1489 |
|
|
else if (code1 == CONST_INT || code1 == CONST
|
1490 |
|
|
|| code1 == SYMBOL_REF || code1 == LABEL_REF)
|
1491 |
|
|
{
|
1492 |
|
|
locB = &XEXP (x, 0);
|
1493 |
|
|
index_code = GET_CODE (XEXP (x, 1));
|
1494 |
|
|
}
|
1495 |
|
|
else if (code0 == REG && code1 == REG)
|
1496 |
|
|
{
|
1497 |
|
|
int index_op;
|
1498 |
|
|
unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
|
1499 |
|
|
|
1500 |
|
|
if (REGNO_OK_FOR_INDEX_P (regno0)
|
1501 |
|
|
&& regno_ok_for_base_p (regno1, mode, PLUS, REG))
|
1502 |
|
|
index_op = 0;
|
1503 |
|
|
else if (REGNO_OK_FOR_INDEX_P (regno1)
|
1504 |
|
|
&& regno_ok_for_base_p (regno0, mode, PLUS, REG))
|
1505 |
|
|
index_op = 1;
|
1506 |
|
|
else if (regno_ok_for_base_p (regno1, mode, PLUS, REG))
|
1507 |
|
|
index_op = 0;
|
1508 |
|
|
else if (regno_ok_for_base_p (regno0, mode, PLUS, REG))
|
1509 |
|
|
index_op = 1;
|
1510 |
|
|
else if (REGNO_OK_FOR_INDEX_P (regno1))
|
1511 |
|
|
index_op = 1;
|
1512 |
|
|
else
|
1513 |
|
|
index_op = 0;
|
1514 |
|
|
|
1515 |
|
|
locI = &XEXP (x, index_op);
|
1516 |
|
|
locB = &XEXP (x, !index_op);
|
1517 |
|
|
index_code = GET_CODE (*locI);
|
1518 |
|
|
}
|
1519 |
|
|
else if (code0 == REG)
|
1520 |
|
|
{
|
1521 |
|
|
locI = &XEXP (x, 0);
|
1522 |
|
|
locB = &XEXP (x, 1);
|
1523 |
|
|
index_code = GET_CODE (*locI);
|
1524 |
|
|
}
|
1525 |
|
|
else if (code1 == REG)
|
1526 |
|
|
{
|
1527 |
|
|
locI = &XEXP (x, 1);
|
1528 |
|
|
locB = &XEXP (x, 0);
|
1529 |
|
|
index_code = GET_CODE (*locI);
|
1530 |
|
|
}
|
1531 |
|
|
|
1532 |
|
|
if (locI)
|
1533 |
|
|
changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
|
1534 |
|
|
insn, vd);
|
1535 |
|
|
if (locB)
|
1536 |
|
|
changed |= replace_oldest_value_addr (locB,
|
1537 |
|
|
base_reg_class (mode, PLUS,
|
1538 |
|
|
index_code),
|
1539 |
|
|
mode, insn, vd);
|
1540 |
|
|
return changed;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
case POST_INC:
|
1544 |
|
|
case POST_DEC:
|
1545 |
|
|
case POST_MODIFY:
|
1546 |
|
|
case PRE_INC:
|
1547 |
|
|
case PRE_DEC:
|
1548 |
|
|
case PRE_MODIFY:
|
1549 |
|
|
return false;
|
1550 |
|
|
|
1551 |
|
|
case MEM:
|
1552 |
|
|
return replace_oldest_value_mem (x, insn, vd);
|
1553 |
|
|
|
1554 |
|
|
case REG:
|
1555 |
|
|
return replace_oldest_value_reg (loc, cl, insn, vd);
|
1556 |
|
|
|
1557 |
|
|
default:
|
1558 |
|
|
break;
|
1559 |
|
|
}
|
1560 |
|
|
|
1561 |
|
|
fmt = GET_RTX_FORMAT (code);
|
1562 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1563 |
|
|
{
|
1564 |
|
|
if (fmt[i] == 'e')
|
1565 |
|
|
changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
|
1566 |
|
|
insn, vd);
|
1567 |
|
|
else if (fmt[i] == 'E')
|
1568 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
