1 |
38 |
julius |
|
2 |
|
|
/* Data references and dependences detectors.
|
3 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This pass walks a given loop structure searching for array
|
23 |
|
|
references. The information about the array accesses is recorded
|
24 |
|
|
in DATA_REFERENCE structures.
|
25 |
|
|
|
26 |
|
|
The basic test for determining the dependences is:
|
27 |
|
|
given two access functions chrec1 and chrec2 to a same array, and
|
28 |
|
|
x and y two vectors from the iteration domain, the same element of
|
29 |
|
|
the array is accessed twice at iterations x and y if and only if:
|
30 |
|
|
| chrec1 (x) == chrec2 (y).
|
31 |
|
|
|
32 |
|
|
The goals of this analysis are:
|
33 |
|
|
|
34 |
|
|
- to determine the independence: the relation between two
|
35 |
|
|
independent accesses is qualified with the chrec_known (this
|
36 |
|
|
information allows a loop parallelization),
|
37 |
|
|
|
38 |
|
|
- when two data references access the same data, to qualify the
|
39 |
|
|
dependence relation with classic dependence representations:
|
40 |
|
|
|
41 |
|
|
- distance vectors
|
42 |
|
|
- direction vectors
|
43 |
|
|
- loop carried level dependence
|
44 |
|
|
- polyhedron dependence
|
45 |
|
|
or with the chains of recurrences based representation,
|
46 |
|
|
|
47 |
|
|
- to define a knowledge base for storing the data dependence
|
48 |
|
|
information,
|
49 |
|
|
|
50 |
|
|
- to define an interface to access this data.
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
Definitions:
|
54 |
|
|
|
55 |
|
|
- subscript: given two array accesses a subscript is the tuple
|
56 |
|
|
composed of the access functions for a given dimension. Example:
|
57 |
|
|
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
|
58 |
|
|
(f1, g1), (f2, g2), (f3, g3).
|
59 |
|
|
|
60 |
|
|
- Diophantine equation: an equation whose coefficients and
|
61 |
|
|
solutions are integer constants, for example the equation
|
62 |
|
|
| 3*x + 2*y = 1
|
63 |
|
|
has an integer solution x = 1 and y = -1.
|
64 |
|
|
|
65 |
|
|
References:
|
66 |
|
|
|
67 |
|
|
- "Advanced Compilation for High Performance Computing" by Randy
|
68 |
|
|
Allen and Ken Kennedy.
|
69 |
|
|
http://citeseer.ist.psu.edu/goff91practical.html
|
70 |
|
|
|
71 |
|
|
- "Loop Transformations for Restructuring Compilers - The Foundations"
|
72 |
|
|
by Utpal Banerjee.
|
73 |
|
|
|
74 |
|
|
|
75 |
|
|
*/
|
76 |
|
|
|
77 |
|
|
#include "config.h"
|
78 |
|
|
#include "system.h"
|
79 |
|
|
#include "coretypes.h"
|
80 |
|
|
#include "tm.h"
|
81 |
|
|
#include "ggc.h"
|
82 |
|
|
#include "tree.h"
|
83 |
|
|
|
84 |
|
|
/* These RTL headers are needed for basic-block.h. */
|
85 |
|
|
#include "rtl.h"
|
86 |
|
|
#include "basic-block.h"
|
87 |
|
|
#include "diagnostic.h"
|
88 |
|
|
#include "tree-flow.h"
|
89 |
|
|
#include "tree-dump.h"
|
90 |
|
|
#include "timevar.h"
|
91 |
|
|
#include "cfgloop.h"
|
92 |
|
|
#include "tree-chrec.h"
|
93 |
|
|
#include "tree-data-ref.h"
|
94 |
|
|
#include "tree-scalar-evolution.h"
|
95 |
|
|
#include "tree-pass.h"
|
96 |
|
|
|
97 |
|
|
static struct datadep_stats
|
98 |
|
|
{
|
99 |
|
|
int num_dependence_tests;
|
100 |
|
|
int num_dependence_dependent;
|
101 |
|
|
int num_dependence_independent;
|
102 |
|
|
int num_dependence_undetermined;
|
103 |
|
|
|
104 |
|
|
int num_subscript_tests;
|
105 |
|
|
int num_subscript_undetermined;
|
106 |
|
|
int num_same_subscript_function;
|
107 |
|
|
|
108 |
|
|
int num_ziv;
|
109 |
|
|
int num_ziv_independent;
|
110 |
|
|
int num_ziv_dependent;
|
111 |
|
|
int num_ziv_unimplemented;
|
112 |
|
|
|
113 |
|
|
int num_siv;
|
114 |
|
|
int num_siv_independent;
|
115 |
|
|
int num_siv_dependent;
|
116 |
|
|
int num_siv_unimplemented;
|
117 |
|
|
|
118 |
|
|
int num_miv;
|
119 |
|
|
int num_miv_independent;
|
120 |
|
|
int num_miv_dependent;
|
121 |
|
|
int num_miv_unimplemented;
|
122 |
|
|
} dependence_stats;
|
123 |
|
|
|
124 |
|
|
static tree object_analysis (tree, tree, bool, struct data_reference **,
|
125 |
|
|
tree *, tree *, tree *, tree *, tree *,
|
126 |
|
|
struct ptr_info_def **, subvar_t *);
|
127 |
|
|
static struct data_reference * init_data_ref (tree, tree, tree, tree, bool,
|
128 |
|
|
tree, tree, tree, tree, tree,
|
129 |
|
|
struct ptr_info_def *,
|
130 |
|
|
enum data_ref_type);
|
131 |
|
|
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
|
132 |
|
|
struct data_reference *,
|
133 |
|
|
struct data_reference *);
|
134 |
|
|
|
135 |
|
|
/* Determine if PTR and DECL may alias, the result is put in ALIASED.
|
136 |
|
|
Return FALSE if there is no symbol memory tag for PTR. */
|
137 |
|
|
|
138 |
|
|
static bool
|
139 |
|
|
ptr_decl_may_alias_p (tree ptr, tree decl,
|
140 |
|
|
struct data_reference *ptr_dr,
|
141 |
|
|
bool *aliased)
|
142 |
|
|
{
|
143 |
|
|
tree tag = NULL_TREE;
|
144 |
|
|
struct ptr_info_def *pi = DR_PTR_INFO (ptr_dr);
|
145 |
|
|
|
146 |
|
|
gcc_assert (TREE_CODE (ptr) == SSA_NAME && DECL_P (decl));
|
147 |
|
|
|
148 |
|
|
if (pi)
|
149 |
|
|
tag = pi->name_mem_tag;
|
150 |
|
|
if (!tag)
|
151 |
|
|
tag = get_var_ann (SSA_NAME_VAR (ptr))->symbol_mem_tag;
|
152 |
|
|
if (!tag)
|
153 |
|
|
tag = DR_MEMTAG (ptr_dr);
|
154 |
|
|
if (!tag)
|
155 |
|
|
return false;
|
156 |
|
|
|
157 |
|
|
*aliased = is_aliased_with (tag, decl);
|
158 |
|
|
return true;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
/* Determine if two pointers may alias, the result is put in ALIASED.
|
163 |
|
|
Return FALSE if there is no symbol memory tag for one of the pointers. */
|
164 |
|
|
|
165 |
|
|
static bool
|
166 |
|
|
ptr_ptr_may_alias_p (tree ptr_a, tree ptr_b,
|
167 |
|
|
struct data_reference *dra,
|
168 |
|
|
struct data_reference *drb,
|
169 |
|
|
bool *aliased)
|
170 |
|
|
{
|
171 |
|
|
tree tag_a = NULL_TREE, tag_b = NULL_TREE;
|
172 |
|
|
struct ptr_info_def *pi_a = DR_PTR_INFO (dra);
|
173 |
|
|
struct ptr_info_def *pi_b = DR_PTR_INFO (drb);
|
174 |
|
|
|
175 |
|
|
if (pi_a && pi_a->name_mem_tag && pi_b && pi_b->name_mem_tag)
|
176 |
|
|
{
|
177 |
|
|
tag_a = pi_a->name_mem_tag;
|
178 |
|
|
tag_b = pi_b->name_mem_tag;
|
179 |
|
|
}
|
180 |
|
|
else
|
181 |
|
|
{
|
182 |
|
|
tag_a = get_var_ann (SSA_NAME_VAR (ptr_a))->symbol_mem_tag;
|
183 |
|
|
if (!tag_a)
|
184 |
|
|
tag_a = DR_MEMTAG (dra);
|
185 |
|
|
if (!tag_a)
|
186 |
|
|
return false;
|
187 |
|
|
|
188 |
|
|
tag_b = get_var_ann (SSA_NAME_VAR (ptr_b))->symbol_mem_tag;
|
189 |
|
|
if (!tag_b)
|
190 |
|
|
tag_b = DR_MEMTAG (drb);
|
191 |
|
|
if (!tag_b)
|
192 |
|
|
return false;
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
if (tag_a == tag_b)
|
196 |
|
|
*aliased = true;
|
197 |
|
|
else
|
198 |
|
|
*aliased = may_aliases_intersect (tag_a, tag_b);
|
199 |
|
|
|
200 |
|
|
return true;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
|
204 |
|
|
/* Determine if BASE_A and BASE_B may alias, the result is put in ALIASED.
|
205 |
|
|
Return FALSE if there is no symbol memory tag for one of the symbols. */
|
206 |
|
|
|
207 |
|
|
static bool
|
208 |
|
|
may_alias_p (tree base_a, tree base_b,
|
209 |
|
|
struct data_reference *dra,
|
210 |
|
|
struct data_reference *drb,
|
211 |
|
|
bool *aliased)
|
212 |
|
|
{
|
213 |
|
|
if (TREE_CODE (base_a) == ADDR_EXPR || TREE_CODE (base_b) == ADDR_EXPR)
|
214 |
|
|
{
|
215 |
|
|
if (TREE_CODE (base_a) == ADDR_EXPR && TREE_CODE (base_b) == ADDR_EXPR)
|
216 |
|
|
{
|
217 |
|
|
*aliased = (TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0));
|
218 |
|
|
return true;
|
219 |
|
|
}
|
220 |
|
|
if (TREE_CODE (base_a) == ADDR_EXPR)
|
221 |
|
|
return ptr_decl_may_alias_p (base_b, TREE_OPERAND (base_a, 0), drb,
|
222 |
|
|
aliased);
|
223 |
|
|
else
|
224 |
|
|
return ptr_decl_may_alias_p (base_a, TREE_OPERAND (base_b, 0), dra,
|
225 |
|
|
aliased);
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
return ptr_ptr_may_alias_p (base_a, base_b, dra, drb, aliased);
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
|
232 |
|
|
/* Determine if a pointer (BASE_A) and a record/union access (BASE_B)
|
233 |
|
|
are not aliased. Return TRUE if they differ. */
|
234 |
|
|
static bool
|
235 |
|
|
record_ptr_differ_p (struct data_reference *dra,
|
236 |
|
|
struct data_reference *drb)
|
237 |
|
|
{
|
238 |
|
|
bool aliased;
|
239 |
|
|
tree base_a = DR_BASE_OBJECT (dra);
|
240 |
|
|
tree base_b = DR_BASE_OBJECT (drb);
|
241 |
|
|
|
242 |
|
|
if (TREE_CODE (base_b) != COMPONENT_REF)
|
243 |
|
|
return false;
|
244 |
|
|
|
245 |
|
|
/* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
|
246 |
|
|
For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
|
247 |
|
|
Probably will be unnecessary with struct alias analysis. */
|
248 |
|
|
while (TREE_CODE (base_b) == COMPONENT_REF)
|
249 |
|
|
base_b = TREE_OPERAND (base_b, 0);
|
250 |
|
|
/* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
|
251 |
|
|
((*q)[i]). */
|
252 |
|
|
if (TREE_CODE (base_a) == INDIRECT_REF
|
253 |
|
|
&& ((TREE_CODE (base_b) == VAR_DECL
|
254 |
|
|
&& (ptr_decl_may_alias_p (TREE_OPERAND (base_a, 0), base_b, dra,
|
255 |
|
|
&aliased)
|
256 |
|
|
&& !aliased))
|
257 |
|
|
|| (TREE_CODE (base_b) == INDIRECT_REF
|
258 |
|
|
&& (ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
|
259 |
|
|
TREE_OPERAND (base_b, 0), dra, drb,
|
260 |
|
|
&aliased)
|
261 |
|
|
&& !aliased))))
|
262 |
|
|
return true;
|
263 |
|
|
else
|
264 |
|
|
return false;
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
/* Determine if two record/union accesses are aliased. Return TRUE if they
|
268 |
|
|
differ. */
|
269 |
|
|
static bool
|
270 |
|
|
record_record_differ_p (struct data_reference *dra,
|
271 |
|
|
struct data_reference *drb)
|
272 |
|
|
{
|
273 |
|
|
bool aliased;
|
274 |
|
|
tree base_a = DR_BASE_OBJECT (dra);
|
275 |
|
|
tree base_b = DR_BASE_OBJECT (drb);
|
276 |
|
|
|
277 |
|
|
if (TREE_CODE (base_b) != COMPONENT_REF
|
278 |
|
|
|| TREE_CODE (base_a) != COMPONENT_REF)
|
279 |
|
|
return false;
|
280 |
|
|
|
281 |
|
|
/* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
|
282 |
|
|
For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
|
283 |
|
|
Probably will be unnecessary with struct alias analysis. */
|
284 |
|
|
while (TREE_CODE (base_b) == COMPONENT_REF)
|
285 |
|
|
base_b = TREE_OPERAND (base_b, 0);
|
286 |
|
|
while (TREE_CODE (base_a) == COMPONENT_REF)
|
287 |
|
|
base_a = TREE_OPERAND (base_a, 0);
|
288 |
|
|
|
289 |
|
|
if (TREE_CODE (base_a) == INDIRECT_REF
|
290 |
|
|
&& TREE_CODE (base_b) == INDIRECT_REF
|
291 |
|
|
&& ptr_ptr_may_alias_p (TREE_OPERAND (base_a, 0),
|
292 |
|
|
TREE_OPERAND (base_b, 0),
|
293 |
|
|
dra, drb, &aliased)
|
294 |
|
|
&& !aliased)
|
295 |
|
|
return true;
|
296 |
|
|
else
|
297 |
|
|
return false;
|
298 |
|
|
}
|
299 |
|
|
|
300 |
|
|
/* Determine if an array access (BASE_A) and a record/union access (BASE_B)
|
301 |
|
|
are not aliased. Return TRUE if they differ. */
|
302 |
|
|
static bool
|
303 |
|
|
record_array_differ_p (struct data_reference *dra,
|
304 |
|
|
struct data_reference *drb)
|
305 |
|
|
{
|
306 |
|
|
bool aliased;
|
307 |
|
|
tree base_a = DR_BASE_OBJECT (dra);
|
308 |
|
|
tree base_b = DR_BASE_OBJECT (drb);
|
309 |
|
|
|
310 |
|
|
if (TREE_CODE (base_b) != COMPONENT_REF)
|
311 |
|
|
return false;
|
312 |
|
|
|
313 |
|
|
/* Peel COMPONENT_REFs to get to the base. Do not peel INDIRECT_REFs.
|
314 |
|
|
For a.b.c.d[i] we will get a, and for a.b->c.d[i] we will get a.b.
|
315 |
|
|
Probably will be unnecessary with struct alias analysis. */
|
316 |
|
|
while (TREE_CODE (base_b) == COMPONENT_REF)
|
317 |
|
|
base_b = TREE_OPERAND (base_b, 0);
|
318 |
|
|
|
319 |
|
|
/* Compare a record/union access (b.c[i] or p->c[i]) and an array access
|
320 |
|
|
(a[i]). In case of p->c[i] use alias analysis to verify that p is not
|
321 |
|
|
pointing to a. */
|
322 |
|
|
if (TREE_CODE (base_a) == VAR_DECL
|
323 |
|
|
&& (TREE_CODE (base_b) == VAR_DECL
|
324 |
|
|
|| (TREE_CODE (base_b) == INDIRECT_REF
|
325 |
|
|
&& (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb,
|
326 |
|
|
&aliased)
|
327 |
|
|
&& !aliased))))
|
328 |
|
|
return true;
|
329 |
|
|
else
|
330 |
|
|
return false;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
/* Determine if an array access (BASE_A) and a pointer (BASE_B)
|
335 |
|
|
are not aliased. Return TRUE if they differ. */
|
336 |
|
|
static bool
|
337 |
|
|
array_ptr_differ_p (tree base_a, tree base_b,
|
338 |
|
|
struct data_reference *drb)
|
339 |
|
|
{
|
340 |
|
|
bool aliased;
|
341 |
|
|
|
342 |
|
|
/* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
|
343 |
|
|
help of alias analysis that p is not pointing to a. */
|
344 |
|
|
if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == INDIRECT_REF
|
345 |
|
|
&& (ptr_decl_may_alias_p (TREE_OPERAND (base_b, 0), base_a, drb, &aliased)
|
346 |
|
|
&& !aliased))
|
347 |
|
|
return true;
|
348 |
|
|
else
|
349 |
|
|
return false;
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
|
353 |
|
|
/* This is the simplest data dependence test: determines whether the
|
354 |
|
|
data references A and B access the same array/region. Returns
|
355 |
|
|
false when the property is not computable at compile time.
|
356 |
|
|
Otherwise return true, and DIFFER_P will record the result. This
|
357 |
|
|
utility will not be necessary when alias_sets_conflict_p will be
|
358 |
|
|
less conservative. */
|
359 |
|
|
|
360 |
|
|
static bool
|
361 |
|
|
base_object_differ_p (struct data_reference *a,
|
362 |
|
|
struct data_reference *b,
|
363 |
|
|
bool *differ_p)
|
364 |
|
|
{
|
365 |
|
|
tree base_a = DR_BASE_OBJECT (a);
|
366 |
|
|
tree base_b = DR_BASE_OBJECT (b);
|
367 |
|
|
bool aliased;
|
368 |
|
|
|
369 |
|
|
if (!base_a || !base_b)
|
370 |
|
|
return false;
|
371 |
|
|
|
372 |
|
|
/* Determine if same base. Example: for the array accesses
|
373 |
|
|
a[i], b[i] or pointer accesses *a, *b, bases are a, b. */
|
374 |
|
|
if (base_a == base_b)
|
375 |
|
|
{
|
376 |
|
|
*differ_p = false;
|
377 |
|
|
return true;
|
378 |
|
|
}
|
379 |
|
|
|
380 |
|
|
/* For pointer based accesses, (*p)[i], (*q)[j], the bases are (*p)
|
381 |
|
|
and (*q) */
|
382 |
|
|
if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
|
383 |
|
|
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
|
384 |
|
|
{
|
385 |
|
|
*differ_p = false;
|
386 |
|
|
return true;
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
/* Record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b. */
|
390 |
|
|
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
|
391 |
|
|
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
|
392 |
|
|
&& TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
|
393 |
|
|
{
|
394 |
|
|
*differ_p = false;
|
395 |
|
|
return true;
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
|
399 |
|
|
/* Determine if different bases. */
|
400 |
|
|
|
401 |
|
|
/* At this point we know that base_a != base_b. However, pointer
|
402 |
|
|
accesses of the form x=(*p) and y=(*q), whose bases are p and q,
|
403 |
|
|
may still be pointing to the same base. In SSAed GIMPLE p and q will
|
404 |
|
|
be SSA_NAMES in this case. Therefore, here we check if they are
|
405 |
|
|
really two different declarations. */
|
406 |
|
|
if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
|
407 |
|
|
{
|
408 |
|
|
*differ_p = true;
|
409 |
|
|
return true;
|
410 |
|
|
}
|
411 |
|
|
|
412 |
|
|
/* In case one of the bases is a pointer (a[i] and (*p)[i]), we check with the
|
413 |
|
|
help of alias analysis that p is not pointing to a. */
|
414 |
|
|
if (array_ptr_differ_p (base_a, base_b, b)
|
415 |
|
|
|| array_ptr_differ_p (base_b, base_a, a))
|
416 |
|
|
{
|
417 |
|
|
*differ_p = true;
|
418 |
|
|
return true;
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
/* If the bases are pointers ((*q)[i] and (*p)[i]), we check with the
|
422 |
|
|
help of alias analysis they don't point to the same bases. */
|
423 |
|
|
if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
|
424 |
|
|
&& (may_alias_p (TREE_OPERAND (base_a, 0), TREE_OPERAND (base_b, 0), a, b,
|
425 |
|
|
&aliased)
|
426 |
|
|
&& !aliased))
|
427 |
|
|
{
|
428 |
|
|
*differ_p = true;
|
429 |
|
|
return true;
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
/* Compare two record/union bases s.a and t.b: s != t or (a != b and
|
433 |
|
|
s and t are not unions). */
|
434 |
|
|
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
|
435 |
|
|
&& ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
|
436 |
|
|
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
|
437 |
|
|
&& TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
|
438 |
|
|
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
|
439 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
|
440 |
|
|
&& TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
|
441 |
|
|
{
|
442 |
|
|
*differ_p = true;
|
443 |
|
|
return true;
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/* Compare a record/union access (b.c[i] or p->c[i]) and a pointer
|
447 |
|
|
((*q)[i]). */
|
448 |
|
|
if (record_ptr_differ_p (a, b) || record_ptr_differ_p (b, a))
|
449 |
|
|
{
|
450 |
|
|
*differ_p = true;
|
451 |
|
|
return true;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
/* Compare a record/union access (b.c[i] or p->c[i]) and an array access
|
455 |
|
|
(a[i]). In case of p->c[i] use alias analysis to verify that p is not
|
456 |
|
|
pointing to a. */
|
457 |
|
|
if (record_array_differ_p (a, b) || record_array_differ_p (b, a))
|
458 |
|
|
{
|
459 |
|
|
*differ_p = true;
|
460 |
|
|
return true;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* Compare two record/union accesses (b.c[i] or p->c[i]). */
|
464 |
|
|
if (record_record_differ_p (a, b))
|
465 |
|
|
{
|
466 |
|
|
*differ_p = true;
|
467 |
|
|
return true;
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
return false;
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* Function base_addr_differ_p.
|
474 |
|
|
|
475 |
|
|
This is the simplest data dependence test: determines whether the
|
476 |
|
|
data references DRA and DRB access the same array/region. Returns
|
477 |
|
|
false when the property is not computable at compile time.
|
478 |
|
|
Otherwise return true, and DIFFER_P will record the result.
