1 |
38 |
julius |
/* Transformation Utilities for Loop Vectorization.
|
2 |
|
|
Copyright (C) 2003,2004,2005,2006, 2007 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "ggc.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "target.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "diagnostic.h"
|
31 |
|
|
#include "tree-flow.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "timevar.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "expr.h"
|
36 |
|
|
#include "optabs.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "tree-data-ref.h"
|
39 |
|
|
#include "tree-chrec.h"
|
40 |
|
|
#include "tree-scalar-evolution.h"
|
41 |
|
|
#include "tree-vectorizer.h"
|
42 |
|
|
#include "langhooks.h"
|
43 |
|
|
#include "tree-pass.h"
|
44 |
|
|
#include "toplev.h"
|
45 |
|
|
#include "real.h"
|
46 |
|
|
|
47 |
|
|
/* Utility functions for the code transformation. */
|
48 |
|
|
static bool vect_transform_stmt (tree, block_stmt_iterator *);
|
49 |
|
|
static void vect_align_data_ref (tree);
|
50 |
|
|
static tree vect_create_destination_var (tree, tree);
|
51 |
|
|
static tree vect_create_data_ref_ptr
|
52 |
|
|
(tree, block_stmt_iterator *, tree, tree *, bool);
|
53 |
|
|
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
|
54 |
|
|
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
|
55 |
|
|
static tree vect_get_vec_def_for_operand (tree, tree, tree *);
|
56 |
|
|
static tree vect_init_vector (tree, tree);
|
57 |
|
|
static void vect_finish_stmt_generation
|
58 |
|
|
(tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
|
59 |
|
|
static bool vect_is_simple_cond (tree, loop_vec_info);
|
60 |
|
|
static void update_vuses_to_preheader (tree, struct loop*);
|
61 |
|
|
static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
|
62 |
|
|
static tree get_initial_def_for_reduction (tree, tree, tree *);
|
63 |
|
|
|
64 |
|
|
/* Utility function dealing with loop peeling (not peeling itself). */
|
65 |
|
|
static void vect_generate_tmps_on_preheader
|
66 |
|
|
(loop_vec_info, tree *, tree *, tree *);
|
67 |
|
|
static tree vect_build_loop_niters (loop_vec_info);
|
68 |
|
|
static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
|
69 |
|
|
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
|
70 |
|
|
static void vect_update_init_of_dr (struct data_reference *, tree niters);
|
71 |
|
|
static void vect_update_inits_of_drs (loop_vec_info, tree);
|
72 |
|
|
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
|
73 |
|
|
static void vect_do_peeling_for_loop_bound
|
74 |
|
|
(loop_vec_info, tree *, struct loops *);
|
75 |
|
|
static int vect_min_worthwhile_factor (enum tree_code);
|
76 |
|
|
|
77 |
|
|
|
78 |
|
|
/* Function vect_get_new_vect_var.
|
79 |
|
|
|
80 |
|
|
Returns a name for a new variable. The current naming scheme appends the
|
81 |
|
|
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
|
82 |
|
|
the name of vectorizer generated variables, and appends that to NAME if
|
83 |
|
|
provided. */
|
84 |
|
|
|
85 |
|
|
static tree
|
86 |
|
|
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
|
87 |
|
|
{
|
88 |
|
|
const char *prefix;
|
89 |
|
|
tree new_vect_var;
|
90 |
|
|
|
91 |
|
|
switch (var_kind)
|
92 |
|
|
{
|
93 |
|
|
case vect_simple_var:
|
94 |
|
|
prefix = "vect_";
|
95 |
|
|
break;
|
96 |
|
|
case vect_scalar_var:
|
97 |
|
|
prefix = "stmp_";
|
98 |
|
|
break;
|
99 |
|
|
case vect_pointer_var:
|
100 |
|
|
prefix = "vect_p";
|
101 |
|
|
break;
|
102 |
|
|
default:
|
103 |
|
|
gcc_unreachable ();
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
if (name)
|
107 |
|
|
new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
|
108 |
|
|
else
|
109 |
|
|
new_vect_var = create_tmp_var (type, prefix);
|
110 |
|
|
|
111 |
|
|
return new_vect_var;
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
/* Function vect_create_addr_base_for_vector_ref.
|
116 |
|
|
|
117 |
|
|
Create an expression that computes the address of the first memory location
|
118 |
|
|
that will be accessed for a data reference.
|
119 |
|
|
|
120 |
|
|
Input:
|
121 |
|
|
STMT: The statement containing the data reference.
|
122 |
|
|
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
|
123 |
|
|
OFFSET: Optional. If supplied, it is be added to the initial address.
|
124 |
|
|
|
125 |
|
|
Output:
|
126 |
|
|
1. Return an SSA_NAME whose value is the address of the memory location of
|
127 |
|
|
the first vector of the data reference.
|
128 |
|
|
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
|
129 |
|
|
these statement(s) which define the returned SSA_NAME.
|
130 |
|
|
|
131 |
|
|
FORNOW: We are only handling array accesses with step 1. */
|
132 |
|
|
|
133 |
|
|
static tree
|
134 |
|
|
vect_create_addr_base_for_vector_ref (tree stmt,
|
135 |
|
|
tree *new_stmt_list,
|
136 |
|
|
tree offset)
|
137 |
|
|
{
|
138 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
139 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
140 |
|
|
tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
|
141 |
|
|
tree base_name = build_fold_indirect_ref (data_ref_base);
|
142 |
|
|
tree ref = DR_REF (dr);
|
143 |
|
|
tree scalar_type = TREE_TYPE (ref);
|
144 |
|
|
tree scalar_ptr_type = build_pointer_type (scalar_type);
|
145 |
|
|
tree vec_stmt;
|
146 |
|
|
tree new_temp;
|
147 |
|
|
tree addr_base, addr_expr;
|
148 |
|
|
tree dest, new_stmt;
|
149 |
|
|
tree base_offset = unshare_expr (DR_OFFSET (dr));
|
150 |
|
|
tree init = unshare_expr (DR_INIT (dr));
|
151 |
|
|
|
152 |
|
|
/* Create base_offset */
|
153 |
|
|
base_offset = size_binop (PLUS_EXPR, base_offset, init);
|
154 |
|
|
dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
|
155 |
|
|
add_referenced_var (dest);
|
156 |
|
|
base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
|
157 |
|
|
append_to_statement_list_force (new_stmt, new_stmt_list);
|
158 |
|
|
|
159 |
|
|
if (offset)
|
160 |
|
|
{
|
161 |
|
|
tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
|
162 |
|
|
add_referenced_var (tmp);
|
163 |
|
|
offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
|
164 |
|
|
DR_STEP (dr));
|
165 |
|
|
base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
|
166 |
|
|
base_offset, offset);
|
167 |
|
|
base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
|
168 |
|
|
append_to_statement_list_force (new_stmt, new_stmt_list);
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
/* base + base_offset */
|
172 |
|
|
addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
|
173 |
|
|
base_offset);
|
174 |
|
|
|
175 |
|
|
/* addr_expr = addr_base */
|
176 |
|
|
addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
|
177 |
|
|
get_name (base_name));
|
178 |
|
|
add_referenced_var (addr_expr);
|
179 |
|
|
vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
|
180 |
|
|
new_temp = make_ssa_name (addr_expr, vec_stmt);
|
181 |
|
|
TREE_OPERAND (vec_stmt, 0) = new_temp;
|
182 |
|
|
append_to_statement_list_force (vec_stmt, new_stmt_list);
|
183 |
|
|
|
184 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
185 |
|
|
{
|
186 |
|
|
fprintf (vect_dump, "created ");
|
187 |
|
|
print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
|
188 |
|
|
}
|
189 |
|
|
return new_temp;
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
/* Function vect_align_data_ref.
|
194 |
|
|
|
195 |
|
|
Handle misalignment of a memory accesses.
|
196 |
|
|
|
197 |
|
|
FORNOW: Can't handle misaligned accesses.
|
198 |
|
|
Make sure that the dataref is aligned. */
|
199 |
|
|
|
200 |
|
|
static void
|
201 |
|
|
vect_align_data_ref (tree stmt)
|
202 |
|
|
{
|
203 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
204 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
205 |
|
|
|
206 |
|
|
/* FORNOW: can't handle misaligned accesses;
|
207 |
|
|
all accesses expected to be aligned. */
|
208 |
|
|
gcc_assert (aligned_access_p (dr));
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
|
212 |
|
|
/* Function vect_create_data_ref_ptr.
|
213 |
|
|
|
214 |
|
|
Create a memory reference expression for vector access, to be used in a
|
215 |
|
|
vector load/store stmt. The reference is based on a new pointer to vector
|
216 |
|
|
type (vp).
|
217 |
|
|
|
218 |
|
|
Input:
|
219 |
|
|
1. STMT: a stmt that references memory. Expected to be of the form
|
220 |
|
|
MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
|
221 |
|
|
2. BSI: block_stmt_iterator where new stmts can be added.
|
222 |
|
|
3. OFFSET (optional): an offset to be added to the initial address accessed
|
223 |
|
|
by the data-ref in STMT.
|
224 |
|
|
4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
|
225 |
|
|
pointing to the initial address.
|
226 |
|
|
|
227 |
|
|
Output:
|
228 |
|
|
1. Declare a new ptr to vector_type, and have it point to the base of the
|
229 |
|
|
data reference (initial addressed accessed by the data reference).
|
230 |
|
|
For example, for vector of type V8HI, the following code is generated:
|
231 |
|
|
|
232 |
|
|
v8hi *vp;
|
233 |
|
|
vp = (v8hi *)initial_address;
|
234 |
|
|
|
235 |
|
|
if OFFSET is not supplied:
|
236 |
|
|
initial_address = &a[init];
|
237 |
|
|
if OFFSET is supplied:
|
238 |
|
|
initial_address = &a[init + OFFSET];
|
239 |
|
|
|
240 |
|
|
Return the initial_address in INITIAL_ADDRESS.
|
241 |
|
|
|
242 |
|
|
2. If ONLY_INIT is true, return the initial pointer. Otherwise, create
|
243 |
|
|
a data-reference in the loop based on the new vector pointer vp. This
|
244 |
|
|
new data reference will by some means be updated each iteration of
|
245 |
|
|
the loop. Return the pointer vp'.
|
246 |
|
|
|
247 |
|
|
FORNOW: handle only aligned and consecutive accesses. */
|
248 |
|
|
|
249 |
|
|
static tree
|
250 |
|
|
vect_create_data_ref_ptr (tree stmt,
|
251 |
|
|
block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
|
252 |
|
|
tree offset, tree *initial_address, bool only_init)
|
253 |
|
|
{
|
254 |
|
|
tree base_name;
|
255 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
256 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
257 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
258 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
259 |
|
|
tree vect_ptr_type;
|
260 |
|
|
tree vect_ptr;
|
261 |
|
|
tree tag;
|
262 |
|
|
tree new_temp;
|
263 |
|
|
tree vec_stmt;
|
264 |
|
|
tree new_stmt_list = NULL_TREE;
|
265 |
|
|
edge pe = loop_preheader_edge (loop);
|
266 |
|
|
basic_block new_bb;
|
267 |
|
|
tree vect_ptr_init;
|
268 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
269 |
|
|
|
270 |
|
|
base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
|
271 |
|
|
|
272 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
273 |
|
|
{
|
274 |
|
|
tree data_ref_base = base_name;
|
275 |
|
|
fprintf (vect_dump, "create vector-pointer variable to type: ");
|
276 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
277 |
|
|
if (TREE_CODE (data_ref_base) == VAR_DECL)
|
278 |
|
|
fprintf (vect_dump, " vectorizing a one dimensional array ref: ");
|
279 |
|
|
else if (TREE_CODE (data_ref_base) == ARRAY_REF)
|
280 |
|
|
fprintf (vect_dump, " vectorizing a multidimensional array ref: ");
|
281 |
|
|
else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
|
282 |
|
|
fprintf (vect_dump, " vectorizing a record based array ref: ");
|
283 |
|
|
else if (TREE_CODE (data_ref_base) == SSA_NAME)
|
284 |
|
|
fprintf (vect_dump, " vectorizing a pointer ref: ");
|
285 |
|
|
print_generic_expr (vect_dump, base_name, TDF_SLIM);
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/** (1) Create the new vector-pointer variable: **/
|
289 |
|
|
|
290 |
|
|
vect_ptr_type = build_pointer_type (vectype);
|
291 |
|
|
vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
|
292 |
|
|
get_name (base_name));
|
293 |
|
|
add_referenced_var (vect_ptr);
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
/** (2) Add aliasing information to the new vector-pointer:
|
297 |
|
|
(The points-to info (DR_PTR_INFO) may be defined later.) **/
|
298 |
|
|
|
299 |
|
|
tag = DR_MEMTAG (dr);
|
300 |
|
|
gcc_assert (tag);
|
301 |
|
|
|
302 |
|
|
/* If tag is a variable (and NOT_A_TAG) than a new symbol memory
|
303 |
|
|
tag must be created with tag added to its may alias list. */
|
304 |
|
|
if (!MTAG_P (tag))
|
305 |
|
|
new_type_alias (vect_ptr, tag, DR_REF (dr));
|
306 |
|
|
else
|
307 |
|
|
var_ann (vect_ptr)->symbol_mem_tag = tag;
|
308 |
|
|
|
309 |
|
|
var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);
|
310 |
|
|
|
311 |
|
|
/** (3) Calculate the initial address the vector-pointer, and set
|
312 |
|
|
the vector-pointer to point to it before the loop: **/
|
313 |
|
|
|
314 |
|
|
/* Create: (&(base[init_val+offset]) in the loop preheader. */
|
315 |
|
|
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
|
316 |
|
|
offset);
|
317 |
|
|
pe = loop_preheader_edge (loop);
|
318 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
|
319 |
|
|
gcc_assert (!new_bb);
|
320 |
|
|
*initial_address = new_temp;
|
321 |
|
|
|
322 |
|
|
/* Create: p = (vectype *) initial_base */
|
323 |
|
|
vec_stmt = fold_convert (vect_ptr_type, new_temp);
|
324 |
|
|
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
|
325 |
|
|
vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
|
326 |
|
|
TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
|
327 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
|
328 |
|
|
gcc_assert (!new_bb);
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
/** (4) Handle the updating of the vector-pointer inside the loop: **/
|
332 |
|
|
|
333 |
|
|
if (only_init) /* No update in loop is required. */
|
334 |
|
|
{
|
335 |
|
|
/* Copy the points-to information if it exists. */
|
336 |
|
|
if (DR_PTR_INFO (dr))
|
337 |
|
|
duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
|
338 |
|
|
return vect_ptr_init;
|
339 |
|
|
}
|
340 |
|
|
else
|
341 |
|
|
{
|
342 |
|
|
block_stmt_iterator incr_bsi;
|
343 |
|
|
bool insert_after;
|
344 |
|
|
tree indx_before_incr, indx_after_incr;
|
345 |
|
|
tree incr;
|
346 |
|
|
|
347 |
|
|
standard_iv_increment_position (loop, &incr_bsi, &insert_after);
|
348 |
|
|
create_iv (vect_ptr_init,
|
349 |
|
|
fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
|
350 |
|
|
NULL_TREE, loop, &incr_bsi, insert_after,
|
351 |
|
|
&indx_before_incr, &indx_after_incr);
|
352 |
|
|
incr = bsi_stmt (incr_bsi);
|
353 |
|
|
set_stmt_info (stmt_ann (incr),
|
354 |
|
|
new_stmt_vec_info (incr, loop_vinfo));
|
355 |
|
|
|
356 |
|
|
/* Copy the points-to information if it exists. */
|
357 |
|
|
if (DR_PTR_INFO (dr))
|
358 |
|
|
{
|
359 |
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
360 |
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
361 |
|
|
}
|
362 |
|
|
merge_alias_info (vect_ptr_init, indx_before_incr);
|
363 |
|
|
merge_alias_info (vect_ptr_init, indx_after_incr);
|
364 |
|
|
|
365 |
|
|
return indx_before_incr;
|
366 |
|
|
}
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
/* Function vect_create_destination_var.
|
371 |
|
|
|
372 |
|
|
Create a new temporary of type VECTYPE. */
|
373 |
|
|
|
374 |
|
|
static tree
|
375 |
|
|
vect_create_destination_var (tree scalar_dest, tree vectype)
|
376 |
|
|
{
|
377 |
|
|
tree vec_dest;
|
378 |
|
|
const char *new_name;
|
379 |
|
|
tree type;
|
380 |
|
|
enum vect_var_kind kind;
|
381 |
|
|
|
382 |
|
|
kind = vectype ? vect_simple_var : vect_scalar_var;
|
383 |
|
|
type = vectype ? vectype : TREE_TYPE (scalar_dest);
|
384 |
|
|
|
385 |
|
|
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
|
386 |
|
|
|
387 |
|
|
new_name = get_name (scalar_dest);
|
388 |
|
|
if (!new_name)
|
389 |
|
|
new_name = "var_";
|
390 |
|
|
vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
|
391 |
|
|
add_referenced_var (vec_dest);
|
392 |
|
|
|
393 |
|
|
return vec_dest;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
|
397 |
|
|
/* Function vect_init_vector.