1569 |
|
|
changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
|
1570 |
|
|
mode, insn, vd);
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
return changed;
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
/* Similar to replace_oldest_value_reg, but X contains a memory. */
|
1577 |
|
|
|
1578 |
|
|
static bool
|
1579 |
|
|
replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
|
1580 |
|
|
{
|
1581 |
|
|
return replace_oldest_value_addr (&XEXP (x, 0),
|
1582 |
|
|
base_reg_class (GET_MODE (x), MEM,
|
1583 |
|
|
SCRATCH),
|
1584 |
|
|
GET_MODE (x), insn, vd);
|
1585 |
|
|
}
|
1586 |
|
|
|
1587 |
|
|
/* Perform the forward copy propagation on basic block BB. */
|
1588 |
|
|
|
1589 |
|
|
static bool
|
1590 |
|
|
copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
|
1591 |
|
|
{
|
1592 |
|
|
bool changed = false;
|
1593 |
|
|
rtx insn;
|
1594 |
|
|
|
1595 |
|
|
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
1596 |
|
|
{
|
1597 |
|
|
int n_ops, i, alt, predicated;
|
1598 |
|
|
bool is_asm, any_replacements;
|
1599 |
|
|
rtx set;
|
1600 |
|
|
bool replaced[MAX_RECOG_OPERANDS];
|
1601 |
|
|
|
1602 |
|
|
if (! INSN_P (insn))
|
1603 |
|
|
{
|
1604 |
|
|
if (insn == BB_END (bb))
|
1605 |
|
|
break;
|
1606 |
|
|
else
|
1607 |
|
|
continue;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
set = single_set (insn);
|
1611 |
|
|
extract_insn (insn);
|
1612 |
|
|
if (! constrain_operands (1))
|
1613 |
|
|
fatal_insn_not_found (insn);
|
1614 |
|
|
preprocess_constraints ();
|
1615 |
|
|
alt = which_alternative;
|
1616 |
|
|
n_ops = recog_data.n_operands;
|
1617 |
|
|
is_asm = asm_noperands (PATTERN (insn)) >= 0;
|
1618 |
|
|
|
1619 |
|
|
/* Simplify the code below by rewriting things to reflect
|
1620 |
|
|
matching constraints. Also promote OP_OUT to OP_INOUT
|
1621 |
|
|
in predicated instructions. */
|
1622 |
|
|
|
1623 |
|
|
predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
|
1624 |
|
|
for (i = 0; i < n_ops; ++i)
|
1625 |
|
|
{
|
1626 |
|
|
int matches = recog_op_alt[i][alt].matches;
|
1627 |
|
|
if (matches >= 0)
|
1628 |
|
|
recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
|
1629 |
|
|
if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
|
1630 |
|
|
|| (predicated && recog_data.operand_type[i] == OP_OUT))
|
1631 |
|
|
recog_data.operand_type[i] = OP_INOUT;
|
1632 |
|
|
}
|
1633 |
|
|
|
1634 |
|
|
/* For each earlyclobber operand, zap the value data. */
|
1635 |
|
|
for (i = 0; i < n_ops; i++)
|
1636 |
|
|
if (recog_op_alt[i][alt].earlyclobber)
|
1637 |
|
|
kill_value (recog_data.operand[i], vd);
|
1638 |
|
|
|
1639 |
|
|
/* Within asms, a clobber cannot overlap inputs or outputs.