|
479 |
|
|
|
480 |
|
|
The algorithm:
|
481 |
|
|
1. if (both DRA and DRB are represented as arrays)
|
482 |
|
|
compare DRA.BASE_OBJECT and DRB.BASE_OBJECT
|
483 |
|
|
2. else if (both DRA and DRB are represented as pointers)
|
484 |
|
|
try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION
|
485 |
|
|
3. else if (DRA and DRB are represented differently or 2. fails)
|
486 |
|
|
only try to prove that the bases are surely different
|
487 |
|
|
*/
|
488 |
|
|
|
489 |
|
|
static bool
|
490 |
|
|
base_addr_differ_p (struct data_reference *dra,
|
491 |
|
|
struct data_reference *drb,
|
492 |
|
|
bool *differ_p)
|
493 |
|
|
{
|
494 |
|
|
tree addr_a = DR_BASE_ADDRESS (dra);
|
495 |
|
|
tree addr_b = DR_BASE_ADDRESS (drb);
|
496 |
|
|
tree type_a, type_b;
|
497 |
|
|
bool aliased;
|
498 |
|
|
|
499 |
|
|
if (!addr_a || !addr_b)
|
500 |
|
|
return false;
|
501 |
|
|
|
502 |
|
|
type_a = TREE_TYPE (addr_a);
|
503 |
|
|
type_b = TREE_TYPE (addr_b);
|
504 |
|
|
|
505 |
|
|
gcc_assert (POINTER_TYPE_P (type_a) && POINTER_TYPE_P (type_b));
|
506 |
|
|
|
507 |
|
|
/* 1. if (both DRA and DRB are represented as arrays)
|
508 |
|
|
compare DRA.BASE_OBJECT and DRB.BASE_OBJECT. */
|
509 |
|
|
if (DR_TYPE (dra) == ARRAY_REF_TYPE && DR_TYPE (drb) == ARRAY_REF_TYPE)
|
510 |
|
|
return base_object_differ_p (dra, drb, differ_p);
|
511 |
|
|
|
512 |
|
|
/* 2. else if (both DRA and DRB are represented as pointers)
|
513 |
|
|
try to prove that DRA.FIRST_LOCATION == DRB.FIRST_LOCATION. */
|
514 |
|
|
/* If base addresses are the same, we check the offsets, since the access of
|
515 |
|
|
the data-ref is described by {base addr + offset} and its access function,
|
516 |
|
|
i.e., in order to decide whether the bases of data-refs are the same we
|
517 |
|
|
compare both base addresses and offsets. */
|
518 |
|
|
if (DR_TYPE (dra) == POINTER_REF_TYPE && DR_TYPE (drb) == POINTER_REF_TYPE
|
519 |
|
|
&& (addr_a == addr_b
|
520 |
|
|
|| (TREE_CODE (addr_a) == ADDR_EXPR && TREE_CODE (addr_b) == ADDR_EXPR
|
521 |
|
|
&& TREE_OPERAND (addr_a, 0) == TREE_OPERAND (addr_b, 0))))
|
522 |
|
|
{
|
523 |
|
|
/* Compare offsets. */
|
524 |
|
|
tree offset_a = DR_OFFSET (dra);
|
525 |
|
|
tree offset_b = DR_OFFSET (drb);
|
526 |
|
|
|
527 |
|
|
STRIP_NOPS (offset_a);
|
528 |
|
|
STRIP_NOPS (offset_b);
|
529 |
|
|
|
530 |
|
|
/* FORNOW: we only compare offsets that are MULT_EXPR, i.e., we don't handle
|
531 |
|
|
PLUS_EXPR. */
|
532 |
|
|
if (offset_a == offset_b
|
533 |
|
|
|| (TREE_CODE (offset_a) == MULT_EXPR
|
534 |
|
|
&& TREE_CODE (offset_b) == MULT_EXPR
|
535 |
|
|
&& TREE_OPERAND (offset_a, 0) == TREE_OPERAND (offset_b, 0)
|
536 |
|
|
&& TREE_OPERAND (offset_a, 1) == TREE_OPERAND (offset_b, 1)))
|
537 |
|
|
{
|
538 |
|
|
*differ_p = false;
|
539 |
|
|
return true;
|
540 |
|
|
}
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
/* 3. else if (DRA and DRB are represented differently or 2. fails)
|
544 |
|
|
only try to prove that the bases are surely different. */
|
545 |
|
|
|
546 |
|
|
/* Apply alias analysis. */
|
547 |
|
|
if (may_alias_p (addr_a, addr_b, dra, drb, &aliased) && !aliased)
|
548 |
|
|
{
|
549 |
|
|
*differ_p = true;
|
550 |
|
|
return true;
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
/* An instruction writing through a restricted pointer is "independent" of any
|
554 |
|
|
instruction reading or writing through a different pointer, in the same
|
555 |
|
|
block/scope. */
|
556 |
|
|
else if ((TYPE_RESTRICT (type_a) && !DR_IS_READ (dra))
|
557 |
|
|
|| (TYPE_RESTRICT (type_b) && !DR_IS_READ (drb)))
|
558 |
|
|
{
|
559 |
|
|
*differ_p = true;
|
560 |
|
|
return true;
|
561 |
|
|
}
|
562 |
|
|
return false;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
/* Returns true iff A divides B. */
|
566 |
|
|
|
567 |
|
|
static inline bool
|
568 |
|
|
tree_fold_divides_p (tree a,
|
569 |
|
|
tree b)
|
570 |
|
|
{
|
571 |
|
|
/* Determines whether (A == gcd (A, B)). */
|
572 |
|
|
return tree_int_cst_equal (a, tree_fold_gcd (a, b));
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/* Returns true iff A divides B. */
|
576 |
|
|
|
577 |
|
|
static inline bool
|
578 |
|
|
int_divides_p (int a, int b)
|
579 |
|
|
{
|
580 |
|
|
return ((b % a) == 0);
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
|
584 |
|
|
|
585 |
|
|
/* Dump into FILE all the data references from DATAREFS. */
|
586 |
|
|
|
587 |
|
|
void
|
588 |
|
|
dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
|
589 |
|
|
{
|
590 |
|
|
unsigned int i;
|
591 |
|
|
struct data_reference *dr;
|
592 |
|
|
|
593 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
|
594 |
|
|
dump_data_reference (file, dr);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
/* Dump into FILE all the dependence relations from DDRS. */
|
598 |
|
|
|
599 |
|
|
void
|
600 |
|
|
dump_data_dependence_relations (FILE *file,
|
601 |
|
|
VEC (ddr_p, heap) *ddrs)
|
602 |
|
|
{
|
603 |
|
|
unsigned int i;
|
604 |
|
|
struct data_dependence_relation *ddr;
|
605 |
|
|
|
606 |
|
|
for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
|
607 |
|
|
dump_data_dependence_relation (file, ddr);
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
/* Dump function for a DATA_REFERENCE structure. */
|
611 |
|
|
|
612 |
|
|
void
|
613 |
|
|
dump_data_reference (FILE *outf,
|
614 |
|
|
struct data_reference *dr)
|
615 |
|
|
{
|
616 |
|
|
unsigned int i;
|
617 |
|
|
|
618 |
|
|
fprintf (outf, "(Data Ref: \n stmt: ");
|
619 |
|
|
print_generic_stmt (outf, DR_STMT (dr), 0);
|
620 |
|
|
fprintf (outf, " ref: ");
|
621 |
|
|
print_generic_stmt (outf, DR_REF (dr), 0);
|
622 |
|
|
fprintf (outf, " base_object: ");
|
623 |
|
|
print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
|
624 |
|
|
|
625 |
|
|
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
626 |
|
|
{
|
627 |
|
|
fprintf (outf, " Access function %d: ", i);
|
628 |
|
|
print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
|
629 |
|
|
}
|
630 |
|
|
fprintf (outf, ")\n");
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Dump function for a SUBSCRIPT structure. */
|
634 |
|
|
|
635 |
|
|
void
|
636 |
|
|
dump_subscript (FILE *outf, struct subscript *subscript)
|
637 |
|
|
{
|
638 |
|
|
tree chrec = SUB_CONFLICTS_IN_A (subscript);
|
639 |
|
|
|
640 |
|
|
fprintf (outf, "\n (subscript \n");
|
641 |
|
|
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
|
642 |
|
|
print_generic_stmt (outf, chrec, 0);
|
643 |
|
|
if (chrec == chrec_known)
|
644 |
|
|
fprintf (outf, " (no dependence)\n");
|
645 |
|
|
else if (chrec_contains_undetermined (chrec))
|
646 |
|
|
fprintf (outf, " (don't know)\n");
|
647 |
|
|
else
|
648 |
|
|
{
|
649 |
|
|
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
650 |
|
|
fprintf (outf, " last_conflict: ");
|
651 |
|
|
print_generic_stmt (outf, last_iteration, 0);
|
652 |
|
|
}
|
653 |
|
|
|
654 |
|
|
chrec = SUB_CONFLICTS_IN_B (subscript);
|
655 |
|
|
fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
|
656 |
|
|
print_generic_stmt (outf, chrec, 0);
|
657 |
|
|
if (chrec == chrec_known)
|
658 |
|
|
fprintf (outf, " (no dependence)\n");
|
659 |
|
|
else if (chrec_contains_undetermined (chrec))
|
660 |
|
|
fprintf (outf, " (don't know)\n");
|
661 |
|
|
else
|
662 |
|
|
{
|
663 |
|
|
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
664 |
|
|
fprintf (outf, " last_conflict: ");
|
665 |
|
|
print_generic_stmt (outf, last_iteration, 0);
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
fprintf (outf, " (Subscript distance: ");
|
669 |
|
|
print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
|
670 |
|
|
fprintf (outf, " )\n");
|
671 |
|
|
fprintf (outf, " )\n");
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
/* Print the classic direction vector DIRV to OUTF. */
|
675 |
|
|
|
676 |
|
|
void
|
677 |
|
|
print_direction_vector (FILE *outf,
|
678 |
|
|
lambda_vector dirv,
|
679 |
|
|
int length)
|
680 |
|
|
{
|
681 |
|
|
int eq;
|
682 |
|
|
|
683 |
|
|
for (eq = 0; eq < length; eq++)
|
684 |
|
|
{
|
685 |
|
|
enum data_dependence_direction dir = dirv[eq];
|
686 |
|
|
|
687 |
|
|
switch (dir)
|
688 |
|
|
{
|
689 |
|
|
case dir_positive:
|
690 |
|
|
fprintf (outf, " +");
|
691 |
|
|
break;
|
692 |
|
|
case dir_negative:
|
693 |
|
|
fprintf (outf, " -");
|
694 |
|
|
break;
|
695 |
|
|
case dir_equal:
|
696 |
|
|
fprintf (outf, " =");
|
697 |
|
|
break;
|
698 |
|
|
case dir_positive_or_equal:
|
699 |
|
|
fprintf (outf, " +=");
|
700 |
|
|
break;
|
701 |
|
|
case dir_positive_or_negative:
|
702 |
|
|
fprintf (outf, " +-");
|
703 |
|
|
break;
|
704 |
|
|
case dir_negative_or_equal:
|
705 |
|
|
fprintf (outf, " -=");
|
706 |
|
|
break;
|
707 |
|
|
case dir_star:
|
708 |
|
|
fprintf (outf, " *");
|
709 |
|
|
break;
|
710 |
|
|
default:
|
711 |
|
|
fprintf (outf, "indep");
|
712 |
|
|
break;
|
713 |
|
|
}
|
714 |
|
|
}
|
715 |
|
|
fprintf (outf, "\n");
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
/* Print a vector of direction vectors. */
|
719 |
|
|
|
720 |
|
|
void
|
721 |
|
|
print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
|
722 |
|
|
int length)
|
723 |
|
|
{
|
724 |
|
|
unsigned j;
|
725 |
|
|
lambda_vector v;
|
726 |
|
|
|
727 |
|
|
for (j = 0; VEC_iterate (lambda_vector, dir_vects, j, v); j++)
|
728 |
|
|
print_direction_vector (outf, v, length);
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* Print a vector of distance vectors. */
|
732 |
|
|
|
733 |
|
|
void
|
734 |
|
|
print_dist_vectors (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
|
735 |
|
|
int length)
|
736 |
|
|
{
|
737 |
|
|
unsigned j;
|
738 |
|
|
lambda_vector v;
|
739 |
|
|
|
740 |
|
|
for (j = 0; VEC_iterate (lambda_vector, dist_vects, j, v); j++)
|
741 |
|
|
print_lambda_vector (outf, v, length);
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
/* Debug version. */
|
745 |
|
|
|
746 |
|
|
void
|
747 |
|
|
debug_data_dependence_relation (struct data_dependence_relation *ddr)
|
748 |
|
|
{
|
749 |
|
|
dump_data_dependence_relation (stderr, ddr);
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
|
753 |
|
|
|
754 |
|
|
void
|
755 |
|
|
dump_data_dependence_relation (FILE *outf,
|
756 |
|
|
struct data_dependence_relation *ddr)
|
757 |
|
|
{
|
758 |
|
|
struct data_reference *dra, *drb;
|
759 |
|
|
|
760 |
|
|
dra = DDR_A (ddr);
|
761 |
|
|
drb = DDR_B (ddr);
|
762 |
|
|
fprintf (outf, "(Data Dep: \n");
|
763 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
764 |
|
|
fprintf (outf, " (don't know)\n");
|
765 |
|
|
|
766 |
|
|
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
767 |
|
|
fprintf (outf, " (no dependence)\n");
|
768 |
|
|
|
769 |
|
|
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
770 |
|
|
{
|
771 |
|
|
unsigned int i;
|
772 |
|
|
struct loop *loopi;
|
773 |
|
|
|
774 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
775 |
|
|
{
|
776 |
|
|
fprintf (outf, " access_fn_A: ");
|
777 |
|
|
print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
|
778 |
|
|
fprintf (outf, " access_fn_B: ");
|
779 |
|
|
print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
|
780 |
|
|
dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
fprintf (outf, " loop nest: (");
|
784 |
|
|
for (i = 0; VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
|
785 |
|
|
fprintf (outf, "%d ", loopi->num);
|
786 |
|
|
fprintf (outf, ")\n");
|
787 |
|
|
|
788 |
|
|
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
789 |
|
|
{
|
790 |
|
|
fprintf (outf, " distance_vector: ");
|
791 |
|
|
print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
|
792 |
|
|
DDR_NB_LOOPS (ddr));
|
793 |
|
|
}
|
794 |
|
|
|
795 |
|
|
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
|
796 |
|
|
{
|
797 |
|
|
fprintf (outf, " direction_vector: ");
|
798 |
|
|
print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
|
799 |
|
|
DDR_NB_LOOPS (ddr));
|
800 |
|
|
}
|
801 |
|
|
}
|
802 |
|
|
|
803 |
|
|
fprintf (outf, ")\n");
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
|
807 |
|
|
|
808 |
|
|
void
|
809 |
|
|
dump_data_dependence_direction (FILE *file,
|
810 |
|
|
enum data_dependence_direction dir)
|
811 |
|
|
{
|
812 |
|
|
switch (dir)
|
813 |
|
|
{
|
814 |
|
|
case dir_positive:
|
815 |
|
|
fprintf (file, "+");
|
816 |
|
|
break;
|
817 |
|
|
|
818 |
|
|
case dir_negative:
|
819 |
|
|
fprintf (file, "-");
|
820 |
|
|
break;
|
821 |
|
|
|
822 |
|
|
case dir_equal:
|
823 |
|
|
fprintf (file, "=");
|
824 |
|
|
break;
|
825 |
|
|
|
826 |
|
|
case dir_positive_or_negative:
|
827 |
|
|
fprintf (file, "+-");
|
828 |
|
|
break;
|
829 |
|
|
|
830 |
|
|
case dir_positive_or_equal:
|
831 |
|
|
fprintf (file, "+=");
|
832 |
|
|
break;
|
833 |
|
|
|
834 |
|
|
case dir_negative_or_equal:
|
835 |
|
|
fprintf (file, "-=");
|
836 |
|
|
break;
|
837 |
|
|
|
838 |
|
|
case dir_star:
|
839 |
|
|
fprintf (file, "*");
|
840 |
|
|
break;
|
841 |
|
|
|
842 |
|
|
default:
|
843 |
|
|
break;
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/* Dumps the distance and direction vectors in FILE. DDRS contains
|
848 |
|
|
the dependence relations, and VECT_SIZE is the size of the
|
849 |
|
|
dependence vectors, or in other words the number of loops in the
|
850 |
|
|
considered nest. */
|
851 |
|
|
|
852 |
|
|
void
|
853 |
|
|
dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
|
854 |
|
|
{
|
855 |
|
|
unsigned int i, j;
|
856 |
|
|
struct data_dependence_relation *ddr;
|
857 |
|
|
lambda_vector v;
|
858 |
|
|
|
859 |
|
|
for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
|
860 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
|
861 |
|
|
{
|
862 |
|
|
for (j = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), j, v); j++)
|
863 |
|
|
{
|
864 |
|
|
fprintf (file, "DISTANCE_V (");
|
865 |
|
|
print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
|
866 |
|
|
fprintf (file, ")\n");
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
for (j = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), j, v); j++)
|
870 |
|
|
{
|
871 |
|
|
fprintf (file, "DIRECTION_V (");
|
872 |
|
|
print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
|
873 |
|
|
fprintf (file, ")\n");
|
874 |
|
|
}
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
fprintf (file, "\n\n");
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
/* Dumps the data dependence relations DDRS in FILE. */
|
881 |
|
|
|
882 |
|
|
void
|
883 |
|
|
dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
|
884 |
|
|
{
|
885 |
|
|
unsigned int i;
|
886 |
|
|
struct data_dependence_relation *ddr;
|
887 |
|
|
|
888 |
|
|
for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
|
889 |
|
|
dump_data_dependence_relation (file, ddr);
|
890 |
|
|
|
891 |
|
|
fprintf (file, "\n\n");
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
|
895 |
|
|
|
896 |
|
|
/* Estimate the number of iterations from the size of the data and the
|
897 |
|
|
access functions. */
|
898 |
|
|
|
899 |
|
|
static void
|
900 |
|
|
estimate_niter_from_size_of_data (struct loop *loop,
|
901 |
|
|
tree opnd0,
|
902 |
|
|
tree access_fn,
|
903 |
|
|
tree stmt)
|
904 |
|
|
{
|
905 |
|
|
tree estimation = NULL_TREE;
|
906 |
|
|
tree array_size, data_size, element_size;
|
907 |
|
|
tree init, step;
|
908 |
|
|
|
909 |
|
|
init = initial_condition (access_fn);
|
910 |
|
|
step = evolution_part_in_loop_num (access_fn, loop->num);
|
911 |
|
|
|
912 |
|
|
array_size = TYPE_SIZE (TREE_TYPE (opnd0));
|
913 |
|
|
element_size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (opnd0)));
|
914 |
|
|
if (array_size == NULL_TREE
|
915 |
|
|
|| TREE_CODE (array_size) != INTEGER_CST
|
916 |
|
|
|| TREE_CODE (element_size) != INTEGER_CST)
|
917 |
|
|
return;
|
918 |
|
|
|
919 |
|
|
data_size = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
|
920 |
|
|
array_size, element_size);
|
921 |
|
|
|
922 |
|
|
if (init != NULL_TREE
|
923 |
|
|
&& step != NULL_TREE
|
924 |
|
|
&& TREE_CODE (init) == INTEGER_CST
|
925 |
|
|
&& TREE_CODE (step) == INTEGER_CST)
|
926 |
|
|
{
|
927 |
|
|
tree i_plus_s = fold_build2 (PLUS_EXPR, integer_type_node, init, step);
|
928 |
|
|
tree sign = fold_binary (GT_EXPR, boolean_type_node, i_plus_s, init);
|
929 |
|
|
|
930 |
|
|
if (sign == boolean_true_node)
|
931 |
|
|
estimation = fold_build2 (CEIL_DIV_EXPR, integer_type_node,
|
932 |
|
|
fold_build2 (MINUS_EXPR, integer_type_node,
|
933 |
|
|
data_size, init), step);
|
934 |
|
|
|
935 |
|
|
/* When the step is negative, as in PR23386: (init = 3, step =
|
936 |
|
|
0ffffffff, data_size = 100), we have to compute the
|
937 |
|
|
estimation as ceil_div (init, 0 - step) + 1. */
|
938 |
|
|
else if (sign == boolean_false_node)
|
939 |
|
|
estimation =
|
940 |
|
|
fold_build2 (PLUS_EXPR, integer_type_node,
|
941 |
|
|
fold_build2 (CEIL_DIV_EXPR, integer_type_node,
|
942 |
|
|
init,
|
943 |
|
|
fold_build2 (MINUS_EXPR, unsigned_type_node,
|
944 |
|
|
integer_zero_node, step)),
|
945 |
|
|
integer_one_node);
|
946 |
|
|
|
947 |
|
|
if (estimation)
|
948 |
|
|
record_estimate (loop, estimation, boolean_true_node, stmt);
|
949 |
|
|
}
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
/* Given an ARRAY_REF node REF, records its access functions.
|
953 |
|
|
Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
|
954 |
|
|
i.e. the constant "3", then recursively call the function on opnd0,
|
955 |
|
|
i.e. the ARRAY_REF "A[i]".
|
956 |
|
|
If ESTIMATE_ONLY is true, we just set the estimated number of loop
|
957 |
|
|
iterations, we don't store the access function.
|
958 |
|
|
The function returns the base name: "A". */
|
959 |
|
|
|
960 |
|
|
static tree
|
961 |
|
|
analyze_array_indexes (struct loop *loop,
|
962 |
|
|
VEC(tree,heap) **access_fns,
|
963 |
|
|
tree ref, tree stmt,
|
964 |
|
|
bool estimate_only)
|
965 |
|
|
{
|
966 |
|
|
tree opnd0, opnd1;
|
967 |
|
|
tree access_fn;
|
968 |
|
|
|
969 |
|
|
opnd0 = TREE_OPERAND (ref, 0);
|
970 |
|
|
opnd1 = TREE_OPERAND (ref, 1);
|
971 |
|
|
|
972 |
|
|
/* The detection of the evolution function for this data access is
|
973 |
|
|
postponed until the dependence test. This lazy strategy avoids
|
974 |
|
|
the computation of access functions that are of no interest for
|
975 |
|
|
the optimizers. */
|
976 |
|
|
access_fn = instantiate_parameters
|
977 |
|
|
(loop, analyze_scalar_evolution (loop, opnd1));
|
978 |
|
|
|
979 |
|
|
if (estimate_only
|
980 |
|
|
&& chrec_contains_undetermined (loop->estimated_nb_iterations))
|
981 |
|
|
estimate_niter_from_size_of_data (loop, opnd0, access_fn, stmt);
|
982 |
|
|
|
983 |
|
|
if (!estimate_only)
|
984 |
|
|
VEC_safe_push (tree, heap, *access_fns, access_fn);
|
985 |
|
|
|
986 |
|
|
/* Recursively record other array access functions. */
|
987 |
|
|
if (TREE_CODE (opnd0) == ARRAY_REF)
|
988 |
|
|
return analyze_array_indexes (loop, access_fns, opnd0, stmt, estimate_only);
|
989 |
|
|
|
990 |
|
|
/* Return the base name of the data access. */
|
991 |
|
|
else
|
992 |
|
|
return opnd0;
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
/* For an array reference REF contained in STMT, attempt to bound the
|
996 |
|
|
number of iterations in the loop containing STMT */
|
997 |
|
|
|
998 |
|
|
void
|
999 |
|
|
estimate_iters_using_array (tree stmt, tree ref)
|
1000 |
|
|
{
|
1001 |
|
|
analyze_array_indexes (loop_containing_stmt (stmt), NULL, ref, stmt,
|
1002 |
|
|
true);
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
/* For a data reference REF contained in the statement STMT, initialize
|
1006 |
|
|
a DATA_REFERENCE structure, and return it. IS_READ flag has to be
|
1007 |
|
|
set to true when REF is in the right hand side of an
|
1008 |
|
|
assignment. */
|
1009 |
|
|
|
1010 |
|
|
struct data_reference *
|
1011 |
|
|
analyze_array (tree stmt, tree ref, bool is_read)
|
1012 |
|
|
{
|
1013 |
|
|
struct data_reference *res;
|
1014 |
|
|
VEC(tree,heap) *acc_fns;
|
1015 |
|
|
|
1016 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1017 |
|
|
{
|
1018 |
|
|
fprintf (dump_file, "(analyze_array \n");
|
1019 |
|
|
fprintf (dump_file, " (ref = ");
|
1020 |
|
|
print_generic_stmt (dump_file, ref, 0);
|
1021 |
|
|
fprintf (dump_file, ")\n");
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
res = XNEW (struct data_reference);
|
1025 |
|
|
|
1026 |
|
|
DR_STMT (res) = stmt;
|
1027 |
|
|
DR_REF (res) = ref;
|
1028 |
|
|
acc_fns = VEC_alloc (tree, heap, 3);
|
1029 |
|
|
DR_BASE_OBJECT (res) = analyze_array_indexes
|
1030 |
|
|
(loop_containing_stmt (stmt), &acc_fns, ref, stmt, false);
|
1031 |
|
|
DR_TYPE (res) = ARRAY_REF_TYPE;
|
1032 |
|
|
DR_SET_ACCESS_FNS (res, acc_fns);
|
1033 |
|
|
DR_IS_READ (res) = is_read;
|
1034 |
|
|
DR_BASE_ADDRESS (res) = NULL_TREE;
|
1035 |
|
|
DR_OFFSET (res) = NULL_TREE;
|
1036 |
|
|
DR_INIT (res) = NULL_TREE;
|
1037 |
|
|
DR_STEP (res) = NULL_TREE;
|
1038 |
|
|
DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
|
1039 |
|
|
DR_MEMTAG (res) = NULL_TREE;
|
1040 |
|
|
DR_PTR_INFO (res) = NULL;
|
1041 |
|
|
|
1042 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1043 |
|
|
fprintf (dump_file, ")\n");
|
1044 |
|
|
|
1045 |
|
|
return res;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
/* Analyze an indirect memory reference, REF, that comes from STMT.
|
1049 |
|
|
IS_READ is true if this is an indirect load, and false if it is
|
1050 |
|
|
an indirect store.
|
1051 |
|
|
Return a new data reference structure representing the indirect_ref, or
|
1052 |
|
|
NULL if we cannot describe the access function. */
|
1053 |
|
|
|
1054 |
|
|
static struct data_reference *
|
1055 |
|
|
analyze_indirect_ref (tree stmt, tree ref, bool is_read)
|
1056 |
|
|
{
|
1057 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
1058 |
|
|
tree ptr_ref = TREE_OPERAND (ref, 0);
|
1059 |
|
|
tree access_fn = analyze_scalar_evolution (loop, ptr_ref);
|
1060 |
|
|
tree init = initial_condition_in_loop_num (access_fn, loop->num);
|
1061 |
|
|
tree base_address = NULL_TREE, evolution, step = NULL_TREE;
|
1062 |
|
|
struct ptr_info_def *ptr_info = NULL;
|
1063 |
|
|
|
1064 |
|
|
if (TREE_CODE (ptr_ref) == SSA_NAME)
|
1065 |
|
|
ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
|
1066 |
|
|
|
1067 |
|
|
STRIP_NOPS (init);
|
1068 |
|
|
if (access_fn == chrec_dont_know || !init || init == chrec_dont_know)
|
1069 |
|
|
{
|
1070 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1071 |
|
|
{
|
1072 |
|
|
fprintf (dump_file, "\nBad access function of ptr: ");
|
1073 |
|
|
print_generic_expr (dump_file, ref, TDF_SLIM);
|
1074 |
|
|
fprintf (dump_file, "\n");
|
1075 |
|
|
}
|
1076 |
|
|
return NULL;
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1080 |
|
|
{
|
1081 |
|
|
fprintf (dump_file, "\nAccess function of ptr: ");
|
1082 |
|
|
print_generic_expr (dump_file, access_fn, TDF_SLIM);
|
1083 |
|
|
fprintf (dump_file, "\n");
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
if (!expr_invariant_in_loop_p (loop, init))
|
1087 |
|
|
{
|
1088 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1089 |
|
|
fprintf (dump_file, "\ninitial condition is not loop invariant.\n");
|
1090 |
|
|
}
|
1091 |
|
|
else
|
1092 |
|
|
{
|
1093 |
|
|
base_address = init;
|
1094 |
|
|
evolution = evolution_part_in_loop_num (access_fn, loop->num);
|
1095 |
|
|
if (evolution != chrec_dont_know)
|
1096 |
|
|
{
|
1097 |
|
|
if (!evolution)
|
1098 |
|
|
step = ssize_int (0);
|
1099 |
|
|
else
|
1100 |
|
|
{
|
1101 |
|
|
if (TREE_CODE (evolution) == INTEGER_CST)
|
1102 |
|
|
step = fold_convert (ssizetype, evolution);
|
1103 |
|
|
else
|
1104 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1105 |
|
|
fprintf (dump_file, "\nnon constant step for ptr access.\n");
|
1106 |
|
|
}
|
1107 |
|
|
}
|
1108 |
|
|
else
|
1109 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1110 |
|
|
fprintf (dump_file, "\nunknown evolution of ptr.\n");
|
1111 |
|
|
}
|
1112 |
|
|
return init_data_ref (stmt, ref, NULL_TREE, access_fn, is_read, base_address,
|
1113 |
|
|
NULL_TREE, step, NULL_TREE, NULL_TREE,
|
1114 |
|
|
ptr_info, POINTER_REF_TYPE);
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
/* For a data reference REF contained in the statement STMT, initialize
|
1118 |
|
|
a DATA_REFERENCE structure, and return it. */
|
1119 |
|
|
|
1120 |
|
|
struct data_reference *
|
1121 |
|
|
init_data_ref (tree stmt,
|
1122 |
|
|
tree ref,
|
1123 |
|
|
tree base,
|
1124 |
|
|
tree access_fn,
|
1125 |
|
|
bool is_read,
|
1126 |
|
|
tree base_address,
|
1127 |
|
|
tree init_offset,
|
1128 |
|
|
tree step,
|
1129 |
|
|
tree misalign,
|
1130 |
|
|
tree memtag,
|
1131 |
|
|
struct ptr_info_def *ptr_info,
|
1132 |
|
|
enum data_ref_type type)
|
1133 |
|
|
{
|
1134 |
|
|
struct data_reference *res;
|
1135 |
|
|
VEC(tree,heap) *acc_fns;
|
1136 |
|
|
|
1137 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1138 |
|
|
{
|
1139 |
|
|
fprintf (dump_file, "(init_data_ref \n");
|
1140 |
|
|
fprintf (dump_file, " (ref = ");
|
1141 |
|
|
print_generic_stmt (dump_file, ref, 0);
|
1142 |
|
|
fprintf (dump_file, ")\n");
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
res = XNEW (struct data_reference);
|
1146 |
|
|
|
1147 |
|
|
DR_STMT (res) = stmt;
|
1148 |
|
|
DR_REF (res) = ref;
|
1149 |
|
|
DR_BASE_OBJECT (res) = base;
|
1150 |
|
|
DR_TYPE (res) = type;
|
1151 |
|
|
acc_fns = VEC_alloc (tree, heap, 3);
|
1152 |
|
|
DR_SET_ACCESS_FNS (res, acc_fns);
|
1153 |
|
|
VEC_quick_push (tree, DR_ACCESS_FNS (res), access_fn);
|
1154 |
|
|
DR_IS_READ (res) = is_read;
|
1155 |
|
|
DR_BASE_ADDRESS (res) = base_address;
|
1156 |
|
|
DR_OFFSET (res) = init_offset;
|
1157 |
|
|
DR_INIT (res) = NULL_TREE;
|
1158 |
|
|
DR_STEP (res) = step;
|
1159 |
|
|
DR_OFFSET_MISALIGNMENT (res) = misalign;
|
1160 |
|
|
DR_MEMTAG (res) = memtag;
|
1161 |
|
|
DR_PTR_INFO (res) = ptr_info;
|
1162 |
|
|
|
1163 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1164 |
|
|
fprintf (dump_file, ")\n");
|
1165 |
|
|
|
1166 |
|
|
return res;
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
/* Function strip_conversions
|
1170 |
|
|
|
1171 |
|
|
Strip conversions that don't narrow the mode. */
|
1172 |
|
|
|
1173 |
|
|
static tree
|
1174 |
|
|
strip_conversion (tree expr)
|
1175 |
|
|
{
|
1176 |
|
|
tree to, ti, oprnd0;
|
1177 |
|
|
|
1178 |
|
|
while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
|
1179 |
|
|
{
|
1180 |
|
|
to = TREE_TYPE (expr);
|
1181 |
|
|
oprnd0 = TREE_OPERAND (expr, 0);
|
1182 |
|
|
ti = TREE_TYPE (oprnd0);
|
1183 |
|
|
|
1184 |
|
|
if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
|
1185 |
|
|
return NULL_TREE;
|
1186 |
|
|
if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
|
1187 |
|
|
return NULL_TREE;
|
1188 |
|
|
|
1189 |
|
|
expr = oprnd0;
|
1190 |
|
|
}
|
1191 |
|
|
return expr;
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
|
1195 |
|
|
/* Function analyze_offset_expr
|
1196 |
|
|
|
1197 |
|
|
Given an offset expression EXPR received from get_inner_reference, analyze
|
1198 |
|
|
it and create an expression for INITIAL_OFFSET by substituting the variables
|
1199 |
|
|
of EXPR with initial_condition of the corresponding access_fn in the loop.
|
1200 |
|
|
E.g.,
|
1201 |
|
|
for i
|
1202 |
|
|
for (j = 3; j < N; j++)
|
1203 |
|
|
a[j].b[i][j] = 0;
|
1204 |
|
|
|
1205 |
|
|
For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be
|
1206 |
|
|
substituted, since its access_fn in the inner loop is i. 'j' will be
|
1207 |
|
|
substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
|
1208 |
|
|
C` = 3 * C_j + C.
|
1209 |
|
|
|
1210 |
|
|
Compute MISALIGN (the misalignment of the data reference initial access from
|
1211 |
|
|
its base). Misalignment can be calculated only if all the variables can be
|
1212 |
|
|
substituted with constants, otherwise, we record maximum possible alignment
|
1213 |
|
|
in ALIGNED_TO. In the above example, since 'i' cannot be substituted, MISALIGN
|
1214 |
|
|
will be NULL_TREE, and the biggest divider of C_i (a power of 2) will be
|
1215 |
|
|
recorded in ALIGNED_TO.
