1 |
38 |
julius |
/* C-compiler utilities for types and variables storage layout
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "function.h"
|
32 |
|
|
#include "expr.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "toplev.h"
|
35 |
|
|
#include "ggc.h"
|
36 |
|
|
#include "target.h"
|
37 |
|
|
#include "langhooks.h"
|
38 |
|
|
#include "regs.h"
|
39 |
|
|
#include "params.h"
|
40 |
|
|
|
41 |
|
|
/* Data type for the expressions representing sizes of data types.
|
42 |
|
|
It is the first integer type laid out. */
|
43 |
|
|
tree sizetype_tab[(int) TYPE_KIND_LAST];
|
44 |
|
|
|
45 |
|
|
/* If nonzero, this is an upper limit on alignment of structure fields.
|
46 |
|
|
The value is measured in bits. */
|
47 |
|
|
unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
|
48 |
|
|
/* ... and its original value in bytes, specified via -fpack-struct=<value>. */
|
49 |
|
|
unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
|
50 |
|
|
|
51 |
|
|
/* Nonzero if all REFERENCE_TYPEs are internal and hence should be
|
52 |
|
|
allocated in Pmode, not ptr_mode. Set only by internal_reference_types
|
53 |
|
|
called only by a front end. */
|
54 |
|
|
static int reference_types_internal = 0;
|
55 |
|
|
|
56 |
|
|
static void finalize_record_size (record_layout_info);
|
57 |
|
|
static void finalize_type_size (tree);
|
58 |
|
|
static void place_union_field (record_layout_info, tree);
|
59 |
|
|
#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
|
60 |
|
|
static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
|
61 |
|
|
HOST_WIDE_INT, tree);
|
62 |
|
|
#endif
|
63 |
|
|
extern void debug_rli (record_layout_info);
|
64 |
|
|
|
65 |
|
|
/* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
|
66 |
|
|
|
67 |
|
|
static GTY(()) tree pending_sizes;
|
68 |
|
|
|
69 |
|
|
/* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
|
70 |
|
|
by front end. */
|
71 |
|
|
|
72 |
|
|
void
|
73 |
|
|
internal_reference_types (void)
|
74 |
|
|
{
|
75 |
|
|
reference_types_internal = 1;
|
76 |
|
|
}
|
77 |
|
|
|
78 |
|
|
/* Get a list of all the objects put on the pending sizes list. */
|
79 |
|
|
|
80 |
|
|
tree
|
81 |
|
|
get_pending_sizes (void)
|
82 |
|
|
{
|
83 |
|
|
tree chain = pending_sizes;
|
84 |
|
|
|
85 |
|
|
pending_sizes = 0;
|
86 |
|
|
return chain;
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
/* Add EXPR to the pending sizes list. */
|
90 |
|
|
|
91 |
|
|
void
|
92 |
|
|
put_pending_size (tree expr)
|
93 |
|
|
{
|
94 |
|
|
/* Strip any simple arithmetic from EXPR to see if it has an underlying
|
95 |
|
|
SAVE_EXPR. */
|
96 |
|
|
expr = skip_simple_arithmetic (expr);
|
97 |
|
|
|
98 |
|
|
if (TREE_CODE (expr) == SAVE_EXPR)
|
99 |
|
|
pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/* Put a chain of objects into the pending sizes list, which must be
|
103 |
|
|
empty. */
|
104 |
|
|
|
105 |
|
|
void
|
106 |
|
|
put_pending_sizes (tree chain)
|
107 |
|
|
{
|
108 |
|
|
gcc_assert (!pending_sizes);
|
109 |
|
|
pending_sizes = chain;
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
|
113 |
|
|
to serve as the actual size-expression for a type or decl. */
|
114 |
|
|
|
115 |
|
|
tree
|
116 |
|
|
variable_size (tree size)
|
117 |
|
|
{
|
118 |
|
|
tree save;
|
119 |
|
|
|
120 |
|
|
/* If the language-processor is to take responsibility for variable-sized
|
121 |
|
|
items (e.g., languages which have elaboration procedures like Ada),
|
122 |
|
|
just return SIZE unchanged. Likewise for self-referential sizes and
|
123 |
|
|
constant sizes. */
|
124 |
|
|
if (TREE_CONSTANT (size)
|
125 |
|
|
|| lang_hooks.decls.global_bindings_p () < 0
|
126 |
|
|
|| CONTAINS_PLACEHOLDER_P (size))
|
127 |
|
|
return size;
|
128 |
|
|
|
129 |
|
|
size = save_expr (size);
|
130 |
|
|
|
131 |
|
|
/* If an array with a variable number of elements is declared, and
|
132 |
|
|
the elements require destruction, we will emit a cleanup for the
|
133 |
|
|
array. That cleanup is run both on normal exit from the block
|
134 |
|
|
and in the exception-handler for the block. Normally, when code
|
135 |
|
|
is used in both ordinary code and in an exception handler it is
|
136 |
|
|
`unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
|
137 |
|
|
not wish to do that here; the array-size is the same in both
|
138 |
|
|
places. */
|
139 |
|
|
save = skip_simple_arithmetic (size);
|
140 |
|
|
|
141 |
|
|
if (cfun && cfun->x_dont_save_pending_sizes_p)
|
142 |
|
|
/* The front-end doesn't want us to keep a list of the expressions
|
143 |
|
|
that determine sizes for variable size objects. Trust it. */
|
144 |
|
|
return size;
|
145 |
|
|
|
146 |
|
|
if (lang_hooks.decls.global_bindings_p ())
|
147 |
|
|
{
|
148 |
|
|
if (TREE_CONSTANT (size))
|
149 |
|
|
error ("type size can%'t be explicitly evaluated");
|
150 |
|
|
else
|
151 |
|
|
error ("variable-size type declared outside of any function");
|
152 |
|
|
|
153 |
|
|
return size_one_node;
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
put_pending_size (save);
|
157 |
|
|
|
158 |
|
|
return size;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
#ifndef MAX_FIXED_MODE_SIZE
|
162 |
|
|
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
|
163 |
|
|
#endif
|
164 |
|
|
|
165 |
|
|
/* Return the machine mode to use for a nonscalar of SIZE bits. The
|
166 |
|
|
mode must be in class CLASS, and have exactly that many value bits;
|
167 |
|
|
it may have padding as well. If LIMIT is nonzero, modes of wider
|
168 |
|
|
than MAX_FIXED_MODE_SIZE will not be used. */
|
169 |
|
|
|
170 |
|
|
enum machine_mode
|
171 |
|
|
mode_for_size (unsigned int size, enum mode_class class, int limit)
|
172 |
|
|
{
|
173 |
|
|
enum machine_mode mode;
|
174 |
|
|
|
175 |
|
|
if (limit && size > MAX_FIXED_MODE_SIZE)
|
176 |
|
|
return BLKmode;
|
177 |
|
|
|
178 |
|
|
/* Get the first mode which has this size, in the specified class. */
|
179 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
|
180 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
181 |
|
|
if (GET_MODE_PRECISION (mode) == size)
|
182 |
|
|
return mode;
|
183 |
|
|
|
184 |
|
|
return BLKmode;
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
/* Similar, except passed a tree node. */
|
188 |
|
|
|
189 |
|
|
enum machine_mode
|
190 |
|
|
mode_for_size_tree (tree size, enum mode_class class, int limit)
|
191 |
|
|
{
|
192 |
|
|
unsigned HOST_WIDE_INT uhwi;
|
193 |
|
|
unsigned int ui;
|
194 |
|
|
|
195 |
|
|
if (!host_integerp (size, 1))
|
196 |
|
|
return BLKmode;
|
197 |
|
|
uhwi = tree_low_cst (size, 1);
|
198 |
|
|
ui = uhwi;
|
199 |
|
|
if (uhwi != ui)
|
200 |
|
|
return BLKmode;
|
201 |
|
|
return mode_for_size (ui, class, limit);
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/* Similar, but never return BLKmode; return the narrowest mode that
|
205 |
|
|
contains at least the requested number of value bits. */
|
206 |
|
|
|
207 |
|
|
enum machine_mode
|
208 |
|
|
smallest_mode_for_size (unsigned int size, enum mode_class class)
|
209 |
|
|
{
|
210 |
|
|
enum machine_mode mode;
|
211 |
|
|
|
212 |
|
|
/* Get the first mode which has at least this size, in the
|
213 |
|
|
specified class. */
|
214 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
|
215 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
216 |
|
|
if (GET_MODE_PRECISION (mode) >= size)
|
217 |
|
|
return mode;
|
218 |
|
|
|
219 |
|
|
gcc_unreachable ();
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
/* Find an integer mode of the exact same size, or BLKmode on failure. */
|
223 |
|
|
|
224 |
|
|
enum machine_mode
|
225 |
|
|
int_mode_for_mode (enum machine_mode mode)
|
226 |
|
|
{
|
227 |
|
|
switch (GET_MODE_CLASS (mode))
|
228 |
|
|
{
|
229 |
|
|
case MODE_INT:
|
230 |
|
|
case MODE_PARTIAL_INT:
|
231 |
|
|
break;
|
232 |
|
|
|
233 |
|
|
case MODE_COMPLEX_INT:
|
234 |
|
|
case MODE_COMPLEX_FLOAT:
|
235 |
|
|
case MODE_FLOAT:
|
236 |
|
|
case MODE_DECIMAL_FLOAT:
|
237 |
|
|
case MODE_VECTOR_INT:
|
238 |
|
|
case MODE_VECTOR_FLOAT:
|
239 |
|
|
mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
|
240 |
|
|
break;
|
241 |
|
|
|
242 |
|
|
case MODE_RANDOM:
|
243 |
|
|
if (mode == BLKmode)
|
244 |
|
|
break;
|
245 |
|
|
|
246 |
|
|
/* ... fall through ... */
|
247 |
|
|
|
248 |
|
|
case MODE_CC:
|
249 |
|
|
default:
|
250 |
|
|
gcc_unreachable ();
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
return mode;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
/* Return the alignment of MODE. This will be bounded by 1 and
|
257 |
|
|
BIGGEST_ALIGNMENT. */
|
258 |
|
|
|
259 |
|
|
unsigned int
|
260 |
|
|
get_mode_alignment (enum machine_mode mode)
|
261 |
|
|
{
|
262 |
|
|
return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
/* Subroutine of layout_decl: Force alignment required for the data type.
|
267 |
|
|
But if the decl itself wants greater alignment, don't override that. */
|
268 |
|
|
|
269 |
|
|
static inline void
|
270 |
|
|
do_type_align (tree type, tree decl)
|
271 |
|
|
{
|
272 |
|
|
if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
|
273 |
|
|
{
|
274 |
|
|
DECL_ALIGN (decl) = TYPE_ALIGN (type);
|
275 |
|
|
if (TREE_CODE (decl) == FIELD_DECL)
|
276 |
|
|
DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
|
277 |
|
|
}
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
/* Set the size, mode and alignment of a ..._DECL node.
|
281 |
|
|
TYPE_DECL does need this for C++.
|
282 |
|
|
Note that LABEL_DECL and CONST_DECL nodes do not need this,
|
283 |
|
|
and FUNCTION_DECL nodes have them set up in a special (and simple) way.
|
284 |
|
|
Don't call layout_decl for them.
|
285 |
|
|
|
286 |
|
|
KNOWN_ALIGN is the amount of alignment we can assume this
|
287 |
|
|
decl has with no special effort. It is relevant only for FIELD_DECLs
|
288 |
|
|
and depends on the previous fields.
|
289 |
|
|
All that matters about KNOWN_ALIGN is which powers of 2 divide it.
|
290 |
|
|
If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
|
291 |
|
|
the record will be aligned to suit. */
|
292 |
|
|
|
293 |
|
|
void
|
294 |
|
|
layout_decl (tree decl, unsigned int known_align)
|
295 |
|
|
{
|
296 |
|
|
tree type = TREE_TYPE (decl);
|
297 |
|
|
enum tree_code code = TREE_CODE (decl);
|
298 |
|
|
rtx rtl = NULL_RTX;
|
299 |
|
|
|
300 |
|
|
if (code == CONST_DECL)
|
301 |
|
|
return;
|
302 |
|
|
|
303 |
|
|
gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
|
304 |
|
|
|| code == TYPE_DECL ||code == FIELD_DECL);
|
305 |
|
|
|
306 |
|
|
rtl = DECL_RTL_IF_SET (decl);
|
307 |
|
|
|
308 |
|
|
if (type == error_mark_node)
|
309 |
|
|
type = void_type_node;
|
310 |
|
|
|
311 |
|
|
/* Usually the size and mode come from the data type without change,
|
312 |
|
|
however, the front-end may set the explicit width of the field, so its
|
313 |
|
|
size may not be the same as the size of its type. This happens with
|
314 |
|
|
bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
|
315 |
|
|
also happens with other fields. For example, the C++ front-end creates
|
316 |
|
|
zero-sized fields corresponding to empty base classes, and depends on
|
317 |
|
|
layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
|
318 |
|
|
size in bytes from the size in bits. If we have already set the mode,
|
319 |
|
|
don't set it again since we can be called twice for FIELD_DECLs. */
|
320 |
|
|
|
321 |
|
|
DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
|
322 |
|
|
if (DECL_MODE (decl) == VOIDmode)
|
323 |
|
|
DECL_MODE (decl) = TYPE_MODE (type);
|
324 |
|
|
|
325 |
|
|
if (DECL_SIZE (decl) == 0)
|
326 |
|
|
{
|
327 |
|
|
DECL_SIZE (decl) = TYPE_SIZE (type);
|
328 |
|
|
DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
|
329 |
|
|
}
|
330 |
|
|
else if (DECL_SIZE_UNIT (decl) == 0)
|
331 |
|
|
DECL_SIZE_UNIT (decl)
|
332 |
|
|
= fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
|
333 |
|
|
bitsize_unit_node));
|
334 |
|
|
|
335 |
|
|
if (code != FIELD_DECL)
|
336 |
|
|
/* For non-fields, update the alignment from the type. */
|
337 |
|
|
do_type_align (type, decl);
|
338 |
|
|
else
|
339 |
|
|
/* For fields, it's a bit more complicated... */
|
340 |
|
|
{
|
341 |
|
|
bool old_user_align = DECL_USER_ALIGN (decl);
|
342 |
|
|
bool zero_bitfield = false;
|
343 |
|
|
bool packed_p = DECL_PACKED (decl);
|
344 |
|
|
unsigned int mfa;
|
345 |
|
|
|
346 |
|
|
if (DECL_BIT_FIELD (decl))
|
347 |
|
|
{
|
348 |
|
|
DECL_BIT_FIELD_TYPE (decl) = type;
|
349 |
|
|
|
350 |
|
|
/* A zero-length bit-field affects the alignment of the next
|
351 |
|
|
field. In essence such bit-fields are not influenced by
|
352 |
|
|
any packing due to #pragma pack or attribute packed. */
|
353 |
|
|
if (integer_zerop (DECL_SIZE (decl))
|
354 |
|
|
&& ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
|
355 |
|
|
{
|
356 |
|
|
zero_bitfield = true;
|
357 |
|
|
packed_p = false;
|
358 |
|
|
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
359 |
|
|
if (PCC_BITFIELD_TYPE_MATTERS)
|
360 |
|
|
do_type_align (type, decl);
|
361 |
|
|
else
|
362 |
|
|
#endif
|
363 |
|
|
{
|
364 |
|
|
#ifdef EMPTY_FIELD_BOUNDARY
|
365 |
|
|
if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
|
366 |
|
|
{
|
367 |
|
|
DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
|
368 |
|
|
DECL_USER_ALIGN (decl) = 0;
|
369 |
|
|
}
|
370 |
|
|
#endif
|
371 |
|
|
}
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/* See if we can use an ordinary integer mode for a bit-field.
