OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [checks.adb] - Blame information for rev 293

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                               C H E C K S                                --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Debug;    use Debug;
28
with Einfo;    use Einfo;
29
with Errout;   use Errout;
30
with Exp_Ch2;  use Exp_Ch2;
31
with Exp_Ch4;  use Exp_Ch4;
32
with Exp_Ch11; use Exp_Ch11;
33
with Exp_Pakd; use Exp_Pakd;
34
with Exp_Util; use Exp_Util;
35
with Elists;   use Elists;
36
with Eval_Fat; use Eval_Fat;
37
with Freeze;   use Freeze;
38
with Lib;      use Lib;
39
with Nlists;   use Nlists;
40
with Nmake;    use Nmake;
41
with Opt;      use Opt;
42
with Output;   use Output;
43
with Restrict; use Restrict;
44
with Rident;   use Rident;
45
with Rtsfind;  use Rtsfind;
46
with Sem;      use Sem;
47
with Sem_Aux;  use Sem_Aux;
48
with Sem_Eval; use Sem_Eval;
49
with Sem_Ch3;  use Sem_Ch3;
50
with Sem_Ch8;  use Sem_Ch8;
51
with Sem_Res;  use Sem_Res;
52
with Sem_Util; use Sem_Util;
53
with Sem_Warn; use Sem_Warn;
54
with Sinfo;    use Sinfo;
55
with Sinput;   use Sinput;
56
with Snames;   use Snames;
57
with Sprint;   use Sprint;
58
with Stand;    use Stand;
59
with Targparm; use Targparm;
60
with Tbuild;   use Tbuild;
61
with Ttypes;   use Ttypes;
62
with Urealp;   use Urealp;
63
with Validsw;  use Validsw;
64
 
65
package body Checks is
66
 
67
   --  General note: many of these routines are concerned with generating
68
   --  checking code to make sure that constraint error is raised at runtime.
69
   --  Clearly this code is only needed if the expander is active, since
70
   --  otherwise we will not be generating code or going into the runtime
71
   --  execution anyway.
72
 
73
   --  We therefore disconnect most of these checks if the expander is
74
   --  inactive. This has the additional benefit that we do not need to
75
   --  worry about the tree being messed up by previous errors (since errors
76
   --  turn off expansion anyway).
77
 
78
   --  There are a few exceptions to the above rule. For instance routines
79
   --  such as Apply_Scalar_Range_Check that do not insert any code can be
80
   --  safely called even when the Expander is inactive (but Errors_Detected
81
   --  is 0). The benefit of executing this code when expansion is off, is
82
   --  the ability to emit constraint error warning for static expressions
83
   --  even when we are not generating code.
84
 
85
   -------------------------------------
86
   -- Suppression of Redundant Checks --
87
   -------------------------------------
88
 
89
   --  This unit implements a limited circuit for removal of redundant
90
   --  checks. The processing is based on a tracing of simple sequential
91
   --  flow. For any sequence of statements, we save expressions that are
92
   --  marked to be checked, and then if the same expression appears later
93
   --  with the same check, then under certain circumstances, the second
94
   --  check can be suppressed.
95
 
96
   --  Basically, we can suppress the check if we know for certain that
97
   --  the previous expression has been elaborated (together with its
98
   --  check), and we know that the exception frame is the same, and that
99
   --  nothing has happened to change the result of the exception.
100
 
101
   --  Let us examine each of these three conditions in turn to describe
102
   --  how we ensure that this condition is met.
103
 
104
   --  First, we need to know for certain that the previous expression has
105
   --  been executed. This is done principly by the mechanism of calling
106
   --  Conditional_Statements_Begin at the start of any statement sequence
107
   --  and Conditional_Statements_End at the end. The End call causes all
108
   --  checks remembered since the Begin call to be discarded. This does
109
   --  miss a few cases, notably the case of a nested BEGIN-END block with
110
   --  no exception handlers. But the important thing is to be conservative.
111
   --  The other protection is that all checks are discarded if a label
112
   --  is encountered, since then the assumption of sequential execution
113
   --  is violated, and we don't know enough about the flow.
114
 
115
   --  Second, we need to know that the exception frame is the same. We
116
   --  do this by killing all remembered checks when we enter a new frame.
117
   --  Again, that's over-conservative, but generally the cases we can help
118
   --  with are pretty local anyway (like the body of a loop for example).
119
 
120
   --  Third, we must be sure to forget any checks which are no longer valid.
121
   --  This is done by two mechanisms, first the Kill_Checks_Variable call is
122
   --  used to note any changes to local variables. We only attempt to deal
123
   --  with checks involving local variables, so we do not need to worry
124
   --  about global variables. Second, a call to any non-global procedure
125
   --  causes us to abandon all stored checks, since such a all may affect
126
   --  the values of any local variables.
127
 
128
   --  The following define the data structures used to deal with remembering
129
   --  checks so that redundant checks can be eliminated as described above.
130
 
131
   --  Right now, the only expressions that we deal with are of the form of
132
   --  simple local objects (either declared locally, or IN parameters) or
133
   --  such objects plus/minus a compile time known constant. We can do
134
   --  more later on if it seems worthwhile, but this catches many simple
135
   --  cases in practice.
136
 
137
   --  The following record type reflects a single saved check. An entry
138
   --  is made in the stack of saved checks if and only if the expression
139
   --  has been elaborated with the indicated checks.
140
 
141
   type Saved_Check is record
142
      Killed : Boolean;
143
      --  Set True if entry is killed by Kill_Checks
144
 
145
      Entity : Entity_Id;
146
      --  The entity involved in the expression that is checked
147
 
148
      Offset : Uint;
149
      --  A compile time value indicating the result of adding or
150
      --  subtracting a compile time value. This value is to be
151
      --  added to the value of the Entity. A value of zero is
152
      --  used for the case of a simple entity reference.
153
 
154
      Check_Type : Character;
155
      --  This is set to 'R' for a range check (in which case Target_Type
156
      --  is set to the target type for the range check) or to 'O' for an
157
      --  overflow check (in which case Target_Type is set to Empty).
158
 
159
      Target_Type : Entity_Id;
160
      --  Used only if Do_Range_Check is set. Records the target type for
161
      --  the check. We need this, because a check is a duplicate only if
162
      --  it has a the same target type (or more accurately one with a
163
      --  range that is smaller or equal to the stored target type of a
164
      --  saved check).
165
   end record;
166
 
167
   --  The following table keeps track of saved checks. Rather than use an
168
   --  extensible table. We just use a table of fixed size, and we discard
169
   --  any saved checks that do not fit. That's very unlikely to happen and
170
   --  this is only an optimization in any case.
171
 
172
   Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
173
   --  Array of saved checks
174
 
175
   Num_Saved_Checks : Nat := 0;
176
   --  Number of saved checks
177
 
178
   --  The following stack keeps track of statement ranges. It is treated
179
   --  as a stack. When Conditional_Statements_Begin is called, an entry
180
   --  is pushed onto this stack containing the value of Num_Saved_Checks
181
   --  at the time of the call. Then when Conditional_Statements_End is
182
   --  called, this value is popped off and used to reset Num_Saved_Checks.
183
 
184
   --  Note: again, this is a fixed length stack with a size that should
185
   --  always be fine. If the value of the stack pointer goes above the
186
   --  limit, then we just forget all saved checks.
187
 
188
   Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
189
   Saved_Checks_TOS : Nat := 0;
190
 
191
   -----------------------
192
   -- Local Subprograms --
193
   -----------------------
194
 
195
   procedure Apply_Float_Conversion_Check
196
     (Ck_Node    : Node_Id;
197
      Target_Typ : Entity_Id);
198
   --  The checks on a conversion from a floating-point type to an integer
199
   --  type are delicate. They have to be performed before conversion, they
200
   --  have to raise an exception when the operand is a NaN, and rounding must
201
   --  be taken into account to determine the safe bounds of the operand.
202
 
203
   procedure Apply_Selected_Length_Checks
204
     (Ck_Node    : Node_Id;
205
      Target_Typ : Entity_Id;
206
      Source_Typ : Entity_Id;
207
      Do_Static  : Boolean);
208
   --  This is the subprogram that does all the work for Apply_Length_Check
209
   --  and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
210
   --  described for the above routines. The Do_Static flag indicates that
211
   --  only a static check is to be done.
212
 
213
   procedure Apply_Selected_Range_Checks
214
     (Ck_Node    : Node_Id;
215
      Target_Typ : Entity_Id;
216
      Source_Typ : Entity_Id;
217
      Do_Static  : Boolean);
218
   --  This is the subprogram that does all the work for Apply_Range_Check.
219
   --  Expr, Target_Typ and Source_Typ are as described for the above
220
   --  routine. The Do_Static flag indicates that only a static check is
221
   --  to be done.
222
 
223
   type Check_Type is new Check_Id range Access_Check .. Division_Check;
224
   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
225
   --  This function is used to see if an access or division by zero check is
226
   --  needed. The check is to be applied to a single variable appearing in the
227
   --  source, and N is the node for the reference. If N is not of this form,
228
   --  True is returned with no further processing. If N is of the right form,
229
   --  then further processing determines if the given Check is needed.
230
   --
231
   --  The particular circuit is to see if we have the case of a check that is
232
   --  not needed because it appears in the right operand of a short circuited
233
   --  conditional where the left operand guards the check. For example:
234
   --
235
   --    if Var = 0 or else Q / Var > 12 then
236
   --       ...
237
   --    end if;
238
   --
239
   --  In this example, the division check is not required. At the same time
240
   --  we can issue warnings for suspicious use of non-short-circuited forms,
241
   --  such as:
242
   --
243
   --    if Var = 0 or Q / Var > 12 then
244
   --       ...
245
   --    end if;
246
 
247
   procedure Find_Check
248
     (Expr        : Node_Id;
249
      Check_Type  : Character;
250
      Target_Type : Entity_Id;
251
      Entry_OK    : out Boolean;
252
      Check_Num   : out Nat;
253
      Ent         : out Entity_Id;
254
      Ofs         : out Uint);
255
   --  This routine is used by Enable_Range_Check and Enable_Overflow_Check
256
   --  to see if a check is of the form for optimization, and if so, to see
257
   --  if it has already been performed. Expr is the expression to check,
258
   --  and Check_Type is 'R' for a range check, 'O' for an overflow check.
259
   --  Target_Type is the target type for a range check, and Empty for an
260
   --  overflow check. If the entry is not of the form for optimization,
261
   --  then Entry_OK is set to False, and the remaining out parameters
262
   --  are undefined. If the entry is OK, then Ent/Ofs are set to the
263
   --  entity and offset from the expression. Check_Num is the number of
264
   --  a matching saved entry in Saved_Checks, or zero if no such entry
265
   --  is located.
266
 
267
   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
268
   --  If a discriminal is used in constraining a prival, Return reference
269
   --  to the discriminal of the protected body (which renames the parameter
270
   --  of the enclosing protected operation). This clumsy transformation is
271
   --  needed because privals are created too late and their actual subtypes
272
   --  are not available when analysing the bodies of the protected operations.
273
   --  This function is called whenever the bound is an entity and the scope
274
   --  indicates a protected operation. If the bound is an in-parameter of
275
   --  a protected operation that is not a prival, the function returns the
276
   --  bound itself.
277
   --  To be cleaned up???
278
 
279
   function Guard_Access
280
     (Cond    : Node_Id;
281
      Loc     : Source_Ptr;
282
      Ck_Node : Node_Id) return Node_Id;
283
   --  In the access type case, guard the test with a test to ensure
284
   --  that the access value is non-null, since the checks do not
285
   --  not apply to null access values.
286
 
287
   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
288
   --  Called by Apply_{Length,Range}_Checks to rewrite the tree with the
289
   --  Constraint_Error node.
290
 
291
   function Range_Or_Validity_Checks_Suppressed
292
     (Expr : Node_Id) return Boolean;
293
   --  Returns True if either range or validity checks or both are suppressed
294
   --  for the type of the given expression, or, if the expression is the name
295
   --  of an entity, if these checks are suppressed for the entity.
296
 
297
   function Selected_Length_Checks
298
     (Ck_Node    : Node_Id;
299
      Target_Typ : Entity_Id;
300
      Source_Typ : Entity_Id;
301
      Warn_Node  : Node_Id) return Check_Result;
302
   --  Like Apply_Selected_Length_Checks, except it doesn't modify
303
   --  anything, just returns a list of nodes as described in the spec of
304
   --  this package for the Range_Check function.
305
 
306
   function Selected_Range_Checks
307
     (Ck_Node    : Node_Id;
308
      Target_Typ : Entity_Id;
309
      Source_Typ : Entity_Id;
310
      Warn_Node  : Node_Id) return Check_Result;
311
   --  Like Apply_Selected_Range_Checks, except it doesn't modify anything,
312
   --  just returns a list of nodes as described in the spec of this package
313
   --  for the Range_Check function.
314
 
315
   ------------------------------
316
   -- Access_Checks_Suppressed --
317
   ------------------------------
318
 
319
   function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
320
   begin
321
      if Present (E) and then Checks_May_Be_Suppressed (E) then
322
         return Is_Check_Suppressed (E, Access_Check);
323
      else
324
         return Scope_Suppress (Access_Check);
325
      end if;
326
   end Access_Checks_Suppressed;
327
 
328
   -------------------------------------
329
   -- Accessibility_Checks_Suppressed --
330
   -------------------------------------
331
 
332
   function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
333
   begin
334
      if Present (E) and then Checks_May_Be_Suppressed (E) then
335
         return Is_Check_Suppressed (E, Accessibility_Check);
336
      else
337
         return Scope_Suppress (Accessibility_Check);
338
      end if;
339
   end Accessibility_Checks_Suppressed;
340
 
341
   -----------------------------
342
   -- Activate_Division_Check --
343
   -----------------------------
344
 
345
   procedure Activate_Division_Check (N : Node_Id) is
346
   begin
347
      Set_Do_Division_Check (N, True);
348
      Possible_Local_Raise (N, Standard_Constraint_Error);
349
   end Activate_Division_Check;
350
 
351
   -----------------------------
352
   -- Activate_Overflow_Check --
353
   -----------------------------
354
 
355
   procedure Activate_Overflow_Check (N : Node_Id) is
356
   begin
357
      Set_Do_Overflow_Check (N, True);
358
      Possible_Local_Raise (N, Standard_Constraint_Error);
359
   end Activate_Overflow_Check;
360
 
361
   --------------------------
362
   -- Activate_Range_Check --
363
   --------------------------
364
 
365
   procedure Activate_Range_Check (N : Node_Id) is
366
   begin
367
      Set_Do_Range_Check (N, True);
368
      Possible_Local_Raise (N, Standard_Constraint_Error);
369
   end Activate_Range_Check;
370
 
371
   ---------------------------------
372
   -- Alignment_Checks_Suppressed --
373
   ---------------------------------
374
 
375
   function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
376
   begin
377
      if Present (E) and then Checks_May_Be_Suppressed (E) then
378
         return Is_Check_Suppressed (E, Alignment_Check);
379
      else
380
         return Scope_Suppress (Alignment_Check);
381
      end if;
382
   end Alignment_Checks_Suppressed;
383
 
384
   -------------------------
385
   -- Append_Range_Checks --
386
   -------------------------
387
 
388
   procedure Append_Range_Checks
389
     (Checks       : Check_Result;
390
      Stmts        : List_Id;
391
      Suppress_Typ : Entity_Id;
392
      Static_Sloc  : Source_Ptr;
393
      Flag_Node    : Node_Id)
394
   is
395
      Internal_Flag_Node   : constant Node_Id    := Flag_Node;
396
      Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
397
 
398
      Checks_On : constant Boolean :=
399
                    (not Index_Checks_Suppressed (Suppress_Typ))
400
                       or else
401
                    (not Range_Checks_Suppressed (Suppress_Typ));
402
 
403
   begin
404
      --  For now we just return if Checks_On is false, however this should
405
      --  be enhanced to check for an always True value in the condition
406
      --  and to generate a compilation warning???
407
 
408
      if not Checks_On then
409
         return;
410
      end if;
411
 
412
      for J in 1 .. 2 loop
413
         exit when No (Checks (J));
414
 
415
         if Nkind (Checks (J)) = N_Raise_Constraint_Error
416
           and then Present (Condition (Checks (J)))
417
         then
418
            if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
419
               Append_To (Stmts, Checks (J));
420
               Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
421
            end if;
422
 
423
         else
424
            Append_To
425
              (Stmts,
426
                Make_Raise_Constraint_Error (Internal_Static_Sloc,
427
                  Reason => CE_Range_Check_Failed));
428
         end if;
429
      end loop;
430
   end Append_Range_Checks;
431
 
432
   ------------------------
433
   -- Apply_Access_Check --
434
   ------------------------
435
 
436
   procedure Apply_Access_Check (N : Node_Id) is
437
      P : constant Node_Id := Prefix (N);
438
 
439
   begin
440
      --  We do not need checks if we are not generating code (i.e. the
441
      --  expander is not active). This is not just an optimization, there
442
      --  are cases (e.g. with pragma Debug) where generating the checks
443
      --  can cause real trouble).
444
 
445
      if not Expander_Active then
446
         return;
447
      end if;
448
 
449
      --  No check if short circuiting makes check unnecessary
450
 
451
      if not Check_Needed (P, Access_Check) then
452
         return;
453
      end if;
454
 
455
      --  No check if accessing the Offset_To_Top component of a dispatch
456
      --  table. They are safe by construction.
457
 
458
      if Tagged_Type_Expansion
459
        and then Present (Etype (P))
460
        and then RTU_Loaded (Ada_Tags)
461
        and then RTE_Available (RE_Offset_To_Top_Ptr)
462
        and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
463
      then
464
         return;
465
      end if;
466
 
467
      --  Otherwise go ahead and install the check
468
 
469
      Install_Null_Excluding_Check (P);
470
   end Apply_Access_Check;
471
 
472
   -------------------------------
473
   -- Apply_Accessibility_Check --
474
   -------------------------------
475
 
476
   procedure Apply_Accessibility_Check
477
     (N           : Node_Id;
478
      Typ         : Entity_Id;
479
      Insert_Node : Node_Id)
480
   is
481
      Loc         : constant Source_Ptr := Sloc (N);
482
      Param_Ent   : constant Entity_Id  := Param_Entity (N);
483
      Param_Level : Node_Id;
484
      Type_Level  : Node_Id;
485
 
486
   begin
487
      if Inside_A_Generic then
488
         return;
489
 
490
      --  Only apply the run-time check if the access parameter has an
491
      --  associated extra access level parameter and when the level of the
492
      --  type is less deep than the level of the access parameter, and
493
      --  accessibility checks are not suppressed.
494
 
495
      elsif Present (Param_Ent)
496
         and then Present (Extra_Accessibility (Param_Ent))
497
         and then UI_Gt (Object_Access_Level (N), Type_Access_Level (Typ))
498
         and then not Accessibility_Checks_Suppressed (Param_Ent)
499
         and then not Accessibility_Checks_Suppressed (Typ)
500
      then
501
         Param_Level :=
502
           New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
503
 
504
         Type_Level :=
505
           Make_Integer_Literal (Loc, Type_Access_Level (Typ));
506
 
507
         --  Raise Program_Error if the accessibility level of the access
508
         --  parameter is deeper than the level of the target access type.
509
 
510
         Insert_Action (Insert_Node,
511
           Make_Raise_Program_Error (Loc,
512
             Condition =>
513
               Make_Op_Gt (Loc,
514
                 Left_Opnd  => Param_Level,
515
                 Right_Opnd => Type_Level),
516
             Reason => PE_Accessibility_Check_Failed));
517
 