|
1640 |
|
|
I wouldn't think this were true for regular insns, but
|
1641 |
|
|
scan_rtx treats them like that... */
|
1642 |
|
|
note_stores (PATTERN (insn), kill_clobbered_value, vd);
|
1643 |
|
|
|
1644 |
|
|
/* Kill all auto-incremented values. */
|
1645 |
|
|
/* ??? REG_INC is useless, since stack pushes aren't done that way. */
|
1646 |
|
|
for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
|
1647 |
|
|
|
1648 |
|
|
/* Kill all early-clobbered operands. */
|
1649 |
|
|
for (i = 0; i < n_ops; i++)
|
1650 |
|
|
if (recog_op_alt[i][alt].earlyclobber)
|
1651 |
|
|
kill_value (recog_data.operand[i], vd);
|
1652 |
|
|
|
1653 |
|
|
/* Special-case plain move instructions, since we may well
|
1654 |
|
|
be able to do the move from a different register class. */
|
1655 |
|
|
if (set && REG_P (SET_SRC (set)))
|
1656 |
|
|
{
|
1657 |
|
|
rtx src = SET_SRC (set);
|
1658 |
|
|
unsigned int regno = REGNO (src);
|
1659 |
|
|
enum machine_mode mode = GET_MODE (src);
|
1660 |
|
|
unsigned int i;
|
1661 |
|
|
rtx new;
|
1662 |
|
|
|
1663 |
|
|
/* If we are accessing SRC in some mode other that what we
|
1664 |
|
|
set it in, make sure that the replacement is valid. */
|
1665 |
|
|
if (mode != vd->e[regno].mode)
|
1666 |
|
|
{
|
1667 |
|
|
if (hard_regno_nregs[regno][mode]
|
1668 |
|
|
> hard_regno_nregs[regno][vd->e[regno].mode])
|
1669 |
|
|
goto no_move_special_case;
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
/* If the destination is also a register, try to find a source
|
1673 |
|
|
register in the same class. */
|
1674 |
|
|
if (REG_P (SET_DEST (set)))
|
1675 |
|
|
{
|
1676 |
|
|
new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
|
1677 |
|
|
if (new && validate_change (insn, &SET_SRC (set), new, 0))
|
1678 |
|
|
{
|
1679 |
|
|
if (dump_file)
|
1680 |
|
|
fprintf (dump_file,
|
1681 |
|
|
"insn %u: replaced reg %u with %u\n",
|
1682 |
|
|
INSN_UID (insn), regno, REGNO (new));
|
1683 |
|
|
changed = true;
|
1684 |
|
|
goto did_replacement;
|
1685 |
|
|
}
|
1686 |
|
|
}
|
1687 |
|
|
|
1688 |
|
|
/* Otherwise, try all valid registers and see if its valid. */
|
1689 |
|
|
for (i = vd->e[regno].oldest_regno; i != regno;
|
1690 |
|
|
i = vd->e[i].next_regno)
|
1691 |
|
|
{
|
1692 |
|
|
new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
|
1693 |
|
|
mode, i, regno);
|
1694 |
|
|
if (new != NULL_RTX)
|
1695 |
|
|
{
|
1696 |
|
|
if (validate_change (insn, &SET_SRC (set), new, 0))
|
1697 |
|
|
{
|
1698 |
|
|
ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
|
1699 |
|
|
REG_ATTRS (new) = REG_ATTRS (src);
|
1700 |
|
|
if (dump_file)
|
1701 |
|
|
fprintf (dump_file,
|
1702 |
|
|
"insn %u: replaced reg %u with %u\n",
|
1703 |
|
|
INSN_UID (insn), regno, REGNO (new));
|
1704 |
|
|
changed = true;
|
1705 |
|
|
goto did_replacement;
|
1706 |
|
|
}
|
1707 |
|
|
}
|
1708 |
|
|
}
|
1709 |
|
|
}
|
1710 |
|
|
no_move_special_case:
|
1711 |
|
|
|
1712 |
|
|
any_replacements = false;
|
1713 |
|
|
|
1714 |
|
|
/* For each input operand, replace a hard register with the
|
1715 |
|
|
eldest live copy that's in an appropriate register class. */
|
1716 |
|
|
for (i = 0; i < n_ops; i++)
|
1717 |
|
|
{
|
1718 |
|
|
replaced[i] = false;
|
1719 |
|
|
|
1720 |
|
|
/* Don't scan match_operand here, since we've no reg class
|
1721 |
|
|
information to pass down. Any operands that we could