|
375 |
|
|
Conditions are: a fixed size that is correct for another mode
|
376 |
|
|
and occupying a complete byte or bytes on proper boundary. */
|
377 |
|
|
if (TYPE_SIZE (type) != 0
|
378 |
|
|
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
379 |
|
|
&& GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
|
380 |
|
|
{
|
381 |
|
|
enum machine_mode xmode
|
382 |
|
|
= mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
|
383 |
|
|
|
384 |
|
|
if (xmode != BLKmode
|
385 |
|
|
&& (known_align == 0
|
386 |
|
|
|| known_align >= GET_MODE_ALIGNMENT (xmode)))
|
387 |
|
|
{
|
388 |
|
|
DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
|
389 |
|
|
DECL_ALIGN (decl));
|
390 |
|
|
DECL_MODE (decl) = xmode;
|
391 |
|
|
DECL_BIT_FIELD (decl) = 0;
|
392 |
|
|
}
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* Turn off DECL_BIT_FIELD if we won't need it set. */
|
396 |
|
|
if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
|
397 |
|
|
&& known_align >= TYPE_ALIGN (type)
|
398 |
|
|
&& DECL_ALIGN (decl) >= TYPE_ALIGN (type))
|
399 |
|
|
DECL_BIT_FIELD (decl) = 0;
|
400 |
|
|
}
|
401 |
|
|
else if (packed_p && DECL_USER_ALIGN (decl))
|
402 |
|
|
/* Don't touch DECL_ALIGN. For other packed fields, go ahead and
|
403 |
|
|
round up; we'll reduce it again below. We want packing to
|
404 |
|
|
supersede USER_ALIGN inherited from the type, but defer to
|
405 |
|
|
alignment explicitly specified on the field decl. */;
|
406 |
|
|
else
|
407 |
|
|
do_type_align (type, decl);
|
408 |
|
|
|
409 |
|
|
/* If the field is of variable size, we can't misalign it since we
|
410 |
|
|
have no way to make a temporary to align the result. But this
|
411 |
|
|
isn't an issue if the decl is not addressable. Likewise if it
|
412 |
|
|
is of unknown size.
|
413 |
|
|
|
414 |
|
|
Note that do_type_align may set DECL_USER_ALIGN, so we need to
|
415 |
|
|
check old_user_align instead. */
|
416 |
|
|
if (packed_p
|
417 |
|
|
&& !old_user_align
|
418 |
|
|
&& (DECL_NONADDRESSABLE_P (decl)
|
419 |
|
|
|| DECL_SIZE_UNIT (decl) == 0
|
420 |
|
|
|| TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
|
421 |
|
|
DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
|
422 |
|
|
|
423 |
|
|
if (! packed_p && ! DECL_USER_ALIGN (decl))
|
424 |
|
|
{
|
425 |
|
|
/* Some targets (i.e. i386, VMS) limit struct field alignment
|
426 |
|
|
to a lower boundary than alignment of variables unless
|
427 |
|
|
it was overridden by attribute aligned. */
|
428 |
|
|
#ifdef BIGGEST_FIELD_ALIGNMENT
|
429 |
|
|
DECL_ALIGN (decl)
|
430 |
|
|
= MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
|
431 |
|
|
#endif
|
432 |
|
|
#ifdef ADJUST_FIELD_ALIGN
|
433 |
|
|
DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
|
434 |
|
|
#endif
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
if (zero_bitfield)
|
438 |
|
|
mfa = initial_max_fld_align * BITS_PER_UNIT;
|
439 |
|
|
else
|
440 |
|
|
mfa = maximum_field_alignment;
|
441 |
|
|
/* Should this be controlled by DECL_USER_ALIGN, too? */
|
442 |
|
|
if (mfa != 0)
|
443 |
|
|
DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/* Evaluate nonconstant size only once, either now or as soon as safe. */
|
447 |
|
|
if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
|
448 |
|
|
DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
|
449 |
|
|
if (DECL_SIZE_UNIT (decl) != 0
|
450 |
|
|
&& TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
|
451 |
|
|
DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
|
452 |
|
|
|
453 |
|
|
/* If requested, warn about definitions of large data objects. */
|
454 |
|
|
if (warn_larger_than
|
455 |
|
|
&& (code == VAR_DECL || code == PARM_DECL)
|
456 |
|
|
&& ! DECL_EXTERNAL (decl))
|
457 |
|
|
{
|
458 |
|
|
tree size = DECL_SIZE_UNIT (decl);
|
459 |
|
|
|
460 |
|
|
if (size != 0 && TREE_CODE (size) == INTEGER_CST
|
461 |
|
|
&& compare_tree_int (size, larger_than_size) > 0)
|
462 |
|
|
{
|
463 |
|
|
int size_as_int = TREE_INT_CST_LOW (size);
|
464 |
|
|
|
465 |
|
|
if (compare_tree_int (size, size_as_int) == 0)
|
466 |
|
|
warning (0, "size of %q+D is %d bytes", decl, size_as_int);
|
467 |
|
|
else
|
468 |
|
|
warning (0, "size of %q+D is larger than %wd bytes",
|
469 |
|
|
decl, larger_than_size);
|
470 |
|
|
}
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* If the RTL was already set, update its mode and mem attributes. */
|
474 |
|
|
if (rtl)
|
475 |
|
|
{
|
476 |
|
|
PUT_MODE (rtl, DECL_MODE (decl));
|
477 |
|
|
SET_DECL_RTL (decl, 0);
|
478 |
|
|
set_mem_attributes (rtl, decl, 1);
|
479 |
|
|
SET_DECL_RTL (decl, rtl);
|
480 |
|
|
}
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
/* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
|
484 |
|
|
a previous call to layout_decl and calls it again. */
|
485 |
|
|
|
486 |
|
|
void
|
487 |
|
|
relayout_decl (tree decl)
|
488 |
|
|
{
|
489 |
|
|
DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
|
490 |
|
|
DECL_MODE (decl) = VOIDmode;
|
491 |
|
|
if (!DECL_USER_ALIGN (decl))
|
492 |
|
|
DECL_ALIGN (decl) = 0;
|
493 |
|
|
SET_DECL_RTL (decl, 0);
|
494 |
|
|
|
495 |
|
|
layout_decl (decl, 0);
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Hook for a front-end function that can modify the record layout as needed
|
499 |
|
|
immediately before it is finalized. */
|
500 |
|
|
|
501 |
|
|
static void (*lang_adjust_rli) (record_layout_info) = 0;
|
502 |
|
|
|
503 |
|
|
void
|
504 |
|
|
set_lang_adjust_rli (void (*f) (record_layout_info))
|
505 |
|
|
{
|
506 |
|
|
lang_adjust_rli = f;
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
|
510 |
|
|
QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
|
511 |
|
|
is to be passed to all other layout functions for this record. It is the
|
512 |
|
|
responsibility of the caller to call `free' for the storage returned.
|
513 |
|
|
Note that garbage collection is not permitted until we finish laying
|
514 |
|
|
out the record. */
|
515 |
|
|
|
516 |
|
|
record_layout_info
|
517 |
|
|
start_record_layout (tree t)
|
518 |
|
|
{
|
519 |
|
|
record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
|
520 |
|
|
|
521 |
|
|
rli->t = t;
|
522 |
|
|
|
523 |
|
|
/* If the type has a minimum specified alignment (via an attribute
|
524 |
|
|
declaration, for example) use it -- otherwise, start with a
|
525 |
|
|
one-byte alignment. */
|
526 |
|
|
rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
|
527 |
|
|
rli->unpacked_align = rli->record_align;
|
528 |
|
|
rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
|
529 |
|
|
|
530 |
|
|
#ifdef STRUCTURE_SIZE_BOUNDARY
|
531 |
|
|
/* Packed structures don't need to have minimum size. */
|
532 |
|
|
if (! TYPE_PACKED (t))
|
533 |
|
|
rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
|
534 |
|
|
#endif
|
535 |
|
|
|
536 |
|
|
rli->offset = size_zero_node;
|
537 |
|
|
rli->bitpos = bitsize_zero_node;
|
538 |
|
|
rli->prev_field = 0;
|
539 |
|
|
rli->pending_statics = 0;
|
540 |
|
|
rli->packed_maybe_necessary = 0;
|
541 |
|
|
rli->remaining_in_alignment = 0;
|
542 |
|
|
|
543 |
|
|
return rli;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* These four routines perform computations that convert between
|
547 |
|
|
the offset/bitpos forms and byte and bit offsets. */
|
548 |
|
|
|
549 |
|
|
tree
|
550 |
|
|
bit_from_pos (tree offset, tree bitpos)
|
551 |
|
|
{
|
552 |
|
|
return size_binop (PLUS_EXPR, bitpos,
|
553 |
|
|
size_binop (MULT_EXPR,
|
554 |
|
|
fold_convert (bitsizetype, offset),
|
555 |
|
|
bitsize_unit_node));
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
tree
|
559 |
|
|
byte_from_pos (tree offset, tree bitpos)
|
560 |
|
|
{
|
561 |
|
|
return size_binop (PLUS_EXPR, offset,
|
562 |
|
|
fold_convert (sizetype,
|
563 |
|
|
size_binop (TRUNC_DIV_EXPR, bitpos,
|
564 |
|
|
bitsize_unit_node)));
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
void
|
568 |
|
|
pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
|
569 |
|
|
tree pos)
|
570 |
|
|
{
|
571 |
|
|
*poffset = size_binop (MULT_EXPR,
|
572 |
|
|
fold_convert (sizetype,
|
573 |
|
|
size_binop (FLOOR_DIV_EXPR, pos,
|
574 |
|
|
bitsize_int (off_align))),
|
575 |
|
|
size_int (off_align / BITS_PER_UNIT));
|
576 |
|
|
*pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/* Given a pointer to bit and byte offsets and an offset alignment,
|
580 |
|
|
normalize the offsets so they are within the alignment. */
|
581 |
|
|
|
582 |
|
|
void
|
583 |
|
|
normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
|
584 |
|
|
{
|
585 |
|
|
/* If the bit position is now larger than it should be, adjust it
|
586 |
|
|
downwards. */
|
587 |
|
|
if (compare_tree_int (*pbitpos, off_align) >= 0)
|
588 |
|
|
{
|
589 |
|
|
tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
|
590 |
|
|
bitsize_int (off_align));
|
591 |
|
|
|
592 |
|
|
*poffset
|
593 |
|
|
= size_binop (PLUS_EXPR, *poffset,
|
594 |
|
|
size_binop (MULT_EXPR,
|
595 |
|
|
fold_convert (sizetype, extra_aligns),
|
596 |
|
|
size_int (off_align / BITS_PER_UNIT)));
|
597 |
|
|
|
598 |
|
|
*pbitpos
|
599 |
|
|
= size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
|
600 |
|
|
}
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
/* Print debugging information about the information in RLI. */
|
604 |
|
|
|
605 |
|
|
void
|
606 |
|
|
debug_rli (record_layout_info rli)
|
607 |
|
|
{
|
608 |
|
|
print_node_brief (stderr, "type", rli->t, 0);
|
609 |
|
|
print_node_brief (stderr, "\noffset", rli->offset, 0);
|
610 |
|
|
print_node_brief (stderr, " bitpos", rli->bitpos, 0);
|
611 |
|
|
|
612 |
|
|
fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
|
613 |
|
|
rli->record_align, rli->unpacked_align,
|
614 |
|
|
rli->offset_align);
|
615 |
|
|
|
616 |
|
|
/* The ms_struct code is the only that uses this. */
|
617 |
|
|
if (targetm.ms_bitfield_layout_p (rli->t))
|
618 |
|
|
fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
|
619 |
|
|
|
620 |
|
|
if (rli->packed_maybe_necessary)
|
621 |
|
|
fprintf (stderr, "packed may be necessary\n");
|
622 |
|
|
|
623 |
|
|
if (rli->pending_statics)
|
624 |
|
|
{
|
625 |
|
|
fprintf (stderr, "pending statics:\n");
|
626 |
|
|
debug_tree (rli->pending_statics);
|
627 |
|
|
}
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
|
631 |
|
|
BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
|
632 |
|
|
|
633 |
|
|
void
|
634 |
|
|
normalize_rli (record_layout_info rli)
|
635 |
|
|
{
|
636 |
|
|
normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
/* Returns the size in bytes allocated so far. */
|
640 |
|
|
|
641 |
|
|
tree
|
642 |
|
|
rli_size_unit_so_far (record_layout_info rli)
|
643 |
|
|
{
|
644 |
|
|
return byte_from_pos (rli->offset, rli->bitpos);
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
/* Returns the size in bits allocated so far. */
|
648 |
|
|
|
649 |
|
|
tree
|
650 |
|
|
rli_size_so_far (record_layout_info rli)
|
651 |
|
|
{
|
652 |
|
|
return bit_from_pos (rli->offset, rli->bitpos);
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
/* FIELD is about to be added to RLI->T. The alignment (in bits) of
|
656 |
|
|
the next available location within the record is given by KNOWN_ALIGN.
