1 |
38 |
julius |
/* Control flow optimization code for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Try to match two basic blocks - or their ends - for structural equivalence.
|
23 |
|
|
We scan the blocks from their ends backwards, and expect that insns are
|
24 |
|
|
identical, except for certain cases involving registers. A mismatch
|
25 |
|
|
We scan the blocks from their ends backwards, hoping to find a match, I.e.
|
26 |
|
|
insns are identical, except for certain cases involving registers. A
|
27 |
|
|
mismatch between register number RX (used in block X) and RY (used in the
|
28 |
|
|
same way in block Y) can be handled in one of the following cases:
|
29 |
|
|
1. RX and RY are local to their respective blocks; they are set there and
|
30 |
|
|
die there. If so, they can effectively be ignored.
|
31 |
|
|
2. RX and RY die in their blocks, but live at the start. If any path
|
32 |
|
|
gets redirected through X instead of Y, the caller must emit
|
33 |
|
|
compensation code to move RY to RX. If there are overlapping inputs,
|
34 |
|
|
the function resolve_input_conflict ensures that this can be done.
|
35 |
|
|
Information about these registers are tracked in the X_LOCAL, Y_LOCAL,
|
36 |
|
|
LOCAL_COUNT and LOCAL_RVALUE fields.
|
37 |
|
|
3. RX and RY live throughout their blocks, including the start and the end.
|
38 |
|
|
Either RX and RY must be identical, or we have to replace all uses in
|
39 |
|
|
block X with a new pseudo, which is stored in the INPUT_REG field. The
|
40 |
|
|
caller can then use block X instead of block Y by copying RY to the new
|
41 |
|
|
pseudo.
|
42 |
|
|
|
43 |
|
|
The main entry point to this file is struct_equiv_block_eq. This function
|
44 |
|
|
uses a struct equiv_info to accept some of its inputs, to keep track of its
|
45 |
|
|
internal state, to pass down to its helper functions, and to communicate
|
46 |
|
|
some of the results back to the caller.
|
47 |
|
|
|
48 |
|
|
Most scans will result in a failure to match a sufficient number of insns
|
49 |
|
|
to make any optimization worth while, therefore the process is geared more
|
50 |
|
|
to quick scanning rather than the ability to exactly backtrack when we
|
51 |
|
|
find a mismatch. The information gathered is still meaningful to make a
|
52 |
|
|
preliminary decision if we want to do an optimization, we might only
|
53 |
|
|
slightly overestimate the number of matchable insns, and underestimate
|
54 |
|
|
the number of inputs an miss an input conflict. Sufficient information
|
55 |
|
|
is gathered so that when we make another pass, we won't have to backtrack
|
56 |
|
|
at the same point.
|
57 |
|
|
Another issue is that information in memory attributes and/or REG_NOTES
|
58 |
|
|
might have to be merged or discarded to make a valid match. We don't want
|
59 |
|
|
to discard such information when we are not certain that we want to merge
|
60 |
|
|
the two (partial) blocks.
|
61 |
|
|
For these reasons, struct_equiv_block_eq has to be called first with the
|
62 |
|
|
STRUCT_EQUIV_START bit set in the mode parameter. This will calculate the
|
63 |
|
|
number of matched insns and the number and types of inputs. If the
|
64 |
|
|
need_rerun field is set, the results are only tentative, and the caller
|
65 |
|
|
has to call again with STRUCT_EQUIV_RERUN till need_rerun is false in
|
66 |
|
|
order to get a reliable match.
|
67 |
|
|
To install the changes necessary for the match, the function has to be
|
68 |
|
|
called again with STRUCT_EQUIV_FINAL.
|
69 |
|
|
|
70 |
|
|
While scanning an insn, we process first all the SET_DESTs, then the
|
71 |
|
|
SET_SRCes, then the REG_NOTES, in order to keep the register liveness
|
72 |
|
|
information consistent.
|
73 |
|
|
If we were to mix up the order for sources / destinations in an insn where
|
74 |
|
|
a source is also a destination, we'd end up being mistaken to think that
|
75 |
|
|
the register is not live in the preceding insn. */
|
76 |
|
|
|
77 |
|
|
#include "config.h"
|
78 |
|
|
#include "system.h"
|
79 |
|
|
#include "coretypes.h"
|
80 |
|
|
#include "tm.h"
|
81 |
|
|
#include "rtl.h"
|
82 |
|
|
#include "regs.h"
|
83 |
|
|
#include "output.h"
|
84 |
|
|
#include "insn-config.h"
|
85 |
|
|
#include "flags.h"
|
86 |
|
|
#include "recog.h"
|
87 |
|
|
#include "tm_p.h"
|
88 |
|
|
#include "target.h"
|
89 |
|
|
#include "emit-rtl.h"
|
90 |
|
|
#include "reload.h"
|
91 |
|
|
|
92 |
|
|
static void merge_memattrs (rtx, rtx);
|
93 |
|
|
static bool set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info);
|
94 |
|
|
static bool set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info);
|
95 |
|
|
static void find_dying_inputs (struct equiv_info *info);
|
96 |
|
|
static bool resolve_input_conflict (struct equiv_info *info);
|
97 |
|
|
|
98 |
|
|
/* After reload, some moves, as indicated by SECONDARY_RELOAD_CLASS and
|
99 |
|
|
SECONDARY_MEMORY_NEEDED, cannot be done directly. For our purposes, we
|
100 |
|
|
consider them impossible to generate after reload (even though some
|
101 |
|
|
might be synthesized when you throw enough code at them).
|
102 |
|
|
Since we don't know while processing a cross-jump if a local register
|
103 |
|
|
that is currently live will eventually be live and thus be an input,
|
104 |
|
|
we keep track of potential inputs that would require an impossible move
|
105 |
|
|
by using a prohibitively high cost for them.
|
106 |
|
|
This number, multiplied with the larger of STRUCT_EQUIV_MAX_LOCAL and
|
107 |
|
|
FIRST_PSEUDO_REGISTER, must fit in the input_cost field of
|
108 |
|
|
struct equiv_info. */
|
109 |
|
|
#define IMPOSSIBLE_MOVE_FACTOR 20000
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
/* Removes the memory attributes of MEM expression
|
114 |
|
|
if they are not equal. */
|
115 |
|
|
|
116 |
|
|
void
|
117 |
|
|
merge_memattrs (rtx x, rtx y)
|
118 |
|
|
{
|
119 |
|
|
int i;
|
120 |
|
|
int j;
|
121 |
|
|
enum rtx_code code;
|
122 |
|
|
const char *fmt;
|
123 |
|
|
|
124 |
|
|
if (x == y)
|
125 |
|
|
return;
|
126 |
|
|
if (x == 0 || y == 0)
|
127 |
|
|
return;
|
128 |
|
|
|
129 |
|
|
code = GET_CODE (x);
|
130 |
|
|
|
131 |
|
|
if (code != GET_CODE (y))
|
132 |
|
|
return;
|
133 |
|
|
|
134 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
135 |
|
|
return;
|
136 |
|
|
|
137 |
|
|
if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
|
138 |
|
|
{
|
139 |
|
|
if (! MEM_ATTRS (x))
|
140 |
|
|
MEM_ATTRS (y) = 0;
|
141 |
|
|
else if (! MEM_ATTRS (y))
|
142 |
|
|
MEM_ATTRS (x) = 0;
|
143 |
|
|
else
|
144 |
|
|
{
|
145 |
|
|
rtx mem_size;
|
146 |
|
|
|
147 |
|
|
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
|
148 |
|
|
{
|
149 |
|
|
set_mem_alias_set (x, 0);
|
150 |
|
|
set_mem_alias_set (y, 0);
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
|
154 |
|
|
{
|
155 |
|
|
set_mem_expr (x, 0);
|
156 |
|
|
set_mem_expr (y, 0);
|
157 |
|
|
set_mem_offset (x, 0);
|
158 |
|
|
set_mem_offset (y, 0);
|
159 |
|
|
}
|
160 |
|
|
else if (MEM_OFFSET (x) != MEM_OFFSET (y))
|
161 |
|
|
{
|
162 |
|
|
set_mem_offset (x, 0);
|
163 |
|
|
set_mem_offset (y, 0);
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
if (!MEM_SIZE (x))
|
167 |
|
|
mem_size = NULL_RTX;
|
168 |
|
|
else if (!MEM_SIZE (y))
|
169 |
|
|
mem_size = NULL_RTX;
|
170 |
|
|
else
|
171 |
|
|
mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
|
172 |
|
|
INTVAL (MEM_SIZE (y))));
|
173 |
|
|
set_mem_size (x, mem_size);
|
174 |
|
|
set_mem_size (y, mem_size);
|
175 |
|
|
|
176 |
|
|
set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
|
177 |
|
|
set_mem_align (y, MEM_ALIGN (x));
|
178 |
|
|
}
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
fmt = GET_RTX_FORMAT (code);
|
182 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
183 |
|
|
{
|
184 |
|
|
switch (fmt[i])
|
185 |
|
|
{
|
186 |
|
|
case 'E':
|
187 |
|
|
/* Two vectors must have the same length. */
|
188 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
189 |
|
|
return;
|
190 |
|
|
|
191 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
192 |
|
|
merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
|
193 |
|
|
|
194 |
|
|
break;
|
195 |
|
|
|
196 |
|
|
case 'e':
|
197 |
|
|
merge_memattrs (XEXP (x, i), XEXP (y, i));
|
198 |
|
|
}
|
199 |
|
|
}
|
200 |
|
|
return;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* In SET, assign the bit for the register number of REG the value VALUE.