518
         Analyze_And_Resolve (N);
519
      end if;
520
   end Apply_Accessibility_Check;
521
 
522
   --------------------------------
523
   -- Apply_Address_Clause_Check --
524
   --------------------------------
525
 
526
   procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
527
      AC   : constant Node_Id    := Address_Clause (E);
528
      Loc  : constant Source_Ptr := Sloc (AC);
529
      Typ  : constant Entity_Id  := Etype (E);
530
      Aexp : constant Node_Id    := Expression (AC);
531
 
532
      Expr : Node_Id;
533
      --  Address expression (not necessarily the same as Aexp, for example
534
      --  when Aexp is a reference to a constant, in which case Expr gets
535
      --  reset to reference the value expression of the constant.
536
 
537
      procedure Compile_Time_Bad_Alignment;
538
      --  Post error warnings when alignment is known to be incompatible. Note
539
      --  that we do not go as far as inserting a raise of Program_Error since
540
      --  this is an erroneous case, and it may happen that we are lucky and an
541
      --  underaligned address turns out to be OK after all.
542
 
543
      --------------------------------
544
      -- Compile_Time_Bad_Alignment --
545
      --------------------------------
546
 
547
      procedure Compile_Time_Bad_Alignment is
548
      begin
549
         if Address_Clause_Overlay_Warnings then
550
            Error_Msg_FE
551
              ("?specified address for& may be inconsistent with alignment ",
552
               Aexp, E);
553
            Error_Msg_FE
554
              ("\?program execution may be erroneous (RM 13.3(27))",
555
               Aexp, E);
556
            Set_Address_Warning_Posted (AC);
557
         end if;
558
      end Compile_Time_Bad_Alignment;
559
 
560
   --  Start of processing for Apply_Address_Clause_Check
561
 
562
   begin
563
      --  See if alignment check needed. Note that we never need a check if the
564
      --  maximum alignment is one, since the check will always succeed.
565
 
566
      --  Note: we do not check for checks suppressed here, since that check
567
      --  was done in Sem_Ch13 when the address clause was processed. We are
568
      --  only called if checks were not suppressed. The reason for this is
569
      --  that we have to delay the call to Apply_Alignment_Check till freeze
570
      --  time (so that all types etc are elaborated), but we have to check
571
      --  the status of check suppressing at the point of the address clause.
572
 
573
      if No (AC)
574
        or else not Check_Address_Alignment (AC)
575
        or else Maximum_Alignment = 1
576
      then
577
         return;
578
      end if;
579
 
580
      --  Obtain expression from address clause
581
 
582
      Expr := Expression (AC);
583
 
584
      --  The following loop digs for the real expression to use in the check
585
 
586
      loop
587
         --  For constant, get constant expression
588
 
589
         if Is_Entity_Name (Expr)
590
           and then Ekind (Entity (Expr)) = E_Constant
591
         then
592
            Expr := Constant_Value (Entity (Expr));
593
 
594
         --  For unchecked conversion, get result to convert
595
 
596
         elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
597
            Expr := Expression (Expr);
598
 
599
         --  For (common case) of To_Address call, get argument
600
 
601
         elsif Nkind (Expr) = N_Function_Call
602
           and then Is_Entity_Name (Name (Expr))
603
           and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
604
         then
605
            Expr := First (Parameter_Associations (Expr));
606
 
607
            if Nkind (Expr) = N_Parameter_Association then
608
               Expr := Explicit_Actual_Parameter (Expr);
609
            end if;
610
 
611
         --  We finally have the real expression
612
 
613
         else
614
            exit;
615
         end if;
616
      end loop;
617
 
618
      --  See if we know that Expr has a bad alignment at compile time
619
 
620
      if Compile_Time_Known_Value (Expr)
621
        and then (Known_Alignment (E) or else Known_Alignment (Typ))
622
      then
623
         declare
624
            AL : Uint := Alignment (Typ);
625
 
626
         begin
627
            --  The object alignment might be more restrictive than the
628
            --  type alignment.
629
 
630
            if Known_Alignment (E) then
631
               AL := Alignment (E);
632
            end if;
633
 
634
            if Expr_Value (Expr) mod AL /= 0 then
635
               Compile_Time_Bad_Alignment;
636
            else
637
               return;
638
            end if;
639
         end;
640
 
641
      --  If the expression has the form X'Address, then we can find out if
642
      --  the object X has an alignment that is compatible with the object E.
643
      --  If it hasn't or we don't know, we defer issuing the warning until
644
      --  the end of the compilation to take into account back end annotations.
645
 
646
      elsif Nkind (Expr) = N_Attribute_Reference
647
        and then Attribute_Name (Expr) = Name_Address
648
        and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
649
      then
650
         return;
651
      end if;
652
 
653
      --  Here we do not know if the value is acceptable. Stricly we don't have
654
      --  to do anything, since if the alignment is bad, we have an erroneous
655
      --  program. However we are allowed to check for erroneous conditions and
656
      --  we decide to do this by default if the check is not suppressed.
657
 
658
      --  However, don't do the check if elaboration code is unwanted
659
 
660
      if Restriction_Active (No_Elaboration_Code) then
661
         return;
662
 
663
      --  Generate a check to raise PE if alignment may be inappropriate
664
 
665
      else
666
         --  If the original expression is a non-static constant, use the
667
         --  name of the constant itself rather than duplicating its
668
         --  defining expression, which was extracted above.
669
 
670
         --  Note: Expr is empty if the address-clause is applied to in-mode
671
         --  actuals (allowed by 13.1(22)).
672
 
673
         if not Present (Expr)
674
           or else
675
             (Is_Entity_Name (Expression (AC))
676
               and then Ekind (Entity (Expression (AC))) = E_Constant
677
               and then Nkind (Parent (Entity (Expression (AC))))
678
                                 = N_Object_Declaration)
679
         then
680
            Expr := New_Copy_Tree (Expression (AC));
681
         else
682
            Remove_Side_Effects (Expr);
683
         end if;
684
 
685
         Insert_After_And_Analyze (N,
686
           Make_Raise_Program_Error (Loc,
687
             Condition =>
688
               Make_Op_Ne (Loc,
689
                 Left_Opnd =>
690
                   Make_Op_Mod (Loc,
691
                     Left_Opnd =>
692
                       Unchecked_Convert_To
693
                         (RTE (RE_Integer_Address), Expr),
694
                     Right_Opnd =>
695
                       Make_Attribute_Reference (Loc,
696
                         Prefix => New_Occurrence_Of (E, Loc),
697
                         Attribute_Name => Name_Alignment)),
698
                 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
699
             Reason => PE_Misaligned_Address_Value),
700
           Suppress => All_Checks);
701
         return;
702
      end if;
703
 
704
   exception
705
      --  If we have some missing run time component in configurable run time
706
      --  mode then just skip the check (it is not required in any case).
707
 
708
      when RE_Not_Available =>
709
         return;
710
   end Apply_Address_Clause_Check;
711
 
712
   -------------------------------------
713
   -- Apply_Arithmetic_Overflow_Check --
714
   -------------------------------------
715
 
716
   --  This routine is called only if the type is an integer type, and a
717
   --  software arithmetic overflow check may be needed for op (add, subtract,
718
   --  or multiply). This check is performed only if Software_Overflow_Checking
719
   --  is enabled and Do_Overflow_Check is set. In this case we expand the
720
   --  operation into a more complex sequence of tests that ensures that
721
   --  overflow is properly caught.
722
 
723
   procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
724
      Loc   : constant Source_Ptr := Sloc (N);
725
      Typ   : Entity_Id           := Etype (N);
726
      Rtyp  : Entity_Id           := Root_Type (Typ);
727
 
728
   begin
729
      --  An interesting special case. If the arithmetic operation appears as
730
      --  the operand of a type conversion:
731
 
732
      --    type1 (x op y)
733
 
734
      --  and all the following conditions apply:
735
 
736
      --    arithmetic operation is for a signed integer type
737
      --    target type type1 is a static integer subtype
738
      --    range of x and y are both included in the range of type1
739
      --    range of x op y is included in the range of type1
740
      --    size of type1 is at least twice the result size of op
741
 
742
      --  then we don't do an overflow check in any case, instead we transform
743
      --  the operation so that we end up with:
744
 
745
      --    type1 (type1 (x) op type1 (y))
746
 
747
      --  This avoids intermediate overflow before the conversion. It is
748
      --  explicitly permitted by RM 3.5.4(24):
749
 
750
      --    For the execution of a predefined operation of a signed integer
751
      --    type, the implementation need not raise Constraint_Error if the
752
      --    result is outside the base range of the type, so long as the
753
      --    correct result is produced.
754
 
755
      --  It's hard to imagine that any programmer counts on the exception
756
      --  being raised in this case, and in any case it's wrong coding to
757
      --  have this expectation, given the RM permission. Furthermore, other
758
      --  Ada compilers do allow such out of range results.
759
 
760
      --  Note that we do this transformation even if overflow checking is
761
      --  off, since this is precisely about giving the "right" result and
762
      --  avoiding the need for an overflow check.
763
 
764
      --  Note: this circuit is partially redundant with respect to the similar
765
      --  processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
766
      --  with cases that do not come through here. We still need the following
767
      --  processing even with the Exp_Ch4 code in place, since we want to be
768
      --  sure not to generate the arithmetic overflow check in these cases
769
      --  (Exp_Ch4 would have a hard time removing them once generated).
770
 
771
      if Is_Signed_Integer_Type (Typ)
772
        and then Nkind (Parent (N)) = N_Type_Conversion
773
      then
774
         declare
775
            Target_Type : constant Entity_Id :=
776
                            Base_Type (Entity (Subtype_Mark (Parent (N))));
777
 
778
            Llo, Lhi : Uint;
779
            Rlo, Rhi : Uint;
780
            LOK, ROK : Boolean;
781
 
782
            Vlo : Uint;
783
            Vhi : Uint;
784
            VOK : Boolean;
785
 
786
            Tlo : Uint;
787
            Thi : Uint;
788
 
789
         begin
790
            if Is_Integer_Type (Target_Type)
791
              and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
792
            then
793
               Tlo := Expr_Value (Type_Low_Bound  (Target_Type));
794
               Thi := Expr_Value (Type_High_Bound (Target_Type));
795
 
796
               Determine_Range
797
                 (Left_Opnd  (N), LOK, Llo, Lhi, Assume_Valid => True);
798
               Determine_Range
799
                 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
800
 
801
               if (LOK and ROK)
802
                 and then Tlo <= Llo and then Lhi <= Thi
803
                 and then Tlo <= Rlo and then Rhi <= Thi
804
               then
805
                  Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
806
 
807
                  if VOK and then Tlo <= Vlo and then Vhi <= Thi then
808
                     Rewrite (Left_Opnd (N),
809
                       Make_Type_Conversion (Loc,
810
                         Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
811
                         Expression   => Relocate_Node (Left_Opnd (N))));
812
 
813
                     Rewrite (Right_Opnd (N),
814
                       Make_Type_Conversion (Loc,
815
                        Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
816
                        Expression   => Relocate_Node (Right_Opnd (N))));
817
 
818
                     Set_Etype (N, Target_Type);
819
                     Typ := Target_Type;
820
                     Rtyp := Root_Type (Typ);
821
                     Analyze_And_Resolve (Left_Opnd  (N), Target_Type);
822
                     Analyze_And_Resolve (Right_Opnd (N), Target_Type);
823
 
824
                     --  Given that the target type is twice the size of the
825
                     --  source type, overflow is now impossible, so we can
826
                     --  safely kill the overflow check and return.
827
 
828
                     Set_Do_Overflow_Check (N, False);
829
                     return;
830
                  end if;
831
               end if;
832
            end if;
833
         end;
834
      end if;
835
 
836
      --  Now see if an overflow check is required
837
 
838
      declare
839
         Siz   : constant Int := UI_To_Int (Esize (Rtyp));
840
         Dsiz  : constant Int := Siz * 2;
841
         Opnod : Node_Id;
842
         Ctyp  : Entity_Id;
843
         Opnd  : Node_Id;
844
         Cent  : RE_Id;
845
 
846
      begin
847
         --  Skip check if back end does overflow checks, or the overflow flag
848
         --  is not set anyway, or we are not doing code expansion, or the
849
         --  parent node is a type conversion whose operand is an arithmetic
850
         --  operation on signed integers on which the expander can promote
851
         --  later the operands to type Integer (see Expand_N_Type_Conversion).
852
 
853
         --  Special case CLI target, where arithmetic overflow checks can be
854
         --  performed for integer and long_integer
855
 
856
         if Backend_Overflow_Checks_On_Target
857
           or else not Do_Overflow_Check (N)
858
           or else not Expander_Active
859
           or else (Present (Parent (N))
860
                     and then Nkind (Parent (N)) = N_Type_Conversion
861
                     and then Integer_Promotion_Possible (Parent (N)))
862
           or else
863
             (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
864
         then
865
            return;
866
         end if;
867
 
868
         --  Otherwise, generate the full general code for front end overflow
869
         --  detection, which works by doing arithmetic in a larger type:
870
 
871
         --    x op y
872
 
873
         --  is expanded into
874
 
875
         --    Typ (Checktyp (x) op Checktyp (y));
876
 
877
         --  where Typ is the type of the original expression, and Checktyp is
878
         --  an integer type of sufficient length to hold the largest possible
879
         --  result.
880
 
881
         --  If the size of check type exceeds the size of Long_Long_Integer,
882
         --  we use a different approach, expanding to:
883
 
884
         --    typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
885
 
886
         --  where xxx is Add, Multiply or Subtract as appropriate
887
 
888
         --  Find check type if one exists
889
 
890
         if Dsiz <= Standard_Integer_Size then
891
            Ctyp := Standard_Integer;
892
 
893
         elsif Dsiz <= Standard_Long_Long_Integer_Size then
894
            Ctyp := Standard_Long_Long_Integer;
895
 
896
            --  No check type exists, use runtime call
897
 
898
         else
899
            if Nkind (N) = N_Op_Add then
900
               Cent := RE_Add_With_Ovflo_Check;
901
 
902
            elsif Nkind (N) = N_Op_Multiply then
903
               Cent := RE_Multiply_With_Ovflo_Check;
904
 
905
            else
906
               pragma Assert (Nkind (N) = N_Op_Subtract);
907
               Cent := RE_Subtract_With_Ovflo_Check;
908
            end if;
909
 
910
            Rewrite (N,
911
              OK_Convert_To (Typ,
912
                Make_Function_Call (Loc,
913
                  Name => New_Reference_To (RTE (Cent), Loc),
914
                  Parameter_Associations => New_List (
915
                    OK_Convert_To (RTE (RE_Integer_64), Left_Opnd  (N)),
916
                    OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
917
 
918
            Analyze_And_Resolve (N, Typ);
919
            return;
920
         end if;
921
 
922
         --  If we fall through, we have the case where we do the arithmetic
923
         --  in the next higher type and get the check by conversion. In these
924
         --  cases Ctyp is set to the type to be used as the check type.
925
 
926
         Opnod := Relocate_Node (N);
927
 
928
         Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
929
 
930
         Analyze (Opnd);
931
         Set_Etype (Opnd, Ctyp);
932
         Set_Analyzed (Opnd, True);
933
         Set_Left_Opnd (Opnod, Opnd);
934
 
935
         Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
936
 
937
         Analyze (Opnd);
938
         Set_Etype (Opnd, Ctyp);
939
         Set_Analyzed (Opnd, True);
940
         Set_Right_Opnd (Opnod, Opnd);
941
 
942
         --  The type of the operation changes to the base type of the check
943
         --  type, and we reset the overflow check indication, since clearly no
944
         --  overflow is possible now that we are using a double length type.
945
         --  We also set the Analyzed flag to avoid a recursive attempt to
946
         --  expand the node.
947
 
948
         Set_Etype             (Opnod, Base_Type (Ctyp));
949
         Set_Do_Overflow_Check (Opnod, False);
950
         Set_Analyzed          (Opnod, True);
951
 
952
         --  Now build the outer conversion
953
 
954
         Opnd := OK_Convert_To (Typ, Opnod);
955
         Analyze (Opnd);
956
         Set_Etype (Opnd, Typ);
957
 
958
         --  In the discrete type case, we directly generate the range check
959
         --  for the outer operand. This range check will implement the
960
         --  required overflow check.
961
 
962
         if Is_Discrete_Type (Typ) then
963
            Rewrite (N, Opnd);
964
            Generate_Range_Check
965
              (Expression (N), Typ, CE_Overflow_Check_Failed);
966
 
967
         --  For other types, we enable overflow checking on the conversion,
968
         --  after setting the node as analyzed to prevent recursive attempts
969
         --  to expand the conversion node.
970
 
971
         else
972
            Set_Analyzed (Opnd, True);
973
            Enable_Overflow_Check (Opnd);
974
            Rewrite (N, Opnd);
975
         end if;
976
 
977
      exception
978
         when RE_Not_Available =>
979
            return;
980
      end;
981
   end Apply_Arithmetic_Overflow_Check;
982
 
983
   ----------------------------
984
   -- Apply_Constraint_Check --
985
   ----------------------------
986
 
987
   procedure Apply_Constraint_Check
988
     (N          : Node_Id;
989
      Typ        : Entity_Id;
990
      No_Sliding : Boolean := False)
991
   is
992
      Desig_Typ : Entity_Id;
993
 
994
   begin
995
      if Inside_A_Generic then
996
         return;
997
 
998
      elsif Is_Scalar_Type (Typ) then
999
         Apply_Scalar_Range_Check (N, Typ);
1000
 
1001
      elsif Is_Array_Type (Typ) then
1002
 
1003
         --  A useful optimization: an aggregate with only an others clause
1004
         --  always has the right bounds.
1005
 
1006
         if Nkind (N) = N_Aggregate
1007
           and then No (Expressions (N))
1008
           and then Nkind
1009
            (First (Choices (First (Component_Associations (N)))))
1010
              = N_Others_Choice
1011
         then
1012
            return;
1013
         end if;
1014
 
1015
         if Is_Constrained (Typ) then
1016
            Apply_Length_Check (N, Typ);
1017
 
1018
            if No_Sliding then
1019
               Apply_Range_Check (N, Typ);
1020
            end if;
1021
         else
1022
            Apply_Range_Check (N, Typ);
1023
         end if;
1024
 
1025
      elsif (Is_Record_Type (Typ)
1026
               or else Is_Private_Type (Typ))
1027
        and then Has_Discriminants (Base_Type (Typ))
1028
        and then Is_Constrained (Typ)
1029
      then
1030
         Apply_Discriminant_Check (N, Typ);
1031
 
1032
      elsif Is_Access_Type (Typ) then
1033
 
1034
         Desig_Typ := Designated_Type (Typ);
1035
 
1036
         --  No checks necessary if expression statically null
1037
 
1038
         if Known_Null (N) then
1039
            if Can_Never_Be_Null (Typ) then
1040
               Install_Null_Excluding_Check (N);
1041
            end if;
1042
 
1043
         --  No sliding possible on access to arrays
1044
 
1045
         elsif Is_Array_Type (Desig_Typ) then
1046
            if Is_Constrained (Desig_Typ) then
1047
               Apply_Length_Check (N, Typ);
1048
            end if;
1049
 
