OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.2.2/] [gcc/] [testsuite/] [gfortran.dg/] [g77/] [980310-4.f] - Blame information for rev 154

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 149 jeremybenn
c { dg-do compile }
2
C To: egcs-bugs@cygnus.com
3
C Subject: -fPIC problem showing up with fortran on x86
4
C From: Dave Love <d.love@dl.ac.uk>
5
C Date: 19 Dec 1997 19:31:41 +0000
6
C 
7
C 
8
C This illustrates a long-standing problem noted at the end of the g77
9
C `Actual Bugs' info node and thought to be in the back end.  Although
10
C the report is against gcc 2.7 I can reproduce it (specifically on
11
C redhat 4.2) with the 971216 egcs snapshot.
12
C 
13
C g77 version 0.5.21
14
C  gcc -v -fnull-version -o /tmp/gfa00415 -xf77-cpp-input /tmp/gfa00415.f -xnone
15
C -lf2c -lm
16
C
17
 
18
C ------------
19
      subroutine dqage(f,a,b,epsabs,epsrel,limit,result,abserr,
20
     *   neval,ier,alist,blist,rlist,elist,iord,last)
21
C     --------------------------------------------------
22
C
23
C     Modified Feb 1989 by Barry W. Brown to eliminate key
24
C     as argument (use key=1) and to eliminate all Fortran
25
C     output.
26
C
27
C     Purpose: to make this routine usable from within S.
28
C
29
C     --------------------------------------------------
30
c***begin prologue  dqage
31
c***date written   800101   (yymmdd)
32
c***revision date  830518   (yymmdd)
33
c***category no.  h2a1a1
34
c***keywords  automatic integrator, general-purpose,
35
c             integrand examinator, globally adaptive,
36
c             gauss-kronrod
37
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
38
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
39
c***purpose  the routine calculates an approximation result to a given
40
c            definite integral   i = integral of f over (a,b),
41
c            hopefully satisfying following claim for accuracy
42
c            abs(i-reslt).le.max(epsabs,epsrel*abs(i)).
43
c***description
44
c
45
c        computation of a definite integral
46
c        standard fortran subroutine
47
c        double precision version
48
c
49
c        parameters
50
c         on entry
51
c            f      - double precision
52
c                     function subprogram defining the integrand
53
c                     function f(x). the actual name for f needs to be
54
c                     declared e x t e r n a l in the driver program.
55
c
56
c            a      - double precision
57
c                     lower limit of integration
58
c
59
c            b      - double precision
60
c                     upper limit of integration
61
c
62
c            epsabs - double precision
63
c                     absolute accuracy requested
64
c            epsrel - double precision
65
c                     relative accuracy requested
66
c                     if  epsabs.le.0
67
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
68
c                     the routine will end with ier = 6.
69
c
70
c            key    - integer
71
c                     key for choice of local integration rule
72
c                     a gauss-kronrod pair is used with
73
c                          7 - 15 points if key.lt.2,
74
c                         10 - 21 points if key = 2,
75
c                         15 - 31 points if key = 3,
76
c                         20 - 41 points if key = 4,
77
c                         25 - 51 points if key = 5,
78
c                         30 - 61 points if key.gt.5.
79
c
80
c            limit  - integer
81
c                     gives an upperbound on the number of subintervals
82
c                     in the partition of (a,b), limit.ge.1.
83
c
84
c         on return
85
c            result - double precision
86
c                     approximation to the integral
87
c
88
c            abserr - double precision
89
c                     estimate of the modulus of the absolute error,
90
c                     which should equal or exceed abs(i-result)
91
c
92
c            neval  - integer
93
c                     number of integrand evaluations
94
c
95
c            ier    - integer
96
c                     ier = 0 normal and reliable termination of the
97
c                             routine. it is assumed that the requested
98
c                             accuracy has been achieved.
99
c                     ier.gt.0 abnormal termination of the routine
100
c                             the estimates for result and error are
101
c                             less reliable. it is assumed that the
102
c                             requested accuracy has not been achieved.
103
c            error messages
104
c                     ier = 1 maximum number of subdivisions allowed
105
c                             has been achieved. one can allow more
106
c                             subdivisions by increasing the value
107
c                             of limit.