|
204 |
|
|
If REG is a hard register, do so for all its constituent registers.
|
205 |
|
|
Return the number of registers that have become included (as a positive
|
206 |
|
|
number) or excluded (as a negative number). */
|
207 |
|
|
static int
|
208 |
|
|
assign_reg_reg_set (regset set, rtx reg, int value)
|
209 |
|
|
{
|
210 |
|
|
unsigned regno = REGNO (reg);
|
211 |
|
|
int nregs, i, old;
|
212 |
|
|
|
213 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
214 |
|
|
{
|
215 |
|
|
gcc_assert (!reload_completed);
|
216 |
|
|
nregs = 1;
|
217 |
|
|
}
|
218 |
|
|
else
|
219 |
|
|
nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
220 |
|
|
for (old = 0, i = nregs; --i >= 0; regno++)
|
221 |
|
|
{
|
222 |
|
|
if ((value != 0) == REGNO_REG_SET_P (set, regno))
|
223 |
|
|
continue;
|
224 |
|
|
if (value)
|
225 |
|
|
old++, SET_REGNO_REG_SET (set, regno);
|
226 |
|
|
else
|
227 |
|
|
old--, CLEAR_REGNO_REG_SET (set, regno);
|
228 |
|
|
}
|
229 |
|
|
return old;
|
230 |
|
|
}
|
231 |
|
|
|
232 |
|
|
/* Record state about current inputs / local registers / liveness
|
233 |
|
|
in *P. */
|
234 |
|
|
static inline void
|
235 |
|
|
struct_equiv_make_checkpoint (struct struct_equiv_checkpoint *p,
|
236 |
|
|
struct equiv_info *info)
|
237 |
|
|
{
|
238 |
|
|
*p = info->cur;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Call struct_equiv_make_checkpoint (P, INFO) if the current partial block
|
242 |
|
|
is suitable to split off - i.e. there is no dangling cc0 user - and
|
243 |
|
|
if the current cost of the common instructions, minus the cost for
|
244 |
|
|
setting up the inputs, is higher than what has been recorded before
|
245 |
|
|
in CHECKPOINT[N]. Also, if we do so, confirm or cancel any pending
|
246 |
|
|
changes. */
|
247 |
|
|
static void
|
248 |
|
|
struct_equiv_improve_checkpoint (struct struct_equiv_checkpoint *p,
|
249 |
|
|
struct equiv_info *info)
|
250 |
|
|
{
|
251 |
|
|
#ifdef HAVE_cc0
|
252 |
|
|
if (reg_mentioned_p (cc0_rtx, info->cur.x_start)
|
253 |
|
|
&& !sets_cc0_p (info->cur.x_start))
|
254 |
|
|
return;
|
255 |
|
|
#endif
|
256 |
|
|
if (info->cur.input_count >= IMPOSSIBLE_MOVE_FACTOR)
|
257 |
|
|
return;
|
258 |
|
|
if (info->input_cost >= 0
|
259 |
|
|
? (COSTS_N_INSNS(info->cur.ninsns - p->ninsns)
|
260 |
|
|
> info->input_cost * (info->cur.input_count - p->input_count))
|
261 |
|
|
: info->cur.ninsns > p->ninsns && !info->cur.input_count)
|
262 |
|
|
{
|
263 |
|
|
if (info->check_input_conflict && ! resolve_input_conflict (info))
|
264 |
|
|
return;
|
265 |
|
|
/* We have a profitable set of changes. If this is the final pass,
|
266 |
|
|
commit them now. Otherwise, we don't know yet if we can make any
|
267 |
|
|
change, so put the old code back for now. */
|
268 |
|
|
if (info->mode & STRUCT_EQUIV_FINAL)
|
269 |
|
|
confirm_change_group ();
|
270 |
|
|
else
|
271 |
|
|
cancel_changes (0);
|
272 |
|
|
struct_equiv_make_checkpoint (p, info);
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/* Restore state about current inputs / local registers / liveness
|
277 |
|
|
from P. */
|
278 |
|
|
static void
|
279 |
|
|
struct_equiv_restore_checkpoint (struct struct_equiv_checkpoint *p,
|
280 |
|
|
struct equiv_info *info)
|
281 |
|
|
{
|
282 |
|
|
info->cur.ninsns = p->ninsns;
|
283 |
|
|
info->cur.x_start = p->x_start;
|
284 |
|
|
info->cur.y_start = p->y_start;
|
285 |
|
|
info->cur.input_count = p->input_count;
|
286 |
|
|
info->cur.input_valid = p->input_valid;
|
287 |
|
|
while (info->cur.local_count > p->local_count)
|
288 |
|
|
{
|
289 |
|
|
info->cur.local_count--;
|
290 |
|
|
info->cur.version--;
|
291 |
|
|
if (REGNO_REG_SET_P (info->x_local_live,
|
292 |
|
|
REGNO (info->x_local[info->cur.local_count])))
|
293 |
|
|
{
|
294 |
|
|
assign_reg_reg_set (info->x_local_live,
|
295 |
|
|
info->x_local[info->cur.local_count], 0);
|
296 |
|
|
assign_reg_reg_set (info->y_local_live,
|
297 |
|
|
info->y_local[info->cur.local_count], 0);
|
298 |
|
|
info->cur.version--;
|
299 |
|
|
}
|
300 |
|
|
}
|
301 |
|
|
if (info->cur.version != p->version)
|
302 |
|
|
info->need_rerun = true;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
/* Update register liveness to reflect that X is now life (if rvalue is
|
307 |
|
|
nonzero) or dead (if rvalue is zero) in INFO->x_block, and likewise Y
|
308 |
|
|
in INFO->y_block. Return the number of registers the liveness of which
|
309 |
|
|
changed in each block (as a negative number if registers became dead). */
|
310 |
|
|
static int
|
311 |
|
|
note_local_live (struct equiv_info *info, rtx x, rtx y, int rvalue)
|
312 |
|
|
{
|
313 |
|
|
unsigned x_regno = REGNO (x);
|
314 |
|
|
unsigned y_regno = REGNO (y);
|
315 |
|
|
int x_nominal_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
|
316 |
|
|
? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
|
317 |
|
|
int y_nominal_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
|
318 |
|
|
? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
|
319 |
|
|
int x_change = assign_reg_reg_set (info->x_local_live, x, rvalue);
|
320 |
|
|
int y_change = assign_reg_reg_set (info->y_local_live, y, rvalue);
|
321 |
|
|
|
322 |
|
|
gcc_assert (x_nominal_nregs && y_nominal_nregs);
|
323 |
|
|
gcc_assert (x_change * y_nominal_nregs == y_change * x_nominal_nregs);
|
324 |
|
|
if (y_change)
|
325 |
|
|
{
|
326 |
|
|
if (reload_completed)
|
327 |
|
|
{
|
328 |
|
|
unsigned x_regno ATTRIBUTE_UNUSED = REGNO (x);
|
329 |
|
|
unsigned y_regno = REGNO (y);
|
330 |
|
|
enum machine_mode x_mode = GET_MODE (x);
|
331 |
|
|
|
332 |
|
|
if (secondary_reload_class (0, REGNO_REG_CLASS (y_regno), x_mode, x)
|
333 |
|
|
!= NO_REGS
|
334 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
335 |
|
|
|| SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (y_regno),
|
336 |
|
|
REGNO_REG_CLASS (x_regno), x_mode)
|
337 |
|
|
#endif
|
338 |
|
|
)
|
339 |
|
|
y_change *= IMPOSSIBLE_MOVE_FACTOR;
|
340 |
|
|
}
|
341 |
|
|
info->cur.input_count += y_change;
|
342 |
|
|
info->cur.version++;
|
343 |
|
|
}
|
344 |
|
|
return x_change;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/* Check if *XP is equivalent to Y. Until an an unreconcilable difference is
|
348 |
|
|
found, use in-group changes with validate_change on *XP to make register
|
349 |
|
|
assignments agree. It is the (not necessarily direct) callers
|
350 |
|
|
responsibility to verify / confirm / cancel these changes, as appropriate.
|
351 |
|
|
RVALUE indicates if the processed piece of rtl is used as a destination, in
|
352 |
|
|
which case we can't have different registers being an input. Returns
|
353 |
|
|
nonzero if the two blocks have been identified as equivalent, zero otherwise.