1050
            Apply_Range_Check (N, Typ);
1051
 
1052
         elsif Has_Discriminants (Base_Type (Desig_Typ))
1053
            and then Is_Constrained (Desig_Typ)
1054
         then
1055
            Apply_Discriminant_Check (N, Typ);
1056
         end if;
1057
 
1058
         --  Apply the 2005 Null_Excluding check. Note that we do not apply
1059
         --  this check if the constraint node is illegal, as shown by having
1060
         --  an error posted. This additional guard prevents cascaded errors
1061
         --  and compiler aborts on illegal programs involving Ada 2005 checks.
1062
 
1063
         if Can_Never_Be_Null (Typ)
1064
           and then not Can_Never_Be_Null (Etype (N))
1065
           and then not Error_Posted (N)
1066
         then
1067
            Install_Null_Excluding_Check (N);
1068
         end if;
1069
      end if;
1070
   end Apply_Constraint_Check;
1071
 
1072
   ------------------------------
1073
   -- Apply_Discriminant_Check --
1074
   ------------------------------
1075
 
1076
   procedure Apply_Discriminant_Check
1077
     (N   : Node_Id;
1078
      Typ : Entity_Id;
1079
      Lhs : Node_Id := Empty)
1080
   is
1081
      Loc       : constant Source_Ptr := Sloc (N);
1082
      Do_Access : constant Boolean    := Is_Access_Type (Typ);
1083
      S_Typ     : Entity_Id  := Etype (N);
1084
      Cond      : Node_Id;
1085
      T_Typ     : Entity_Id;
1086
 
1087
      function Is_Aliased_Unconstrained_Component return Boolean;
1088
      --  It is possible for an aliased component to have a nominal
1089
      --  unconstrained subtype (through instantiation). If this is a
1090
      --  discriminated component assigned in the expansion of an aggregate
1091
      --  in an initialization, the check must be suppressed. This unusual
1092
      --  situation requires a predicate of its own.
1093
 
1094
      ----------------------------------------
1095
      -- Is_Aliased_Unconstrained_Component --
1096
      ----------------------------------------
1097
 
1098
      function Is_Aliased_Unconstrained_Component return Boolean is
1099
         Comp : Entity_Id;
1100
         Pref : Node_Id;
1101
 
1102
      begin
1103
         if Nkind (Lhs) /= N_Selected_Component then
1104
            return False;
1105
         else
1106
            Comp := Entity (Selector_Name (Lhs));
1107
            Pref := Prefix (Lhs);
1108
         end if;
1109
 
1110
         if Ekind (Comp) /= E_Component
1111
           or else not Is_Aliased (Comp)
1112
         then
1113
            return False;
1114
         end if;
1115
 
1116
         return not Comes_From_Source (Pref)
1117
           and then In_Instance
1118
           and then not Is_Constrained (Etype (Comp));
1119
      end Is_Aliased_Unconstrained_Component;
1120
 
1121
   --  Start of processing for Apply_Discriminant_Check
1122
 
1123
   begin
1124
      if Do_Access then
1125
         T_Typ := Designated_Type (Typ);
1126
      else
1127
         T_Typ := Typ;
1128
      end if;
1129
 
1130
      --  Nothing to do if discriminant checks are suppressed or else no code
1131
      --  is to be generated
1132
 
1133
      if not Expander_Active
1134
        or else Discriminant_Checks_Suppressed (T_Typ)
1135
      then
1136
         return;
1137
      end if;
1138
 
1139
      --  No discriminant checks necessary for an access when expression is
1140
      --  statically Null. This is not only an optimization, it is fundamental
1141
      --  because otherwise discriminant checks may be generated in init procs
1142
      --  for types containing an access to a not-yet-frozen record, causing a
1143
      --  deadly forward reference.
1144
 
1145
      --  Also, if the expression is of an access type whose designated type is
1146
      --  incomplete, then the access value must be null and we suppress the
1147
      --  check.
1148
 
1149
      if Known_Null (N) then
1150
         return;
1151
 
1152
      elsif Is_Access_Type (S_Typ) then
1153
         S_Typ := Designated_Type (S_Typ);
1154
 
1155
         if Ekind (S_Typ) = E_Incomplete_Type then
1156
            return;
1157
         end if;
1158
      end if;
1159
 
1160
      --  If an assignment target is present, then we need to generate the
1161
      --  actual subtype if the target is a parameter or aliased object with
1162
      --  an unconstrained nominal subtype.
1163
 
1164
      --  Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1165
      --  subtype to the parameter and dereference cases, since other aliased
1166
      --  objects are unconstrained (unless the nominal subtype is explicitly
1167
      --  constrained). (But we also need to test for renamings???)
1168
 
1169
      if Present (Lhs)
1170
        and then (Present (Param_Entity (Lhs))
1171
                   or else (Ada_Version < Ada_05
1172
                             and then not Is_Constrained (T_Typ)
1173
                             and then Is_Aliased_View (Lhs)
1174
                             and then not Is_Aliased_Unconstrained_Component)
1175
                   or else (Ada_Version >= Ada_05
1176
                             and then not Is_Constrained (T_Typ)
1177
                             and then Nkind (Lhs) = N_Explicit_Dereference
1178
                             and then Nkind (Original_Node (Lhs)) /=
1179
                                        N_Function_Call))
1180
      then
1181
         T_Typ := Get_Actual_Subtype (Lhs);
1182
      end if;
1183
 
1184
      --  Nothing to do if the type is unconstrained (this is the case where
1185
      --  the actual subtype in the RM sense of N is unconstrained and no check
1186
      --  is required).
1187
 
1188
      if not Is_Constrained (T_Typ) then
1189
         return;
1190
 
1191
      --  Ada 2005: nothing to do if the type is one for which there is a
1192
      --  partial view that is constrained.
1193
 
1194
      elsif Ada_Version >= Ada_05
1195
        and then Has_Constrained_Partial_View (Base_Type (T_Typ))
1196
      then
1197
         return;
1198
      end if;
1199
 
1200
      --  Nothing to do if the type is an Unchecked_Union
1201
 
1202
      if Is_Unchecked_Union (Base_Type (T_Typ)) then
1203
         return;
1204
      end if;
1205
 
1206
      --  Suppress checks if the subtypes are the same. the check must be
1207
      --  preserved in an assignment to a formal, because the constraint is
1208
      --  given by the actual.
1209
 
1210
      if Nkind (Original_Node (N)) /= N_Allocator
1211
        and then (No (Lhs)
1212
          or else not Is_Entity_Name (Lhs)
1213
          or else No (Param_Entity (Lhs)))
1214
      then
1215
         if (Etype (N) = Typ
1216
              or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1217
           and then not Is_Aliased_View (Lhs)
1218
         then
1219
            return;
1220
         end if;
1221
 
1222
      --  We can also eliminate checks on allocators with a subtype mark that
1223
      --  coincides with the context type. The context type may be a subtype
1224
      --  without a constraint (common case, a generic actual).
1225
 
1226
      elsif Nkind (Original_Node (N)) = N_Allocator
1227
        and then Is_Entity_Name (Expression (Original_Node (N)))
1228
      then
1229
         declare
1230
            Alloc_Typ : constant Entity_Id :=
1231
                          Entity (Expression (Original_Node (N)));
1232
 
1233
         begin
1234
            if Alloc_Typ = T_Typ
1235
              or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1236
                        and then Is_Entity_Name (
1237
                          Subtype_Indication (Parent (T_Typ)))
1238
                        and then Alloc_Typ = Base_Type (T_Typ))
1239
 
1240
            then
1241
               return;
1242
            end if;
1243
         end;
1244
      end if;
1245
 
1246
      --  See if we have a case where the types are both constrained, and all
1247
      --  the constraints are constants. In this case, we can do the check
1248
      --  successfully at compile time.
1249
 
1250
      --  We skip this check for the case where the node is a rewritten`
1251
      --  allocator, because it already carries the context subtype, and
1252
      --  extracting the discriminants from the aggregate is messy.
1253
 
1254
      if Is_Constrained (S_Typ)
1255
        and then Nkind (Original_Node (N)) /= N_Allocator
1256
      then
1257
         declare
1258
            DconT : Elmt_Id;
1259
            Discr : Entity_Id;
1260
            DconS : Elmt_Id;
1261
            ItemS : Node_Id;
1262
            ItemT : Node_Id;
1263
 
1264
         begin
1265
            --  S_Typ may not have discriminants in the case where it is a
1266
            --  private type completed by a default discriminated type. In that
1267
            --  case, we need to get the constraints from the underlying_type.
1268
            --  If the underlying type is unconstrained (i.e. has no default
1269
            --  discriminants) no check is needed.
1270
 
1271
            if Has_Discriminants (S_Typ) then
1272
               Discr := First_Discriminant (S_Typ);
1273
               DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1274
 
1275
            else
1276
               Discr := First_Discriminant (Underlying_Type (S_Typ));
1277
               DconS :=
1278
                 First_Elmt
1279
                   (Discriminant_Constraint (Underlying_Type (S_Typ)));
1280
 
1281
               if No (DconS) then
1282
                  return;
1283
               end if;
1284
 
1285
               --  A further optimization: if T_Typ is derived from S_Typ
1286
               --  without imposing a constraint, no check is needed.
1287
 
1288
               if Nkind (Original_Node (Parent (T_Typ))) =
1289
                 N_Full_Type_Declaration
1290
               then
1291
                  declare
1292
                     Type_Def : constant Node_Id :=
1293
                                 Type_Definition
1294
                                   (Original_Node (Parent (T_Typ)));
1295
                  begin
1296
                     if Nkind (Type_Def) = N_Derived_Type_Definition
1297
                       and then Is_Entity_Name (Subtype_Indication (Type_Def))
1298
                       and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1299
                     then
1300
                        return;
1301
                     end if;
1302
                  end;
1303
               end if;
1304
            end if;
1305
 
1306
            DconT  := First_Elmt (Discriminant_Constraint (T_Typ));
1307
 
1308
            while Present (Discr) loop
1309
               ItemS := Node (DconS);
1310
               ItemT := Node (DconT);
1311
 
1312
               --  For a discriminated component type constrained by the
1313
               --  current instance of an enclosing type, there is no
1314
               --  applicable discriminant check.
1315
 
1316
               if Nkind (ItemT) = N_Attribute_Reference
1317
                 and then Is_Access_Type (Etype (ItemT))
1318
                 and then Is_Entity_Name (Prefix (ItemT))
1319
                 and then Is_Type (Entity (Prefix (ItemT)))
1320
               then
1321
                  return;
1322
               end if;
1323
 
1324
               --  If the expressions for the discriminants are identical
1325
               --  and it is side-effect free (for now just an entity),
1326
               --  this may be a shared constraint, e.g. from a subtype
1327
               --  without a constraint introduced as a generic actual.
1328
               --  Examine other discriminants if any.
1329
 
1330
               if ItemS = ItemT
1331
                 and then Is_Entity_Name (ItemS)
1332
               then
1333
                  null;
1334
 
1335
               elsif not Is_OK_Static_Expression (ItemS)
1336
                 or else not Is_OK_Static_Expression (ItemT)
1337
               then
1338
                  exit;
1339
 
1340
               elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1341
                  if Do_Access then   --  needs run-time check.
1342
                     exit;
1343
                  else
1344
                     Apply_Compile_Time_Constraint_Error
1345
                       (N, "incorrect value for discriminant&?",
1346
                        CE_Discriminant_Check_Failed, Ent => Discr);
1347
                     return;
1348
                  end if;
1349
               end if;
1350
 
1351
               Next_Elmt (DconS);
1352
               Next_Elmt (DconT);
1353
               Next_Discriminant (Discr);
1354
            end loop;
1355
 
1356
            if No (Discr) then
1357
               return;
1358
            end if;
1359
         end;
1360
      end if;
1361
 
1362
      --  Here we need a discriminant check. First build the expression
1363
      --  for the comparisons of the discriminants:
1364
 
1365
      --    (n.disc1 /= typ.disc1) or else
1366
      --    (n.disc2 /= typ.disc2) or else
1367
      --     ...
1368
      --    (n.discn /= typ.discn)
1369
 
1370
      Cond := Build_Discriminant_Checks (N, T_Typ);
1371
 
1372
      --  If Lhs is set and is a parameter, then the condition is
1373
      --  guarded by: lhs'constrained and then (condition built above)
1374
 
1375
      if Present (Param_Entity (Lhs)) then
1376
         Cond :=
1377
           Make_And_Then (Loc,
1378
             Left_Opnd =>
1379
               Make_Attribute_Reference (Loc,
1380
                 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1381
                 Attribute_Name => Name_Constrained),
1382
             Right_Opnd => Cond);
1383
      end if;
1384
 
1385
      if Do_Access then
1386
         Cond := Guard_Access (Cond, Loc, N);
1387
      end if;
1388
 
1389
      Insert_Action (N,
1390
        Make_Raise_Constraint_Error (Loc,
1391
          Condition => Cond,
1392
          Reason    => CE_Discriminant_Check_Failed));
1393
   end Apply_Discriminant_Check;
1394
 
1395
   ------------------------
1396
   -- Apply_Divide_Check --
1397
   ------------------------
1398
 
1399
   procedure Apply_Divide_Check (N : Node_Id) is
1400
      Loc   : constant Source_Ptr := Sloc (N);
1401
      Typ   : constant Entity_Id  := Etype (N);
1402
      Left  : constant Node_Id    := Left_Opnd (N);
1403
      Right : constant Node_Id    := Right_Opnd (N);
1404
 
1405
      LLB : Uint;
1406
      Llo : Uint;
1407
      Lhi : Uint;
1408
      LOK : Boolean;
1409
      Rlo : Uint;
1410
      Rhi : Uint;
1411
      ROK   : Boolean;
1412
 
1413
      pragma Warnings (Off, Lhi);
1414
      --  Don't actually use this value
1415
 
1416
   begin
1417
      if Expander_Active
1418
        and then not Backend_Divide_Checks_On_Target
1419
        and then Check_Needed (Right, Division_Check)
1420
      then
1421
         Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1422
 
1423
         --  See if division by zero possible, and if so generate test. This
1424
         --  part of the test is not controlled by the -gnato switch.
1425
 
1426
         if Do_Division_Check (N) then
1427
            if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1428
               Insert_Action (N,
1429
                 Make_Raise_Constraint_Error (Loc,
1430
                   Condition =>
1431
                     Make_Op_Eq (Loc,
1432
                       Left_Opnd  => Duplicate_Subexpr_Move_Checks (Right),
1433
                       Right_Opnd => Make_Integer_Literal (Loc, 0)),
1434
                   Reason => CE_Divide_By_Zero));
1435
            end if;
1436
         end if;
1437
 
1438
         --  Test for extremely annoying case of xxx'First divided by -1
1439
 
1440
         if Do_Overflow_Check (N) then
1441
            if Nkind (N) = N_Op_Divide
1442
              and then Is_Signed_Integer_Type (Typ)
1443
            then
1444
               Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1445
               LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1446
 
1447
               if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1448
                 and then
1449
                 ((not LOK) or else (Llo = LLB))
1450
               then
1451
                  Insert_Action (N,
1452
                    Make_Raise_Constraint_Error (Loc,
1453
                      Condition =>
1454
                        Make_And_Then (Loc,
1455
 
1456
                           Make_Op_Eq (Loc,
1457
                             Left_Opnd  =>
1458
                               Duplicate_Subexpr_Move_Checks (Left),
1459
                             Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1460
 
1461
                           Make_Op_Eq (Loc,
1462
                             Left_Opnd =>
1463
                               Duplicate_Subexpr (Right),
1464
                             Right_Opnd =>
1465
                               Make_Integer_Literal (Loc, -1))),
1466
                      Reason => CE_Overflow_Check_Failed));
1467
               end if;
1468
            end if;
1469
         end if;
1470
      end if;
1471
   end Apply_Divide_Check;
1472
 
1473
   ----------------------------------
1474
   -- Apply_Float_Conversion_Check --
1475
   ----------------------------------
1476
 
1477
   --  Let F and I be the source and target types of the conversion. The RM
1478
   --  specifies that a floating-point value X is rounded to the nearest
1479
   --  integer, with halfway cases being rounded away from zero. The rounded
1480
   --  value of X is checked against I'Range.
1481
 
1482
   --  The catch in the above paragraph is that there is no good way to know
1483
   --  whether the round-to-integer operation resulted in overflow. A remedy is
1484
   --  to perform a range check in the floating-point domain instead, however:
1485
 
1486
   --      (1)  The bounds may not be known at compile time
1487
   --      (2)  The check must take into account rounding or truncation.
1488
   --      (3)  The range of type I may not be exactly representable in F.
1489
   --      (4)  For the rounding case, The end-points I'First - 0.5 and
1490
   --           I'Last + 0.5 may or may not be in range, depending on the
1491
   --           sign of  I'First and I'Last.
1492
   --      (5)  X may be a NaN, which will fail any comparison
1493
 
1494
   --  The following steps correctly convert X with rounding:
1495
 
1496
   --      (1) If either I'First or I'Last is not known at compile time, use
1497
   --          I'Base instead of I in the next three steps and perform a
1498
   --          regular range check against I'Range after conversion.
1499
   --      (2) If I'First - 0.5 is representable in F then let Lo be that
1500
   --          value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1501
   --          F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1502
   --          In other words, take one of the closest floating-point numbers
1503
   --          (which is an integer value) to I'First, and see if it is in
1504
   --          range or not.
1505
   --      (3) If I'Last + 0.5 is representable in F then let Hi be that value
1506
   --          and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1507
   --          F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1508
   --      (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1509
   --                     or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1510
 
1511
   --  For the truncating case, replace steps (2) and (3) as follows:
1512
   --      (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1513
   --          be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1514
   --          Lo_OK be True.
1515
   --      (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1516
   --          be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1517
   --          Hi_OK be False
1518
 
1519
   procedure Apply_Float_Conversion_Check
1520
     (Ck_Node    : Node_Id;
1521
      Target_Typ : Entity_Id)
1522
   is
1523
      LB          : constant Node_Id    := Type_Low_Bound (Target_Typ);
1524
      HB          : constant Node_Id    := Type_High_Bound (Target_Typ);
1525
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
1526
      Expr_Type   : constant Entity_Id  := Base_Type (Etype (Ck_Node));
1527
      Target_Base : constant Entity_Id  :=
1528
                      Implementation_Base_Type (Target_Typ);
1529
 
1530
      Par : constant Node_Id := Parent (Ck_Node);
1531
      pragma Assert (Nkind (Par) = N_Type_Conversion);
1532
      --  Parent of check node, must be a type conversion
1533
 
1534
      Truncate  : constant Boolean := Float_Truncate (Par);
1535
      Max_Bound : constant Uint :=
1536
                    UI_Expon
1537
                      (Machine_Radix (Expr_Type),
1538
                       Machine_Mantissa (Expr_Type) - 1) - 1;
1539
 
1540
      --  Largest bound, so bound plus or minus half is a machine number of F
1541
 
1542
      Ifirst, Ilast : Uint;
1543
      --  Bounds of integer type
1544
 
1545
      Lo, Hi : Ureal;
1546
      --  Bounds to check in floating-point domain
1547
 
1548
      Lo_OK, Hi_OK : Boolean;
1549
      --  True iff Lo resp. Hi belongs to I'Range
1550
 
1551
      Lo_Chk, Hi_Chk : Node_Id;
1552
      --  Expressions that are False iff check fails
1553
 
1554
      Reason : RT_Exception_Code;
1555
 
1556
   begin
1557
      if not Compile_Time_Known_Value (LB)
1558
          or not Compile_Time_Known_Value (HB)
1559
      then
1560
         declare
1561
            --  First check that the value falls in the range of the base type,
1562
            --  to prevent overflow during conversion and then perform a
1563
            --  regular range check against the (dynamic) bounds.
1564
 