108
c                             however, if this yields no improvement it
109
c                             is rather advised to analyze the integrand
110
c                             in order to determine the integration
111
c                             difficulties. if the position of a local
112
c                             difficulty can be determined(e.g.
113
c                             singularity, discontinuity within the
114
c                             interval) one will probably gain from
115
c                             splitting up the interval at this point
116
c                             and calling the integrator on the
117
c                             subranges. if possible, an appropriate
118
c                             special-purpose integrator should be used
119
c                             which is designed for handling the type of
120
c                             difficulty involved.
121
c                         = 2 the occurrence of roundoff error is
122
c                             detected, which prevents the requested
123
c                             tolerance from being achieved.
124
c                         = 3 extremely bad integrand behavior occurs
125
c                             at some points of the integration
126
c                             interval.
127
c                         = 6 the input is invalid, because
128
c                             (epsabs.le.0 and
129
c                              epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
130
c                             result, abserr, neval, last, rlist(1) ,
131
c                             elist(1) and iord(1) are set to zero.
132
c                             alist(1) and blist(1) are set to a and b
133
c                             respectively.
134
c
135
c            alist   - double precision
136
c                      vector of dimension at least limit, the first
137
c                       last  elements of which are the left
138
c                      end points of the subintervals in the partition
139
c                      of the given integration range (a,b)
140
c
141
c            blist   - double precision
142
c                      vector of dimension at least limit, the first
143
c                       last  elements of which are the right
144
c                      end points of the subintervals in the partition
145
c                      of the given integration range (a,b)
146
c
147
c            rlist   - double precision
148
c                      vector of dimension at least limit, the first
149
c                       last  elements of which are the
150
c                      integral approximations on the subintervals
151
c
152
c            elist   - double precision
153
c                      vector of dimension at least limit, the first
154
c                       last  elements of which are the moduli of the
155
c                      absolute error estimates on the subintervals
156
c
157
c            iord    - integer
158
c                      vector of dimension at least limit, the first k
159
c                      elements of which are pointers to the
160
c                      error estimates over the subintervals,
161
c                      such that elist(iord(1)), ...,
162
c                      elist(iord(k)) form a decreasing sequence,
163
c                      with k = last if last.le.(limit/2+2), and
164
c                      k = limit+1-last otherwise
165
c
166
c            last    - integer
167
c                      number of subintervals actually produced in the
168
c                      subdivision process
169
c
170
c***references  (none)
171
c***routines called  d1mach,dqk15,dqk21,dqk31,
172
c                    dqk41,dqk51,dqk61,dqpsrt
173
c***end prologue  dqage
174
c
175
      double precision a,abserr,alist,area,area1,area12,area2,a1,a2,b,
176
     *  blist,b1,b2,dabs,defabs,defab1,defab2,dmax1,d1mach,elist,epmach,
177
     *  epsabs,epsrel,errbnd,errmax,error1,error2,erro12,errsum,f,
178
     *  resabs,result,rlist,uflow
179
      integer ier,iord,iroff1,iroff2,k,last,limit,maxerr,neval,
180
     *  nrmax
181
c
182
      dimension alist(limit),blist(limit),elist(limit),iord(limit),
183
     *  rlist(limit)
184
c
185
      external f
186
c
187
c            list of major variables
188
c            -----------------------
189
c
190
c           alist     - list of left end points of all subintervals
191
c                       considered up to now
192
c           blist     - list of right end points of all subintervals
193
c                       considered up to now
194
c           rlist(i)  - approximation to the integral over
195
c                      (alist(i),blist(i))
196
c           elist(i)  - error estimate applying to rlist(i)
197
c           maxerr    - pointer to the interval with largest
198
c                       error estimate
199
c           errmax    - elist(maxerr)
200
c           area      - sum of the integrals over the subintervals
201
c           errsum    - sum of the errors over the subintervals
202
c           errbnd    - requested accuracy max(epsabs,epsrel*
203
c                       abs(result))
204
c           *****1    - variable for the left subinterval
205
c           *****2    - variable for the right subinterval
206
c           last      - index for subdivision
207
c
208
c
209
c           machine dependent constants
210
c           ---------------------------
211
c
212
c           epmach  is the largest relative spacing.
213
c           uflow  is the smallest positive magnitude.