|
657 |
|
|
Update the variable alignment fields in RLI, and return the alignment
|
658 |
|
|
to give the FIELD. */
|
659 |
|
|
|
660 |
|
|
unsigned int
|
661 |
|
|
update_alignment_for_field (record_layout_info rli, tree field,
|
662 |
|
|
unsigned int known_align)
|
663 |
|
|
{
|
664 |
|
|
/* The alignment required for FIELD. */
|
665 |
|
|
unsigned int desired_align;
|
666 |
|
|
/* The type of this field. */
|
667 |
|
|
tree type = TREE_TYPE (field);
|
668 |
|
|
/* True if the field was explicitly aligned by the user. */
|
669 |
|
|
bool user_align;
|
670 |
|
|
bool is_bitfield;
|
671 |
|
|
|
672 |
|
|
/* Do not attempt to align an ERROR_MARK node */
|
673 |
|
|
if (TREE_CODE (type) == ERROR_MARK)
|
674 |
|
|
return 0;
|
675 |
|
|
|
676 |
|
|
/* Lay out the field so we know what alignment it needs. */
|
677 |
|
|
layout_decl (field, known_align);
|
678 |
|
|
desired_align = DECL_ALIGN (field);
|
679 |
|
|
user_align = DECL_USER_ALIGN (field);
|
680 |
|
|
|
681 |
|
|
is_bitfield = (type != error_mark_node
|
682 |
|
|
&& DECL_BIT_FIELD_TYPE (field)
|
683 |
|
|
&& ! integer_zerop (TYPE_SIZE (type)));
|
684 |
|
|
|
685 |
|
|
/* Record must have at least as much alignment as any field.
|
686 |
|
|
Otherwise, the alignment of the field within the record is
|
687 |
|
|
meaningless. */
|
688 |
|
|
if (targetm.ms_bitfield_layout_p (rli->t))
|
689 |
|
|
{
|
690 |
|
|
/* Here, the alignment of the underlying type of a bitfield can
|
691 |
|
|
affect the alignment of a record; even a zero-sized field
|
692 |
|
|
can do this. The alignment should be to the alignment of
|
693 |
|
|
the type, except that for zero-size bitfields this only
|
694 |
|
|
applies if there was an immediately prior, nonzero-size
|
695 |
|
|
bitfield. (That's the way it is, experimentally.) */
|
696 |
|
|
if ((!is_bitfield && !DECL_PACKED (field))
|
697 |
|
|
|| (!integer_zerop (DECL_SIZE (field))
|
698 |
|
|
? !DECL_PACKED (field)
|
699 |
|
|
: (rli->prev_field
|
700 |
|
|
&& DECL_BIT_FIELD_TYPE (rli->prev_field)
|
701 |
|
|
&& ! integer_zerop (DECL_SIZE (rli->prev_field)))))
|
702 |
|
|
{
|
703 |
|
|
unsigned int type_align = TYPE_ALIGN (type);
|
704 |
|
|
type_align = MAX (type_align, desired_align);
|
705 |
|
|
if (maximum_field_alignment != 0)
|
706 |
|
|
type_align = MIN (type_align, maximum_field_alignment);
|
707 |
|
|
rli->record_align = MAX (rli->record_align, type_align);
|
708 |
|
|
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
|
709 |
|
|
}
|
710 |
|
|
}
|
711 |
|
|
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
712 |
|
|
else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
|
713 |
|
|
{
|
714 |
|
|
/* Named bit-fields cause the entire structure to have the
|
715 |
|
|
alignment implied by their type. Some targets also apply the same
|
716 |
|
|
rules to unnamed bitfields. */
|
717 |
|
|
if (DECL_NAME (field) != 0
|
718 |
|
|
|| targetm.align_anon_bitfield ())
|
719 |
|
|
{
|
720 |
|
|
unsigned int type_align = TYPE_ALIGN (type);
|
721 |
|
|
|
722 |
|
|
#ifdef ADJUST_FIELD_ALIGN
|
723 |
|
|
if (! TYPE_USER_ALIGN (type))
|
724 |
|
|
type_align = ADJUST_FIELD_ALIGN (field, type_align);
|
725 |
|
|
#endif
|
726 |
|
|
|
727 |
|
|
/* Targets might chose to handle unnamed and hence possibly
|
728 |
|
|
zero-width bitfield. Those are not influenced by #pragmas
|
729 |
|
|
or packed attributes. */
|
730 |
|
|
if (integer_zerop (DECL_SIZE (field)))
|
731 |
|
|
{
|
732 |
|
|
if (initial_max_fld_align)
|
733 |
|
|
type_align = MIN (type_align,
|
734 |
|
|
initial_max_fld_align * BITS_PER_UNIT);
|
735 |
|
|
}
|
736 |
|
|
else if (maximum_field_alignment != 0)
|
737 |
|
|
type_align = MIN (type_align, maximum_field_alignment);
|
738 |
|
|
else if (DECL_PACKED (field))
|
739 |
|
|
type_align = MIN (type_align, BITS_PER_UNIT);
|
740 |
|
|
|
741 |
|
|
/* The alignment of the record is increased to the maximum
|
742 |
|
|
of the current alignment, the alignment indicated on the
|
743 |
|
|
field (i.e., the alignment specified by an __aligned__
|
744 |
|
|
attribute), and the alignment indicated by the type of
|
745 |
|
|
the field. */
|
746 |
|
|
rli->record_align = MAX (rli->record_align, desired_align);
|
747 |
|
|
rli->record_align = MAX (rli->record_align, type_align);
|
748 |
|
|
|
749 |
|
|
if (warn_packed)
|
750 |
|
|
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
|
751 |
|
|
user_align |= TYPE_USER_ALIGN (type);
|
752 |
|
|
}
|
753 |
|
|
}
|
754 |
|
|
#endif
|
755 |
|
|
else
|
756 |
|
|
{
|
757 |
|
|
rli->record_align = MAX (rli->record_align, desired_align);
|
758 |
|
|
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
TYPE_USER_ALIGN (rli->t) |= user_align;
|
762 |
|
|
|
763 |
|
|
return desired_align;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
/* Called from place_field to handle unions. */
|
767 |
|
|
|
768 |
|
|
static void
|
769 |
|
|
place_union_field (record_layout_info rli, tree field)
|
770 |
|
|
{
|
771 |
|
|
update_alignment_for_field (rli, field, /*known_align=*/0);
|
772 |
|
|
|
773 |
|
|
DECL_FIELD_OFFSET (field) = size_zero_node;
|
774 |
|
|
DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
|
775 |
|
|
SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
|
776 |
|
|
|
777 |
|
|
/* If this is an ERROR_MARK return *after* having set the
|
778 |
|
|
field at the start of the union. This helps when parsing
|
779 |
|
|
invalid fields. */
|
780 |
|
|
if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
|
781 |
|
|
return;
|
782 |
|
|
|
783 |
|
|
/* We assume the union's size will be a multiple of a byte so we don't
|
784 |
|
|
bother with BITPOS. */
|
785 |
|
|
if (TREE_CODE (rli->t) == UNION_TYPE)
|
786 |
|
|
rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
|
787 |
|
|
else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
|
788 |
|
|
rli->offset = fold_build3 (COND_EXPR, sizetype,
|
789 |
|
|
DECL_QUALIFIER (field),
|
790 |
|
|
DECL_SIZE_UNIT (field), rli->offset);
|
791 |
|
|
}
|
792 |
|
|
|
793 |
|
|
#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
|
794 |
|
|
/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
|
795 |
|
|
at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
|
796 |
|
|
units of alignment than the underlying TYPE. */
|
797 |
|
|
static int
|
798 |
|
|
excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
|
799 |
|
|
HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
|
800 |
|
|
{
|
801 |
|
|
/* Note that the calculation of OFFSET might overflow; we calculate it so
|
802 |
|
|
that we still get the right result as long as ALIGN is a power of two. */
|
803 |
|
|
unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
|
804 |
|
|
|
805 |
|
|
offset = offset % align;
|
806 |
|
|
return ((offset + size + align - 1) / align
|
807 |
|
|
> ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
|
808 |
|
|
/ align));
|
809 |
|
|
}
|
810 |
|
|
#endif
|
811 |
|
|
|
812 |
|
|
/* RLI contains information about the layout of a RECORD_TYPE. FIELD
|
813 |
|
|
is a FIELD_DECL to be added after those fields already present in
|
814 |
|
|
T. (FIELD is not actually added to the TYPE_FIELDS list here;
|
815 |
|
|
callers that desire that behavior must manually perform that step.) */
|
816 |
|
|
|
817 |
|
|
void
|
818 |
|
|
place_field (record_layout_info rli, tree field)
|
819 |
|
|
{
|
820 |
|
|
/* The alignment required for FIELD. */
|
821 |
|
|
unsigned int desired_align;
|
822 |
|
|
/* The alignment FIELD would have if we just dropped it into the
|
823 |
|
|
record as it presently stands. */
|
824 |
|
|
unsigned int known_align;
|
825 |
|
|
unsigned int actual_align;
|
826 |
|
|
/* The type of this field. */
|
827 |
|
|
tree type = TREE_TYPE (field);
|
828 |
|
|
|
829 |
|
|
gcc_assert (TREE_CODE (field) != ERROR_MARK);
|
830 |
|
|
|
831 |
|
|
/* If FIELD is static, then treat it like a separate variable, not
|
832 |
|
|
really like a structure field. If it is a FUNCTION_DECL, it's a
|
833 |
|
|
method. In both cases, all we do is lay out the decl, and we do
|
834 |
|
|
it *after* the record is laid out. */
|
835 |
|
|
if (TREE_CODE (field) == VAR_DECL)
|
836 |
|
|
{
|
837 |
|
|
rli->pending_statics = tree_cons (NULL_TREE, field,
|
838 |
|
|
rli->pending_statics);
|
839 |
|
|
return;
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
/* Enumerators and enum types which are local to this class need not
|
843 |
|
|
be laid out. Likewise for initialized constant fields. */
|
844 |
|
|
else if (TREE_CODE (field) != FIELD_DECL)
|
845 |
|
|
return;
|
846 |
|
|
|
847 |
|
|
/* Unions are laid out very differently than records, so split
|
848 |
|
|
that code off to another function. */
|
849 |
|
|
else if (TREE_CODE (rli->t) != RECORD_TYPE)
|
850 |
|
|
{
|
851 |
|
|
place_union_field (rli, field);
|
852 |
|
|
return;
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
else if (TREE_CODE (type) == ERROR_MARK)
|
856 |
|
|
{
|
857 |
|
|
/* Place this field at the current allocation position, so we
|
858 |
|
|
maintain monotonicity. */
|
859 |
|
|
DECL_FIELD_OFFSET (field) = rli->offset;
|
860 |
|
|
DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
|
861 |
|
|
SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
|
862 |
|
|
return;
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/* Work out the known alignment so far. Note that A & (-A) is the
|
866 |
|
|
value of the least-significant bit in A that is one. */
|
867 |
|
|
if (! integer_zerop (rli->bitpos))
|
868 |
|
|
known_align = (tree_low_cst (rli->bitpos, 1)
|
869 |
|
|
& - tree_low_cst (rli->bitpos, 1));
|
870 |
|
|
else if (integer_zerop (rli->offset))
|
871 |
|
|
known_align = 0;
|
872 |
|
|
else if (host_integerp (rli->offset, 1))
|
873 |
|
|
known_align = (BITS_PER_UNIT
|
874 |
|
|
* (tree_low_cst (rli->offset, 1)
|
875 |
|
|
& - tree_low_cst (rli->offset, 1)));
|
876 |
|
|
else
|
877 |
|
|
known_align = rli->offset_align;
|
878 |
|
|
|
879 |
|
|
desired_align = update_alignment_for_field (rli, field, known_align);
|
880 |
|
|
if (known_align == 0)
|
881 |
|
|
known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
|
882 |
|
|
|
883 |
|
|
if (warn_packed && DECL_PACKED (field))
|
884 |
|
|
{
|
885 |
|
|
if (known_align >= TYPE_ALIGN (type))
|
886 |
|
|
{
|
887 |
|
|
if (TYPE_ALIGN (type) > desired_align)
|
888 |
|
|
{
|
889 |
|
|
if (STRICT_ALIGNMENT)
|
890 |
|
|
warning (OPT_Wattributes, "packed attribute causes "
|
891 |
|
|
"inefficient alignment for %q+D", field);
|
892 |
|
|
else
|
893 |
|
|
warning (OPT_Wattributes, "packed attribute is "
|
894 |
|
|
"unnecessary for %q+D", field);
|
895 |
|
|
}
|
896 |
|
|
}
|
897 |
|
|
else
|
898 |
|
|
rli->packed_maybe_necessary = 1;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
/* Does this field automatically have alignment it needs by virtue
|
902 |
|
|
of the fields that precede it and the record's own alignment?
