1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- A D A . N U M E R I C S . D I S C R E T E _ R A N D O M --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
17 |
|
|
-- --
|
18 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
19 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
20 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
21 |
|
|
-- --
|
22 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
23 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
24 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
25 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
26 |
|
|
-- --
|
27 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
28 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
29 |
|
|
-- --
|
30 |
|
|
------------------------------------------------------------------------------
|
31 |
|
|
|
32 |
|
|
with Ada.Calendar;
|
33 |
|
|
|
34 |
|
|
with Interfaces; use Interfaces;
|
35 |
|
|
|
36 |
|
|
package body Ada.Numerics.Discrete_Random is
|
37 |
|
|
|
38 |
|
|
-------------------------
|
39 |
|
|
-- Implementation Note --
|
40 |
|
|
-------------------------
|
41 |
|
|
|
42 |
|
|
-- The design of this spec is very awkward, as a result of Ada 95 not
|
43 |
|
|
-- permitting in-out parameters for function formals (most naturally
|
44 |
|
|
-- Generator values would be passed this way). In pure Ada 95, the only
|
45 |
|
|
-- solution is to use the heap and pointers, and, to avoid memory leaks,
|
46 |
|
|
-- controlled types.
|
47 |
|
|
|
48 |
|
|
-- This is awfully heavy, so what we do is to use Unrestricted_Access to
|
49 |
|
|
-- get a pointer to the state in the passed Generator. This works because
|
50 |
|
|
-- Generator is a limited type and will thus always be passed by reference.
|
51 |
|
|
|
52 |
|
|
type Pointer is access all State;
|
53 |
|
|
|
54 |
|
|
Fits_In_32_Bits : constant Boolean :=
|
55 |
|
|
Rst'Size < 31
|
56 |
|
|
or else (Rst'Size = 31
|
57 |
|
|
and then Rst'Pos (Rst'First) < 0);
|
58 |
|
|
-- This is set True if we do not need more than 32 bits in the result. If
|
59 |
|
|
-- we need 64-bits, we will only use the meaningful 48 bits of any 64-bit
|
60 |
|
|
-- number generated, since if more than 48 bits are required, we split the
|
61 |
|
|
-- computation into two separate parts, since the algorithm does not behave
|
62 |
|
|
-- above 48 bits.
|
63 |
|
|
|
64 |
|
|
-- The way this expression works is that obviously if the size is 31 bits,
|
65 |
|
|
-- it fits in 32 bits. In the 32-bit case, it fits in 32-bit signed if the
|
66 |
|
|
-- range has negative values. It is too conservative in the case that the
|
67 |
|
|
-- programmer has set a size greater than the default, e.g. a size of 33
|
68 |
|
|
-- for an integer type with a range of 1..10, but an over-conservative
|
69 |
|
|
-- result is OK. The important thing is that the value is only True if
|
70 |
|
|
-- we know the result will fit in 32-bits signed. If the value is False
|
71 |
|
|
-- when it could be True, the behavior will be correct, just a bit less
|
72 |
|
|
-- efficient than it could have been in some unusual cases.
|
73 |
|
|
--
|
74 |
|
|
-- One might assume that we could get a more accurate result by testing
|
75 |
|
|
-- the lower and upper bounds of the type Rst against the bounds of 32-bit
|
76 |
|
|
-- Integer. However, there is no easy way to do that. Why? Because in the
|
77 |
|
|
-- relatively rare case where this expresion has to be evaluated at run
|
78 |
|
|
-- time rather than compile time (when the bounds are dynamic), we need a
|
79 |
|
|
-- type to use for the computation. But the possible range of upper bound
|
80 |
|
|
-- values for Rst (remembering the possibility of 64-bit modular types) is
|
81 |
|
|
-- from -2**63 to 2**64-1, and no run-time type has a big enough range.
|
82 |
|
|
|
83 |
|
|
-----------------------
|
84 |
|
|
-- Local Subprograms --
|
85 |
|
|
-----------------------
|
86 |
|
|
|
87 |
|
|
function Square_Mod_N (X, N : Int) return Int;
|
88 |
|
|
pragma Inline (Square_Mod_N);
|
89 |
|
|
-- Computes X**2 mod N avoiding intermediate overflow
|
90 |
|
|
|
91 |
|
|
-----------
|
92 |
|
|
-- Image --
|
93 |
|
|
-----------
|
94 |
|
|
|
95 |
|
|
function Image (Of_State : State) return String is
|
96 |
|
|
begin
|
97 |
|
|
return Int'Image (Of_State.X1) &
|
98 |
|
|
',' &
|
99 |
|
|
Int'Image (Of_State.X2) &
|
100 |
|
|
',' &
|
101 |
|
|
Int'Image (Of_State.Q);
|
102 |
|
|
end Image;
|
103 |
|
|
|
104 |
|
|
------------
|
105 |
|
|
-- Random --
|
106 |
|
|
------------
|
107 |
|
|
|
108 |
|
|
function Random (Gen : Generator) return Rst is
|
109 |
|
|
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
|
110 |
|
|
Temp : Int;
|
111 |
|
|
TF : Flt;
|
112 |
|
|
|
113 |
|
|
begin
|
114 |
|
|
-- Check for flat range here, since we are typically run with checks
|
115 |
|
|
-- off, note that in practice, this condition will usually be static
|
116 |
|
|
-- so we will not actually generate any code for the normal case.