|
354 |
|
|
RVALUE == 0: destination
|
355 |
|
|
RVALUE == 1: source
|
356 |
|
|
RVALUE == -1: source, ignore SET_DEST of SET / clobber. */
|
357 |
|
|
bool
|
358 |
|
|
rtx_equiv_p (rtx *xp, rtx y, int rvalue, struct equiv_info *info)
|
359 |
|
|
{
|
360 |
|
|
rtx x = *xp;
|
361 |
|
|
enum rtx_code code;
|
362 |
|
|
int length;
|
363 |
|
|
const char *format;
|
364 |
|
|
int i;
|
365 |
|
|
|
366 |
|
|
if (!y || !x)
|
367 |
|
|
return x == y;
|
368 |
|
|
code = GET_CODE (y);
|
369 |
|
|
if (code != REG && x == y)
|
370 |
|
|
return true;
|
371 |
|
|
if (GET_CODE (x) != code
|
372 |
|
|
|| GET_MODE (x) != GET_MODE (y))
|
373 |
|
|
return false;
|
374 |
|
|
|
375 |
|
|
/* ??? could extend to allow CONST_INT inputs. */
|
376 |
|
|
switch (code)
|
377 |
|
|
{
|
378 |
|
|
case REG:
|
379 |
|
|
{
|
380 |
|
|
unsigned x_regno = REGNO (x);
|
381 |
|
|
unsigned y_regno = REGNO (y);
|
382 |
|
|
int x_common_live, y_common_live;
|
383 |
|
|
|
384 |
|
|
if (reload_completed
|
385 |
|
|
&& (x_regno >= FIRST_PSEUDO_REGISTER
|
386 |
|
|
|| y_regno >= FIRST_PSEUDO_REGISTER))
|
387 |
|
|
{
|
388 |
|
|
/* We should only see this in REG_NOTEs. */
|
389 |
|
|
gcc_assert (!info->live_update);
|
390 |
|
|
/* Returning false will cause us to remove the notes. */
|
391 |
|
|
return false;
|
392 |
|
|
}
|
393 |
|
|
#ifdef STACK_REGS
|
394 |
|
|
/* After reg-stack, can only accept literal matches of stack regs. */
|
395 |
|
|
if (info->mode & CLEANUP_POST_REGSTACK
|
396 |
|
|
&& (IN_RANGE (x_regno, FIRST_STACK_REG, LAST_STACK_REG)
|
397 |
|
|
|| IN_RANGE (y_regno, FIRST_STACK_REG, LAST_STACK_REG)))
|
398 |
|
|
return x_regno == y_regno;
|
399 |
|
|
#endif
|
400 |
|
|
|
401 |
|
|
/* If the register is a locally live one in one block, the
|
402 |
|
|
corresponding one must be locally live in the other, too, and
|
403 |
|
|
match of identical regnos doesn't apply. */
|
404 |
|
|
if (REGNO_REG_SET_P (info->x_local_live, x_regno))
|
405 |
|
|
{
|
406 |
|
|
if (!REGNO_REG_SET_P (info->y_local_live, y_regno))
|
407 |
|
|
return false;
|
408 |
|
|
}
|
409 |
|
|
else if (REGNO_REG_SET_P (info->y_local_live, y_regno))
|
410 |
|
|
return false;
|
411 |
|
|
else if (x_regno == y_regno)
|
412 |
|
|
{
|
413 |
|
|
if (!rvalue && info->cur.input_valid
|
414 |
|
|
&& (reg_overlap_mentioned_p (x, info->x_input)
|
415 |
|
|
|| reg_overlap_mentioned_p (x, info->y_input)))
|
416 |
|
|
return false;
|
417 |
|
|
|
418 |
|
|
/* Update liveness information. */
|
419 |
|
|
if (info->live_update
|
420 |
|
|
&& assign_reg_reg_set (info->common_live, x, rvalue))
|
421 |
|
|
info->cur.version++;
|
422 |
|
|
|
423 |
|
|
return true;
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
x_common_live = REGNO_REG_SET_P (info->common_live, x_regno);
|
427 |
|
|
y_common_live = REGNO_REG_SET_P (info->common_live, y_regno);
|
428 |
|
|
if (x_common_live != y_common_live)
|
429 |
|
|
return false;
|
430 |
|
|
else if (x_common_live)
|
431 |
|
|
{
|
432 |
|
|
if (! rvalue || info->input_cost < 0 || no_new_pseudos)
|
433 |
|
|
return false;
|
434 |
|
|
/* If info->live_update is not set, we are processing notes.
|
435 |
|
|
We then allow a match with x_input / y_input found in a
|
436 |
|
|
previous pass. */
|
437 |
|
|
if (info->live_update && !info->cur.input_valid)
|
438 |
|
|
{
|
439 |
|
|
info->cur.input_valid = true;
|
440 |
|
|
info->x_input = x;
|
441 |
|
|
info->y_input = y;
|
442 |
|
|
info->cur.input_count += optimize_size ? 2 : 1;
|
443 |
|
|
if (info->input_reg
|
444 |
|
|
&& GET_MODE (info->input_reg) != GET_MODE (info->x_input))
|
445 |
|
|
info->input_reg = NULL_RTX;
|
446 |
|
|
if (!info->input_reg)
|
447 |
|
|
info->input_reg = gen_reg_rtx (GET_MODE (info->x_input));
|
448 |
|
|
}
|
449 |
|
|
else if ((info->live_update
|
450 |
|
|
? ! info->cur.input_valid : ! info->x_input)
|
451 |
|
|
|| ! rtx_equal_p (x, info->x_input)
|
452 |
|
|
|| ! rtx_equal_p (y, info->y_input))
|
453 |
|
|
return false;
|
454 |
|
|
validate_change (info->cur.x_start, xp, info->input_reg, 1);
|
455 |
|
|
}
|
456 |
|
|
else
|
457 |
|
|
{
|
458 |
|
|
int x_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
|
459 |
|
|
? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
|
460 |
|
|
int y_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
|
461 |
|
|
? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
|
462 |
|
|
int size = GET_MODE_SIZE (GET_MODE (x));
|
463 |
|
|
enum machine_mode x_mode = GET_MODE (x);
|
464 |
|
|
unsigned x_regno_i, y_regno_i;
|
465 |
|
|
int x_nregs_i, y_nregs_i, size_i;
|
466 |
|
|
int local_count = info->cur.local_count;
|
467 |
|
|
|
468 |
|
|
/* This might be a register local to each block. See if we have
|
469 |
|
|
it already registered. */
|
470 |
|
|
for (i = local_count - 1; i >= 0; i--)
|
471 |
|
|
{
|
472 |
|
|
x_regno_i = REGNO (info->x_local[i]);
|
473 |
|
|
x_nregs_i = (x_regno_i >= FIRST_PSEUDO_REGISTER
|
474 |
|
|
? 1 : hard_regno_nregs[x_regno_i][GET_MODE (x)]);
|
475 |
|
|
y_regno_i = REGNO (info->y_local[i]);
|
476 |
|
|
y_nregs_i = (y_regno_i >= FIRST_PSEUDO_REGISTER
|
477 |
|
|
? 1 : hard_regno_nregs[y_regno_i][GET_MODE (y)]);
|
478 |
|
|
size_i = GET_MODE_SIZE (GET_MODE (info->x_local[i]));
|
479 |
|
|
|
480 |
|
|
/* If we have a new pair of registers that is wider than an
|
481 |
|
|
old pair and enclosing it with matching offsets,
|
482 |
|
|
remove the old pair. If we find a matching, wider, old
|
483 |
|
|
pair, use the old one. If the width is the same, use the
|
484 |
|
|
old one if the modes match, but the new if they don't.