1565
            pragma Assert (Target_Base /= Target_Typ);
1566
 
1567
            Temp : constant Entity_Id :=
1568
                    Make_Defining_Identifier (Loc,
1569
                      Chars => New_Internal_Name ('T'));
1570
 
1571
         begin
1572
            Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1573
            Set_Etype (Temp, Target_Base);
1574
 
1575
            Insert_Action (Parent (Par),
1576
              Make_Object_Declaration (Loc,
1577
                Defining_Identifier => Temp,
1578
                Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1579
                Expression => New_Copy_Tree (Par)),
1580
                Suppress => All_Checks);
1581
 
1582
            Insert_Action (Par,
1583
              Make_Raise_Constraint_Error (Loc,
1584
                Condition =>
1585
                  Make_Not_In (Loc,
1586
                    Left_Opnd  => New_Occurrence_Of (Temp, Loc),
1587
                    Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1588
                Reason => CE_Range_Check_Failed));
1589
            Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1590
 
1591
            return;
1592
         end;
1593
      end if;
1594
 
1595
      --  Get the (static) bounds of the target type
1596
 
1597
      Ifirst := Expr_Value (LB);
1598
      Ilast  := Expr_Value (HB);
1599
 
1600
      --  A simple optimization: if the expression is a universal literal,
1601
      --  we can do the comparison with the bounds and the conversion to
1602
      --  an integer type statically. The range checks are unchanged.
1603
 
1604
      if Nkind (Ck_Node) = N_Real_Literal
1605
        and then Etype (Ck_Node) = Universal_Real
1606
        and then Is_Integer_Type (Target_Typ)
1607
        and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1608
      then
1609
         declare
1610
            Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1611
 
1612
         begin
1613
            if Int_Val <= Ilast and then Int_Val >= Ifirst then
1614
 
1615
               --  Conversion is safe
1616
 
1617
               Rewrite (Parent (Ck_Node),
1618
                 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1619
               Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1620
               return;
1621
            end if;
1622
         end;
1623
      end if;
1624
 
1625
      --  Check against lower bound
1626
 
1627
      if Truncate and then Ifirst > 0 then
1628
         Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1629
         Lo_OK := False;
1630
 
1631
      elsif Truncate then
1632
         Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1633
         Lo_OK := True;
1634
 
1635
      elsif abs (Ifirst) < Max_Bound then
1636
         Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1637
         Lo_OK := (Ifirst > 0);
1638
 
1639
      else
1640
         Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1641
         Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1642
      end if;
1643
 
1644
      if Lo_OK then
1645
 
1646
         --  Lo_Chk := (X >= Lo)
1647
 
1648
         Lo_Chk := Make_Op_Ge (Loc,
1649
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1650
                     Right_Opnd => Make_Real_Literal (Loc, Lo));
1651
 
1652
      else
1653
         --  Lo_Chk := (X > Lo)
1654
 
1655
         Lo_Chk := Make_Op_Gt (Loc,
1656
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1657
                     Right_Opnd => Make_Real_Literal (Loc, Lo));
1658
      end if;
1659
 
1660
      --  Check against higher bound
1661
 
1662
      if Truncate and then Ilast < 0 then
1663
         Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
1664
         Lo_OK := False;
1665
 
1666
      elsif Truncate then
1667
         Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
1668
         Hi_OK := True;
1669
 
1670
      elsif abs (Ilast) < Max_Bound then
1671
         Hi := UR_From_Uint (Ilast) + Ureal_Half;
1672
         Hi_OK := (Ilast < 0);
1673
      else
1674
         Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1675
         Hi_OK := (Hi <= UR_From_Uint (Ilast));
1676
      end if;
1677
 
1678
      if Hi_OK then
1679
 
1680
         --  Hi_Chk := (X <= Hi)
1681
 
1682
         Hi_Chk := Make_Op_Le (Loc,
1683
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1684
                     Right_Opnd => Make_Real_Literal (Loc, Hi));
1685
 
1686
      else
1687
         --  Hi_Chk := (X < Hi)
1688
 
1689
         Hi_Chk := Make_Op_Lt (Loc,
1690
                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1691
                     Right_Opnd => Make_Real_Literal (Loc, Hi));
1692
      end if;
1693
 
1694
      --  If the bounds of the target type are the same as those of the base
1695
      --  type, the check is an overflow check as a range check is not
1696
      --  performed in these cases.
1697
 
1698
      if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1699
        and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1700
      then
1701
         Reason := CE_Overflow_Check_Failed;
1702
      else
1703
         Reason := CE_Range_Check_Failed;
1704
      end if;
1705
 
1706
      --  Raise CE if either conditions does not hold
1707
 
1708
      Insert_Action (Ck_Node,
1709
        Make_Raise_Constraint_Error (Loc,
1710
          Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
1711
          Reason    => Reason));
1712
   end Apply_Float_Conversion_Check;
1713
 
1714
   ------------------------
1715
   -- Apply_Length_Check --
1716
   ------------------------
1717
 
1718
   procedure Apply_Length_Check
1719
     (Ck_Node    : Node_Id;
1720
      Target_Typ : Entity_Id;
1721
      Source_Typ : Entity_Id := Empty)
1722
   is
1723
   begin
1724
      Apply_Selected_Length_Checks
1725
        (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1726
   end Apply_Length_Check;
1727
 
1728
   -----------------------
1729
   -- Apply_Range_Check --
1730
   -----------------------
1731
 
1732
   procedure Apply_Range_Check
1733
     (Ck_Node    : Node_Id;
1734
      Target_Typ : Entity_Id;
1735
      Source_Typ : Entity_Id := Empty)
1736
   is
1737
   begin
1738
      Apply_Selected_Range_Checks
1739
        (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1740
   end Apply_Range_Check;
1741
 
1742
   ------------------------------
1743
   -- Apply_Scalar_Range_Check --
1744
   ------------------------------
1745
 
1746
   --  Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
1747
   --  off if it is already set on.
1748
 
1749
   procedure Apply_Scalar_Range_Check
1750
     (Expr       : Node_Id;
1751
      Target_Typ : Entity_Id;
1752
      Source_Typ : Entity_Id := Empty;
1753
      Fixed_Int  : Boolean   := False)
1754
   is
1755
      Parnt   : constant Node_Id := Parent (Expr);
1756
      S_Typ   : Entity_Id;
1757
      Arr     : Node_Id   := Empty;  -- initialize to prevent warning
1758
      Arr_Typ : Entity_Id := Empty;  -- initialize to prevent warning
1759
      OK      : Boolean;
1760
 
1761
      Is_Subscr_Ref : Boolean;
1762
      --  Set true if Expr is a subscript
1763
 
1764
      Is_Unconstrained_Subscr_Ref : Boolean;
1765
      --  Set true if Expr is a subscript of an unconstrained array. In this
1766
      --  case we do not attempt to do an analysis of the value against the
1767
      --  range of the subscript, since we don't know the actual subtype.
1768
 
1769
      Int_Real : Boolean;
1770
      --  Set to True if Expr should be regarded as a real value even though
1771
      --  the type of Expr might be discrete.
1772
 
1773
      procedure Bad_Value;
1774
      --  Procedure called if value is determined to be out of range
1775
 
1776
      ---------------
1777
      -- Bad_Value --
1778
      ---------------
1779
 
1780
      procedure Bad_Value is
1781
      begin
1782
         Apply_Compile_Time_Constraint_Error
1783
           (Expr, "value not in range of}?", CE_Range_Check_Failed,
1784
            Ent => Target_Typ,
1785
            Typ => Target_Typ);
1786
      end Bad_Value;
1787
 
1788
   --  Start of processing for Apply_Scalar_Range_Check
1789
 
1790
   begin
1791
      --  Return if check obviously not needed
1792
 
1793
      if
1794
         --  Not needed inside generic
1795
 
1796
         Inside_A_Generic
1797
 
1798
         --  Not needed if previous error
1799
 
1800
         or else Target_Typ = Any_Type
1801
         or else Nkind (Expr) = N_Error
1802
 
1803
         --  Not needed for non-scalar type
1804
 
1805
         or else not Is_Scalar_Type (Target_Typ)
1806
 
1807
         --  Not needed if we know node raises CE already
1808
 
1809
         or else Raises_Constraint_Error (Expr)
1810
      then
1811
         return;
1812
      end if;
1813
 
1814
      --  Now, see if checks are suppressed
1815
 
1816
      Is_Subscr_Ref :=
1817
        Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1818
 
1819
      if Is_Subscr_Ref then
1820
         Arr := Prefix (Parnt);
1821
         Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1822
      end if;
1823
 
1824
      if not Do_Range_Check (Expr) then
1825
 
1826
         --  Subscript reference. Check for Index_Checks suppressed
1827
 
1828
         if Is_Subscr_Ref then
1829
 
1830
            --  Check array type and its base type
1831
 
1832
            if Index_Checks_Suppressed (Arr_Typ)
1833
              or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1834
            then
1835
               return;
1836
 
1837
            --  Check array itself if it is an entity name
1838
 
1839
            elsif Is_Entity_Name (Arr)
1840
              and then Index_Checks_Suppressed (Entity (Arr))
1841
            then
1842
               return;
1843
 
1844
            --  Check expression itself if it is an entity name
1845
 
1846
            elsif Is_Entity_Name (Expr)
1847
              and then Index_Checks_Suppressed (Entity (Expr))
1848
            then
1849
               return;
1850
            end if;
1851
 
1852
         --  All other cases, check for Range_Checks suppressed
1853
 
1854
         else
1855
            --  Check target type and its base type
1856
 
1857
            if Range_Checks_Suppressed (Target_Typ)
1858
              or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1859
            then
1860
               return;
1861
 
1862
            --  Check expression itself if it is an entity name
1863
 
1864
            elsif Is_Entity_Name (Expr)
1865
              and then Range_Checks_Suppressed (Entity (Expr))
1866
            then
1867
               return;
1868
 
1869
            --  If Expr is part of an assignment statement, then check left
1870
            --  side of assignment if it is an entity name.
1871
 
1872
            elsif Nkind (Parnt) = N_Assignment_Statement
1873
              and then Is_Entity_Name (Name (Parnt))
1874
              and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1875
            then
1876
               return;
1877
            end if;
1878
         end if;
1879
      end if;
1880
 
1881
      --  Do not set range checks if they are killed
1882
 
1883
      if Nkind (Expr) = N_Unchecked_Type_Conversion
1884
        and then Kill_Range_Check (Expr)
1885
      then
1886
         return;
1887
      end if;
1888
 
1889
      --  Do not set range checks for any values from System.Scalar_Values
1890
      --  since the whole idea of such values is to avoid checking them!
1891
 
1892
      if Is_Entity_Name (Expr)
1893
        and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1894
      then
1895
         return;
1896
      end if;
1897
 
1898
      --  Now see if we need a check
1899
 
1900
      if No (Source_Typ) then
1901
         S_Typ := Etype (Expr);
1902
      else
1903
         S_Typ := Source_Typ;
1904
      end if;
1905
 
1906
      if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1907
         return;
1908
      end if;
1909
 
1910
      Is_Unconstrained_Subscr_Ref :=
1911
        Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1912
 
1913
      --  Always do a range check if the source type includes infinities and
1914
      --  the target type does not include infinities. We do not do this if
1915
      --  range checks are killed.
1916
 
1917
      if Is_Floating_Point_Type (S_Typ)
1918
        and then Has_Infinities (S_Typ)
1919
        and then not Has_Infinities (Target_Typ)
1920
      then
1921
         Enable_Range_Check (Expr);
1922
      end if;
1923
 
1924
      --  Return if we know expression is definitely in the range of the target
1925
      --  type as determined by Determine_Range. Right now we only do this for
1926
      --  discrete types, and not fixed-point or floating-point types.
1927
 
1928
      --  The additional less-precise tests below catch these cases
1929
 
1930
      --  Note: skip this if we are given a source_typ, since the point of
1931
      --  supplying a Source_Typ is to stop us looking at the expression.
1932
      --  We could sharpen this test to be out parameters only ???
1933
 
1934
      if Is_Discrete_Type (Target_Typ)
1935
        and then Is_Discrete_Type (Etype (Expr))
1936
        and then not Is_Unconstrained_Subscr_Ref
1937
        and then No (Source_Typ)
1938
      then
1939
         declare
1940
            Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
1941
            Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1942
            Lo  : Uint;
1943
            Hi  : Uint;
1944
 
1945
         begin
1946
            if Compile_Time_Known_Value (Tlo)
1947
              and then Compile_Time_Known_Value (Thi)
1948
            then
1949
               declare
1950
                  Lov : constant Uint := Expr_Value (Tlo);
1951
                  Hiv : constant Uint := Expr_Value (Thi);
1952
 
1953
               begin
1954
                  --  If range is null, we for sure have a constraint error
1955
                  --  (we don't even need to look at the value involved,
1956
                  --  since all possible values will raise CE).
1957
 
1958
                  if Lov > Hiv then
1959
                     Bad_Value;
1960
                     return;
1961
                  end if;
1962
 
1963
                  --  Otherwise determine range of value
1964
 
1965
                  Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
1966
 
1967
                  if OK then
1968
 
1969
                     --  If definitely in range, all OK
1970
 
1971
                     if Lo >= Lov and then Hi <= Hiv then
1972
                        return;
1973
 
1974
                     --  If definitely not in range, warn
1975
 
1976
                     elsif Lov > Hi or else Hiv < Lo then
1977
                        Bad_Value;
1978
                        return;
1979
 
1980
                     --  Otherwise we don't know
1981
 
1982
                     else
1983
                        null;
1984
                     end if;
1985
                  end if;
1986
               end;
1987
            end if;
1988
         end;
1989
      end if;
1990
 
1991
      Int_Real :=
1992
        Is_Floating_Point_Type (S_Typ)
1993
          or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
1994
 
1995
      --  Check if we can determine at compile time whether Expr is in the
1996
      --  range of the target type. Note that if S_Typ is within the bounds
1997
      --  of Target_Typ then this must be the case. This check is meaningful
1998
      --  only if this is not a conversion between integer and real types.
1999
 
2000
      if not Is_Unconstrained_Subscr_Ref
2001
        and then
2002
           Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2003
        and then
2004
          (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
2005
             or else
2006
               Is_In_Range (Expr, Target_Typ,
2007
                            Assume_Valid => True,
2008
                            Fixed_Int => Fixed_Int,
2009
                            Int_Real  => Int_Real))
2010
      then
2011
         return;
2012
 
2013
      elsif Is_Out_Of_Range (Expr, Target_Typ,
2014
                             Assume_Valid => True,
2015
                             Fixed_Int    => Fixed_Int,
2016
                             Int_Real     => Int_Real)
2017
      then
2018
         Bad_Value;
2019
         return;
2020
 
2021
      --  In the floating-point case, we only do range checks if the type is
2022
      --  constrained. We definitely do NOT want range checks for unconstrained
2023
      --  types, since we want to have infinities
2024
 
2025
      elsif Is_Floating_Point_Type (S_Typ) then
2026
         if Is_Constrained (S_Typ) then
2027
            Enable_Range_Check (Expr);
2028
         end if;
2029
 
2030
      --  For all other cases we enable a range check unconditionally
2031
 
2032
      else
2033
         Enable_Range_Check (Expr);
2034
         return;
2035
      end if;
2036
   end Apply_Scalar_Range_Check;
2037
 
2038
   ----------------------------------
2039
   -- Apply_Selected_Length_Checks --
2040
   ----------------------------------
2041
 
2042
   procedure Apply_Selected_Length_Checks
2043
     (Ck_Node    : Node_Id;
2044
      Target_Typ : Entity_Id;
2045
      Source_Typ : Entity_Id;
2046
      Do_Static  : Boolean)
2047
   is
2048
      Cond     : Node_Id;
2049
      R_Result : Check_Result;
2050
      R_Cno    : Node_Id;
2051
 
2052
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
2053
      Checks_On   : constant Boolean :=
2054
                      (not Index_Checks_Suppressed (Target_Typ))
2055
                        or else
2056
                      (not Length_Checks_Suppressed (Target_Typ));
2057
 
2058
   begin
2059
      if not Expander_Active then
2060
         return;
2061
      end if;
2062
 
2063
      R_Result :=
2064
        Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2065
 
2066
      for J in 1 .. 2 loop
2067
         R_Cno := R_Result (J);
2068
         exit when No (R_Cno);
2069
 
2070
         --  A length check may mention an Itype which is attached to a
2071
         --  subsequent node. At the top level in a package this can cause
2072
         --  an order-of-elaboration problem, so we make sure that the itype
2073
         --  is referenced now.
2074
 
2075
         if Ekind (Current_Scope) = E_Package
2076
           and then Is_Compilation_Unit (Current_Scope)
2077
         then
2078
            Ensure_Defined (Target_Typ, Ck_Node);
2079
 
2080
            if Present (Source_Typ) then
2081
               Ensure_Defined (Source_Typ, Ck_Node);
2082
 
2083
            elsif Is_Itype (Etype (Ck_Node)) then
2084
               Ensure_Defined (Etype (Ck_Node), Ck_Node);
2085
            end if;
2086
         end if;
2087
 
2088
         --  If the item is a conditional raise of constraint error, then have
2089
         --  a look at what check is being performed and ???
2090
 
2091
         if Nkind (R_Cno) = N_Raise_Constraint_Error
2092
           and then Present (Condition (R_Cno))
2093
         then
2094
            Cond := Condition (R_Cno);
2095
 
2096
            --  Case where node does not now have a dynamic check
2097
 
2098
            if not Has_Dynamic_Length_Check (Ck_Node) then
2099
 
2100
               --  If checks are on, just insert the check
2101
 
2102
               if Checks_On then
2103
                  Insert_Action (Ck_Node, R_Cno);
2104
 
2105
                  if not Do_Static then
2106
                     Set_Has_Dynamic_Length_Check (Ck_Node);
2107
                  end if;
2108
 
2109
               --  If checks are off, then analyze the length check after
2110
               --  temporarily attaching it to the tree in case the relevant
2111
               --  condition can be evaluted at compile time. We still want a
2112
               --  compile time warning in this case.
2113
 
2114
               else
2115
                  Set_Parent (R_Cno, Ck_Node);
2116
                  Analyze (R_Cno);
2117
               end if;
2118
            end if;
2119
 
2120
            --  Output a warning if the condition is known to be True
2121
 
2122
            if Is_Entity_Name (Cond)
2123
              and then Entity (Cond) = Standard_True
2124
            then
2125
               Apply_Compile_Time_Constraint_Error
2126
                 (Ck_Node, "wrong length for array of}?",
2127
                  CE_Length_Check_Failed,
2128
                  Ent => Target_Typ,
2129
                  Typ => Target_Typ);
2130
 
2131
            --  If we were only doing a static check, or if checks are not
2132
            --  on, then we want to delete the check, since it is not needed.
2133
            --  We do this by replacing the if statement by a null statement
2134
 
2135
            elsif Do_Static or else not Checks_On then
2136
               Remove_Warning_Messages (R_Cno);
2137
               Rewrite (R_Cno, Make_Null_Statement (Loc));
2138
            end if;
2139
 
2140
         else
2141
            Install_Static_Check (R_Cno, Loc);
2142
         end if;
2143
      end loop;
2144
   end Apply_Selected_Length_Checks;
2145
 