|
903 |
|
|
We already align ms_struct fields, so don't re-align them. */
|
904 |
|
|
if (known_align < desired_align
|
905 |
|
|
&& !targetm.ms_bitfield_layout_p (rli->t))
|
906 |
|
|
{
|
907 |
|
|
/* No, we need to skip space before this field.
|
908 |
|
|
Bump the cumulative size to multiple of field alignment. */
|
909 |
|
|
|
910 |
|
|
warning (OPT_Wpadded, "padding struct to align %q+D", field);
|
911 |
|
|
|
912 |
|
|
/* If the alignment is still within offset_align, just align
|
913 |
|
|
the bit position. */
|
914 |
|
|
if (desired_align < rli->offset_align)
|
915 |
|
|
rli->bitpos = round_up (rli->bitpos, desired_align);
|
916 |
|
|
else
|
917 |
|
|
{
|
918 |
|
|
/* First adjust OFFSET by the partial bits, then align. */
|
919 |
|
|
rli->offset
|
920 |
|
|
= size_binop (PLUS_EXPR, rli->offset,
|
921 |
|
|
fold_convert (sizetype,
|
922 |
|
|
size_binop (CEIL_DIV_EXPR, rli->bitpos,
|
923 |
|
|
bitsize_unit_node)));
|
924 |
|
|
rli->bitpos = bitsize_zero_node;
|
925 |
|
|
|
926 |
|
|
rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
|
927 |
|
|
}
|
928 |
|
|
|
929 |
|
|
if (! TREE_CONSTANT (rli->offset))
|
930 |
|
|
rli->offset_align = desired_align;
|
931 |
|
|
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
/* Handle compatibility with PCC. Note that if the record has any
|
935 |
|
|
variable-sized fields, we need not worry about compatibility. */
|
936 |
|
|
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
937 |
|
|
if (PCC_BITFIELD_TYPE_MATTERS
|
938 |
|
|
&& ! targetm.ms_bitfield_layout_p (rli->t)
|
939 |
|
|
&& TREE_CODE (field) == FIELD_DECL
|
940 |
|
|
&& type != error_mark_node
|
941 |
|
|
&& DECL_BIT_FIELD (field)
|
942 |
|
|
&& ! DECL_PACKED (field)
|
943 |
|
|
&& maximum_field_alignment == 0
|
944 |
|
|
&& ! integer_zerop (DECL_SIZE (field))
|
945 |
|
|
&& host_integerp (DECL_SIZE (field), 1)
|
946 |
|
|
&& host_integerp (rli->offset, 1)
|
947 |
|
|
&& host_integerp (TYPE_SIZE (type), 1))
|
948 |
|
|
{
|
949 |
|
|
unsigned int type_align = TYPE_ALIGN (type);
|
950 |
|
|
tree dsize = DECL_SIZE (field);
|
951 |
|
|
HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
|
952 |
|
|
HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
|
953 |
|
|
HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
|
954 |
|
|
|
955 |
|
|
#ifdef ADJUST_FIELD_ALIGN
|
956 |
|
|
if (! TYPE_USER_ALIGN (type))
|
957 |
|
|
type_align = ADJUST_FIELD_ALIGN (field, type_align);
|
958 |
|
|
#endif
|
959 |
|
|
|
960 |
|
|
/* A bit field may not span more units of alignment of its type
|
961 |
|
|
than its type itself. Advance to next boundary if necessary. */
|
962 |
|
|
if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
|
963 |
|
|
rli->bitpos = round_up (rli->bitpos, type_align);
|
964 |
|
|
|
965 |
|
|
TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
|
966 |
|
|
}
|
967 |
|
|
#endif
|
968 |
|
|
|
969 |
|
|
#ifdef BITFIELD_NBYTES_LIMITED
|
970 |
|
|
if (BITFIELD_NBYTES_LIMITED
|
971 |
|
|
&& ! targetm.ms_bitfield_layout_p (rli->t)
|
972 |
|
|
&& TREE_CODE (field) == FIELD_DECL
|
973 |
|
|
&& type != error_mark_node
|
974 |
|
|
&& DECL_BIT_FIELD_TYPE (field)
|
975 |
|
|
&& ! DECL_PACKED (field)
|
976 |
|
|
&& ! integer_zerop (DECL_SIZE (field))
|
977 |
|
|
&& host_integerp (DECL_SIZE (field), 1)
|
978 |
|
|
&& host_integerp (rli->offset, 1)
|
979 |
|
|
&& host_integerp (TYPE_SIZE (type), 1))
|
980 |
|
|
{
|
981 |
|
|
unsigned int type_align = TYPE_ALIGN (type);
|
982 |
|
|
tree dsize = DECL_SIZE (field);
|
983 |
|
|
HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
|
984 |
|
|
HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
|
985 |
|
|
HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
|
986 |
|
|
|
987 |
|
|
#ifdef ADJUST_FIELD_ALIGN
|
988 |
|
|
if (! TYPE_USER_ALIGN (type))
|
989 |
|
|
type_align = ADJUST_FIELD_ALIGN (field, type_align);
|
990 |
|
|
#endif
|
991 |
|
|
|
992 |
|
|
if (maximum_field_alignment != 0)
|
993 |
|
|
type_align = MIN (type_align, maximum_field_alignment);
|
994 |
|
|
/* ??? This test is opposite the test in the containing if
|
995 |
|
|
statement, so this code is unreachable currently. */
|
996 |
|
|
else if (DECL_PACKED (field))
|
997 |
|
|
type_align = MIN (type_align, BITS_PER_UNIT);
|
998 |
|
|
|
999 |
|
|
/* A bit field may not span the unit of alignment of its type.
|
1000 |
|
|
Advance to next boundary if necessary. */
|
1001 |
|
|
if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
|
1002 |
|
|
rli->bitpos = round_up (rli->bitpos, type_align);
|
1003 |
|
|
|
1004 |
|
|
TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
|
1005 |
|
|
}
|
1006 |
|
|
#endif
|
1007 |
|
|
|
1008 |
|
|
/* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
|
1009 |
|
|
A subtlety:
|
1010 |
|
|
When a bit field is inserted into a packed record, the whole
|
1011 |
|
|
size of the underlying type is used by one or more same-size
|
1012 |
|
|
adjacent bitfields. (That is, if its long:3, 32 bits is
|
1013 |
|
|
used in the record, and any additional adjacent long bitfields are
|
1014 |
|
|
packed into the same chunk of 32 bits. However, if the size
|
1015 |
|
|
changes, a new field of that size is allocated.) In an unpacked
|
1016 |
|
|
record, this is the same as using alignment, but not equivalent
|
1017 |
|
|
when packing.
|
1018 |
|
|
|
1019 |
|
|
Note: for compatibility, we use the type size, not the type alignment
|
1020 |
|
|
to determine alignment, since that matches the documentation */
|
1021 |
|
|
|
1022 |
|
|
if (targetm.ms_bitfield_layout_p (rli->t))
|
1023 |
|
|
{
|
1024 |
|
|
tree prev_saved = rli->prev_field;
|
1025 |
|
|
tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
|
1026 |
|
|
|
1027 |
|
|
/* This is a bitfield if it exists. */
|
1028 |
|
|
if (rli->prev_field)
|
1029 |
|
|
{
|
1030 |
|
|
/* If both are bitfields, nonzero, and the same size, this is
|
1031 |
|
|
the middle of a run. Zero declared size fields are special
|
1032 |
|
|
and handled as "end of run". (Note: it's nonzero declared
|
1033 |
|
|
size, but equal type sizes!) (Since we know that both
|
1034 |
|
|
the current and previous fields are bitfields by the
|
1035 |
|
|
time we check it, DECL_SIZE must be present for both.) */
|
1036 |
|
|
if (DECL_BIT_FIELD_TYPE (field)
|
1037 |
|
|
&& !integer_zerop (DECL_SIZE (field))
|
1038 |
|
|
&& !integer_zerop (DECL_SIZE (rli->prev_field))
|
1039 |
|
|
&& host_integerp (DECL_SIZE (rli->prev_field), 0)
|
1040 |
|
|
&& host_integerp (TYPE_SIZE (type), 0)
|
1041 |
|
|
&& simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
|
1042 |
|
|
{
|
1043 |
|
|
/* We're in the middle of a run of equal type size fields; make
|
1044 |
|
|
sure we realign if we run out of bits. (Not decl size,
|
1045 |
|
|
type size!) */
|
1046 |
|
|
HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
|
1047 |
|
|
|
1048 |
|
|
if (rli->remaining_in_alignment < bitsize)
|
1049 |
|
|
{
|
1050 |
|
|
HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
|
1051 |
|
|
|
1052 |
|
|
/* out of bits; bump up to next 'word'. */
|
1053 |
|
|
rli->bitpos
|
1054 |
|
|
= size_binop (PLUS_EXPR, rli->bitpos,
|
1055 |
|
|
bitsize_int (rli->remaining_in_alignment));
|
1056 |
|
|
rli->prev_field = field;
|
1057 |
|
|
if (typesize < bitsize)
|
1058 |
|
|
rli->remaining_in_alignment = 0;
|
1059 |
|
|
else
|
1060 |
|
|
rli->remaining_in_alignment = typesize - bitsize;
|
1061 |
|
|
}
|
1062 |
|
|
else
|
1063 |
|
|
rli->remaining_in_alignment -= bitsize;
|
1064 |
|
|
}
|
1065 |
|
|
else
|
1066 |
|
|
{
|
1067 |
|
|
/* End of a run: if leaving a run of bitfields of the same type
|
1068 |
|
|
size, we have to "use up" the rest of the bits of the type
|
1069 |
|
|
size.
|
1070 |
|
|
|
1071 |
|
|
Compute the new position as the sum of the size for the prior
|
1072 |
|
|
type and where we first started working on that type.
|
1073 |
|
|
Note: since the beginning of the field was aligned then
|
1074 |
|
|
of course the end will be too. No round needed. */
|
1075 |
|
|
|
1076 |
|
|
if (!integer_zerop (DECL_SIZE (rli->prev_field)))
|
1077 |
|
|
{
|
1078 |
|
|
rli->bitpos
|
1079 |
|
|
= size_binop (PLUS_EXPR, rli->bitpos,
|
1080 |
|
|
bitsize_int (rli->remaining_in_alignment));
|
1081 |
|
|
}
|
1082 |
|
|
else
|
1083 |
|
|
/* We "use up" size zero fields; the code below should behave
|
1084 |
|
|
as if the prior field was not a bitfield. */
|
1085 |
|
|
prev_saved = NULL;
|
1086 |
|
|
|
1087 |
|
|
/* Cause a new bitfield to be captured, either this time (if
|
1088 |
|
|
currently a bitfield) or next time we see one. */
|
1089 |
|
|
if (!DECL_BIT_FIELD_TYPE(field)
|
1090 |
|
|
|| integer_zerop (DECL_SIZE (field)))
|
1091 |
|
|
rli->prev_field = NULL;
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
normalize_rli (rli);
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/* If we're starting a new run of same size type bitfields
|
1098 |
|
|
(or a run of non-bitfields), set up the "first of the run"
|
1099 |
|
|
fields.
|
1100 |
|
|
|
1101 |
|
|
That is, if the current field is not a bitfield, or if there
|
1102 |
|
|
was a prior bitfield the type sizes differ, or if there wasn't
|
1103 |
|
|
a prior bitfield the size of the current field is nonzero.
|
1104 |
|
|
|
1105 |
|
|
Note: we must be sure to test ONLY the type size if there was
|
1106 |
|
|
a prior bitfield and ONLY for the current field being zero if
|
1107 |
|
|
there wasn't. */
|
1108 |
|
|
|
1109 |
|
|
if (!DECL_BIT_FIELD_TYPE (field)
|
1110 |
|
|
|| (prev_saved != NULL
|
1111 |
|
|
? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
|
1112 |
|
|
: !integer_zerop (DECL_SIZE (field)) ))
|
1113 |
|
|
{
|
1114 |
|
|
/* Never smaller than a byte for compatibility. */
|
1115 |
|
|
unsigned int type_align = BITS_PER_UNIT;
|
1116 |
|
|
|
1117 |
|
|
/* (When not a bitfield), we could be seeing a flex array (with
|
1118 |
|
|
no DECL_SIZE). Since we won't be using remaining_in_alignment
|
1119 |
|
|
until we see a bitfield (and come by here again) we just skip
|
1120 |
|
|
calculating it. */
|
1121 |
|
|
if (DECL_SIZE (field) != NULL
|
1122 |
|
|
&& host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
|
1123 |
|
|
&& host_integerp (DECL_SIZE (field), 0))
|
1124 |
|
|
{
|
1125 |
|
|
HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
|
1126 |
|
|
HOST_WIDE_INT typesize
|
1127 |
|
|
= tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
|
1128 |
|
|
|
1129 |
|
|
if (typesize < bitsize)
|
1130 |
|
|
rli->remaining_in_alignment = 0;
|
1131 |
|
|
else
|
1132 |
|
|
rli->remaining_in_alignment = typesize - bitsize;
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
/* Now align (conventionally) for the new type. */
|
1136 |
|
|
type_align = TYPE_ALIGN (TREE_TYPE (field));
|
1137 |
|
|
|
1138 |
|
|
if (maximum_field_alignment != 0)
|
1139 |
|
|
type_align = MIN (type_align, maximum_field_alignment);
|
1140 |
|
|
|
1141 |
|
|
rli->bitpos = round_up (rli->bitpos, type_align);
|
1142 |
|
|
|
1143 |
|
|
/* If we really aligned, don't allow subsequent bitfields
|
1144 |
|
|
to undo that. */
|
1145 |
|
|
rli->prev_field = NULL;
|
1146 |
|
|
}
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
/* Offset so far becomes the position of this field after normalizing. */
|
1150 |
|
|
normalize_rli (rli);
|
1151 |
|
|
DECL_FIELD_OFFSET (field) = rli->offset;
|
1152 |
|
|
DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
|
1153 |
|
|
SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
|
1154 |
|
|
|
1155 |
|
|
/* If this field ended up more aligned than we thought it would be (we
|
1156 |
|
|
approximate this by seeing if its position changed), lay out the field
|
1157 |
|
|
again; perhaps we can use an integral mode for it now. */
|
1158 |
|
|
if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
|
1159 |
|
|
actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
|
1160 |
|
|
& - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
|
1161 |
|
|
else if (integer_zerop (DECL_FIELD_OFFSET (field)))
|
1162 |
|
|
actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
|
1163 |
|
|
else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
|
1164 |
|
|
actual_align = (BITS_PER_UNIT
|
1165 |
|
|
* (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
|
1166 |
|
|
& - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
|
1167 |
|
|
else
|
1168 |
|
|
actual_align = DECL_OFFSET_ALIGN (field);
|
1169 |
|
|
/* ACTUAL_ALIGN is still the actual alignment *within the record* .