|
485 |
|
|
We don't want to get too fancy with subreg_regno_offset
|
486 |
|
|
here, so we just test two straightforward cases each. */
|
487 |
|
|
if (info->live_update
|
488 |
|
|
&& (x_mode != GET_MODE (info->x_local[i])
|
489 |
|
|
? size >= size_i : size > size_i))
|
490 |
|
|
{
|
491 |
|
|
/* If the new pair is fully enclosing a matching
|
492 |
|
|
existing pair, remove the old one. N.B. because
|
493 |
|
|
we are removing one entry here, the check below
|
494 |
|
|
if we have space for a new entry will succeed. */
|
495 |
|
|
if ((x_regno <= x_regno_i
|
496 |
|
|
&& x_regno + x_nregs >= x_regno_i + x_nregs_i
|
497 |
|
|
&& x_nregs == y_nregs && x_nregs_i == y_nregs_i
|
498 |
|
|
&& x_regno - x_regno_i == y_regno - y_regno_i)
|
499 |
|
|
|| (x_regno == x_regno_i && y_regno == y_regno_i
|
500 |
|
|
&& x_nregs >= x_nregs_i && y_nregs >= y_nregs_i))
|
501 |
|
|
{
|
502 |
|
|
info->cur.local_count = --local_count;
|
503 |
|
|
info->x_local[i] = info->x_local[local_count];
|
504 |
|
|
info->y_local[i] = info->y_local[local_count];
|
505 |
|
|
continue;
|
506 |
|
|
}
|
507 |
|
|
}
|
508 |
|
|
else
|
509 |
|
|
{
|
510 |
|
|
|
511 |
|
|
/* If the new pair is fully enclosed within a matching
|
512 |
|
|
existing pair, succeed. */
|
513 |
|
|
if (x_regno >= x_regno_i
|
514 |
|
|
&& x_regno + x_nregs <= x_regno_i + x_nregs_i
|
515 |
|
|
&& x_nregs == y_nregs && x_nregs_i == y_nregs_i
|
516 |
|
|
&& x_regno - x_regno_i == y_regno - y_regno_i)
|
517 |
|
|
break;
|
518 |
|
|
if (x_regno == x_regno_i && y_regno == y_regno_i
|
519 |
|
|
&& x_nregs <= x_nregs_i && y_nregs <= y_nregs_i)
|
520 |
|
|
break;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* Any other overlap causes a match failure. */
|
524 |
|
|
if (x_regno + x_nregs > x_regno_i
|
525 |
|
|
&& x_regno_i + x_nregs_i > x_regno)
|
526 |
|
|
return false;
|
527 |
|
|
if (y_regno + y_nregs > y_regno_i
|
528 |
|
|
&& y_regno_i + y_nregs_i > y_regno)
|
529 |
|
|
return false;
|
530 |
|
|
}
|
531 |
|
|
if (i < 0)
|
532 |
|
|
{
|
533 |
|
|
/* Not found. Create a new entry if possible. */
|
534 |
|
|
if (!info->live_update
|
535 |
|
|
|| info->cur.local_count >= STRUCT_EQUIV_MAX_LOCAL)
|
536 |
|
|
return false;
|
537 |
|
|
info->x_local[info->cur.local_count] = x;
|
538 |
|
|
info->y_local[info->cur.local_count] = y;
|
539 |
|
|
info->cur.local_count++;
|
540 |
|
|
info->cur.version++;
|
541 |
|
|
}
|
542 |
|
|
note_local_live (info, x, y, rvalue);
|
543 |
|
|
}
|
544 |
|
|
return true;
|
545 |
|
|
}
|
546 |
|
|
case SET:
|
547 |
|
|
gcc_assert (rvalue < 0);
|
548 |
|
|
/* Ignore the destinations role as a destination. Still, we have
|
549 |
|
|
to consider input registers embedded in the addresses of a MEM.
|
550 |
|
|
N.B., we process the rvalue aspect of STRICT_LOW_PART /
|
551 |
|
|
ZERO_EXTEND / SIGN_EXTEND along with their lvalue aspect. */
|
552 |
|
|
if(!set_dest_addr_equiv_p (SET_DEST (x), SET_DEST (y), info))
|
553 |
|
|
return false;
|
554 |
|
|
/* Process source. */
|
555 |
|
|
return rtx_equiv_p (&SET_SRC (x), SET_SRC (y), 1, info);
|
556 |
|
|
case PRE_MODIFY:
|
557 |
|
|
/* Process destination. */
|
558 |
|
|
if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
|
559 |
|
|
return false;
|
560 |
|
|
/* Process source. */
|
561 |
|
|
return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
|
562 |
|
|
case POST_MODIFY:
|
563 |
|
|
{
|
564 |
|
|
rtx x_dest0, x_dest1;
|
565 |
|
|
|
566 |
|
|
/* Process destination. */
|
567 |
|
|
x_dest0 = XEXP (x, 0);
|
568 |
|
|
gcc_assert (REG_P (x_dest0));
|
569 |
|
|
if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
|
570 |
|
|
return false;
|
571 |
|
|
x_dest1 = XEXP (x, 0);
|
572 |
|
|
/* validate_change might have changed the destination. Put it back
|
573 |
|
|
so that we can do a proper match for its role a an input. */
|
574 |
|
|
XEXP (x, 0) = x_dest0;
|
575 |
|
|
if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info))
|
576 |
|
|
return false;
|
577 |
|
|
gcc_assert (x_dest1 == XEXP (x, 0));
|
578 |
|
|
/* Process source. */
|
579 |
|
|
return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
|
580 |
|
|
}
|
581 |
|
|
case CLOBBER:
|
582 |
|
|
gcc_assert (rvalue < 0);
|
583 |
|
|
return true;
|
584 |
|
|
/* Some special forms are also rvalues when they appear in lvalue
|
585 |
|
|
positions. However, we must ont try to match a register after we
|
586 |
|
|
have already altered it with validate_change, consider the rvalue
|
587 |
|
|
aspect while we process the lvalue. */
|
588 |
|
|
case STRICT_LOW_PART:
|
589 |
|
|
case ZERO_EXTEND:
|
590 |
|
|
case SIGN_EXTEND:
|
591 |
|
|
{
|
592 |
|
|
rtx x_inner, y_inner;
|
593 |
|
|
enum rtx_code code;
|
594 |
|
|
int change;
|
595 |
|
|
|
596 |
|
|
if (rvalue)
|
597 |
|
|
break;
|
598 |
|
|
x_inner = XEXP (x, 0);
|
599 |
|
|
y_inner = XEXP (y, 0);
|
600 |
|
|
if (GET_MODE (x_inner) != GET_MODE (y_inner))
|
601 |
|
|
return false;
|
602 |
|
|
code = GET_CODE (x_inner);
|
603 |
|
|
if (code != GET_CODE (y_inner))
|
604 |
|
|
return false;
|
605 |
|
|
/* The address of a MEM is an input that will be processed during
|
606 |
|
|
rvalue == -1 processing. */
|
607 |
|
|
if (code == SUBREG)
|
608 |
|
|
{
|
609 |
|
|
if (SUBREG_BYTE (x_inner) != SUBREG_BYTE (y_inner))
|
610 |
|
|
return false;
|
611 |
|
|
x = x_inner;
|
612 |
|
|
x_inner = SUBREG_REG (x_inner);
|
613 |
|
|
y_inner = SUBREG_REG (y_inner);
|
614 |
|
|
if (GET_MODE (x_inner) != GET_MODE (y_inner))
|
615 |
|
|
return false;
|
616 |
|
|
code = GET_CODE (x_inner);
|
617 |
|
|
if (code != GET_CODE (y_inner))
|
618 |
|
|
return false;
|
619 |
|
|
}
|
620 |
|
|
if (code == MEM)
|
621 |
|
|
return true;
|
622 |
|
|
gcc_assert (code == REG);
|
623 |
|
|
if (! rtx_equiv_p (&XEXP (x, 0), y_inner, rvalue, info))
|
624 |
|
|
return false;
|
625 |
|
|
if (REGNO (x_inner) == REGNO (y_inner))
|
626 |
|
|
{
|
627 |
|
|
change = assign_reg_reg_set (info->common_live, x_inner, 1);
|
628 |
|
|
info->cur.version++;
|
629 |
|
|
}
|
630 |
|
|
else
|
631 |
|
|
change = note_local_live (info, x_inner, y_inner, 1);
|
632 |
|
|
gcc_assert (change);
|
633 |
|
|
return true;
|
634 |
|
|
}
|
635 |
|
|
/* The AUTO_INC / POST_MODIFY / PRE_MODIFY sets are modelled to take
|
636 |
|
|
place during input processing, however, that is benign, since they
|
637 |
|
|
are paired with reads. */
|
638 |
|
|
case MEM:
|
639 |
|
|
return !rvalue || rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info);
|
640 |
|
|
case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
|
641 |
|
|
return (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info)
|
642 |
|
|
&& rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info));
|
643 |
|
|
case PARALLEL:
|
644 |
|
|
/* If this is a top-level PATTERN PARALLEL, we expect the caller to
|
645 |
|
|
have handled the SET_DESTs. A complex or vector PARALLEL can be
|
646 |
|
|
identified by having a mode. */
|
647 |
|
|
gcc_assert (rvalue < 0 || GET_MODE (x) != VOIDmode);
|
648 |
|
|
break;
|
649 |
|
|
case LABEL_REF:
|
650 |
|
|
/* Check special tablejump match case. */
|
651 |
|
|
if (XEXP (y, 0) == info->y_label)
|
652 |
|
|
return (XEXP (x, 0) == info->x_label);
|
653 |
|
|
/* We can't assume nonlocal labels have their following insns yet. */
|
654 |
|
|
if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
|
655 |
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
656 |
|
|
|
657 |
|
|
/* Two label-refs are equivalent if they point at labels
|
658 |
|
|
in the same position in the instruction stream. */
|
659 |
|
|
return (next_real_insn (XEXP (x, 0))
|
660 |
|
|
== next_real_insn (XEXP (y, 0)));
|
661 |
|
|
case SYMBOL_REF:
|
662 |
|
|
return XSTR (x, 0) == XSTR (y, 0);
|
663 |
|
|
/* Some rtl is guaranteed to be shared, or unique; If we didn't match
|
664 |
|
|
EQ equality above, they aren't the same. */
|
665 |
|
|
case CONST_INT:
|
666 |
|
|
case CODE_LABEL:
|
667 |
|
|
return false;
|
668 |
|
|
default:
|
669 |
|
|
break;