|
1216 |
|
|
|
1217 |
|
|
STEP is an evolution of the data reference in this loop in bytes.
|
1218 |
|
|
In the above example, STEP is C_j.
|
1219 |
|
|
|
1220 |
|
|
Return FALSE, if the analysis fails, e.g., there is no access_fn for a
|
1221 |
|
|
variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN, ALIGNED_TO
|
1222 |
|
|
and STEP) are NULL_TREEs. Otherwise, return TRUE.
|
1223 |
|
|
|
1224 |
|
|
*/
|
1225 |
|
|
|
1226 |
|
|
static bool
|
1227 |
|
|
analyze_offset_expr (tree expr,
|
1228 |
|
|
struct loop *loop,
|
1229 |
|
|
tree *initial_offset,
|
1230 |
|
|
tree *misalign,
|
1231 |
|
|
tree *aligned_to,
|
1232 |
|
|
tree *step)
|
1233 |
|
|
{
|
1234 |
|
|
tree oprnd0;
|
1235 |
|
|
tree oprnd1;
|
1236 |
|
|
tree left_offset = ssize_int (0);
|
1237 |
|
|
tree right_offset = ssize_int (0);
|
1238 |
|
|
tree left_misalign = ssize_int (0);
|
1239 |
|
|
tree right_misalign = ssize_int (0);
|
1240 |
|
|
tree left_step = ssize_int (0);
|
1241 |
|
|
tree right_step = ssize_int (0);
|
1242 |
|
|
enum tree_code code;
|
1243 |
|
|
tree init, evolution;
|
1244 |
|
|
tree left_aligned_to = NULL_TREE, right_aligned_to = NULL_TREE;
|
1245 |
|
|
|
1246 |
|
|
*step = NULL_TREE;
|
1247 |
|
|
*misalign = NULL_TREE;
|
1248 |
|
|
*aligned_to = NULL_TREE;
|
1249 |
|
|
*initial_offset = NULL_TREE;
|
1250 |
|
|
|
1251 |
|
|
/* Strip conversions that don't narrow the mode. */
|
1252 |
|
|
expr = strip_conversion (expr);
|
1253 |
|
|
if (!expr)
|
1254 |
|
|
return false;
|
1255 |
|
|
|
1256 |
|
|
/* Stop conditions:
|
1257 |
|
|
1. Constant. */
|
1258 |
|
|
if (TREE_CODE (expr) == INTEGER_CST)
|
1259 |
|
|
{
|
1260 |
|
|
*initial_offset = fold_convert (ssizetype, expr);
|
1261 |
|
|
*misalign = fold_convert (ssizetype, expr);
|
1262 |
|
|
*step = ssize_int (0);
|
1263 |
|
|
return true;
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
/* 2. Variable. Try to substitute with initial_condition of the corresponding
|
1267 |
|
|
access_fn in the current loop. */
|
1268 |
|
|
if (SSA_VAR_P (expr))
|
1269 |
|
|
{
|
1270 |
|
|
tree access_fn = analyze_scalar_evolution (loop, expr);
|
1271 |
|
|
|
1272 |
|
|
if (access_fn == chrec_dont_know)
|
1273 |
|
|
/* No access_fn. */
|
1274 |
|
|
return false;
|
1275 |
|
|
|
1276 |
|
|
init = initial_condition_in_loop_num (access_fn, loop->num);
|
1277 |
|
|
if (!expr_invariant_in_loop_p (loop, init))
|
1278 |
|
|
/* Not enough information: may be not loop invariant.
|
1279 |
|
|
E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its
|
1280 |
|
|
initial_condition is D, but it depends on i - loop's induction
|
1281 |
|
|
variable. */
|
1282 |
|
|
return false;
|
1283 |
|
|
|
1284 |
|
|
evolution = evolution_part_in_loop_num (access_fn, loop->num);
|
1285 |
|
|
if (evolution && TREE_CODE (evolution) != INTEGER_CST)
|
1286 |
|
|
/* Evolution is not constant. */
|
1287 |
|
|
return false;
|
1288 |
|
|
|
1289 |
|
|
if (TREE_CODE (init) == INTEGER_CST)
|
1290 |
|
|
*misalign = fold_convert (ssizetype, init);
|
1291 |
|
|
else
|
1292 |
|
|
/* Not constant, misalignment cannot be calculated. */
|
1293 |
|
|
*misalign = NULL_TREE;
|
1294 |
|
|
|
1295 |
|
|
*initial_offset = fold_convert (ssizetype, init);
|
1296 |
|
|
|
1297 |
|
|
*step = evolution ? fold_convert (ssizetype, evolution) : ssize_int (0);
|
1298 |
|
|
return true;
|
1299 |
|
|
}
|
1300 |
|
|
|
1301 |
|
|
/* Recursive computation. */
|
1302 |
|
|
if (!BINARY_CLASS_P (expr))
|
1303 |
|
|
{
|
1304 |
|
|
/* We expect to get binary expressions (PLUS/MINUS and MULT). */
|
1305 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1306 |
|
|
{
|
1307 |
|
|
fprintf (dump_file, "\nNot binary expression ");
|
1308 |
|
|
print_generic_expr (dump_file, expr, TDF_SLIM);
|
1309 |
|
|
fprintf (dump_file, "\n");
|
1310 |
|
|
}
|
1311 |
|
|
return false;
|
1312 |
|
|
}
|
1313 |
|
|
oprnd0 = TREE_OPERAND (expr, 0);
|
1314 |
|
|
oprnd1 = TREE_OPERAND (expr, 1);
|
1315 |
|
|
|
1316 |
|
|
if (!analyze_offset_expr (oprnd0, loop, &left_offset, &left_misalign,
|
1317 |
|
|
&left_aligned_to, &left_step)
|
1318 |
|
|
|| !analyze_offset_expr (oprnd1, loop, &right_offset, &right_misalign,
|
1319 |
|
|
&right_aligned_to, &right_step))
|
1320 |
|
|
return false;
|
1321 |
|
|
|
1322 |
|
|
/* The type of the operation: plus, minus or mult. */
|
1323 |
|
|
code = TREE_CODE (expr);
|
1324 |
|
|
switch (code)
|
1325 |
|
|
{
|
1326 |
|
|
case MULT_EXPR:
|
1327 |
|
|
if (TREE_CODE (right_offset) != INTEGER_CST)
|
1328 |
|
|
/* RIGHT_OFFSET can be not constant. For example, for arrays of variable
|
1329 |
|
|
sized types.
|
1330 |
|
|
FORNOW: We don't support such cases. */
|
1331 |
|
|
return false;
|
1332 |
|
|
|
1333 |
|
|
/* Strip conversions that don't narrow the mode. */
|
1334 |
|
|
left_offset = strip_conversion (left_offset);
|
1335 |
|
|
if (!left_offset)
|
1336 |
|
|
return false;
|
1337 |
|
|
/* Misalignment computation. */
|
1338 |
|
|
if (SSA_VAR_P (left_offset))
|
1339 |
|
|
{
|
1340 |
|
|
/* If the left side contains variables that can't be substituted with
|
1341 |
|
|
constants, the misalignment is unknown. However, if the right side
|
1342 |
|
|
is a multiple of some alignment, we know that the expression is
|
1343 |
|
|
aligned to it. Therefore, we record such maximum possible value.
|
1344 |
|
|
*/
|
1345 |
|
|
*misalign = NULL_TREE;
|
1346 |
|
|
*aligned_to = ssize_int (highest_pow2_factor (right_offset));
|
1347 |
|
|
}
|
1348 |
|
|
else
|
1349 |
|
|
{
|
1350 |
|
|
/* The left operand was successfully substituted with constant. */
|
1351 |
|
|
if (left_misalign)
|
1352 |
|
|
{
|
1353 |
|
|
/* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is
|
1354 |
|
|
NULL_TREE. */
|
1355 |
|
|
*misalign = size_binop (code, left_misalign, right_misalign);
|
1356 |
|
|
if (left_aligned_to && right_aligned_to)
|
1357 |
|
|
*aligned_to = size_binop (MIN_EXPR, left_aligned_to,
|
1358 |
|
|
right_aligned_to);
|
1359 |
|
|
else
|
1360 |
|
|
*aligned_to = left_aligned_to ?
|
1361 |
|
|
left_aligned_to : right_aligned_to;
|
1362 |
|
|
}
|
1363 |
|
|
else
|
1364 |
|
|
*misalign = NULL_TREE;
|
1365 |
|
|
}
|
1366 |
|
|
|
1367 |
|
|
/* Step calculation. */
|
1368 |
|
|
/* Multiply the step by the right operand. */
|
1369 |
|
|
*step = size_binop (MULT_EXPR, left_step, right_offset);
|
1370 |
|
|
break;
|
1371 |
|
|
|
1372 |
|
|
case PLUS_EXPR:
|
1373 |
|
|
case MINUS_EXPR:
|
1374 |
|
|
/* Combine the recursive calculations for step and misalignment. */
|
1375 |
|
|
*step = size_binop (code, left_step, right_step);
|
1376 |
|
|
|
1377 |
|
|
/* Unknown alignment. */
|
1378 |
|
|
if ((!left_misalign && !left_aligned_to)
|
1379 |
|
|
|| (!right_misalign && !right_aligned_to))
|
1380 |
|
|
{
|
1381 |
|
|
*misalign = NULL_TREE;
|
1382 |
|
|
*aligned_to = NULL_TREE;
|
1383 |
|
|
break;
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
if (left_misalign && right_misalign)
|
1387 |
|
|
*misalign = size_binop (code, left_misalign, right_misalign);
|
1388 |
|
|
else
|
1389 |
|
|
*misalign = left_misalign ? left_misalign : right_misalign;
|
1390 |
|
|
|
1391 |
|
|
if (left_aligned_to && right_aligned_to)
|
1392 |
|
|
*aligned_to = size_binop (MIN_EXPR, left_aligned_to, right_aligned_to);
|
1393 |
|
|
else
|
1394 |
|
|
*aligned_to = left_aligned_to ? left_aligned_to : right_aligned_to;
|
1395 |
|
|
|
1396 |
|
|
break;
|
1397 |
|
|
|
1398 |
|
|
default:
|
1399 |
|
|
gcc_unreachable ();
|
1400 |
|
|
}
|
1401 |
|
|
|
1402 |
|
|
/* Compute offset. */
|
1403 |
|
|
*initial_offset = fold_convert (ssizetype,
|
1404 |
|
|
fold_build2 (code, TREE_TYPE (left_offset),
|
1405 |
|
|
left_offset,
|
1406 |
|
|
right_offset));
|
1407 |
|
|
return true;
|
1408 |
|
|
}
|
1409 |
|
|
|
1410 |
|
|
/* Function address_analysis
|
1411 |
|
|
|
1412 |
|
|
Return the BASE of the address expression EXPR.
|
1413 |
|
|
Also compute the OFFSET from BASE, MISALIGN and STEP.
|
1414 |
|
|
|
1415 |
|
|
Input:
|
1416 |
|
|
EXPR - the address expression that is being analyzed
|
1417 |
|
|
STMT - the statement that contains EXPR or its original memory reference
|
1418 |
|
|
IS_READ - TRUE if STMT reads from EXPR, FALSE if writes to EXPR
|
1419 |
|
|
DR - data_reference struct for the original memory reference
|
1420 |
|
|
|
1421 |
|
|
Output:
|
1422 |
|
|
BASE (returned value) - the base of the data reference EXPR.
|
1423 |
|
|
INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
|
1424 |
|
|
MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
|
1425 |
|
|
computation is impossible
|
1426 |
|
|
ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
|
1427 |
|
|
calculated (doesn't depend on variables)
|
1428 |
|
|
STEP - evolution of EXPR in the loop
|
1429 |
|
|
|
1430 |
|
|
If something unexpected is encountered (an unsupported form of data-ref),
|
1431 |
|
|
then NULL_TREE is returned.
|
1432 |
|
|
*/
|
1433 |
|
|
|
1434 |
|
|
static tree
|
1435 |
|
|
address_analysis (tree expr, tree stmt, bool is_read, struct data_reference *dr,
|
1436 |
|
|
tree *offset, tree *misalign, tree *aligned_to, tree *step)
|
1437 |
|
|
{
|
1438 |
|
|
tree oprnd0, oprnd1, base_address, offset_expr, base_addr0, base_addr1;
|
1439 |
|
|
tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
|
1440 |
|
|
tree dummy, address_aligned_to = NULL_TREE;
|
1441 |
|
|
struct ptr_info_def *dummy1;
|
1442 |
|
|
subvar_t dummy2;
|
1443 |
|
|
|
1444 |
|
|
switch (TREE_CODE (expr))
|
1445 |
|
|
{
|
1446 |
|
|
case PLUS_EXPR:
|
1447 |
|
|
case MINUS_EXPR:
|
1448 |
|
|
/* EXPR is of form {base +/- offset} (or {offset +/- base}). */
|
1449 |
|
|
oprnd0 = TREE_OPERAND (expr, 0);
|
1450 |
|
|
oprnd1 = TREE_OPERAND (expr, 1);
|
1451 |
|
|
|
1452 |
|
|
STRIP_NOPS (oprnd0);
|
1453 |
|
|
STRIP_NOPS (oprnd1);
|
1454 |
|
|
|
1455 |
|
|
/* Recursively try to find the base of the address contained in EXPR.
|
1456 |
|
|
For offset, the returned base will be NULL. */
|
1457 |
|
|
base_addr0 = address_analysis (oprnd0, stmt, is_read, dr, &address_offset,
|
1458 |
|
|
&address_misalign, &address_aligned_to,
|
1459 |
|
|
step);
|
1460 |
|
|
|
1461 |
|
|
base_addr1 = address_analysis (oprnd1, stmt, is_read, dr, &address_offset,
|
1462 |
|
|
&address_misalign, &address_aligned_to,
|
1463 |
|
|
step);
|
1464 |
|
|
|
1465 |
|
|
/* We support cases where only one of the operands contains an
|
1466 |
|
|
address. */
|
1467 |
|
|
if ((base_addr0 && base_addr1) || (!base_addr0 && !base_addr1))
|
1468 |
|
|
{
|
1469 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1470 |
|
|
{
|
1471 |
|
|
fprintf (dump_file,
|
1472 |
|
|
"\neither more than one address or no addresses in expr ");
|
1473 |
|
|
print_generic_expr (dump_file, expr, TDF_SLIM);
|
1474 |
|
|
fprintf (dump_file, "\n");
|
1475 |
|
|
}
|
1476 |
|
|
return NULL_TREE;
|
1477 |
|
|
}
|
1478 |
|
|
|
1479 |
|
|
/* To revert STRIP_NOPS. */
|
1480 |
|
|
oprnd0 = TREE_OPERAND (expr, 0);
|
1481 |
|
|
oprnd1 = TREE_OPERAND (expr, 1);
|
1482 |
|
|
|
1483 |
|
|
offset_expr = base_addr0 ?
|
1484 |
|
|
fold_convert (ssizetype, oprnd1) : fold_convert (ssizetype, oprnd0);
|
1485 |
|
|
|
1486 |
|
|
/* EXPR is of form {base +/- offset} (or {offset +/- base}). If offset is
|
1487 |
|
|
a number, we can add it to the misalignment value calculated for base,
|
1488 |
|
|
otherwise, misalignment is NULL. */
|
1489 |
|
|
if (TREE_CODE (offset_expr) == INTEGER_CST && address_misalign)
|
1490 |
|
|
{
|
1491 |
|
|
*misalign = size_binop (TREE_CODE (expr), address_misalign,
|
1492 |
|
|
offset_expr);
|
1493 |
|
|
*aligned_to = address_aligned_to;
|
1494 |
|
|
}
|
1495 |
|
|
else
|
1496 |
|
|
{
|
1497 |
|
|
*misalign = NULL_TREE;
|
1498 |
|
|
*aligned_to = NULL_TREE;
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
/* Combine offset (from EXPR {base + offset}) with the offset calculated
|
1502 |
|
|
for base. */
|
1503 |
|
|
*offset = size_binop (TREE_CODE (expr), address_offset, offset_expr);
|
1504 |
|
|
return base_addr0 ? base_addr0 : base_addr1;
|
1505 |
|
|
|
1506 |
|
|
case ADDR_EXPR:
|
1507 |
|
|
base_address = object_analysis (TREE_OPERAND (expr, 0), stmt, is_read,
|
1508 |
|
|
&dr, offset, misalign, aligned_to, step,
|
1509 |
|
|
&dummy, &dummy1, &dummy2);
|
1510 |
|
|
return base_address;
|
1511 |
|
|
|
1512 |
|
|
case SSA_NAME:
|
1513 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (expr)))
|
1514 |
|
|
{
|
1515 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1516 |
|
|
{
|
1517 |
|
|
fprintf (dump_file, "\nnot pointer SSA_NAME ");
|
1518 |
|
|
print_generic_expr (dump_file, expr, TDF_SLIM);
|
1519 |
|
|
fprintf (dump_file, "\n");
|
1520 |
|
|
}
|
1521 |
|
|
return NULL_TREE;
|
1522 |
|
|
}
|
1523 |
|
|
*aligned_to = ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (TREE_TYPE (expr))));
|
1524 |
|
|
*misalign = ssize_int (0);
|
1525 |
|
|
*offset = ssize_int (0);
|
1526 |
|
|
*step = ssize_int (0);
|
1527 |
|
|
return expr;
|
1528 |
|
|
|
1529 |
|
|
default:
|
1530 |
|
|
return NULL_TREE;
|
1531 |
|
|
}
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
|
1535 |
|
|
/* Function object_analysis
|
1536 |
|
|
|
1537 |
|
|
Create a data-reference structure DR for MEMREF.
|
1538 |
|
|
Return the BASE of the data reference MEMREF if the analysis is possible.
|
1539 |
|
|
Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
|
1540 |
|
|
E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset
|
1541 |
|
|
'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET
|
1542 |
|
|
instantiated with initial_conditions of access_functions of variables,
|
1543 |
|
|
and STEP is the evolution of the DR_REF in this loop.
|
1544 |
|
|
|
1545 |
|
|
Function get_inner_reference is used for the above in case of ARRAY_REF and
|
1546 |
|
|
COMPONENT_REF.
|
1547 |
|
|
|
1548 |
|
|
The structure of the function is as follows:
|
1549 |
|
|
Part 1:
|
1550 |
|
|
Case 1. For handled_component_p refs
|
1551 |
|
|
1.1 build data-reference structure for MEMREF
|
1552 |
|
|
1.2 call get_inner_reference
|
1553 |
|
|
1.2.1 analyze offset expr received from get_inner_reference
|
1554 |
|
|
(fall through with BASE)
|
1555 |
|
|
Case 2. For declarations
|
1556 |
|
|
2.1 set MEMTAG
|
1557 |
|
|
Case 3. For INDIRECT_REFs
|
1558 |
|
|
3.1 build data-reference structure for MEMREF
|
1559 |
|
|
3.2 analyze evolution and initial condition of MEMREF
|
1560 |
|
|
3.3 set data-reference structure for MEMREF
|
1561 |
|
|
3.4 call address_analysis to analyze INIT of the access function
|
1562 |
|
|
3.5 extract memory tag
|
1563 |
|
|
|
1564 |
|
|
Part 2:
|
1565 |
|
|
Combine the results of object and address analysis to calculate
|
1566 |
|
|
INITIAL_OFFSET, STEP and misalignment info.
|
1567 |
|
|
|
1568 |
|
|
Input:
|
1569 |
|
|
MEMREF - the memory reference that is being analyzed
|
1570 |
|
|
STMT - the statement that contains MEMREF
|
1571 |
|
|
IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
|
1572 |
|
|
|
1573 |
|
|
Output:
|
1574 |
|
|
BASE_ADDRESS (returned value) - the base address of the data reference MEMREF
|
1575 |
|
|
E.g, if MEMREF is a.b[k].c[i][j] the returned
|
1576 |
|
|
base is &a.
|
1577 |
|
|
DR - data_reference struct for MEMREF
|
1578 |
|
|
INITIAL_OFFSET - initial offset of MEMREF from BASE (an expression)
|
1579 |
|
|
MISALIGN - offset of MEMREF from BASE in bytes (a constant) modulo alignment of
|
1580 |
|
|
ALIGNMENT or NULL_TREE if the computation is impossible
|
1581 |
|
|
ALIGNED_TO - maximum alignment of EXPR or NULL_TREE if MISALIGN can be
|
1582 |
|
|
calculated (doesn't depend on variables)
|
1583 |
|
|
STEP - evolution of the DR_REF in the loop
|
1584 |
|
|
MEMTAG - memory tag for aliasing purposes
|
1585 |
|
|
PTR_INFO - NULL or points-to aliasing info from a pointer SSA_NAME
|
1586 |
|
|
SUBVARS - Sub-variables of the variable
|
1587 |
|
|
|
1588 |
|
|
If the analysis of MEMREF evolution in the loop fails, NULL_TREE is returned,
|
1589 |
|
|
but DR can be created anyway.
|
1590 |
|
|
|
1591 |
|
|
*/
|
1592 |
|
|
|
1593 |
|
|
static tree
|
1594 |
|
|
object_analysis (tree memref, tree stmt, bool is_read,
|
1595 |
|
|
struct data_reference **dr, tree *offset, tree *misalign,
|
1596 |
|
|
tree *aligned_to, tree *step, tree *memtag,
|
1597 |
|
|
struct ptr_info_def **ptr_info, subvar_t *subvars)
|
1598 |
|
|
{
|
1599 |
|
|
tree base = NULL_TREE, base_address = NULL_TREE;
|
1600 |
|
|
tree object_offset = ssize_int (0), object_misalign = ssize_int (0);
|
1601 |
|
|
tree object_step = ssize_int (0), address_step = ssize_int (0);
|
1602 |
|
|
tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
|
1603 |
|
|
HOST_WIDE_INT pbitsize, pbitpos;
|
1604 |
|
|
tree poffset, bit_pos_in_bytes;
|
1605 |
|
|
enum machine_mode pmode;
|
1606 |
|
|
int punsignedp, pvolatilep;
|
1607 |
|
|
tree ptr_step = ssize_int (0), ptr_init = NULL_TREE;
|
1608 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
1609 |
|
|
struct data_reference *ptr_dr = NULL;
|
1610 |
|
|
tree object_aligned_to = NULL_TREE, address_aligned_to = NULL_TREE;
|
1611 |
|
|
tree comp_ref = NULL_TREE;
|
1612 |
|
|
|
1613 |
|
|
*ptr_info = NULL;
|
1614 |
|
|
|
1615 |
|
|
/* Part 1: */
|
1616 |
|
|
/* Case 1. handled_component_p refs. */
|
1617 |
|
|
if (handled_component_p (memref))
|
1618 |
|
|
{
|
1619 |
|
|
/* 1.1 build data-reference structure for MEMREF. */
|
1620 |
|
|
if (!(*dr))
|
1621 |
|
|
{
|
1622 |
|
|
if (TREE_CODE (memref) == ARRAY_REF)
|
1623 |
|
|
*dr = analyze_array (stmt, memref, is_read);
|
1624 |
|
|
else if (TREE_CODE (memref) == COMPONENT_REF)
|
1625 |
|
|
comp_ref = memref;
|
1626 |
|
|
else
|
1627 |
|
|
{
|
1628 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1629 |
|
|
{
|
1630 |
|
|
fprintf (dump_file, "\ndata-ref of unsupported type ");
|
1631 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1632 |
|
|
fprintf (dump_file, "\n");
|
1633 |
|
|
}
|
1634 |
|
|
return NULL_TREE;
|
1635 |
|
|
}
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/* 1.2 call get_inner_reference. */
|
1639 |
|
|
/* Find the base and the offset from it. */
|
1640 |
|
|
base = get_inner_reference (memref, &pbitsize, &pbitpos, &poffset,
|
1641 |
|
|
&pmode, &punsignedp, &pvolatilep, false);
|
1642 |
|
|
if (!base)
|
1643 |
|
|
{
|
1644 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1645 |
|
|
{
|
1646 |
|
|
fprintf (dump_file, "\nfailed to get inner ref for ");
|
1647 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1648 |
|
|
fprintf (dump_file, "\n");
|
1649 |
|
|
}
|
1650 |
|
|
return NULL_TREE;
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
/* 1.2.1 analyze offset expr received from get_inner_reference. */
|
1654 |
|
|
if (poffset
|
1655 |
|
|
&& !analyze_offset_expr (poffset, loop, &object_offset,
|
1656 |
|
|
&object_misalign, &object_aligned_to,
|
1657 |
|
|
&object_step))
|
1658 |
|
|
{
|
1659 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1660 |
|
|
{
|
1661 |
|
|
fprintf (dump_file, "\nfailed to compute offset or step for ");
|
1662 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1663 |
|
|
fprintf (dump_file, "\n");
|
1664 |
|
|
}
|
1665 |
|
|
return NULL_TREE;
|
1666 |
|
|
}
|
1667 |
|
|
|
1668 |
|
|
/* Add bit position to OFFSET and MISALIGN. */
|
1669 |
|
|
|
1670 |
|
|
bit_pos_in_bytes = ssize_int (pbitpos/BITS_PER_UNIT);
|
1671 |
|
|
/* Check that there is no remainder in bits. */
|
1672 |
|
|
if (pbitpos%BITS_PER_UNIT)
|
1673 |
|
|
{
|
1674 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1675 |
|
|
fprintf (dump_file, "\nbit offset alignment.\n");
|
1676 |
|
|
return NULL_TREE;
|
1677 |
|
|
}
|
1678 |
|
|
object_offset = size_binop (PLUS_EXPR, bit_pos_in_bytes, object_offset);
|
1679 |
|
|
if (object_misalign)
|
1680 |
|
|
object_misalign = size_binop (PLUS_EXPR, object_misalign,
|
1681 |
|
|
bit_pos_in_bytes);
|
1682 |
|
|
|
1683 |
|
|
memref = base; /* To continue analysis of BASE. */
|
1684 |
|
|
/* fall through */
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
/* Part 1: Case 2. Declarations. */
|
1688 |
|
|
if (DECL_P (memref))
|
1689 |
|
|
{
|
1690 |
|
|
/* We expect to get a decl only if we already have a DR, or with
|
1691 |
|
|
COMPONENT_REFs of type 'a[i].b'. */
|
1692 |
|
|
if (!(*dr))
|
1693 |
|
|
{
|
1694 |
|
|
if (comp_ref && TREE_CODE (TREE_OPERAND (comp_ref, 0)) == ARRAY_REF)
|
1695 |
|
|
{
|
1696 |
|
|
*dr = analyze_array (stmt, TREE_OPERAND (comp_ref, 0), is_read);
|
1697 |
|
|
if (DR_NUM_DIMENSIONS (*dr) != 1)
|
1698 |
|
|
{
|
1699 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1700 |
|
|
{
|
1701 |
|
|
fprintf (dump_file, "\n multidimensional component ref ");
|
1702 |
|
|
print_generic_expr (dump_file, comp_ref, TDF_SLIM);
|
1703 |
|
|
fprintf (dump_file, "\n");
|
1704 |
|
|
}
|
1705 |
|
|
return NULL_TREE;
|
1706 |
|
|
}
|
1707 |
|
|
}
|
1708 |
|
|
else
|
1709 |
|
|
{
|
1710 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1711 |
|
|
{
|
1712 |
|
|
fprintf (dump_file, "\nunhandled decl ");
|
1713 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1714 |
|
|
fprintf (dump_file, "\n");
|
1715 |
|
|
}
|
1716 |
|
|
return NULL_TREE;
|
1717 |
|
|
}
|
1718 |
|
|
}
|
1719 |
|
|
|
1720 |
|
|
/* TODO: if during the analysis of INDIRECT_REF we get to an object, put
|
1721 |
|
|
the object in BASE_OBJECT field if we can prove that this is O.K.,
|
1722 |
|
|
i.e., the data-ref access is bounded by the bounds of the BASE_OBJECT.
|
1723 |
|
|
(e.g., if the object is an array base 'a', where 'a[N]', we must prove
|
1724 |
|
|
that every access with 'p' (the original INDIRECT_REF based on '&a')
|
1725 |
|
|
in the loop is within the array boundaries - from a[0] to a[N-1]).
|
1726 |
|
|
Otherwise, our alias analysis can be incorrect.