|
398 |
|
|
|
399 |
|
|
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
|
400 |
|
|
the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
|
401 |
|
|
used in the vectorization of STMT. */
|
402 |
|
|
|
403 |
|
|
static tree
|
404 |
|
|
vect_init_vector (tree stmt, tree vector_var)
|
405 |
|
|
{
|
406 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
407 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
408 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
409 |
|
|
tree new_var;
|
410 |
|
|
tree init_stmt;
|
411 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
|
412 |
|
|
tree vec_oprnd;
|
413 |
|
|
edge pe;
|
414 |
|
|
tree new_temp;
|
415 |
|
|
basic_block new_bb;
|
416 |
|
|
|
417 |
|
|
new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
|
418 |
|
|
add_referenced_var (new_var);
|
419 |
|
|
|
420 |
|
|
init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
|
421 |
|
|
new_temp = make_ssa_name (new_var, init_stmt);
|
422 |
|
|
TREE_OPERAND (init_stmt, 0) = new_temp;
|
423 |
|
|
|
424 |
|
|
pe = loop_preheader_edge (loop);
|
425 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
|
426 |
|
|
gcc_assert (!new_bb);
|
427 |
|
|
|
428 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
429 |
|
|
{
|
430 |
|
|
fprintf (vect_dump, "created new init_stmt: ");
|
431 |
|
|
print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
vec_oprnd = TREE_OPERAND (init_stmt, 0);
|
435 |
|
|
return vec_oprnd;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
|
439 |
|
|
/* Function vect_get_vec_def_for_operand.
|
440 |
|
|
|
441 |
|
|
OP is an operand in STMT. This function returns a (vector) def that will be
|
442 |
|
|
used in the vectorized stmt for STMT.
|
443 |
|
|
|
444 |
|
|
In the case that OP is an SSA_NAME which is defined in the loop, then
|
445 |
|
|
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
|
446 |
|
|
|
447 |
|
|
In case OP is an invariant or constant, a new stmt that creates a vector def
|
448 |
|
|
needs to be introduced. */
|
449 |
|
|
|
450 |
|
|
static tree
|
451 |
|
|
vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
|
452 |
|
|
{
|
453 |
|
|
tree vec_oprnd;
|
454 |
|
|
tree vec_stmt;
|
455 |
|
|
tree def_stmt;
|
456 |
|
|
stmt_vec_info def_stmt_info = NULL;
|
457 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
458 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
|
459 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
460 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
461 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
462 |
|
|
tree vec_inv;
|
463 |
|
|
tree vec_cst;
|
464 |
|
|
tree t = NULL_TREE;
|
465 |
|
|
tree def;
|
466 |
|
|
int i;
|
467 |
|
|
enum vect_def_type dt;
|
468 |
|
|
bool is_simple_use;
|
469 |
|
|
|
470 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
471 |
|
|
{
|
472 |
|
|
fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
|
473 |
|
|
print_generic_expr (vect_dump, op, TDF_SLIM);
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
|
477 |
|
|
gcc_assert (is_simple_use);
|
478 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
479 |
|
|
{
|
480 |
|
|
if (def)
|
481 |
|
|
{
|
482 |
|
|
fprintf (vect_dump, "def = ");
|
483 |
|
|
print_generic_expr (vect_dump, def, TDF_SLIM);
|
484 |
|
|
}
|
485 |
|
|
if (def_stmt)
|
486 |
|
|
{
|
487 |
|
|
fprintf (vect_dump, " def_stmt = ");
|
488 |
|
|
print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
|
489 |
|
|
}
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
switch (dt)
|
493 |
|
|
{
|
494 |
|
|
/* Case 1: operand is a constant. */
|
495 |
|
|
case vect_constant_def:
|
496 |
|
|
{
|
497 |
|
|
if (scalar_def)
|
498 |
|
|
*scalar_def = op;
|
499 |
|
|
|
500 |
|
|
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
|
501 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
502 |
|
|
fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
|
503 |
|
|
|
504 |
|
|
for (i = nunits - 1; i >= 0; --i)
|
505 |
|
|
{
|
506 |
|
|
t = tree_cons (NULL_TREE, op, t);
|
507 |
|
|
}
|
508 |
|
|
vec_cst = build_vector (vectype, t);
|
509 |
|
|
return vect_init_vector (stmt, vec_cst);
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
/* Case 2: operand is defined outside the loop - loop invariant. */
|
513 |
|
|
case vect_invariant_def:
|
514 |
|
|
{
|
515 |
|
|
if (scalar_def)
|
516 |
|
|
*scalar_def = def;
|
517 |
|
|
|
518 |
|
|
/* Create 'vec_inv = {inv,inv,..,inv}' */
|
519 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
520 |
|
|
fprintf (vect_dump, "Create vector_inv.");
|
521 |
|
|
|
522 |
|
|
for (i = nunits - 1; i >= 0; --i)
|
523 |
|
|
{
|
524 |
|
|
t = tree_cons (NULL_TREE, def, t);
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* FIXME: use build_constructor directly. */
|
528 |
|
|
vec_inv = build_constructor_from_list (vectype, t);
|
529 |
|
|
return vect_init_vector (stmt, vec_inv);
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
/* Case 3: operand is defined inside the loop. */
|
533 |
|
|
case vect_loop_def:
|
534 |
|
|
{
|
535 |
|
|
if (scalar_def)
|
536 |
|
|
*scalar_def = def_stmt;
|
537 |
|
|
|
538 |
|
|
/* Get the def from the vectorized stmt. */
|
539 |
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
540 |
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
541 |
|
|
gcc_assert (vec_stmt);
|
542 |
|
|
vec_oprnd = TREE_OPERAND (vec_stmt, 0);
|
543 |
|
|
return vec_oprnd;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* Case 4: operand is defined by a loop header phi - reduction */
|
547 |
|
|
case vect_reduction_def:
|
548 |
|
|
{
|
549 |
|
|
gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
|
550 |
|
|
|
551 |
|
|
/* Get the def before the loop */
|
552 |
|
|
op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
|
553 |
|
|
return get_initial_def_for_reduction (stmt, op, scalar_def);
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* Case 5: operand is defined by loop-header phi - induction. */
|
557 |
|
|
case vect_induction_def:
|
558 |
|
|
{
|
559 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
560 |
|
|
fprintf (vect_dump, "induction - unsupported.");
|
561 |
|
|
internal_error ("no support for induction"); /* FORNOW */
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
default:
|
565 |
|
|
gcc_unreachable ();
|
566 |
|
|
}
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
|
570 |
|
|
/* Function vect_finish_stmt_generation.
|
571 |
|
|
|
572 |
|
|
Insert a new stmt. */
|
573 |
|
|
|
574 |
|
|
static void
|
575 |
|
|
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
|
576 |
|
|
{
|
577 |
|
|
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
|
578 |
|
|
|
579 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
580 |
|
|
{
|
581 |
|
|
fprintf (vect_dump, "add new stmt: ");
|
582 |
|
|
print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
/* Make sure bsi points to the stmt that is being vectorized. */
|
586 |
|
|
gcc_assert (stmt == bsi_stmt (*bsi));
|
587 |
|
|
|
588 |
|
|
#ifdef USE_MAPPED_LOCATION
|
589 |
|
|
SET_EXPR_LOCATION (vec_stmt, EXPR_LOCATION (stmt));
|
590 |
|
|
#else
|
591 |
|
|
SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
|
592 |
|
|
#endif
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
|
596 |
|
|
#define ADJUST_IN_EPILOG 1
|
597 |
|
|
|
598 |
|
|
/* Function get_initial_def_for_reduction
|
599 |
|
|
|
600 |
|
|
Input:
|
601 |
|
|
STMT - a stmt that performs a reduction operation in the loop.
|
602 |
|
|
INIT_VAL - the initial value of the reduction variable
|
603 |
|
|
|
604 |
|
|
Output:
|
605 |
|
|
SCALAR_DEF - a tree that holds a value to be added to the final result
|
606 |
|
|
of the reduction (used for "ADJUST_IN_EPILOG" - see below).
|
607 |
|
|
Return a vector variable, initialized according to the operation that STMT
|
608 |
|
|
performs. This vector will be used as the initial value of the
|
609 |
|
|
vector of partial results.
|
610 |
|
|
|
611 |
|
|
Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
|
612 |
|
|
add: [0,0,...,0,0]
|
613 |
|
|
mult: [1,1,...,1,1]
|
614 |
|
|
min/max: [init_val,init_val,..,init_val,init_val]
|
615 |
|
|
bit and/or: [init_val,init_val,..,init_val,init_val]
|
616 |
|
|
and when necessary (e.g. add/mult case) let the caller know
|
617 |
|
|
that it needs to adjust the result by init_val.
|
618 |
|
|
|
619 |
|
|
Option2: Initialize the vector as follows:
|
620 |
|
|
add: [0,0,...,0,init_val]
|
621 |
|
|
mult: [1,1,...,1,init_val]
|
622 |
|
|
min/max: [init_val,init_val,...,init_val]
|
623 |
|
|
bit and/or: [init_val,init_val,...,init_val]
|
624 |
|
|
and no adjustments are needed.
|
625 |
|
|
|
626 |
|
|
For example, for the following code:
|
627 |
|
|
|
628 |
|
|
s = init_val;
|
629 |
|
|
for (i=0;i<n;i++)
|
630 |
|
|
s = s + a[i];
|
631 |
|
|
|
632 |
|
|
STMT is 's = s + a[i]', and the reduction variable is 's'.
|
633 |
|
|
For a vector of 4 units, we want to return either [0,0,0,init_val],
|
634 |
|
|
or [0,0,0,0] and let the caller know that it needs to adjust
|
635 |
|
|
the result at the end by 'init_val'.
|
636 |
|
|
|
637 |
|
|
FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
|
638 |
|
|
TODO: Use some cost-model to estimate which scheme is more profitable.
|
639 |
|
|
*/
|
640 |
|
|
|
641 |
|
|
static tree
|
642 |
|
|
get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
|
643 |
|
|
{
|
644 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
645 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
|
646 |
|
|
int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
|
647 |
|
|
int nelements;
|
648 |
|
|
enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
|
649 |
|
|
tree type = TREE_TYPE (init_val);
|
650 |
|
|
tree def;
|
651 |
|
|
tree vec, t = NULL_TREE;
|
652 |
|
|
bool need_epilog_adjust;
|
653 |
|
|
int i;
|
654 |
|
|
|
655 |
|
|
gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
|
656 |
|
|
|
657 |
|
|
switch (code)
|
658 |
|
|
{
|
659 |
|
|
case WIDEN_SUM_EXPR:
|
660 |
|
|
case DOT_PROD_EXPR:
|
661 |
|
|
case PLUS_EXPR:
|
662 |
|
|
if (INTEGRAL_TYPE_P (type))
|
663 |
|
|
def = build_int_cst (type, 0);
|
664 |
|
|
else
|
665 |
|
|
def = build_real (type, dconst0);
|
666 |
|
|
|
667 |
|
|
#ifdef ADJUST_IN_EPILOG
|
668 |
|
|
/* All the 'nunits' elements are set to 0. The final result will be
|
669 |
|
|
adjusted by 'init_val' at the loop epilog. */
|
670 |
|
|
nelements = nunits;
|
671 |
|
|
need_epilog_adjust = true;
|
672 |
|
|
#else
|
673 |
|
|
/* 'nunits - 1' elements are set to 0; The last element is set to
|
674 |
|
|
'init_val'. No further adjustments at the epilog are needed. */
|
675 |
|
|
nelements = nunits - 1;
|
676 |
|
|
need_epilog_adjust = false;
|
677 |
|
|
#endif
|
678 |
|
|
break;
|
679 |
|
|
|
680 |
|
|
case MIN_EXPR:
|
681 |
|
|
case MAX_EXPR:
|
682 |
|
|
def = init_val;
|
683 |
|
|
nelements = nunits;
|
684 |
|
|
need_epilog_adjust = false;
|
685 |
|
|
break;
|
686 |
|
|
|
687 |
|
|
default:
|
688 |
|
|
gcc_unreachable ();
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
for (i = nelements - 1; i >= 0; --i)
|
692 |
|
|
t = tree_cons (NULL_TREE, def, t);
|
693 |
|
|
|
694 |
|
|
if (nelements == nunits - 1)
|
695 |
|
|
{
|
696 |
|
|
/* Set the last element of the vector. */
|
697 |
|
|
t = tree_cons (NULL_TREE, init_val, t);
|
698 |
|
|
nelements += 1;
|
699 |
|
|
}
|
700 |
|
|
gcc_assert (nelements == nunits);
|
701 |
|
|
|
702 |
|
|
if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
|
703 |
|
|
vec = build_vector (vectype, t);
|
704 |
|
|
else
|
705 |
|
|
vec = build_constructor_from_list (vectype, t);
|
706 |
|
|
|
707 |
|
|
if (!need_epilog_adjust)
|
708 |
|
|
*scalar_def = NULL_TREE;
|
709 |
|
|
else
|
710 |
|
|
*scalar_def = init_val;
|
711 |
|
|
|
712 |
|
|
return vect_init_vector (stmt, vec);
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
|
716 |
|
|
/* Function vect_create_epilog_for_reduction
|
717 |
|
|
|
718 |
|
|
Create code at the loop-epilog to finalize the result of a reduction
|
719 |
|
|
computation.
|
720 |
|
|
|
721 |
|
|
VECT_DEF is a vector of partial results.
|
722 |
|
|
REDUC_CODE is the tree-code for the epilog reduction.
|
723 |
|
|
STMT is the scalar reduction stmt that is being vectorized.
|
724 |
|
|
REDUCTION_PHI is the phi-node that carries the reduction computation.
|
725 |
|
|
|
726 |
|
|
This function:
|
727 |
|
|
1. Creates the reduction def-use cycle: sets the the arguments for
|
728 |
|
|
REDUCTION_PHI:
|
729 |
|
|
The loop-entry argument is the vectorized initial-value of the reduction.
|
730 |
|
|
The loop-latch argument is VECT_DEF - the vector of partial sums.
|
731 |
|
|
2. "Reduces" the vector of partial results VECT_DEF into a single result,
|
732 |
|
|
by applying the operation specified by REDUC_CODE if available, or by
|
733 |
|
|
other means (whole-vector shifts or a scalar loop).
|
734 |
|
|
The function also creates a new phi node at the loop exit to preserve
|
735 |
|
|
loop-closed form, as illustrated below.
|
736 |
|
|
|
737 |
|
|
The flow at the entry to this function:
|
738 |
|
|
|
739 |
|
|
loop:
|
740 |
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
741 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
742 |
|
|
s_loop = scalar_stmt # (scalar) STMT
|
743 |
|
|
loop_exit:
|
744 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
745 |
|
|
use <s_out0>
|
746 |
|
|
use <s_out0>
|
747 |
|
|
|
748 |
|
|
The above is transformed by this function into:
|
749 |
|
|
|
750 |
|
|
loop:
|
751 |
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
752 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
753 |
|
|
s_loop = scalar_stmt # (scalar) STMT
|
754 |
|
|
loop_exit:
|
755 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
756 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
757 |
|
|
v_out2 = reduce <v_out1>
|
758 |
|
|
s_out3 = extract_field <v_out2, 0>
|
759 |
|
|
s_out4 = adjust_result <s_out3>
|
760 |
|
|
use <s_out4>
|
761 |
|
|
use <s_out4>
|
762 |
|
|
*/
|
763 |
|
|
|
764 |
|
|
static void
|
765 |
|
|
vect_create_epilog_for_reduction (tree vect_def, tree stmt,
|
766 |
|
|
enum tree_code reduc_code, tree reduction_phi)
|
767 |
|
|
{
|
768 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
769 |
|
|
tree vectype;
|
770 |
|
|
enum machine_mode mode;
|
771 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
772 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
773 |
|
|
basic_block exit_bb;
|
774 |
|
|
tree scalar_dest;
|
775 |
|
|
tree scalar_type;
|
776 |
|
|
tree new_phi;
|
777 |
|
|
block_stmt_iterator exit_bsi;
|
778 |
|
|
tree vec_dest;
|
779 |
|
|
tree new_temp;
|
780 |
|
|
tree new_name;
|
781 |
|
|
tree epilog_stmt;
|
782 |
|
|
tree new_scalar_dest, exit_phi;
|
783 |
|
|
tree bitsize, bitpos, bytesize;
|
784 |
|
|
enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
|
785 |
|
|
tree scalar_initial_def;
|
786 |
|
|
tree vec_initial_def;
|
787 |
|
|
tree orig_name;
|
788 |
|
|
imm_use_iterator imm_iter;
|
789 |
|
|
use_operand_p use_p;
|
790 |
|
|
bool extract_scalar_result;
|
791 |
|
|
tree reduction_op;
|
792 |
|
|
tree orig_stmt;
|
793 |
|
|
tree use_stmt;
|
794 |
|
|
tree operation = TREE_OPERAND (stmt, 1);
|
795 |
|
|
int op_type;
|
796 |
|
|
|
797 |
|
|
op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
|
798 |
|
|
reduction_op = TREE_OPERAND (operation, op_type-1);
|
799 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
800 |
|
|
mode = TYPE_MODE (vectype);
|
801 |
|
|
|
802 |
|
|
/*** 1. Create the reduction def-use cycle ***/
|
803 |
|
|
|
804 |
|
|
/* 1.1 set the loop-entry arg of the reduction-phi: */
|
805 |
|
|
/* For the case of reduction, vect_get_vec_def_for_operand returns
|
806 |
|
|
the scalar def before the loop, that defines the initial value
|
807 |
|
|
of the reduction variable. */
|
808 |
|
|
vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
|
809 |
|
|
&scalar_initial_def);
|
810 |
|
|
add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));
|
811 |
|
|
|
812 |
|
|
/* 1.2 set the loop-latch arg for the reduction-phi: */
|
813 |
|
|
add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));
|
814 |
|
|
|
815 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
816 |
|
|
{
|
817 |
|
|
fprintf (vect_dump, "transform reduction: created def-use cycle:");
|
818 |
|
|
print_generic_expr (vect_dump, reduction_phi, TDF_SLIM);
|
819 |
|
|
fprintf (vect_dump, "\n");
|
820 |
|
|
print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vect_def), TDF_SLIM);
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
|
824 |
|
|
/*** 2. Create epilog code
|
825 |
|
|
The reduction epilog code operates across the elements of the vector
|
826 |
|
|
of partial results computed by the vectorized loop.