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/* For commutative operations, the RTX match if the operands match in any
|
673 |
|
|
order. */
|
674 |
|
|
if (targetm.commutative_p (x, UNKNOWN))
|
675 |
|
|
return ((rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info)
|
676 |
|
|
&& rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), rvalue, info))
|
677 |
|
|
|| (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 1), rvalue, info)
|
678 |
|
|
&& rtx_equiv_p (&XEXP (x, 1), XEXP (y, 0), rvalue, info)));
|
679 |
|
|
|
680 |
|
|
/* Process subexpressions - this is similar to rtx_equal_p. */
|
681 |
|
|
length = GET_RTX_LENGTH (code);
|
682 |
|
|
format = GET_RTX_FORMAT (code);
|
683 |
|
|
|
684 |
|
|
for (i = 0; i < length; ++i)
|
685 |
|
|
{
|
686 |
|
|
switch (format[i])
|
687 |
|
|
{
|
688 |
|
|
case 'w':
|
689 |
|
|
if (XWINT (x, i) != XWINT (y, i))
|
690 |
|
|
return false;
|
691 |
|
|
break;
|
692 |
|
|
case 'n':
|
693 |
|
|
case 'i':
|
694 |
|
|
if (XINT (x, i) != XINT (y, i))
|
695 |
|
|
return false;
|
696 |
|
|
break;
|
697 |
|
|
case 'V':
|
698 |
|
|
case 'E':
|
699 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
700 |
|
|
return false;
|
701 |
|
|
if (XVEC (x, i) != 0)
|
702 |
|
|
{
|
703 |
|
|
int j;
|
704 |
|
|
for (j = 0; j < XVECLEN (x, i); ++j)
|
705 |
|
|
{
|
706 |
|
|
if (! rtx_equiv_p (&XVECEXP (x, i, j), XVECEXP (y, i, j),
|
707 |
|
|
rvalue, info))
|
708 |
|
|
return false;
|
709 |
|
|
}
|
710 |
|
|
}
|
711 |
|
|
break;
|
712 |
|
|
case 'e':
|
713 |
|
|
if (! rtx_equiv_p (&XEXP (x, i), XEXP (y, i), rvalue, info))
|
714 |
|
|
return false;
|
715 |
|
|
break;
|
716 |
|
|
case 'S':
|
717 |
|
|
case 's':
|
718 |
|
|
if ((XSTR (x, i) || XSTR (y, i))
|
719 |
|
|
&& (! XSTR (x, i) || ! XSTR (y, i)
|
720 |
|
|
|| strcmp (XSTR (x, i), XSTR (y, i))))
|
721 |
|
|
return false;
|
722 |
|
|
break;
|
723 |
|
|
case 'u':
|
724 |
|
|
/* These are just backpointers, so they don't matter. */
|
725 |
|
|
break;
|
726 |
|
|
case '0':
|
727 |
|
|
case 't':
|
728 |
|
|
break;
|
729 |
|
|
/* It is believed that rtx's at this level will never
|
730 |
|
|
contain anything but integers and other rtx's,
|
731 |
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
732 |
|
|
default:
|
733 |
|
|
gcc_unreachable ();
|
734 |
|
|
}
|
735 |
|
|
}
|
736 |
|
|
return true;
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
/* Do only the rtx_equiv_p SET_DEST processing for SETs and CLOBBERs.
|
740 |
|
|
Since we are scanning backwards, this the first step in processing each
|
741 |
|
|
insn. Return true for success. */
|
742 |
|
|
static bool
|
743 |
|
|
set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info)
|
744 |
|
|
{
|
745 |
|
|
if (!x || !y)
|
746 |
|
|
return x == y;
|
747 |
|
|
if (GET_CODE (x) != GET_CODE (y))
|
748 |
|
|
return false;
|
749 |
|
|
else if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
|
750 |
|
|
return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info);
|
751 |
|
|
else if (GET_CODE (x) == PARALLEL)
|
752 |
|
|
{
|
753 |
|
|
int j;
|
754 |
|
|
|
755 |
|
|
if (XVECLEN (x, 0) != XVECLEN (y, 0))
|
756 |
|
|
return false;
|
757 |
|
|
for (j = 0; j < XVECLEN (x, 0); ++j)
|
758 |
|
|
{
|
759 |
|
|
rtx xe = XVECEXP (x, 0, j);
|
760 |
|
|
rtx ye = XVECEXP (y, 0, j);
|
761 |
|
|
|
762 |
|
|
if (GET_CODE (xe) != GET_CODE (ye))
|
763 |
|
|
return false;
|
764 |
|
|
if ((GET_CODE (xe) == SET || GET_CODE (xe) == CLOBBER)
|
765 |
|
|
&& ! rtx_equiv_p (&XEXP (xe, 0), XEXP (ye, 0), 0, info))
|
766 |
|
|
return false;
|
767 |
|
|
}
|
768 |
|
|
}
|
769 |
|
|
return true;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* Process MEMs in SET_DEST destinations. We must not process this together
|
773 |
|
|
with REG SET_DESTs, but must do it separately, lest when we see
|
774 |
|
|
[(set (reg:SI foo) (bar))
|
775 |
|
|
(set (mem:SI (reg:SI foo) (baz)))]
|
776 |
|
|
struct_equiv_block_eq could get confused to assume that (reg:SI foo)
|
777 |
|
|
is not live before this instruction. */
|
778 |
|
|
static bool
|
779 |
|
|
set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info)
|
780 |
|
|
{
|
781 |
|
|
enum rtx_code code = GET_CODE (x);
|
782 |
|
|
int length;
|
783 |
|
|
const char *format;
|
784 |
|
|
int i;
|
785 |
|
|
|
786 |
|
|
if (code != GET_CODE (y))
|
787 |
|
|
return false;
|
788 |
|
|
if (code == MEM)
|
789 |
|
|
return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info);
|
790 |
|
|
|
791 |
|
|
/* Process subexpressions. */
|
792 |
|
|
length = GET_RTX_LENGTH (code);
|
793 |
|
|
format = GET_RTX_FORMAT (code);
|
794 |
|
|
|
795 |
|
|
for (i = 0; i < length; ++i)
|
796 |
|
|
{
|
797 |
|
|
switch (format[i])
|
798 |
|
|
{
|
799 |
|
|
case 'V':
|
800 |
|
|
case 'E':
|
801 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
802 |
|
|
return false;
|
803 |
|
|
if (XVEC (x, i) != 0)
|
804 |
|
|
{
|
805 |
|
|
int j;
|
806 |
|
|
for (j = 0; j < XVECLEN (x, i); ++j)
|
807 |
|
|
{
|
808 |
|
|
if (! set_dest_addr_equiv_p (XVECEXP (x, i, j),
|
809 |
|
|
XVECEXP (y, i, j), info))
|
810 |
|
|
return false;
|
811 |
|
|
}
|
812 |
|
|
}
|
813 |
|
|
break;
|
814 |
|
|
case 'e':
|
815 |
|
|
if (! set_dest_addr_equiv_p (XEXP (x, i), XEXP (y, i), info))
|
816 |
|
|
return false;
|
817 |
|
|
break;
|
818 |
|
|
default:
|
819 |
|
|
break;
|
820 |
|
|
}
|
821 |
|
|
}
|
822 |
|
|
return true;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Check if the set of REG_DEAD notes attached to I1 and I2 allows us to
|
826 |
|
|
go ahead with merging I1 and I2, which otherwise look fine.
|
827 |
|
|
Inputs / local registers for the inputs of I1 and I2 have already been
|
828 |
|
|
set up. */
|
829 |
|
|
static bool
|
830 |
|
|
death_notes_match_p (rtx i1 ATTRIBUTE_UNUSED, rtx i2 ATTRIBUTE_UNUSED,
|
831 |
|
|
struct equiv_info *info ATTRIBUTE_UNUSED)
|
832 |
|
|
{
|
833 |
|
|
#ifdef STACK_REGS
|
834 |
|
|
/* If cross_jump_death_matters is not 0, the insn's mode
|
835 |
|
|
indicates whether or not the insn contains any stack-like regs. */
|
836 |
|
|
|
837 |
|
|
if ((info->mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
|
838 |
|
|
{
|
839 |
|
|
/* If register stack conversion has already been done, then
|
840 |
|
|
death notes must also be compared before it is certain that
|
841 |
|
|
the two instruction streams match. */
|
842 |
|
|
|
843 |
|
|
rtx note;
|
844 |
|
|
HARD_REG_SET i1_regset, i2_regset;
|
845 |
|
|
|
846 |
|
|
CLEAR_HARD_REG_SET (i1_regset);
|
847 |
|
|
CLEAR_HARD_REG_SET (i2_regset);
|
848 |
|
|
|
849 |
|
|
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
850 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
851 |
|
|
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
852 |
|
|
|
853 |
|
|
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
854 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
855 |
|
|
{
|
856 |
|
|
unsigned regno = REGNO (XEXP (note, 0));
|
857 |
|
|
int i;
|
858 |
|
|
|
859 |
|
|
for (i = info->cur.local_count - 1; i >= 0; i--)
|
860 |
|
|
if (regno == REGNO (info->y_local[i]))
|
861 |
|
|
{
|
862 |
|
|
regno = REGNO (info->x_local[i]);
|
863 |
|
|
break;
|
864 |
|
|
}
|
865 |
|
|
SET_HARD_REG_BIT (i2_regset, regno);
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
|
869 |
|
|
|
870 |
|
|
return false;
|
871 |
|
|
|
872 |
|
|
done:
|
873 |
|
|
;
|
874 |
|
|
}
|
875 |
|
|
#endif
|
876 |
|
|
return true;
|
877 |
|
|
}
|
878 |
|
|
|
879 |
|
|
/* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
|
880 |
|
|
|
881 |
|
|
bool
|
882 |
|
|
insns_match_p (rtx i1, rtx i2, struct equiv_info *info)
|
883 |
|
|
{
|
884 |
|
|
int rvalue_change_start;
|
885 |
|
|
struct struct_equiv_checkpoint before_rvalue_change;
|
886 |
|
|
|
887 |
|
|
/* Verify that I1 and I2 are equivalent. */
|
888 |
|
|
if (GET_CODE (i1) != GET_CODE (i2))
|
889 |
|
|
return false;
|
890 |
|
|
|
891 |
|
|
info->cur.x_start = i1;
|
892 |
|
|
info->cur.y_start = i2;
|
893 |
|
|
|
894 |
|
|
/* If this is a CALL_INSN, compare register usage information.