|
1722 |
|
|
substitute in will be represented elsewhere. */
|
1723 |
|
|
if (recog_data.constraints[i][0] == '\0')
|
1724 |
|
|
continue;
|
1725 |
|
|
|
1726 |
|
|
/* Don't replace in asms intentionally referencing hard regs. */
|
1727 |
|
|
if (is_asm && REG_P (recog_data.operand[i])
|
1728 |
|
|
&& (REGNO (recog_data.operand[i])
|
1729 |
|
|
== ORIGINAL_REGNO (recog_data.operand[i])))
|
1730 |
|
|
continue;
|
1731 |
|
|
|
1732 |
|
|
if (recog_data.operand_type[i] == OP_IN)
|
1733 |
|
|
{
|
1734 |
|
|
if (recog_op_alt[i][alt].is_address)
|
1735 |
|
|
replaced[i]
|
1736 |
|
|
= replace_oldest_value_addr (recog_data.operand_loc[i],
|
1737 |
|
|
recog_op_alt[i][alt].cl,
|
1738 |
|
|
VOIDmode, insn, vd);
|
1739 |
|
|
else if (REG_P (recog_data.operand[i]))
|
1740 |
|
|
replaced[i]
|
1741 |
|
|
= replace_oldest_value_reg (recog_data.operand_loc[i],
|
1742 |
|
|
recog_op_alt[i][alt].cl,
|
1743 |
|
|
insn, vd);
|
1744 |
|
|
else if (MEM_P (recog_data.operand[i]))
|
1745 |
|
|
replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
|
1746 |
|
|
insn, vd);
|
1747 |
|
|
}
|
1748 |
|
|
else if (MEM_P (recog_data.operand[i]))
|
1749 |
|
|
replaced[i] = replace_oldest_value_mem (recog_data.operand[i],
|
1750 |
|
|
insn, vd);
|
1751 |
|
|
|
1752 |
|
|
/* If we performed any replacement, update match_dups. */
|
1753 |
|
|
if (replaced[i])
|
1754 |
|
|
{
|
1755 |
|
|
int j;
|
1756 |
|
|
rtx new;
|
1757 |
|
|
|
1758 |
|
|
new = *recog_data.operand_loc[i];
|
1759 |
|
|
recog_data.operand[i] = new;
|
1760 |
|
|
for (j = 0; j < recog_data.n_dups; j++)
|
1761 |
|
|
if (recog_data.dup_num[j] == i)
|
1762 |
|
|
validate_change (insn, recog_data.dup_loc[j], new, 1);
|
1763 |
|
|
|
1764 |
|
|
any_replacements = true;
|
1765 |
|
|
}
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
if (any_replacements)
|
1769 |
|
|
{
|
1770 |
|
|
if (! apply_change_group ())
|
1771 |
|
|
{
|
1772 |
|
|
for (i = 0; i < n_ops; i++)
|
1773 |
|
|
if (replaced[i])
|
1774 |
|
|
{
|
1775 |
|
|
rtx old = *recog_data.operand_loc[i];
|
1776 |
|
|
recog_data.operand[i] = old;
|
1777 |
|
|
}
|
1778 |
|
|
|
1779 |
|
|
if (dump_file)
|
1780 |
|
|
fprintf (dump_file,
|
1781 |
|
|
"insn %u: reg replacements not verified\n",
|
1782 |
|
|
INSN_UID (insn));
|
1783 |
|
|
}
|
1784 |
|
|
else
|
1785 |
|
|
changed = true;
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
did_replacement:
|
1789 |
|
|
/* Clobber call-clobbered registers. */
|
1790 |
|
|
if (CALL_P (insn))
|
1791 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1792 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
|
1793 |
|
|
kill_value_regno (i, 1, vd);
|
1794 |
|
|
|
1795 |
|
|
/* Notice stores. */
|
1796 |
|
|
note_stores (PATTERN (insn), kill_set_value, vd);
|
1797 |
|
|
|
1798 |
|
|
/* Notice copies. */
|
1799 |
|
|
if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
|
1800 |
|
|
copy_value (SET_DEST (set), SET_SRC (set), vd);
|
1801 |
|
|
|
1802 |
|
|
if (insn == BB_END (bb))
|
1803 |
|
|
break;
|
1804 |
|
|
}
|
1805 |
|
|
|
1806 |
|
|
return changed;
|
1807 |
|
|
}
|
1808 |
|
|
|
1809 |
|
|
/* Main entry point for the forward copy propagation optimization. */
|
1810 |
|
|
|
1811 |
|
|
static void
|
1812 |
|
|
copyprop_hardreg_forward (void)
|
1813 |
|
|
{
|
1814 |
|
|
struct value_data *all_vd;
|
1815 |
|
|
bool need_refresh;