|
827 |
|
|
The reduction epilog code consists of:
|
828 |
|
|
step 1: compute the scalar result in a vector (v_out2)
|
829 |
|
|
step 2: extract the scalar result (s_out3) from the vector (v_out2)
|
830 |
|
|
step 3: adjust the scalar result (s_out3) if needed.
|
831 |
|
|
|
832 |
|
|
Step 1 can be accomplished using one the following three schemes:
|
833 |
|
|
(scheme 1) using reduc_code, if available.
|
834 |
|
|
(scheme 2) using whole-vector shifts, if available.
|
835 |
|
|
(scheme 3) using a scalar loop. In this case steps 1+2 above are
|
836 |
|
|
combined.
|
837 |
|
|
|
838 |
|
|
The overall epilog code looks like this:
|
839 |
|
|
|
840 |
|
|
s_out0 = phi <s_loop> # original EXIT_PHI
|
841 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
842 |
|
|
v_out2 = reduce <v_out1> # step 1
|
843 |
|
|
s_out3 = extract_field <v_out2, 0> # step 2
|
844 |
|
|
s_out4 = adjust_result <s_out3> # step 3
|
845 |
|
|
|
846 |
|
|
(step 3 is optional, and step2 1 and 2 may be combined).
|
847 |
|
|
Lastly, the uses of s_out0 are replaced by s_out4.
|
848 |
|
|
|
849 |
|
|
***/
|
850 |
|
|
|
851 |
|
|
/* 2.1 Create new loop-exit-phi to preserve loop-closed form:
|
852 |
|
|
v_out1 = phi <v_loop> */
|
853 |
|
|
|
854 |
|
|
exit_bb = loop->single_exit->dest;
|
855 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
|
856 |
|
|
SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
|
857 |
|
|
exit_bsi = bsi_start (exit_bb);
|
858 |
|
|
|
859 |
|
|
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
|
860 |
|
|
(i.e. when reduc_code is not available) and in the final adjustment code
|
861 |
|
|
(if needed). Also get the original scalar reduction variable as
|
862 |
|
|
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
|
863 |
|
|
represents a reduction pattern), the tree-code and scalar-def are
|
864 |
|
|
taken from the original stmt that the pattern-stmt (STMT) replaces.
|
865 |
|
|
Otherwise (it is a regular reduction) - the tree-code and scalar-def
|
866 |
|
|
are taken from STMT. */
|
867 |
|
|
|
868 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
869 |
|
|
if (!orig_stmt)
|
870 |
|
|
{
|
871 |
|
|
/* Regular reduction */
|
872 |
|
|
orig_stmt = stmt;
|
873 |
|
|
}
|
874 |
|
|
else
|
875 |
|
|
{
|
876 |
|
|
/* Reduction pattern */
|
877 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
|
878 |
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
|
879 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
880 |
|
|
}
|
881 |
|
|
code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
|
882 |
|
|
scalar_dest = TREE_OPERAND (orig_stmt, 0);
|
883 |
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
884 |
|
|
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
|
885 |
|
|
bitsize = TYPE_SIZE (scalar_type);
|
886 |
|
|
bytesize = TYPE_SIZE_UNIT (scalar_type);
|
887 |
|
|
|
888 |
|
|
/* 2.3 Create the reduction code, using one of the three schemes described
|
889 |
|
|
above. */
|
890 |
|
|
|
891 |
|
|
if (reduc_code < NUM_TREE_CODES)
|
892 |
|
|
{
|
893 |
|
|
/*** Case 1: Create:
|
894 |
|
|
v_out2 = reduc_expr <v_out1> */
|
895 |
|
|
|
896 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
897 |
|
|
fprintf (vect_dump, "Reduce using direct vector reduction.");
|
898 |
|
|
|
899 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
900 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
|
901 |
|
|
build1 (reduc_code, vectype, PHI_RESULT (new_phi)));
|
902 |
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
903 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_temp;
|
904 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
905 |
|
|
|
906 |
|
|
extract_scalar_result = true;
|
907 |
|
|
}
|
908 |
|
|
else
|
909 |
|
|
{
|
910 |
|
|
enum tree_code shift_code = 0;
|
911 |
|
|
bool have_whole_vector_shift = true;
|
912 |
|
|
int bit_offset;
|
913 |
|
|
int element_bitsize = tree_low_cst (bitsize, 1);
|
914 |
|
|
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
915 |
|
|
tree vec_temp;
|
916 |
|
|
|
917 |
|
|
if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
|
918 |
|
|
shift_code = VEC_RSHIFT_EXPR;
|
919 |
|
|
else
|
920 |
|
|
have_whole_vector_shift = false;
|
921 |
|
|
|
922 |
|
|
/* Regardless of whether we have a whole vector shift, if we're
|
923 |
|
|
emulating the operation via tree-vect-generic, we don't want
|
924 |
|
|
to use it. Only the first round of the reduction is likely
|
925 |
|
|
to still be profitable via emulation. */
|
926 |
|
|
/* ??? It might be better to emit a reduction tree code here, so that
|
927 |
|
|
tree-vect-generic can expand the first round via bit tricks. */
|
928 |
|
|
if (!VECTOR_MODE_P (mode))
|
929 |
|
|
have_whole_vector_shift = false;
|
930 |
|
|
else
|
931 |
|
|
{
|
932 |
|
|
optab optab = optab_for_tree_code (code, vectype);
|
933 |
|
|
if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
|
934 |
|
|
have_whole_vector_shift = false;
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
if (have_whole_vector_shift)
|
938 |
|
|
{
|
939 |
|
|
/*** Case 2: Create:
|
940 |
|
|
for (offset = VS/2; offset >= element_size; offset/=2)
|
941 |
|
|
{
|
942 |
|
|
Create: va' = vec_shift <va, offset>
|
943 |
|
|
Create: va = vop <va, va'>
|
944 |
|
|
} */
|
945 |
|
|
|
946 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
947 |
|
|
fprintf (vect_dump, "Reduce using vector shifts");
|
948 |
|
|
|
949 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
950 |
|
|
new_temp = PHI_RESULT (new_phi);
|
951 |
|
|
|
952 |
|
|
for (bit_offset = vec_size_in_bits/2;
|
953 |
|
|
bit_offset >= element_bitsize;
|
954 |
|
|
bit_offset /= 2)
|
955 |
|
|
{
|
956 |
|
|
tree bitpos = size_int (bit_offset);
|
957 |
|
|
|
958 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
|
959 |
|
|
build2 (shift_code, vectype, new_temp, bitpos));
|
960 |
|
|
new_name = make_ssa_name (vec_dest, epilog_stmt);
|
961 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_name;
|
962 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
963 |
|
|
|
964 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
|
965 |
|
|
build2 (code, vectype, new_name, new_temp));
|
966 |
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
967 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_temp;
|
968 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
extract_scalar_result = true;
|
972 |
|
|
}
|
973 |
|
|
else
|
974 |
|
|
{
|
975 |
|
|
tree rhs;
|
976 |
|
|
|
977 |
|
|
/*** Case 3: Create:
|
978 |
|
|
s = extract_field <v_out2, 0>
|
979 |
|
|
for (offset = element_size;
|
980 |
|
|
offset < vector_size;
|
981 |
|
|
offset += element_size;)
|
982 |
|
|
{
|
983 |
|
|
Create: s' = extract_field <v_out2, offset>
|
984 |
|
|
Create: s = op <s, s'>
|
985 |
|
|
} */
|
986 |
|
|
|
987 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
988 |
|
|
fprintf (vect_dump, "Reduce using scalar code. ");
|
989 |
|
|
|
990 |
|
|
vec_temp = PHI_RESULT (new_phi);
|
991 |
|
|
vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
992 |
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
|
993 |
|
|
bitsize_zero_node);
|
994 |
|
|
BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
|
995 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
|
996 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
997 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_temp;
|
998 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
999 |
|
|
|
1000 |
|
|
for (bit_offset = element_bitsize;
|
1001 |
|
|
bit_offset < vec_size_in_bits;
|
1002 |
|
|
bit_offset += element_bitsize)
|
1003 |
|
|
{
|
1004 |
|
|
tree bitpos = bitsize_int (bit_offset);
|
1005 |
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
|
1006 |
|
|
bitpos);
|
1007 |
|
|
|
1008 |
|
|
BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
|
1009 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
|
1010 |
|
|
rhs);
|
1011 |
|
|
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
|
1012 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_name;
|
1013 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
1014 |
|
|
|
1015 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
|
1016 |
|
|
build2 (code, scalar_type, new_name, new_temp));
|
1017 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
1018 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_temp;
|
1019 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
extract_scalar_result = false;
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
/* 2.4 Extract the final scalar result. Create:
|
1027 |
|
|
s_out3 = extract_field <v_out2, bitpos> */
|
1028 |
|
|
|
1029 |
|
|
if (extract_scalar_result)
|
1030 |
|
|
{
|
1031 |
|
|
tree rhs;
|
1032 |
|
|
|
1033 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1034 |
|
|
fprintf (vect_dump, "extract scalar result");
|
1035 |
|
|
|
1036 |
|
|
if (BYTES_BIG_ENDIAN)
|
1037 |
|
|
bitpos = size_binop (MULT_EXPR,
|
1038 |
|
|
bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
|
1039 |
|
|
TYPE_SIZE (scalar_type));
|
1040 |
|
|
else
|
1041 |
|
|
bitpos = bitsize_zero_node;
|
1042 |
|
|
|
1043 |
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
|
1044 |
|
|
BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
|
1045 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
|
1046 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
1047 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_temp;
|
1048 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
/* 2.4 Adjust the final result by the initial value of the reduction
|
1052 |
|
|
variable. (When such adjustment is not needed, then
|
1053 |
|
|
'scalar_initial_def' is zero).
|
1054 |
|
|
|
1055 |
|
|
Create:
|
1056 |
|
|
s_out4 = scalar_expr <s_out3, scalar_initial_def> */
|
1057 |
|
|
|
1058 |
|
|
if (scalar_initial_def)
|
1059 |
|
|
{
|
1060 |
|
|
epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
|
1061 |
|
|
build2 (code, scalar_type, new_temp, scalar_initial_def));
|
1062 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
1063 |
|
|
TREE_OPERAND (epilog_stmt, 0) = new_temp;
|
1064 |
|
|
bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
/* 2.6 Replace uses of s_out0 with uses of s_out3 */
|
1068 |
|
|
|
1069 |
|
|
/* Find the loop-closed-use at the loop exit of the original scalar result.
|
1070 |
|
|
(The reduction result is expected to have two immediate uses - one at the
|
1071 |
|
|
latch block, and one at the loop exit). */
|
1072 |
|
|
exit_phi = NULL;
|
1073 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
1074 |
|
|
{
|
1075 |
|
|
if (!flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
|
1076 |
|
|
{
|
1077 |
|
|
exit_phi = USE_STMT (use_p);
|
1078 |
|
|
break;
|
1079 |
|
|
}
|
1080 |
|
|
}
|
1081 |
|
|
/* We expect to have found an exit_phi because of loop-closed-ssa form. */
|
1082 |
|
|
gcc_assert (exit_phi);
|
1083 |
|
|
/* Replace the uses: */
|
1084 |
|
|
orig_name = PHI_RESULT (exit_phi);
|
1085 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
1086 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
1087 |
|
|
SET_USE (use_p, new_temp);
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
|
1091 |
|
|
/* Function vectorizable_reduction.
|
1092 |
|
|
|
1093 |
|
|
Check if STMT performs a reduction operation that can be vectorized.
|
1094 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1095 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1096 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise.
|
1097 |
|
|
|
1098 |
|
|
This function also handles reduction idioms (patterns) that have been
|
1099 |
|
|
recognized in advance during vect_pattern_recog. In this case, STMT may be
|
1100 |
|
|
of this form:
|
1101 |
|
|
X = pattern_expr (arg0, arg1, ..., X)
|
1102 |
|
|
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
|
1103 |
|
|
sequence that had been detected and replaced by the pattern-stmt (STMT).
|
1104 |
|
|
|
1105 |
|
|
In some cases of reduction patterns, the type of the reduction variable X is
|
1106 |
|
|
different than the type of the other arguments of STMT.
|
1107 |
|
|
In such cases, the vectype that is used when transforming STMT into a vector
|
1108 |
|
|
stmt is different than the vectype that is used to determine the
|
1109 |
|
|
vectorization factor, because it consists of a different number of elements
|
1110 |
|
|
than the actual number of elements that are being operated upon in parallel.
|
1111 |
|
|
|
1112 |
|
|
For example, consider an accumulation of shorts into an int accumulator.
|
1113 |
|
|
On some targets it's possible to vectorize this pattern operating on 8
|
1114 |
|
|
shorts at a time (hence, the vectype for purposes of determining the
|
1115 |
|
|
vectorization factor should be V8HI); on the other hand, the vectype that
|
1116 |
|
|
is used to create the vector form is actually V4SI (the type of the result).
|
1117 |
|
|
|
1118 |
|
|
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
|
1119 |
|
|
indicates what is the actual level of parallelism (V8HI in the example), so
|
1120 |
|
|
that the right vectorization factor would be derived. This vectype
|
1121 |
|
|
corresponds to the type of arguments to the reduction stmt, and should *NOT*
|
1122 |
|
|
be used to create the vectorized stmt. The right vectype for the vectorized
|
1123 |
|
|
stmt is obtained from the type of the result X:
|
1124 |
|
|
get_vectype_for_scalar_type (TREE_TYPE (X))
|
1125 |
|
|
|
1126 |
|
|
This means that, contrary to "regular" reductions (or "regular" stmts in
|
1127 |
|
|
general), the following equation:
|
1128 |
|
|
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
|
1129 |
|
|
does *NOT* necessarily hold for reduction patterns. */
|
1130 |
|
|
|
1131 |
|
|
bool
|
1132 |
|
|
vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
|
1133 |
|
|
{
|
1134 |
|
|
tree vec_dest;
|
1135 |
|
|
tree scalar_dest;
|
1136 |
|
|
tree op;
|
1137 |
|
|
tree loop_vec_def0, loop_vec_def1;
|
1138 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1139 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1140 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1141 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1142 |
|
|
tree operation;
|
1143 |
|
|
enum tree_code code, orig_code, epilog_reduc_code = 0;
|
1144 |
|
|
enum machine_mode vec_mode;
|
1145 |
|
|
int op_type;
|
1146 |
|
|
optab optab, reduc_optab;
|
1147 |
|
|
tree new_temp;
|
1148 |
|
|
tree def, def_stmt;
|
1149 |
|
|
enum vect_def_type dt;
|
1150 |
|
|
tree new_phi;
|
1151 |
|
|
tree scalar_type;
|
1152 |
|
|
bool is_simple_use;
|
1153 |
|
|
tree orig_stmt;
|
1154 |
|
|
stmt_vec_info orig_stmt_info;
|
1155 |
|
|
tree expr = NULL_TREE;
|
1156 |
|
|
int i;
|
1157 |
|
|
|
1158 |
|
|
/* 1. Is vectorizable reduction? */
|
1159 |
|
|
|
1160 |
|
|
/* Not supportable if the reduction variable is used in the loop. */
|
1161 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
1162 |
|
|
return false;
|
1163 |
|
|
|
1164 |
|
|
if (!STMT_VINFO_LIVE_P (stmt_info))
|
1165 |
|
|
return false;
|
1166 |
|
|
|
1167 |
|
|
/* Make sure it was already recognized as a reduction computation. */
|
1168 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
|
1169 |
|
|
return false;
|
1170 |
|
|
|
1171 |
|
|
/* 2. Has this been recognized as a reduction pattern?
|
1172 |
|
|
|
1173 |
|
|
Check if STMT represents a pattern that has been recognized
|
1174 |
|
|
in earlier analysis stages. For stmts that represent a pattern,
|
1175 |
|
|
the STMT_VINFO_RELATED_STMT field records the last stmt in
|
1176 |
|
|
the original sequence that constitutes the pattern. */
|
1177 |
|
|
|
1178 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
1179 |
|
|
if (orig_stmt)
|
1180 |
|
|
{
|
1181 |
|
|
orig_stmt_info = vinfo_for_stmt (orig_stmt);
|
1182 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
|
1183 |
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
1184 |
|
|
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
|
1185 |
|
|
}
|
1186 |
|
|
|
1187 |
|
|
/* 3. Check the operands of the operation. The first operands are defined
|
1188 |
|
|
inside the loop body. The last operand is the reduction variable,
|
1189 |
|
|
which is defined by the loop-header-phi. */
|
1190 |
|
|
|
1191 |
|
|
gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
|
1192 |
|
|
|
1193 |
|
|
operation = TREE_OPERAND (stmt, 1);
|
1194 |
|
|
code = TREE_CODE (operation);
|
1195 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
1196 |
|
|
|
1197 |
|
|
if (op_type != binary_op && op_type != ternary_op)
|
1198 |
|
|
return false;
|
1199 |
|
|
scalar_dest = TREE_OPERAND (stmt, 0);
|
1200 |
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
1201 |
|
|
|
1202 |
|
|
/* All uses but the last are expected to be defined in the loop.