|
1170 |
|
|
store / extract bit field operations will check the alignment of the
|
1171 |
|
|
record against the mode of bit fields. */
|
1172 |
|
|
|
1173 |
|
|
if (known_align != actual_align)
|
1174 |
|
|
layout_decl (field, actual_align);
|
1175 |
|
|
|
1176 |
|
|
if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
|
1177 |
|
|
rli->prev_field = field;
|
1178 |
|
|
|
1179 |
|
|
/* Now add size of this field to the size of the record. If the size is
|
1180 |
|
|
not constant, treat the field as being a multiple of bytes and just
|
1181 |
|
|
adjust the offset, resetting the bit position. Otherwise, apportion the
|
1182 |
|
|
size amongst the bit position and offset. First handle the case of an
|
1183 |
|
|
unspecified size, which can happen when we have an invalid nested struct
|
1184 |
|
|
definition, such as struct j { struct j { int i; } }. The error message
|
1185 |
|
|
is printed in finish_struct. */
|
1186 |
|
|
if (DECL_SIZE (field) == 0)
|
1187 |
|
|
/* Do nothing. */;
|
1188 |
|
|
else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
|
1189 |
|
|
|| TREE_CONSTANT_OVERFLOW (DECL_SIZE (field)))
|
1190 |
|
|
{
|
1191 |
|
|
rli->offset
|
1192 |
|
|
= size_binop (PLUS_EXPR, rli->offset,
|
1193 |
|
|
fold_convert (sizetype,
|
1194 |
|
|
size_binop (CEIL_DIV_EXPR, rli->bitpos,
|
1195 |
|
|
bitsize_unit_node)));
|
1196 |
|
|
rli->offset
|
1197 |
|
|
= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
|
1198 |
|
|
rli->bitpos = bitsize_zero_node;
|
1199 |
|
|
rli->offset_align = MIN (rli->offset_align, desired_align);
|
1200 |
|
|
}
|
1201 |
|
|
else if (targetm.ms_bitfield_layout_p (rli->t))
|
1202 |
|
|
{
|
1203 |
|
|
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
|
1204 |
|
|
|
1205 |
|
|
/* If we ended a bitfield before the full length of the type then
|
1206 |
|
|
pad the struct out to the full length of the last type. */
|
1207 |
|
|
if ((TREE_CHAIN (field) == NULL
|
1208 |
|
|
|| TREE_CODE (TREE_CHAIN (field)) != FIELD_DECL)
|
1209 |
|
|
&& DECL_BIT_FIELD_TYPE (field)
|
1210 |
|
|
&& !integer_zerop (DECL_SIZE (field)))
|
1211 |
|
|
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
|
1212 |
|
|
bitsize_int (rli->remaining_in_alignment));
|
1213 |
|
|
|
1214 |
|
|
normalize_rli (rli);
|
1215 |
|
|
}
|
1216 |
|
|
else
|
1217 |
|
|
{
|
1218 |
|
|
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
|
1219 |
|
|
normalize_rli (rli);
|
1220 |
|
|
}
|
1221 |
|
|
}
|
1222 |
|
|
|
1223 |
|
|
/* Assuming that all the fields have been laid out, this function uses
|
1224 |
|
|
RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
|
1225 |
|
|
indicated by RLI. */
|
1226 |
|
|
|
1227 |
|
|
static void
|
1228 |
|
|
finalize_record_size (record_layout_info rli)
|
1229 |
|
|
{
|
1230 |
|
|
tree unpadded_size, unpadded_size_unit;
|
1231 |
|
|
|
1232 |
|
|
/* Now we want just byte and bit offsets, so set the offset alignment
|
1233 |
|
|
to be a byte and then normalize. */
|
1234 |
|
|
rli->offset_align = BITS_PER_UNIT;
|
1235 |
|
|
normalize_rli (rli);
|
1236 |
|
|
|
1237 |
|
|
/* Determine the desired alignment. */
|
1238 |
|
|
#ifdef ROUND_TYPE_ALIGN
|
1239 |
|
|
TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
|
1240 |
|
|
rli->record_align);
|
1241 |
|
|
#else
|
1242 |
|
|
TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
|
1243 |
|
|
#endif
|
1244 |
|
|
|
1245 |
|
|
/* Compute the size so far. Be sure to allow for extra bits in the
|
1246 |
|
|
size in bytes. We have guaranteed above that it will be no more
|
1247 |
|
|
than a single byte. */
|
1248 |
|
|
unpadded_size = rli_size_so_far (rli);
|
1249 |
|
|
unpadded_size_unit = rli_size_unit_so_far (rli);
|
1250 |
|
|
if (! integer_zerop (rli->bitpos))
|
1251 |
|
|
unpadded_size_unit
|
1252 |
|
|
= size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
|
1253 |
|
|
|
1254 |
|
|
/* Round the size up to be a multiple of the required alignment. */
|
1255 |
|
|
TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
|
1256 |
|
|
TYPE_SIZE_UNIT (rli->t)
|
1257 |
|
|
= round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
|
1258 |
|
|
|
1259 |
|
|
if (TREE_CONSTANT (unpadded_size)
|
1260 |
|
|
&& simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
|
1261 |
|
|
warning (OPT_Wpadded, "padding struct size to alignment boundary");
|
1262 |
|
|
|
1263 |
|
|
if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
|
1264 |
|
|
&& TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
|
1265 |
|
|
&& TREE_CONSTANT (unpadded_size))
|
1266 |
|
|
{
|
1267 |
|
|
tree unpacked_size;
|
1268 |
|
|
|
1269 |
|
|
#ifdef ROUND_TYPE_ALIGN
|
1270 |
|
|
rli->unpacked_align
|
1271 |
|
|
= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
|
1272 |
|
|
#else
|
1273 |
|
|
rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
|
1274 |
|
|
#endif
|
1275 |
|
|
|
1276 |
|
|
unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
|
1277 |
|
|
if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
|
1278 |
|
|
{
|
1279 |
|
|
TYPE_PACKED (rli->t) = 0;
|
1280 |
|
|
|
1281 |
|
|
if (TYPE_NAME (rli->t))
|
1282 |
|
|
{
|
1283 |
|
|
const char *name;
|
1284 |
|
|
|
1285 |
|
|
if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
|
1286 |
|
|
name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
|
1287 |
|
|
else
|
1288 |
|
|
name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
|
1289 |
|
|
|
1290 |
|
|
if (STRICT_ALIGNMENT)
|
1291 |
|
|
warning (OPT_Wpacked, "packed attribute causes inefficient "
|
1292 |
|
|
"alignment for %qs", name);
|
1293 |
|
|
else
|
1294 |
|
|
warning (OPT_Wpacked,
|
1295 |
|
|
"packed attribute is unnecessary for %qs", name);
|
1296 |
|
|
}
|
1297 |
|
|
else
|
1298 |
|
|
{
|
1299 |
|
|
if (STRICT_ALIGNMENT)
|
1300 |
|
|
warning (OPT_Wpacked,
|
1301 |
|
|
"packed attribute causes inefficient alignment");
|
1302 |
|
|
else
|
1303 |
|
|
warning (OPT_Wpacked, "packed attribute is unnecessary");
|
1304 |
|
|
}
|
1305 |
|
|
}
|
1306 |
|
|
}
|
1307 |
|
|
}
|
1308 |
|
|
|
1309 |
|
|
/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
|
1310 |
|
|
|
1311 |
|
|
void
|
1312 |
|
|
compute_record_mode (tree type)
|
1313 |
|
|
{
|
1314 |
|
|
tree field;
|
1315 |
|
|
enum machine_mode mode = VOIDmode;
|
1316 |
|
|
|
1317 |
|
|
/* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
|
1318 |
|
|
However, if possible, we use a mode that fits in a register
|
1319 |
|
|
instead, in order to allow for better optimization down the
|
1320 |
|
|
line. */
|
1321 |
|
|
TYPE_MODE (type) = BLKmode;
|
1322 |
|
|
|
1323 |
|
|
if (! host_integerp (TYPE_SIZE (type), 1))
|
1324 |
|
|
return;
|
1325 |
|
|
|
1326 |
|
|
/* A record which has any BLKmode members must itself be
|
1327 |
|
|
BLKmode; it can't go in a register. Unless the member is
|
1328 |
|
|
BLKmode only because it isn't aligned. */
|
1329 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
1330 |
|
|
{
|
1331 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
1332 |
|
|
continue;
|
1333 |
|
|
|
1334 |
|
|
if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
|
1335 |
|
|
|| (TYPE_MODE (TREE_TYPE (field)) == BLKmode
|
1336 |
|
|
&& ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
|
1337 |
|
|
&& !(TYPE_SIZE (TREE_TYPE (field)) != 0
|
1338 |
|
|
&& integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
|
1339 |
|
|
|| ! host_integerp (bit_position (field), 1)
|
1340 |
|
|
|| DECL_SIZE (field) == 0
|
1341 |
|
|
|| ! host_integerp (DECL_SIZE (field), 1))
|
1342 |
|
|
return;
|
1343 |
|
|
|
1344 |
|
|
/* If this field is the whole struct, remember its mode so
|
1345 |
|
|
that, say, we can put a double in a class into a DF
|
1346 |
|
|
register instead of forcing it to live in the stack. */
|
1347 |
|
|
if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
|
1348 |
|
|
mode = DECL_MODE (field);
|
1349 |
|
|
|
1350 |
|
|
#ifdef MEMBER_TYPE_FORCES_BLK
|
1351 |
|
|
/* With some targets, eg. c4x, it is sub-optimal
|
1352 |
|
|
to access an aligned BLKmode structure as a scalar. */
|
1353 |
|
|
|
1354 |
|
|
if (MEMBER_TYPE_FORCES_BLK (field, mode))
|
1355 |
|
|
return;
|
1356 |
|
|
#endif /* MEMBER_TYPE_FORCES_BLK */
|
1357 |
|
|
}
|
1358 |
|
|
|
1359 |
|
|
/* If we only have one real field; use its mode if that mode's size
|
1360 |
|
|
matches the type's size. This only applies to RECORD_TYPE. This
|
1361 |
|
|
does not apply to unions. */
|
1362 |
|
|
if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
|
1363 |
|
|
&& host_integerp (TYPE_SIZE (type), 1)
|
1364 |
|
|
&& GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
|
1365 |
|
|
TYPE_MODE (type) = mode;
|
1366 |
|
|
else
|
1367 |
|
|
TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
|
1368 |
|
|
|
1369 |
|
|
/* If structure's known alignment is less than what the scalar
|
1370 |
|
|
mode would need, and it matters, then stick with BLKmode. */
|
1371 |
|
|
if (TYPE_MODE (type) != BLKmode
|
1372 |
|
|
&& STRICT_ALIGNMENT
|
1373 |
|
|
&& ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
|
1374 |
|
|
|| TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
|
1375 |
|
|
{
|
1376 |
|
|
/* If this is the only reason this type is BLKmode, then
|
1377 |
|
|
don't force containing types to be BLKmode. */
|
1378 |
|
|
TYPE_NO_FORCE_BLK (type) = 1;
|
1379 |
|
|
TYPE_MODE (type) = BLKmode;
|
1380 |
|
|
}
|
1381 |
|
|
}
|
1382 |
|
|
|
1383 |
|
|
/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
|
1384 |
|
|
out. */
|
1385 |
|
|
|
1386 |
|
|
static void
|
1387 |
|
|
finalize_type_size (tree type)
|
1388 |
|
|
{
|
1389 |
|
|
/* Normally, use the alignment corresponding to the mode chosen.