|
1816 |
|
|
basic_block bb;
|
1817 |
|
|
sbitmap visited;
|
1818 |
|
|
|
1819 |
|
|
need_refresh = false;
|
1820 |
|
|
|
1821 |
|
|
all_vd = XNEWVEC (struct value_data, last_basic_block);
|
1822 |
|
|
|
1823 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
1824 |
|
|
sbitmap_zero (visited);
|
1825 |
|
|
|
1826 |
|
|
FOR_EACH_BB (bb)
|
1827 |
|
|
{
|
1828 |
|
|
SET_BIT (visited, bb->index);
|
1829 |
|
|
|
1830 |
|
|
/* If a block has a single predecessor, that we've already
|
1831 |
|
|
processed, begin with the value data that was live at
|
1832 |
|
|
the end of the predecessor block. */
|
1833 |
|
|
/* ??? Ought to use more intelligent queuing of blocks. */
|
1834 |
|
|
if (single_pred_p (bb)
|
1835 |
|
|
&& TEST_BIT (visited, single_pred (bb)->index)
|
1836 |
|
|
&& ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
|
1837 |
|
|
all_vd[bb->index] = all_vd[single_pred (bb)->index];
|
1838 |
|
|
else
|
1839 |
|
|
init_value_data (all_vd + bb->index);
|
1840 |
|
|
|
1841 |
|
|
if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
|
1842 |
|
|
need_refresh = true;
|
1843 |
|
|
}
|
1844 |
|
|
|
1845 |
|
|
sbitmap_free (visited);
|
1846 |
|
|
|
1847 |
|
|
if (need_refresh)
|
1848 |
|
|
{
|
1849 |
|
|
if (dump_file)
|
1850 |
|
|
fputs ("\n\n", dump_file);
|
1851 |
|
|
|
1852 |
|
|
/* ??? Irritatingly, delete_noop_moves does not take a set of blocks
|
1853 |
|
|
to scan, so we have to do a life update with no initial set of
|
1854 |
|
|
blocks Just In Case. */
|
1855 |
|
|
delete_noop_moves ();
|
1856 |
|
|
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
|
1857 |
|
|
PROP_DEATH_NOTES
|
1858 |
|
|
| PROP_SCAN_DEAD_CODE
|
1859 |
|
|
| PROP_KILL_DEAD_CODE);
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
free (all_vd);
|
1863 |
|
|
}
|
1864 |
|
|
|
1865 |
|
|
/* Dump the value chain data to stderr. */
|
1866 |
|
|
|
1867 |
|
|
void
|
1868 |
|
|
debug_value_data (struct value_data *vd)
|
1869 |
|
|
{
|
1870 |
|
|
HARD_REG_SET set;
|
1871 |
|
|
unsigned int i, j;
|
1872 |
|
|
|
1873 |
|
|
CLEAR_HARD_REG_SET (set);
|
1874 |
|
|
|
1875 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
1876 |
|
|
if (vd->e[i].oldest_regno == i)
|
1877 |
|
|
{
|
1878 |
|
|
if (vd->e[i].mode == VOIDmode)
|
1879 |
|
|
{
|
1880 |
|
|
if (vd->e[i].next_regno != INVALID_REGNUM)
|
1881 |
|
|
fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
|
1882 |
|
|
i, vd->e[i].next_regno);
|
1883 |
|
|
continue;
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
SET_HARD_REG_BIT (set, i);
|
1887 |
|
|
fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
|
1888 |
|
|
|
1889 |
|
|
for (j = vd->e[i].next_regno;
|
1890 |
|
|
j != INVALID_REGNUM;
|
1891 |
|
|
j = vd->e[j].next_regno)
|
1892 |
|
|
{
|
1893 |
|
|
if (TEST_HARD_REG_BIT (set, j))
|
1894 |
|
|
{
|
1895 |
|
|
fprintf (stderr, "[%u] Loop in regno chain\n", j);
|
1896 |
|
|
return;
|
1897 |
|
|
}
|
1898 |
|
|
|
1899 |
|
|
if (vd->e[j].oldest_regno != i)
|
1900 |
|
|
{
|
1901 |
|
|
fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
|
1902 |
|
|
j, vd->e[j].oldest_regno);
|
1903 |
|
|
return;
|
1904 |
|
|
}
|
1905 |
|
|
SET_HARD_REG_BIT (set, j);
|
1906 |
|
|
fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
|
1907 |
|
|
}
|
1908 |
|
|
fputc ('\n', stderr);
|
1909 |
|
|
}
|
1910 |
|
|
|