|
117 |
|
|
|
118 |
|
|
if Rst'Last < Rst'First then
|
119 |
|
|
raise Constraint_Error;
|
120 |
|
|
end if;
|
121 |
|
|
|
122 |
|
|
-- Continue with computation if non-flat range
|
123 |
|
|
|
124 |
|
|
Genp.X1 := Square_Mod_N (Genp.X1, Genp.P);
|
125 |
|
|
Genp.X2 := Square_Mod_N (Genp.X2, Genp.Q);
|
126 |
|
|
Temp := Genp.X2 - Genp.X1;
|
127 |
|
|
|
128 |
|
|
-- Following duplication is not an error, it is a loop unwinding!
|
129 |
|
|
|
130 |
|
|
if Temp < 0 then
|
131 |
|
|
Temp := Temp + Genp.Q;
|
132 |
|
|
end if;
|
133 |
|
|
|
134 |
|
|
if Temp < 0 then
|
135 |
|
|
Temp := Temp + Genp.Q;
|
136 |
|
|
end if;
|
137 |
|
|
|
138 |
|
|
TF := Offs + (Flt (Temp) * Flt (Genp.P) + Flt (Genp.X1)) * Genp.Scl;
|
139 |
|
|
|
140 |
|
|
-- Pathological, but there do exist cases where the rounding implicit
|
141 |
|
|
-- in calculating the scale factor will cause rounding to 'Last + 1.
|
142 |
|
|
-- In those cases, returning 'First results in the least bias.
|
143 |
|
|
|
144 |
|
|
if TF >= Flt (Rst'Pos (Rst'Last)) + 0.5 then
|
145 |
|
|
return Rst'First;
|
146 |
|
|
|
147 |
|
|
elsif not Fits_In_32_Bits then
|
148 |
|
|
return Rst'Val (Interfaces.Integer_64 (TF));
|
149 |
|
|
|
150 |
|
|
else
|
151 |
|
|
return Rst'Val (Int (TF));
|
152 |
|
|
end if;
|
153 |
|
|
end Random;
|
154 |
|
|
|
155 |
|
|
-----------
|
156 |
|
|
-- Reset --
|
157 |
|
|
-----------
|
158 |
|
|
|
159 |
|
|
procedure Reset (Gen : Generator; Initiator : Integer) is
|
160 |
|
|
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
|
161 |
|
|
X1, X2 : Int;
|
162 |
|
|
|
163 |
|
|
begin
|
164 |
|
|
X1 := 2 + Int (Initiator) mod (K1 - 3);
|
165 |
|
|
X2 := 2 + Int (Initiator) mod (K2 - 3);
|
166 |
|
|
|
167 |
|
|
for J in 1 .. 5 loop
|
168 |
|
|
X1 := Square_Mod_N (X1, K1);
|
169 |
|
|
X2 := Square_Mod_N (X2, K2);
|
170 |
|
|
end loop;
|
171 |
|
|
|
172 |
|
|
-- Eliminate effects of small Initiators
|
173 |
|
|
|
174 |
|
|
Genp.all :=
|
175 |
|
|
(X1 => X1,
|
176 |
|
|
X2 => X2,
|
177 |
|
|
P => K1,
|
178 |
|
|
Q => K2,
|
179 |
|
|
FP => K1F,
|
180 |
|
|
Scl => Scal);
|
181 |
|
|
end Reset;
|
182 |
|
|
|
183 |
|
|
-----------
|
184 |
|
|
-- Reset --
|
185 |
|
|
-----------
|
186 |
|
|
|
187 |
|
|
procedure Reset (Gen : Generator) is
|
188 |
|
|
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
|
189 |
|
|
Now : constant Calendar.Time := Calendar.Clock;
|
190 |
|
|
X1 : Int;
|
191 |
|
|
X2 : Int;
|
192 |
|
|
|
193 |
|
|
begin
|
194 |
|
|
X1 := Int (Calendar.Year (Now)) * 12 * 31 +
|
195 |
|
|
Int (Calendar.Month (Now) * 31) +
|
196 |
|
|
Int (Calendar.Day (Now));
|
197 |
|
|
|
198 |
|
|
X2 := Int (Calendar.Seconds (Now) * Duration (1000.0));
|
199 |
|
|
|
200 |
|
|
X1 := 2 + X1 mod (K1 - 3);
|
201 |
|
|
X2 := 2 + X2 mod (K2 - 3);
|
202 |
|
|
|
203 |
|
|
-- Eliminate visible effects of same day starts
|
204 |
|
|
|