|
895 |
|
|
If we don't check this on stack register machines, the two
|
896 |
|
|
CALL_INSNs might be merged leaving reg-stack.c with mismatching
|
897 |
|
|
numbers of stack registers in the same basic block.
|
898 |
|
|
If we don't check this on machines with delay slots, a delay slot may
|
899 |
|
|
be filled that clobbers a parameter expected by the subroutine.
|
900 |
|
|
|
901 |
|
|
??? We take the simple route for now and assume that if they're
|
902 |
|
|
equal, they were constructed identically. */
|
903 |
|
|
|
904 |
|
|
if (CALL_P (i1))
|
905 |
|
|
{
|
906 |
|
|
if (SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)
|
907 |
|
|
|| ! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info)
|
908 |
|
|
|| ! set_dest_equiv_p (CALL_INSN_FUNCTION_USAGE (i1),
|
909 |
|
|
CALL_INSN_FUNCTION_USAGE (i2), info)
|
910 |
|
|
|| ! rtx_equiv_p (&CALL_INSN_FUNCTION_USAGE (i1),
|
911 |
|
|
CALL_INSN_FUNCTION_USAGE (i2), -1, info))
|
912 |
|
|
{
|
913 |
|
|
cancel_changes (0);
|
914 |
|
|
return false;
|
915 |
|
|
}
|
916 |
|
|
}
|
917 |
|
|
else if (INSN_P (i1))
|
918 |
|
|
{
|
919 |
|
|
if (! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info))
|
920 |
|
|
{
|
921 |
|
|
cancel_changes (0);
|
922 |
|
|
return false;
|
923 |
|
|
}
|
924 |
|
|
}
|
925 |
|
|
rvalue_change_start = num_validated_changes ();
|
926 |
|
|
struct_equiv_make_checkpoint (&before_rvalue_change, info);
|
927 |
|
|
/* Check death_notes_match_p *after* the inputs have been processed,
|
928 |
|
|
so that local inputs will already have been set up. */
|
929 |
|
|
if (! INSN_P (i1)
|
930 |
|
|
|| (!bitmap_bit_p (info->equiv_used, info->cur.ninsns)
|
931 |
|
|
&& rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
|
932 |
|
|
&& death_notes_match_p (i1, i2, info)
|
933 |
|
|
&& verify_changes (0)))
|
934 |
|
|
return true;
|
935 |
|
|
|
936 |
|
|
/* Do not do EQUIV substitution after reload. First, we're undoing the
|
937 |
|
|
work of reload_cse. Second, we may be undoing the work of the post-
|
938 |
|
|
reload splitting pass. */
|
939 |
|
|
/* ??? Possibly add a new phase switch variable that can be used by
|
940 |
|
|
targets to disallow the troublesome insns after splitting. */
|
941 |
|
|
if (!reload_completed)
|
942 |
|
|
{
|
943 |
|
|
rtx equiv1, equiv2;
|
944 |
|
|
|
945 |
|
|
cancel_changes (rvalue_change_start);
|
946 |
|
|
struct_equiv_restore_checkpoint (&before_rvalue_change, info);
|
947 |
|
|
|
948 |
|
|
/* The following code helps take care of G++ cleanups. */
|
949 |
|
|
equiv1 = find_reg_equal_equiv_note (i1);
|
950 |
|
|
equiv2 = find_reg_equal_equiv_note (i2);
|
951 |
|
|
if (equiv1 && equiv2
|
952 |
|
|
/* If the equivalences are not to a constant, they may
|
953 |
|
|
reference pseudos that no longer exist, so we can't
|
954 |
|
|
use them. */
|
955 |
|
|
&& (! reload_completed
|
956 |
|
|
|| (CONSTANT_P (XEXP (equiv1, 0))
|
957 |
|
|
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
|
958 |
|
|
{
|
959 |
|
|
rtx s1 = single_set (i1);
|
960 |
|
|
rtx s2 = single_set (i2);
|
961 |
|
|
|
962 |
|
|
if (s1 != 0 && s2 != 0)
|
963 |
|
|
{
|
964 |
|
|
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
|
965 |
|
|
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
|
966 |
|
|
/* Only inspecting the new SET_SRC is not good enough,
|
967 |
|
|
because there may also be bare USEs in a single_set
|
968 |
|
|
PARALLEL. */
|
969 |
|
|
if (rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
|
970 |
|
|
&& death_notes_match_p (i1, i2, info)
|
971 |
|
|
&& verify_changes (0))
|
972 |
|
|
{
|
973 |
|
|
/* Mark this insn so that we'll use the equivalence in
|
974 |
|
|
all subsequent passes. */
|
975 |
|
|
bitmap_set_bit (info->equiv_used, info->cur.ninsns);
|
976 |
|
|
return true;
|
977 |
|
|
}
|
978 |
|
|
}
|
979 |
|
|
}
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
cancel_changes (0);
|
983 |
|
|
return false;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
/* Set up mode and register information in INFO. Return true for success. */
|
987 |
|
|
bool
|
988 |
|
|
struct_equiv_init (int mode, struct equiv_info *info)
|
989 |
|
|
{
|
990 |
|
|
if ((info->x_block->flags | info->y_block->flags) & BB_DIRTY)
|
991 |
|
|
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
992 |
|
|
(PROP_DEATH_NOTES
|
993 |
|
|
| ((mode & CLEANUP_POST_REGSTACK)
|
994 |
|
|
? PROP_POST_REGSTACK : 0)));
|
995 |
|
|
if (!REG_SET_EQUAL_P (info->x_block->il.rtl->global_live_at_end,
|
996 |
|
|
info->y_block->il.rtl->global_live_at_end))
|
997 |
|
|
{
|
998 |
|
|
#ifdef STACK_REGS
|
999 |
|
|
unsigned rn;
|
1000 |
|
|
|
1001 |
|
|
if (!(mode & CLEANUP_POST_REGSTACK))
|
1002 |
|
|
return false;
|
1003 |
|
|
/* After reg-stack. Remove bogus live info about stack regs. N.B.
|
1004 |
|
|
these regs are not necessarily all dead - we swap random bogosity
|
1005 |
|
|
against constant bogosity. However, clearing these bits at
|
1006 |
|
|
least makes the regsets comparable. */
|
1007 |
|
|
for (rn = FIRST_STACK_REG; rn <= LAST_STACK_REG; rn++)
|
1008 |
|
|
{
|
1009 |
|
|
CLEAR_REGNO_REG_SET (info->x_block->il.rtl->global_live_at_end, rn);
|
1010 |
|
|
CLEAR_REGNO_REG_SET (info->y_block->il.rtl->global_live_at_end, rn);
|
1011 |
|
|
}
|
1012 |
|
|
if (!REG_SET_EQUAL_P (info->x_block->il.rtl->global_live_at_end,
|
1013 |
|
|
info->y_block->il.rtl->global_live_at_end))
|
1014 |
|
|
#endif
|
1015 |
|
|
return false;
|
1016 |
|
|
}
|
1017 |
|
|
info->mode = mode;
|
1018 |
|
|
if (mode & STRUCT_EQUIV_START)
|
1019 |
|
|
{
|
1020 |
|
|
info->x_input = info->y_input = info->input_reg = NULL_RTX;
|
1021 |
|
|
info->equiv_used = ALLOC_REG_SET (®_obstack);
|
1022 |
|
|
info->check_input_conflict = false;
|
1023 |
|
|
}
|
1024 |
|
|
info->had_input_conflict = false;
|
1025 |
|
|
info->cur.ninsns = info->cur.version = 0;
|
1026 |
|
|
info->cur.local_count = info->cur.input_count = 0;
|
1027 |
|
|
info->cur.x_start = info->cur.y_start = NULL_RTX;
|
1028 |
|
|
info->x_label = info->y_label = NULL_RTX;
|
1029 |
|
|
info->need_rerun = false;
|
1030 |
|
|
info->live_update = true;
|
1031 |
|
|
info->cur.input_valid = false;
|
1032 |
|
|
info->common_live = ALLOC_REG_SET (®_obstack);
|
1033 |
|
|
info->x_local_live = ALLOC_REG_SET (®_obstack);
|
1034 |
|
|
info->y_local_live = ALLOC_REG_SET (®_obstack);
|
1035 |
|
|
COPY_REG_SET (info->common_live, info->x_block->il.rtl->global_live_at_end);
|
1036 |
|
|
struct_equiv_make_checkpoint (&info->best_match, info);
|
1037 |
|
|
return true;
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* Insns XI and YI have been matched. Merge memory attributes and reg
|
1041 |
|
|
notes. */
|
1042 |
|
|
static void
|
1043 |
|
|
struct_equiv_merge (rtx xi, rtx yi, struct equiv_info *info)
|
1044 |
|
|
{
|
1045 |
|
|
rtx equiv1, equiv2;
|
1046 |
|
|
|
1047 |
|
|
merge_memattrs (xi, yi);
|
1048 |
|
|
|
1049 |
|
|
/* If the merged insns have different REG_EQUAL notes, then
|
1050 |
|
|
remove them. */
|
1051 |
|
|
info->live_update = false;
|
1052 |
|
|
equiv1 = find_reg_equal_equiv_note (xi);
|
1053 |
|
|
equiv2 = find_reg_equal_equiv_note (yi);
|
1054 |
|
|
if (equiv1 && !equiv2)
|
1055 |
|
|
remove_note (xi, equiv1);
|
1056 |
|
|
else if (!equiv1 && equiv2)
|
1057 |
|
|
remove_note (yi, equiv2);
|
1058 |
|
|
else if (equiv1 && equiv2
|
1059 |
|
|
&& !rtx_equiv_p (&XEXP (equiv1, 0), XEXP (equiv2, 0),
|
1060 |
|
|
1, info))
|
1061 |
|
|
{
|
1062 |
|
|
remove_note (xi, equiv1);
|
1063 |
|
|
remove_note (yi, equiv2);
|
1064 |
|
|
}
|
1065 |
|
|
info->live_update = true;
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
/* Return number of matched insns.