2146
   ---------------------------------
2147
   -- Apply_Selected_Range_Checks --
2148
   ---------------------------------
2149
 
2150
   procedure Apply_Selected_Range_Checks
2151
     (Ck_Node    : Node_Id;
2152
      Target_Typ : Entity_Id;
2153
      Source_Typ : Entity_Id;
2154
      Do_Static  : Boolean)
2155
   is
2156
      Cond     : Node_Id;
2157
      R_Result : Check_Result;
2158
      R_Cno    : Node_Id;
2159
 
2160
      Loc       : constant Source_Ptr := Sloc (Ck_Node);
2161
      Checks_On : constant Boolean :=
2162
                    (not Index_Checks_Suppressed (Target_Typ))
2163
                      or else
2164
                    (not Range_Checks_Suppressed (Target_Typ));
2165
 
2166
   begin
2167
      if not Expander_Active or else not Checks_On then
2168
         return;
2169
      end if;
2170
 
2171
      R_Result :=
2172
        Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2173
 
2174
      for J in 1 .. 2 loop
2175
 
2176
         R_Cno := R_Result (J);
2177
         exit when No (R_Cno);
2178
 
2179
         --  If the item is a conditional raise of constraint error, then have
2180
         --  a look at what check is being performed and ???
2181
 
2182
         if Nkind (R_Cno) = N_Raise_Constraint_Error
2183
           and then Present (Condition (R_Cno))
2184
         then
2185
            Cond := Condition (R_Cno);
2186
 
2187
            if not Has_Dynamic_Range_Check (Ck_Node) then
2188
               Insert_Action (Ck_Node, R_Cno);
2189
 
2190
               if not Do_Static then
2191
                  Set_Has_Dynamic_Range_Check (Ck_Node);
2192
               end if;
2193
            end if;
2194
 
2195
            --  Output a warning if the condition is known to be True
2196
 
2197
            if Is_Entity_Name (Cond)
2198
              and then Entity (Cond) = Standard_True
2199
            then
2200
               --  Since an N_Range is technically not an expression, we have
2201
               --  to set one of the bounds to C_E and then just flag the
2202
               --  N_Range. The warning message will point to the lower bound
2203
               --  and complain about a range, which seems OK.
2204
 
2205
               if Nkind (Ck_Node) = N_Range then
2206
                  Apply_Compile_Time_Constraint_Error
2207
                    (Low_Bound (Ck_Node), "static range out of bounds of}?",
2208
                     CE_Range_Check_Failed,
2209
                     Ent => Target_Typ,
2210
                     Typ => Target_Typ);
2211
 
2212
                  Set_Raises_Constraint_Error (Ck_Node);
2213
 
2214
               else
2215
                  Apply_Compile_Time_Constraint_Error
2216
                    (Ck_Node, "static value out of range of}?",
2217
                     CE_Range_Check_Failed,
2218
                     Ent => Target_Typ,
2219
                     Typ => Target_Typ);
2220
               end if;
2221
 
2222
            --  If we were only doing a static check, or if checks are not
2223
            --  on, then we want to delete the check, since it is not needed.
2224
            --  We do this by replacing the if statement by a null statement
2225
 
2226
            elsif Do_Static or else not Checks_On then
2227
               Remove_Warning_Messages (R_Cno);
2228
               Rewrite (R_Cno, Make_Null_Statement (Loc));
2229
            end if;
2230
 
2231
         else
2232
            Install_Static_Check (R_Cno, Loc);
2233
         end if;
2234
      end loop;
2235
   end Apply_Selected_Range_Checks;
2236
 
2237
   -------------------------------
2238
   -- Apply_Static_Length_Check --
2239
   -------------------------------
2240
 
2241
   procedure Apply_Static_Length_Check
2242
     (Expr       : Node_Id;
2243
      Target_Typ : Entity_Id;
2244
      Source_Typ : Entity_Id := Empty)
2245
   is
2246
   begin
2247
      Apply_Selected_Length_Checks
2248
        (Expr, Target_Typ, Source_Typ, Do_Static => True);
2249
   end Apply_Static_Length_Check;
2250
 
2251
   -------------------------------------
2252
   -- Apply_Subscript_Validity_Checks --
2253
   -------------------------------------
2254
 
2255
   procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2256
      Sub : Node_Id;
2257
 
2258
   begin
2259
      pragma Assert (Nkind (Expr) = N_Indexed_Component);
2260
 
2261
      --  Loop through subscripts
2262
 
2263
      Sub := First (Expressions (Expr));
2264
      while Present (Sub) loop
2265
 
2266
         --  Check one subscript. Note that we do not worry about enumeration
2267
         --  type with holes, since we will convert the value to a Pos value
2268
         --  for the subscript, and that convert will do the necessary validity
2269
         --  check.
2270
 
2271
         Ensure_Valid (Sub, Holes_OK => True);
2272
 
2273
         --  Move to next subscript
2274
 
2275
         Sub := Next (Sub);
2276
      end loop;
2277
   end Apply_Subscript_Validity_Checks;
2278
 
2279
   ----------------------------------
2280
   -- Apply_Type_Conversion_Checks --
2281
   ----------------------------------
2282
 
2283
   procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2284
      Target_Type : constant Entity_Id := Etype (N);
2285
      Target_Base : constant Entity_Id := Base_Type (Target_Type);
2286
      Expr        : constant Node_Id   := Expression (N);
2287
      Expr_Type   : constant Entity_Id := Etype (Expr);
2288
 
2289
   begin
2290
      if Inside_A_Generic then
2291
         return;
2292
 
2293
      --  Skip these checks if serious errors detected, there are some nasty
2294
      --  situations of incomplete trees that blow things up.
2295
 
2296
      elsif Serious_Errors_Detected > 0 then
2297
         return;
2298
 
2299
      --  Scalar type conversions of the form Target_Type (Expr) require a
2300
      --  range check if we cannot be sure that Expr is in the base type of
2301
      --  Target_Typ and also that Expr is in the range of Target_Typ. These
2302
      --  are not quite the same condition from an implementation point of
2303
      --  view, but clearly the second includes the first.
2304
 
2305
      elsif Is_Scalar_Type (Target_Type) then
2306
         declare
2307
            Conv_OK  : constant Boolean := Conversion_OK (N);
2308
            --  If the Conversion_OK flag on the type conversion is set and no
2309
            --  floating point type is involved in the type conversion then
2310
            --  fixed point values must be read as integral values.
2311
 
2312
            Float_To_Int : constant Boolean :=
2313
                             Is_Floating_Point_Type (Expr_Type)
2314
                               and then Is_Integer_Type (Target_Type);
2315
 
2316
         begin
2317
            if not Overflow_Checks_Suppressed (Target_Base)
2318
              and then not
2319
                In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
2320
              and then not Float_To_Int
2321
            then
2322
               Activate_Overflow_Check (N);
2323
            end if;
2324
 
2325
            if not Range_Checks_Suppressed (Target_Type)
2326
              and then not Range_Checks_Suppressed (Expr_Type)
2327
            then
2328
               if Float_To_Int then
2329
                  Apply_Float_Conversion_Check (Expr, Target_Type);
2330
               else
2331
                  Apply_Scalar_Range_Check
2332
                    (Expr, Target_Type, Fixed_Int => Conv_OK);
2333
               end if;
2334
            end if;
2335
         end;
2336
 
2337
      elsif Comes_From_Source (N)
2338
        and then not Discriminant_Checks_Suppressed (Target_Type)
2339
        and then Is_Record_Type (Target_Type)
2340
        and then Is_Derived_Type (Target_Type)
2341
        and then not Is_Tagged_Type (Target_Type)
2342
        and then not Is_Constrained (Target_Type)
2343
        and then Present (Stored_Constraint (Target_Type))
2344
      then
2345
         --  An unconstrained derived type may have inherited discriminant
2346
         --  Build an actual discriminant constraint list using the stored
2347
         --  constraint, to verify that the expression of the parent type
2348
         --  satisfies the constraints imposed by the (unconstrained!)
2349
         --  derived type. This applies to value conversions, not to view
2350
         --  conversions of tagged types.
2351
 
2352
         declare
2353
            Loc         : constant Source_Ptr := Sloc (N);
2354
            Cond        : Node_Id;
2355
            Constraint  : Elmt_Id;
2356
            Discr_Value : Node_Id;
2357
            Discr       : Entity_Id;
2358
 
2359
            New_Constraints : constant Elist_Id := New_Elmt_List;
2360
            Old_Constraints : constant Elist_Id :=
2361
                                Discriminant_Constraint (Expr_Type);
2362
 
2363
         begin
2364
            Constraint := First_Elmt (Stored_Constraint (Target_Type));
2365
            while Present (Constraint) loop
2366
               Discr_Value := Node (Constraint);
2367
 
2368
               if Is_Entity_Name (Discr_Value)
2369
                 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2370
               then
2371
                  Discr := Corresponding_Discriminant (Entity (Discr_Value));
2372
 
2373
                  if Present (Discr)
2374
                    and then Scope (Discr) = Base_Type (Expr_Type)
2375
                  then
2376
                     --  Parent is constrained by new discriminant. Obtain
2377
                     --  Value of original discriminant in expression. If the
2378
                     --  new discriminant has been used to constrain more than
2379
                     --  one of the stored discriminants, this will provide the
2380
                     --  required consistency check.
2381
 
2382
                     Append_Elmt (
2383
                        Make_Selected_Component (Loc,
2384
                          Prefix =>
2385
                            Duplicate_Subexpr_No_Checks
2386
                              (Expr, Name_Req => True),
2387
                          Selector_Name =>
2388
                            Make_Identifier (Loc, Chars (Discr))),
2389
                                New_Constraints);
2390
 
2391
                  else
2392
                     --  Discriminant of more remote ancestor ???
2393
 
2394
                     return;
2395
                  end if;
2396
 
2397
               --  Derived type definition has an explicit value for this
2398
               --  stored discriminant.
2399
 
2400
               else
2401
                  Append_Elmt
2402
                    (Duplicate_Subexpr_No_Checks (Discr_Value),
2403
                     New_Constraints);
2404
               end if;
2405
 
2406
               Next_Elmt (Constraint);
2407
            end loop;
2408
 
2409
            --  Use the unconstrained expression type to retrieve the
2410
            --  discriminants of the parent, and apply momentarily the
2411
            --  discriminant constraint synthesized above.
2412
 
2413
            Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2414
            Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2415
            Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2416
 
2417
            Insert_Action (N,
2418
              Make_Raise_Constraint_Error (Loc,
2419
                Condition => Cond,
2420
                Reason    => CE_Discriminant_Check_Failed));
2421
         end;
2422
 
2423
      --  For arrays, conversions are applied during expansion, to take into
2424
      --  accounts changes of representation. The checks become range checks on
2425
      --  the base type or length checks on the subtype, depending on whether
2426
      --  the target type is unconstrained or constrained.
2427
 
2428
      else
2429
         null;
2430
      end if;
2431
   end Apply_Type_Conversion_Checks;
2432
 
2433
   ----------------------------------------------
2434
   -- Apply_Universal_Integer_Attribute_Checks --
2435
   ----------------------------------------------
2436
 
2437
   procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2438
      Loc : constant Source_Ptr := Sloc (N);
2439
      Typ : constant Entity_Id  := Etype (N);
2440
 
2441
   begin
2442
      if Inside_A_Generic then
2443
         return;
2444
 
2445
      --  Nothing to do if checks are suppressed
2446
 
2447
      elsif Range_Checks_Suppressed (Typ)
2448
        and then Overflow_Checks_Suppressed (Typ)
2449
      then
2450
         return;
2451
 
2452
      --  Nothing to do if the attribute does not come from source. The
2453
      --  internal attributes we generate of this type do not need checks,
2454
      --  and furthermore the attempt to check them causes some circular
2455
      --  elaboration orders when dealing with packed types.
2456
 
2457
      elsif not Comes_From_Source (N) then
2458
         return;
2459
 
2460
      --  If the prefix is a selected component that depends on a discriminant
2461
      --  the check may improperly expose a discriminant instead of using
2462
      --  the bounds of the object itself. Set the type of the attribute to
2463
      --  the base type of the context, so that a check will be imposed when
2464
      --  needed (e.g. if the node appears as an index).
2465
 
2466
      elsif Nkind (Prefix (N)) = N_Selected_Component
2467
        and then Ekind (Typ) = E_Signed_Integer_Subtype
2468
        and then Depends_On_Discriminant (Scalar_Range (Typ))
2469
      then
2470
         Set_Etype (N, Base_Type (Typ));
2471
 
2472
      --  Otherwise, replace the attribute node with a type conversion node
2473
      --  whose expression is the attribute, retyped to universal integer, and
2474
      --  whose subtype mark is the target type. The call to analyze this
2475
      --  conversion will set range and overflow checks as required for proper
2476
      --  detection of an out of range value.
2477
 
2478
      else
2479
         Set_Etype    (N, Universal_Integer);
2480
         Set_Analyzed (N, True);
2481
 
2482
         Rewrite (N,
2483
           Make_Type_Conversion (Loc,
2484
             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2485
             Expression   => Relocate_Node (N)));
2486
 
2487
         Analyze_And_Resolve (N, Typ);
2488
         return;
2489
      end if;
2490
   end Apply_Universal_Integer_Attribute_Checks;
2491
 
2492
   -------------------------------
2493
   -- Build_Discriminant_Checks --
2494
   -------------------------------
2495
 
2496
   function Build_Discriminant_Checks
2497
     (N     : Node_Id;
2498
      T_Typ : Entity_Id) return Node_Id
2499
   is
2500
      Loc      : constant Source_Ptr := Sloc (N);
2501
      Cond     : Node_Id;
2502
      Disc     : Elmt_Id;
2503
      Disc_Ent : Entity_Id;
2504
      Dref     : Node_Id;
2505
      Dval     : Node_Id;
2506
 
2507
      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
2508
 
2509
      ----------------------------------
2510
      -- Aggregate_Discriminant_Value --
2511
      ----------------------------------
2512
 
2513
      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
2514
         Assoc : Node_Id;
2515
 
2516
      begin
2517
         --  The aggregate has been normalized with named associations. We use
2518
         --  the Chars field to locate the discriminant to take into account
2519
         --  discriminants in derived types, which carry the same name as those
2520
         --  in the parent.
2521
 
2522
         Assoc := First (Component_Associations (N));
2523
         while Present (Assoc) loop
2524
            if Chars (First (Choices (Assoc))) = Chars (Disc) then
2525
               return Expression (Assoc);
2526
            else
2527
               Next (Assoc);
2528
            end if;
2529
         end loop;
2530
 
2531
         --  Discriminant must have been found in the loop above
2532
 
2533
         raise Program_Error;
2534
      end Aggregate_Discriminant_Val;
2535
 
2536
   --  Start of processing for Build_Discriminant_Checks
2537
 
2538
   begin
2539
      --  Loop through discriminants evolving the condition
2540
 
2541
      Cond := Empty;
2542
      Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2543
 
2544
      --  For a fully private type, use the discriminants of the parent type
2545
 
2546
      if Is_Private_Type (T_Typ)
2547
        and then No (Full_View (T_Typ))
2548
      then
2549
         Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2550
      else
2551
         Disc_Ent := First_Discriminant (T_Typ);
2552
      end if;
2553
 
2554
      while Present (Disc) loop
2555
         Dval := Node (Disc);
2556
 
2557
         if Nkind (Dval) = N_Identifier
2558
           and then Ekind (Entity (Dval)) = E_Discriminant
2559
         then
2560
            Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2561
         else
2562
            Dval := Duplicate_Subexpr_No_Checks (Dval);
2563
         end if;
2564
 
2565
         --  If we have an Unchecked_Union node, we can infer the discriminants
2566
         --  of the node.
2567
 
2568
         if Is_Unchecked_Union (Base_Type (T_Typ)) then
2569
            Dref := New_Copy (
2570
              Get_Discriminant_Value (
2571
                First_Discriminant (T_Typ),
2572
                T_Typ,
2573
                Stored_Constraint (T_Typ)));
2574
 
2575
         elsif Nkind (N) = N_Aggregate then
2576
            Dref :=
2577
               Duplicate_Subexpr_No_Checks
2578
                 (Aggregate_Discriminant_Val (Disc_Ent));
2579
 
2580
         else
2581
            Dref :=
2582
              Make_Selected_Component (Loc,
2583
                Prefix =>
2584
                  Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2585
                Selector_Name =>
2586
                  Make_Identifier (Loc, Chars (Disc_Ent)));
2587
 
2588
            Set_Is_In_Discriminant_Check (Dref);
2589
         end if;
2590
 
2591
         Evolve_Or_Else (Cond,
2592
           Make_Op_Ne (Loc,
2593
             Left_Opnd => Dref,
2594
             Right_Opnd => Dval));
2595
 
2596
         Next_Elmt (Disc);
2597
         Next_Discriminant (Disc_Ent);
2598
      end loop;
2599
 
2600
      return Cond;
2601
   end Build_Discriminant_Checks;
2602
 
2603
   ------------------
2604
   -- Check_Needed --
2605
   ------------------
2606
 
2607
   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
2608
      N : Node_Id;
2609
      P : Node_Id;
2610
      K : Node_Kind;
2611
      L : Node_Id;
2612
      R : Node_Id;
2613
 
2614
   begin
2615
      --  Always check if not simple entity
2616
 
2617
      if Nkind (Nod) not in N_Has_Entity
2618
        or else not Comes_From_Source (Nod)
2619
      then
2620
         return True;
2621
      end if;
2622
 
2623
      --  Look up tree for short circuit
2624
 
2625
      N := Nod;
2626
      loop
2627
         P := Parent (N);
2628
         K := Nkind (P);
2629
 
2630
         --  Done if out of subexpression (note that we allow generated stuff
2631
         --  such as itype declarations in this context, to keep the loop going
2632
         --  since we may well have generated such stuff in complex situations.
2633
         --  Also done if no parent (probably an error condition, but no point
2634
         --  in behaving nasty if we find it!)
2635
 
2636
         if No (P)
2637
           or else (K not in N_Subexpr and then Comes_From_Source (P))
2638
         then
2639
            return True;
2640
 
2641
         --  Or/Or Else case, where test is part of the right operand, or is
2642
         --  part of one of the actions associated with the right operand, and
2643
         --  the left operand is an equality test.
2644
 
2645
         elsif K = N_Op_Or then
2646
            exit when N = Right_Opnd (P)
2647
              and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2648
 
2649
         elsif K = N_Or_Else then
2650
            exit when (N = Right_Opnd (P)
2651
                        or else
2652
                          (Is_List_Member (N)
2653
                             and then List_Containing (N) = Actions (P)))
2654
              and then Nkind (Left_Opnd (P)) = N_Op_Eq;
2655
 
2656
         --  Similar test for the And/And then case, where the left operand
2657
         --  is an inequality test.
2658
 
2659
         elsif K = N_Op_And then
2660
            exit when N = Right_Opnd (P)
2661
              and then Nkind (Left_Opnd (P)) = N_Op_Ne;
2662
 
2663
         elsif K = N_And_Then then
2664
            exit when (N = Right_Opnd (P)
2665
                        or else
2666
                          (Is_List_Member (N)
2667
                             and then List_Containing (N) = Actions (P)))
2668
              and then Nkind (Left_Opnd (P)) = N_Op_Ne;
2669
         end if;
2670
 
2671
         N := P;
2672
      end loop;
2673
 
2674
      --  If we fall through the loop, then we have a conditional with an
2675
      --  appropriate test as its left operand. So test further.
2676
 