214
c
215
c***first executable statement  dqage
216
      epmach = d1mach(4)
217
      uflow = d1mach(1)
218
c
219
c           test on validity of parameters
220
c           ------------------------------
221
c
222
      ier = 0
223
      neval = 0
224
      last = 0
225
      result = 0.0d+00
226
      abserr = 0.0d+00
227
      alist(1) = a
228
      blist(1) = b
229
      rlist(1) = 0.0d+00
230
      elist(1) = 0.0d+00
231
      iord(1) = 0
232
      if(epsabs.le.0.0d+00.and.
233
     *  epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) ier = 6
234
      if(ier.eq.6) go to 999
235
c
236
c           first approximation to the integral
237
c           -----------------------------------
238
c
239
      neval = 0
240
      call dqk15(f,a,b,result,abserr,defabs,resabs)
241
      last = 1
242
      rlist(1) = result
243
      elist(1) = abserr
244
      iord(1) = 1
245
c
246
c           test on accuracy.
247
c
248
      errbnd = dmax1(epsabs,epsrel*dabs(result))
249
      if(abserr.le.0.5d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
250
      if(limit.eq.1) ier = 1
251
      if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs)
252
     *  .or.abserr.eq.0.0d+00) go to 60
253
c
254
c           initialization
255
c           --------------
256
c
257
c
258
      errmax = abserr
259
      maxerr = 1
260
      area = result
261
      errsum = abserr
262
      nrmax = 1
263
      iroff1 = 0
264
      iroff2 = 0
265
c
266
c           main do-loop
267
c           ------------
268
c
269
      do 30 last = 2,limit
270
c
271
c           bisect the subinterval with the largest error estimate.
272
c
273
        a1 = alist(maxerr)
274
        b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
275
        a2 = b1
276
        b2 = blist(maxerr)
277
        call dqk15(f,a1,b1,area1,error1,resabs,defab1)
278
        call dqk15(f,a2,b2,area2,error2,resabs,defab2)
279
c
280
c           improve previous approximations to integral
281
c           and error and test for accuracy.
282
c
283
        neval = neval+1
284
        area12 = area1+area2
285
        erro12 = error1+error2
286
        errsum = errsum+erro12-errmax
287
        area = area+area12-rlist(maxerr)
288
        if(defab1.eq.error1.or.defab2.eq.error2) go to 5
289
        if(dabs(rlist(maxerr)-area12).le.0.1d-04*dabs(area12)
290
     *  .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1
291
        if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1
292
    5   rlist(maxerr) = area1
293
        rlist(last) = area2
294
        errbnd = dmax1(epsabs,epsrel*dabs(area))
295
        if(errsum.le.errbnd) go to 8
296
c
297
c           test for roundoff error and eventually set error flag.
298
c
299
        if(iroff1.ge.6.or.iroff2.ge.20) ier = 2
300
c
301
c           set error flag in the case that the number of subintervals
302
c           equals limit.
303
c
304
        if(last.eq.limit) ier = 1
305
c
306
c           set error flag in the case of bad integrand behavior
307
c           at a point of the integration range.
308
c
309
        if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*
310
     *  epmach)*(dabs(a2)+0.1d+04*uflow)) ier = 3
311
c
312
c           append the newly-created intervals to the list.
313
c
314
    8   if(error2.gt.error1) go to 10
315
        alist(last) = a2
316
        blist(maxerr) = b1
317
        blist(last) = b2
318
        elist(maxerr) = error1
319
        elist(last) = error2
320
        go to 20
321
   10   alist(maxerr) = a2
322
        alist(last) = a1
323
        blist(last) = b1
324
        rlist(maxerr) = area2
325
        rlist(last) = area1
326
        elist(maxerr) = error2
327
        elist(last) = error1
328
c
329
c           call subroutine dqpsrt to maintain the descending ordering
330
c           in the list of error estimates and select the subinterval
331
c           with the largest error estimate (to be bisected next).
332
c
333
   20   call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
334
c ***jump out of do-loop
335
        if(ier.ne.0.or.errsum.le.errbnd) go to 40
336
   30 continue
337
c
338
c           compute final result.
339
c           ---------------------
340
c
341
   40 result = 0.0d+00
342
      do 50 k=1,last
343
        result = result+rlist(k)
344
   50 continue
345
      abserr = errsum
346
   60 neval = 30*neval+15
347
  999 return
348
      end

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.