|
1727 |
|
|
Even if an access function based on BASE_OBJECT can't be build, update
|
1728 |
|
|
BASE_OBJECT field to enable us to prove that two data-refs are
|
1729 |
|
|
different (without access function, distance analysis is impossible).
|
1730 |
|
|
*/
|
1731 |
|
|
if (SSA_VAR_P (memref) && var_can_have_subvars (memref))
|
1732 |
|
|
*subvars = get_subvars_for_var (memref);
|
1733 |
|
|
base_address = build_fold_addr_expr (memref);
|
1734 |
|
|
/* 2.1 set MEMTAG. */
|
1735 |
|
|
*memtag = memref;
|
1736 |
|
|
}
|
1737 |
|
|
|
1738 |
|
|
/* Part 1: Case 3. INDIRECT_REFs. */
|
1739 |
|
|
else if (TREE_CODE (memref) == INDIRECT_REF)
|
1740 |
|
|
{
|
1741 |
|
|
tree ptr_ref = TREE_OPERAND (memref, 0);
|
1742 |
|
|
if (TREE_CODE (ptr_ref) == SSA_NAME)
|
1743 |
|
|
*ptr_info = SSA_NAME_PTR_INFO (ptr_ref);
|
1744 |
|
|
|
1745 |
|
|
/* 3.1 build data-reference structure for MEMREF. */
|
1746 |
|
|
ptr_dr = analyze_indirect_ref (stmt, memref, is_read);
|
1747 |
|
|
if (!ptr_dr)
|
1748 |
|
|
{
|
1749 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1750 |
|
|
{
|
1751 |
|
|
fprintf (dump_file, "\nfailed to create dr for ");
|
1752 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1753 |
|
|
fprintf (dump_file, "\n");
|
1754 |
|
|
}
|
1755 |
|
|
return NULL_TREE;
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
/* 3.2 analyze evolution and initial condition of MEMREF. */
|
1759 |
|
|
ptr_step = DR_STEP (ptr_dr);
|
1760 |
|
|
ptr_init = DR_BASE_ADDRESS (ptr_dr);
|
1761 |
|
|
if (!ptr_init || !ptr_step || !POINTER_TYPE_P (TREE_TYPE (ptr_init)))
|
1762 |
|
|
{
|
1763 |
|
|
*dr = (*dr) ? *dr : ptr_dr;
|
1764 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1765 |
|
|
{
|
1766 |
|
|
fprintf (dump_file, "\nbad pointer access ");
|
1767 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1768 |
|
|
fprintf (dump_file, "\n");
|
1769 |
|
|
}
|
1770 |
|
|
return NULL_TREE;
|
1771 |
|
|
}
|
1772 |
|
|
|
1773 |
|
|
if (integer_zerop (ptr_step) && !(*dr))
|
1774 |
|
|
{
|
1775 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1776 |
|
|
fprintf (dump_file, "\nptr is loop invariant.\n");
|
1777 |
|
|
*dr = ptr_dr;
|
1778 |
|
|
return NULL_TREE;
|
1779 |
|
|
|
1780 |
|
|
/* If there exists DR for MEMREF, we are analyzing the base of
|
1781 |
|
|
handled component (PTR_INIT), which not necessary has evolution in
|
1782 |
|
|
the loop. */
|
1783 |
|
|
}
|
1784 |
|
|
object_step = size_binop (PLUS_EXPR, object_step, ptr_step);
|
1785 |
|
|
|
1786 |
|
|
/* 3.3 set data-reference structure for MEMREF. */
|
1787 |
|
|
if (!*dr)
|
1788 |
|
|
*dr = ptr_dr;
|
1789 |
|
|
|
1790 |
|
|
/* 3.4 call address_analysis to analyze INIT of the access
|
1791 |
|
|
function. */
|
1792 |
|
|
base_address = address_analysis (ptr_init, stmt, is_read, *dr,
|
1793 |
|
|
&address_offset, &address_misalign,
|
1794 |
|
|
&address_aligned_to, &address_step);
|
1795 |
|
|
if (!base_address)
|
1796 |
|
|
{
|
1797 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1798 |
|
|
{
|
1799 |
|
|
fprintf (dump_file, "\nfailed to analyze address ");
|
1800 |
|
|
print_generic_expr (dump_file, ptr_init, TDF_SLIM);
|
1801 |
|
|
fprintf (dump_file, "\n");
|
1802 |
|
|
}
|
1803 |
|
|
return NULL_TREE;
|
1804 |
|
|
}
|
1805 |
|
|
|
1806 |
|
|
/* 3.5 extract memory tag. */
|
1807 |
|
|
switch (TREE_CODE (base_address))
|
1808 |
|
|
{
|
1809 |
|
|
case SSA_NAME:
|
1810 |
|
|
*memtag = get_var_ann (SSA_NAME_VAR (base_address))->symbol_mem_tag;
|
1811 |
|
|
if (!(*memtag) && TREE_CODE (TREE_OPERAND (memref, 0)) == SSA_NAME)
|
1812 |
|
|
*memtag = get_var_ann (
|
1813 |
|
|
SSA_NAME_VAR (TREE_OPERAND (memref, 0)))->symbol_mem_tag;
|
1814 |
|
|
break;
|
1815 |
|
|
case ADDR_EXPR:
|
1816 |
|
|
*memtag = TREE_OPERAND (base_address, 0);
|
1817 |
|
|
break;
|
1818 |
|
|
default:
|
1819 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1820 |
|
|
{
|
1821 |
|
|
fprintf (dump_file, "\nno memtag for ");
|
1822 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1823 |
|
|
fprintf (dump_file, "\n");
|
1824 |
|
|
}
|
1825 |
|
|
*memtag = NULL_TREE;
|
1826 |
|
|
break;
|
1827 |
|
|
}
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
if (!base_address)
|
1831 |
|
|
{
|
1832 |
|
|
/* MEMREF cannot be analyzed. */
|
1833 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1834 |
|
|
{
|
1835 |
|
|
fprintf (dump_file, "\ndata-ref of unsupported type ");
|
1836 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1837 |
|
|
fprintf (dump_file, "\n");
|
1838 |
|
|
}
|
1839 |
|
|
return NULL_TREE;
|
1840 |
|
|
}
|
1841 |
|
|
|
1842 |
|
|
if (comp_ref)
|
1843 |
|
|
DR_REF (*dr) = comp_ref;
|
1844 |
|
|
|
1845 |
|
|
if (SSA_VAR_P (*memtag) && var_can_have_subvars (*memtag))
|
1846 |
|
|
*subvars = get_subvars_for_var (*memtag);
|
1847 |
|
|
|
1848 |
|
|
/* Part 2: Combine the results of object and address analysis to calculate
|
1849 |
|
|
INITIAL_OFFSET, STEP and misalignment info. */
|
1850 |
|
|
*offset = size_binop (PLUS_EXPR, object_offset, address_offset);
|
1851 |
|
|
|
1852 |
|
|
if ((!object_misalign && !object_aligned_to)
|
1853 |
|
|
|| (!address_misalign && !address_aligned_to))
|
1854 |
|
|
{
|
1855 |
|
|
*misalign = NULL_TREE;
|
1856 |
|
|
*aligned_to = NULL_TREE;
|
1857 |
|
|
}
|
1858 |
|
|
else
|
1859 |
|
|
{
|
1860 |
|
|
if (object_misalign && address_misalign)
|
1861 |
|
|
*misalign = size_binop (PLUS_EXPR, object_misalign, address_misalign);
|
1862 |
|
|
else
|
1863 |
|
|
*misalign = object_misalign ? object_misalign : address_misalign;
|
1864 |
|
|
if (object_aligned_to && address_aligned_to)
|
1865 |
|
|
*aligned_to = size_binop (MIN_EXPR, object_aligned_to,
|
1866 |
|
|
address_aligned_to);
|
1867 |
|
|
else
|
1868 |
|
|
*aligned_to = object_aligned_to ?
|
1869 |
|
|
object_aligned_to : address_aligned_to;
|
1870 |
|
|
}
|
1871 |
|
|
*step = size_binop (PLUS_EXPR, object_step, address_step);
|
1872 |
|
|
|
1873 |
|
|
return base_address;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Function analyze_offset.
|
1877 |
|
|
|
1878 |
|
|
Extract INVARIANT and CONSTANT parts from OFFSET.
|
1879 |
|
|
|
1880 |
|
|
*/
|
1881 |
|
|
static bool
|
1882 |
|
|
analyze_offset (tree offset, tree *invariant, tree *constant)
|
1883 |
|
|
{
|
1884 |
|
|
tree op0, op1, constant_0, constant_1, invariant_0, invariant_1;
|
1885 |
|
|
enum tree_code code = TREE_CODE (offset);
|
1886 |
|
|
|
1887 |
|
|
*invariant = NULL_TREE;
|
1888 |
|
|
*constant = NULL_TREE;
|
1889 |
|
|
|
1890 |
|
|
/* Not PLUS/MINUS expression - recursion stop condition. */
|
1891 |
|
|
if (code != PLUS_EXPR && code != MINUS_EXPR)
|
1892 |
|
|
{
|
1893 |
|
|
if (TREE_CODE (offset) == INTEGER_CST)
|
1894 |
|
|
*constant = offset;
|
1895 |
|
|
else
|
1896 |
|
|
*invariant = offset;
|
1897 |
|
|
return true;
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
op0 = TREE_OPERAND (offset, 0);
|
1901 |
|
|
op1 = TREE_OPERAND (offset, 1);
|
1902 |
|
|
|
1903 |
|
|
/* Recursive call with the operands. */
|
1904 |
|
|
if (!analyze_offset (op0, &invariant_0, &constant_0)
|
1905 |
|
|
|| !analyze_offset (op1, &invariant_1, &constant_1))
|
1906 |
|
|
return false;
|
1907 |
|
|
|
1908 |
|
|
/* Combine the results. Add negation to the subtrahend in case of
|
1909 |
|
|
subtraction. */
|
1910 |
|
|
if (constant_0 && constant_1)
|
1911 |
|
|
return false;
|
1912 |
|
|
*constant = constant_0 ? constant_0 : constant_1;
|
1913 |
|
|
if (code == MINUS_EXPR && constant_1)
|
1914 |
|
|
*constant = fold_build1 (NEGATE_EXPR, TREE_TYPE (*constant), *constant);
|
1915 |
|
|
|
1916 |
|
|
if (invariant_0 && invariant_1)
|
1917 |
|
|
*invariant =
|
1918 |
|
|
fold_build2 (code, TREE_TYPE (invariant_0), invariant_0, invariant_1);
|
1919 |
|
|
else
|
1920 |
|
|
{
|
1921 |
|
|
*invariant = invariant_0 ? invariant_0 : invariant_1;
|
1922 |
|
|
if (code == MINUS_EXPR && invariant_1)
|
1923 |
|
|
*invariant =
|
1924 |
|
|
fold_build1 (NEGATE_EXPR, TREE_TYPE (*invariant), *invariant);
|
1925 |
|
|
}
|
1926 |
|
|
return true;
|
1927 |
|
|
}
|
1928 |
|
|
|
1929 |
|
|
/* Free the memory used by the data reference DR. */
|
1930 |
|
|
|
1931 |
|
|
static void
|
1932 |
|
|
free_data_ref (data_reference_p dr)
|
1933 |
|
|
{
|
1934 |
|
|
DR_FREE_ACCESS_FNS (dr);
|
1935 |
|
|
free (dr);
|
1936 |
|
|
}
|
1937 |
|
|
|
1938 |
|
|
/* Function create_data_ref.
|
1939 |
|
|
|
1940 |
|
|
Create a data-reference structure for MEMREF. Set its DR_BASE_ADDRESS,
|
1941 |
|
|
DR_OFFSET, DR_INIT, DR_STEP, DR_OFFSET_MISALIGNMENT, DR_ALIGNED_TO,
|
1942 |
|
|
DR_MEMTAG, and DR_POINTSTO_INFO fields.
|
1943 |
|
|
|
1944 |
|
|
Input:
|
1945 |
|
|
MEMREF - the memory reference that is being analyzed
|
1946 |
|
|
STMT - the statement that contains MEMREF
|
1947 |
|
|
IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
|
1948 |
|
|
|
1949 |
|
|
Output:
|
1950 |
|
|
DR (returned value) - data_reference struct for MEMREF
|
1951 |
|
|
*/
|
1952 |
|
|
|
1953 |
|
|
static struct data_reference *
|
1954 |
|
|
create_data_ref (tree memref, tree stmt, bool is_read)
|
1955 |
|
|
{
|
1956 |
|
|
struct data_reference *dr = NULL;
|
1957 |
|
|
tree base_address, offset, step, misalign, memtag;
|
1958 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
1959 |
|
|
tree invariant = NULL_TREE, constant = NULL_TREE;
|
1960 |
|
|
tree type_size, init_cond;
|
1961 |
|
|
struct ptr_info_def *ptr_info;
|
1962 |
|
|
subvar_t subvars = NULL;
|
1963 |
|
|
tree aligned_to, type = NULL_TREE, orig_offset;
|
1964 |
|
|
|
1965 |
|
|
if (!memref)
|
1966 |
|
|
return NULL;
|
1967 |
|
|
|
1968 |
|
|
base_address = object_analysis (memref, stmt, is_read, &dr, &offset,
|
1969 |
|
|
&misalign, &aligned_to, &step, &memtag,
|
1970 |
|
|
&ptr_info, &subvars);
|
1971 |
|
|
if (!dr || !base_address)
|
1972 |
|
|
{
|
1973 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1974 |
|
|
{
|
1975 |
|
|
fprintf (dump_file, "\ncreate_data_ref: failed to create a dr for ");
|
1976 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
1977 |
|
|
fprintf (dump_file, "\n");
|
1978 |
|
|
}
|
1979 |
|
|
return NULL;
|
1980 |
|
|
}
|
1981 |
|
|
|
1982 |
|
|
DR_BASE_ADDRESS (dr) = base_address;
|
1983 |
|
|
DR_OFFSET (dr) = offset;
|
1984 |
|
|
DR_INIT (dr) = ssize_int (0);
|
1985 |
|
|
DR_STEP (dr) = step;
|
1986 |
|
|
DR_OFFSET_MISALIGNMENT (dr) = misalign;
|
1987 |
|
|
DR_ALIGNED_TO (dr) = aligned_to;
|
1988 |
|
|
DR_MEMTAG (dr) = memtag;
|
1989 |
|
|
DR_PTR_INFO (dr) = ptr_info;
|
1990 |
|
|
DR_SUBVARS (dr) = subvars;
|
1991 |
|
|
|
1992 |
|
|
type_size = fold_convert (ssizetype, TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
|
1993 |
|
|
|
1994 |
|
|
/* Extract CONSTANT and INVARIANT from OFFSET. */
|
1995 |
|
|
/* Remove cast from OFFSET and restore it for INVARIANT part. */
|
1996 |
|
|
orig_offset = offset;
|
1997 |
|
|
STRIP_NOPS (offset);
|
1998 |
|
|
if (offset != orig_offset)
|
1999 |
|
|
type = TREE_TYPE (orig_offset);
|
2000 |
|
|
if (!analyze_offset (offset, &invariant, &constant))
|
2001 |
|
|
{
|
2002 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2003 |
|
|
{
|
2004 |
|
|
fprintf (dump_file, "\ncreate_data_ref: failed to analyze dr's");
|
2005 |
|
|
fprintf (dump_file, " offset for ");
|
2006 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
2007 |
|
|
fprintf (dump_file, "\n");
|
2008 |
|
|
}
|
2009 |
|
|
return NULL;
|
2010 |
|
|
}
|
2011 |
|
|
if (type && invariant)
|
2012 |
|
|
invariant = fold_convert (type, invariant);
|
2013 |
|
|
|
2014 |
|
|
/* Put CONSTANT part of OFFSET in DR_INIT and INVARIANT in DR_OFFSET field
|
2015 |
|
|
of DR. */
|
2016 |
|
|
if (constant)
|
2017 |
|
|
{
|
2018 |
|
|
DR_INIT (dr) = fold_convert (ssizetype, constant);
|
2019 |
|
|
init_cond = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (constant),
|
2020 |
|
|
constant, type_size);
|
2021 |
|
|
}
|
2022 |
|
|
else
|
2023 |
|
|
DR_INIT (dr) = init_cond = ssize_int (0);
|
2024 |
|
|
|
2025 |
|
|
if (invariant)
|
2026 |
|
|
DR_OFFSET (dr) = invariant;
|
2027 |
|
|
else
|
2028 |
|
|
DR_OFFSET (dr) = ssize_int (0);
|
2029 |
|
|
|
2030 |
|
|
/* Change the access function for INIDIRECT_REFs, according to
|
2031 |
|
|
DR_BASE_ADDRESS. Analyze OFFSET calculated in object_analysis. OFFSET is
|
2032 |
|
|
an expression that can contain loop invariant expressions and constants.
|
2033 |
|
|
We put the constant part in the initial condition of the access function
|
2034 |
|
|
(for data dependence tests), and in DR_INIT of the data-ref. The loop
|
2035 |
|
|
invariant part is put in DR_OFFSET.
|
2036 |
|
|
The evolution part of the access function is STEP calculated in
|
2037 |
|
|
object_analysis divided by the size of data type.
|
2038 |
|
|
*/
|
2039 |
|
|
if (!DR_BASE_OBJECT (dr)
|
2040 |
|
|
|| (TREE_CODE (memref) == COMPONENT_REF && DR_NUM_DIMENSIONS (dr) == 1))
|
2041 |
|
|
{
|
2042 |
|
|
tree access_fn;
|
2043 |
|
|
tree new_step;
|
2044 |
|
|
|
2045 |
|
|
/* Update access function. */
|
2046 |
|
|
access_fn = DR_ACCESS_FN (dr, 0);
|
2047 |
|
|
if (automatically_generated_chrec_p (access_fn))
|
2048 |
|
|
{
|
2049 |
|
|
free_data_ref (dr);
|
2050 |
|
|
return NULL;
|
2051 |
|
|
}
|
2052 |
|
|
|
2053 |
|
|
new_step = size_binop (TRUNC_DIV_EXPR,
|
2054 |
|
|
fold_convert (ssizetype, step), type_size);
|
2055 |
|
|
|
2056 |
|
|
init_cond = chrec_convert (chrec_type (access_fn), init_cond, stmt);
|
2057 |
|
|
new_step = chrec_convert (chrec_type (access_fn), new_step, stmt);
|
2058 |
|
|
if (automatically_generated_chrec_p (init_cond)
|
2059 |
|
|
|| automatically_generated_chrec_p (new_step))
|
2060 |
|
|
{
|
2061 |
|
|
free_data_ref (dr);
|
2062 |
|
|
return NULL;
|
2063 |
|
|
}
|
2064 |
|
|
access_fn = chrec_replace_initial_condition (access_fn, init_cond);
|
2065 |
|
|
access_fn = reset_evolution_in_loop (loop->num, access_fn, new_step);
|
2066 |
|
|
|
2067 |
|
|
VEC_replace (tree, DR_ACCESS_FNS (dr), 0, access_fn);
|
2068 |
|
|
}
|
2069 |
|
|
|
2070 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2071 |
|
|
{
|
2072 |
|
|
struct ptr_info_def *pi = DR_PTR_INFO (dr);
|
2073 |
|
|
|
2074 |
|
|
fprintf (dump_file, "\nCreated dr for ");
|
2075 |
|
|
print_generic_expr (dump_file, memref, TDF_SLIM);
|
2076 |
|
|
fprintf (dump_file, "\n\tbase_address: ");
|
2077 |
|
|
print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
|
2078 |
|
|
fprintf (dump_file, "\n\toffset from base address: ");
|
2079 |
|
|
print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
|
2080 |
|
|
fprintf (dump_file, "\n\tconstant offset from base address: ");
|
2081 |
|
|
print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
|
2082 |
|
|
fprintf (dump_file, "\n\tbase_object: ");
|
2083 |
|
|
print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
|
2084 |
|
|
fprintf (dump_file, "\n\tstep: ");
|
2085 |
|
|
print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
|
2086 |
|
|
fprintf (dump_file, "B\n\tmisalignment from base: ");
|
2087 |
|
|
print_generic_expr (dump_file, DR_OFFSET_MISALIGNMENT (dr), TDF_SLIM);
|
2088 |
|
|
if (DR_OFFSET_MISALIGNMENT (dr))
|
2089 |
|
|
fprintf (dump_file, "B");
|
2090 |
|
|
if (DR_ALIGNED_TO (dr))
|
2091 |
|
|
{
|
2092 |
|
|
fprintf (dump_file, "\n\taligned to: ");
|
2093 |
|
|
print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
|
2094 |
|
|
}
|
2095 |
|
|
fprintf (dump_file, "\n\tmemtag: ");
|
2096 |
|
|
print_generic_expr (dump_file, DR_MEMTAG (dr), TDF_SLIM);
|
2097 |
|
|
fprintf (dump_file, "\n");
|
2098 |
|
|
if (pi && pi->name_mem_tag)
|
2099 |
|
|
{
|
2100 |
|
|
fprintf (dump_file, "\n\tnametag: ");
|
2101 |
|
|
print_generic_expr (dump_file, pi->name_mem_tag, TDF_SLIM);
|
2102 |
|
|
fprintf (dump_file, "\n");
|
2103 |
|
|
}
|
2104 |
|
|
}
|
2105 |
|
|
return dr;
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
|
2109 |
|
|
/* Returns true when all the functions of a tree_vec CHREC are the
|
2110 |
|
|
same. */
|
2111 |
|
|
|
2112 |
|
|
static bool
|
2113 |
|
|
all_chrecs_equal_p (tree chrec)
|
2114 |
|
|
{
|
2115 |
|
|
int j;
|
2116 |
|
|
|
2117 |
|
|
for (j = 0; j < TREE_VEC_LENGTH (chrec) - 1; j++)
|
2118 |
|
|
if (!eq_evolutions_p (TREE_VEC_ELT (chrec, j),
|
2119 |
|
|
TREE_VEC_ELT (chrec, j + 1)))
|
2120 |
|
|
return false;
|
2121 |
|
|
|
2122 |
|
|
return true;
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
/* Determine for each subscript in the data dependence relation DDR
|
2126 |
|
|
the distance. */
|
2127 |
|
|
|
2128 |
|
|
static void
|
2129 |
|
|
compute_subscript_distance (struct data_dependence_relation *ddr)
|
2130 |
|
|
{
|
2131 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
2132 |
|
|
{
|
2133 |
|
|
unsigned int i;
|
2134 |
|
|
|
2135 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
2136 |
|
|
{
|
2137 |
|
|
tree conflicts_a, conflicts_b, difference;
|
2138 |
|
|
struct subscript *subscript;
|
2139 |
|
|
|
2140 |
|
|
subscript = DDR_SUBSCRIPT (ddr, i);
|
2141 |
|
|
conflicts_a = SUB_CONFLICTS_IN_A (subscript);
|
2142 |
|
|
conflicts_b = SUB_CONFLICTS_IN_B (subscript);
|
2143 |
|
|
|
2144 |
|
|
if (TREE_CODE (conflicts_a) == TREE_VEC)
|
2145 |
|
|
{
|
2146 |
|
|
if (!all_chrecs_equal_p (conflicts_a))
|
2147 |
|
|
{
|
2148 |
|
|
SUB_DISTANCE (subscript) = chrec_dont_know;
|
2149 |
|
|
return;
|
2150 |
|
|
}
|
2151 |
|
|
else
|
2152 |
|
|
conflicts_a = TREE_VEC_ELT (conflicts_a, 0);
|
2153 |
|
|
}
|
2154 |
|
|
|
2155 |
|
|
if (TREE_CODE (conflicts_b) == TREE_VEC)
|
2156 |
|
|
{
|
2157 |
|
|
if (!all_chrecs_equal_p (conflicts_b))
|
2158 |
|
|
{
|
2159 |
|
|
SUB_DISTANCE (subscript) = chrec_dont_know;
|
2160 |
|
|
return;
|
2161 |
|
|
}
|
2162 |
|
|
else
|
2163 |
|
|
conflicts_b = TREE_VEC_ELT (conflicts_b, 0);
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
conflicts_b = chrec_convert (integer_type_node, conflicts_b,
|
2167 |
|
|
NULL_TREE);
|
2168 |
|
|
conflicts_a = chrec_convert (integer_type_node, conflicts_a,
|
2169 |
|
|
NULL_TREE);
|
2170 |
|
|
difference = chrec_fold_minus
|
2171 |
|
|
(integer_type_node, conflicts_b, conflicts_a);
|
2172 |
|
|
|
2173 |
|
|
if (evolution_function_is_constant_p (difference))
|
2174 |
|
|
SUB_DISTANCE (subscript) = difference;
|
2175 |
|
|
|
2176 |
|
|
else
|
2177 |
|
|
SUB_DISTANCE (subscript) = chrec_dont_know;
|
2178 |
|
|
}
|
2179 |
|
|
}
|
2180 |
|
|
}
|
2181 |
|
|
|
2182 |
|
|
/* Initialize a data dependence relation between data accesses A and
|
2183 |
|
|
B. NB_LOOPS is the number of loops surrounding the references: the
|
2184 |
|
|
size of the classic distance/direction vectors. */
|
2185 |
|
|
|
2186 |
|
|
static struct data_dependence_relation *
|
2187 |
|
|
initialize_data_dependence_relation (struct data_reference *a,
|
2188 |
|
|
struct data_reference *b,
|
2189 |
|
|
VEC (loop_p, heap) *loop_nest)
|
2190 |
|
|
{
|
2191 |
|
|
struct data_dependence_relation *res;
|
2192 |
|
|
bool differ_p, known_dependence;
|
2193 |
|
|
unsigned int i;
|
2194 |
|
|
|
2195 |
|
|
res = XNEW (struct data_dependence_relation);
|
2196 |
|
|
DDR_A (res) = a;
|
2197 |
|
|
DDR_B (res) = b;
|
2198 |
|
|
DDR_LOOP_NEST (res) = NULL;
|
2199 |
|
|
|
2200 |
|
|
if (a == NULL || b == NULL)
|
2201 |
|
|
{
|
2202 |
|
|
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
2203 |
|
|
return res;
|
2204 |
|
|
}
|
2205 |
|
|
|
2206 |
|
|
/* When A and B are arrays and their dimensions differ, we directly
|
2207 |
|
|
initialize the relation to "there is no dependence": chrec_known. */
|
2208 |
|
|
if (DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
|
2209 |
|
|
&& DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
|
2210 |
|
|
{
|
2211 |
|
|
DDR_ARE_DEPENDENT (res) = chrec_known;
|
2212 |
|
|
return res;
|
2213 |
|
|
}
|
2214 |
|
|
|
2215 |
|
|
if (DR_BASE_ADDRESS (a) && DR_BASE_ADDRESS (b))
|
2216 |
|
|
known_dependence = base_addr_differ_p (a, b, &differ_p);
|
2217 |
|
|
else
|
2218 |
|
|
known_dependence = base_object_differ_p (a, b, &differ_p);
|
2219 |
|
|
|
2220 |
|
|
if (!known_dependence)
|
2221 |
|
|
{
|
2222 |
|
|
/* Can't determine whether the data-refs access the same memory
|
2223 |
|
|
region. */
|
2224 |
|
|
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
2225 |
|
|
return res;
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
if (differ_p)
|
2229 |
|
|
{
|
2230 |
|
|
DDR_ARE_DEPENDENT (res) = chrec_known;
|
2231 |
|
|
return res;
|
2232 |
|
|
}
|
2233 |
|
|
|
2234 |
|
|
DDR_AFFINE_P (res) = true;
|
2235 |
|
|
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
2236 |
|
|
DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
|
2237 |
|
|
DDR_LOOP_NEST (res) = loop_nest;
|
2238 |
|
|
DDR_DIR_VECTS (res) = NULL;
|
2239 |
|
|
DDR_DIST_VECTS (res) = NULL;
|
2240 |
|
|
|
2241 |
|
|
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
2242 |
|
|
{
|
2243 |
|
|
struct subscript *subscript;
|
2244 |
|
|
|
2245 |
|
|
subscript = XNEW (struct subscript);
|
2246 |
|
|
SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
|
2247 |
|
|
SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
|
2248 |
|
|
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
2249 |
|
|
SUB_DISTANCE (subscript) = chrec_dont_know;
|
2250 |
|
|
VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
return res;
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
|
2257 |
|
|
description. */
|
2258 |
|
|
|
2259 |
|
|
static inline void
|
2260 |
|
|
finalize_ddr_dependent (struct data_dependence_relation *ddr,
|
2261 |
|
|
tree chrec)
|
2262 |
|
|
{
|
2263 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2264 |
|
|
{
|
2265 |
|
|
fprintf (dump_file, "(dependence classified: ");
|
2266 |
|
|
print_generic_expr (dump_file, chrec, 0);
|
2267 |
|
|
fprintf (dump_file, ")\n");
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
DDR_ARE_DEPENDENT (ddr) = chrec;
|
2271 |
|
|
VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
/* The dependence relation DDR cannot be represented by a distance
|
2275 |
|
|
vector. */
|
2276 |
|
|
|
2277 |
|
|
static inline void
|
2278 |