|
1069 |
|
|
This function must be called up to three times for a successful cross-jump
|
1070 |
|
|
match:
|
1071 |
|
|
first to find out which instructions do match. While trying to match
|
1072 |
|
|
another instruction that doesn't match, we destroy information in info
|
1073 |
|
|
about the actual inputs. So if there have been any before the last
|
1074 |
|
|
match attempt, we need to call this function again to recompute the
|
1075 |
|
|
actual inputs up to the actual start of the matching sequence.
|
1076 |
|
|
When we are then satisfied that the cross-jump is worthwhile, we
|
1077 |
|
|
call this function a third time to make any changes needed to make the
|
1078 |
|
|
sequences match: apply equivalences, remove non-matching
|
1079 |
|
|
notes and merge memory attributes. */
|
1080 |
|
|
int
|
1081 |
|
|
struct_equiv_block_eq (int mode, struct equiv_info *info)
|
1082 |
|
|
{
|
1083 |
|
|
rtx x_stop, y_stop;
|
1084 |
|
|
rtx xi, yi;
|
1085 |
|
|
int i;
|
1086 |
|
|
|
1087 |
|
|
if (mode & STRUCT_EQUIV_START)
|
1088 |
|
|
{
|
1089 |
|
|
x_stop = BB_HEAD (info->x_block);
|
1090 |
|
|
y_stop = BB_HEAD (info->y_block);
|
1091 |
|
|
if (!x_stop || !y_stop)
|
1092 |
|
|
return 0;
|
1093 |
|
|
}
|
1094 |
|
|
else
|
1095 |
|
|
{
|
1096 |
|
|
x_stop = info->cur.x_start;
|
1097 |
|
|
y_stop = info->cur.y_start;
|
1098 |
|
|
}
|
1099 |
|
|
if (!struct_equiv_init (mode, info))
|
1100 |
|
|
gcc_unreachable ();
|
1101 |
|
|
|
1102 |
|
|
/* Skip simple jumps at the end of the blocks. Complex jumps still
|
1103 |
|
|
need to be compared for equivalence, which we'll do below. */
|
1104 |
|
|
|
1105 |
|
|
xi = BB_END (info->x_block);
|
1106 |
|
|
if (onlyjump_p (xi)
|
1107 |
|
|
|| (returnjump_p (xi) && !side_effects_p (PATTERN (xi))))
|
1108 |
|
|
{
|
1109 |
|
|
info->cur.x_start = xi;
|
1110 |
|
|
xi = PREV_INSN (xi);
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
yi = BB_END (info->y_block);
|
1114 |
|
|
if (onlyjump_p (yi)
|
1115 |
|
|
|| (returnjump_p (yi) && !side_effects_p (PATTERN (yi))))
|
1116 |
|
|
{
|
1117 |
|
|
info->cur.y_start = yi;
|
1118 |
|
|
/* Count everything except for unconditional jump as insn. */
|
1119 |
|
|
/* ??? Is it right to count unconditional jumps with a clobber?
|
1120 |
|
|
Should we count conditional returns? */
|
1121 |
|
|
if (!simplejump_p (yi) && !returnjump_p (yi) && info->cur.x_start)
|
1122 |
|
|
info->cur.ninsns++;
|
1123 |
|
|
yi = PREV_INSN (yi);
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
if (mode & STRUCT_EQUIV_MATCH_JUMPS)
|
1127 |
|
|
{
|
1128 |
|
|
/* The caller is expected to have compared the jumps already, but we
|
1129 |
|
|
need to match them again to get any local registers and inputs. */
|
1130 |
|
|
gcc_assert (!info->cur.x_start == !info->cur.y_start);
|
1131 |
|
|
if (info->cur.x_start)
|
1132 |
|
|
{
|
1133 |
|
|
if (any_condjump_p (info->cur.x_start)
|
1134 |
|
|
? !condjump_equiv_p (info, false)
|
1135 |
|
|
: !insns_match_p (info->cur.x_start, info->cur.y_start, info))
|
1136 |
|
|
gcc_unreachable ();
|
1137 |
|
|
}
|
1138 |
|
|
else if (any_condjump_p (xi) && any_condjump_p (yi))
|
1139 |
|
|
{
|
1140 |
|
|
info->cur.x_start = xi;
|
1141 |
|
|
info->cur.y_start = yi;
|
1142 |
|
|
xi = PREV_INSN (xi);
|
1143 |
|
|
yi = PREV_INSN (yi);
|
1144 |
|
|
info->cur.ninsns++;
|
1145 |
|
|
if (!condjump_equiv_p (info, false))
|
1146 |
|
|
gcc_unreachable ();
|
1147 |
|
|
}
|
1148 |
|
|
if (info->cur.x_start && info->mode & STRUCT_EQUIV_FINAL)
|
1149 |
|
|
struct_equiv_merge (info->cur.x_start, info->cur.y_start, info);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
struct_equiv_improve_checkpoint (&info->best_match, info);
|
1153 |
|
|
info->x_end = xi;
|
1154 |
|
|
info->y_end = yi;
|
1155 |
|
|
if (info->cur.x_start != x_stop)
|
1156 |
|
|
for (;;)
|
1157 |
|
|
{
|
1158 |
|
|
/* Ignore notes. */
|
1159 |
|
|
while (!INSN_P (xi) && xi != x_stop)
|
1160 |
|
|
xi = PREV_INSN (xi);
|
1161 |
|
|
|
1162 |
|
|
while (!INSN_P (yi) && yi != y_stop)
|
1163 |
|
|
yi = PREV_INSN (yi);
|
1164 |
|
|
|
1165 |
|
|
if (!insns_match_p (xi, yi, info))
|
1166 |
|
|
break;
|
1167 |
|
|
if (INSN_P (xi))
|
1168 |
|
|
{
|
1169 |
|
|
if (info->mode & STRUCT_EQUIV_FINAL)
|
1170 |
|
|
struct_equiv_merge (xi, yi, info);
|
1171 |
|
|
info->cur.ninsns++;
|
1172 |
|
|
struct_equiv_improve_checkpoint (&info->best_match, info);
|
1173 |
|
|
}
|
1174 |
|
|
if (xi == x_stop || yi == y_stop)
|
1175 |
|
|
{
|
1176 |
|
|
/* If we reached the start of at least one of the blocks, but
|
1177 |
|
|
best_match hasn't been advanced back to the first valid insn
|
1178 |
|
|
yet, represent the increased benefit of completing the block
|
1179 |
|
|
as an increased instruction count. */
|
1180 |
|
|
if (info->best_match.x_start != info->cur.x_start
|
1181 |
|
|
&& (xi == BB_HEAD (info->x_block)
|
1182 |
|
|
|| yi == BB_HEAD (info->y_block)))
|
1183 |
|
|
{
|
1184 |
|
|
info->cur.ninsns++;
|
1185 |
|
|
struct_equiv_improve_checkpoint (&info->best_match, info);
|
1186 |
|
|
info->cur.ninsns--;
|
1187 |
|
|
if (info->best_match.ninsns > info->cur.ninsns)
|
1188 |
|
|
info->best_match.ninsns = info->cur.ninsns;
|
1189 |
|
|
}
|
1190 |
|
|
break;
|
1191 |
|
|
}
|
1192 |
|
|
xi = PREV_INSN (xi);
|
1193 |
|
|
yi = PREV_INSN (yi);
|
1194 |
|
|
}
|
1195 |
|
|
|
1196 |
|
|
/* If we failed to match an insn, but had some changes registered from
|
1197 |
|
|
trying to make the insns match, we need to cancel these changes now. */
|
1198 |
|
|
cancel_changes (0);
|
1199 |
|
|
/* Restore to best_match to get the sequence with the best known-so-far
|
1200 |
|
|
cost-benefit difference. */
|
1201 |
|
|
struct_equiv_restore_checkpoint (&info->best_match, info);
|
1202 |
|
|
|
1203 |
|
|
/* Include preceding notes and labels in the cross-jump / if-conversion.