205 |
|
|
for J in 1 .. 5 loop
|
206 |
|
|
X1 := Square_Mod_N (X1, K1);
|
207 |
|
|
X2 := Square_Mod_N (X2, K2);
|
208 |
|
|
end loop;
|
209 |
|
|
|
210 |
|
|
Genp.all :=
|
211 |
|
|
(X1 => X1,
|
212 |
|
|
X2 => X2,
|
213 |
|
|
P => K1,
|
214 |
|
|
Q => K2,
|
215 |
|
|
FP => K1F,
|
216 |
|
|
Scl => Scal);
|
217 |
|
|
|
218 |
|
|
end Reset;
|
219 |
|
|
|
220 |
|
|
-----------
|
221 |
|
|
-- Reset --
|
222 |
|
|
-----------
|
223 |
|
|
|
224 |
|
|
procedure Reset (Gen : Generator; From_State : State) is
|
225 |
|
|
Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
|
226 |
|
|
begin
|
227 |
|
|
Genp.all := From_State;
|
228 |
|
|
end Reset;
|
229 |
|
|
|
230 |
|
|
----------
|
231 |
|
|
-- Save --
|
232 |
|
|
----------
|
233 |
|
|
|
234 |
|
|
procedure Save (Gen : Generator; To_State : out State) is
|
235 |
|
|
begin
|
236 |
|
|
To_State := Gen.Gen_State;
|
237 |
|
|
end Save;
|
238 |
|
|
|
239 |
|
|
------------------
|
240 |
|
|
-- Square_Mod_N --
|
241 |
|
|
------------------
|
242 |
|
|
|
243 |
|
|
function Square_Mod_N (X, N : Int) return Int is
|
244 |
|
|
begin
|
245 |
|
|
return Int ((Integer_64 (X) ** 2) mod (Integer_64 (N)));
|
246 |
|
|
end Square_Mod_N;
|
247 |
|
|
|
248 |
|
|
-----------
|
249 |
|
|
-- Value --
|
250 |
|
|
-----------
|
251 |
|
|
|
252 |
|
|
function Value (Coded_State : String) return State is
|
253 |
|
|
Last : constant Natural := Coded_State'Last;
|
254 |
|
|
Start : Positive := Coded_State'First;
|
255 |
|
|
Stop : Positive := Coded_State'First;
|
256 |
|
|
Outs : State;
|
257 |
|
|
|
258 |
|
|
begin
|
259 |
|
|
while Stop <= Last and then Coded_State (Stop) /= ',' loop
|
260 |
|
|
Stop := Stop + 1;
|
261 |
|
|
end loop;
|
262 |
|
|
|
263 |
|
|
if Stop > Last then
|
264 |
|
|
raise Constraint_Error;
|
265 |
|
|
end if;
|
266 |
|
|
|
267 |
|
|
Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1));
|
268 |
|
|
Start := Stop + 1;
|
269 |
|
|
|
270 |
|
|
loop
|
271 |
|
|
Stop := Stop + 1;
|
272 |
|
|
exit when Stop > Last or else Coded_State (Stop) = ',';
|
273 |
|
|
end loop;
|
274 |
|
|
|
275 |
|
|
if Stop > Last then
|
276 |
|
|
raise Constraint_Error;
|
277 |
|
|
end if;
|
278 |
|
|
|
279 |
|
|
Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1));
|
280 |
|
|
Outs.Q := Int'Value (Coded_State (Stop + 1 .. Last));
|
281 |
|
|
Outs.P := Outs.Q * 2 + 1;
|
282 |
|
|
Outs.FP := Flt (Outs.P);
|
283 |
|
|
Outs.Scl := (RstL - RstF + 1.0) / (Flt (Outs.P) * Flt (Outs.Q));
|
284 |
|
|
|
285 |
|
|
-- Now do *some* sanity checks
|
286 |
|
|
|
287 |
|
|
if Outs.Q < 31
|
288 |
|
|
or else Outs.X1 not in 2 .. Outs.P - 1
|
289 |
|
|
or else Outs.X2 not in 2 .. Outs.Q - 1
|
290 |
|
|
then
|
291 |
|
|
raise Constraint_Error;
|
292 |
|
|
end if;
|
293 |
|
|
|
294 |
|
|
return Outs;
|
295 |
|
|
end Value;
|
296 |
|
|
|
297 |
|
|
end Ada.Numerics.Discrete_Random;
|