|
|
non_affine_dependence_relation (struct data_dependence_relation *ddr)
|
2279 |
|
|
{
|
2280 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2281 |
|
|
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
|
2282 |
|
|
|
2283 |
|
|
DDR_AFFINE_P (ddr) = false;
|
2284 |
|
|
}
|
2285 |
|
|
|
2286 |
|
|
|
2287 |
|
|
|
2288 |
|
|
/* This section contains the classic Banerjee tests. */
|
2289 |
|
|
|
2290 |
|
|
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
|
2291 |
|
|
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
|
2292 |
|
|
|
2293 |
|
|
static inline bool
|
2294 |
|
|
ziv_subscript_p (tree chrec_a,
|
2295 |
|
|
tree chrec_b)
|
2296 |
|
|
{
|
2297 |
|
|
return (evolution_function_is_constant_p (chrec_a)
|
2298 |
|
|
&& evolution_function_is_constant_p (chrec_b));
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
|
2302 |
|
|
variable, i.e., if the SIV (Single Index Variable) test is true. */
|
2303 |
|
|
|
2304 |
|
|
static bool
|
2305 |
|
|
siv_subscript_p (tree chrec_a,
|
2306 |
|
|
tree chrec_b)
|
2307 |
|
|
{
|
2308 |
|
|
if ((evolution_function_is_constant_p (chrec_a)
|
2309 |
|
|
&& evolution_function_is_univariate_p (chrec_b))
|
2310 |
|
|
|| (evolution_function_is_constant_p (chrec_b)
|
2311 |
|
|
&& evolution_function_is_univariate_p (chrec_a)))
|
2312 |
|
|
return true;
|
2313 |
|
|
|
2314 |
|
|
if (evolution_function_is_univariate_p (chrec_a)
|
2315 |
|
|
&& evolution_function_is_univariate_p (chrec_b))
|
2316 |
|
|
{
|
2317 |
|
|
switch (TREE_CODE (chrec_a))
|
2318 |
|
|
{
|
2319 |
|
|
case POLYNOMIAL_CHREC:
|
2320 |
|
|
switch (TREE_CODE (chrec_b))
|
2321 |
|
|
{
|
2322 |
|
|
case POLYNOMIAL_CHREC:
|
2323 |
|
|
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
|
2324 |
|
|
return false;
|
2325 |
|
|
|
2326 |
|
|
default:
|
2327 |
|
|
return true;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
default:
|
2331 |
|
|
return true;
|
2332 |
|
|
}
|
2333 |
|
|
}
|
2334 |
|
|
|
2335 |
|
|
return false;
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
|
2339 |
|
|
*OVERLAPS_B are initialized to the functions that describe the
|
2340 |
|
|
relation between the elements accessed twice by CHREC_A and
|
2341 |
|
|
CHREC_B. For k >= 0, the following property is verified:
|
2342 |
|
|
|
2343 |
|
|
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
2344 |
|
|
|
2345 |
|
|
static void
|
2346 |
|
|
analyze_ziv_subscript (tree chrec_a,
|
2347 |
|
|
tree chrec_b,
|
2348 |
|
|
tree *overlaps_a,
|
2349 |
|
|
tree *overlaps_b,
|
2350 |
|
|
tree *last_conflicts)
|
2351 |
|
|
{
|
2352 |
|
|
tree difference;
|
2353 |
|
|
dependence_stats.num_ziv++;
|
2354 |
|
|
|
2355 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2356 |
|
|
fprintf (dump_file, "(analyze_ziv_subscript \n");
|
2357 |
|
|
|
2358 |
|
|
chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
|
2359 |
|
|
chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
|
2360 |
|
|
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
|
2361 |
|
|
|
2362 |
|
|
switch (TREE_CODE (difference))
|
2363 |
|
|
{
|
2364 |
|
|
case INTEGER_CST:
|
2365 |
|
|
if (integer_zerop (difference))
|
2366 |
|
|
{
|
2367 |
|
|
/* The difference is equal to zero: the accessed index
|
2368 |
|
|
overlaps for each iteration in the loop. */
|
2369 |
|
|
*overlaps_a = integer_zero_node;
|
2370 |
|
|
*overlaps_b = integer_zero_node;
|
2371 |
|
|
*last_conflicts = chrec_dont_know;
|
2372 |
|
|
dependence_stats.num_ziv_dependent++;
|
2373 |
|
|
}
|
2374 |
|
|
else
|
2375 |
|
|
{
|
2376 |
|
|
/* The accesses do not overlap. */
|
2377 |
|
|
*overlaps_a = chrec_known;
|
2378 |
|
|
*overlaps_b = chrec_known;
|
2379 |
|
|
*last_conflicts = integer_zero_node;
|
2380 |
|
|
dependence_stats.num_ziv_independent++;
|
2381 |
|
|
}
|
2382 |
|
|
break;
|
2383 |
|
|
|
2384 |
|
|
default:
|
2385 |
|
|
/* We're not sure whether the indexes overlap. For the moment,
|
2386 |
|
|
conservatively answer "don't know". */
|
2387 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2388 |
|
|
fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
|
2389 |
|
|
|
2390 |
|
|
*overlaps_a = chrec_dont_know;
|
2391 |
|
|
*overlaps_b = chrec_dont_know;
|
2392 |
|
|
*last_conflicts = chrec_dont_know;
|
2393 |
|
|
dependence_stats.num_ziv_unimplemented++;
|
2394 |
|
|
break;
|
2395 |
|
|
}
|
2396 |
|
|
|
2397 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2398 |
|
|
fprintf (dump_file, ")\n");
|
2399 |
|
|
}
|
2400 |
|
|
|
2401 |
|
|
/* Get the real or estimated number of iterations for LOOPNUM, whichever is
|
2402 |
|
|
available. Return the number of iterations as a tree, or NULL_TREE if
|
2403 |
|
|
we don't know. */
|
2404 |
|
|
|
2405 |
|
|
static tree
|
2406 |
|
|
get_number_of_iters_for_loop (int loopnum)
|
2407 |
|
|
{
|
2408 |
|
|
tree numiter = number_of_iterations_in_loop (current_loops->parray[loopnum]);
|
2409 |
|
|
|
2410 |
|
|
if (TREE_CODE (numiter) != INTEGER_CST)
|
2411 |
|
|
numiter = current_loops->parray[loopnum]->estimated_nb_iterations;
|
2412 |
|
|
if (chrec_contains_undetermined (numiter))
|
2413 |
|
|
return NULL_TREE;
|
2414 |
|
|
return numiter;
|
2415 |
|
|
}
|
2416 |
|
|
|
2417 |
|
|
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
|
2418 |
|
|
constant, and CHREC_B is an affine function. *OVERLAPS_A and
|
2419 |
|
|
*OVERLAPS_B are initialized to the functions that describe the
|
2420 |
|
|
relation between the elements accessed twice by CHREC_A and
|
2421 |
|
|
CHREC_B. For k >= 0, the following property is verified:
|
2422 |
|
|
|
2423 |
|
|
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
2424 |
|
|
|
2425 |
|
|
static void
|
2426 |
|
|
analyze_siv_subscript_cst_affine (tree chrec_a,
|
2427 |
|
|
tree chrec_b,
|
2428 |
|
|
tree *overlaps_a,
|
2429 |
|
|
tree *overlaps_b,
|
2430 |
|
|
tree *last_conflicts)
|
2431 |
|
|
{
|
2432 |
|
|
bool value0, value1, value2;
|
2433 |
|
|
tree difference;
|
2434 |
|
|
|
2435 |
|
|
chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
|
2436 |
|
|
chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
|
2437 |
|
|
difference = chrec_fold_minus
|
2438 |
|
|
(integer_type_node, initial_condition (chrec_b), chrec_a);
|
2439 |
|
|
|
2440 |
|
|
if (!chrec_is_positive (initial_condition (difference), &value0))
|
2441 |
|
|
{
|
2442 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2443 |
|
|
fprintf (dump_file, "siv test failed: chrec is not positive.\n");
|
2444 |
|
|
|
2445 |
|
|
dependence_stats.num_siv_unimplemented++;
|
2446 |
|
|
*overlaps_a = chrec_dont_know;
|
2447 |
|
|
*overlaps_b = chrec_dont_know;
|
2448 |
|
|
*last_conflicts = chrec_dont_know;
|
2449 |
|
|
return;
|
2450 |
|
|
}
|
2451 |
|
|
else
|
2452 |
|
|
{
|
2453 |
|
|
if (value0 == false)
|
2454 |
|
|
{
|
2455 |
|
|
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
|
2456 |
|
|
{
|
2457 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2458 |
|
|
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
2459 |
|
|
|
2460 |
|
|
*overlaps_a = chrec_dont_know;
|
2461 |
|
|
*overlaps_b = chrec_dont_know;
|
2462 |
|
|
*last_conflicts = chrec_dont_know;
|
2463 |
|
|
dependence_stats.num_siv_unimplemented++;
|
2464 |
|
|
return;
|
2465 |
|
|
}
|
2466 |
|
|
else
|
2467 |
|
|
{
|
2468 |
|
|
if (value1 == true)
|
2469 |
|
|
{
|
2470 |
|
|
/* Example:
|
2471 |
|
|
chrec_a = 12
|
2472 |
|
|
chrec_b = {10, +, 1}
|
2473 |
|
|
*/
|
2474 |
|
|
|
2475 |
|
|
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
2476 |
|
|
{
|
2477 |
|
|
tree numiter;
|
2478 |
|
|
int loopnum = CHREC_VARIABLE (chrec_b);
|
2479 |
|
|
|
2480 |
|
|
*overlaps_a = integer_zero_node;
|
2481 |
|
|
*overlaps_b = fold_build2 (EXACT_DIV_EXPR, integer_type_node,
|
2482 |
|
|
fold_build1 (ABS_EXPR,
|
2483 |
|
|
integer_type_node,
|
2484 |
|
|
difference),
|
2485 |
|
|
CHREC_RIGHT (chrec_b));
|
2486 |
|
|
*last_conflicts = integer_one_node;
|
2487 |
|
|
|
2488 |
|
|
|
2489 |
|
|
/* Perform weak-zero siv test to see if overlap is
|
2490 |
|
|
outside the loop bounds. */
|
2491 |
|
|
numiter = get_number_of_iters_for_loop (loopnum);
|
2492 |
|
|
|
2493 |
|
|
if (numiter != NULL_TREE
|
2494 |
|
|
&& TREE_CODE (*overlaps_b) == INTEGER_CST
|
2495 |
|
|
&& tree_int_cst_lt (numiter, *overlaps_b))
|
2496 |
|
|
{
|
2497 |
|
|
*overlaps_a = chrec_known;
|
2498 |
|
|
*overlaps_b = chrec_known;
|
2499 |
|
|
*last_conflicts = integer_zero_node;
|
2500 |
|
|
dependence_stats.num_siv_independent++;
|
2501 |
|
|
return;
|
2502 |
|
|
}
|
2503 |
|
|
dependence_stats.num_siv_dependent++;
|
2504 |
|
|
return;
|
2505 |
|
|
}
|
2506 |
|
|
|
2507 |
|
|
/* When the step does not divide the difference, there are
|
2508 |
|
|
no overlaps. */
|
2509 |
|
|
else
|
2510 |
|
|
{
|
2511 |
|
|
*overlaps_a = chrec_known;
|
2512 |
|
|
*overlaps_b = chrec_known;
|
2513 |
|
|
*last_conflicts = integer_zero_node;
|
2514 |
|
|
dependence_stats.num_siv_independent++;
|
2515 |
|
|
return;
|
2516 |
|
|
}
|
2517 |
|
|
}
|
2518 |
|
|
|
2519 |
|
|
else
|
2520 |
|
|
{
|
2521 |
|
|
/* Example:
|
2522 |
|
|
chrec_a = 12
|
2523 |
|
|
chrec_b = {10, +, -1}
|
2524 |
|
|
|
2525 |
|
|
In this case, chrec_a will not overlap with chrec_b. */
|
2526 |
|
|
*overlaps_a = chrec_known;
|
2527 |
|
|
*overlaps_b = chrec_known;
|
2528 |
|
|
*last_conflicts = integer_zero_node;
|
2529 |
|
|
dependence_stats.num_siv_independent++;
|
2530 |
|
|
return;
|
2531 |
|
|
}
|
2532 |
|
|
}
|
2533 |
|
|
}
|
2534 |
|
|
else
|
2535 |
|
|
{
|
2536 |
|
|
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
|
2537 |
|
|
{
|
2538 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2539 |
|
|
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
2540 |
|
|
|
2541 |
|
|
*overlaps_a = chrec_dont_know;
|
2542 |
|
|
*overlaps_b = chrec_dont_know;
|
2543 |
|
|
*last_conflicts = chrec_dont_know;
|
2544 |
|
|
dependence_stats.num_siv_unimplemented++;
|
2545 |
|
|
return;
|
2546 |
|
|
}
|
2547 |
|
|
else
|
2548 |
|
|
{
|
2549 |
|
|
if (value2 == false)
|
2550 |
|
|
{
|
2551 |
|
|
/* Example:
|
2552 |
|
|
chrec_a = 3
|
2553 |
|
|
chrec_b = {10, +, -1}
|
2554 |
|
|
*/
|
2555 |
|
|
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
2556 |
|
|
{
|
2557 |
|
|
tree numiter;
|
2558 |
|
|
int loopnum = CHREC_VARIABLE (chrec_b);
|
2559 |
|
|
|
2560 |
|
|
*overlaps_a = integer_zero_node;
|
2561 |
|
|
*overlaps_b = fold_build2 (EXACT_DIV_EXPR,
|
2562 |
|
|
integer_type_node, difference,
|
2563 |
|
|
CHREC_RIGHT (chrec_b));
|
2564 |
|
|
*last_conflicts = integer_one_node;
|
2565 |
|
|
|
2566 |
|
|
/* Perform weak-zero siv test to see if overlap is
|
2567 |
|
|
outside the loop bounds. */
|
2568 |
|
|
numiter = get_number_of_iters_for_loop (loopnum);
|
2569 |
|
|
|
2570 |
|
|
if (numiter != NULL_TREE
|
2571 |
|
|
&& TREE_CODE (*overlaps_b) == INTEGER_CST
|
2572 |
|
|
&& tree_int_cst_lt (numiter, *overlaps_b))
|
2573 |
|
|
{
|
2574 |
|
|
*overlaps_a = chrec_known;
|
2575 |
|
|
*overlaps_b = chrec_known;
|
2576 |
|
|
*last_conflicts = integer_zero_node;
|
2577 |
|
|
dependence_stats.num_siv_independent++;
|
2578 |
|
|
return;
|
2579 |
|
|
}
|
2580 |
|
|
dependence_stats.num_siv_dependent++;
|
2581 |
|
|
return;
|
2582 |
|
|
}
|
2583 |
|
|
|
2584 |
|
|
/* When the step does not divide the difference, there
|
2585 |
|
|
are no overlaps. */
|
2586 |
|
|
else
|
2587 |
|
|
{
|
2588 |
|
|
*overlaps_a = chrec_known;
|
2589 |
|
|
*overlaps_b = chrec_known;
|
2590 |
|
|
*last_conflicts = integer_zero_node;
|
2591 |
|
|
dependence_stats.num_siv_independent++;
|
2592 |
|
|
return;
|
2593 |
|
|
}
|
2594 |
|
|
}
|
2595 |
|
|
else
|
2596 |
|
|
{
|
2597 |
|
|
/* Example:
|
2598 |
|
|
chrec_a = 3
|
2599 |
|
|
chrec_b = {4, +, 1}
|
2600 |
|
|
|
2601 |
|
|
In this case, chrec_a will not overlap with chrec_b. */
|
2602 |
|
|
*overlaps_a = chrec_known;
|
2603 |
|
|
*overlaps_b = chrec_known;
|
2604 |
|
|
*last_conflicts = integer_zero_node;
|
2605 |
|
|
dependence_stats.num_siv_independent++;
|
2606 |
|
|
return;
|
2607 |
|
|
}
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
}
|
2611 |
|
|
}
|
2612 |
|
|
|
2613 |
|
|
/* Helper recursive function for initializing the matrix A. Returns
|
2614 |
|
|
the initial value of CHREC. */
|
2615 |
|
|
|
2616 |
|
|
static int
|
2617 |
|
|
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
|
2618 |
|
|
{
|
2619 |
|
|
gcc_assert (chrec);
|
2620 |
|
|
|
2621 |
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
2622 |
|
|
return int_cst_value (chrec);
|
2623 |
|
|
|
2624 |
|
|
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
|
2625 |
|
|
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
|
2626 |
|
|
}
|
2627 |
|
|
|
2628 |
|
|
#define FLOOR_DIV(x,y) ((x) / (y))
|
2629 |
|
|
|
2630 |
|
|
/* Solves the special case of the Diophantine equation:
|
2631 |
|
|
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
|
2632 |
|
|
|
2633 |
|
|
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
|
2634 |
|
|
number of iterations that loops X and Y run. The overlaps will be
|
2635 |
|
|
constructed as evolutions in dimension DIM. */
|
2636 |
|
|
|
2637 |
|
|
static void
|
2638 |
|
|
compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
|
2639 |
|
|
tree *overlaps_a, tree *overlaps_b,
|
2640 |
|
|
tree *last_conflicts, int dim)
|
2641 |
|
|
{
|
2642 |
|
|
if (((step_a > 0 && step_b > 0)
|
2643 |
|
|
|| (step_a < 0 && step_b < 0)))
|
2644 |
|
|
{
|
2645 |
|
|
int step_overlaps_a, step_overlaps_b;
|
2646 |
|
|
int gcd_steps_a_b, last_conflict, tau2;
|
2647 |
|
|
|
2648 |
|
|
gcd_steps_a_b = gcd (step_a, step_b);
|
2649 |
|
|
step_overlaps_a = step_b / gcd_steps_a_b;
|
2650 |
|
|
step_overlaps_b = step_a / gcd_steps_a_b;
|
2651 |
|
|
|
2652 |
|
|
tau2 = FLOOR_DIV (niter, step_overlaps_a);
|
2653 |
|
|
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
|
2654 |
|
|
last_conflict = tau2;
|
2655 |
|
|
|
2656 |
|
|
*overlaps_a = build_polynomial_chrec
|
2657 |
|
|
(dim, integer_zero_node,
|
2658 |
|
|
build_int_cst (NULL_TREE, step_overlaps_a));
|
2659 |
|
|
*overlaps_b = build_polynomial_chrec
|
2660 |
|
|
(dim, integer_zero_node,
|
2661 |
|
|
build_int_cst (NULL_TREE, step_overlaps_b));
|
2662 |
|
|
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
2663 |
|
|
}
|
2664 |
|
|
|
2665 |
|
|
else
|
2666 |
|
|
{
|
2667 |
|
|
*overlaps_a = integer_zero_node;
|
2668 |
|
|
*overlaps_b = integer_zero_node;
|
2669 |
|
|
*last_conflicts = integer_zero_node;
|
2670 |
|
|
}
|
2671 |
|
|
}
|
2672 |
|
|
|
2673 |
|
|
|
2674 |
|
|
/* Solves the special case of a Diophantine equation where CHREC_A is
|
2675 |
|
|
an affine bivariate function, and CHREC_B is an affine univariate
|
2676 |
|
|
function. For example,
|
2677 |
|
|
|
2678 |
|
|
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
|
2679 |
|
|
|
2680 |
|
|
has the following overlapping functions:
|
2681 |
|
|
|
2682 |
|
|
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
|
2683 |
|
|
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
|
2684 |
|
|
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
|
2685 |
|
|
|
2686 |
|
|
FORNOW: This is a specialized implementation for a case occurring in
|
2687 |
|
|
a common benchmark. Implement the general algorithm. */
|
2688 |
|
|
|
2689 |
|
|
static void
|
2690 |
|
|
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
|
2691 |
|
|
tree *overlaps_a, tree *overlaps_b,
|
2692 |
|
|
tree *last_conflicts)
|
2693 |
|
|
{
|
2694 |
|
|
bool xz_p, yz_p, xyz_p;
|
2695 |
|
|
int step_x, step_y, step_z;
|
2696 |
|
|
int niter_x, niter_y, niter_z, niter;
|
2697 |
|
|
tree numiter_x, numiter_y, numiter_z;
|
2698 |
|
|
tree overlaps_a_xz, overlaps_b_xz, last_conflicts_xz;
|
2699 |
|
|
tree overlaps_a_yz, overlaps_b_yz, last_conflicts_yz;
|
2700 |
|
|
tree overlaps_a_xyz, overlaps_b_xyz, last_conflicts_xyz;
|
2701 |
|
|
|
2702 |
|
|
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
|
2703 |
|
|
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
|
2704 |
|
|
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
|
2705 |
|
|
|
2706 |
|
|
numiter_x = get_number_of_iters_for_loop (CHREC_VARIABLE (CHREC_LEFT (chrec_a)));
|
2707 |
|
|
numiter_y = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
|
2708 |
|
|
numiter_z = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
|
2709 |
|
|
|
2710 |
|
|
if (numiter_x == NULL_TREE || numiter_y == NULL_TREE
|
2711 |
|
|
|| numiter_z == NULL_TREE)
|
2712 |
|
|
{
|
2713 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2714 |
|
|
fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
|
2715 |
|
|
|
2716 |
|
|
*overlaps_a = chrec_dont_know;
|
2717 |
|
|
*overlaps_b = chrec_dont_know;
|
2718 |
|
|
*last_conflicts = chrec_dont_know;
|
2719 |
|
|
return;
|
2720 |
|
|
}
|
2721 |
|
|
|
2722 |
|
|
niter_x = int_cst_value (numiter_x);
|
2723 |
|
|
niter_y = int_cst_value (numiter_y);
|
2724 |
|
|
niter_z = int_cst_value (numiter_z);
|
2725 |
|
|
|
2726 |
|
|
niter = MIN (niter_x, niter_z);
|
2727 |
|
|
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
|
2728 |
|
|
&overlaps_a_xz,
|
2729 |
|
|
&overlaps_b_xz,
|
2730 |
|
|
&last_conflicts_xz, 1);
|
2731 |
|
|
niter = MIN (niter_y, niter_z);
|
2732 |
|
|
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
|
2733 |
|
|
&overlaps_a_yz,
|
2734 |
|
|
&overlaps_b_yz,
|
2735 |
|
|
&last_conflicts_yz, 2);
|
2736 |
|
|
niter = MIN (niter_x, niter_z);
|
2737 |
|
|
niter = MIN (niter_y, niter);
|
2738 |
|
|
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
|
2739 |
|
|
&overlaps_a_xyz,
|
2740 |
|
|
&overlaps_b_xyz,
|
2741 |
|
|
&last_conflicts_xyz, 3);
|
2742 |
|
|
|
2743 |
|
|
xz_p = !integer_zerop (last_conflicts_xz);
|
2744 |
|
|
yz_p = !integer_zerop (last_conflicts_yz);
|
2745 |
|
|
xyz_p = !integer_zerop (last_conflicts_xyz);
|
2746 |
|
|
|
2747 |
|
|
if (xz_p || yz_p || xyz_p)
|
2748 |
|
|
{
|
2749 |
|
|
*overlaps_a = make_tree_vec (2);
|
2750 |
|
|
TREE_VEC_ELT (*overlaps_a, 0) = integer_zero_node;
|
2751 |
|
|
TREE_VEC_ELT (*overlaps_a, 1) = integer_zero_node;
|
2752 |
|
|
*overlaps_b = integer_zero_node;
|
2753 |
|
|
if (xz_p)
|
2754 |
|
|
{
|
2755 |
|
|
tree t0 = chrec_convert (integer_type_node,
|
2756 |
|
|
TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
|
2757 |
|
|
tree t1 = chrec_convert (integer_type_node, overlaps_a_xz,
|
2758 |
|
|
NULL_TREE);
|
2759 |
|
|
tree t2 = chrec_convert (integer_type_node, *overlaps_b,
|
2760 |
|
|
NULL_TREE);
|
2761 |
|
|
tree t3 = chrec_convert (integer_type_node, overlaps_b_xz,
|
2762 |
|
|
NULL_TREE);
|
2763 |
|
|
|
2764 |
|
|
TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
|
2765 |
|
|
t0, t1);
|
2766 |
|
|
*overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
|
2767 |
|
|
*last_conflicts = last_conflicts_xz;
|
2768 |
|
|
}
|
2769 |
|
|
if (yz_p)
|
2770 |
|
|
{
|
2771 |
|
|
tree t0 = chrec_convert (integer_type_node,
|
2772 |
|
|
TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
|
2773 |
|
|
tree t1 = chrec_convert (integer_type_node, overlaps_a_yz, NULL_TREE);
|
2774 |
|
|
tree t2 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
|
2775 |
|
|
tree t3 = chrec_convert (integer_type_node, overlaps_b_yz, NULL_TREE);
|
2776 |
|
|
|
2777 |
|
|
TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
|
2778 |
|
|
t0, t1);
|
2779 |
|
|
*overlaps_b = chrec_fold_plus (integer_type_node, t2, t3);
|
2780 |
|
|
*last_conflicts = last_conflicts_yz;
|
2781 |
|
|
}
|
2782 |
|
|
if (xyz_p)
|
2783 |
|
|
{
|
2784 |
|
|
tree t0 = chrec_convert (integer_type_node,
|
2785 |
|
|
TREE_VEC_ELT (*overlaps_a, 0), NULL_TREE);
|
2786 |
|
|
tree t1 = chrec_convert (integer_type_node, overlaps_a_xyz,
|
2787 |
|
|
NULL_TREE);
|
2788 |
|
|
tree t2 = chrec_convert (integer_type_node,
|
2789 |
|
|
TREE_VEC_ELT (*overlaps_a, 1), NULL_TREE);
|
2790 |
|
|
tree t3 = chrec_convert (integer_type_node, overlaps_a_xyz,
|
2791 |
|
|
NULL_TREE);
|
2792 |
|
|
tree t4 = chrec_convert (integer_type_node, *overlaps_b, NULL_TREE);
|
2793 |
|
|
tree t5 = chrec_convert (integer_type_node, overlaps_b_xyz,
|
2794 |
|
|
NULL_TREE);
|
2795 |
|
|
|
2796 |
|
|
TREE_VEC_ELT (*overlaps_a, 0) = chrec_fold_plus (integer_type_node,
|
2797 |
|
|
t0, t1);
|
2798 |
|
|
TREE_VEC_ELT (*overlaps_a, 1) = chrec_fold_plus (integer_type_node,
|
2799 |
|
|
t2, t3);
|
2800 |
|
|
*overlaps_b = chrec_fold_plus (integer_type_node, t4, t5);
|
2801 |
|
|
*last_conflicts = last_conflicts_xyz;
|
2802 |
|
|
}
|
2803 |
|
|
}
|
2804 |
|
|
else
|
2805 |
|
|
{
|
2806 |
|
|
*overlaps_a = integer_zero_node;
|
2807 |
|
|
*overlaps_b = integer_zero_node;
|
2808 |
|
|
*last_conflicts = integer_zero_node;
|
2809 |
|
|
}
|
2810 |
|
|
}
|
2811 |
|
|
|
2812 |
|
|
/* Determines the overlapping elements due to accesses CHREC_A and
|
2813 |
|
|
CHREC_B, that are affine functions. This function cannot handle
|
2814 |
|
|
symbolic evolution functions, ie. when initial conditions are
|
2815 |
|
|
parameters, because it uses lambda matrices of integers. */
|
2816 |
|
|
|
2817 |
|
|
static void
|
2818 |
|
|
analyze_subscript_affine_affine (tree chrec_a,
|
2819 |
|
|
tree chrec_b,
|
2820 |
|
|
tree *overlaps_a,
|
2821 |
|
|
tree *overlaps_b,
|
2822 |
|
|
tree *last_conflicts)
|
2823 |
|
|
{
|
2824 |
|
|
unsigned nb_vars_a, nb_vars_b, dim;
|
2825 |
|
|
int init_a, init_b, gamma, gcd_alpha_beta;
|
2826 |
|
|
int tau1, tau2;
|
2827 |
|
|
lambda_matrix A, U, S;
|
2828 |
|
|
|
2829 |
|
|
if (eq_evolutions_p (chrec_a, chrec_b))
|
2830 |
|
|
{
|
2831 |
|
|
/* The accessed index overlaps for each iteration in the
|
2832 |
|
|
loop. */
|
2833 |
|
|
*overlaps_a = integer_zero_node;
|
2834 |
|
|
*overlaps_b = integer_zero_node;
|
2835 |
|
|
*last_conflicts = chrec_dont_know;
|
2836 |
|
|
return;
|
2837 |
|
|
}
|
2838 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2839 |
|
|
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
|
2840 |
|
|
|
2841 |
|
|
/* For determining the initial intersection, we have to solve a
|
2842 |
|
|
Diophantine equation. This is the most time consuming part.