|
1203 |
|
|
The last use is the reduction variable. */
|
1204 |
|
|
for (i = 0; i < op_type-1; i++)
|
1205 |
|
|
{
|
1206 |
|
|
op = TREE_OPERAND (operation, i);
|
1207 |
|
|
is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
|
1208 |
|
|
gcc_assert (is_simple_use);
|
1209 |
|
|
gcc_assert (dt == vect_loop_def || dt == vect_invariant_def ||
|
1210 |
|
|
dt == vect_constant_def);
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
op = TREE_OPERAND (operation, i);
|
1214 |
|
|
is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
|
1215 |
|
|
gcc_assert (is_simple_use);
|
1216 |
|
|
gcc_assert (dt == vect_reduction_def);
|
1217 |
|
|
gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
|
1218 |
|
|
if (orig_stmt)
|
1219 |
|
|
gcc_assert (orig_stmt == vect_is_simple_reduction (loop, def_stmt));
|
1220 |
|
|
else
|
1221 |
|
|
gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt));
|
1222 |
|
|
|
1223 |
|
|
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
|
1224 |
|
|
return false;
|
1225 |
|
|
|
1226 |
|
|
/* 4. Supportable by target? */
|
1227 |
|
|
|
1228 |
|
|
/* 4.1. check support for the operation in the loop */
|
1229 |
|
|
optab = optab_for_tree_code (code, vectype);
|
1230 |
|
|
if (!optab)
|
1231 |
|
|
{
|
1232 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1233 |
|
|
fprintf (vect_dump, "no optab.");
|
1234 |
|
|
return false;
|
1235 |
|
|
}
|
1236 |
|
|
vec_mode = TYPE_MODE (vectype);
|
1237 |
|
|
if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
|
1238 |
|
|
{
|
1239 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1240 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
1241 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
1242 |
|
|
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
1243 |
|
|
< vect_min_worthwhile_factor (code))
|
1244 |
|
|
return false;
|
1245 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1246 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
/* Worthwhile without SIMD support? */
|
1250 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
1251 |
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
1252 |
|
|
< vect_min_worthwhile_factor (code))
|
1253 |
|
|
{
|
1254 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1255 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
1256 |
|
|
return false;
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
/* 4.2. Check support for the epilog operation.
|
1260 |
|
|
|
1261 |
|
|
If STMT represents a reduction pattern, then the type of the
|
1262 |
|
|
reduction variable may be different than the type of the rest
|
1263 |
|
|
of the arguments. For example, consider the case of accumulation
|
1264 |
|
|
of shorts into an int accumulator; The original code:
|
1265 |
|
|
S1: int_a = (int) short_a;
|
1266 |
|
|
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
|
1267 |
|
|
|
1268 |
|
|
was replaced with:
|
1269 |
|
|
STMT: int_acc = widen_sum <short_a, int_acc>
|
1270 |
|
|
|
1271 |
|
|
This means that:
|
1272 |
|
|
1. The tree-code that is used to create the vector operation in the
|
1273 |
|
|
epilog code (that reduces the partial results) is not the
|
1274 |
|
|
tree-code of STMT, but is rather the tree-code of the original
|
1275 |
|
|
stmt from the pattern that STMT is replacing. I.e, in the example
|
1276 |
|
|
above we want to use 'widen_sum' in the loop, but 'plus' in the
|
1277 |
|
|
epilog.
|
1278 |
|
|
2. The type (mode) we use to check available target support
|
1279 |
|
|
for the vector operation to be created in the *epilog*, is
|
1280 |
|
|
determined by the type of the reduction variable (in the example
|
1281 |
|
|
above we'd check this: plus_optab[vect_int_mode]).
|
1282 |
|
|
However the type (mode) we use to check available target support
|
1283 |
|
|
for the vector operation to be created *inside the loop*, is
|
1284 |
|
|
determined by the type of the other arguments to STMT (in the
|
1285 |
|
|
example we'd check this: widen_sum_optab[vect_short_mode]).
|
1286 |
|
|
|
1287 |
|
|
This is contrary to "regular" reductions, in which the types of all
|
1288 |
|
|
the arguments are the same as the type of the reduction variable.
|
1289 |
|
|
For "regular" reductions we can therefore use the same vector type
|
1290 |
|
|
(and also the same tree-code) when generating the epilog code and
|
1291 |
|
|
when generating the code inside the loop. */
|
1292 |
|
|
|
1293 |
|
|
if (orig_stmt)
|
1294 |
|
|
{
|
1295 |
|
|
/* This is a reduction pattern: get the vectype from the type of the
|
1296 |
|
|
reduction variable, and get the tree-code from orig_stmt. */
|
1297 |
|
|
orig_code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
|
1298 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
|
1299 |
|
|
vec_mode = TYPE_MODE (vectype);
|
1300 |
|
|
}
|
1301 |
|
|
else
|
1302 |
|
|
{
|
1303 |
|
|
/* Regular reduction: use the same vectype and tree-code as used for
|
1304 |
|
|
the vector code inside the loop can be used for the epilog code. */
|
1305 |
|
|
orig_code = code;
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
|
1309 |
|
|
return false;
|
1310 |
|
|
reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
|
1311 |
|
|
if (!reduc_optab)
|
1312 |
|
|
{
|
1313 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1314 |
|
|
fprintf (vect_dump, "no optab for reduction.");
|
1315 |
|
|
epilog_reduc_code = NUM_TREE_CODES;
|
1316 |
|
|
}
|
1317 |
|
|
if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
|
1318 |
|
|
{
|
1319 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1320 |
|
|
fprintf (vect_dump, "reduc op not supported by target.");
|
1321 |
|
|
epilog_reduc_code = NUM_TREE_CODES;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1325 |
|
|
{
|
1326 |
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
1327 |
|
|
return true;
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
/** Transform. **/
|
1331 |
|
|
|
1332 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1333 |
|
|
fprintf (vect_dump, "transform reduction.");
|
1334 |
|
|
|
1335 |
|
|
/* Create the destination vector */
|
1336 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1337 |
|
|
|
1338 |
|
|
/* Create the reduction-phi that defines the reduction-operand. */
|
1339 |
|
|
new_phi = create_phi_node (vec_dest, loop->header);
|
1340 |
|
|
|
1341 |
|
|
/* Prepare the operand that is defined inside the loop body */
|
1342 |
|
|
op = TREE_OPERAND (operation, 0);
|
1343 |
|
|
loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
|
1344 |
|
|
if (op_type == binary_op)
|
1345 |
|
|
expr = build2 (code, vectype, loop_vec_def0, PHI_RESULT (new_phi));
|
1346 |
|
|
else if (op_type == ternary_op)
|
1347 |
|
|
{
|
1348 |
|
|
op = TREE_OPERAND (operation, 1);
|
1349 |
|
|
loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
|
1350 |
|
|
expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
|
1351 |
|
|
PHI_RESULT (new_phi));
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
/* Create the vectorized operation that computes the partial results */
|
1355 |
|
|
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, expr);
|
1356 |
|
|
new_temp = make_ssa_name (vec_dest, *vec_stmt);
|
1357 |
|
|
TREE_OPERAND (*vec_stmt, 0) = new_temp;
|
1358 |
|
|
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
|
1359 |
|
|
|
1360 |
|
|
/* Finalize the reduction-phi (set it's arguments) and create the
|
1361 |
|
|
epilog reduction code. */
|
1362 |
|
|
vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
|
1363 |
|
|
return true;
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
|
1367 |
|
|
/* Function vectorizable_assignment.
|
1368 |
|
|
|
1369 |
|
|
Check if STMT performs an assignment (copy) that can be vectorized.
|
1370 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1371 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1372 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1373 |
|
|
|
1374 |
|
|
bool
|
1375 |
|
|
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
|
1376 |
|
|
{
|
1377 |
|
|
tree vec_dest;
|
1378 |
|
|
tree scalar_dest;
|
1379 |
|
|
tree op;
|
1380 |
|
|
tree vec_oprnd;
|
1381 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1382 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1383 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1384 |
|
|
tree new_temp;
|
1385 |
|
|
tree def, def_stmt;
|
1386 |
|
|
enum vect_def_type dt;
|
1387 |
|
|
|
1388 |
|
|
/* Is vectorizable assignment? */
|
1389 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
1390 |
|
|
return false;
|
1391 |
|
|
|
1392 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
|
1393 |
|
|
|
1394 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
1395 |
|
|
return false;
|
1396 |
|
|
|
1397 |
|
|
scalar_dest = TREE_OPERAND (stmt, 0);
|
1398 |
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
1399 |
|
|
return false;
|
1400 |
|
|
|
1401 |
|
|
op = TREE_OPERAND (stmt, 1);
|
1402 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
|
1403 |
|
|
{
|
1404 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1405 |
|
|
fprintf (vect_dump, "use not simple.");
|
1406 |
|
|
return false;
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1410 |
|
|
{
|
1411 |
|
|
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
|
1412 |
|
|
return true;
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/** Transform. **/
|
1416 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1417 |
|
|
fprintf (vect_dump, "transform assignment.");
|
1418 |
|
|
|
1419 |
|
|
/* Handle def. */
|
1420 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1421 |
|
|
|
1422 |
|
|
/* Handle use. */
|
1423 |
|
|
op = TREE_OPERAND (stmt, 1);
|
1424 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);
|
1425 |
|
|
|
1426 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
1427 |
|
|
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
|
1428 |
|
|
new_temp = make_ssa_name (vec_dest, *vec_stmt);
|
1429 |
|
|
TREE_OPERAND (*vec_stmt, 0) = new_temp;
|
1430 |
|
|
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
|
1431 |
|
|
|
1432 |
|
|
return true;
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
|
1436 |
|
|
/* Function vect_min_worthwhile_factor.
|
1437 |
|
|
|
1438 |
|
|
For a loop where we could vectorize the operation indicated by CODE,
|
1439 |
|
|
return the minimum vectorization factor that makes it worthwhile
|
1440 |
|
|
to use generic vectors. */
|
1441 |
|
|
static int
|
1442 |
|
|
vect_min_worthwhile_factor (enum tree_code code)
|
1443 |
|
|
{
|
1444 |
|
|
switch (code)
|
1445 |
|
|
{
|
1446 |
|
|
case PLUS_EXPR:
|
1447 |
|
|
case MINUS_EXPR:
|
1448 |
|
|
case NEGATE_EXPR:
|
1449 |
|
|
return 4;
|
1450 |
|
|
|
1451 |
|
|
case BIT_AND_EXPR:
|
1452 |
|
|
case BIT_IOR_EXPR:
|
1453 |
|
|
case BIT_XOR_EXPR:
|
1454 |
|
|
case BIT_NOT_EXPR:
|
1455 |
|
|
return 2;
|
1456 |
|
|
|
1457 |
|
|
default:
|
1458 |
|
|
return INT_MAX;
|
1459 |
|
|
}
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
|
1463 |
|
|
/* Function vectorizable_operation.
|
1464 |
|
|
|
1465 |
|
|
Check if STMT performs a binary or unary operation that can be vectorized.
|
1466 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1467 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1468 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1469 |
|
|
|
1470 |
|
|
bool
|
1471 |
|
|
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
|
1472 |
|
|
{
|
1473 |
|
|
tree vec_dest;
|
1474 |
|
|
tree scalar_dest;
|
1475 |
|
|
tree operation;
|
1476 |
|
|
tree op0, op1 = NULL;
|
1477 |
|
|
tree vec_oprnd0, vec_oprnd1=NULL;
|
1478 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1479 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1480 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1481 |
|
|
int i;
|
1482 |
|
|
enum tree_code code;
|
1483 |
|
|
enum machine_mode vec_mode;
|
1484 |
|
|
tree new_temp;
|
1485 |
|
|
int op_type;
|
1486 |
|
|
tree op;
|
1487 |
|
|
optab optab;
|
1488 |
|
|
int icode;
|
1489 |
|
|
enum machine_mode optab_op2_mode;
|
1490 |
|
|
tree def, def_stmt;
|
1491 |
|
|
enum vect_def_type dt;
|
1492 |
|
|
|
1493 |
|
|
/* Is STMT a vectorizable binary/unary operation? */
|
1494 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
1495 |
|
|
return false;
|
1496 |
|
|
|
1497 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
|
1498 |
|
|
|
1499 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
1500 |
|
|
{
|
1501 |
|
|
/* FORNOW: not yet supported. */
|
1502 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1503 |
|
|
fprintf (vect_dump, "value used after loop.");
|
1504 |
|
|
return false;
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
1508 |
|
|
return false;
|
1509 |
|
|
|
1510 |
|
|
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
|
1511 |
|
|
return false;
|
1512 |
|
|
|
1513 |
|
|
operation = TREE_OPERAND (stmt, 1);
|
1514 |
|
|
code = TREE_CODE (operation);
|
1515 |
|
|
optab = optab_for_tree_code (code, vectype);
|
1516 |
|
|
|
1517 |
|
|
/* Support only unary or binary operations. */
|
1518 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
1519 |
|
|
if (op_type != unary_op && op_type != binary_op)
|
1520 |
|
|
{
|
1521 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1522 |
|
|
fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
|
1523 |
|
|
return false;
|
1524 |
|
|
}
|
1525 |
|
|
|
1526 |
|
|
for (i = 0; i < op_type; i++)
|
1527 |
|
|
{
|
1528 |
|
|
op = TREE_OPERAND (operation, i);
|
1529 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
|
1530 |
|
|
{
|
1531 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1532 |
|
|
fprintf (vect_dump, "use not simple.");
|
1533 |
|
|
return false;
|
1534 |
|
|
}
|
1535 |
|
|
}
|
1536 |
|
|
|
1537 |
|
|
/* Supportable by target? */
|
1538 |
|
|
if (!optab)
|
1539 |
|
|
{
|
1540 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1541 |
|
|
fprintf (vect_dump, "no optab.");
|
1542 |
|
|
return false;
|
1543 |
|
|
}
|
1544 |
|
|
vec_mode = TYPE_MODE (vectype);
|
1545 |
|
|
icode = (int) optab->handlers[(int) vec_mode].insn_code;
|
1546 |
|
|
if (icode == CODE_FOR_nothing)
|
1547 |
|
|
{
|
1548 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1549 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
1550 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
1551 |
|
|
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
1552 |
|
|
< vect_min_worthwhile_factor (code))
|
1553 |
|
|
return false;
|
1554 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1555 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
/* Worthwhile without SIMD support? */
|
1559 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
1560 |
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
1561 |
|
|
< vect_min_worthwhile_factor (code))
|
1562 |
|
|
{
|
1563 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1564 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
1565 |
|
|
return false;
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
|
1569 |
|
|
{
|
1570 |
|
|
/* FORNOW: not yet supported. */
|
1571 |
|
|
if (!VECTOR_MODE_P (vec_mode))
|
1572 |
|
|
return false;
|
1573 |
|
|
|
1574 |
|
|
/* Invariant argument is needed for a vector shift
|
1575 |
|
|
by a scalar shift operand. */
|
1576 |
|
|
optab_op2_mode = insn_data[icode].operand[2].mode;
|
1577 |
|
|
if (! (VECTOR_MODE_P (optab_op2_mode)
|
1578 |
|
|
|| dt == vect_constant_def
|
1579 |
|
|
|| dt == vect_invariant_def))
|
1580 |
|
|
{
|
1581 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1582 |
|
|
fprintf (vect_dump, "operand mode requires invariant argument.");
|
1583 |
|
|
return false;
|
1584 |
|
|
}
|
1585 |
|
|
}
|
1586 |
|
|
|
1587 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1588 |
|
|
{
|
1589 |
|
|
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
|
1590 |
|
|
return true;
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
/** Transform. **/
|
1594 |
|
|
|
1595 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1596 |
|
|
fprintf (vect_dump, "transform binary/unary operation.");
|
1597 |
|
|
|
1598 |
|
|
/* Handle def. */
|
1599 |
|
|
scalar_dest = TREE_OPERAND (stmt, 0);
|
1600 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1601 |
|
|
|
1602 |
|
|
/* Handle uses. */
|
1603 |
|
|
op0 = TREE_OPERAND (operation, 0);
|
1604 |
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
1605 |
|
|
|
1606 |
|
|
if (op_type == binary_op)
|
1607 |
|
|
{
|
1608 |
|
|
op1 = TREE_OPERAND (operation, 1);
|
1609 |
|
|
|
1610 |
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
|
1611 |
|
|
{
|
1612 |
|
|
/* Vector shl and shr insn patterns can be defined with
|
1613 |
|
|
scalar operand 2 (shift operand). In this case, use
|
1614 |
|
|
constant or loop invariant op1 directly, without
|
1615 |
|
|
extending it to vector mode first. */
|
1616 |
|
|
|
1617 |
|
|
optab_op2_mode = insn_data[icode].operand[2].mode;
|
1618 |
|
|
if (!VECTOR_MODE_P (optab_op2_mode))
|
1619 |
|
|
{
|
1620 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1621 |
|
|
fprintf (vect_dump, "operand 1 using scalar mode.");
|
1622 |
|
|
vec_oprnd1 = op1;
|
1623 |
|
|
}
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
if (!vec_oprnd1)
|
1627 |
|
|
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
1631 |
|
|
|
1632 |
|
|
if (op_type == binary_op)
|
1633 |
|
|
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
|
1634 |
|
|
build2 (code, vectype, vec_oprnd0, vec_oprnd1));
|
1635 |
|
|
else
|
1636 |
|
|
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
|
1637 |
|
|
build1 (code, vectype, vec_oprnd0));
|
1638 |
|
|
new_temp = make_ssa_name (vec_dest, *vec_stmt);
|
1639 |
|
|
TREE_OPERAND (*vec_stmt, 0) = new_temp;
|
1640 |
|
|
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
|
1641 |
|
|
|
1642 |
|
|
return true;
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
|
1646 |
|
|
/* Function vectorizable_store.