2677
      L := Left_Opnd (P);
2678
      R := Right_Opnd (L);
2679
      L := Left_Opnd (L);
2680
 
2681
      --  Left operand of test must match original variable
2682
 
2683
      if Nkind (L) not in N_Has_Entity
2684
        or else Entity (L) /= Entity (Nod)
2685
      then
2686
         return True;
2687
      end if;
2688
 
2689
      --  Right operand of test must be key value (zero or null)
2690
 
2691
      case Check is
2692
         when Access_Check =>
2693
            if not Known_Null (R) then
2694
               return True;
2695
            end if;
2696
 
2697
         when Division_Check =>
2698
            if not Compile_Time_Known_Value (R)
2699
              or else Expr_Value (R) /= Uint_0
2700
            then
2701
               return True;
2702
            end if;
2703
 
2704
         when others =>
2705
            raise Program_Error;
2706
      end case;
2707
 
2708
      --  Here we have the optimizable case, warn if not short-circuited
2709
 
2710
      if K = N_Op_And or else K = N_Op_Or then
2711
         case Check is
2712
            when Access_Check =>
2713
               Error_Msg_N
2714
                 ("Constraint_Error may be raised (access check)?",
2715
                  Parent (Nod));
2716
            when Division_Check =>
2717
               Error_Msg_N
2718
                 ("Constraint_Error may be raised (zero divide)?",
2719
                  Parent (Nod));
2720
 
2721
            when others =>
2722
               raise Program_Error;
2723
         end case;
2724
 
2725
         if K = N_Op_And then
2726
            Error_Msg_N ("use `AND THEN` instead of AND?", P);
2727
         else
2728
            Error_Msg_N ("use `OR ELSE` instead of OR?", P);
2729
         end if;
2730
 
2731
         --  If not short-circuited, we need the ckeck
2732
 
2733
         return True;
2734
 
2735
      --  If short-circuited, we can omit the check
2736
 
2737
      else
2738
         return False;
2739
      end if;
2740
   end Check_Needed;
2741
 
2742
   -----------------------------------
2743
   -- Check_Valid_Lvalue_Subscripts --
2744
   -----------------------------------
2745
 
2746
   procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2747
   begin
2748
      --  Skip this if range checks are suppressed
2749
 
2750
      if Range_Checks_Suppressed (Etype (Expr)) then
2751
         return;
2752
 
2753
      --  Only do this check for expressions that come from source. We assume
2754
      --  that expander generated assignments explicitly include any necessary
2755
      --  checks. Note that this is not just an optimization, it avoids
2756
      --  infinite recursions!
2757
 
2758
      elsif not Comes_From_Source (Expr) then
2759
         return;
2760
 
2761
      --  For a selected component, check the prefix
2762
 
2763
      elsif Nkind (Expr) = N_Selected_Component then
2764
         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2765
         return;
2766
 
2767
      --  Case of indexed component
2768
 
2769
      elsif Nkind (Expr) = N_Indexed_Component then
2770
         Apply_Subscript_Validity_Checks (Expr);
2771
 
2772
         --  Prefix may itself be or contain an indexed component, and these
2773
         --  subscripts need checking as well.
2774
 
2775
         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2776
      end if;
2777
   end Check_Valid_Lvalue_Subscripts;
2778
 
2779
   ----------------------------------
2780
   -- Null_Exclusion_Static_Checks --
2781
   ----------------------------------
2782
 
2783
   procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2784
      Error_Node : Node_Id;
2785
      Expr       : Node_Id;
2786
      Has_Null   : constant Boolean := Has_Null_Exclusion (N);
2787
      K          : constant Node_Kind := Nkind (N);
2788
      Typ        : Entity_Id;
2789
 
2790
   begin
2791
      pragma Assert
2792
        (K = N_Component_Declaration
2793
           or else K = N_Discriminant_Specification
2794
           or else K = N_Function_Specification
2795
           or else K = N_Object_Declaration
2796
           or else K = N_Parameter_Specification);
2797
 
2798
      if K = N_Function_Specification then
2799
         Typ := Etype (Defining_Entity (N));
2800
      else
2801
         Typ := Etype (Defining_Identifier (N));
2802
      end if;
2803
 
2804
      case K is
2805
         when N_Component_Declaration =>
2806
            if Present (Access_Definition (Component_Definition (N))) then
2807
               Error_Node := Component_Definition (N);
2808
            else
2809
               Error_Node := Subtype_Indication (Component_Definition (N));
2810
            end if;
2811
 
2812
         when N_Discriminant_Specification =>
2813
            Error_Node    := Discriminant_Type (N);
2814
 
2815
         when N_Function_Specification =>
2816
            Error_Node    := Result_Definition (N);
2817
 
2818
         when N_Object_Declaration =>
2819
            Error_Node    := Object_Definition (N);
2820
 
2821
         when N_Parameter_Specification =>
2822
            Error_Node    := Parameter_Type (N);
2823
 
2824
         when others =>
2825
            raise Program_Error;
2826
      end case;
2827
 
2828
      if Has_Null then
2829
 
2830
         --  Enforce legality rule 3.10 (13): A null exclusion can only be
2831
         --  applied to an access [sub]type.
2832
 
2833
         if not Is_Access_Type (Typ) then
2834
            Error_Msg_N
2835
              ("`NOT NULL` allowed only for an access type", Error_Node);
2836
 
2837
         --  Enforce legality rule RM 3.10(14/1): A null exclusion can only
2838
         --  be applied to a [sub]type that does not exclude null already.
2839
 
2840
         elsif Can_Never_Be_Null (Typ)
2841
           and then Comes_From_Source (Typ)
2842
         then
2843
            Error_Msg_NE
2844
              ("`NOT NULL` not allowed (& already excludes null)",
2845
               Error_Node, Typ);
2846
         end if;
2847
      end if;
2848
 
2849
      --  Check that null-excluding objects are always initialized, except for
2850
      --  deferred constants, for which the expression will appear in the full
2851
      --  declaration.
2852
 
2853
      if K = N_Object_Declaration
2854
        and then No (Expression (N))
2855
        and then not Constant_Present (N)
2856
        and then not No_Initialization (N)
2857
      then
2858
         --  Add an expression that assigns null. This node is needed by
2859
         --  Apply_Compile_Time_Constraint_Error, which will replace this with
2860
         --  a Constraint_Error node.
2861
 
2862
         Set_Expression (N, Make_Null (Sloc (N)));
2863
         Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
2864
 
2865
         Apply_Compile_Time_Constraint_Error
2866
           (N      => Expression (N),
2867
            Msg    => "(Ada 2005) null-excluding objects must be initialized?",
2868
            Reason => CE_Null_Not_Allowed);
2869
      end if;
2870
 
2871
      --  Check that a null-excluding component, formal or object is not being
2872
      --  assigned a null value. Otherwise generate a warning message and
2873
      --  replace Expression (N) by an N_Constraint_Error node.
2874
 
2875
      if K /= N_Function_Specification then
2876
         Expr := Expression (N);
2877
 
2878
         if Present (Expr) and then Known_Null (Expr) then
2879
            case K is
2880
               when N_Component_Declaration      |
2881
                    N_Discriminant_Specification =>
2882
                  Apply_Compile_Time_Constraint_Error
2883
                    (N      => Expr,
2884
                     Msg    => "(Ada 2005) null not allowed " &
2885
                               "in null-excluding components?",
2886
                     Reason => CE_Null_Not_Allowed);
2887
 
2888
               when N_Object_Declaration =>
2889
                  Apply_Compile_Time_Constraint_Error
2890
                    (N      => Expr,
2891
                     Msg    => "(Ada 2005) null not allowed " &
2892
                               "in null-excluding objects?",
2893
                     Reason => CE_Null_Not_Allowed);
2894
 
2895
               when N_Parameter_Specification =>
2896
                  Apply_Compile_Time_Constraint_Error
2897
                    (N      => Expr,
2898
                     Msg    => "(Ada 2005) null not allowed " &
2899
                               "in null-excluding formals?",
2900
                     Reason => CE_Null_Not_Allowed);
2901
 
2902
               when others =>
2903
                  null;
2904
            end case;
2905
         end if;
2906
      end if;
2907
   end Null_Exclusion_Static_Checks;
2908
 
2909
   ----------------------------------
2910
   -- Conditional_Statements_Begin --
2911
   ----------------------------------
2912
 
2913
   procedure Conditional_Statements_Begin is
2914
   begin
2915
      Saved_Checks_TOS := Saved_Checks_TOS + 1;
2916
 
2917
      --  If stack overflows, kill all checks, that way we know to simply reset
2918
      --  the number of saved checks to zero on return. This should never occur
2919
      --  in practice.
2920
 
2921
      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2922
         Kill_All_Checks;
2923
 
2924
      --  In the normal case, we just make a new stack entry saving the current
2925
      --  number of saved checks for a later restore.
2926
 
2927
      else
2928
         Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2929
 
2930
         if Debug_Flag_CC then
2931
            w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2932
               Num_Saved_Checks);
2933
         end if;
2934
      end if;
2935
   end Conditional_Statements_Begin;
2936
 
2937
   --------------------------------
2938
   -- Conditional_Statements_End --
2939
   --------------------------------
2940
 
2941
   procedure Conditional_Statements_End is
2942
   begin
2943
      pragma Assert (Saved_Checks_TOS > 0);
2944
 
2945
      --  If the saved checks stack overflowed, then we killed all checks, so
2946
      --  setting the number of saved checks back to zero is correct. This
2947
      --  should never occur in practice.
2948
 
2949
      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2950
         Num_Saved_Checks := 0;
2951
 
2952
      --  In the normal case, restore the number of saved checks from the top
2953
      --  stack entry.
2954
 
2955
      else
2956
         Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2957
         if Debug_Flag_CC then
2958
            w ("Conditional_Statements_End: Num_Saved_Checks = ",
2959
               Num_Saved_Checks);
2960
         end if;
2961
      end if;
2962
 
2963
      Saved_Checks_TOS := Saved_Checks_TOS - 1;
2964
   end Conditional_Statements_End;
2965
 
2966
   ---------------------
2967
   -- Determine_Range --
2968
   ---------------------
2969
 
2970
   Cache_Size : constant := 2 ** 10;
2971
   type Cache_Index is range 0 .. Cache_Size - 1;
2972
   --  Determine size of below cache (power of 2 is more efficient!)
2973
 
2974
   Determine_Range_Cache_N  : array (Cache_Index) of Node_Id;
2975
   Determine_Range_Cache_V  : array (Cache_Index) of Boolean;
2976
   Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2977
   Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
2978
   --  The above arrays are used to implement a small direct cache for
2979
   --  Determine_Range calls. Because of the way Determine_Range recursively
2980
   --  traces subexpressions, and because overflow checking calls the routine
2981
   --  on the way up the tree, a quadratic behavior can otherwise be
2982
   --  encountered in large expressions. The cache entry for node N is stored
2983
   --  in the (N mod Cache_Size) entry, and can be validated by checking the
2984
   --  actual node value stored there. The Range_Cache_V array records the
2985
   --  setting of Assume_Valid for the cache entry.
2986
 
2987
   procedure Determine_Range
2988
     (N            : Node_Id;
2989
      OK           : out Boolean;
2990
      Lo           : out Uint;
2991
      Hi           : out Uint;
2992
      Assume_Valid : Boolean := False)
2993
   is
2994
      Typ : Entity_Id := Etype (N);
2995
      --  Type to use, may get reset to base type for possibly invalid entity
2996
 
2997
      Lo_Left : Uint;
2998
      Hi_Left : Uint;
2999
      --  Lo and Hi bounds of left operand
3000
 
3001
      Lo_Right : Uint;
3002
      Hi_Right : Uint;
3003
      --  Lo and Hi bounds of right (or only) operand
3004
 
3005
      Bound : Node_Id;
3006
      --  Temp variable used to hold a bound node
3007
 
3008
      Hbound : Uint;
3009
      --  High bound of base type of expression
3010
 
3011
      Lor : Uint;
3012
      Hir : Uint;
3013
      --  Refined values for low and high bounds, after tightening
3014
 
3015
      OK1 : Boolean;
3016
      --  Used in lower level calls to indicate if call succeeded
3017
 
3018
      Cindex : Cache_Index;
3019
      --  Used to search cache
3020
 
3021
      function OK_Operands return Boolean;
3022
      --  Used for binary operators. Determines the ranges of the left and
3023
      --  right operands, and if they are both OK, returns True, and puts
3024
      --  the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
3025
 
3026
      -----------------
3027
      -- OK_Operands --
3028
      -----------------
3029
 
3030
      function OK_Operands return Boolean is
3031
      begin
3032
         Determine_Range
3033
           (Left_Opnd  (N), OK1, Lo_Left,  Hi_Left, Assume_Valid);
3034
 
3035
         if not OK1 then
3036
            return False;
3037
         end if;
3038
 
3039
         Determine_Range
3040
           (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
3041
         return OK1;
3042
      end OK_Operands;
3043
 
3044
   --  Start of processing for Determine_Range
3045
 
3046
   begin
3047
      --  Prevent junk warnings by initializing range variables
3048
 
3049
      Lo  := No_Uint;
3050
      Hi  := No_Uint;
3051
      Lor := No_Uint;
3052
      Hir := No_Uint;
3053
 
3054
      --  If type is not defined, we can't determine its range
3055
 
3056
      if No (Typ)
3057
 
3058
        --  We don't deal with anything except discrete types
3059
 
3060
        or else not Is_Discrete_Type (Typ)
3061
 
3062
        --  Ignore type for which an error has been posted, since range in
3063
        --  this case may well be a bogosity deriving from the error. Also
3064
        --  ignore if error posted on the reference node.
3065
 
3066
        or else Error_Posted (N) or else Error_Posted (Typ)
3067
      then
3068
         OK := False;
3069
         return;
3070
      end if;
3071
 
3072
      --  For all other cases, we can determine the range
3073
 
3074
      OK := True;
3075
 
3076
      --  If value is compile time known, then the possible range is the one
3077
      --  value that we know this expression definitely has!
3078
 
3079
      if Compile_Time_Known_Value (N) then
3080
         Lo := Expr_Value (N);
3081
         Hi := Lo;
3082
         return;
3083
      end if;
3084
 
3085
      --  Return if already in the cache
3086
 
3087
      Cindex := Cache_Index (N mod Cache_Size);
3088
 
3089
      if Determine_Range_Cache_N (Cindex) = N
3090
           and then
3091
         Determine_Range_Cache_V (Cindex) = Assume_Valid
3092
      then
3093
         Lo := Determine_Range_Cache_Lo (Cindex);
3094
         Hi := Determine_Range_Cache_Hi (Cindex);
3095
         return;
3096
      end if;
3097
 
3098
      --  Otherwise, start by finding the bounds of the type of the expression,
3099
      --  the value cannot be outside this range (if it is, then we have an
3100
      --  overflow situation, which is a separate check, we are talking here
3101
      --  only about the expression value).
3102
 
3103
      --  First a check, never try to find the bounds of a generic type, since
3104
      --  these bounds are always junk values, and it is only valid to look at
3105
      --  the bounds in an instance.
3106
 
3107
      if Is_Generic_Type (Typ) then
3108
         OK := False;
3109
         return;
3110
      end if;
3111
 
3112
      --  First step, change to use base type unless we know the value is valid
3113
 
3114
      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
3115
        or else Assume_No_Invalid_Values
3116
        or else Assume_Valid
3117
      then
3118
         null;
3119
      else
3120
         Typ := Underlying_Type (Base_Type (Typ));
3121
      end if;
3122
 
3123
      --  We use the actual bound unless it is dynamic, in which case use the
3124
      --  corresponding base type bound if possible. If we can't get a bound
3125
      --  then we figure we can't determine the range (a peculiar case, that
3126
      --  perhaps cannot happen, but there is no point in bombing in this
3127
      --  optimization circuit.
3128
 
3129
      --  First the low bound
3130
 
3131
      Bound := Type_Low_Bound (Typ);
3132
 
3133
      if Compile_Time_Known_Value (Bound) then
3134
         Lo := Expr_Value (Bound);
3135
 
3136
      elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
3137
         Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
3138
 
3139
      else
3140
         OK := False;
3141
         return;
3142
      end if;
3143
 
3144
      --  Now the high bound
3145
 
3146
      Bound := Type_High_Bound (Typ);
3147
 
3148
      --  We need the high bound of the base type later on, and this should
3149
      --  always be compile time known. Again, it is not clear that this
3150
      --  can ever be false, but no point in bombing.
3151
 
3152
      if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
3153
         Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
3154
         Hi := Hbound;
3155
 
3156
      else
3157
         OK := False;
3158
         return;
3159
      end if;
3160
 
3161
      --  If we have a static subtype, then that may have a tighter bound so
3162
      --  use the upper bound of the subtype instead in this case.
3163
 
3164
      if Compile_Time_Known_Value (Bound) then
3165
         Hi := Expr_Value (Bound);
3166
      end if;
3167
 
3168
      --  We may be able to refine this value in certain situations. If any
3169
      --  refinement is possible, then Lor and Hir are set to possibly tighter
3170
      --  bounds, and OK1 is set to True.
3171
 
3172
      case Nkind (N) is
3173
 
3174
         --  For unary plus, result is limited by range of operand
3175
 
3176
         when N_Op_Plus =>
3177
            Determine_Range
3178
              (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
3179
 
3180
         --  For unary minus, determine range of operand, and negate it
3181
 
3182
         when N_Op_Minus =>
3183
            Determine_Range
3184
              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
3185
 
3186
            if OK1 then
3187
               Lor := -Hi_Right;
3188
               Hir := -Lo_Right;
3189
            end if;
3190
 
3191
         --  For binary addition, get range of each operand and do the
3192
         --  addition to get the result range.
3193
 
3194
         when N_Op_Add =>
3195
            if OK_Operands then
3196
               Lor := Lo_Left + Lo_Right;
3197
               Hir := Hi_Left + Hi_Right;
3198
            end if;
3199
 
3200
         --  Division is tricky. The only case we consider is where the right
3201
         --  operand is a positive constant, and in this case we simply divide
3202
         --  the bounds of the left operand
3203
 
3204
         when N_Op_Divide =>
3205
            if OK_Operands then
3206
               if Lo_Right = Hi_Right
3207
                 and then Lo_Right > 0
3208
               then
3209
                  Lor := Lo_Left / Lo_Right;
3210
                  Hir := Hi_Left / Lo_Right;
3211
 
3212
               else
3213
                  OK1 := False;
3214
               end if;
3215
            end if;
3216
 
3217
         --  For binary subtraction, get range of each operand and do the worst
3218
         --  case subtraction to get the result range.
3219
 
3220
         when N_Op_Subtract =>
3221
            if OK_Operands then
3222
               Lor := Lo_Left - Hi_Right;
3223
               Hir := Hi_Left - Lo_Right;
3224
            end if;
3225
 
3226
         --  For MOD, if right operand is a positive constant, then result must
3227
         --  be in the allowable range of mod results.
3228
 
3229
         when N_Op_Mod =>
3230
            if OK_Operands then
3231
               if Lo_Right = Hi_Right
3232
                 and then Lo_Right /= 0
3233
               then
3234
                  if Lo_Right > 0 then
3235
                     Lor := Uint_0;
3236
                     Hir := Lo_Right - 1;
3237
 
3238
                  else -- Lo_Right < 0
3239
                     Lor := Lo_Right + 1;
3240
                     Hir := Uint_0;
3241
                  end if;
3242
 