|
2843 |
|
|
|
2844 |
|
|
For answering to the question: "Is there a dependence?" we have
|
2845 |
|
|
to prove that there exists a solution to the Diophantine
|
2846 |
|
|
equation, and that the solution is in the iteration domain,
|
2847 |
|
|
i.e. the solution is positive or zero, and that the solution
|
2848 |
|
|
happens before the upper bound loop.nb_iterations. Otherwise
|
2849 |
|
|
there is no dependence. This function outputs a description of
|
2850 |
|
|
the iterations that hold the intersections. */
|
2851 |
|
|
|
2852 |
|
|
nb_vars_a = nb_vars_in_chrec (chrec_a);
|
2853 |
|
|
nb_vars_b = nb_vars_in_chrec (chrec_b);
|
2854 |
|
|
|
2855 |
|
|
dim = nb_vars_a + nb_vars_b;
|
2856 |
|
|
U = lambda_matrix_new (dim, dim);
|
2857 |
|
|
A = lambda_matrix_new (dim, 1);
|
2858 |
|
|
S = lambda_matrix_new (dim, 1);
|
2859 |
|
|
|
2860 |
|
|
init_a = initialize_matrix_A (A, chrec_a, 0, 1);
|
2861 |
|
|
init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
|
2862 |
|
|
gamma = init_b - init_a;
|
2863 |
|
|
|
2864 |
|
|
/* Don't do all the hard work of solving the Diophantine equation
|
2865 |
|
|
when we already know the solution: for example,
|
2866 |
|
|
| {3, +, 1}_1
|
2867 |
|
|
| {3, +, 4}_2
|
2868 |
|
|
| gamma = 3 - 3 = 0.
|
2869 |
|
|
Then the first overlap occurs during the first iterations:
|
2870 |
|
|
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
|
2871 |
|
|
*/
|
2872 |
|
|
if (gamma == 0)
|
2873 |
|
|
{
|
2874 |
|
|
if (nb_vars_a == 1 && nb_vars_b == 1)
|
2875 |
|
|
{
|
2876 |
|
|
int step_a, step_b;
|
2877 |
|
|
int niter, niter_a, niter_b;
|
2878 |
|
|
tree numiter_a, numiter_b;
|
2879 |
|
|
|
2880 |
|
|
numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
|
2881 |
|
|
numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
|
2882 |
|
|
if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
|
2883 |
|
|
{
|
2884 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2885 |
|
|
fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
|
2886 |
|
|
*overlaps_a = chrec_dont_know;
|
2887 |
|
|
*overlaps_b = chrec_dont_know;
|
2888 |
|
|
*last_conflicts = chrec_dont_know;
|
2889 |
|
|
goto end_analyze_subs_aa;
|
2890 |
|
|
}
|
2891 |
|
|
|
2892 |
|
|
niter_a = int_cst_value (numiter_a);
|
2893 |
|
|
niter_b = int_cst_value (numiter_b);
|
2894 |
|
|
niter = MIN (niter_a, niter_b);
|
2895 |
|
|
|
2896 |
|
|
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
|
2897 |
|
|
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
|
2898 |
|
|
|
2899 |
|
|
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
|
2900 |
|
|
overlaps_a, overlaps_b,
|
2901 |
|
|
last_conflicts, 1);
|
2902 |
|
|
}
|
2903 |
|
|
|
2904 |
|
|
else if (nb_vars_a == 2 && nb_vars_b == 1)
|
2905 |
|
|
compute_overlap_steps_for_affine_1_2
|
2906 |
|
|
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
|
2907 |
|
|
|
2908 |
|
|
else if (nb_vars_a == 1 && nb_vars_b == 2)
|
2909 |
|
|
compute_overlap_steps_for_affine_1_2
|
2910 |
|
|
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
|
2911 |
|
|
|
2912 |
|
|
else
|
2913 |
|
|
{
|
2914 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2915 |
|
|
fprintf (dump_file, "affine-affine test failed: too many variables.\n");
|
2916 |
|
|
*overlaps_a = chrec_dont_know;
|
2917 |
|
|
*overlaps_b = chrec_dont_know;
|
2918 |
|
|
*last_conflicts = chrec_dont_know;
|
2919 |
|
|
}
|
2920 |
|
|
goto end_analyze_subs_aa;
|
2921 |
|
|
}
|
2922 |
|
|
|
2923 |
|
|
/* U.A = S */
|
2924 |
|
|
lambda_matrix_right_hermite (A, dim, 1, S, U);
|
2925 |
|
|
|
2926 |
|
|
if (S[0][0] < 0)
|
2927 |
|
|
{
|
2928 |
|
|
S[0][0] *= -1;
|
2929 |
|
|
lambda_matrix_row_negate (U, dim, 0);
|
2930 |
|
|
}
|
2931 |
|
|
gcd_alpha_beta = S[0][0];
|
2932 |
|
|
|
2933 |
|
|
/* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
|
2934 |
|
|
but that is a quite strange case. Instead of ICEing, answer
|
2935 |
|
|
don't know. */
|
2936 |
|
|
if (gcd_alpha_beta == 0)
|
2937 |
|
|
{
|
2938 |
|
|
*overlaps_a = chrec_dont_know;
|
2939 |
|
|
*overlaps_b = chrec_dont_know;
|
2940 |
|
|
*last_conflicts = chrec_dont_know;
|
2941 |
|
|
goto end_analyze_subs_aa;
|
2942 |
|
|
}
|
2943 |
|
|
|
2944 |
|
|
/* The classic "gcd-test". */
|
2945 |
|
|
if (!int_divides_p (gcd_alpha_beta, gamma))
|
2946 |
|
|
{
|
2947 |
|
|
/* The "gcd-test" has determined that there is no integer
|
2948 |
|
|
solution, i.e. there is no dependence. */
|
2949 |
|
|
*overlaps_a = chrec_known;
|
2950 |
|
|
*overlaps_b = chrec_known;
|
2951 |
|
|
*last_conflicts = integer_zero_node;
|
2952 |
|
|
}
|
2953 |
|
|
|
2954 |
|
|
/* Both access functions are univariate. This includes SIV and MIV cases. */
|
2955 |
|
|
else if (nb_vars_a == 1 && nb_vars_b == 1)
|
2956 |
|
|
{
|
2957 |
|
|
/* Both functions should have the same evolution sign. */
|
2958 |
|
|
if (((A[0][0] > 0 && -A[1][0] > 0)
|
2959 |
|
|
|| (A[0][0] < 0 && -A[1][0] < 0)))
|
2960 |
|
|
{
|
2961 |
|
|
/* The solutions are given by:
|
2962 |
|
|
|
|
2963 |
|
|
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
|
2964 |
|
|
| [u21 u22] [y0]
|
2965 |
|
|
|
2966 |
|
|
For a given integer t. Using the following variables,
|
2967 |
|
|
|
2968 |
|
|
| i0 = u11 * gamma / gcd_alpha_beta
|
2969 |
|
|
| j0 = u12 * gamma / gcd_alpha_beta
|
2970 |
|
|
| i1 = u21
|
2971 |
|
|
| j1 = u22
|
2972 |
|
|
|
2973 |
|
|
the solutions are:
|
2974 |
|
|
|
2975 |
|
|
| x0 = i0 + i1 * t,
|
2976 |
|
|
| y0 = j0 + j1 * t. */
|
2977 |
|
|
|
2978 |
|
|
int i0, j0, i1, j1;
|
2979 |
|
|
|
2980 |
|
|
/* X0 and Y0 are the first iterations for which there is a
|
2981 |
|
|
dependence. X0, Y0 are two solutions of the Diophantine
|
2982 |
|
|
equation: chrec_a (X0) = chrec_b (Y0). */
|
2983 |
|
|
int x0, y0;
|
2984 |
|
|
int niter, niter_a, niter_b;
|
2985 |
|
|
tree numiter_a, numiter_b;
|
2986 |
|
|
|
2987 |
|
|
numiter_a = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
|
2988 |
|
|
numiter_b = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_b));
|
2989 |
|
|
|
2990 |
|
|
if (numiter_a == NULL_TREE || numiter_b == NULL_TREE)
|
2991 |
|
|
{
|
2992 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2993 |
|
|
fprintf (dump_file, "affine-affine test failed: missing iteration counts.\n");
|
2994 |
|
|
*overlaps_a = chrec_dont_know;
|
2995 |
|
|
*overlaps_b = chrec_dont_know;
|
2996 |
|
|
*last_conflicts = chrec_dont_know;
|
2997 |
|
|
goto end_analyze_subs_aa;
|
2998 |
|
|
}
|
2999 |
|
|
|
3000 |
|
|
niter_a = int_cst_value (numiter_a);
|
3001 |
|
|
niter_b = int_cst_value (numiter_b);
|
3002 |
|
|
niter = MIN (niter_a, niter_b);
|
3003 |
|
|
|
3004 |
|
|
i0 = U[0][0] * gamma / gcd_alpha_beta;
|
3005 |
|
|
j0 = U[0][1] * gamma / gcd_alpha_beta;
|
3006 |
|
|
i1 = U[1][0];
|
3007 |
|
|
j1 = U[1][1];
|
3008 |
|
|
|
3009 |
|
|
if ((i1 == 0 && i0 < 0)
|
3010 |
|
|
|| (j1 == 0 && j0 < 0))
|
3011 |
|
|
{
|
3012 |
|
|
/* There is no solution.
|
3013 |
|
|
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
|
3014 |
|
|
falls in here, but for the moment we don't look at the
|
3015 |
|
|
upper bound of the iteration domain. */
|
3016 |
|
|
*overlaps_a = chrec_known;
|
3017 |
|
|
*overlaps_b = chrec_known;
|
3018 |
|
|
*last_conflicts = integer_zero_node;
|
3019 |
|
|
}
|
3020 |
|
|
|
3021 |
|
|
else
|
3022 |
|
|
{
|
3023 |
|
|
if (i1 > 0)
|
3024 |
|
|
{
|
3025 |
|
|
tau1 = CEIL (-i0, i1);
|
3026 |
|
|
tau2 = FLOOR_DIV (niter - i0, i1);
|
3027 |
|
|
|
3028 |
|
|
if (j1 > 0)
|
3029 |
|
|
{
|
3030 |
|
|
int last_conflict, min_multiple;
|
3031 |
|
|
tau1 = MAX (tau1, CEIL (-j0, j1));
|
3032 |
|
|
tau2 = MIN (tau2, FLOOR_DIV (niter - j0, j1));
|
3033 |
|
|
|
3034 |
|
|
x0 = i1 * tau1 + i0;
|
3035 |
|
|
y0 = j1 * tau1 + j0;
|
3036 |
|
|
|
3037 |
|
|
/* At this point (x0, y0) is one of the
|
3038 |
|
|
solutions to the Diophantine equation. The
|
3039 |
|
|
next step has to compute the smallest
|
3040 |
|
|
positive solution: the first conflicts. */
|
3041 |
|
|
min_multiple = MIN (x0 / i1, y0 / j1);
|
3042 |
|
|
x0 -= i1 * min_multiple;
|
3043 |
|
|
y0 -= j1 * min_multiple;
|
3044 |
|
|
|
3045 |
|
|
tau1 = (x0 - i0)/i1;
|
3046 |
|
|
last_conflict = tau2 - tau1;
|
3047 |
|
|
|
3048 |
|
|
/* If the overlap occurs outside of the bounds of the
|
3049 |
|
|
loop, there is no dependence. */
|
3050 |
|
|
if (x0 > niter || y0 > niter)
|
3051 |
|
|
{
|
3052 |
|
|
*overlaps_a = chrec_known;
|
3053 |
|
|
*overlaps_b = chrec_known;
|
3054 |
|
|
*last_conflicts = integer_zero_node;
|
3055 |
|
|
}
|
3056 |
|
|
else
|
3057 |
|
|
{
|
3058 |
|
|
*overlaps_a = build_polynomial_chrec
|
3059 |
|
|
(1,
|
3060 |
|
|
build_int_cst (NULL_TREE, x0),
|
3061 |
|
|
build_int_cst (NULL_TREE, i1));
|
3062 |
|
|
*overlaps_b = build_polynomial_chrec
|
3063 |
|
|
(1,
|
3064 |
|
|
build_int_cst (NULL_TREE, y0),
|
3065 |
|
|
build_int_cst (NULL_TREE, j1));
|
3066 |
|
|
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
3067 |
|
|
}
|
3068 |
|
|
}
|
3069 |
|
|
else
|
3070 |
|
|
{
|
3071 |
|
|
/* FIXME: For the moment, the upper bound of the
|
3072 |
|
|
iteration domain for j is not checked. */
|
3073 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3074 |
|
|
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
3075 |
|
|
*overlaps_a = chrec_dont_know;
|
3076 |
|
|
*overlaps_b = chrec_dont_know;
|
3077 |
|
|
*last_conflicts = chrec_dont_know;
|
3078 |
|
|
}
|
3079 |
|
|
}
|
3080 |
|
|
|
3081 |
|
|
else
|
3082 |
|
|
{
|
3083 |
|
|
/* FIXME: For the moment, the upper bound of the
|
3084 |
|
|
iteration domain for i is not checked. */
|
3085 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3086 |
|
|
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
3087 |
|
|
*overlaps_a = chrec_dont_know;
|
3088 |
|
|
*overlaps_b = chrec_dont_know;
|
3089 |
|
|
*last_conflicts = chrec_dont_know;
|
3090 |
|
|
}
|
3091 |
|
|
}
|
3092 |
|
|
}
|
3093 |
|
|
else
|
3094 |
|
|
{
|
3095 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3096 |
|
|
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
3097 |
|
|
*overlaps_a = chrec_dont_know;
|
3098 |
|
|
*overlaps_b = chrec_dont_know;
|
3099 |
|
|
*last_conflicts = chrec_dont_know;
|
3100 |
|
|
}
|
3101 |
|
|
}
|
3102 |
|
|
|
3103 |
|
|
else
|
3104 |
|
|
{
|
3105 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3106 |
|
|
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
3107 |
|
|
*overlaps_a = chrec_dont_know;
|
3108 |
|
|
*overlaps_b = chrec_dont_know;
|
3109 |
|
|
*last_conflicts = chrec_dont_know;
|
3110 |
|
|
}
|
3111 |
|
|
|
3112 |
|
|
end_analyze_subs_aa:
|
3113 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3114 |
|
|
{
|
3115 |
|
|
fprintf (dump_file, " (overlaps_a = ");
|
3116 |
|
|
print_generic_expr (dump_file, *overlaps_a, 0);
|
3117 |
|
|
fprintf (dump_file, ")\n (overlaps_b = ");
|
3118 |
|
|
print_generic_expr (dump_file, *overlaps_b, 0);
|
3119 |
|
|
fprintf (dump_file, ")\n");
|
3120 |
|
|
fprintf (dump_file, ")\n");
|
3121 |
|
|
}
|
3122 |
|
|
}
|
3123 |
|
|
|
3124 |
|
|
/* Returns true when analyze_subscript_affine_affine can be used for
|
3125 |
|
|
determining the dependence relation between chrec_a and chrec_b,
|
3126 |
|
|
that contain symbols. This function modifies chrec_a and chrec_b
|
3127 |
|
|
such that the analysis result is the same, and such that they don't
|
3128 |
|
|
contain symbols, and then can safely be passed to the analyzer.
|
3129 |
|
|
|
3130 |
|
|
Example: The analysis of the following tuples of evolutions produce
|
3131 |
|
|
the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
|
3132 |
|
|
vs. {0, +, 1}_1
|
3133 |
|
|
|
3134 |
|
|
{x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
|
3135 |
|
|
{-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
|
3136 |
|
|
*/
|
3137 |
|
|
|
3138 |
|
|
static bool
|
3139 |
|
|
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
|
3140 |
|
|
{
|
3141 |
|
|
tree diff, type, left_a, left_b, right_b;
|
3142 |
|
|
|
3143 |
|
|
if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
|
3144 |
|
|
|| chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
|
3145 |
|
|
/* FIXME: For the moment not handled. Might be refined later. */
|
3146 |
|
|
return false;
|
3147 |
|
|
|
3148 |
|
|
type = chrec_type (*chrec_a);
|
3149 |
|
|
left_a = CHREC_LEFT (*chrec_a);
|
3150 |
|
|
left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL_TREE);
|
3151 |
|
|
diff = chrec_fold_minus (type, left_a, left_b);
|
3152 |
|
|
|
3153 |
|
|
if (!evolution_function_is_constant_p (diff))
|
3154 |
|
|
return false;
|
3155 |
|
|
|
3156 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3157 |
|
|
fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
|
3158 |
|
|
|
3159 |
|
|
*chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
|
3160 |
|
|
diff, CHREC_RIGHT (*chrec_a));
|
3161 |
|
|
right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL_TREE);
|
3162 |
|
|
*chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
|
3163 |
|
|
build_int_cst (type, 0),
|
3164 |
|
|
right_b);
|
3165 |
|
|
return true;
|
3166 |
|
|
}
|
3167 |
|
|
|
3168 |
|
|
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
|
3169 |
|
|
*OVERLAPS_B are initialized to the functions that describe the
|
3170 |
|
|
relation between the elements accessed twice by CHREC_A and
|
3171 |
|
|
CHREC_B. For k >= 0, the following property is verified:
|
3172 |
|
|
|
3173 |
|
|
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
3174 |
|
|
|
3175 |
|
|
static void
|
3176 |
|
|
analyze_siv_subscript (tree chrec_a,
|
3177 |
|
|
tree chrec_b,
|
3178 |
|
|
tree *overlaps_a,
|
3179 |
|
|
tree *overlaps_b,
|
3180 |
|
|
tree *last_conflicts)
|
3181 |
|
|
{
|
3182 |
|
|
dependence_stats.num_siv++;
|
3183 |
|
|
|
3184 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3185 |
|
|
fprintf (dump_file, "(analyze_siv_subscript \n");
|
3186 |
|
|
|
3187 |
|
|
if (evolution_function_is_constant_p (chrec_a)
|
3188 |
|
|
&& evolution_function_is_affine_p (chrec_b))
|
3189 |
|
|
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
|
3190 |
|
|
overlaps_a, overlaps_b, last_conflicts);
|
3191 |
|
|
|
3192 |
|
|
else if (evolution_function_is_affine_p (chrec_a)
|
3193 |
|
|
&& evolution_function_is_constant_p (chrec_b))
|
3194 |
|
|
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
|
3195 |
|
|
overlaps_b, overlaps_a, last_conflicts);
|
3196 |
|
|
|
3197 |
|
|
else if (evolution_function_is_affine_p (chrec_a)
|
3198 |
|
|
&& evolution_function_is_affine_p (chrec_b))
|
3199 |
|
|
{
|
3200 |
|
|
if (!chrec_contains_symbols (chrec_a)
|
3201 |
|
|
&& !chrec_contains_symbols (chrec_b))
|
3202 |
|
|
{
|
3203 |
|
|
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
3204 |
|
|
overlaps_a, overlaps_b,
|
3205 |
|
|
last_conflicts);
|
3206 |
|
|
|
3207 |
|
|
if (*overlaps_a == chrec_dont_know
|
3208 |
|
|
|| *overlaps_b == chrec_dont_know)
|
3209 |
|
|
dependence_stats.num_siv_unimplemented++;
|
3210 |
|
|
else if (*overlaps_a == chrec_known
|
3211 |
|
|
|| *overlaps_b == chrec_known)
|
3212 |
|
|
dependence_stats.num_siv_independent++;
|
3213 |
|
|
else
|
3214 |
|
|
dependence_stats.num_siv_dependent++;
|
3215 |
|
|
}
|
3216 |
|
|
else if (can_use_analyze_subscript_affine_affine (&chrec_a,
|
3217 |
|
|
&chrec_b))
|
3218 |
|
|
{
|
3219 |
|
|
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
3220 |
|
|
overlaps_a, overlaps_b,
|
3221 |
|
|
last_conflicts);
|
3222 |
|
|
/* FIXME: The number of iterations is a symbolic expression.
|
3223 |
|
|
Compute it properly. */
|
3224 |
|
|
*last_conflicts = chrec_dont_know;
|
3225 |
|
|
|
3226 |
|
|
if (*overlaps_a == chrec_dont_know
|
3227 |
|
|
|| *overlaps_b == chrec_dont_know)
|
3228 |
|
|
dependence_stats.num_siv_unimplemented++;
|
3229 |
|
|
else if (*overlaps_a == chrec_known
|
3230 |
|
|
|| *overlaps_b == chrec_known)
|
3231 |
|
|
dependence_stats.num_siv_independent++;
|
3232 |
|
|
else
|
3233 |
|
|
dependence_stats.num_siv_dependent++;
|
3234 |
|
|
}
|
3235 |
|
|
else
|
3236 |
|
|
goto siv_subscript_dontknow;
|
3237 |
|
|
}
|
3238 |
|
|
|
3239 |
|
|
else
|
3240 |
|
|
{
|
3241 |
|
|
siv_subscript_dontknow:;
|
3242 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3243 |
|
|
fprintf (dump_file, "siv test failed: unimplemented.\n");
|
3244 |
|
|
*overlaps_a = chrec_dont_know;
|
3245 |
|
|
*overlaps_b = chrec_dont_know;
|
3246 |
|
|
*last_conflicts = chrec_dont_know;
|
3247 |
|
|
dependence_stats.num_siv_unimplemented++;
|
3248 |
|
|
}
|
3249 |
|
|
|
3250 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3251 |
|
|
fprintf (dump_file, ")\n");
|
3252 |
|
|
}
|
3253 |
|
|
|
3254 |
|
|
/* Return true when the property can be computed. RES should contain
|
3255 |
|
|
true when calling the first time this function, then it is set to
|
3256 |
|
|
false when one of the evolution steps of an affine CHREC does not
|
3257 |
|
|
divide the constant CST. */
|
3258 |
|
|
|
3259 |
|
|
static bool
|
3260 |
|
|
chrec_steps_divide_constant_p (tree chrec,
|
3261 |
|
|
tree cst,
|
3262 |
|
|
bool *res)
|
3263 |
|
|
{
|
3264 |
|
|
switch (TREE_CODE (chrec))
|
3265 |
|
|
{
|
3266 |
|
|
case POLYNOMIAL_CHREC:
|
3267 |
|
|
if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
|
3268 |
|
|
{
|
3269 |
|
|
if (tree_fold_divides_p (CHREC_RIGHT (chrec), cst))
|
3270 |
|
|
/* Keep RES to true, and iterate on other dimensions. */
|
3271 |
|
|
return chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst, res);
|
3272 |
|
|
|
3273 |
|
|
*res = false;
|
3274 |
|
|
return true;
|
3275 |
|
|
}
|
3276 |
|
|
else
|
3277 |
|
|
/* When the step is a parameter the result is undetermined. */
|
3278 |
|
|
return false;
|
3279 |
|
|
|
3280 |
|
|
default:
|
3281 |
|
|
/* On the initial condition, return true. */
|
3282 |
|
|
return true;
|
3283 |
|
|
}
|
3284 |
|
|
}
|
3285 |
|
|
|
3286 |
|
|
/* Analyze a MIV (Multiple Index Variable) subscript. *OVERLAPS_A and
|
3287 |
|
|
*OVERLAPS_B are initialized to the functions that describe the
|
3288 |
|
|
relation between the elements accessed twice by CHREC_A and
|
3289 |
|
|
CHREC_B. For k >= 0, the following property is verified:
|
3290 |
|
|
|
3291 |
|
|
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
3292 |
|
|
|
3293 |
|
|
static void
|
3294 |
|
|
analyze_miv_subscript (tree chrec_a,
|
3295 |
|
|
tree chrec_b,
|
3296 |
|
|
tree *overlaps_a,
|
3297 |
|
|
tree *overlaps_b,
|
3298 |
|
|
tree *last_conflicts)
|
3299 |
|
|
{
|
3300 |
|
|
/* FIXME: This is a MIV subscript, not yet handled.
|
3301 |
|
|
Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
|
3302 |
|
|
(A[i] vs. A[j]).
|
3303 |
|
|
|
3304 |
|
|
In the SIV test we had to solve a Diophantine equation with two
|
3305 |
|
|
variables. In the MIV case we have to solve a Diophantine
|
3306 |
|
|
equation with 2*n variables (if the subscript uses n IVs).
|
3307 |
|
|
*/
|
3308 |
|
|
bool divide_p = true;
|
3309 |
|
|
tree difference;
|
3310 |
|
|
dependence_stats.num_miv++;
|
3311 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3312 |
|
|
fprintf (dump_file, "(analyze_miv_subscript \n");
|
3313 |
|
|
|
3314 |
|
|
chrec_a = chrec_convert (integer_type_node, chrec_a, NULL_TREE);
|
3315 |
|
|
chrec_b = chrec_convert (integer_type_node, chrec_b, NULL_TREE);
|
3316 |
|
|
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
|
3317 |
|
|
|
3318 |
|
|
if (eq_evolutions_p (chrec_a, chrec_b))
|
3319 |
|
|
{
|
3320 |
|
|
/* Access functions are the same: all the elements are accessed
|
3321 |
|
|
in the same order. */
|
3322 |
|
|
*overlaps_a = integer_zero_node;
|
3323 |
|
|
*overlaps_b = integer_zero_node;
|
3324 |
|
|
*last_conflicts = get_number_of_iters_for_loop (CHREC_VARIABLE (chrec_a));
|
3325 |
|
|
dependence_stats.num_miv_dependent++;
|
3326 |
|
|
}
|
3327 |
|
|
|
3328 |
|
|
else if (evolution_function_is_constant_p (difference)
|
3329 |
|
|
/* For the moment, the following is verified:
|
3330 |
|
|
evolution_function_is_affine_multivariate_p (chrec_a) */
|
3331 |
|
|
&& chrec_steps_divide_constant_p (chrec_a, difference, ÷_p)
|
3332 |
|
|
&& !divide_p)
|
3333 |
|
|
{
|
3334 |
|
|
/* testsuite/.../ssa-chrec-33.c
|
3335 |
|
|
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
|
3336 |
|
|
|
3337 |
|
|
The difference is 1, and the evolution steps are equal to 2,
|
3338 |
|
|
consequently there are no overlapping elements. */
|
3339 |
|
|
*overlaps_a = chrec_known;
|
3340 |
|
|
*overlaps_b = chrec_known;
|
3341 |
|
|
*last_conflicts = integer_zero_node;
|
3342 |
|
|
dependence_stats.num_miv_independent++;
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
else if (evolution_function_is_affine_multivariate_p (chrec_a)
|
3346 |
|
|
&& !chrec_contains_symbols (chrec_a)
|
3347 |
|
|
&& evolution_function_is_affine_multivariate_p (chrec_b)
|
3348 |
|
|
&& !chrec_contains_symbols (chrec_b))
|
3349 |
|
|
{
|
3350 |
|
|
/* testsuite/.../ssa-chrec-35.c
|
3351 |
|
|
{0, +, 1}_2 vs. {0, +, 1}_3
|
3352 |
|
|
the overlapping elements are respectively located at iterations:
|
3353 |
|
|
{0, +, 1}_x and {0, +, 1}_x,
|
3354 |
|
|
in other words, we have the equality:
|
3355 |
|
|
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
|
3356 |
|
|
|
3357 |
|
|
Other examples:
|
3358 |
|
|
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
|
3359 |
|
|
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
|
3360 |
|
|
|
3361 |
|
|
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
|
3362 |
|
|
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
|
3363 |
|
|
*/
|
3364 |
|
|
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
3365 |
|
|
overlaps_a, overlaps_b, last_conflicts);
|
3366 |
|
|
|
3367 |
|
|
if (*overlaps_a == chrec_dont_know
|
3368 |
|
|
|| *overlaps_b == chrec_dont_know)
|
3369 |
|
|
dependence_stats.num_miv_unimplemented++;
|
3370 |
|
|
else if (*overlaps_a == chrec_known
|
3371 |
|
|
|| *overlaps_b == chrec_known)
|
3372 |
|
|
dependence_stats.num_miv_independent++;
|
3373 |
|
|
else
|
3374 |
|
|
dependence_stats.num_miv_dependent++;
|
3375 |
|
|
}
|
3376 |
|
|
|
3377 |
|
|
else
|
3378 |
|
|
{
|
3379 |
|
|
/* When the analysis is too difficult, answer "don't know". */
|
3380 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3381 |
|
|
fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
|
3382 |
|
|
|
3383 |
|
|
*overlaps_a = chrec_dont_know;
|
3384 |
|
|
*overlaps_b = chrec_dont_know;
|
3385 |
|
|
*last_conflicts = chrec_dont_know;
|
3386 |
|
|
dependence_stats.num_miv_unimplemented++;
|
3387 |
|
|
}
|
3388 |
|
|
|
3389 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3390 |
|
|
fprintf (dump_file, ")\n");
|
3391 |
|
|
}
|
3392 |
|
|
|
3393 |
|
|
/* Determines the iterations for which CHREC_A is equal to CHREC_B.