|
1647 |
|
|
|
1648 |
|
|
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
|
1649 |
|
|
can be vectorized.
|
1650 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1651 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1652 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1653 |
|
|
|
1654 |
|
|
bool
|
1655 |
|
|
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
|
1656 |
|
|
{
|
1657 |
|
|
tree scalar_dest;
|
1658 |
|
|
tree data_ref;
|
1659 |
|
|
tree op;
|
1660 |
|
|
tree vec_oprnd1;
|
1661 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1662 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
1663 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1664 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1665 |
|
|
enum machine_mode vec_mode;
|
1666 |
|
|
tree dummy;
|
1667 |
|
|
enum dr_alignment_support alignment_support_cheme;
|
1668 |
|
|
ssa_op_iter iter;
|
1669 |
|
|
tree def, def_stmt;
|
1670 |
|
|
enum vect_def_type dt;
|
1671 |
|
|
|
1672 |
|
|
/* Is vectorizable store? */
|
1673 |
|
|
|
1674 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
1675 |
|
|
return false;
|
1676 |
|
|
|
1677 |
|
|
scalar_dest = TREE_OPERAND (stmt, 0);
|
1678 |
|
|
if (TREE_CODE (scalar_dest) != ARRAY_REF
|
1679 |
|
|
&& TREE_CODE (scalar_dest) != INDIRECT_REF)
|
1680 |
|
|
return false;
|
1681 |
|
|
|
1682 |
|
|
op = TREE_OPERAND (stmt, 1);
|
1683 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
|
1684 |
|
|
{
|
1685 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1686 |
|
|
fprintf (vect_dump, "use not simple.");
|
1687 |
|
|
return false;
|
1688 |
|
|
}
|
1689 |
|
|
|
1690 |
|
|
vec_mode = TYPE_MODE (vectype);
|
1691 |
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
1692 |
|
|
(e.g. - array initialization with 0). */
|
1693 |
|
|
if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
|
1694 |
|
|
return false;
|
1695 |
|
|
|
1696 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
1697 |
|
|
return false;
|
1698 |
|
|
|
1699 |
|
|
|
1700 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1701 |
|
|
{
|
1702 |
|
|
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
|
1703 |
|
|
return true;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
/** Transform. **/
|
1707 |
|
|
|
1708 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1709 |
|
|
fprintf (vect_dump, "transform store");
|
1710 |
|
|
|
1711 |
|
|
alignment_support_cheme = vect_supportable_dr_alignment (dr);
|
1712 |
|
|
gcc_assert (alignment_support_cheme);
|
1713 |
|
|
gcc_assert (alignment_support_cheme == dr_aligned); /* FORNOW */
|
1714 |
|
|
|
1715 |
|
|
/* Handle use - get the vectorized def from the defining stmt. */
|
1716 |
|
|
vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);
|
1717 |
|
|
|
1718 |
|
|
/* Handle def. */
|
1719 |
|
|
/* FORNOW: make sure the data reference is aligned. */
|
1720 |
|
|
vect_align_data_ref (stmt);
|
1721 |
|
|
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
|
1722 |
|
|
data_ref = build_fold_indirect_ref (data_ref);
|
1723 |
|
|
|
1724 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
1725 |
|
|
*vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
|
1726 |
|
|
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
|
1727 |
|
|
|
1728 |
|
|
/* Copy the V_MAY_DEFS representing the aliasing of the original array
|
1729 |
|
|
element's definition to the vector's definition then update the
|
1730 |
|
|
defining statement. The original is being deleted so the same
|
1731 |
|
|
SSA_NAMEs can be used. */
|
1732 |
|
|
copy_virtual_operands (*vec_stmt, stmt);
|
1733 |
|
|
|
1734 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
|
1735 |
|
|
{
|
1736 |
|
|
SSA_NAME_DEF_STMT (def) = *vec_stmt;
|
1737 |
|
|
|
1738 |
|
|
/* If this virtual def has a use outside the loop and a loop peel is
|
1739 |
|
|
performed then the def may be renamed by the peel. Mark it for
|
1740 |
|
|
renaming so the later use will also be renamed. */
|
1741 |
|
|
mark_sym_for_renaming (SSA_NAME_VAR (def));
|
1742 |
|
|
}
|
1743 |
|
|
|
1744 |
|
|
return true;
|
1745 |
|
|
}
|
1746 |
|
|
|
1747 |
|
|
|
1748 |
|
|
/* vectorizable_load.
|
1749 |
|
|
|
1750 |
|
|
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
|
1751 |
|
|
can be vectorized.
|
1752 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
1753 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
1754 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
1755 |
|
|
|
1756 |
|
|
bool
|
1757 |
|
|
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
|
1758 |
|
|
{
|
1759 |
|
|
tree scalar_dest;
|
1760 |
|
|
tree vec_dest = NULL;
|
1761 |
|
|
tree data_ref = NULL;
|
1762 |
|
|
tree op;
|
1763 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1764 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
1765 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1766 |
|
|
tree new_temp;
|
1767 |
|
|
int mode;
|
1768 |
|
|
tree init_addr;
|
1769 |
|
|
tree new_stmt;
|
1770 |
|
|
tree dummy;
|
1771 |
|
|
basic_block new_bb;
|
1772 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1773 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1774 |
|
|
edge pe = loop_preheader_edge (loop);
|
1775 |
|
|
enum dr_alignment_support alignment_support_cheme;
|
1776 |
|
|
|
1777 |
|
|
/* Is vectorizable load? */
|
1778 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
1779 |
|
|
return false;
|
1780 |
|
|
|
1781 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
|
1782 |
|
|
|
1783 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
1784 |
|
|
{
|
1785 |
|
|
/* FORNOW: not yet supported. */
|
1786 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1787 |
|
|
fprintf (vect_dump, "value used after loop.");
|
1788 |
|
|
return false;
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
1792 |
|
|
return false;
|
1793 |
|
|
|
1794 |
|
|
scalar_dest = TREE_OPERAND (stmt, 0);
|
1795 |
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
1796 |
|
|
return false;
|
1797 |
|
|
|
1798 |
|
|
op = TREE_OPERAND (stmt, 1);
|
1799 |
|
|
if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
|
1800 |
|
|
return false;
|
1801 |
|
|
|
1802 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
1803 |
|
|
return false;
|
1804 |
|
|
|
1805 |
|
|
mode = (int) TYPE_MODE (vectype);
|
1806 |
|
|
|
1807 |
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
1808 |
|
|
(e.g. - data copies). */
|
1809 |
|
|
if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
|
1810 |
|
|
{
|
1811 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1812 |
|
|
fprintf (vect_dump, "Aligned load, but unsupported type.");
|
1813 |
|
|
return false;
|
1814 |
|
|
}
|
1815 |
|
|
|
1816 |
|
|
if (!vec_stmt) /* transformation not required. */
|
1817 |
|
|
{
|
1818 |
|
|
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
|
1819 |
|
|
return true;
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
/** Transform. **/
|
1823 |
|
|
|
1824 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1825 |
|
|
fprintf (vect_dump, "transform load.");
|
1826 |
|
|
|
1827 |
|
|
alignment_support_cheme = vect_supportable_dr_alignment (dr);
|
1828 |
|
|
gcc_assert (alignment_support_cheme);
|
1829 |
|
|
|
1830 |
|
|
if (alignment_support_cheme == dr_aligned
|
1831 |
|
|
|| alignment_support_cheme == dr_unaligned_supported)
|
1832 |
|
|
{
|
1833 |
|
|
/* Create:
|
1834 |
|
|
p = initial_addr;
|
1835 |
|
|
indx = 0;
|
1836 |
|
|
loop {
|
1837 |
|
|
vec_dest = *(p);
|
1838 |
|
|
indx = indx + 1;
|
1839 |
|
|
}
|
1840 |
|
|
*/
|
1841 |
|
|
|
1842 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1843 |
|
|
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
|
1844 |
|
|
if (aligned_access_p (dr))
|
1845 |
|
|
data_ref = build_fold_indirect_ref (data_ref);
|
1846 |
|
|
else
|
1847 |
|
|
{
|
1848 |
|
|
int mis = DR_MISALIGNMENT (dr);
|
1849 |
|
|
tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
|
1850 |
|
|
tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
|
1851 |
|
|
data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
|
1852 |
|
|
}
|
1853 |
|
|
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
|
1854 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1855 |
|
|
TREE_OPERAND (new_stmt, 0) = new_temp;
|
1856 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, bsi);
|
1857 |
|
|
copy_virtual_operands (new_stmt, stmt);
|
1858 |
|
|
}
|
1859 |
|
|
else if (alignment_support_cheme == dr_unaligned_software_pipeline)
|
1860 |
|
|
{
|
1861 |
|
|
/* Create:
|
1862 |
|
|
p1 = initial_addr;
|
1863 |
|
|
msq_init = *(floor(p1))
|
1864 |
|
|
p2 = initial_addr + VS - 1;
|
1865 |
|
|
magic = have_builtin ? builtin_result : initial_address;
|
1866 |
|
|
indx = 0;
|
1867 |
|
|
loop {
|
1868 |
|
|
p2' = p2 + indx * vectype_size
|
1869 |
|
|
lsq = *(floor(p2'))
|
1870 |
|
|
vec_dest = realign_load (msq, lsq, magic)
|
1871 |
|
|
indx = indx + 1;
|
1872 |
|
|
msq = lsq;
|
1873 |
|
|
}
|
1874 |
|
|
*/
|
1875 |
|
|
|
1876 |
|
|
tree offset;
|
1877 |
|
|
tree magic;
|
1878 |
|
|
tree phi_stmt;
|
1879 |
|
|
tree msq_init;
|
1880 |
|
|
tree msq, lsq;
|
1881 |
|
|
tree dataref_ptr;
|
1882 |
|
|
tree params;
|
1883 |
|
|
|
1884 |
|
|
/* <1> Create msq_init = *(floor(p1)) in the loop preheader */
|
1885 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1886 |
|
|
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
|
1887 |
|
|
&init_addr, true);
|
1888 |
|
|
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
|
1889 |
|
|
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
|
1890 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1891 |
|
|
TREE_OPERAND (new_stmt, 0) = new_temp;
|
1892 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
|
1893 |
|
|
gcc_assert (!new_bb);
|
1894 |
|
|
msq_init = TREE_OPERAND (new_stmt, 0);
|
1895 |
|
|
copy_virtual_operands (new_stmt, stmt);
|
1896 |
|
|
update_vuses_to_preheader (new_stmt, loop);
|
1897 |
|
|
|
1898 |
|
|
|
1899 |
|
|
/* <2> Create lsq = *(floor(p2')) in the loop */
|
1900 |
|
|
offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
1901 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1902 |
|
|
dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
|
1903 |
|
|
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
|
1904 |
|
|
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
|
1905 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1906 |
|
|
TREE_OPERAND (new_stmt, 0) = new_temp;
|
1907 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, bsi);
|
1908 |
|
|
lsq = TREE_OPERAND (new_stmt, 0);
|
1909 |
|
|
copy_virtual_operands (new_stmt, stmt);
|
1910 |
|
|
|
1911 |
|
|
|
1912 |
|
|
/* <3> */
|
1913 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
1914 |
|
|
{
|
1915 |
|
|
/* Create permutation mask, if required, in loop preheader. */
|
1916 |
|
|
tree builtin_decl;
|
1917 |
|
|
params = build_tree_list (NULL_TREE, init_addr);
|
1918 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1919 |
|
|
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
|
1920 |
|
|
new_stmt = build_function_call_expr (builtin_decl, params);
|
1921 |
|
|
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
|
1922 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1923 |
|
|
TREE_OPERAND (new_stmt, 0) = new_temp;
|
1924 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
|
1925 |
|
|
gcc_assert (!new_bb);
|
1926 |
|
|
magic = TREE_OPERAND (new_stmt, 0);
|
1927 |
|
|
|
1928 |
|
|
/* The result of the CALL_EXPR to this builtin is determined from
|
1929 |
|
|
the value of the parameter and no global variables are touched
|
1930 |
|
|
which makes the builtin a "const" function. Requiring the
|
1931 |
|
|
builtin to have the "const" attribute makes it unnecessary
|
1932 |
|
|
to call mark_call_clobbered. */
|
1933 |
|
|
gcc_assert (TREE_READONLY (builtin_decl));
|
1934 |
|
|
}
|
1935 |
|
|
else
|
1936 |
|
|
{
|
1937 |
|
|
/* Use current address instead of init_addr for reduced reg pressure.
|
1938 |
|
|
*/
|
1939 |
|
|
magic = dataref_ptr;
|
1940 |
|
|
}
|
1941 |
|
|
|
1942 |
|
|
|
1943 |
|
|
/* <4> Create msq = phi <msq_init, lsq> in loop */
|
1944 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1945 |
|
|
msq = make_ssa_name (vec_dest, NULL_TREE);
|
1946 |
|
|
phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
|
1947 |
|
|
SSA_NAME_DEF_STMT (msq) = phi_stmt;
|
1948 |
|
|
add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
|
1949 |
|
|
add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
|
1950 |
|
|
|
1951 |
|
|
|
1952 |
|
|
/* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop */
|
1953 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
1954 |
|
|
new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
|
1955 |
|
|
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
|
1956 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
1957 |
|
|
TREE_OPERAND (new_stmt, 0) = new_temp;
|
1958 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, bsi);
|
1959 |
|
|
}
|
1960 |
|
|
else
|
1961 |
|
|
gcc_unreachable ();
|
1962 |
|
|
|
1963 |
|
|
*vec_stmt = new_stmt;
|
1964 |
|
|
return true;
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
|
1968 |
|
|
/* Function vectorizable_live_operation.
|
1969 |
|
|
|
1970 |
|
|
STMT computes a value that is used outside the loop. Check if
|
1971 |
|
|
it can be supported. */
|
1972 |
|
|
|
1973 |
|
|
bool
|
1974 |
|
|
vectorizable_live_operation (tree stmt,
|
1975 |
|
|
block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
|
1976 |
|
|
tree *vec_stmt ATTRIBUTE_UNUSED)
|
1977 |
|
|
{
|
1978 |
|
|
tree operation;
|
1979 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1980 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1981 |
|
|
int i;
|
1982 |
|
|
enum tree_code code;
|
1983 |
|
|
int op_type;
|
1984 |
|
|
tree op;
|
1985 |
|
|
tree def, def_stmt;
|
1986 |
|
|
enum vect_def_type dt;
|
1987 |
|
|
|
1988 |
|
|
if (!STMT_VINFO_LIVE_P (stmt_info))
|
1989 |
|
|
return false;
|
1990 |
|
|
|
1991 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
1992 |
|
|
return false;
|
1993 |
|
|
|
1994 |
|
|
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
|
1995 |
|
|
return false;
|
1996 |
|
|
|
1997 |
|
|
operation = TREE_OPERAND (stmt, 1);
|
1998 |
|
|
code = TREE_CODE (operation);
|
1999 |
|
|
|
2000 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
2001 |
|
|
|
2002 |
|
|
/* FORNOW: support only if all uses are invariant. This means
|
2003 |
|
|
that the scalar operations can remain in place, unvectorized.
|
2004 |
|
|
The original last scalar value that they compute will be used. */
|
2005 |
|
|
|
2006 |
|
|
for (i = 0; i < op_type; i++)
|
2007 |
|
|
{
|
2008 |
|
|
op = TREE_OPERAND (operation, i);
|
2009 |
|
|
if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
|
2010 |
|
|
{
|
2011 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2012 |
|
|
fprintf (vect_dump, "use not simple.");
|
2013 |
|
|
return false;
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
if (dt != vect_invariant_def && dt != vect_constant_def)
|
2017 |
|
|
return false;
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
/* No transformation is required for the cases we currently support. */
|
2021 |
|
|
return true;
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
|
2025 |
|
|
/* Function vect_is_simple_cond.
|
2026 |
|
|
|
2027 |
|
|
Input:
|
2028 |
|
|
LOOP - the loop that is being vectorized.
|
2029 |
|
|
COND - Condition that is checked for simple use.
|
2030 |
|
|
|
2031 |
|
|
Returns whether a COND can be vectorized. Checks whether
|
2032 |
|
|
condition operands are supportable using vec_is_simple_use. */
|
2033 |
|
|
|
2034 |
|
|
static bool
|
2035 |
|
|
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
|
2036 |
|
|
{
|
2037 |
|
|
tree lhs, rhs;
|
2038 |
|
|
tree def;
|
2039 |
|
|
enum vect_def_type dt;
|
2040 |
|
|
|
2041 |
|
|
if (!COMPARISON_CLASS_P (cond))
|
2042 |
|
|
return false;
|
2043 |
|
|
|
2044 |
|
|
lhs = TREE_OPERAND (cond, 0);
|
2045 |
|
|
rhs = TREE_OPERAND (cond, 1);
|
2046 |
|
|
|
2047 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
2048 |
|
|
{
|
2049 |
|
|
tree lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
|
2050 |
|
|
if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
|
2051 |
|
|
return false;
|
2052 |
|
|
}
|
2053 |
|
|
else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
|
2054 |
|
|
return false;
|
2055 |
|
|
|
2056 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
2057 |
|
|
{
|
2058 |
|
|
tree rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
2059 |
|
|
if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
|
2060 |
|
|
return false;
|
2061 |
|
|
}
|
2062 |
|
|
else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST)
|
2063 |
|
|
return false;
|
2064 |
|
|
|
2065 |
|
|
return true;
|
2066 |
|
|
}
|
2067 |
|
|
|
2068 |
|
|
/* vectorizable_condition.