3243
               else
3244
                  OK1 := False;
3245
               end if;
3246
            end if;
3247
 
3248
         --  For REM, if right operand is a positive constant, then result must
3249
         --  be in the allowable range of mod results.
3250
 
3251
         when N_Op_Rem =>
3252
            if OK_Operands then
3253
               if Lo_Right = Hi_Right
3254
                 and then Lo_Right /= 0
3255
               then
3256
                  declare
3257
                     Dval : constant Uint := (abs Lo_Right) - 1;
3258
 
3259
                  begin
3260
                     --  The sign of the result depends on the sign of the
3261
                     --  dividend (but not on the sign of the divisor, hence
3262
                     --  the abs operation above).
3263
 
3264
                     if Lo_Left < 0 then
3265
                        Lor := -Dval;
3266
                     else
3267
                        Lor := Uint_0;
3268
                     end if;
3269
 
3270
                     if Hi_Left < 0 then
3271
                        Hir := Uint_0;
3272
                     else
3273
                        Hir := Dval;
3274
                     end if;
3275
                  end;
3276
 
3277
               else
3278
                  OK1 := False;
3279
               end if;
3280
            end if;
3281
 
3282
         --  Attribute reference cases
3283
 
3284
         when N_Attribute_Reference =>
3285
            case Attribute_Name (N) is
3286
 
3287
               --  For Pos/Val attributes, we can refine the range using the
3288
               --  possible range of values of the attribute expression.
3289
 
3290
               when Name_Pos | Name_Val =>
3291
                  Determine_Range
3292
                    (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
3293
 
3294
               --  For Length attribute, use the bounds of the corresponding
3295
               --  index type to refine the range.
3296
 
3297
               when Name_Length =>
3298
                  declare
3299
                     Atyp : Entity_Id := Etype (Prefix (N));
3300
                     Inum : Nat;
3301
                     Indx : Node_Id;
3302
 
3303
                     LL, LU : Uint;
3304
                     UL, UU : Uint;
3305
 
3306
                  begin
3307
                     if Is_Access_Type (Atyp) then
3308
                        Atyp := Designated_Type (Atyp);
3309
                     end if;
3310
 
3311
                     --  For string literal, we know exact value
3312
 
3313
                     if Ekind (Atyp) = E_String_Literal_Subtype then
3314
                        OK := True;
3315
                        Lo := String_Literal_Length (Atyp);
3316
                        Hi := String_Literal_Length (Atyp);
3317
                        return;
3318
                     end if;
3319
 
3320
                     --  Otherwise check for expression given
3321
 
3322
                     if No (Expressions (N)) then
3323
                        Inum := 1;
3324
                     else
3325
                        Inum :=
3326
                          UI_To_Int (Expr_Value (First (Expressions (N))));
3327
                     end if;
3328
 
3329
                     Indx := First_Index (Atyp);
3330
                     for J in 2 .. Inum loop
3331
                        Indx := Next_Index (Indx);
3332
                     end loop;
3333
 
3334
                     Determine_Range
3335
                       (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
3336
                        Assume_Valid);
3337
 
3338
                     if OK1 then
3339
                        Determine_Range
3340
                          (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
3341
                           Assume_Valid);
3342
 
3343
                        if OK1 then
3344
 
3345
                           --  The maximum value for Length is the biggest
3346
                           --  possible gap between the values of the bounds.
3347
                           --  But of course, this value cannot be negative.
3348
 
3349
                           Hir := UI_Max (Uint_0, UU - LL + 1);
3350
 
3351
                           --  For constrained arrays, the minimum value for
3352
                           --  Length is taken from the actual value of the
3353
                           --  bounds, since the index will be exactly of
3354
                           --  this subtype.
3355
 
3356
                           if Is_Constrained (Atyp) then
3357
                              Lor := UI_Max (Uint_0, UL - LU + 1);
3358
 
3359
                           --  For an unconstrained array, the minimum value
3360
                           --  for length is always zero.
3361
 
3362
                           else
3363
                              Lor := Uint_0;
3364
                           end if;
3365
                        end if;
3366
                     end if;
3367
                  end;
3368
 
3369
               --  No special handling for other attributes
3370
               --  Probably more opportunities exist here ???
3371
 
3372
               when others =>
3373
                  OK1 := False;
3374
 
3375
            end case;
3376
 
3377
         --  For type conversion from one discrete type to another, we can
3378
         --  refine the range using the converted value.
3379
 
3380
         when N_Type_Conversion =>
3381
            Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
3382
 
3383
         --  Nothing special to do for all other expression kinds
3384
 
3385
         when others =>
3386
            OK1 := False;
3387
            Lor := No_Uint;
3388
            Hir := No_Uint;
3389
      end case;
3390
 
3391
      --  At this stage, if OK1 is true, then we know that the actual
3392
      --  result of the computed expression is in the range Lor .. Hir.
3393
      --  We can use this to restrict the possible range of results.
3394
 
3395
      if OK1 then
3396
 
3397
         --  If the refined value of the low bound is greater than the
3398
         --  type high bound, then reset it to the more restrictive
3399
         --  value. However, we do NOT do this for the case of a modular
3400
         --  type where the possible upper bound on the value is above the
3401
         --  base type high bound, because that means the result could wrap.
3402
 
3403
         if Lor > Lo
3404
           and then not (Is_Modular_Integer_Type (Typ)
3405
                           and then Hir > Hbound)
3406
         then
3407
            Lo := Lor;
3408
         end if;
3409
 
3410
         --  Similarly, if the refined value of the high bound is less
3411
         --  than the value so far, then reset it to the more restrictive
3412
         --  value. Again, we do not do this if the refined low bound is
3413
         --  negative for a modular type, since this would wrap.
3414
 
3415
         if Hir < Hi
3416
           and then not (Is_Modular_Integer_Type (Typ)
3417
                          and then Lor < Uint_0)
3418
         then
3419
            Hi := Hir;
3420
         end if;
3421
      end if;
3422
 
3423
      --  Set cache entry for future call and we are all done
3424
 
3425
      Determine_Range_Cache_N  (Cindex) := N;
3426
      Determine_Range_Cache_V  (Cindex) := Assume_Valid;
3427
      Determine_Range_Cache_Lo (Cindex) := Lo;
3428
      Determine_Range_Cache_Hi (Cindex) := Hi;
3429
      return;
3430
 
3431
   --  If any exception occurs, it means that we have some bug in the compiler
3432
   --  possibly triggered by a previous error, or by some unforseen peculiar
3433
   --  occurrence. However, this is only an optimization attempt, so there is
3434
   --  really no point in crashing the compiler. Instead we just decide, too
3435
   --  bad, we can't figure out a range in this case after all.
3436
 
3437
   exception
3438
      when others =>
3439
 
3440
         --  Debug flag K disables this behavior (useful for debugging)
3441
 
3442
         if Debug_Flag_K then
3443
            raise;
3444
         else
3445
            OK := False;
3446
            Lo := No_Uint;
3447
            Hi := No_Uint;
3448
            return;
3449
         end if;
3450
   end Determine_Range;
3451
 
3452
   ------------------------------------
3453
   -- Discriminant_Checks_Suppressed --
3454
   ------------------------------------
3455
 
3456
   function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3457
   begin
3458
      if Present (E) then
3459
         if Is_Unchecked_Union (E) then
3460
            return True;
3461
         elsif Checks_May_Be_Suppressed (E) then
3462
            return Is_Check_Suppressed (E, Discriminant_Check);
3463
         end if;
3464
      end if;
3465
 
3466
      return Scope_Suppress (Discriminant_Check);
3467
   end Discriminant_Checks_Suppressed;
3468
 
3469
   --------------------------------
3470
   -- Division_Checks_Suppressed --
3471
   --------------------------------
3472
 
3473
   function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3474
   begin
3475
      if Present (E) and then Checks_May_Be_Suppressed (E) then
3476
         return Is_Check_Suppressed (E, Division_Check);
3477
      else
3478
         return Scope_Suppress (Division_Check);
3479
      end if;
3480
   end Division_Checks_Suppressed;
3481
 
3482
   -----------------------------------
3483
   -- Elaboration_Checks_Suppressed --
3484
   -----------------------------------
3485
 
3486
   function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3487
   begin
3488
      --  The complication in this routine is that if we are in the dynamic
3489
      --  model of elaboration, we also check All_Checks, since All_Checks
3490
      --  does not set Elaboration_Check explicitly.
3491
 
3492
      if Present (E) then
3493
         if Kill_Elaboration_Checks (E) then
3494
            return True;
3495
 
3496
         elsif Checks_May_Be_Suppressed (E) then
3497
            if Is_Check_Suppressed (E, Elaboration_Check) then
3498
               return True;
3499
            elsif Dynamic_Elaboration_Checks then
3500
               return Is_Check_Suppressed (E, All_Checks);
3501
            else
3502
               return False;
3503
            end if;
3504
         end if;
3505
      end if;
3506
 
3507
      if Scope_Suppress (Elaboration_Check) then
3508
         return True;
3509
      elsif Dynamic_Elaboration_Checks then
3510
         return Scope_Suppress (All_Checks);
3511
      else
3512
         return False;
3513
      end if;
3514
   end Elaboration_Checks_Suppressed;
3515
 
3516
   ---------------------------
3517
   -- Enable_Overflow_Check --
3518
   ---------------------------
3519
 
3520
   procedure Enable_Overflow_Check (N : Node_Id) is
3521
      Typ : constant Entity_Id  := Base_Type (Etype (N));
3522
      Chk : Nat;
3523
      OK  : Boolean;
3524
      Ent : Entity_Id;
3525
      Ofs : Uint;
3526
      Lo  : Uint;
3527
      Hi  : Uint;
3528
 
3529
   begin
3530
      if Debug_Flag_CC then
3531
         w ("Enable_Overflow_Check for node ", Int (N));
3532
         Write_Str ("  Source location = ");
3533
         wl (Sloc (N));
3534
         pg (Union_Id (N));
3535
      end if;
3536
 
3537
      --  No check if overflow checks suppressed for type of node
3538
 
3539
      if Present (Etype (N))
3540
        and then Overflow_Checks_Suppressed (Etype (N))
3541
      then
3542
         return;
3543
 
3544
      --  Nothing to do for unsigned integer types, which do not overflow
3545
 
3546
      elsif Is_Modular_Integer_Type (Typ) then
3547
         return;
3548
 
3549
      --  Nothing to do if the range of the result is known OK. We skip this
3550
      --  for conversions, since the caller already did the check, and in any
3551
      --  case the condition for deleting the check for a type conversion is
3552
      --  different.
3553
 
3554
      elsif Nkind (N) /= N_Type_Conversion then
3555
         Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
3556
 
3557
         --  Note in the test below that we assume that the range is not OK
3558
         --  if a bound of the range is equal to that of the type. That's not
3559
         --  quite accurate but we do this for the following reasons:
3560
 
3561
         --   a) The way that Determine_Range works, it will typically report
3562
         --      the bounds of the value as being equal to the bounds of the
3563
         --      type, because it either can't tell anything more precise, or
3564
         --      does not think it is worth the effort to be more precise.
3565
 
3566
         --   b) It is very unusual to have a situation in which this would
3567
         --      generate an unnecessary overflow check (an example would be
3568
         --      a subtype with a range 0 .. Integer'Last - 1 to which the
3569
         --      literal value one is added).
3570
 
3571
         --   c) The alternative is a lot of special casing in this routine
3572
         --      which would partially duplicate Determine_Range processing.
3573
 
3574
         if OK
3575
           and then Lo > Expr_Value (Type_Low_Bound  (Typ))
3576
           and then Hi < Expr_Value (Type_High_Bound (Typ))
3577
         then
3578
            if Debug_Flag_CC then
3579
               w ("No overflow check required");
3580
            end if;
3581
 
3582
            return;
3583
         end if;
3584
      end if;
3585
 
3586
      --  If not in optimizing mode, set flag and we are done. We are also done
3587
      --  (and just set the flag) if the type is not a discrete type, since it
3588
      --  is not worth the effort to eliminate checks for other than discrete
3589
      --  types. In addition, we take this same path if we have stored the
3590
      --  maximum number of checks possible already (a very unlikely situation,
3591
      --  but we do not want to blow up!)
3592
 
3593
      if Optimization_Level = 0
3594
        or else not Is_Discrete_Type (Etype (N))
3595
        or else Num_Saved_Checks = Saved_Checks'Last
3596
      then
3597
         Activate_Overflow_Check (N);
3598
 
3599
         if Debug_Flag_CC then
3600
            w ("Optimization off");
3601
         end if;
3602
 
3603
         return;
3604
      end if;
3605
 
3606
      --  Otherwise evaluate and check the expression
3607
 
3608
      Find_Check
3609
        (Expr        => N,
3610
         Check_Type  => 'O',
3611
         Target_Type => Empty,
3612
         Entry_OK    => OK,
3613
         Check_Num   => Chk,
3614
         Ent         => Ent,
3615
         Ofs         => Ofs);
3616
 
3617
      if Debug_Flag_CC then
3618
         w ("Called Find_Check");
3619
         w ("  OK = ", OK);
3620
 
3621
         if OK then
3622
            w ("  Check_Num = ", Chk);
3623
            w ("  Ent       = ", Int (Ent));
3624
            Write_Str ("  Ofs       = ");
3625
            pid (Ofs);
3626
         end if;
3627
      end if;
3628
 
3629
      --  If check is not of form to optimize, then set flag and we are done
3630
 
3631
      if not OK then
3632
         Activate_Overflow_Check (N);
3633
         return;
3634
      end if;
3635
 
3636
      --  If check is already performed, then return without setting flag
3637
 
3638
      if Chk /= 0 then
3639
         if Debug_Flag_CC then
3640
            w ("Check suppressed!");
3641
         end if;
3642
 
3643
         return;
3644
      end if;
3645
 
3646
      --  Here we will make a new entry for the new check
3647
 
3648
      Activate_Overflow_Check (N);
3649
      Num_Saved_Checks := Num_Saved_Checks + 1;
3650
      Saved_Checks (Num_Saved_Checks) :=
3651
        (Killed      => False,
3652
         Entity      => Ent,
3653
         Offset      => Ofs,
3654
         Check_Type  => 'O',
3655
         Target_Type => Empty);
3656
 
3657
      if Debug_Flag_CC then
3658
         w ("Make new entry, check number = ", Num_Saved_Checks);
3659
         w ("  Entity = ", Int (Ent));
3660
         Write_Str ("  Offset = ");
3661
         pid (Ofs);
3662
         w ("  Check_Type = O");
3663
         w ("  Target_Type = Empty");
3664
      end if;
3665
 
3666
   --  If we get an exception, then something went wrong, probably because of
3667
   --  an error in the structure of the tree due to an incorrect program. Or it
3668
   --  may be a bug in the optimization circuit. In either case the safest
3669
   --  thing is simply to set the check flag unconditionally.
3670
 
3671
   exception
3672
      when others =>
3673
         Activate_Overflow_Check (N);
3674
 
3675
         if Debug_Flag_CC then
3676
            w ("  exception occurred, overflow flag set");
3677
         end if;
3678
 
3679
         return;
3680
   end Enable_Overflow_Check;
3681
 
3682
   ------------------------
3683
   -- Enable_Range_Check --
3684
   ------------------------
3685
 
3686
   procedure Enable_Range_Check (N : Node_Id) is
3687
      Chk  : Nat;
3688
      OK   : Boolean;
3689
      Ent  : Entity_Id;
3690
      Ofs  : Uint;
3691
      Ttyp : Entity_Id;
3692
      P    : Node_Id;
3693
 
3694
   begin
3695
      --  Return if unchecked type conversion with range check killed. In this
3696
      --  case we never set the flag (that's what Kill_Range_Check is about!)
3697
 
3698
      if Nkind (N) = N_Unchecked_Type_Conversion
3699
        and then Kill_Range_Check (N)
3700
      then
3701
         return;
3702
      end if;
3703
 
3704
      --  Check for various cases where we should suppress the range check
3705
 
3706
      --  No check if range checks suppressed for type of node
3707
 
3708
      if Present (Etype (N))
3709
        and then Range_Checks_Suppressed (Etype (N))
3710
      then
3711
         return;
3712
 
3713
      --  No check if node is an entity name, and range checks are suppressed
3714
      --  for this entity, or for the type of this entity.
3715
 
3716
      elsif Is_Entity_Name (N)
3717
        and then (Range_Checks_Suppressed (Entity (N))
3718
                    or else Range_Checks_Suppressed (Etype (Entity (N))))
3719
      then
3720
         return;
3721
 
3722
      --  No checks if index of array, and index checks are suppressed for
3723
      --  the array object or the type of the array.
3724
 
3725
      elsif Nkind (Parent (N)) = N_Indexed_Component then
3726
         declare
3727
            Pref : constant Node_Id := Prefix (Parent (N));
3728
         begin
3729
            if Is_Entity_Name (Pref)
3730
              and then Index_Checks_Suppressed (Entity (Pref))
3731
            then
3732
               return;
3733
            elsif Index_Checks_Suppressed (Etype (Pref)) then
3734
               return;
3735
            end if;
3736
         end;
3737
      end if;
3738
 
3739
      --  Debug trace output
3740
 
3741
      if Debug_Flag_CC then
3742
         w ("Enable_Range_Check for node ", Int (N));
3743
         Write_Str ("  Source location = ");
3744
         wl (Sloc (N));
3745
         pg (Union_Id (N));
3746
      end if;
3747
 
3748
      --  If not in optimizing mode, set flag and we are done. We are also done
3749
      --  (and just set the flag) if the type is not a discrete type, since it
3750
      --  is not worth the effort to eliminate checks for other than discrete
3751
      --  types. In addition, we take this same path if we have stored the
3752
      --  maximum number of checks possible already (a very unlikely situation,
3753
      --  but we do not want to blow up!)
3754
 
3755
      if Optimization_Level = 0
3756
        or else No (Etype (N))
3757
        or else not Is_Discrete_Type (Etype (N))
3758
        or else Num_Saved_Checks = Saved_Checks'Last
3759
      then
3760
         Activate_Range_Check (N);
3761
 
3762
         if Debug_Flag_CC then
3763
            w ("Optimization off");
3764
         end if;
3765
 
3766
         return;
3767
      end if;
3768
 
3769
      --  Otherwise find out the target type
3770
 
3771
      P := Parent (N);
3772
 
3773
      --  For assignment, use left side subtype
3774
 
3775
      if Nkind (P) = N_Assignment_Statement
3776
        and then Expression (P) = N
3777
      then
3778
         Ttyp := Etype (Name (P));
3779
 
3780
      --  For indexed component, use subscript subtype
3781
 
3782
      elsif Nkind (P) = N_Indexed_Component then
3783
         declare
3784
            Atyp : Entity_Id;
3785
            Indx : Node_Id;
3786
            Subs : Node_Id;
3787
 
3788
         begin
3789
            Atyp := Etype (Prefix (P));
3790
 
3791
            if Is_Access_Type (Atyp) then
3792
               Atyp := Designated_Type (Atyp);
3793
 
3794
               --  If the prefix is an access to an unconstrained array,
3795
               --  perform check unconditionally: it depends on the bounds of
3796
               --  an object and we cannot currently recognize whether the test
3797
               --  may be redundant.
3798
 
3799
               if not Is_Constrained (Atyp) then
3800
                  Activate_Range_Check (N);
3801
                  return;
3802
               end if;
3803
 