1911 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
1912 |
|
|
if (! TEST_HARD_REG_BIT (set, i)
|
1913 |
|
|
&& (vd->e[i].mode != VOIDmode
|
1914 |
|
|
|| vd->e[i].oldest_regno != i
|
1915 |
|
|
|| vd->e[i].next_regno != INVALID_REGNUM))
|
1916 |
|
|
fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
|
1917 |
|
|
i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
|
1918 |
|
|
vd->e[i].next_regno);
|
1919 |
|
|
}
|
1920 |
|
|
|
1921 |
|
|
#ifdef ENABLE_CHECKING
|
1922 |
|
|
static void
|
1923 |
|
|
validate_value_data (struct value_data *vd)
|
1924 |
|
|
{
|
1925 |
|
|
HARD_REG_SET set;
|
1926 |
|
|
unsigned int i, j;
|
1927 |
|
|
|
1928 |
|
|
CLEAR_HARD_REG_SET (set);
|
1929 |
|
|
|
1930 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
1931 |
|
|
if (vd->e[i].oldest_regno == i)
|
1932 |
|
|
{
|
1933 |
|
|
if (vd->e[i].mode == VOIDmode)
|
1934 |
|
|
{
|
1935 |
|
|
if (vd->e[i].next_regno != INVALID_REGNUM)
|
1936 |
|
|
internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
|
1937 |
|
|
i, vd->e[i].next_regno);
|
1938 |
|
|
continue;
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
SET_HARD_REG_BIT (set, i);
|
1942 |
|
|
|
1943 |
|
|
for (j = vd->e[i].next_regno;
|
1944 |
|
|
j != INVALID_REGNUM;
|
1945 |
|
|
j = vd->e[j].next_regno)
|
1946 |
|
|
{
|
1947 |
|
|
if (TEST_HARD_REG_BIT (set, j))
|
1948 |
|
|
internal_error ("validate_value_data: Loop in regno chain (%u)",
|
1949 |
|
|
j);
|
1950 |
|
|
if (vd->e[j].oldest_regno != i)
|
1951 |
|
|
internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
|
1952 |
|
|
j, vd->e[j].oldest_regno);
|
1953 |
|
|
|
1954 |
|
|
SET_HARD_REG_BIT (set, j);
|
1955 |
|
|
}
|
1956 |
|
|
}
|
1957 |
|
|
|
1958 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
1959 |
|
|
if (! TEST_HARD_REG_BIT (set, i)
|
1960 |
|
|
&& (vd->e[i].mode != VOIDmode
|
1961 |
|
|
|| vd->e[i].oldest_regno != i
|
1962 |
|
|
|| vd->e[i].next_regno != INVALID_REGNUM))
|
1963 |
|
|
internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
|
1964 |
|
|
i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
|
1965 |
|
|
vd->e[i].next_regno);
|
1966 |
|
|
}
|
1967 |
|
|
#endif
|
1968 |
|
|
|
1969 |
|
|
static bool
|
1970 |
|
|
gate_handle_regrename (void)
|
1971 |
|
|
{
|
1972 |
|
|
return (optimize > 0 && (flag_rename_registers || flag_cprop_registers));
|
1973 |
|
|
}
|
1974 |
|
|
|
1975 |
|
|
|
1976 |
|
|
/* Run the regrename and cprop passes. */
|
1977 |
|
|
static unsigned int
|
1978 |
|
|
rest_of_handle_regrename (void)
|
1979 |
|
|
{
|
1980 |
|
|
if (flag_rename_registers)
|
1981 |
|
|
regrename_optimize ();
|
1982 |
|
|
if (flag_cprop_registers)
|
1983 |
|
|
copyprop_hardreg_forward ();
|
1984 |
|
|
return 0;
|
1985 |
|
|
}
|
1986 |
|
|
|
1987 |
|
|
struct tree_opt_pass pass_regrename =
|
1988 |
|
|
{
|
1989 |
|
|
"rnreg", /* name */
|
1990 |
|
|
gate_handle_regrename, /* gate */
|
1991 |
|
|
rest_of_handle_regrename, /* execute */
|
1992 |
|
|
NULL, /* sub */
|
1993 |
|
|
NULL, /* next */
|
1994 |
|
|
0, /* static_pass_number */
|
1995 |
|
|
TV_RENAME_REGISTERS, /* tv_id */
|
1996 |
|
|
0, /* properties_required */
|
1997 |
|
|
0, /* properties_provided */
|
1998 |
|
|
0, /* properties_destroyed */
|
1999 |
|
|
0, /* todo_flags_start */
|
2000 |
|
|
TODO_dump_func, /* todo_flags_finish */
|
2001 |
|
|
'n' /* letter */
|
2002 |
|
|
};
|
2003 |
|
|
|