|
2069 |
|
|
|
2070 |
|
|
Check if STMT is conditional modify expression that can be vectorized.
|
2071 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
2072 |
|
|
stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
|
2073 |
|
|
at BSI.
|
2074 |
|
|
|
2075 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
2076 |
|
|
|
2077 |
|
|
bool
|
2078 |
|
|
vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
|
2079 |
|
|
{
|
2080 |
|
|
tree scalar_dest = NULL_TREE;
|
2081 |
|
|
tree vec_dest = NULL_TREE;
|
2082 |
|
|
tree op = NULL_TREE;
|
2083 |
|
|
tree cond_expr, then_clause, else_clause;
|
2084 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2085 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
2086 |
|
|
tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
|
2087 |
|
|
tree vec_compare, vec_cond_expr;
|
2088 |
|
|
tree new_temp;
|
2089 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2090 |
|
|
enum machine_mode vec_mode;
|
2091 |
|
|
tree def;
|
2092 |
|
|
enum vect_def_type dt;
|
2093 |
|
|
|
2094 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
2095 |
|
|
return false;
|
2096 |
|
|
|
2097 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);
|
2098 |
|
|
|
2099 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
2100 |
|
|
{
|
2101 |
|
|
/* FORNOW: not yet supported. */
|
2102 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2103 |
|
|
fprintf (vect_dump, "value used after loop.");
|
2104 |
|
|
return false;
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
2108 |
|
|
return false;
|
2109 |
|
|
|
2110 |
|
|
op = TREE_OPERAND (stmt, 1);
|
2111 |
|
|
|
2112 |
|
|
if (TREE_CODE (op) != COND_EXPR)
|
2113 |
|
|
return false;
|
2114 |
|
|
|
2115 |
|
|
cond_expr = TREE_OPERAND (op, 0);
|
2116 |
|
|
then_clause = TREE_OPERAND (op, 1);
|
2117 |
|
|
else_clause = TREE_OPERAND (op, 2);
|
2118 |
|
|
|
2119 |
|
|
if (!vect_is_simple_cond (cond_expr, loop_vinfo))
|
2120 |
|
|
return false;
|
2121 |
|
|
|
2122 |
|
|
/* We do not handle two different vector types for the condition
|
2123 |
|
|
and the values. */
|
2124 |
|
|
if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
|
2125 |
|
|
return false;
|
2126 |
|
|
|
2127 |
|
|
if (TREE_CODE (then_clause) == SSA_NAME)
|
2128 |
|
|
{
|
2129 |
|
|
tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
|
2130 |
|
|
if (!vect_is_simple_use (then_clause, loop_vinfo,
|
2131 |
|
|
&then_def_stmt, &def, &dt))
|
2132 |
|
|
return false;
|
2133 |
|
|
}
|
2134 |
|
|
else if (TREE_CODE (then_clause) != INTEGER_CST
|
2135 |
|
|
&& TREE_CODE (then_clause) != REAL_CST)
|
2136 |
|
|
return false;
|
2137 |
|
|
|
2138 |
|
|
if (TREE_CODE (else_clause) == SSA_NAME)
|
2139 |
|
|
{
|
2140 |
|
|
tree else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
|
2141 |
|
|
if (!vect_is_simple_use (else_clause, loop_vinfo,
|
2142 |
|
|
&else_def_stmt, &def, &dt))
|
2143 |
|
|
return false;
|
2144 |
|
|
}
|
2145 |
|
|
else if (TREE_CODE (else_clause) != INTEGER_CST
|
2146 |
|
|
&& TREE_CODE (else_clause) != REAL_CST)
|
2147 |
|
|
return false;
|
2148 |
|
|
|
2149 |
|
|
|
2150 |
|
|
vec_mode = TYPE_MODE (vectype);
|
2151 |
|
|
|
2152 |
|
|
if (!vec_stmt)
|
2153 |
|
|
{
|
2154 |
|
|
STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
|
2155 |
|
|
return expand_vec_cond_expr_p (op, vec_mode);
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Transform */
|
2159 |
|
|
|
2160 |
|
|
/* Handle def. */
|
2161 |
|
|
scalar_dest = TREE_OPERAND (stmt, 0);
|
2162 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
2163 |
|
|
|
2164 |
|
|
/* Handle cond expr. */
|
2165 |
|
|
vec_cond_lhs =
|
2166 |
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
|
2167 |
|
|
vec_cond_rhs =
|
2168 |
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
|
2169 |
|
|
vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
|
2170 |
|
|
vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
|
2171 |
|
|
|
2172 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
2173 |
|
|
vec_compare = build2 (TREE_CODE (cond_expr), vectype,
|
2174 |
|
|
vec_cond_lhs, vec_cond_rhs);
|
2175 |
|
|
vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
|
2176 |
|
|
vec_compare, vec_then_clause, vec_else_clause);
|
2177 |
|
|
|
2178 |
|
|
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
|
2179 |
|
|
new_temp = make_ssa_name (vec_dest, *vec_stmt);
|
2180 |
|
|
TREE_OPERAND (*vec_stmt, 0) = new_temp;
|
2181 |
|
|
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
|
2182 |
|
|
|
2183 |
|
|
return true;
|
2184 |
|
|
}
|
2185 |
|
|
|
2186 |
|
|
/* Function vect_transform_stmt.
|
2187 |
|
|
|
2188 |
|
|
Create a vectorized stmt to replace STMT, and insert it at BSI. */
|
2189 |
|
|
|
2190 |
|
|
bool
|
2191 |
|
|
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
|
2192 |
|
|
{
|
2193 |
|
|
bool is_store = false;
|
2194 |
|
|
tree vec_stmt = NULL_TREE;
|
2195 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2196 |
|
|
tree orig_stmt_in_pattern;
|
2197 |
|
|
bool done;
|
2198 |
|
|
|
2199 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
2200 |
|
|
{
|
2201 |
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
2202 |
|
|
{
|
2203 |
|
|
case op_vec_info_type:
|
2204 |
|
|
done = vectorizable_operation (stmt, bsi, &vec_stmt);
|
2205 |
|
|
gcc_assert (done);
|
2206 |
|
|
break;
|
2207 |
|
|
|
2208 |
|
|
case assignment_vec_info_type:
|
2209 |
|
|
done = vectorizable_assignment (stmt, bsi, &vec_stmt);
|
2210 |
|
|
gcc_assert (done);
|
2211 |
|
|
break;
|
2212 |
|
|
|
2213 |
|
|
case load_vec_info_type:
|
2214 |
|
|
done = vectorizable_load (stmt, bsi, &vec_stmt);
|
2215 |
|
|
gcc_assert (done);
|
2216 |
|
|
break;
|
2217 |
|
|
|
2218 |
|
|
case store_vec_info_type:
|
2219 |
|
|
done = vectorizable_store (stmt, bsi, &vec_stmt);
|
2220 |
|
|
gcc_assert (done);
|
2221 |
|
|
is_store = true;
|
2222 |
|
|
break;
|
2223 |
|
|
|
2224 |
|
|
case condition_vec_info_type:
|
2225 |
|
|
done = vectorizable_condition (stmt, bsi, &vec_stmt);
|
2226 |
|
|
gcc_assert (done);
|
2227 |
|
|
break;
|
2228 |
|
|
|
2229 |
|
|
default:
|
2230 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2231 |
|
|
fprintf (vect_dump, "stmt not supported.");
|
2232 |
|
|
gcc_unreachable ();
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
gcc_assert (vec_stmt);
|
2236 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
|
2237 |
|
|
orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
|
2238 |
|
|
if (orig_stmt_in_pattern)
|
2239 |
|
|
{
|
2240 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
|
2241 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
2242 |
|
|
{
|
2243 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
2244 |
|
|
|
2245 |
|
|
/* STMT was inserted by the vectorizer to replace a computation
|
2246 |
|
|
idiom. ORIG_STMT_IN_PATTERN is a stmt in the original
|
2247 |
|
|
sequence that computed this idiom. We need to record a pointer
|
2248 |
|
|
to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN. See more
|
2249 |
|
|
detail in the documentation of vect_pattern_recog. */
|
2250 |
|
|
|
2251 |
|
|
STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
|
2252 |
|
|
}
|
2253 |
|
|
}
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
2257 |
|
|
{
|
2258 |
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
2259 |
|
|
{
|
2260 |
|
|
case reduc_vec_info_type:
|
2261 |
|
|
done = vectorizable_reduction (stmt, bsi, &vec_stmt);
|
2262 |
|
|
gcc_assert (done);
|
2263 |
|
|
break;
|
2264 |
|
|
|
2265 |
|
|
default:
|
2266 |
|
|
done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
|
2267 |
|
|
gcc_assert (done);
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
if (vec_stmt)
|
2271 |
|
|
{
|
2272 |
|
|
gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
|
2273 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
|
2274 |
|
|
}
|
2275 |
|
|
}
|
2276 |
|
|
|
2277 |
|
|
return is_store;
|
2278 |
|
|
}
|
2279 |
|
|
|
2280 |
|
|
|
2281 |
|
|
/* This function builds ni_name = number of iterations loop executes
|
2282 |
|
|
on the loop preheader. */
|
2283 |
|
|
|
2284 |
|
|
static tree
|
2285 |
|
|
vect_build_loop_niters (loop_vec_info loop_vinfo)
|
2286 |
|
|
{
|
2287 |
|
|
tree ni_name, stmt, var;
|
2288 |
|
|
edge pe;
|
2289 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2290 |
|
|
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
|
2291 |
|
|
|
2292 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "niters");
|
2293 |
|
|
add_referenced_var (var);
|
2294 |
|
|
ni_name = force_gimple_operand (ni, &stmt, false, var);
|
2295 |
|
|
|
2296 |
|
|
pe = loop_preheader_edge (loop);
|
2297 |
|
|
if (stmt)
|
2298 |
|
|
{
|
2299 |
|
|
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
|
2300 |
|
|
gcc_assert (!new_bb);
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
return ni_name;
|
2304 |
|
|
}
|
2305 |
|
|
|
2306 |
|
|
|
2307 |
|
|
/* This function generates the following statements:
|
2308 |
|
|
|
2309 |
|
|
ni_name = number of iterations loop executes
|
2310 |
|
|
ratio = ni_name / vf
|
2311 |
|
|
ratio_mult_vf_name = ratio * vf
|
2312 |
|
|
|
2313 |
|
|
and places them at the loop preheader edge. */
|
2314 |
|
|
|
2315 |
|
|
static void
|
2316 |
|
|
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
|
2317 |
|
|
tree *ni_name_ptr,
|
2318 |
|
|
tree *ratio_mult_vf_name_ptr,
|
2319 |
|
|
tree *ratio_name_ptr)
|
2320 |
|
|
{
|
2321 |
|
|
|
2322 |
|
|
edge pe;
|
2323 |
|
|
basic_block new_bb;
|
2324 |
|
|
tree stmt, ni_name;
|
2325 |
|
|
tree var;
|
2326 |
|
|
tree ratio_name;
|
2327 |
|
|
tree ratio_mult_vf_name;
|
2328 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2329 |
|
|
tree ni = LOOP_VINFO_NITERS (loop_vinfo);
|
2330 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2331 |
|
|
tree log_vf;
|
2332 |
|
|
|
2333 |
|
|
pe = loop_preheader_edge (loop);
|
2334 |
|
|
|
2335 |
|
|
/* Generate temporary variable that contains
|
2336 |
|
|
number of iterations loop executes. */
|
2337 |
|
|
|
2338 |
|
|
ni_name = vect_build_loop_niters (loop_vinfo);
|
2339 |
|
|
log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
|
2340 |
|
|
|
2341 |
|
|
/* Create: ratio = ni >> log2(vf) */
|
2342 |
|
|
|
2343 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "bnd");
|
2344 |
|
|
add_referenced_var (var);
|
2345 |
|
|
ratio_name = make_ssa_name (var, NULL_TREE);
|
2346 |
|
|
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
|
2347 |
|
|
build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
|
2348 |
|
|
SSA_NAME_DEF_STMT (ratio_name) = stmt;
|
2349 |
|
|
|
2350 |
|
|
pe = loop_preheader_edge (loop);
|
2351 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
|
2352 |
|
|
gcc_assert (!new_bb);
|
2353 |
|
|
|
2354 |
|
|
/* Create: ratio_mult_vf = ratio << log2 (vf). */
|
2355 |
|
|
|
2356 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
|
2357 |
|
|
add_referenced_var (var);
|
2358 |
|
|
ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
|
2359 |
|
|
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
|
2360 |
|
|
build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
|
2361 |
|
|
SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
|
2362 |
|
|
|
2363 |
|
|
pe = loop_preheader_edge (loop);
|
2364 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
|
2365 |
|
|
gcc_assert (!new_bb);
|
2366 |
|
|
|
2367 |
|
|
*ni_name_ptr = ni_name;
|
2368 |
|
|
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
|
2369 |
|
|
*ratio_name_ptr = ratio_name;
|
2370 |
|
|
|
2371 |
|
|
return;
|
2372 |
|
|
}
|
2373 |
|
|
|
2374 |
|
|
|
2375 |
|
|
/* Function update_vuses_to_preheader.
|
2376 |
|
|
|
2377 |
|
|
Input:
|
2378 |
|
|
STMT - a statement with potential VUSEs.
|
2379 |
|
|
LOOP - the loop whose preheader will contain STMT.
|
2380 |
|
|
|
2381 |
|
|
It's possible to vectorize a loop even though an SSA_NAME from a VUSE
|
2382 |
|
|
appears to be defined in a V_MAY_DEF in another statement in a loop.
|
2383 |
|
|
One such case is when the VUSE is at the dereference of a __restricted__
|
2384 |
|
|
pointer in a load and the V_MAY_DEF is at the dereference of a different
|
2385 |
|
|
__restricted__ pointer in a store. Vectorization may result in
|
2386 |
|
|
copy_virtual_uses being called to copy the problematic VUSE to a new
|
2387 |
|
|
statement that is being inserted in the loop preheader. This procedure
|
2388 |
|
|
is called to change the SSA_NAME in the new statement's VUSE from the
|
2389 |
|
|
SSA_NAME updated in the loop to the related SSA_NAME available on the
|
2390 |
|
|
path entering the loop.
|
2391 |
|
|
|
2392 |
|
|
When this function is called, we have the following situation:
|
2393 |
|
|
|
2394 |
|
|
# vuse <name1>
|
2395 |
|
|
S1: vload
|
2396 |
|
|
do {
|
2397 |
|
|
# name1 = phi < name0 , name2>
|
2398 |
|
|
|
2399 |
|
|
# vuse <name1>
|
2400 |
|
|
S2: vload
|
2401 |
|
|
|
2402 |
|
|
# name2 = vdef <name1>
|
2403 |
|
|
S3: vstore
|
2404 |
|
|
|
2405 |
|
|
}while...
|
2406 |
|
|
|
2407 |
|
|
Stmt S1 was created in the loop preheader block as part of misaligned-load
|
2408 |
|
|
handling. This function fixes the name of the vuse of S1 from 'name1' to
|
2409 |
|
|
'name0'. */
|
2410 |
|
|
|
2411 |
|
|
static void
|
2412 |
|
|
update_vuses_to_preheader (tree stmt, struct loop *loop)
|
2413 |
|
|
{
|
2414 |
|
|
basic_block header_bb = loop->header;
|
2415 |
|
|
edge preheader_e = loop_preheader_edge (loop);
|
2416 |
|
|
ssa_op_iter iter;
|
2417 |
|
|
use_operand_p use_p;
|
2418 |
|
|
|
2419 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
|
2420 |
|
|
{
|
2421 |
|
|
tree ssa_name = USE_FROM_PTR (use_p);
|
2422 |
|
|
tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
|
2423 |
|
|
tree name_var = SSA_NAME_VAR (ssa_name);
|
2424 |
|
|
basic_block bb = bb_for_stmt (def_stmt);
|
2425 |
|
|
|
2426 |
|
|
/* For a use before any definitions, def_stmt is a NOP_EXPR. */
|
2427 |
|
|
if (!IS_EMPTY_STMT (def_stmt)
|
2428 |
|
|
&& flow_bb_inside_loop_p (loop, bb))
|
2429 |
|
|
{
|
2430 |
|
|
/* If the block containing the statement defining the SSA_NAME
|
2431 |
|
|
is in the loop then it's necessary to find the definition
|
2432 |
|
|
outside the loop using the PHI nodes of the header. */
|
2433 |
|
|
tree phi;
|
2434 |
|
|
bool updated = false;
|
2435 |
|
|
|
2436 |
|
|
for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
|
2437 |
|
|
{
|
2438 |
|
|
if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
|
2439 |
|
|
{
|
2440 |
|
|
SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
|
2441 |
|
|
updated = true;
|
2442 |
|
|
break;
|
2443 |
|
|
}
|
2444 |
|
|
}
|
2445 |
|
|
gcc_assert (updated);
|
2446 |
|
|
}
|
2447 |
|
|
}
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
|
2451 |
|
|
/* Function vect_update_ivs_after_vectorizer.