|
1204 |
|
|
One, this may bring us to the head of the blocks.
|
1205 |
|
|
Two, it keeps line number notes as matched as may be. */
|
1206 |
|
|
if (info->cur.ninsns)
|
1207 |
|
|
{
|
1208 |
|
|
xi = info->cur.x_start;
|
1209 |
|
|
yi = info->cur.y_start;
|
1210 |
|
|
while (xi != x_stop && !INSN_P (PREV_INSN (xi)))
|
1211 |
|
|
xi = PREV_INSN (xi);
|
1212 |
|
|
|
1213 |
|
|
while (yi != y_stop && !INSN_P (PREV_INSN (yi)))
|
1214 |
|
|
yi = PREV_INSN (yi);
|
1215 |
|
|
|
1216 |
|
|
info->cur.x_start = xi;
|
1217 |
|
|
info->cur.y_start = yi;
|
1218 |
|
|
}
|
1219 |
|
|
|
1220 |
|
|
if (!info->cur.input_valid)
|
1221 |
|
|
info->x_input = info->y_input = info->input_reg = NULL_RTX;
|
1222 |
|
|
if (!info->need_rerun)
|
1223 |
|
|
{
|
1224 |
|
|
find_dying_inputs (info);
|
1225 |
|
|
if (info->mode & STRUCT_EQUIV_FINAL)
|
1226 |
|
|
{
|
1227 |
|
|
if (info->check_input_conflict && ! resolve_input_conflict (info))
|
1228 |
|
|
gcc_unreachable ();
|
1229 |
|
|
}
|
1230 |
|
|
else
|
1231 |
|
|
{
|
1232 |
|
|
bool input_conflict = info->had_input_conflict;
|
1233 |
|
|
|
1234 |
|
|
if (!input_conflict
|
1235 |
|
|
&& info->dying_inputs > 1
|
1236 |
|
|
&& bitmap_intersect_p (info->x_local_live, info->y_local_live))
|
1237 |
|
|
{
|
1238 |
|
|
regset_head clobbered_regs;
|
1239 |
|
|
|
1240 |
|
|
INIT_REG_SET (&clobbered_regs);
|
1241 |
|
|
for (i = 0; i < info->cur.local_count; i++)
|
1242 |
|
|
{
|
1243 |
|
|
if (assign_reg_reg_set (&clobbered_regs, info->y_local[i], 0))
|
1244 |
|
|
{
|
1245 |
|
|
input_conflict = true;
|
1246 |
|
|
break;
|
1247 |
|
|
}
|
1248 |
|
|
assign_reg_reg_set (&clobbered_regs, info->x_local[i], 1);
|
1249 |
|
|
}
|
1250 |
|
|
CLEAR_REG_SET (&clobbered_regs);
|
1251 |
|
|
}
|
1252 |
|
|
if (input_conflict && !info->check_input_conflict)
|
1253 |
|
|
info->need_rerun = true;
|
1254 |
|
|
info->check_input_conflict = input_conflict;
|
1255 |
|
|
}
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
if (info->mode & STRUCT_EQUIV_NEED_FULL_BLOCK
|
1259 |
|
|
&& (info->cur.x_start != x_stop || info->cur.y_start != y_stop))
|
1260 |
|
|
return 0;
|
1261 |
|
|
return info->cur.ninsns;
|
1262 |
|
|
}
|
1263 |
|
|
|
1264 |
|
|
/* For each local register, set info->local_rvalue to true iff the register
|
1265 |
|
|
is a dying input. Store the total number of these in info->dying_inputs. */
|
1266 |
|
|
static void
|
1267 |
|
|
find_dying_inputs (struct equiv_info *info)
|
1268 |
|
|
{
|
1269 |
|
|
int i;
|
1270 |
|
|
|
1271 |
|
|
info->dying_inputs = 0;
|
1272 |
|
|
for (i = info->cur.local_count-1; i >=0; i--)
|
1273 |
|
|
{
|
1274 |
|
|
rtx x = info->x_local[i];
|
1275 |
|
|
unsigned regno = REGNO (x);
|
1276 |
|
|
int nregs = (regno >= FIRST_PSEUDO_REGISTER
|
1277 |
|
|
? 1 : hard_regno_nregs[regno][GET_MODE (x)]);
|
1278 |
|
|
|
1279 |
|
|
for (info->local_rvalue[i] = false; nregs > 0; regno++, --nregs)
|
1280 |
|
|
if (REGNO_REG_SET_P (info->x_local_live, regno))
|
1281 |
|
|
{
|
1282 |
|
|
info->dying_inputs++;
|
1283 |
|
|
info->local_rvalue[i] = true;
|
1284 |
|
|
break;
|
1285 |
|
|
}
|
1286 |
|
|
}
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* For each local register that is a dying input, y_local[i] will be
|
1290 |
|
|
copied to x_local[i]. We'll do this in ascending order. Try to
|
1291 |
|
|
re-order the locals to avoid conflicts like r3 = r2; r4 = r3; .
|
1292 |
|
|
Return true iff the re-ordering is successful, or not necessary. */
|
1293 |
|
|
static bool
|
1294 |
|
|
resolve_input_conflict (struct equiv_info *info)
|
1295 |
|
|
{
|
1296 |
|
|
int i, j, end;
|
1297 |
|
|
int nswaps = 0;
|
1298 |
|
|
rtx save_x_local[STRUCT_EQUIV_MAX_LOCAL];
|
1299 |
|
|
rtx save_y_local[STRUCT_EQUIV_MAX_LOCAL];
|
1300 |
|
|
|
1301 |
|
|
find_dying_inputs (info);
|
1302 |
|
|
if (info->dying_inputs <= 1)
|
1303 |
|
|
return true;
|
1304 |
|
|
memcpy (save_x_local, info->x_local, sizeof save_x_local);
|
1305 |
|
|
memcpy (save_y_local, info->y_local, sizeof save_y_local);
|
1306 |
|
|
end = info->cur.local_count - 1;
|
1307 |
|
|
for (i = 0; i <= end; i++)
|
1308 |
|
|
{
|
1309 |
|
|
/* Cycle detection with regsets is expensive, so we just check that
|
1310 |
|
|
we don't exceed the maximum number of swaps needed in the acyclic
|
1311 |
|
|
case. */
|
1312 |
|
|
int max_swaps = end - i;
|
1313 |
|
|
|
1314 |
|
|
/* Check if x_local[i] will be clobbered. */
|
1315 |
|
|
if (!info->local_rvalue[i])
|
1316 |
|
|
continue;
|
1317 |
|
|
/* Check if any later value needs to be copied earlier. */
|
1318 |
|
|
for (j = i + 1; j <= end; j++)
|
1319 |
|
|
{
|
1320 |
|
|
rtx tmp;
|
1321 |
|
|
|
1322 |
|
|
if (!info->local_rvalue[j])
|
1323 |
|
|
continue;
|
1324 |
|
|
if (!reg_overlap_mentioned_p (info->x_local[i], info->y_local[j]))
|
1325 |
|
|
continue;
|
1326 |
|
|
if (--max_swaps < 0)
|
1327 |
|
|
{
|
1328 |
|
|
memcpy (info->x_local, save_x_local, sizeof save_x_local);
|
1329 |
|
|
memcpy (info->y_local, save_y_local, sizeof save_y_local);
|
1330 |
|
|
return false;
|
1331 |
|
|
}
|
1332 |
|
|
nswaps++;
|
1333 |
|
|
tmp = info->x_local[i];
|
1334 |
|
|
info->x_local[i] = info->x_local[j];
|
1335 |
|
|
info->x_local[j] = tmp;
|
1336 |
|
|
tmp = info->y_local[i];
|
1337 |
|
|
info->y_local[i] = info->y_local[j];
|
1338 |
|
|
info->y_local[j] = tmp;
|
1339 |
|
|
j = i;
|
1340 |
|
|
}
|
1341 |
|
|
}
|
1342 |
|
|
info->had_input_conflict = true;
|
1343 |
|
|
if (dump_file && nswaps)
|
1344 |
|
|
fprintf (dump_file, "Resolved input conflict, %d %s.\n",
|
1345 |
|
|
nswaps, nswaps == 1 ? "swap" : "swaps");
|
1346 |
|
|
return true;
|
1347 |
|
|
}
|