|
1390 |
|
|
However, where strict alignment is not required, avoid
|
1391 |
|
|
over-aligning structures, since most compilers do not do this
|
1392 |
|
|
alignment. */
|
1393 |
|
|
|
1394 |
|
|
if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
|
1395 |
|
|
&& (STRICT_ALIGNMENT
|
1396 |
|
|
|| (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
|
1397 |
|
|
&& TREE_CODE (type) != QUAL_UNION_TYPE
|
1398 |
|
|
&& TREE_CODE (type) != ARRAY_TYPE)))
|
1399 |
|
|
{
|
1400 |
|
|
unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
|
1401 |
|
|
|
1402 |
|
|
/* Don't override a larger alignment requirement coming from a user
|
1403 |
|
|
alignment of one of the fields. */
|
1404 |
|
|
if (mode_align >= TYPE_ALIGN (type))
|
1405 |
|
|
{
|
1406 |
|
|
TYPE_ALIGN (type) = mode_align;
|
1407 |
|
|
TYPE_USER_ALIGN (type) = 0;
|
1408 |
|
|
}
|
1409 |
|
|
}
|
1410 |
|
|
|
1411 |
|
|
/* Do machine-dependent extra alignment. */
|
1412 |
|
|
#ifdef ROUND_TYPE_ALIGN
|
1413 |
|
|
TYPE_ALIGN (type)
|
1414 |
|
|
= ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
|
1415 |
|
|
#endif
|
1416 |
|
|
|
1417 |
|
|
/* If we failed to find a simple way to calculate the unit size
|
1418 |
|
|
of the type, find it by division. */
|
1419 |
|
|
if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
|
1420 |
|
|
/* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
|
1421 |
|
|
result will fit in sizetype. We will get more efficient code using
|
1422 |
|
|
sizetype, so we force a conversion. */
|
1423 |
|
|
TYPE_SIZE_UNIT (type)
|
1424 |
|
|
= fold_convert (sizetype,
|
1425 |
|
|
size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
|
1426 |
|
|
bitsize_unit_node));
|
1427 |
|
|
|
1428 |
|
|
if (TYPE_SIZE (type) != 0)
|
1429 |
|
|
{
|
1430 |
|
|
TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
|
1431 |
|
|
TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type),
|
1432 |
|
|
TYPE_ALIGN_UNIT (type));
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
/* Evaluate nonconstant sizes only once, either now or as soon as safe. */
|
1436 |
|
|
if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
1437 |
|
|
TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
|
1438 |
|
|
if (TYPE_SIZE_UNIT (type) != 0
|
1439 |
|
|
&& TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
|
1440 |
|
|
TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
|
1441 |
|
|
|
1442 |
|
|
/* Also layout any other variants of the type. */
|
1443 |
|
|
if (TYPE_NEXT_VARIANT (type)
|
1444 |
|
|
|| type != TYPE_MAIN_VARIANT (type))
|
1445 |
|
|
{
|
1446 |
|
|
tree variant;
|
1447 |
|
|
/* Record layout info of this variant. */
|
1448 |
|
|
tree size = TYPE_SIZE (type);
|
1449 |
|
|
tree size_unit = TYPE_SIZE_UNIT (type);
|
1450 |
|
|
unsigned int align = TYPE_ALIGN (type);
|
1451 |
|
|
unsigned int user_align = TYPE_USER_ALIGN (type);
|
1452 |
|
|
enum machine_mode mode = TYPE_MODE (type);
|
1453 |
|
|
|
1454 |
|
|
/* Copy it into all variants. */
|
1455 |
|
|
for (variant = TYPE_MAIN_VARIANT (type);
|
1456 |
|
|
variant != 0;
|
1457 |
|
|
variant = TYPE_NEXT_VARIANT (variant))
|
1458 |
|
|
{
|
1459 |
|
|
TYPE_SIZE (variant) = size;
|
1460 |
|
|
TYPE_SIZE_UNIT (variant) = size_unit;
|
1461 |
|
|
TYPE_ALIGN (variant) = align;
|
1462 |
|
|
TYPE_USER_ALIGN (variant) = user_align;
|
1463 |
|
|
TYPE_MODE (variant) = mode;
|
1464 |
|
|
}
|
1465 |
|
|
}
|
1466 |
|
|
}
|
1467 |
|
|
|
1468 |
|
|
/* Do all of the work required to layout the type indicated by RLI,
|
1469 |
|
|
once the fields have been laid out. This function will call `free'
|
1470 |
|
|
for RLI, unless FREE_P is false. Passing a value other than false
|
1471 |
|
|
for FREE_P is bad practice; this option only exists to support the
|
1472 |
|
|
G++ 3.2 ABI. */
|
1473 |
|
|
|
1474 |
|
|
void
|
1475 |
|
|
finish_record_layout (record_layout_info rli, int free_p)
|
1476 |
|
|
{
|
1477 |
|
|
tree variant;
|
1478 |
|
|
|
1479 |
|
|
/* Compute the final size. */
|
1480 |
|
|
finalize_record_size (rli);
|
1481 |
|
|
|
1482 |
|
|
/* Compute the TYPE_MODE for the record. */
|
1483 |
|
|
compute_record_mode (rli->t);
|
1484 |
|
|
|
1485 |
|
|
/* Perform any last tweaks to the TYPE_SIZE, etc. */
|
1486 |
|
|
finalize_type_size (rli->t);
|
1487 |
|
|
|
1488 |
|
|
/* Propagate TYPE_PACKED to variants. With C++ templates,
|
1489 |
|
|
handle_packed_attribute is too early to do this. */
|
1490 |
|
|
for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
|
1491 |
|
|
variant = TYPE_NEXT_VARIANT (variant))
|
1492 |
|
|
TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
|
1493 |
|
|
|
1494 |
|
|
/* Lay out any static members. This is done now because their type
|
1495 |
|
|
may use the record's type. */
|
1496 |
|
|
while (rli->pending_statics)
|
1497 |
|
|
{
|
1498 |
|
|
layout_decl (TREE_VALUE (rli->pending_statics), 0);
|
1499 |
|
|
rli->pending_statics = TREE_CHAIN (rli->pending_statics);
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
/* Clean up. */
|
1503 |
|
|
if (free_p)
|
1504 |
|
|
free (rli);
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
|
1508 |
|
|
/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
|
1509 |
|
|
NAME, its fields are chained in reverse on FIELDS.
|
1510 |
|
|
|
1511 |
|
|
If ALIGN_TYPE is non-null, it is given the same alignment as
|
1512 |
|
|
ALIGN_TYPE. */
|
1513 |
|
|
|
1514 |
|
|
void
|
1515 |
|
|
finish_builtin_struct (tree type, const char *name, tree fields,
|
1516 |
|
|
tree align_type)
|
1517 |
|
|
{
|
1518 |
|
|
tree tail, next;
|
1519 |
|
|
|
1520 |
|
|
for (tail = NULL_TREE; fields; tail = fields, fields = next)
|
1521 |
|
|
{
|
1522 |
|
|
DECL_FIELD_CONTEXT (fields) = type;
|
1523 |
|
|
next = TREE_CHAIN (fields);
|
1524 |
|
|
TREE_CHAIN (fields) = tail;
|
1525 |
|
|
}
|
1526 |
|
|
TYPE_FIELDS (type) = tail;
|
1527 |
|
|
|
1528 |
|
|
if (align_type)
|
1529 |
|
|
{
|
1530 |
|
|
TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
|
1531 |
|
|
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
layout_type (type);
|
1535 |
|
|
#if 0 /* not yet, should get fixed properly later */
|
1536 |
|
|
TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
|
1537 |
|
|
#else
|
1538 |
|
|
TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
|
1539 |
|
|
#endif
|
1540 |
|
|
TYPE_STUB_DECL (type) = TYPE_NAME (type);
|
1541 |
|
|
layout_decl (TYPE_NAME (type), 0);
|
1542 |
|
|
}
|
1543 |
|
|
|
1544 |
|
|
/* Calculate the mode, size, and alignment for TYPE.
|
1545 |
|
|
For an array type, calculate the element separation as well.
|
1546 |
|
|
Record TYPE on the chain of permanent or temporary types
|
1547 |
|
|
so that dbxout will find out about it.
|
1548 |
|
|
|
1549 |
|
|
TYPE_SIZE of a type is nonzero if the type has been laid out already.
|
1550 |
|
|
layout_type does nothing on such a type.
|
1551 |
|
|
|
1552 |
|
|
If the type is incomplete, its TYPE_SIZE remains zero. */
|
1553 |
|
|
|
1554 |
|
|
void
|
1555 |
|
|
layout_type (tree type)
|
1556 |
|
|
{
|
1557 |
|
|
gcc_assert (type);
|
1558 |
|
|
|
1559 |
|
|
if (type == error_mark_node)
|
1560 |
|
|
return;
|
1561 |
|
|
|
1562 |
|
|
/* Do nothing if type has been laid out before. */
|
1563 |
|
|
if (TYPE_SIZE (type))
|
1564 |
|
|
return;
|
1565 |
|
|
|
1566 |
|
|
switch (TREE_CODE (type))
|
1567 |
|
|
{
|
1568 |
|
|
case LANG_TYPE:
|
1569 |
|
|
/* This kind of type is the responsibility
|
1570 |
|
|
of the language-specific code. */
|
1571 |
|
|
gcc_unreachable ();
|
1572 |
|
|
|
1573 |
|
|
case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
|
1574 |
|
|
if (TYPE_PRECISION (type) == 0)
|
1575 |
|
|
TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
|
1576 |
|
|
|
1577 |
|
|
/* ... fall through ... */
|
1578 |
|
|
|
1579 |
|
|
case INTEGER_TYPE:
|
1580 |
|
|
case ENUMERAL_TYPE:
|
1581 |
|
|
if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
|
1582 |
|
|
&& tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
|
1583 |
|
|
TYPE_UNSIGNED (type) = 1;
|
1584 |
|
|
|
1585 |
|
|
TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
|
1586 |
|
|
MODE_INT);
|
1587 |
|
|
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
1588 |
|
|
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
1589 |
|
|
break;
|
1590 |
|
|
|
1591 |
|
|
case REAL_TYPE:
|
1592 |
|
|
TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
|
1593 |
|
|
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
1594 |
|
|
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
1595 |
|
|
break;
|
1596 |
|
|
|
1597 |
|
|
case COMPLEX_TYPE:
|
1598 |
|
|
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
|
1599 |
|
|
TYPE_MODE (type)
|
1600 |
|
|
= mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
|
1601 |
|
|
(TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
|
1602 |
|
|
? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
|
1603 |
|
|
0);
|
1604 |
|
|
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
|
1605 |
|
|
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
|
1606 |
|
|
break;
|
1607 |
|
|
|
1608 |
|
|
case VECTOR_TYPE:
|
1609 |
|
|
{
|
1610 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (type);
|
1611 |
|
|
tree nunits_tree = build_int_cst (NULL_TREE, nunits);
|
1612 |
|
|
tree innertype = TREE_TYPE (type);
|
1613 |
|
|
|
1614 |
|
|
gcc_assert (!(nunits & (nunits - 1)));
|
1615 |
|
|
|
1616 |
|
|
/* Find an appropriate mode for the vector type. */
|
1617 |
|
|
if (TYPE_MODE (type) == VOIDmode)
|
1618 |
|
|
{
|
1619 |
|
|
enum machine_mode innermode = TYPE_MODE (innertype);
|
1620 |
|
|
enum machine_mode mode;
|
1621 |
|
|
|
1622 |
|
|
/* First, look for a supported vector type. */
|
1623 |
|
|
if (SCALAR_FLOAT_MODE_P (innermode))
|
1624 |
|
|
mode = MIN_MODE_VECTOR_FLOAT;
|
1625 |
|
|
else
|
1626 |
|
|
mode = MIN_MODE_VECTOR_INT;
|
1627 |
|
|
|
1628 |
|
|
for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
|
1629 |
|
|
if (GET_MODE_NUNITS (mode) == nunits
|
1630 |
|
|
&& GET_MODE_INNER (mode) == innermode
|
1631 |
|
|
&& targetm.vector_mode_supported_p (mode))
|
1632 |
|
|
break;
|
1633 |
|
|
|
1634 |
|
|
/* For integers, try mapping it to a same-sized scalar mode. */
|
1635 |
|
|
if (mode == VOIDmode
|
1636 |
|
|
&& GET_MODE_CLASS (innermode) == MODE_INT)
|
1637 |
|
|
mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
|
1638 |
|
|
MODE_INT, 0);
|
1639 |
|
|
|
1640 |
|
|
if (mode == VOIDmode || !have_regs_of_mode[mode])
|
1641 |
|
|
TYPE_MODE (type) = BLKmode;
|
1642 |
|
|
else
|
1643 |
|
|
TYPE_MODE (type) = mode;
|
1644 |
|
|
}
|
1645 |
|
|
|
1646 |
|
|
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
|
1647 |
|
|
TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
|
1648 |
|
|
TYPE_SIZE_UNIT (innertype),
|
1649 |
|
|
nunits_tree, 0);
|
1650 |
|
|
TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
|
1651 |
|
|
nunits_tree, 0);
|
1652 |
|
|
|
1653 |
|
|
/* Always naturally align vectors. This prevents ABI changes
|
1654 |
|
|
depending on whether or not native vector modes are supported. */
|
1655 |
|
|
TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
|
1656 |
|
|
break;
|
1657 |
|
|
}
|
1658 |
|
|
|
1659 |
|
|
case VOID_TYPE:
|
1660 |
|
|
/* This is an incomplete type and so doesn't have a size. */
|
1661 |
|
|
TYPE_ALIGN (type) = 1;
|
1662 |
|
|
TYPE_USER_ALIGN (type) = 0;
|
1663 |
|
|
TYPE_MODE (type) = VOIDmode;
|
1664 |
|
|
break;
|
1665 |
|
|
|
1666 |
|
|
case OFFSET_TYPE:
|
1667 |
|
|
TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
|
1668 |
|
|
TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
|
1669 |
|
|
/* A pointer might be MODE_PARTIAL_INT,
|
1670 |
|
|
but ptrdiff_t must be integral. */
|
1671 |
|
|
TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
|
1672 |
|
|
break;
|
1673 |
|
|
|
1674 |
|
|
case FUNCTION_TYPE:
|
1675 |
|
|
case METHOD_TYPE:
|
1676 |
|
|
/* It's hard to see what the mode and size of a function ought to
|
1677 |
|
|
be, but we do know the alignment is FUNCTION_BOUNDARY, so
|
1678 |
|
|
make it consistent with that. */
|
1679 |
|
|
TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
|
1680 |
|
|
TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
|
1681 |
|
|
TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
1682 |
|
|
break;
|
1683 |
|
|
|
1684 |
|
|
case POINTER_TYPE:
|
1685 |
|
|
case REFERENCE_TYPE:
|
1686 |
|
|
{
|
1687 |
|
|
|
1688 |
|
|
enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
|
1689 |
|
|
&& reference_types_internal)
|
1690 |
|
|
? Pmode : TYPE_MODE (type));
|
1691 |
|
|
|
1692 |
|
|
int nbits = GET_MODE_BITSIZE (mode);
|
1693 |
|
|
|
1694 |
|
|
TYPE_SIZE (type) = bitsize_int (nbits);
|
1695 |
|
|
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
|
1696 |
|
|
TYPE_UNSIGNED (type) = 1;
|
1697 |
|
|
TYPE_PRECISION (type) = nbits;
|
1698 |
|
|
}
|
1699 |
|
|
break;
|
1700 |
|
|
|
1701 |
|
|
case ARRAY_TYPE:
|
1702 |
|
|
{
|
1703 |
|
|
tree index = TYPE_DOMAIN (type);
|
1704 |
|
|
tree element = TREE_TYPE (type);
|
1705 |
|
|
|
1706 |
|
|
build_pointer_type (element);
|
1707 |
|
|
|
1708 |
|
|
/* We need to know both bounds in order to compute the size. */
|
1709 |
|
|
if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
|
1710 |
|
|
&& TYPE_SIZE (element))
|
1711 |
|
|
{
|
1712 |
|
|
tree ub = TYPE_MAX_VALUE (index);
|
1713 |
|
|
tree lb = TYPE_MIN_VALUE (index);
|
1714 |
|
|
tree length;
|
1715 |
|
|
tree element_size;
|
1716 |
|
|
|
1717 |
|
|
/* The initial subtraction should happen in the original type so
|
1718 |
|
|
that (possible) negative values are handled appropriately. */
|
1719 |
|
|
length = size_binop (PLUS_EXPR, size_one_node,
|
1720 |
|
|
fold_convert (sizetype,
|
1721 |
|
|
fold_build2 (MINUS_EXPR,
|
1722 |
|
|
TREE_TYPE (lb),
|
1723 |
|
|
ub, lb)));
|
1724 |
|
|
|
1725 |
|
|
/* Special handling for arrays of bits (for Chill). */
|
1726 |
|
|
element_size = TYPE_SIZE (element);
|
1727 |
|
|
if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
|
1728 |
|
|
&& (integer_zerop (TYPE_MAX_VALUE (element))
|
1729 |
|
|
|| integer_onep (TYPE_MAX_VALUE (element)))
|
1730 |
|
|
&& host_integerp (TYPE_MIN_VALUE (element), 1))
|
1731 |
|
|
{
|
1732 |
|
|
HOST_WIDE_INT maxvalue
|
1733 |
|
|
= tree_low_cst (TYPE_MAX_VALUE (element), 1);
|
1734 |
|
|
HOST_WIDE_INT minvalue
|
1735 |
|
|
= tree_low_cst (TYPE_MIN_VALUE (element), 1);
|
1736 |
|
|
|
1737 |
|
|
if (maxvalue - minvalue == 1
|
1738 |
|
|
&& (maxvalue == 1 || maxvalue == 0))
|
1739 |
|
|
element_size = integer_one_node;
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
/* If neither bound is a constant and sizetype is signed, make
|
1743 |
|
|
sure the size is never negative. We should really do this
|
1744 |
|
|
if *either* bound is non-constant, but this is the best
|
1745 |
|
|
compromise between C and Ada. */
|
1746 |
|
|
if (!TYPE_UNSIGNED (sizetype)
|
1747 |
|
|
&& TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
|
1748 |
|
|
&& TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
|
1749 |
|
|
length = size_binop (MAX_EXPR, length, size_zero_node);
|
1750 |
|
|
|
1751 |
|
|
TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
|
1752 |
|
|
fold_convert (bitsizetype,
|
1753 |
|
|
length));
|
1754 |
|
|
|
1755 |
|
|
/* If we know the size of the element, calculate the total
|
1756 |
|
|
size directly, rather than do some division thing below.