|
2452 |
|
|
|
2453 |
|
|
"Advance" the induction variables of LOOP to the value they should take
|
2454 |
|
|
after the execution of LOOP. This is currently necessary because the
|
2455 |
|
|
vectorizer does not handle induction variables that are used after the
|
2456 |
|
|
loop. Such a situation occurs when the last iterations of LOOP are
|
2457 |
|
|
peeled, because:
|
2458 |
|
|
1. We introduced new uses after LOOP for IVs that were not originally used
|
2459 |
|
|
after LOOP: the IVs of LOOP are now used by an epilog loop.
|
2460 |
|
|
2. LOOP is going to be vectorized; this means that it will iterate N/VF
|
2461 |
|
|
times, whereas the loop IVs should be bumped N times.
|
2462 |
|
|
|
2463 |
|
|
Input:
|
2464 |
|
|
- LOOP - a loop that is going to be vectorized. The last few iterations
|
2465 |
|
|
of LOOP were peeled.
|
2466 |
|
|
- NITERS - the number of iterations that LOOP executes (before it is
|
2467 |
|
|
vectorized). i.e, the number of times the ivs should be bumped.
|
2468 |
|
|
- UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
|
2469 |
|
|
coming out from LOOP on which there are uses of the LOOP ivs
|
2470 |
|
|
(this is the path from LOOP->exit to epilog_loop->preheader).
|
2471 |
|
|
|
2472 |
|
|
The new definitions of the ivs are placed in LOOP->exit.
|
2473 |
|
|
The phi args associated with the edge UPDATE_E in the bb
|
2474 |
|
|
UPDATE_E->dest are updated accordingly.
|
2475 |
|
|
|
2476 |
|
|
Assumption 1: Like the rest of the vectorizer, this function assumes
|
2477 |
|
|
a single loop exit that has a single predecessor.
|
2478 |
|
|
|
2479 |
|
|
Assumption 2: The phi nodes in the LOOP header and in update_bb are
|
2480 |
|
|
organized in the same order.
|
2481 |
|
|
|
2482 |
|
|
Assumption 3: The access function of the ivs is simple enough (see
|
2483 |
|
|
vect_can_advance_ivs_p). This assumption will be relaxed in the future.
|
2484 |
|
|
|
2485 |
|
|
Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
|
2486 |
|
|
coming out of LOOP on which the ivs of LOOP are used (this is the path
|
2487 |
|
|
that leads to the epilog loop; other paths skip the epilog loop). This
|
2488 |
|
|
path starts with the edge UPDATE_E, and its destination (denoted update_bb)
|
2489 |
|
|
needs to have its phis updated.
|
2490 |
|
|
*/
|
2491 |
|
|
|
2492 |
|
|
static void
|
2493 |
|
|
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
|
2494 |
|
|
edge update_e)
|
2495 |
|
|
{
|
2496 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2497 |
|
|
basic_block exit_bb = loop->single_exit->dest;
|
2498 |
|
|
tree phi, phi1;
|
2499 |
|
|
basic_block update_bb = update_e->dest;
|
2500 |
|
|
|
2501 |
|
|
/* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
|
2502 |
|
|
|
2503 |
|
|
/* Make sure there exists a single-predecessor exit bb: */
|
2504 |
|
|
gcc_assert (single_pred_p (exit_bb));
|
2505 |
|
|
|
2506 |
|
|
for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
|
2507 |
|
|
phi && phi1;
|
2508 |
|
|
phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
|
2509 |
|
|
{
|
2510 |
|
|
tree access_fn = NULL;
|
2511 |
|
|
tree evolution_part;
|
2512 |
|
|
tree init_expr;
|
2513 |
|
|
tree step_expr;
|
2514 |
|
|
tree var, stmt, ni, ni_name;
|
2515 |
|
|
block_stmt_iterator last_bsi;
|
2516 |
|
|
|
2517 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2518 |
|
|
{
|
2519 |
|
|
fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
|
2520 |
|
|
print_generic_expr (vect_dump, phi, TDF_SLIM);
|
2521 |
|
|
}
|
2522 |
|
|
|
2523 |
|
|
/* Skip virtual phi's. */
|
2524 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
|
2525 |
|
|
{
|
2526 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2527 |
|
|
fprintf (vect_dump, "virtual phi. skip.");
|
2528 |
|
|
continue;
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
/* Skip reduction phis. */
|
2532 |
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
|
2533 |
|
|
{
|
2534 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2535 |
|
|
fprintf (vect_dump, "reduc phi. skip.");
|
2536 |
|
|
continue;
|
2537 |
|
|
}
|
2538 |
|
|
|
2539 |
|
|
access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
|
2540 |
|
|
gcc_assert (access_fn);
|
2541 |
|
|
evolution_part =
|
2542 |
|
|
unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
|
2543 |
|
|
gcc_assert (evolution_part != NULL_TREE);
|
2544 |
|
|
|
2545 |
|
|
/* FORNOW: We do not support IVs whose evolution function is a polynomial
|
2546 |
|
|
of degree >= 2 or exponential. */
|
2547 |
|
|
gcc_assert (!tree_is_chrec (evolution_part));
|
2548 |
|
|
|
2549 |
|
|
step_expr = evolution_part;
|
2550 |
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
|
2551 |
|
|
loop->num));
|
2552 |
|
|
|
2553 |
|
|
ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
|
2554 |
|
|
build2 (MULT_EXPR, TREE_TYPE (niters),
|
2555 |
|
|
niters, step_expr), init_expr);
|
2556 |
|
|
|
2557 |
|
|
var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
|
2558 |
|
|
add_referenced_var (var);
|
2559 |
|
|
|
2560 |
|
|
ni_name = force_gimple_operand (ni, &stmt, false, var);
|
2561 |
|
|
|
2562 |
|
|
/* Insert stmt into exit_bb. */
|
2563 |
|
|
last_bsi = bsi_last (exit_bb);
|
2564 |
|
|
if (stmt)
|
2565 |
|
|
bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
|
2566 |
|
|
|
2567 |
|
|
/* Fix phi expressions in the successor bb. */
|
2568 |
|
|
SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
|
2569 |
|
|
}
|
2570 |
|
|
}
|
2571 |
|
|
|
2572 |
|
|
|
2573 |
|
|
/* Function vect_do_peeling_for_loop_bound
|
2574 |
|
|
|
2575 |
|
|
Peel the last iterations of the loop represented by LOOP_VINFO.
|
2576 |
|
|
The peeled iterations form a new epilog loop. Given that the loop now
|
2577 |
|
|
iterates NITERS times, the new epilog loop iterates
|
2578 |
|
|
NITERS % VECTORIZATION_FACTOR times.
|
2579 |
|
|
|
2580 |
|
|
The original loop will later be made to iterate
|
2581 |
|
|
NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
|
2582 |
|
|
|
2583 |
|
|
static void
|
2584 |
|
|
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
|
2585 |
|
|
struct loops *loops)
|
2586 |
|
|
{
|
2587 |
|
|
tree ni_name, ratio_mult_vf_name;
|
2588 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2589 |
|
|
struct loop *new_loop;
|
2590 |
|
|
edge update_e;
|
2591 |
|
|
basic_block preheader;
|
2592 |
|
|
int loop_num;
|
2593 |
|
|
|
2594 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2595 |
|
|
fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
|
2596 |
|
|
|
2597 |
|
|
initialize_original_copy_tables ();
|
2598 |
|
|
|
2599 |
|
|
/* Generate the following variables on the preheader of original loop:
|
2600 |
|
|
|
2601 |
|
|
ni_name = number of iteration the original loop executes
|
2602 |
|
|
ratio = ni_name / vf
|
2603 |
|
|
ratio_mult_vf_name = ratio * vf */
|
2604 |
|
|
vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
|
2605 |
|
|
&ratio_mult_vf_name, ratio);
|
2606 |
|
|
|
2607 |
|
|
loop_num = loop->num;
|
2608 |
|
|
new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
|
2609 |
|
|
ratio_mult_vf_name, ni_name, false);
|
2610 |
|
|
gcc_assert (new_loop);
|
2611 |
|
|
gcc_assert (loop_num == loop->num);
|
2612 |
|
|
#ifdef ENABLE_CHECKING
|
2613 |
|
|
slpeel_verify_cfg_after_peeling (loop, new_loop);
|
2614 |
|
|
#endif
|
2615 |
|
|
|
2616 |
|
|
/* A guard that controls whether the new_loop is to be executed or skipped
|
2617 |
|
|
is placed in LOOP->exit. LOOP->exit therefore has two successors - one
|
2618 |
|
|
is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
|
2619 |
|
|
is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
|
2620 |
|
|
is on the path where the LOOP IVs are used and need to be updated. */
|
2621 |
|
|
|
2622 |
|
|
preheader = loop_preheader_edge (new_loop)->src;
|
2623 |
|
|
if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
|
2624 |
|
|
update_e = EDGE_PRED (preheader, 0);
|
2625 |
|
|
else
|
2626 |
|
|
update_e = EDGE_PRED (preheader, 1);
|
2627 |
|
|
|
2628 |
|
|
/* Update IVs of original loop as if they were advanced
|
2629 |
|
|
by ratio_mult_vf_name steps. */
|
2630 |
|
|
vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
|
2631 |
|
|
|
2632 |
|
|
/* After peeling we have to reset scalar evolution analyzer. */
|
2633 |
|
|
scev_reset ();
|
2634 |
|
|
|
2635 |
|
|
free_original_copy_tables ();
|
2636 |
|
|
}
|
2637 |
|
|
|
2638 |
|
|
|
2639 |
|
|
/* Function vect_gen_niters_for_prolog_loop
|
2640 |
|
|
|
2641 |
|
|
Set the number of iterations for the loop represented by LOOP_VINFO
|
2642 |
|
|
to the minimum between LOOP_NITERS (the original iteration count of the loop)
|
2643 |
|
|
and the misalignment of DR - the data reference recorded in
|
2644 |
|
|
LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
|
2645 |
|
|
this loop, the data reference DR will refer to an aligned location.
|
2646 |
|
|
|
2647 |
|
|
The following computation is generated:
|
2648 |
|
|
|
2649 |
|
|
If the misalignment of DR is known at compile time:
|
2650 |
|
|
addr_mis = int mis = DR_MISALIGNMENT (dr);
|
2651 |
|
|
Else, compute address misalignment in bytes:
|
2652 |
|
|
addr_mis = addr & (vectype_size - 1)
|
2653 |
|
|
|
2654 |
|
|
prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
|
2655 |
|
|
|
2656 |
|
|
(elem_size = element type size; an element is the scalar element
|
2657 |
|
|
whose type is the inner type of the vectype) */
|
2658 |
|
|
|
2659 |
|
|
static tree
|
2660 |
|
|
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
|
2661 |
|
|
{
|
2662 |
|
|
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
|
2663 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2664 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2665 |
|
|
tree var, stmt;
|
2666 |
|
|
tree iters, iters_name;
|
2667 |
|
|
edge pe;
|
2668 |
|
|
basic_block new_bb;
|
2669 |
|
|
tree dr_stmt = DR_STMT (dr);
|
2670 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
|
2671 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
2672 |
|
|
int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
|
2673 |
|
|
tree niters_type = TREE_TYPE (loop_niters);
|
2674 |
|
|
|
2675 |
|
|
pe = loop_preheader_edge (loop);
|
2676 |
|
|
|
2677 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
|
2678 |
|
|
{
|
2679 |
|
|
int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
2680 |
|
|
int element_size = vectype_align/vf;
|
2681 |
|
|
int elem_misalign = byte_misalign / element_size;
|
2682 |
|
|
|
2683 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2684 |
|
|
fprintf (vect_dump, "known alignment = %d.", byte_misalign);
|
2685 |
|
|
iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
|
2686 |
|
|
}
|
2687 |
|
|
else
|
2688 |
|
|
{
|
2689 |
|
|
tree new_stmts = NULL_TREE;
|
2690 |
|
|
tree start_addr =
|
2691 |
|
|
vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
|
2692 |
|
|
tree ptr_type = TREE_TYPE (start_addr);
|
2693 |
|
|
tree size = TYPE_SIZE (ptr_type);
|
2694 |
|
|
tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
|
2695 |
|
|
tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
|
2696 |
|
|
tree elem_size_log =
|
2697 |
|
|
build_int_cst (type, exact_log2 (vectype_align/vf));
|
2698 |
|
|
tree vf_minus_1 = build_int_cst (type, vf - 1);
|
2699 |
|
|
tree vf_tree = build_int_cst (type, vf);
|
2700 |
|
|
tree byte_misalign;
|
2701 |
|
|
tree elem_misalign;
|
2702 |
|
|
|
2703 |
|
|
new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
|
2704 |
|
|
gcc_assert (!new_bb);
|
2705 |
|
|
|
2706 |
|
|
/* Create: byte_misalign = addr & (vectype_size - 1) */
|
2707 |
|
|
byte_misalign =
|
2708 |
|
|
build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
|
2709 |
|
|
|
2710 |
|
|
/* Create: elem_misalign = byte_misalign / element_size */
|
2711 |
|
|
elem_misalign =
|
2712 |
|
|
build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
|
2713 |
|
|
|
2714 |
|
|
/* Create: (niters_type) (VF - elem_misalign)&(VF - 1) */
|
2715 |
|
|
iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
|
2716 |
|
|
iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
|
2717 |
|
|
iters = fold_convert (niters_type, iters);
|
2718 |
|
|
}
|
2719 |
|
|
|
2720 |
|
|
/* Create: prolog_loop_niters = min (iters, loop_niters) */
|
2721 |
|
|
/* If the loop bound is known at compile time we already verified that it is
|
2722 |
|
|
greater than vf; since the misalignment ('iters') is at most vf, there's
|
2723 |
|
|
no need to generate the MIN_EXPR in this case. */
|
2724 |
|
|
if (TREE_CODE (loop_niters) != INTEGER_CST)
|
2725 |
|
|
iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
|
2726 |
|
|
|
2727 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2728 |
|
|
{
|
2729 |
|
|
fprintf (vect_dump, "niters for prolog loop: ");
|
2730 |
|
|
print_generic_expr (vect_dump, iters, TDF_SLIM);
|
2731 |
|
|
}
|
2732 |
|
|
|
2733 |
|
|
var = create_tmp_var (niters_type, "prolog_loop_niters");
|
2734 |
|
|
add_referenced_var (var);
|
2735 |
|
|
iters_name = force_gimple_operand (iters, &stmt, false, var);
|
2736 |
|
|
|
2737 |
|
|
/* Insert stmt on loop preheader edge. */
|
2738 |
|
|
if (stmt)
|
2739 |
|
|
{
|
2740 |
|
|
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
|
2741 |
|
|
gcc_assert (!new_bb);
|
2742 |
|
|
}
|
2743 |
|
|
|
2744 |
|
|
return iters_name;
|
2745 |
|
|
}
|
2746 |
|
|
|
2747 |
|
|
|
2748 |
|
|
/* Function vect_update_init_of_dr
|
2749 |
|
|
|
2750 |
|
|
NITERS iterations were peeled from LOOP. DR represents a data reference
|
2751 |
|
|
in LOOP. This function updates the information recorded in DR to
|
2752 |
|
|
account for the fact that the first NITERS iterations had already been
|
2753 |
|
|
executed. Specifically, it updates the OFFSET field of DR. */
|
2754 |
|
|
|
2755 |
|
|
static void
|
2756 |
|
|
vect_update_init_of_dr (struct data_reference *dr, tree niters)
|
2757 |
|
|
{
|
2758 |
|
|
tree offset = DR_OFFSET (dr);
|
2759 |
|
|
|
2760 |
|
|
niters = fold_build2 (MULT_EXPR, TREE_TYPE (niters), niters, DR_STEP (dr));
|
2761 |
|
|
offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters);
|
2762 |
|
|
DR_OFFSET (dr) = offset;
|
2763 |
|
|
}
|
2764 |
|
|
|
2765 |
|
|
|
2766 |
|
|
/* Function vect_update_inits_of_drs
|
2767 |
|
|
|
2768 |
|
|
NITERS iterations were peeled from the loop represented by LOOP_VINFO.