|
3394 |
|
|
OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
|
3395 |
|
|
two functions that describe the iterations that contain conflicting
|
3396 |
|
|
elements.
|
3397 |
|
|
|
3398 |
|
|
Remark: For an integer k >= 0, the following equality is true:
|
3399 |
|
|
|
3400 |
|
|
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
|
3401 |
|
|
*/
|
3402 |
|
|
|
3403 |
|
|
static void
|
3404 |
|
|
analyze_overlapping_iterations (tree chrec_a,
|
3405 |
|
|
tree chrec_b,
|
3406 |
|
|
tree *overlap_iterations_a,
|
3407 |
|
|
tree *overlap_iterations_b,
|
3408 |
|
|
tree *last_conflicts)
|
3409 |
|
|
{
|
3410 |
|
|
dependence_stats.num_subscript_tests++;
|
3411 |
|
|
|
3412 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3413 |
|
|
{
|
3414 |
|
|
fprintf (dump_file, "(analyze_overlapping_iterations \n");
|
3415 |
|
|
fprintf (dump_file, " (chrec_a = ");
|
3416 |
|
|
print_generic_expr (dump_file, chrec_a, 0);
|
3417 |
|
|
fprintf (dump_file, ")\n (chrec_b = ");
|
3418 |
|
|
print_generic_expr (dump_file, chrec_b, 0);
|
3419 |
|
|
fprintf (dump_file, ")\n");
|
3420 |
|
|
}
|
3421 |
|
|
|
3422 |
|
|
if (chrec_a == NULL_TREE
|
3423 |
|
|
|| chrec_b == NULL_TREE
|
3424 |
|
|
|| chrec_contains_undetermined (chrec_a)
|
3425 |
|
|
|| chrec_contains_undetermined (chrec_b))
|
3426 |
|
|
{
|
3427 |
|
|
dependence_stats.num_subscript_undetermined++;
|
3428 |
|
|
|
3429 |
|
|
*overlap_iterations_a = chrec_dont_know;
|
3430 |
|
|
*overlap_iterations_b = chrec_dont_know;
|
3431 |
|
|
}
|
3432 |
|
|
|
3433 |
|
|
/* If they are the same chrec, and are affine, they overlap
|
3434 |
|
|
on every iteration. */
|
3435 |
|
|
else if (eq_evolutions_p (chrec_a, chrec_b)
|
3436 |
|
|
&& evolution_function_is_affine_multivariate_p (chrec_a))
|
3437 |
|
|
{
|
3438 |
|
|
dependence_stats.num_same_subscript_function++;
|
3439 |
|
|
*overlap_iterations_a = integer_zero_node;
|
3440 |
|
|
*overlap_iterations_b = integer_zero_node;
|
3441 |
|
|
*last_conflicts = chrec_dont_know;
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
/* If they aren't the same, and aren't affine, we can't do anything
|
3445 |
|
|
yet. */
|
3446 |
|
|
else if ((chrec_contains_symbols (chrec_a)
|
3447 |
|
|
|| chrec_contains_symbols (chrec_b))
|
3448 |
|
|
&& (!evolution_function_is_affine_multivariate_p (chrec_a)
|
3449 |
|
|
|| !evolution_function_is_affine_multivariate_p (chrec_b)))
|
3450 |
|
|
{
|
3451 |
|
|
dependence_stats.num_subscript_undetermined++;
|
3452 |
|
|
*overlap_iterations_a = chrec_dont_know;
|
3453 |
|
|
*overlap_iterations_b = chrec_dont_know;
|
3454 |
|
|
}
|
3455 |
|
|
|
3456 |
|
|
else if (ziv_subscript_p (chrec_a, chrec_b))
|
3457 |
|
|
analyze_ziv_subscript (chrec_a, chrec_b,
|
3458 |
|
|
overlap_iterations_a, overlap_iterations_b,
|
3459 |
|
|
last_conflicts);
|
3460 |
|
|
|
3461 |
|
|
else if (siv_subscript_p (chrec_a, chrec_b))
|
3462 |
|
|
analyze_siv_subscript (chrec_a, chrec_b,
|
3463 |
|
|
overlap_iterations_a, overlap_iterations_b,
|
3464 |
|
|
last_conflicts);
|
3465 |
|
|
|
3466 |
|
|
else
|
3467 |
|
|
analyze_miv_subscript (chrec_a, chrec_b,
|
3468 |
|
|
overlap_iterations_a, overlap_iterations_b,
|
3469 |
|
|
last_conflicts);
|
3470 |
|
|
|
3471 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3472 |
|
|
{
|
3473 |
|
|
fprintf (dump_file, " (overlap_iterations_a = ");
|
3474 |
|
|
print_generic_expr (dump_file, *overlap_iterations_a, 0);
|
3475 |
|
|
fprintf (dump_file, ")\n (overlap_iterations_b = ");
|
3476 |
|
|
print_generic_expr (dump_file, *overlap_iterations_b, 0);
|
3477 |
|
|
fprintf (dump_file, ")\n");
|
3478 |
|
|
fprintf (dump_file, ")\n");
|
3479 |
|
|
}
|
3480 |
|
|
}
|
3481 |
|
|
|
3482 |
|
|
/* Helper function for uniquely inserting distance vectors. */
|
3483 |
|
|
|
3484 |
|
|
static void
|
3485 |
|
|
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
|
3486 |
|
|
{
|
3487 |
|
|
unsigned i;
|
3488 |
|
|
lambda_vector v;
|
3489 |
|
|
|
3490 |
|
|
for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, v); i++)
|
3491 |
|
|
if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
|
3492 |
|
|
return;
|
3493 |
|
|
|
3494 |
|
|
VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
|
3495 |
|
|
}
|
3496 |
|
|
|
3497 |
|
|
/* Helper function for uniquely inserting direction vectors. */
|
3498 |
|
|
|
3499 |
|
|
static void
|
3500 |
|
|
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
|
3501 |
|
|
{
|
3502 |
|
|
unsigned i;
|
3503 |
|
|
lambda_vector v;
|
3504 |
|
|
|
3505 |
|
|
for (i = 0; VEC_iterate (lambda_vector, DDR_DIR_VECTS (ddr), i, v); i++)
|
3506 |
|
|
if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
|
3507 |
|
|
return;
|
3508 |
|
|
|
3509 |
|
|
VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
|
3510 |
|
|
}
|
3511 |
|
|
|
3512 |
|
|
/* Add a distance of 1 on all the loops outer than INDEX. If we
|
3513 |
|
|
haven't yet determined a distance for this outer loop, push a new
|
3514 |
|
|
distance vector composed of the previous distance, and a distance
|
3515 |
|
|
of 1 for this outer loop. Example:
|
3516 |
|
|
|
3517 |
|
|
| loop_1
|
3518 |
|
|
| loop_2
|
3519 |
|
|
| A[10]
|
3520 |
|
|
| endloop_2
|
3521 |
|
|
| endloop_1
|
3522 |
|
|
|
3523 |
|
|
Saved vectors are of the form (dist_in_1, dist_in_2). First, we
|
3524 |
|
|
save (0, 1), then we have to save (1, 0). */
|
3525 |
|
|
|
3526 |
|
|
static void
|
3527 |
|
|
add_outer_distances (struct data_dependence_relation *ddr,
|
3528 |
|
|
lambda_vector dist_v, int index)
|
3529 |
|
|
{
|
3530 |
|
|
/* For each outer loop where init_v is not set, the accesses are
|
3531 |
|
|
in dependence of distance 1 in the loop. */
|
3532 |
|
|
while (--index >= 0)
|
3533 |
|
|
{
|
3534 |
|
|
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3535 |
|
|
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
3536 |
|
|
save_v[index] = 1;
|
3537 |
|
|
save_dist_v (ddr, save_v);
|
3538 |
|
|
}
|
3539 |
|
|
}
|
3540 |
|
|
|
3541 |
|
|
/* Return false when fail to represent the data dependence as a
|
3542 |
|
|
distance vector. INIT_B is set to true when a component has been
|
3543 |
|
|
added to the distance vector DIST_V. INDEX_CARRY is then set to
|
3544 |
|
|
the index in DIST_V that carries the dependence. */
|
3545 |
|
|
|
3546 |
|
|
static bool
|
3547 |
|
|
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
|
3548 |
|
|
struct data_reference *ddr_a,
|
3549 |
|
|
struct data_reference *ddr_b,
|
3550 |
|
|
lambda_vector dist_v, bool *init_b,
|
3551 |
|
|
int *index_carry)
|
3552 |
|
|
{
|
3553 |
|
|
unsigned i;
|
3554 |
|
|
lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3555 |
|
|
|
3556 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
3557 |
|
|
{
|
3558 |
|
|
tree access_fn_a, access_fn_b;
|
3559 |
|
|
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
3560 |
|
|
|
3561 |
|
|
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
3562 |
|
|
{
|
3563 |
|
|
non_affine_dependence_relation (ddr);
|
3564 |
|
|
return false;
|
3565 |
|
|
}
|
3566 |
|
|
|
3567 |
|
|
access_fn_a = DR_ACCESS_FN (ddr_a, i);
|
3568 |
|
|
access_fn_b = DR_ACCESS_FN (ddr_b, i);
|
3569 |
|
|
|
3570 |
|
|
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
|
3571 |
|
|
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
|
3572 |
|
|
{
|
3573 |
|
|
int dist, index;
|
3574 |
|
|
int index_a = index_in_loop_nest (CHREC_VARIABLE (access_fn_a),
|
3575 |
|
|
DDR_LOOP_NEST (ddr));
|
3576 |
|
|
int index_b = index_in_loop_nest (CHREC_VARIABLE (access_fn_b),
|
3577 |
|
|
DDR_LOOP_NEST (ddr));
|
3578 |
|
|
|
3579 |
|
|
/* The dependence is carried by the outermost loop. Example:
|
3580 |
|
|
| loop_1
|
3581 |
|
|
| A[{4, +, 1}_1]
|
3582 |
|
|
| loop_2
|
3583 |
|
|
| A[{5, +, 1}_2]
|
3584 |
|
|
| endloop_2
|
3585 |
|
|
| endloop_1
|
3586 |
|
|
In this case, the dependence is carried by loop_1. */
|
3587 |
|
|
index = index_a < index_b ? index_a : index_b;
|
3588 |
|
|
*index_carry = MIN (index, *index_carry);
|
3589 |
|
|
|
3590 |
|
|
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
3591 |
|
|
{
|
3592 |
|
|
non_affine_dependence_relation (ddr);
|
3593 |
|
|
return false;
|
3594 |
|
|
}
|
3595 |
|
|
|
3596 |
|
|
dist = int_cst_value (SUB_DISTANCE (subscript));
|
3597 |
|
|
|
3598 |
|
|
/* This is the subscript coupling test. If we have already
|
3599 |
|
|
recorded a distance for this loop (a distance coming from
|
3600 |
|
|
another subscript), it should be the same. For example,
|
3601 |
|
|
in the following code, there is no dependence:
|
3602 |
|
|
|
3603 |
|
|
| loop i = 0, N, 1
|
3604 |
|
|
| T[i+1][i] = ...
|
3605 |
|
|
| ... = T[i][i]
|
3606 |
|
|
| endloop
|
3607 |
|
|
*/
|
3608 |
|
|
if (init_v[index] != 0 && dist_v[index] != dist)
|
3609 |
|
|
{
|
3610 |
|
|
finalize_ddr_dependent (ddr, chrec_known);
|
3611 |
|
|
return false;
|
3612 |
|
|
}
|
3613 |
|
|
|
3614 |
|
|
dist_v[index] = dist;
|
3615 |
|
|
init_v[index] = 1;
|
3616 |
|
|
*init_b = true;
|
3617 |
|
|
}
|
3618 |
|
|
else
|
3619 |
|
|
{
|
3620 |
|
|
/* This can be for example an affine vs. constant dependence
|
3621 |
|
|
(T[i] vs. T[3]) that is not an affine dependence and is
|
3622 |
|
|
not representable as a distance vector. */
|
3623 |
|
|
non_affine_dependence_relation (ddr);
|
3624 |
|
|
return false;
|
3625 |
|
|
}
|
3626 |
|
|
}
|
3627 |
|
|
|
3628 |
|
|
return true;
|
3629 |
|
|
}
|
3630 |
|
|
|
3631 |
|
|
/* Return true when the DDR contains two data references that have the
|
3632 |
|
|
same access functions. */
|
3633 |
|
|
|
3634 |
|
|
static bool
|
3635 |
|
|
same_access_functions (struct data_dependence_relation *ddr)
|
3636 |
|
|
{
|
3637 |
|
|
unsigned i;
|
3638 |
|
|
|
3639 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
3640 |
|
|
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
|
3641 |
|
|
DR_ACCESS_FN (DDR_B (ddr), i)))
|
3642 |
|
|
return false;
|
3643 |
|
|
|
3644 |
|
|
return true;
|
3645 |
|
|
}
|
3646 |
|
|
|
3647 |
|
|
/* Helper function for the case where DDR_A and DDR_B are the same
|
3648 |
|
|
multivariate access function. */
|
3649 |
|
|
|
3650 |
|
|
static void
|
3651 |
|
|
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
|
3652 |
|
|
{
|
3653 |
|
|
int x_1, x_2;
|
3654 |
|
|
tree c_1 = CHREC_LEFT (c_2);
|
3655 |
|
|
tree c_0 = CHREC_LEFT (c_1);
|
3656 |
|
|
lambda_vector dist_v;
|
3657 |
|
|
|
3658 |
|
|
/* Polynomials with more than 2 variables are not handled yet. */
|
3659 |
|
|
if (TREE_CODE (c_0) != INTEGER_CST)
|
3660 |
|
|
{
|
3661 |
|
|
DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
|
3662 |
|
|
return;
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
|
3666 |
|
|
x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
|
3667 |
|
|
|
3668 |
|
|
/* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
|
3669 |
|
|
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3670 |
|
|
dist_v[x_1] = int_cst_value (CHREC_RIGHT (c_2));
|
3671 |
|
|
dist_v[x_2] = -int_cst_value (CHREC_RIGHT (c_1));
|
3672 |
|
|
save_dist_v (ddr, dist_v);
|
3673 |
|
|
|
3674 |
|
|
add_outer_distances (ddr, dist_v, x_1);
|
3675 |
|
|
}
|
3676 |
|
|
|
3677 |
|
|
/* Helper function for the case where DDR_A and DDR_B are the same
|
3678 |
|
|
access functions. */
|
3679 |
|
|
|
3680 |
|
|
static void
|
3681 |
|
|
add_other_self_distances (struct data_dependence_relation *ddr)
|
3682 |
|
|
{
|
3683 |
|
|
lambda_vector dist_v;
|
3684 |
|
|
unsigned i;
|
3685 |
|
|
int index_carry = DDR_NB_LOOPS (ddr);
|
3686 |
|
|
|
3687 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
3688 |
|
|
{
|
3689 |
|
|
tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
|
3690 |
|
|
|
3691 |
|
|
if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
|
3692 |
|
|
{
|
3693 |
|
|
if (!evolution_function_is_univariate_p (access_fun))
|
3694 |
|
|
{
|
3695 |
|
|
if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
|
3696 |
|
|
{
|
3697 |
|
|
DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
|
3698 |
|
|
return;
|
3699 |
|
|
}
|
3700 |
|
|
|
3701 |
|
|
add_multivariate_self_dist (ddr, DR_ACCESS_FN (DDR_A (ddr), 0));
|
3702 |
|
|
return;
|
3703 |
|
|
}
|
3704 |
|
|
|
3705 |
|
|
index_carry = MIN (index_carry,
|
3706 |
|
|
index_in_loop_nest (CHREC_VARIABLE (access_fun),
|
3707 |
|
|
DDR_LOOP_NEST (ddr)));
|
3708 |
|
|
}
|
3709 |
|
|
}
|
3710 |
|
|
|
3711 |
|
|
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3712 |
|
|
add_outer_distances (ddr, dist_v, index_carry);
|
3713 |
|
|
}
|
3714 |
|
|
|
3715 |
|
|
/* Compute the classic per loop distance vector. DDR is the data
|
3716 |
|
|
dependence relation to build a vector from. Return false when fail
|
3717 |
|
|
to represent the data dependence as a distance vector. */
|
3718 |
|
|
|
3719 |
|
|
static bool
|
3720 |
|
|
build_classic_dist_vector (struct data_dependence_relation *ddr)
|
3721 |
|
|
{
|
3722 |
|
|
bool init_b = false;
|
3723 |
|
|
int index_carry = DDR_NB_LOOPS (ddr);
|
3724 |
|
|
lambda_vector dist_v;
|
3725 |
|
|
|
3726 |
|
|
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
3727 |
|
|
return true;
|
3728 |
|
|
|
3729 |
|
|
if (same_access_functions (ddr))
|
3730 |
|
|
{
|
3731 |
|
|
/* Save the 0 vector. */
|
3732 |
|
|
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3733 |
|
|
save_dist_v (ddr, dist_v);
|
3734 |
|
|
|
3735 |
|
|
if (DDR_NB_LOOPS (ddr) > 1)
|
3736 |
|
|
add_other_self_distances (ddr);
|
3737 |
|
|
|
3738 |
|
|
return true;
|
3739 |
|
|
}
|
3740 |
|
|
|
3741 |
|
|
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3742 |
|
|
if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
|
3743 |
|
|
dist_v, &init_b, &index_carry))
|
3744 |
|
|
return false;
|
3745 |
|
|
|
3746 |
|
|
/* Save the distance vector if we initialized one. */
|
3747 |
|
|
if (init_b)
|
3748 |
|
|
{
|
3749 |
|
|
/* Verify a basic constraint: classic distance vectors should
|
3750 |
|
|
always be lexicographically positive.
|
3751 |
|
|
|
3752 |
|
|
Data references are collected in the order of execution of
|
3753 |
|
|
the program, thus for the following loop
|
3754 |
|
|
|
3755 |
|
|
| for (i = 1; i < 100; i++)
|
3756 |
|
|
| for (j = 1; j < 100; j++)
|
3757 |
|
|
| {
|
3758 |
|
|
| t = T[j+1][i-1]; // A
|
3759 |
|
|
| T[j][i] = t + 2; // B
|
3760 |
|
|
| }
|
3761 |
|
|
|
3762 |
|
|
references are collected following the direction of the wind:
|
3763 |
|
|
A then B. The data dependence tests are performed also
|
3764 |
|
|
following this order, such that we're looking at the distance
|
3765 |
|
|
separating the elements accessed by A from the elements later
|
3766 |
|
|
accessed by B. But in this example, the distance returned by
|
3767 |
|
|
test_dep (A, B) is lexicographically negative (-1, 1), that
|
3768 |
|
|
means that the access A occurs later than B with respect to
|
3769 |
|
|
the outer loop, ie. we're actually looking upwind. In this
|
3770 |
|
|
case we solve test_dep (B, A) looking downwind to the
|
3771 |
|
|
lexicographically positive solution, that returns the
|
3772 |
|
|
distance vector (1, -1). */
|
3773 |
|
|
if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
|
3774 |
|
|
{
|
3775 |
|
|
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3776 |
|
|
subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
|
3777 |
|
|
compute_subscript_distance (ddr);
|
3778 |
|
|
build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
|
3779 |
|
|
save_v, &init_b, &index_carry);
|
3780 |
|
|
save_dist_v (ddr, save_v);
|
3781 |
|
|
|
3782 |
|
|
/* In this case there is a dependence forward for all the
|
3783 |
|
|
outer loops:
|
3784 |
|
|
|
3785 |
|
|
| for (k = 1; k < 100; k++)
|
3786 |
|
|
| for (i = 1; i < 100; i++)
|
3787 |
|
|
| for (j = 1; j < 100; j++)
|
3788 |
|
|
| {
|
3789 |
|
|
| t = T[j+1][i-1]; // A
|
3790 |
|
|
| T[j][i] = t + 2; // B
|
3791 |
|
|
| }
|
3792 |
|
|
|
3793 |
|
|
the vectors are:
|
3794 |
|
|
(0, 1, -1)
|
3795 |
|
|
(1, 1, -1)
|
3796 |
|
|
(1, -1, 1)
|
3797 |
|
|
*/
|
3798 |
|
|
if (DDR_NB_LOOPS (ddr) > 1)
|
3799 |
|
|
{
|
3800 |
|
|
add_outer_distances (ddr, save_v, index_carry);
|
3801 |
|
|
add_outer_distances (ddr, dist_v, index_carry);
|
3802 |
|
|
}
|
3803 |
|
|
}
|
3804 |
|
|
else
|
3805 |
|
|
{
|
3806 |
|
|
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3807 |
|
|
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
3808 |
|
|
save_dist_v (ddr, save_v);
|
3809 |
|
|
|
3810 |
|
|
if (DDR_NB_LOOPS (ddr) > 1)
|
3811 |
|
|
{
|
3812 |
|
|
lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3813 |
|
|
|
3814 |
|
|
subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr));
|
3815 |
|
|
compute_subscript_distance (ddr);
|
3816 |
|
|
build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
|
3817 |
|
|
opposite_v, &init_b, &index_carry);
|
3818 |
|
|
|
3819 |
|
|
add_outer_distances (ddr, dist_v, index_carry);
|
3820 |
|
|
add_outer_distances (ddr, opposite_v, index_carry);
|
3821 |
|
|
}
|
3822 |
|
|
}
|
3823 |
|
|
}
|
3824 |
|
|
else
|
3825 |
|
|
{
|
3826 |
|
|
/* There is a distance of 1 on all the outer loops: Example:
|
3827 |
|
|
there is a dependence of distance 1 on loop_1 for the array A.
|
3828 |
|
|
|
3829 |
|
|
| loop_1
|
3830 |
|
|
| A[5] = ...
|
3831 |
|
|
| endloop
|
3832 |
|
|
*/
|
3833 |
|
|
add_outer_distances (ddr, dist_v,
|
3834 |
|
|
lambda_vector_first_nz (dist_v,
|
3835 |
|
|
DDR_NB_LOOPS (ddr), 0));
|
3836 |
|
|
}
|
3837 |
|
|
|
3838 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3839 |
|
|
{
|
3840 |
|
|
unsigned i;
|
3841 |
|
|
|
3842 |
|
|
fprintf (dump_file, "(build_classic_dist_vector\n");
|
3843 |
|
|
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
3844 |
|
|
{
|
3845 |
|
|
fprintf (dump_file, " dist_vector = (");
|
3846 |
|
|
print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
|
3847 |
|
|
DDR_NB_LOOPS (ddr));
|
3848 |
|
|
fprintf (dump_file, " )\n");
|
3849 |
|
|
}
|
3850 |
|
|
fprintf (dump_file, ")\n");
|
3851 |
|
|
}
|
3852 |
|
|
|
3853 |
|
|
return true;
|
3854 |
|
|
}
|
3855 |
|
|
|
3856 |
|
|
/* Return the direction for a given distance.
|
3857 |
|
|
FIXME: Computing dir this way is suboptimal, since dir can catch
|
3858 |
|
|
cases that dist is unable to represent. */
|
3859 |
|
|
|
3860 |
|
|
static inline enum data_dependence_direction
|
3861 |
|
|
dir_from_dist (int dist)
|
3862 |
|
|
{
|
3863 |
|
|
if (dist > 0)
|
3864 |
|
|
return dir_positive;
|
3865 |
|
|
else if (dist < 0)
|
3866 |
|
|
return dir_negative;
|
3867 |
|
|
else
|
3868 |
|
|
return dir_equal;
|
3869 |
|
|
}
|
3870 |
|
|
|
3871 |
|
|
/* Compute the classic per loop direction vector. DDR is the data
|
3872 |
|
|
dependence relation to build a vector from. */
|
3873 |
|
|
|
3874 |
|
|
static void
|
3875 |
|
|
build_classic_dir_vector (struct data_dependence_relation *ddr)
|
3876 |
|
|
{
|
3877 |
|
|
unsigned i, j;
|
3878 |
|
|
lambda_vector dist_v;
|
3879 |
|
|
|
3880 |
|
|
for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
|
3881 |
|
|
{
|
3882 |
|
|
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
3883 |
|
|
|
3884 |
|
|
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
|
3885 |
|
|
dir_v[j] = dir_from_dist (dist_v[j]);
|
3886 |
|
|
|
3887 |
|
|
save_dir_v (ddr, dir_v);
|
3888 |
|
|
}
|
3889 |
|
|
}
|
3890 |
|
|
|
3891 |
|
|
/* Helper function. Returns true when there is a dependence between
|
3892 |
|
|
data references DRA and DRB. */
|
3893 |
|
|
|
3894 |
|
|
static bool
|
3895 |
|
|
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
|
3896 |
|
|
struct data_reference *dra,
|
3897 |
|
|
struct data_reference *drb)
|
3898 |
|
|
{
|
3899 |
|
|
unsigned int i;
|
3900 |
|
|
tree last_conflicts;
|
3901 |
|
|
struct subscript *subscript;
|
3902 |
|
|
|
3903 |
|
|
for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
|
3904 |
|
|
i++)
|
3905 |
|
|
{
|
3906 |
|
|
tree overlaps_a, overlaps_b;
|
3907 |
|
|
|
3908 |
|
|
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
|
3909 |
|
|
DR_ACCESS_FN (drb, i),
|
3910 |
|
|
&overlaps_a, &overlaps_b,
|
3911 |
|
|
&last_conflicts);
|
3912 |
|
|
|
3913 |
|
|
if (chrec_contains_undetermined (overlaps_a)
|
3914 |
|
|
|| chrec_contains_undetermined (overlaps_b))
|
3915 |
|
|
{
|
3916 |
|
|
finalize_ddr_dependent (ddr, chrec_dont_know);
|
3917 |
|
|
dependence_stats.num_dependence_undetermined++;
|
3918 |
|
|
return false;
|
3919 |
|
|
}
|
3920 |
|
|
|
3921 |
|
|
else if (overlaps_a == chrec_known
|
3922 |
|
|
|| overlaps_b == chrec_known)
|
3923 |
|
|
{
|
3924 |
|
|
finalize_ddr_dependent (ddr, chrec_known);
|
3925 |
|
|
dependence_stats.num_dependence_independent++;
|
3926 |
|
|
return false;
|
3927 |
|
|
}
|
3928 |
|
|
|
3929 |
|
|
else
|
3930 |
|
|
{
|
3931 |
|
|
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
|
3932 |
|
|
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
|
3933 |
|
|
SUB_LAST_CONFLICT (subscript) = last_conflicts;
|
3934 |
|
|
}
|
3935 |
|
|
}
|
3936 |
|
|
|
3937 |
|
|
return true;
|
3938 |
|
|
}
|
3939 |
|
|
|
3940 |
|
|
/* Computes the conflicting iterations, and initialize DDR. */
|
3941 |
|
|
|
3942 |
|
|
static void
|
3943 |
|
|
subscript_dependence_tester (struct data_dependence_relation *ddr)
|
3944 |
|
|
{
|
3945 |
|
|
|
3946 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3947 |
|
|
fprintf (dump_file, "(subscript_dependence_tester \n");
|
3948 |
|
|
|
3949 |
|
|
if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr)))
|
3950 |
|
|
dependence_stats.num_dependence_dependent++;
|
3951 |
|
|
|
3952 |
|
|
compute_subscript_distance (ddr);
|
3953 |
|
|
if (build_classic_dist_vector (ddr))
|
3954 |
|
|
build_classic_dir_vector (ddr);
|
3955 |
|
|
|
3956 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3957 |
|
|
fprintf (dump_file, ")\n");
|
3958 |
|
|
}
|
3959 |
|
|
|
3960 |
|
|
/* Returns true when all the access functions of A are affine or
|
3961 |
|
|
constant. */
|
3962 |
|
|
|
3963 |
|
|
static bool
|
3964 |
|
|
access_functions_are_affine_or_constant_p (struct data_reference *a)
|
3965 |
|
|
{
|
3966 |
|
|
unsigned int i;
|
3967 |
|
|
VEC(tree,heap) **fns = DR_ACCESS_FNS_ADDR (a);
|
3968 |
|
|
tree t;
|
3969 |
|
|
|
3970 |
|
|
for (i = 0; VEC_iterate (tree, *fns, i, t); i++)
|
3971 |
|
|
if (!evolution_function_is_constant_p (t)
|
3972 |
|
|
&& !evolution_function_is_affine_multivariate_p (t))
|
3973 |
|
|
return false;
|
3974 |
|
|
|
3975 |
|
|
return true;
|
3976 |
|
|
}
|
3977 |
|
|
|
3978 |
|
|
/* This computes the affine dependence relation between A and B.