|
1757 |
|
|
This optimization helps Fortran assumed-size arrays
|
1758 |
|
|
(where the size of the array is determined at runtime)
|
1759 |
|
|
substantially.
|
1760 |
|
|
Note that we can't do this in the case where the size of
|
1761 |
|
|
the elements is one bit since TYPE_SIZE_UNIT cannot be
|
1762 |
|
|
set correctly in that case. */
|
1763 |
|
|
if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
|
1764 |
|
|
TYPE_SIZE_UNIT (type)
|
1765 |
|
|
= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
/* Now round the alignment and size,
|
1769 |
|
|
using machine-dependent criteria if any. */
|
1770 |
|
|
|
1771 |
|
|
#ifdef ROUND_TYPE_ALIGN
|
1772 |
|
|
TYPE_ALIGN (type)
|
1773 |
|
|
= ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
|
1774 |
|
|
#else
|
1775 |
|
|
TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
|
1776 |
|
|
#endif
|
1777 |
|
|
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
|
1778 |
|
|
TYPE_MODE (type) = BLKmode;
|
1779 |
|
|
if (TYPE_SIZE (type) != 0
|
1780 |
|
|
#ifdef MEMBER_TYPE_FORCES_BLK
|
1781 |
|
|
&& ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
|
1782 |
|
|
#endif
|
1783 |
|
|
/* BLKmode elements force BLKmode aggregate;
|
1784 |
|
|
else extract/store fields may lose. */
|
1785 |
|
|
&& (TYPE_MODE (TREE_TYPE (type)) != BLKmode
|
1786 |
|
|
|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
|
1787 |
|
|
{
|
1788 |
|
|
/* One-element arrays get the component type's mode. */
|
1789 |
|
|
if (simple_cst_equal (TYPE_SIZE (type),
|
1790 |
|
|
TYPE_SIZE (TREE_TYPE (type))))
|
1791 |
|
|
TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
|
1792 |
|
|
else
|
1793 |
|
|
TYPE_MODE (type)
|
1794 |
|
|
= mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
|
1795 |
|
|
|
1796 |
|
|
if (TYPE_MODE (type) != BLKmode
|
1797 |
|
|
&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
|
1798 |
|
|
&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
|
1799 |
|
|
&& TYPE_MODE (type) != BLKmode)
|
1800 |
|
|
{
|
1801 |
|
|
TYPE_NO_FORCE_BLK (type) = 1;
|
1802 |
|
|
TYPE_MODE (type) = BLKmode;
|
1803 |
|
|
}
|
1804 |
|
|
}
|
1805 |
|
|
/* When the element size is constant, check that it is at least as
|
1806 |
|
|
large as the element alignment. */
|
1807 |
|
|
if (TYPE_SIZE_UNIT (element)
|
1808 |
|
|
&& TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
|
1809 |
|
|
/* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
|
1810 |
|
|
TYPE_ALIGN_UNIT. */
|
1811 |
|
|
&& !TREE_CONSTANT_OVERFLOW (TYPE_SIZE_UNIT (element))
|
1812 |
|
|
&& !integer_zerop (TYPE_SIZE_UNIT (element))
|
1813 |
|
|
&& compare_tree_int (TYPE_SIZE_UNIT (element),
|
1814 |
|
|
TYPE_ALIGN_UNIT (element)) < 0)
|
1815 |
|
|
error ("alignment of array elements is greater than element size");
|
1816 |
|
|
break;
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
case RECORD_TYPE:
|
1820 |
|
|
case UNION_TYPE:
|
1821 |
|
|
case QUAL_UNION_TYPE:
|
1822 |
|
|
{
|
1823 |
|
|
tree field;
|
1824 |
|
|
record_layout_info rli;
|
1825 |
|
|
|
1826 |
|
|
/* Initialize the layout information. */
|
1827 |
|
|
rli = start_record_layout (type);
|
1828 |
|
|
|
1829 |
|
|
/* If this is a QUAL_UNION_TYPE, we want to process the fields
|
1830 |
|
|
in the reverse order in building the COND_EXPR that denotes
|
1831 |
|
|
its size. We reverse them again later. */
|
1832 |
|
|
if (TREE_CODE (type) == QUAL_UNION_TYPE)
|
1833 |
|
|
TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
|
1834 |
|
|
|
1835 |
|
|
/* Place all the fields. */
|
1836 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
1837 |
|
|
place_field (rli, field);
|
1838 |
|
|
|
1839 |
|
|
if (TREE_CODE (type) == QUAL_UNION_TYPE)
|
1840 |
|
|
TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
|
1841 |
|
|
|
1842 |
|
|
if (lang_adjust_rli)
|
1843 |
|
|
(*lang_adjust_rli) (rli);
|
1844 |
|
|
|
1845 |
|
|
/* Finish laying out the record. */
|
1846 |
|
|
finish_record_layout (rli, /*free_p=*/true);
|
1847 |
|
|
}
|
1848 |
|
|
break;
|
1849 |
|
|
|
1850 |
|
|
default:
|
1851 |
|
|
gcc_unreachable ();
|
1852 |
|
|
}
|
1853 |
|
|
|
1854 |
|
|
/* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
|
1855 |
|
|
records and unions, finish_record_layout already called this
|
1856 |
|
|
function. */
|
1857 |
|
|
if (TREE_CODE (type) != RECORD_TYPE
|
1858 |
|
|
&& TREE_CODE (type) != UNION_TYPE
|
1859 |
|
|
&& TREE_CODE (type) != QUAL_UNION_TYPE)
|
1860 |
|
|
finalize_type_size (type);
|
1861 |
|
|
|
1862 |
|
|
/* If an alias set has been set for this aggregate when it was incomplete,
|
1863 |
|
|
force it into alias set 0.
|
1864 |
|
|
This is too conservative, but we cannot call record_component_aliases
|
1865 |
|
|
here because some frontends still change the aggregates after
|
1866 |
|
|
layout_type. */
|
1867 |
|
|
if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
|
1868 |
|
|
TYPE_ALIAS_SET (type) = 0;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
/* Create and return a type for signed integers of PRECISION bits. */
|
1872 |
|
|
|
1873 |
|
|
tree
|
1874 |
|
|
make_signed_type (int precision)
|
1875 |
|
|
{
|
1876 |
|
|
tree type = make_node (INTEGER_TYPE);
|
1877 |
|
|
|
1878 |
|
|
TYPE_PRECISION (type) = precision;
|
1879 |
|
|
|
1880 |
|
|
fixup_signed_type (type);
|
1881 |
|
|
return type;
|
1882 |
|
|
}
|
1883 |
|
|
|
1884 |
|
|
/* Create and return a type for unsigned integers of PRECISION bits. */
|
1885 |
|
|
|
1886 |
|
|
tree
|
1887 |
|
|
make_unsigned_type (int precision)
|
1888 |
|
|
{
|
1889 |
|
|
tree type = make_node (INTEGER_TYPE);
|
1890 |
|
|
|
1891 |
|
|
TYPE_PRECISION (type) = precision;
|
1892 |
|
|
|
1893 |
|
|
fixup_unsigned_type (type);
|
1894 |
|
|
return type;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
/* Initialize sizetype and bitsizetype to a reasonable and temporary
|
1898 |
|
|
value to enable integer types to be created. */
|
1899 |
|
|
|
1900 |
|
|
void
|
1901 |
|
|
initialize_sizetypes (bool signed_p)
|
1902 |
|
|
{
|
1903 |
|
|
tree t = make_node (INTEGER_TYPE);
|
1904 |
|
|
int precision = GET_MODE_BITSIZE (SImode);
|
1905 |
|
|
|
1906 |
|
|
TYPE_MODE (t) = SImode;
|
1907 |
|
|
TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
|
1908 |
|
|
TYPE_USER_ALIGN (t) = 0;
|
1909 |
|
|
TYPE_IS_SIZETYPE (t) = 1;
|
1910 |
|
|
TYPE_UNSIGNED (t) = !signed_p;
|
1911 |
|
|
TYPE_SIZE (t) = build_int_cst (t, precision);
|
1912 |
|
|
TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
|
1913 |
|
|
TYPE_PRECISION (t) = precision;
|
1914 |
|
|
|
1915 |
|
|
/* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE. */
|
1916 |
|
|
set_min_and_max_values_for_integral_type (t, precision, !signed_p);
|
1917 |
|
|
|
1918 |
|
|
sizetype = t;
|
1919 |
|
|
bitsizetype = build_distinct_type_copy (t);
|
1920 |
|
|
}
|
1921 |
|
|
|
1922 |
|
|
/* Make sizetype a version of TYPE, and initialize *sizetype
|
1923 |
|
|
accordingly. We do this by overwriting the stub sizetype and
|
1924 |
|
|
bitsizetype nodes created by initialize_sizetypes. This makes sure
|
1925 |
|
|
that (a) anything stubby about them no longer exists, (b) any
|
1926 |
|
|
INTEGER_CSTs created with such a type, remain valid. */
|
1927 |
|
|
|
1928 |
|
|
void
|
1929 |
|
|
set_sizetype (tree type)
|
1930 |
|
|
{
|
1931 |
|
|
int oprecision = TYPE_PRECISION (type);
|
1932 |
|
|
/* The *bitsizetype types use a precision that avoids overflows when
|
1933 |
|
|
calculating signed sizes / offsets in bits. However, when
|
1934 |
|
|
cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
|
1935 |
|
|
precision. */
|
1936 |
|
|
int precision = MIN (MIN (oprecision + BITS_PER_UNIT_LOG + 1,
|
1937 |
|
|
MAX_FIXED_MODE_SIZE),
|
1938 |
|
|
2 * HOST_BITS_PER_WIDE_INT);
|
1939 |
|
|
tree t;
|
1940 |
|
|
|
1941 |
|
|
gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
|
1942 |
|
|
|
1943 |
|
|
t = build_distinct_type_copy (type);
|
1944 |
|
|
/* We do want to use sizetype's cache, as we will be replacing that
|
1945 |
|
|
type. */
|
1946 |
|
|
TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
|
1947 |
|
|
TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
|
1948 |
|
|
TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
|
1949 |
|
|
TYPE_UID (t) = TYPE_UID (sizetype);
|
1950 |
|
|
TYPE_IS_SIZETYPE (t) = 1;
|
1951 |
|
|
|
1952 |
|
|
/* Replace our original stub sizetype. */
|
1953 |
|
|
memcpy (sizetype, t, tree_size (sizetype));
|
1954 |
|
|
TYPE_MAIN_VARIANT (sizetype) = sizetype;
|
1955 |
|
|
|
1956 |
|
|
t = make_node (INTEGER_TYPE);
|
1957 |
|
|
TYPE_NAME (t) = get_identifier ("bit_size_type");
|
1958 |
|
|
/* We do want to use bitsizetype's cache, as we will be replacing that
|
1959 |
|
|
type. */
|
1960 |
|
|
TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
|
1961 |
|
|
TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
|
1962 |
|
|
TYPE_PRECISION (t) = precision;
|
1963 |
|
|
TYPE_UID (t) = TYPE_UID (bitsizetype);
|
1964 |
|
|
TYPE_IS_SIZETYPE (t) = 1;
|
1965 |
|
|
|
1966 |
|
|
/* Replace our original stub bitsizetype. */
|
1967 |
|
|
memcpy (bitsizetype, t, tree_size (bitsizetype));
|
1968 |
|
|
TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
|
1969 |
|
|
|
1970 |
|
|
if (TYPE_UNSIGNED (type))
|
1971 |
|
|
{
|
1972 |
|
|
fixup_unsigned_type (bitsizetype);
|
1973 |
|
|
ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
|
1974 |
|
|
TYPE_IS_SIZETYPE (ssizetype) = 1;
|
1975 |
|
|
sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
|
1976 |
|
|
TYPE_IS_SIZETYPE (sbitsizetype) = 1;
|
1977 |
|
|
}
|
1978 |
|
|
else
|
1979 |
|
|
{
|
1980 |
|
|
fixup_signed_type (bitsizetype);
|
1981 |
|
|
ssizetype = sizetype;
|
1982 |
|
|
sbitsizetype = bitsizetype;
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* If SIZETYPE is unsigned, we need to fix TYPE_MAX_VALUE so that
|
1986 |
|
|
it is sign extended in a way consistent with force_fit_type. */
|
1987 |
|
|
if (TYPE_UNSIGNED (type))
|
1988 |
|
|
{
|
1989 |
|
|
tree orig_max, new_max;
|
1990 |
|
|
|
1991 |
|
|
orig_max = TYPE_MAX_VALUE (sizetype);
|
1992 |
|
|
|
1993 |
|
|
/* Build a new node with the same values, but a different type. */
|
1994 |
|
|
new_max = build_int_cst_wide (sizetype,
|
1995 |
|
|
TREE_INT_CST_LOW (orig_max),
|
1996 |
|
|
TREE_INT_CST_HIGH (orig_max));
|
1997 |
|
|
|
1998 |
|
|
/* Now sign extend it using force_fit_type to ensure
|
1999 |
|
|
consistency. */
|
2000 |
|
|
new_max = force_fit_type (new_max, 0, 0, 0);
|
2001 |
|
|
TYPE_MAX_VALUE (sizetype) = new_max;
|
2002 |
|
|
}
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
|
2006 |
|
|
or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
|
2007 |
|
|
for TYPE, based on the PRECISION and whether or not the TYPE
|
2008 |
|
|
IS_UNSIGNED. PRECISION need not correspond to a width supported
|
2009 |
|
|
natively by the hardware; for example, on a machine with 8-bit,
|
2010 |
|
|
16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
|
2011 |
|
|
61. */
|
2012 |
|
|
|
2013 |
|
|
void
|
2014 |
|
|
set_min_and_max_values_for_integral_type (tree type,
|
2015 |
|
|
int precision,
|
2016 |
|
|
bool is_unsigned)
|
2017 |
|
|
{
|
2018 |
|
|
tree min_value;
|
2019 |
|
|
tree max_value;
|
2020 |
|
|
|
2021 |
|
|
if (is_unsigned)
|
2022 |
|
|
{
|
2023 |
|
|
min_value = build_int_cst (type, 0);
|
2024 |
|
|
max_value
|
2025 |
|
|
= build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
|
2026 |
|
|
? -1
|
2027 |
|
|
: ((HOST_WIDE_INT) 1 << precision) - 1,
|
2028 |
|
|
precision - HOST_BITS_PER_WIDE_INT > 0
|
2029 |
|
|
? ((unsigned HOST_WIDE_INT) ~0
|
2030 |
|
|
>> (HOST_BITS_PER_WIDE_INT
|
2031 |
|
|
- (precision - HOST_BITS_PER_WIDE_INT)))
|
2032 |
|
|
: 0);
|
2033 |
|
|
}
|
2034 |
|
|
else
|
2035 |
|
|
{
|
2036 |
|
|
min_value
|
2037 |
|
|
= build_int_cst_wide (type,
|
2038 |
|
|
(precision - HOST_BITS_PER_WIDE_INT > 0
|
2039 |
|
|
? 0
|
2040 |
|
|
: (HOST_WIDE_INT) (-1) << (precision - 1)),
|
2041 |
|
|
(((HOST_WIDE_INT) (-1)
|
2042 |
|
|
<< (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
|
2043 |
|
|
? precision - HOST_BITS_PER_WIDE_INT - 1
|
2044 |
|
|
: 0))));
|
2045 |
|
|
max_value
|
2046 |
|
|
= build_int_cst_wide (type,
|
2047 |
|
|
(precision - HOST_BITS_PER_WIDE_INT > 0
|
2048 |
|
|
? -1
|
2049 |
|
|
: ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
|
2050 |
|
|
(precision - HOST_BITS_PER_WIDE_INT - 1 > 0
|
2051 |
|
|
? (((HOST_WIDE_INT) 1
|
2052 |
|
|
<< (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
|
2053 |
|
|
: 0));
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
TYPE_MIN_VALUE (type) = min_value;
|
2057 |
|
|
TYPE_MAX_VALUE (type) = max_value;
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
/* Set the extreme values of TYPE based on its precision in bits,
|
2061 |
|
|
then lay it out. Used when make_signed_type won't do
|
2062 |
|
|
because the tree code is not INTEGER_TYPE.
|
2063 |
|
|
E.g. for Pascal, when the -fsigned-char option is given. */
|
2064 |
|
|
|
2065 |
|
|
void
|
2066 |
|
|
fixup_signed_type (tree type)
|
2067 |
|
|
{
|
2068 |
|
|
int precision = TYPE_PRECISION (type);
|
2069 |
|
|
|
2070 |
|
|
/* We can not represent properly constants greater then
|
2071 |
|
|
2 * HOST_BITS_PER_WIDE_INT, still we need the types
|
2072 |
|
|
as they are used by i386 vector extensions and friends. */
|
2073 |
|
|
if (precision > HOST_BITS_PER_WIDE_INT * 2)
|
2074 |
|
|
precision = HOST_BITS_PER_WIDE_INT * 2;
|
2075 |
|
|
|
2076 |
|
|
set_min_and_max_values_for_integral_type (type, precision,
|
2077 |
|
|
/*is_unsigned=*/false);
|
2078 |
|
|
|
2079 |
|
|
/* Lay out the type: set its alignment, size, etc. */
|
2080 |
|
|
layout_type (type);
|
2081 |
|
|
}
|
2082 |
|
|
|
2083 |
|
|
/* Set the extreme values of TYPE based on its precision in bits,
|
2084 |
|
|
then lay it out. This is used both in `make_unsigned_type'
|
2085 |
|
|
and for enumeral types. */
|
2086 |
|
|
|
2087 |
|
|
void
|
2088 |
|
|
fixup_unsigned_type (tree type)
|
2089 |
|
|
{
|
2090 |
|
|
int precision = TYPE_PRECISION (type);
|
2091 |
|
|
|
2092 |
|
|
/* We can not represent properly constants greater then
|
2093 |
|
|
2 * HOST_BITS_PER_WIDE_INT, still we need the types
|
2094 |
|
|
as they are used by i386 vector extensions and friends. */
|
2095 |
|
|
if (precision > HOST_BITS_PER_WIDE_INT * 2)
|
2096 |
|
|
precision = HOST_BITS_PER_WIDE_INT * 2;
|
2097 |
|
|
|
2098 |
|
|
TYPE_UNSIGNED (type) = 1;
|
2099 |
|
|
|
2100 |
|
|
set_min_and_max_values_for_integral_type (type, precision,
|
2101 |
|
|
/*is_unsigned=*/true);
|
2102 |
|
|
|
2103 |
|
|
/* Lay out the type: set its alignment, size, etc. */
|
2104 |
|
|
layout_type (type);
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
/* Find the best machine mode to use when referencing a bit field of length
|
2108 |
|
|
BITSIZE bits starting at BITPOS.
|
2109 |
|
|
|
2110 |
|
|
The underlying object is known to be aligned to a boundary of ALIGN bits.
|
2111 |
|
|
If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
|
2112 |
|
|
larger than LARGEST_MODE (usually SImode).
|
2113 |
|
|
|
2114 |
|
|
If no mode meets all these conditions, we return VOIDmode.
|
2115 |
|
|
|
2116 |
|
|
If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
|
2117 |
|
|
smallest mode meeting these conditions.
|
2118 |
|
|
|
2119 |
|
|
If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
|
2120 |
|
|
largest mode (but a mode no wider than UNITS_PER_WORD) that meets
|
2121 |
|
|
all the conditions.
|
2122 |
|
|
|
2123 |
|
|
If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
|
2124 |
|
|
decide which of the above modes should be used. */
|
2125 |
|
|
|
2126 |
|
|
enum machine_mode
|
2127 |
|
|
get_best_mode (int bitsize, int bitpos, unsigned int align,
|
2128 |
|
|
enum machine_mode largest_mode, int volatilep)
|
2129 |
|
|
{
|
2130 |
|
|
enum machine_mode mode;
|
2131 |
|
|
unsigned int unit = 0;
|
2132 |
|
|
|
2133 |
|
|
/* Find the narrowest integer mode that contains the bit field. */
|
2134 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
2135 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
2136 |
|
|
{
|
2137 |
|
|
unit = GET_MODE_BITSIZE (mode);
|
2138 |
|
|
if ((bitpos % unit) + bitsize <= unit)
|
2139 |
|
|
break;
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
if (mode == VOIDmode
|
2143 |
|
|
/* It is tempting to omit the following line
|
2144 |
|
|
if STRICT_ALIGNMENT is true.
|
2145 |
|
|
But that is incorrect, since if the bitfield uses part of 3 bytes
|
2146 |
|
|
and we use a 4-byte mode, we could get a spurious segv
|
2147 |
|
|
if the extra 4th byte is past the end of memory.
|
2148 |
|
|
(Though at least one Unix compiler ignores this problem:
|
2149 |
|
|
that on the Sequent 386 machine. */
|
2150 |
|
|
|| MIN (unit, BIGGEST_ALIGNMENT) > align
|
2151 |
|
|
|| (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
|
2152 |
|
|
return VOIDmode;
|
2153 |
|
|
|
2154 |
|
|
if ((SLOW_BYTE_ACCESS && ! volatilep)
|
2155 |
|
|
|| (volatilep && !targetm.narrow_volatile_bitfield()))
|
2156 |
|
|
{
|
2157 |
|
|
enum machine_mode wide_mode = VOIDmode, tmode;
|
2158 |
|
|
|
2159 |
|
|
for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
|
2160 |
|
|
tmode = GET_MODE_WIDER_MODE (tmode))
|
2161 |
|
|
{
|
2162 |
|
|
unit = GET_MODE_BITSIZE (tmode);
|
2163 |
|
|
if (bitpos / unit == (bitpos + bitsize - 1) / unit
|
2164 |
|
|
&& unit <= BITS_PER_WORD
|
2165 |
|
|
&& unit <= MIN (align, BIGGEST_ALIGNMENT)
|
2166 |
|
|
&& (largest_mode == VOIDmode
|
2167 |
|
|
|| unit <= GET_MODE_BITSIZE (largest_mode)))
|
2168 |
|
|
wide_mode = tmode;
|
2169 |
|
|
}
|
2170 |
|
|
|
2171 |
|
|
if (wide_mode != VOIDmode)
|
2172 |
|
|
return wide_mode;
|
2173 |
|
|
}
|
2174 |
|
|
|
2175 |
|
|
return mode;
|
2176 |
|
|
}
|
2177 |
|
|
|
2178 |
|
|
/* Gets minimal and maximal values for MODE (signed or unsigned depending on
|
2179 |
|
|
SIGN). The returned constants are made to be usable in TARGET_MODE. */
|
2180 |
|
|
|
2181 |
|
|
void
|
2182 |
|
|
get_mode_bounds (enum machine_mode mode, int sign,
|
2183 |
|
|
enum machine_mode target_mode,
|
2184 |
|
|
rtx *mmin, rtx *mmax)
|
2185 |
|
|
{
|
2186 |
|
|
unsigned size = GET_MODE_BITSIZE (mode);
|
2187 |
|
|
unsigned HOST_WIDE_INT min_val, max_val;
|
2188 |
|
|
|
2189 |
|
|
gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
|
2190 |
|
|
|
2191 |
|
|
if (sign)
|
2192 |
|
|
{
|
2193 |
|
|
min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
|
2194 |
|
|
max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
|
2195 |
|
|
}
|
2196 |
|
|
else
|
2197 |
|
|
{
|
2198 |
|
|
min_val = 0;
|
2199 |
|
|
max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
|
2200 |
|
|
}
|
2201 |
|
|
|
2202 |
|
|
*mmin = gen_int_mode (min_val, target_mode);
|
2203 |
|
|
*mmax = gen_int_mode (max_val, target_mode);
|
2204 |
|
|
}
|
2205 |
|
|
|
2206 |
|
|
#include "gt-stor-layout.h"
|