|
2769 |
|
|
This function updates the information recorded for the data references in
|
2770 |
|
|
the loop to account for the fact that the first NITERS iterations had
|
2771 |
|
|
already been executed. Specifically, it updates the initial_condition of the
|
2772 |
|
|
access_function of all the data_references in the loop. */
|
2773 |
|
|
|
2774 |
|
|
static void
|
2775 |
|
|
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
|
2776 |
|
|
{
|
2777 |
|
|
unsigned int i;
|
2778 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
2779 |
|
|
struct data_reference *dr;
|
2780 |
|
|
|
2781 |
|
|
if (vect_dump && (dump_flags & TDF_DETAILS))
|
2782 |
|
|
fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
|
2783 |
|
|
|
2784 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
|
2785 |
|
|
vect_update_init_of_dr (dr, niters);
|
2786 |
|
|
}
|
2787 |
|
|
|
2788 |
|
|
|
2789 |
|
|
/* Function vect_do_peeling_for_alignment
|
2790 |
|
|
|
2791 |
|
|
Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
|
2792 |
|
|
'niters' is set to the misalignment of one of the data references in the
|
2793 |
|
|
loop, thereby forcing it to refer to an aligned location at the beginning
|
2794 |
|
|
of the execution of this loop. The data reference for which we are
|
2795 |
|
|
peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
|
2796 |
|
|
|
2797 |
|
|
static void
|
2798 |
|
|
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
|
2799 |
|
|
{
|
2800 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2801 |
|
|
tree niters_of_prolog_loop, ni_name;
|
2802 |
|
|
tree n_iters;
|
2803 |
|
|
struct loop *new_loop;
|
2804 |
|
|
|
2805 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2806 |
|
|
fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
|
2807 |
|
|
|
2808 |
|
|
initialize_original_copy_tables ();
|
2809 |
|
|
|
2810 |
|
|
ni_name = vect_build_loop_niters (loop_vinfo);
|
2811 |
|
|
niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
|
2812 |
|
|
|
2813 |
|
|
/* Peel the prolog loop and iterate it niters_of_prolog_loop. */
|
2814 |
|
|
new_loop =
|
2815 |
|
|
slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
|
2816 |
|
|
niters_of_prolog_loop, ni_name, true);
|
2817 |
|
|
gcc_assert (new_loop);
|
2818 |
|
|
#ifdef ENABLE_CHECKING
|
2819 |
|
|
slpeel_verify_cfg_after_peeling (new_loop, loop);
|
2820 |
|
|
#endif
|
2821 |
|
|
|
2822 |
|
|
/* Update number of times loop executes. */
|
2823 |
|
|
n_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
2824 |
|
|
LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
|
2825 |
|
|
TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
|
2826 |
|
|
|
2827 |
|
|
/* Update the init conditions of the access functions of all data refs. */
|
2828 |
|
|
vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
|
2829 |
|
|
|
2830 |
|
|
/* After peeling we have to reset scalar evolution analyzer. */
|
2831 |
|
|
scev_reset ();
|
2832 |
|
|
|
2833 |
|
|
free_original_copy_tables ();
|
2834 |
|
|
}
|
2835 |
|
|
|
2836 |
|
|
|
2837 |
|
|
/* Function vect_create_cond_for_align_checks.
|
2838 |
|
|
|
2839 |
|
|
Create a conditional expression that represents the alignment checks for
|
2840 |
|
|
all of data references (array element references) whose alignment must be
|
2841 |
|
|
checked at runtime.
|
2842 |
|
|
|
2843 |
|
|
Input:
|
2844 |
|
|
LOOP_VINFO - two fields of the loop information are used.
|
2845 |
|
|
LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
|
2846 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
|
2847 |
|
|
|
2848 |
|
|
Output:
|
2849 |
|
|
COND_EXPR_STMT_LIST - statements needed to construct the conditional
|
2850 |
|
|
expression.
|
2851 |
|
|
The returned value is the conditional expression to be used in the if
|
2852 |
|
|
statement that controls which version of the loop gets executed at runtime.
|
2853 |
|
|
|
2854 |
|
|
The algorithm makes two assumptions:
|
2855 |
|
|
1) The number of bytes "n" in a vector is a power of 2.
|
2856 |
|
|
2) An address "a" is aligned if a%n is zero and that this
|
2857 |
|
|
test can be done as a&(n-1) == 0. For example, for 16
|
2858 |
|
|
byte vectors the test is a&0xf == 0. */
|
2859 |
|
|
|
2860 |
|
|
static tree
|
2861 |
|
|
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
|
2862 |
|
|
tree *cond_expr_stmt_list)
|
2863 |
|
|
{
|
2864 |
|
|
VEC(tree,heap) *may_misalign_stmts
|
2865 |
|
|
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
|
2866 |
|
|
tree ref_stmt;
|
2867 |
|
|
int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
|
2868 |
|
|
tree mask_cst;
|
2869 |
|
|
unsigned int i;
|
2870 |
|
|
tree psize;
|
2871 |
|
|
tree int_ptrsize_type;
|
2872 |
|
|
char tmp_name[20];
|
2873 |
|
|
tree or_tmp_name = NULL_TREE;
|
2874 |
|
|
tree and_tmp, and_tmp_name, and_stmt;
|
2875 |
|
|
tree ptrsize_zero;
|
2876 |
|
|
|
2877 |
|
|
/* Check that mask is one less than a power of 2, i.e., mask is
|
2878 |
|
|
all zeros followed by all ones. */
|
2879 |
|
|
gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
|
2880 |
|
|
|
2881 |
|
|
/* CHECKME: what is the best integer or unsigned type to use to hold a
|
2882 |
|
|
cast from a pointer value? */
|
2883 |
|
|
psize = TYPE_SIZE (ptr_type_node);
|
2884 |
|
|
int_ptrsize_type
|
2885 |
|
|
= lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
|
2886 |
|
|
|
2887 |
|
|
/* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
|
2888 |
|
|
of the first vector of the i'th data reference. */
|
2889 |
|
|
|
2890 |
|
|
for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, ref_stmt); i++)
|
2891 |
|
|
{
|
2892 |
|
|
tree new_stmt_list = NULL_TREE;
|
2893 |
|
|
tree addr_base;
|
2894 |
|
|
tree addr_tmp, addr_tmp_name, addr_stmt;
|
2895 |
|
|
tree or_tmp, new_or_tmp_name, or_stmt;
|
2896 |
|
|
|
2897 |
|
|
/* create: addr_tmp = (int)(address_of_first_vector) */
|
2898 |
|
|
addr_base = vect_create_addr_base_for_vector_ref (ref_stmt,
|
2899 |
|
|
&new_stmt_list,
|
2900 |
|
|
NULL_TREE);
|
2901 |
|
|
|
2902 |
|
|
if (new_stmt_list != NULL_TREE)
|
2903 |
|
|
append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);
|
2904 |
|
|
|
2905 |
|
|
sprintf (tmp_name, "%s%d", "addr2int", i);
|
2906 |
|
|
addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
|
2907 |
|
|
add_referenced_var (addr_tmp);
|
2908 |
|
|
addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
|
2909 |
|
|
addr_stmt = fold_convert (int_ptrsize_type, addr_base);
|
2910 |
|
|
addr_stmt = build2 (MODIFY_EXPR, void_type_node,
|
2911 |
|
|
addr_tmp_name, addr_stmt);
|
2912 |
|
|
SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
|
2913 |
|
|
append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);
|
2914 |
|
|
|
2915 |
|
|
/* The addresses are OR together. */
|
2916 |
|
|
|
2917 |
|
|
if (or_tmp_name != NULL_TREE)
|
2918 |
|
|
{
|
2919 |
|
|
/* create: or_tmp = or_tmp | addr_tmp */
|
2920 |
|
|
sprintf (tmp_name, "%s%d", "orptrs", i);
|
2921 |
|
|
or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
|
2922 |
|
|
add_referenced_var (or_tmp);
|
2923 |
|
|
new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
|
2924 |
|
|
or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
|
2925 |
|
|
build2 (BIT_IOR_EXPR, int_ptrsize_type,
|
2926 |
|
|
or_tmp_name,
|
2927 |
|
|
addr_tmp_name));
|
2928 |
|
|
SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
|
2929 |
|
|
append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
|
2930 |
|
|
or_tmp_name = new_or_tmp_name;
|
2931 |
|
|
}
|
2932 |
|
|
else
|
2933 |
|
|
or_tmp_name = addr_tmp_name;
|
2934 |
|
|
|
2935 |
|
|
} /* end for i */
|
2936 |
|
|
|
2937 |
|
|
mask_cst = build_int_cst (int_ptrsize_type, mask);
|
2938 |
|
|
|
2939 |
|
|
/* create: and_tmp = or_tmp & mask */
|
2940 |
|
|
and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
|
2941 |
|
|
add_referenced_var (and_tmp);
|
2942 |
|
|
and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);
|
2943 |
|
|
|
2944 |
|
|
and_stmt = build2 (MODIFY_EXPR, void_type_node,
|
2945 |
|
|
and_tmp_name,
|
2946 |
|
|
build2 (BIT_AND_EXPR, int_ptrsize_type,
|
2947 |
|
|
or_tmp_name, mask_cst));
|
2948 |
|
|
SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
|
2949 |
|
|
append_to_statement_list_force (and_stmt, cond_expr_stmt_list);
|
2950 |
|
|
|
2951 |
|
|
/* Make and_tmp the left operand of the conditional test against zero.
|
2952 |
|
|
if and_tmp has a nonzero bit then some address is unaligned. */
|
2953 |
|
|
ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
|
2954 |
|
|
return build2 (EQ_EXPR, boolean_type_node,
|
2955 |
|
|
and_tmp_name, ptrsize_zero);
|
2956 |
|
|
}
|
2957 |
|
|
|
2958 |
|
|
|
2959 |
|
|
/* Function vect_transform_loop.
|
2960 |
|
|
|
2961 |
|
|
The analysis phase has determined that the loop is vectorizable.
|
2962 |
|
|
Vectorize the loop - created vectorized stmts to replace the scalar
|
2963 |
|
|
stmts in the loop, and update the loop exit condition. */
|
2964 |
|
|
|
2965 |
|
|
void
|
2966 |
|
|
vect_transform_loop (loop_vec_info loop_vinfo,
|
2967 |
|
|
struct loops *loops ATTRIBUTE_UNUSED)
|
2968 |
|
|
{
|
2969 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2970 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
2971 |
|
|
int nbbs = loop->num_nodes;
|
2972 |
|
|
block_stmt_iterator si;
|
2973 |
|
|
int i;
|
2974 |
|
|
tree ratio = NULL;
|
2975 |
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2976 |
|
|
bitmap_iterator bi;
|
2977 |
|
|
unsigned int j;
|
2978 |
|
|
|
2979 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2980 |
|
|
fprintf (vect_dump, "=== vec_transform_loop ===");
|
2981 |
|
|
|
2982 |
|
|
/* If the loop has data references that may or may not be aligned then
|
2983 |
|
|
two versions of the loop need to be generated, one which is vectorized
|
2984 |
|
|
and one which isn't. A test is then generated to control which of the
|
2985 |
|
|
loops is executed. The test checks for the alignment of all of the
|
2986 |
|
|
data references that may or may not be aligned. */
|
2987 |
|
|
|
2988 |
|
|
if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
|
2989 |
|
|
{
|
2990 |
|
|
struct loop *nloop;
|
2991 |
|
|
tree cond_expr;
|
2992 |
|
|
tree cond_expr_stmt_list = NULL_TREE;
|
2993 |
|
|
basic_block condition_bb;
|
2994 |
|
|
block_stmt_iterator cond_exp_bsi;
|
2995 |
|
|
basic_block merge_bb;
|
2996 |
|
|
basic_block new_exit_bb;
|
2997 |
|
|
edge new_exit_e, e;
|
2998 |
|
|
tree orig_phi, new_phi, arg;
|
2999 |
|
|
|
3000 |
|
|
cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
|
3001 |
|
|
&cond_expr_stmt_list);
|
3002 |
|
|
initialize_original_copy_tables ();
|
3003 |
|
|
nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
|
3004 |
|
|
free_original_copy_tables();
|
3005 |
|
|
|
3006 |
|
|
/** Loop versioning violates an assumption we try to maintain during
|
3007 |
|
|
vectorization - that the loop exit block has a single predecessor.
|
3008 |
|
|
After versioning, the exit block of both loop versions is the same
|
3009 |
|
|
basic block (i.e. it has two predecessors). Just in order to simplify
|
3010 |
|
|
following transformations in the vectorizer, we fix this situation
|
3011 |
|
|
here by adding a new (empty) block on the exit-edge of the loop,
|
3012 |
|
|
with the proper loop-exit phis to maintain loop-closed-form. **/
|
3013 |
|
|
|
3014 |
|
|
merge_bb = loop->single_exit->dest;
|
3015 |
|
|
gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
|
3016 |
|
|
new_exit_bb = split_edge (loop->single_exit);
|
3017 |
|
|
add_bb_to_loop (new_exit_bb, loop->outer);
|
3018 |
|
|
new_exit_e = loop->single_exit;
|
3019 |
|
|
e = EDGE_SUCC (new_exit_bb, 0);
|
3020 |
|
|
|
3021 |
|
|
for (orig_phi = phi_nodes (merge_bb); orig_phi;
|
3022 |
|
|
orig_phi = PHI_CHAIN (orig_phi))
|
3023 |
|
|
{
|
3024 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
3025 |
|
|
new_exit_bb);
|
3026 |
|
|
arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
|
3027 |
|
|
add_phi_arg (new_phi, arg, new_exit_e);
|
3028 |
|
|
SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
|
3029 |
|
|
}
|
3030 |
|
|
|
3031 |
|
|
/** end loop-exit-fixes after versioning **/
|
3032 |
|
|
|
3033 |
|
|
update_ssa (TODO_update_ssa);
|
3034 |
|
|
cond_exp_bsi = bsi_last (condition_bb);
|
3035 |
|
|
bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
|
3036 |
|
|
}
|
3037 |
|
|
|
3038 |
|
|
/* CHECKME: we wouldn't need this if we called update_ssa once
|
3039 |
|
|
for all loops. */
|
3040 |
|
|
bitmap_zero (vect_vnames_to_rename);
|
3041 |
|
|
|
3042 |
|
|
/* Peel the loop if there are data refs with unknown alignment.
|
3043 |
|
|
Only one data ref with unknown store is allowed. */
|
3044 |
|
|
|
3045 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
3046 |
|
|
vect_do_peeling_for_alignment (loop_vinfo, loops);
|
3047 |
|
|
|
3048 |
|
|
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
|
3049 |
|
|
compile time constant), or it is a constant that doesn't divide by the
|
3050 |
|
|
vectorization factor, then an epilog loop needs to be created.
|
3051 |
|
|
We therefore duplicate the loop: the original loop will be vectorized,
|
3052 |
|
|
and will compute the first (n/VF) iterations. The second copy of the loop
|
3053 |
|
|
will remain scalar and will compute the remaining (n%VF) iterations.
|
3054 |
|
|
(VF is the vectorization factor). */
|
3055 |
|
|
|
3056 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
3057 |
|
|
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
3058 |
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
|
3059 |
|
|
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
|
3060 |
|
|
else
|
3061 |
|
|
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
|
3062 |
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
|
3063 |
|
|
|
3064 |
|
|
/* 1) Make sure the loop header has exactly two entries
|
3065 |
|
|
2) Make sure we have a preheader basic block. */
|
3066 |
|
|
|
3067 |
|
|
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
|
3068 |
|
|
|
3069 |
|
|
loop_split_edge_with (loop_preheader_edge (loop), NULL);
|
3070 |
|
|
|
3071 |
|
|
|
3072 |
|
|
/* FORNOW: the vectorizer supports only loops which body consist
|
3073 |
|
|
of one basic block (header + empty latch). When the vectorizer will
|
3074 |
|
|
support more involved loop forms, the order by which the BBs are
|
3075 |
|
|
traversed need to be reconsidered. */
|
3076 |
|
|
|
3077 |
|
|
for (i = 0; i < nbbs; i++)
|
3078 |
|
|
{
|
3079 |
|
|
basic_block bb = bbs[i];
|
3080 |
|
|
|
3081 |
|
|
for (si = bsi_start (bb); !bsi_end_p (si);)
|
3082 |
|
|
{
|
3083 |
|
|
tree stmt = bsi_stmt (si);
|
3084 |
|
|
stmt_vec_info stmt_info;
|
3085 |
|
|
bool is_store;
|
3086 |
|
|
|
3087 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3088 |
|
|
{
|
3089 |
|
|
fprintf (vect_dump, "------>vectorizing statement: ");
|
3090 |
|
|
print_generic_expr (vect_dump, stmt, TDF_SLIM);
|
3091 |
|
|
}
|
3092 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
3093 |
|
|
gcc_assert (stmt_info);
|
3094 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
3095 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
3096 |
|
|
{
|
3097 |
|
|
bsi_next (&si);
|
3098 |
|
|
continue;
|
3099 |
|
|
}
|
3100 |
|
|
/* FORNOW: Verify that all stmts operate on the same number of
|
3101 |
|
|
units and no inner unrolling is necessary. */
|
3102 |
|
|
gcc_assert
|
3103 |
|
|
(TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
|
3104 |
|
|
== (unsigned HOST_WIDE_INT) vectorization_factor);
|
3105 |
|
|
|
3106 |
|
|
/* -------- vectorize statement ------------ */
|
3107 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3108 |
|
|
fprintf (vect_dump, "transform statement.");
|
3109 |
|
|
|
3110 |
|
|
is_store = vect_transform_stmt (stmt, &si);
|
3111 |
|
|
if (is_store)
|
3112 |
|
|
{
|
3113 |
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
3114 |
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
3115 |
|
|
free (stmt_info);
|
3116 |
|
|
set_stmt_info (ann, NULL);
|
3117 |
|
|
bsi_remove (&si, true);
|
3118 |
|
|
continue;
|
3119 |
|
|
}
|
3120 |
|
|
|
3121 |
|
|
bsi_next (&si);
|
3122 |
|
|
} /* stmts in BB */
|
3123 |
|
|
} /* BBs in loop */
|
3124 |
|
|
|
3125 |
|
|
slpeel_make_loop_iterate_ntimes (loop, ratio);
|
3126 |
|
|
|
3127 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
|
3128 |
|
|
mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));
|
3129 |
|
|
|
3130 |
|
|
/* The memory tags and pointers in vectorized statements need to
|
3131 |
|
|
have their SSA forms updated. FIXME, why can't this be delayed
|
3132 |
|
|
until all the loops have been transformed? */
|
3133 |
|
|
update_ssa (TODO_update_ssa);
|
3134 |
|
|
|
3135 |
|
|
if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
|
3136 |
|
|
fprintf (vect_dump, "LOOP VECTORIZED.");
|
3137 |
|
|
}
|