|
3979 |
|
|
CHREC_KNOWN is used for representing the independence between two
|
3980 |
|
|
accesses, while CHREC_DONT_KNOW is used for representing the unknown
|
3981 |
|
|
relation.
|
3982 |
|
|
|
3983 |
|
|
Note that it is possible to stop the computation of the dependence
|
3984 |
|
|
relation the first time we detect a CHREC_KNOWN element for a given
|
3985 |
|
|
subscript. */
|
3986 |
|
|
|
3987 |
|
|
static void
|
3988 |
|
|
compute_affine_dependence (struct data_dependence_relation *ddr)
|
3989 |
|
|
{
|
3990 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
3991 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
3992 |
|
|
|
3993 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3994 |
|
|
{
|
3995 |
|
|
fprintf (dump_file, "(compute_affine_dependence\n");
|
3996 |
|
|
fprintf (dump_file, " (stmt_a = \n");
|
3997 |
|
|
print_generic_expr (dump_file, DR_STMT (dra), 0);
|
3998 |
|
|
fprintf (dump_file, ")\n (stmt_b = \n");
|
3999 |
|
|
print_generic_expr (dump_file, DR_STMT (drb), 0);
|
4000 |
|
|
fprintf (dump_file, ")\n");
|
4001 |
|
|
}
|
4002 |
|
|
|
4003 |
|
|
/* Analyze only when the dependence relation is not yet known. */
|
4004 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
4005 |
|
|
{
|
4006 |
|
|
dependence_stats.num_dependence_tests++;
|
4007 |
|
|
|
4008 |
|
|
if (access_functions_are_affine_or_constant_p (dra)
|
4009 |
|
|
&& access_functions_are_affine_or_constant_p (drb))
|
4010 |
|
|
subscript_dependence_tester (ddr);
|
4011 |
|
|
|
4012 |
|
|
/* As a last case, if the dependence cannot be determined, or if
|
4013 |
|
|
the dependence is considered too difficult to determine, answer
|
4014 |
|
|
"don't know". */
|
4015 |
|
|
else
|
4016 |
|
|
{
|
4017 |
|
|
dependence_stats.num_dependence_undetermined++;
|
4018 |
|
|
|
4019 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4020 |
|
|
{
|
4021 |
|
|
fprintf (dump_file, "Data ref a:\n");
|
4022 |
|
|
dump_data_reference (dump_file, dra);
|
4023 |
|
|
fprintf (dump_file, "Data ref b:\n");
|
4024 |
|
|
dump_data_reference (dump_file, drb);
|
4025 |
|
|
fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
|
4026 |
|
|
}
|
4027 |
|
|
finalize_ddr_dependent (ddr, chrec_dont_know);
|
4028 |
|
|
}
|
4029 |
|
|
}
|
4030 |
|
|
|
4031 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4032 |
|
|
fprintf (dump_file, ")\n");
|
4033 |
|
|
}
|
4034 |
|
|
|
4035 |
|
|
/* This computes the dependence relation for the same data
|
4036 |
|
|
reference into DDR. */
|
4037 |
|
|
|
4038 |
|
|
static void
|
4039 |
|
|
compute_self_dependence (struct data_dependence_relation *ddr)
|
4040 |
|
|
{
|
4041 |
|
|
unsigned int i;
|
4042 |
|
|
struct subscript *subscript;
|
4043 |
|
|
|
4044 |
|
|
for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
|
4045 |
|
|
i++)
|
4046 |
|
|
{
|
4047 |
|
|
/* The accessed index overlaps for each iteration. */
|
4048 |
|
|
SUB_CONFLICTS_IN_A (subscript) = integer_zero_node;
|
4049 |
|
|
SUB_CONFLICTS_IN_B (subscript) = integer_zero_node;
|
4050 |
|
|
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
4051 |
|
|
}
|
4052 |
|
|
|
4053 |
|
|
/* The distance vector is the zero vector. */
|
4054 |
|
|
save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
|
4055 |
|
|
save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
|
4056 |
|
|
}
|
4057 |
|
|
|
4058 |
|
|
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
|
4059 |
|
|
the data references in DATAREFS, in the LOOP_NEST. When
|
4060 |
|
|
COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
|
4061 |
|
|
relations. */
|
4062 |
|
|
|
4063 |
|
|
static void
|
4064 |
|
|
compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
|
4065 |
|
|
VEC (ddr_p, heap) **dependence_relations,
|
4066 |
|
|
VEC (loop_p, heap) *loop_nest,
|
4067 |
|
|
bool compute_self_and_rr)
|
4068 |
|
|
{
|
4069 |
|
|
struct data_dependence_relation *ddr;
|
4070 |
|
|
struct data_reference *a, *b;
|
4071 |
|
|
unsigned int i, j;
|
4072 |
|
|
|
4073 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
|
4074 |
|
|
for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
|
4075 |
|
|
if (!DR_IS_READ (a) || !DR_IS_READ (b) || compute_self_and_rr)
|
4076 |
|
|
{
|
4077 |
|
|
ddr = initialize_data_dependence_relation (a, b, loop_nest);
|
4078 |
|
|
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
4079 |
|
|
compute_affine_dependence (ddr);
|
4080 |
|
|
}
|
4081 |
|
|
|
4082 |
|
|
if (compute_self_and_rr)
|
4083 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, a); i++)
|
4084 |
|
|
{
|
4085 |
|
|
ddr = initialize_data_dependence_relation (a, a, loop_nest);
|
4086 |
|
|
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
4087 |
|
|
compute_self_dependence (ddr);
|
4088 |
|
|
}
|
4089 |
|
|
}
|
4090 |
|
|
|
4091 |
|
|
/* Search the data references in LOOP, and record the information into
|
4092 |
|
|
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
4093 |
|
|
difficult case, returns NULL_TREE otherwise.
|
4094 |
|
|
|
4095 |
|
|
TODO: This function should be made smarter so that it can handle address
|
4096 |
|
|
arithmetic as if they were array accesses, etc. */
|
4097 |
|
|
|
4098 |
|
|
tree
|
4099 |
|
|
find_data_references_in_loop (struct loop *loop,
|
4100 |
|
|
VEC (data_reference_p, heap) **datarefs)
|
4101 |
|
|
{
|
4102 |
|
|
basic_block bb, *bbs;
|
4103 |
|
|
unsigned int i;
|
4104 |
|
|
block_stmt_iterator bsi;
|
4105 |
|
|
struct data_reference *dr;
|
4106 |
|
|
|
4107 |
|
|
bbs = get_loop_body (loop);
|
4108 |
|
|
|
4109 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
4110 |
|
|
{
|
4111 |
|
|
bb = bbs[i];
|
4112 |
|
|
|
4113 |
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
4114 |
|
|
{
|
4115 |
|
|
tree stmt = bsi_stmt (bsi);
|
4116 |
|
|
|
4117 |
|
|
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
|
4118 |
|
|
Calls have side-effects, except those to const or pure
|
4119 |
|
|
functions. */
|
4120 |
|
|
if ((TREE_CODE (stmt) == CALL_EXPR
|
4121 |
|
|
&& !(call_expr_flags (stmt) & (ECF_CONST | ECF_PURE)))
|
4122 |
|
|
|| (TREE_CODE (stmt) == ASM_EXPR
|
4123 |
|
|
&& ASM_VOLATILE_P (stmt)))
|
4124 |
|
|
goto insert_dont_know_node;
|
4125 |
|
|
|
4126 |
|
|
if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
|
4127 |
|
|
continue;
|
4128 |
|
|
|
4129 |
|
|
switch (TREE_CODE (stmt))
|
4130 |
|
|
{
|
4131 |
|
|
case MODIFY_EXPR:
|
4132 |
|
|
{
|
4133 |
|
|
bool one_inserted = false;
|
4134 |
|
|
tree opnd0 = TREE_OPERAND (stmt, 0);
|
4135 |
|
|
tree opnd1 = TREE_OPERAND (stmt, 1);
|
4136 |
|
|
|
4137 |
|
|
if (TREE_CODE (opnd0) == ARRAY_REF
|
4138 |
|
|
|| TREE_CODE (opnd0) == INDIRECT_REF
|
4139 |
|
|
|| TREE_CODE (opnd0) == COMPONENT_REF)
|
4140 |
|
|
{
|
4141 |
|
|
dr = create_data_ref (opnd0, stmt, false);
|
4142 |
|
|
if (dr)
|
4143 |
|
|
{
|
4144 |
|
|
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
|
4145 |
|
|
one_inserted = true;
|
4146 |
|
|
}
|
4147 |
|
|
}
|
4148 |
|
|
|
4149 |
|
|
if (TREE_CODE (opnd1) == ARRAY_REF
|
4150 |
|
|
|| TREE_CODE (opnd1) == INDIRECT_REF
|
4151 |
|
|
|| TREE_CODE (opnd1) == COMPONENT_REF)
|
4152 |
|
|
{
|
4153 |
|
|
dr = create_data_ref (opnd1, stmt, true);
|
4154 |
|
|
if (dr)
|
4155 |
|
|
{
|
4156 |
|
|
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
|
4157 |
|
|
one_inserted = true;
|
4158 |
|
|
}
|
4159 |
|
|
}
|
4160 |
|
|
|
4161 |
|
|
if (!one_inserted)
|
4162 |
|
|
goto insert_dont_know_node;
|
4163 |
|
|
|
4164 |
|
|
break;
|
4165 |
|
|
}
|
4166 |
|
|
|
4167 |
|
|
case CALL_EXPR:
|
4168 |
|
|
{
|
4169 |
|
|
tree args;
|
4170 |
|
|
bool one_inserted = false;
|
4171 |
|
|
|
4172 |
|
|
for (args = TREE_OPERAND (stmt, 1); args;
|
4173 |
|
|
args = TREE_CHAIN (args))
|
4174 |
|
|
if (TREE_CODE (TREE_VALUE (args)) == ARRAY_REF
|
4175 |
|
|
|| TREE_CODE (TREE_VALUE (args)) == INDIRECT_REF
|
4176 |
|
|
|| TREE_CODE (TREE_VALUE (args)) == COMPONENT_REF)
|
4177 |
|
|
{
|
4178 |
|
|
dr = create_data_ref (TREE_VALUE (args), stmt, true);
|
4179 |
|
|
if (dr)
|
4180 |
|
|
{
|
4181 |
|
|
VEC_safe_push (data_reference_p, heap, *datarefs, dr);
|
4182 |
|
|
one_inserted = true;
|
4183 |
|
|
}
|
4184 |
|
|
}
|
4185 |
|
|
|
4186 |
|
|
if (!one_inserted)
|
4187 |
|
|
goto insert_dont_know_node;
|
4188 |
|
|
|
4189 |
|
|
break;
|
4190 |
|
|
}
|
4191 |
|
|
|
4192 |
|
|
default:
|
4193 |
|
|
{
|
4194 |
|
|
struct data_reference *res;
|
4195 |
|
|
|
4196 |
|
|
insert_dont_know_node:;
|
4197 |
|
|
res = XNEW (struct data_reference);
|
4198 |
|
|
DR_STMT (res) = NULL_TREE;
|
4199 |
|
|
DR_REF (res) = NULL_TREE;
|
4200 |
|
|
DR_BASE_OBJECT (res) = NULL;
|
4201 |
|
|
DR_TYPE (res) = ARRAY_REF_TYPE;
|
4202 |
|
|
DR_SET_ACCESS_FNS (res, NULL);
|
4203 |
|
|
DR_BASE_OBJECT (res) = NULL;
|
4204 |
|
|
DR_IS_READ (res) = false;
|
4205 |
|
|
DR_BASE_ADDRESS (res) = NULL_TREE;
|
4206 |
|
|
DR_OFFSET (res) = NULL_TREE;
|
4207 |
|
|
DR_INIT (res) = NULL_TREE;
|
4208 |
|
|
DR_STEP (res) = NULL_TREE;
|
4209 |
|
|
DR_OFFSET_MISALIGNMENT (res) = NULL_TREE;
|
4210 |
|
|
DR_MEMTAG (res) = NULL_TREE;
|
4211 |
|
|
DR_PTR_INFO (res) = NULL;
|
4212 |
|
|
VEC_safe_push (data_reference_p, heap, *datarefs, res);
|
4213 |
|
|
|
4214 |
|
|
free (bbs);
|
4215 |
|
|
return chrec_dont_know;
|
4216 |
|
|
}
|
4217 |
|
|
}
|
4218 |
|
|
|
4219 |
|
|
/* When there are no defs in the loop, the loop is parallel. */
|
4220 |
|
|
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
|
4221 |
|
|
loop->parallel_p = false;
|
4222 |
|
|
}
|
4223 |
|
|
}
|
4224 |
|
|
|
4225 |
|
|
free (bbs);
|
4226 |
|
|
|
4227 |
|
|
return NULL_TREE;
|
4228 |
|
|
}
|
4229 |
|
|
|
4230 |
|
|
/* Recursive helper function. */
|
4231 |
|
|
|
4232 |
|
|
static bool
|
4233 |
|
|
find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
|
4234 |
|
|
{
|
4235 |
|
|
/* Inner loops of the nest should not contain siblings. Example:
|
4236 |
|
|
when there are two consecutive loops,
|
4237 |
|
|
|
4238 |
|
|
| loop_0
|
4239 |
|
|
| loop_1
|
4240 |
|
|
| A[{0, +, 1}_1]
|
4241 |
|
|
| endloop_1
|
4242 |
|
|
| loop_2
|
4243 |
|
|
| A[{0, +, 1}_2]
|
4244 |
|
|
| endloop_2
|
4245 |
|
|
| endloop_0
|
4246 |
|
|
|
4247 |
|
|
the dependence relation cannot be captured by the distance
|
4248 |
|
|
abstraction. */
|
4249 |
|
|
if (loop->next)
|
4250 |
|
|
return false;
|
4251 |
|
|
|
4252 |
|
|
VEC_safe_push (loop_p, heap, *loop_nest, loop);
|
4253 |
|
|
if (loop->inner)
|
4254 |
|
|
return find_loop_nest_1 (loop->inner, loop_nest);
|
4255 |
|
|
return true;
|
4256 |
|
|
}
|
4257 |
|
|
|
4258 |
|
|
/* Return false when the LOOP is not well nested. Otherwise return
|
4259 |
|
|
true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
|
4260 |
|
|
contain the loops from the outermost to the innermost, as they will
|
4261 |
|
|
appear in the classic distance vector. */
|
4262 |
|
|
|
4263 |
|
|
static bool
|
4264 |
|
|
find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
|
4265 |
|
|
{
|
4266 |
|
|
VEC_safe_push (loop_p, heap, *loop_nest, loop);
|
4267 |
|
|
if (loop->inner)
|
4268 |
|
|
return find_loop_nest_1 (loop->inner, loop_nest);
|
4269 |
|
|
return true;
|
4270 |
|
|
}
|
4271 |
|
|
|
4272 |
|
|
/* Given a loop nest LOOP, the following vectors are returned:
|
4273 |
|
|
DATAREFS is initialized to all the array elements contained in this loop,
|
4274 |
|
|
DEPENDENCE_RELATIONS contains the relations between the data references.
|
4275 |
|
|
Compute read-read and self relations if
|
4276 |
|
|
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
|
4277 |
|
|
|
4278 |
|
|
void
|
4279 |
|
|
compute_data_dependences_for_loop (struct loop *loop,
|
4280 |
|
|
bool compute_self_and_read_read_dependences,
|
4281 |
|
|
VEC (data_reference_p, heap) **datarefs,
|
4282 |
|
|
VEC (ddr_p, heap) **dependence_relations)
|
4283 |
|
|
{
|
4284 |
|
|
struct loop *loop_nest = loop;
|
4285 |
|
|
VEC (loop_p, heap) *vloops = VEC_alloc (loop_p, heap, 3);
|
4286 |
|
|
|
4287 |
|
|
memset (&dependence_stats, 0, sizeof (dependence_stats));
|
4288 |
|
|
|
4289 |
|
|
/* If the loop nest is not well formed, or one of the data references
|
4290 |
|
|
is not computable, give up without spending time to compute other
|
4291 |
|
|
dependences. */
|
4292 |
|
|
if (!loop_nest
|
4293 |
|
|
|| !find_loop_nest (loop_nest, &vloops)
|
4294 |
|
|
|| find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
|
4295 |
|
|
{
|
4296 |
|
|
struct data_dependence_relation *ddr;
|
4297 |
|
|
|
4298 |
|
|
/* Insert a single relation into dependence_relations:
|
4299 |
|
|
chrec_dont_know. */
|
4300 |
|
|
ddr = initialize_data_dependence_relation (NULL, NULL, vloops);
|
4301 |
|
|
VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
|
4302 |
|
|
}
|
4303 |
|
|
else
|
4304 |
|
|
compute_all_dependences (*datarefs, dependence_relations, vloops,
|
4305 |
|
|
compute_self_and_read_read_dependences);
|
4306 |
|
|
|
4307 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
4308 |
|
|
{
|
4309 |
|
|
fprintf (dump_file, "Dependence tester statistics:\n");
|
4310 |
|
|
|
4311 |
|
|
fprintf (dump_file, "Number of dependence tests: %d\n",
|
4312 |
|
|
dependence_stats.num_dependence_tests);
|
4313 |
|
|
fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
|
4314 |
|
|
dependence_stats.num_dependence_dependent);
|
4315 |
|
|
fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
|
4316 |
|
|
dependence_stats.num_dependence_independent);
|
4317 |
|
|
fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
|
4318 |
|
|
dependence_stats.num_dependence_undetermined);
|
4319 |
|
|
|
4320 |
|
|
fprintf (dump_file, "Number of subscript tests: %d\n",
|
4321 |
|
|
dependence_stats.num_subscript_tests);
|
4322 |
|
|
fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
|
4323 |
|
|
dependence_stats.num_subscript_undetermined);
|
4324 |
|
|
fprintf (dump_file, "Number of same subscript function: %d\n",
|
4325 |
|
|
dependence_stats.num_same_subscript_function);
|
4326 |
|
|
|
4327 |
|
|
fprintf (dump_file, "Number of ziv tests: %d\n",
|
4328 |
|
|
dependence_stats.num_ziv);
|
4329 |
|
|
fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
|
4330 |
|
|
dependence_stats.num_ziv_dependent);
|
4331 |
|
|
fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
|
4332 |
|
|
dependence_stats.num_ziv_independent);
|
4333 |
|
|
fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
|
4334 |
|
|
dependence_stats.num_ziv_unimplemented);
|
4335 |
|
|
|
4336 |
|
|
fprintf (dump_file, "Number of siv tests: %d\n",
|
4337 |
|
|
dependence_stats.num_siv);
|
4338 |
|
|
fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
|
4339 |
|
|
dependence_stats.num_siv_dependent);
|
4340 |
|
|
fprintf (dump_file, "Number of siv tests returning independent: %d\n",
|
4341 |
|
|
dependence_stats.num_siv_independent);
|
4342 |
|
|
fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
|
4343 |
|
|
dependence_stats.num_siv_unimplemented);
|
4344 |
|
|
|
4345 |
|
|
fprintf (dump_file, "Number of miv tests: %d\n",
|
4346 |
|
|
dependence_stats.num_miv);
|
4347 |
|
|
fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
|
4348 |
|
|
dependence_stats.num_miv_dependent);
|
4349 |
|
|
fprintf (dump_file, "Number of miv tests returning independent: %d\n",
|
4350 |
|
|
dependence_stats.num_miv_independent);
|
4351 |
|
|
fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
|
4352 |
|
|
dependence_stats.num_miv_unimplemented);
|
4353 |
|
|
}
|
4354 |
|
|
}
|
4355 |
|
|
|
4356 |
|
|
/* Entry point (for testing only). Analyze all the data references
|
4357 |
|
|
and the dependence relations.
|
4358 |
|
|
|
4359 |
|
|
The data references are computed first.
|
4360 |
|
|
|
4361 |
|
|
A relation on these nodes is represented by a complete graph. Some
|
4362 |
|
|
of the relations could be of no interest, thus the relations can be
|
4363 |
|
|
computed on demand.
|
4364 |
|
|
|
4365 |
|
|
In the following function we compute all the relations. This is
|
4366 |
|
|
just a first implementation that is here for:
|
4367 |
|
|
- for showing how to ask for the dependence relations,
|
4368 |
|
|
- for the debugging the whole dependence graph,
|
4369 |
|
|
- for the dejagnu testcases and maintenance.
|
4370 |
|
|
|
4371 |
|
|
It is possible to ask only for a part of the graph, avoiding to
|
4372 |
|
|
compute the whole dependence graph. The computed dependences are
|
4373 |
|
|
stored in a knowledge base (KB) such that later queries don't
|
4374 |
|
|
recompute the same information. The implementation of this KB is
|
4375 |
|
|
transparent to the optimizer, and thus the KB can be changed with a
|
4376 |
|
|
more efficient implementation, or the KB could be disabled. */
|
4377 |
|
|
#if 0
|
4378 |
|
|
static void
|
4379 |
|
|
analyze_all_data_dependences (struct loops *loops)
|
4380 |
|
|
{
|
4381 |
|
|
unsigned int i;
|
4382 |
|
|
int nb_data_refs = 10;
|
4383 |
|
|
VEC (data_reference_p, heap) *datarefs =
|
4384 |
|
|
VEC_alloc (data_reference_p, heap, nb_data_refs);
|
4385 |
|
|
VEC (ddr_p, heap) *dependence_relations =
|
4386 |
|
|
VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
|
4387 |
|
|
|
4388 |
|
|
/* Compute DDs on the whole function. */
|
4389 |
|
|
compute_data_dependences_for_loop (loops->parray[0], false,
|
4390 |
|
|
&datarefs, &dependence_relations);
|
4391 |
|
|
|
4392 |
|
|
if (dump_file)
|
4393 |
|
|
{
|
4394 |
|
|
dump_data_dependence_relations (dump_file, dependence_relations);
|
4395 |
|
|
fprintf (dump_file, "\n\n");
|
4396 |
|
|
|
4397 |
|
|
if (dump_flags & TDF_DETAILS)
|
4398 |
|
|
dump_dist_dir_vectors (dump_file, dependence_relations);
|
4399 |
|
|
|
4400 |
|
|
if (dump_flags & TDF_STATS)
|
4401 |
|
|
{
|
4402 |
|
|
unsigned nb_top_relations = 0;
|
4403 |
|
|
unsigned nb_bot_relations = 0;
|
4404 |
|
|
unsigned nb_basename_differ = 0;
|
4405 |
|
|
unsigned nb_chrec_relations = 0;
|
4406 |
|
|
struct data_dependence_relation *ddr;
|
4407 |
|
|
|
4408 |
|
|
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
|
4409 |
|
|
{
|
4410 |
|
|
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
|
4411 |
|
|
nb_top_relations++;
|
4412 |
|
|
|
4413 |
|
|
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
4414 |
|
|
{
|
4415 |
|
|
struct data_reference *a = DDR_A (ddr);
|
4416 |
|
|
struct data_reference *b = DDR_B (ddr);
|
4417 |
|
|
bool differ_p;
|
4418 |
|
|
|
4419 |
|
|
if ((DR_BASE_OBJECT (a) && DR_BASE_OBJECT (b)
|
4420 |
|
|
&& DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
|
4421 |
|
|
|| (base_object_differ_p (a, b, &differ_p)
|
4422 |
|
|
&& differ_p))
|
4423 |
|
|
nb_basename_differ++;
|
4424 |
|
|
else
|
4425 |
|
|
nb_bot_relations++;
|
4426 |
|
|
}
|
4427 |
|
|
|
4428 |
|
|
else
|
4429 |
|
|
nb_chrec_relations++;
|
4430 |
|
|
}
|
4431 |
|
|
|
4432 |
|
|
gather_stats_on_scev_database ();
|
4433 |
|
|
}
|
4434 |
|
|
}
|
4435 |
|
|
|
4436 |
|
|
free_dependence_relations (dependence_relations);
|
4437 |
|
|
free_data_refs (datarefs);
|
4438 |
|
|
}
|
4439 |
|
|
#endif
|
4440 |
|
|
|
4441 |
|
|
/* Free the memory used by a data dependence relation DDR. */
|
4442 |
|
|
|
4443 |
|
|
void
|
4444 |
|
|
free_dependence_relation (struct data_dependence_relation *ddr)
|
4445 |
|
|
{
|
4446 |
|
|
if (ddr == NULL)
|
4447 |
|
|
return;
|
4448 |
|
|
|
4449 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
|
4450 |
|
|
VEC_free (subscript_p, heap, DDR_SUBSCRIPTS (ddr));
|
4451 |
|
|
|
4452 |
|
|
free (ddr);
|
4453 |
|
|
}
|
4454 |
|
|
|
4455 |
|
|
/* Free the memory used by the data dependence relations from
|
4456 |
|
|
DEPENDENCE_RELATIONS. */
|
4457 |
|
|
|
4458 |
|
|
void
|
4459 |
|
|
free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
|
4460 |
|
|
{
|
4461 |
|
|
unsigned int i;
|
4462 |
|
|
struct data_dependence_relation *ddr;
|
4463 |
|
|
VEC (loop_p, heap) *loop_nest = NULL;
|
4464 |
|
|
|
4465 |
|
|
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
|
4466 |
|
|
{
|
4467 |
|
|
if (ddr == NULL)
|
4468 |
|
|
continue;
|
4469 |
|
|
if (loop_nest == NULL)
|
4470 |
|
|
loop_nest = DDR_LOOP_NEST (ddr);
|
4471 |
|
|
else
|
4472 |
|
|
gcc_assert (DDR_LOOP_NEST (ddr) == NULL
|
4473 |
|
|
|| DDR_LOOP_NEST (ddr) == loop_nest);
|
4474 |
|
|
free_dependence_relation (ddr);
|
4475 |
|
|
}
|
4476 |
|
|
|
4477 |
|
|
if (loop_nest)
|
4478 |
|
|
VEC_free (loop_p, heap, loop_nest);
|
4479 |
|
|
VEC_free (ddr_p, heap, dependence_relations);
|
4480 |
|
|
}
|
4481 |
|
|
|
4482 |
|
|
/* Free the memory used by the data references from DATAREFS. */
|
4483 |
|
|
|
4484 |
|
|
void
|
4485 |
|
|
free_data_refs (VEC (data_reference_p, heap) *datarefs)
|
4486 |
|
|
{
|
4487 |
|
|
unsigned int i;
|
4488 |
|
|
struct data_reference *dr;
|
4489 |
|
|
|
4490 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
|
4491 |
|
|
free_data_ref (dr);
|
4492 |
|
|
VEC_free (data_reference_p, heap, datarefs);
|
4493 |
|
|
}
|
4494 |
|
|
|