3804
            --  Ditto if the prefix is an explicit dereference whose designated
3805
            --  type is unconstrained.
3806
 
3807
            elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3808
              and then not Is_Constrained (Atyp)
3809
            then
3810
               Activate_Range_Check (N);
3811
               return;
3812
            end if;
3813
 
3814
            Indx := First_Index (Atyp);
3815
            Subs := First (Expressions (P));
3816
            loop
3817
               if Subs = N then
3818
                  Ttyp := Etype (Indx);
3819
                  exit;
3820
               end if;
3821
 
3822
               Next_Index (Indx);
3823
               Next (Subs);
3824
            end loop;
3825
         end;
3826
 
3827
      --  For now, ignore all other cases, they are not so interesting
3828
 
3829
      else
3830
         if Debug_Flag_CC then
3831
            w ("  target type not found, flag set");
3832
         end if;
3833
 
3834
         Activate_Range_Check (N);
3835
         return;
3836
      end if;
3837
 
3838
      --  Evaluate and check the expression
3839
 
3840
      Find_Check
3841
        (Expr        => N,
3842
         Check_Type  => 'R',
3843
         Target_Type => Ttyp,
3844
         Entry_OK    => OK,
3845
         Check_Num   => Chk,
3846
         Ent         => Ent,
3847
         Ofs         => Ofs);
3848
 
3849
      if Debug_Flag_CC then
3850
         w ("Called Find_Check");
3851
         w ("Target_Typ = ", Int (Ttyp));
3852
         w ("  OK = ", OK);
3853
 
3854
         if OK then
3855
            w ("  Check_Num = ", Chk);
3856
            w ("  Ent       = ", Int (Ent));
3857
            Write_Str ("  Ofs       = ");
3858
            pid (Ofs);
3859
         end if;
3860
      end if;
3861
 
3862
      --  If check is not of form to optimize, then set flag and we are done
3863
 
3864
      if not OK then
3865
         if Debug_Flag_CC then
3866
            w ("  expression not of optimizable type, flag set");
3867
         end if;
3868
 
3869
         Activate_Range_Check (N);
3870
         return;
3871
      end if;
3872
 
3873
      --  If check is already performed, then return without setting flag
3874
 
3875
      if Chk /= 0 then
3876
         if Debug_Flag_CC then
3877
            w ("Check suppressed!");
3878
         end if;
3879
 
3880
         return;
3881
      end if;
3882
 
3883
      --  Here we will make a new entry for the new check
3884
 
3885
      Activate_Range_Check (N);
3886
      Num_Saved_Checks := Num_Saved_Checks + 1;
3887
      Saved_Checks (Num_Saved_Checks) :=
3888
        (Killed      => False,
3889
         Entity      => Ent,
3890
         Offset      => Ofs,
3891
         Check_Type  => 'R',
3892
         Target_Type => Ttyp);
3893
 
3894
      if Debug_Flag_CC then
3895
         w ("Make new entry, check number = ", Num_Saved_Checks);
3896
         w ("  Entity = ", Int (Ent));
3897
         Write_Str ("  Offset = ");
3898
         pid (Ofs);
3899
         w ("  Check_Type = R");
3900
         w ("  Target_Type = ", Int (Ttyp));
3901
         pg (Union_Id (Ttyp));
3902
      end if;
3903
 
3904
   --  If we get an exception, then something went wrong, probably because of
3905
   --  an error in the structure of the tree due to an incorrect program. Or
3906
   --  it may be a bug in the optimization circuit. In either case the safest
3907
   --  thing is simply to set the check flag unconditionally.
3908
 
3909
   exception
3910
      when others =>
3911
         Activate_Range_Check (N);
3912
 
3913
         if Debug_Flag_CC then
3914
            w ("  exception occurred, range flag set");
3915
         end if;
3916
 
3917
         return;
3918
   end Enable_Range_Check;
3919
 
3920
   ------------------
3921
   -- Ensure_Valid --
3922
   ------------------
3923
 
3924
   procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3925
      Typ : constant Entity_Id  := Etype (Expr);
3926
 
3927
   begin
3928
      --  Ignore call if we are not doing any validity checking
3929
 
3930
      if not Validity_Checks_On then
3931
         return;
3932
 
3933
      --  Ignore call if range or validity checks suppressed on entity or type
3934
 
3935
      elsif Range_Or_Validity_Checks_Suppressed (Expr) then
3936
         return;
3937
 
3938
      --  No check required if expression is from the expander, we assume the
3939
      --  expander will generate whatever checks are needed. Note that this is
3940
      --  not just an optimization, it avoids infinite recursions!
3941
 
3942
      --  Unchecked conversions must be checked, unless they are initialized
3943
      --  scalar values, as in a component assignment in an init proc.
3944
 
3945
      --  In addition, we force a check if Force_Validity_Checks is set
3946
 
3947
      elsif not Comes_From_Source (Expr)
3948
        and then not Force_Validity_Checks
3949
        and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3950
                    or else Kill_Range_Check (Expr))
3951
      then
3952
         return;
3953
 
3954
      --  No check required if expression is known to have valid value
3955
 
3956
      elsif Expr_Known_Valid (Expr) then
3957
         return;
3958
 
3959
      --  Ignore case of enumeration with holes where the flag is set not to
3960
      --  worry about holes, since no special validity check is needed
3961
 
3962
      elsif Is_Enumeration_Type (Typ)
3963
        and then Has_Non_Standard_Rep (Typ)
3964
        and then Holes_OK
3965
      then
3966
         return;
3967
 
3968
      --  No check required on the left-hand side of an assignment
3969
 
3970
      elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3971
        and then Expr = Name (Parent (Expr))
3972
      then
3973
         return;
3974
 
3975
      --  No check on a univeral real constant. The context will eventually
3976
      --  convert it to a machine number for some target type, or report an
3977
      --  illegality.
3978
 
3979
      elsif Nkind (Expr) = N_Real_Literal
3980
        and then Etype (Expr) = Universal_Real
3981
      then
3982
         return;
3983
 
3984
      --  If the expression denotes a component of a packed boolean arrray,
3985
      --  no possible check applies. We ignore the old ACATS chestnuts that
3986
      --  involve Boolean range True..True.
3987
 
3988
      --  Note: validity checks are generated for expressions that yield a
3989
      --  scalar type, when it is possible to create a value that is outside of
3990
      --  the type. If this is a one-bit boolean no such value exists. This is
3991
      --  an optimization, and it also prevents compiler blowing up during the
3992
      --  elaboration of improperly expanded packed array references.
3993
 
3994
      elsif Nkind (Expr) = N_Indexed_Component
3995
        and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
3996
        and then Root_Type (Etype (Expr)) = Standard_Boolean
3997
      then
3998
         return;
3999
 
4000
      --  An annoying special case. If this is an out parameter of a scalar
4001
      --  type, then the value is not going to be accessed, therefore it is
4002
      --  inappropriate to do any validity check at the call site.
4003
 
4004
      else
4005
         --  Only need to worry about scalar types
4006
 
4007
         if Is_Scalar_Type (Typ) then
4008
            declare
4009
               P : Node_Id;
4010
               N : Node_Id;
4011
               E : Entity_Id;
4012
               F : Entity_Id;
4013
               A : Node_Id;
4014
               L : List_Id;
4015
 
4016
            begin
4017
               --  Find actual argument (which may be a parameter association)
4018
               --  and the parent of the actual argument (the call statement)
4019
 
4020
               N := Expr;
4021
               P := Parent (Expr);
4022
 
4023
               if Nkind (P) = N_Parameter_Association then
4024
                  N := P;
4025
                  P := Parent (N);
4026
               end if;
4027
 
4028
               --  Only need to worry if we are argument of a procedure call
4029
               --  since functions don't have out parameters. If this is an
4030
               --  indirect or dispatching call, get signature from the
4031
               --  subprogram type.
4032
 
4033
               if Nkind (P) = N_Procedure_Call_Statement then
4034
                  L := Parameter_Associations (P);
4035
 
4036
                  if Is_Entity_Name (Name (P)) then
4037
                     E := Entity (Name (P));
4038
                  else
4039
                     pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
4040
                     E := Etype (Name (P));
4041
                  end if;
4042
 
4043
                  --  Only need to worry if there are indeed actuals, and if
4044
                  --  this could be a procedure call, otherwise we cannot get a
4045
                  --  match (either we are not an argument, or the mode of the
4046
                  --  formal is not OUT). This test also filters out the
4047
                  --  generic case.
4048
 
4049
                  if Is_Non_Empty_List (L)
4050
                    and then Is_Subprogram (E)
4051
                  then
4052
                     --  This is the loop through parameters, looking for an
4053
                     --  OUT parameter for which we are the argument.
4054
 
4055
                     F := First_Formal (E);
4056
                     A := First (L);
4057
                     while Present (F) loop
4058
                        if Ekind (F) = E_Out_Parameter and then A = N then
4059
                           return;
4060
                        end if;
4061
 
4062
                        Next_Formal (F);
4063
                        Next (A);
4064
                     end loop;
4065
                  end if;
4066
               end if;
4067
            end;
4068
         end if;
4069
      end if;
4070
 
4071
      --  If we fall through, a validity check is required
4072
 
4073
      Insert_Valid_Check (Expr);
4074
 
4075
      if Is_Entity_Name (Expr)
4076
        and then Safe_To_Capture_Value (Expr, Entity (Expr))
4077
      then
4078
         Set_Is_Known_Valid (Entity (Expr));
4079
      end if;
4080
   end Ensure_Valid;
4081
 
4082
   ----------------------
4083
   -- Expr_Known_Valid --
4084
   ----------------------
4085
 
4086
   function Expr_Known_Valid (Expr : Node_Id) return Boolean is
4087
      Typ : constant Entity_Id := Etype (Expr);
4088
 
4089
   begin
4090
      --  Non-scalar types are always considered valid, since they never give
4091
      --  rise to the issues of erroneous or bounded error behavior that are
4092
      --  the concern. In formal reference manual terms the notion of validity
4093
      --  only applies to scalar types. Note that even when packed arrays are
4094
      --  represented using modular types, they are still arrays semantically,
4095
      --  so they are also always valid (in particular, the unused bits can be
4096
      --  random rubbish without affecting the validity of the array value).
4097
 
4098
      if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
4099
         return True;
4100
 
4101
      --  If no validity checking, then everything is considered valid
4102
 
4103
      elsif not Validity_Checks_On then
4104
         return True;
4105
 
4106
      --  Floating-point types are considered valid unless floating-point
4107
      --  validity checks have been specifically turned on.
4108
 
4109
      elsif Is_Floating_Point_Type (Typ)
4110
        and then not Validity_Check_Floating_Point
4111
      then
4112
         return True;
4113
 
4114
      --  If the expression is the value of an object that is known to be
4115
      --  valid, then clearly the expression value itself is valid.
4116
 
4117
      elsif Is_Entity_Name (Expr)
4118
        and then Is_Known_Valid (Entity (Expr))
4119
      then
4120
         return True;
4121
 
4122
      --  References to discriminants are always considered valid. The value
4123
      --  of a discriminant gets checked when the object is built. Within the
4124
      --  record, we consider it valid, and it is important to do so, since
4125
      --  otherwise we can try to generate bogus validity checks which
4126
      --  reference discriminants out of scope. Discriminants of concurrent
4127
      --  types are excluded for the same reason.
4128
 
4129
      elsif Is_Entity_Name (Expr)
4130
        and then Denotes_Discriminant (Expr, Check_Concurrent => True)
4131
      then
4132
         return True;
4133
 
4134
      --  If the type is one for which all values are known valid, then we are
4135
      --  sure that the value is valid except in the slightly odd case where
4136
      --  the expression is a reference to a variable whose size has been
4137
      --  explicitly set to a value greater than the object size.
4138
 
4139
      elsif Is_Known_Valid (Typ) then
4140
         if Is_Entity_Name (Expr)
4141
           and then Ekind (Entity (Expr)) = E_Variable
4142
           and then Esize (Entity (Expr)) > Esize (Typ)
4143
         then
4144
            return False;
4145
         else
4146
            return True;
4147
         end if;
4148
 
4149
      --  Integer and character literals always have valid values, where
4150
      --  appropriate these will be range checked in any case.
4151
 
4152
      elsif Nkind (Expr) = N_Integer_Literal
4153
              or else
4154
            Nkind (Expr) = N_Character_Literal
4155
      then
4156
         return True;
4157
 
4158
      --  If we have a type conversion or a qualification of a known valid
4159
      --  value, then the result will always be valid.
4160
 
4161
      elsif Nkind (Expr) = N_Type_Conversion
4162
              or else
4163
            Nkind (Expr) = N_Qualified_Expression
4164
      then
4165
         return Expr_Known_Valid (Expression (Expr));
4166
 
4167
      --  The result of any operator is always considered valid, since we
4168
      --  assume the necessary checks are done by the operator. For operators
4169
      --  on floating-point operations, we must also check when the operation
4170
      --  is the right-hand side of an assignment, or is an actual in a call.
4171
 
4172
      elsif Nkind (Expr) in N_Op then
4173
         if Is_Floating_Point_Type (Typ)
4174
            and then Validity_Check_Floating_Point
4175
            and then
4176
              (Nkind (Parent (Expr)) = N_Assignment_Statement
4177
                or else Nkind (Parent (Expr)) = N_Function_Call
4178
                or else Nkind (Parent (Expr)) = N_Parameter_Association)
4179
         then
4180
            return False;
4181
         else
4182
            return True;
4183
         end if;
4184
 
4185
      --  The result of a membership test is always valid, since it is true or
4186
      --  false, there are no other possibilities.
4187
 
4188
      elsif Nkind (Expr) in N_Membership_Test then
4189
         return True;
4190
 
4191
      --  For all other cases, we do not know the expression is valid
4192
 
4193
      else
4194
         return False;
4195
      end if;
4196
   end Expr_Known_Valid;
4197
 
4198
   ----------------
4199
   -- Find_Check --
4200
   ----------------
4201
 
4202
   procedure Find_Check
4203
     (Expr        : Node_Id;
4204
      Check_Type  : Character;
4205
      Target_Type : Entity_Id;
4206
      Entry_OK    : out Boolean;
4207
      Check_Num   : out Nat;
4208
      Ent         : out Entity_Id;
4209
      Ofs         : out Uint)
4210
   is
4211
      function Within_Range_Of
4212
        (Target_Type : Entity_Id;
4213
         Check_Type  : Entity_Id) return Boolean;
4214
      --  Given a requirement for checking a range against Target_Type, and
4215
      --  and a range Check_Type against which a check has already been made,
4216
      --  determines if the check against check type is sufficient to ensure
4217
      --  that no check against Target_Type is required.
4218
 
4219
      ---------------------
4220
      -- Within_Range_Of --
4221
      ---------------------
4222
 
4223
      function Within_Range_Of
4224
        (Target_Type : Entity_Id;
4225
         Check_Type  : Entity_Id) return Boolean
4226
      is
4227
      begin
4228
         if Target_Type = Check_Type then
4229
            return True;
4230
 
4231
         else
4232
            declare
4233
               Tlo : constant Node_Id := Type_Low_Bound  (Target_Type);
4234
               Thi : constant Node_Id := Type_High_Bound (Target_Type);
4235
               Clo : constant Node_Id := Type_Low_Bound  (Check_Type);
4236
               Chi : constant Node_Id := Type_High_Bound (Check_Type);
4237
 
4238
            begin
4239
               if (Tlo = Clo
4240
                     or else (Compile_Time_Known_Value (Tlo)
4241
                                and then
4242
                              Compile_Time_Known_Value (Clo)
4243
                                and then
4244
                              Expr_Value (Clo) >= Expr_Value (Tlo)))
4245
                 and then
4246
                  (Thi = Chi
4247
                     or else (Compile_Time_Known_Value (Thi)
4248
                                and then
4249
                              Compile_Time_Known_Value (Chi)
4250
                                and then
4251
                              Expr_Value (Chi) <= Expr_Value (Clo)))
4252
               then
4253
                  return True;
4254
               else
4255
                  return False;
4256
               end if;
4257
            end;
4258
         end if;
4259
      end Within_Range_Of;
4260
 
4261
   --  Start of processing for Find_Check
4262
 
4263
   begin
4264
      --  Establish default, in case no entry is found
4265
 
4266
      Check_Num := 0;
4267
 
4268
      --  Case of expression is simple entity reference
4269
 
4270
      if Is_Entity_Name (Expr) then
4271
         Ent := Entity (Expr);
4272
         Ofs := Uint_0;
4273
 
4274
      --  Case of expression is entity + known constant
4275
 
4276
      elsif Nkind (Expr) = N_Op_Add
4277
        and then Compile_Time_Known_Value (Right_Opnd (Expr))
4278
        and then Is_Entity_Name (Left_Opnd (Expr))
4279
      then
4280
         Ent := Entity (Left_Opnd (Expr));
4281
         Ofs := Expr_Value (Right_Opnd (Expr));
4282
 
4283
      --  Case of expression is entity - known constant
4284
 
4285
      elsif Nkind (Expr) = N_Op_Subtract
4286
        and then Compile_Time_Known_Value (Right_Opnd (Expr))
4287
        and then Is_Entity_Name (Left_Opnd (Expr))
4288
      then
4289
         Ent := Entity (Left_Opnd (Expr));
4290
         Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
4291
 
4292
      --  Any other expression is not of the right form
4293
 
4294
      else
4295
         Ent := Empty;
4296
         Ofs := Uint_0;
4297
         Entry_OK := False;
4298
         return;
4299
      end if;
4300
 
4301
      --  Come here with expression of appropriate form, check if entity is an
4302
      --  appropriate one for our purposes.
4303
 
4304
      if (Ekind (Ent) = E_Variable
4305
            or else Is_Constant_Object (Ent))
4306
        and then not Is_Library_Level_Entity (Ent)
4307
      then
4308
         Entry_OK := True;
4309
      else
4310
         Entry_OK := False;
4311
         return;
4312
      end if;
4313
 
4314
      --  See if there is matching check already
4315
 
4316
      for J in reverse 1 .. Num_Saved_Checks loop
4317
         declare
4318
            SC : Saved_Check renames Saved_Checks (J);
4319
 
4320
         begin
4321
            if SC.Killed = False
4322
              and then SC.Entity = Ent
4323
              and then SC.Offset = Ofs
4324
              and then SC.Check_Type = Check_Type
4325
              and then Within_Range_Of (Target_Type, SC.Target_Type)
4326
            then
4327
               Check_Num := J;
4328
               return;
4329
            end if;
4330
         end;
4331
      end loop;
4332
 
4333
      --  If we fall through entry was not found
4334
 
4335
      return;
4336
   end Find_Check;
4337
 
4338
   ---------------------------------
4339
   -- Generate_Discriminant_Check --
4340
   ---------------------------------
4341
 
4342
   --  Note: the code for this procedure is derived from the
4343
   --  Emit_Discriminant_Check Routine in trans.c.
4344
 
4345
   procedure Generate_Discriminant_Check (N : Node_Id) is
4346
      Loc  : constant Source_Ptr := Sloc (N);
4347
      Pref : constant Node_Id    := Prefix (N);
4348
      Sel  : constant Node_Id    := Selector_Name (N);
4349
 
4350
      Orig_Comp : constant Entity_Id :=
4351
                    Original_Record_Component (Entity (Sel));
4352
      --  The original component to be checked
4353
 
4354
      Discr_Fct : constant Entity_Id :=
4355
                    Discriminant_Checking_Func (Orig_Comp);
4356
      --  The discriminant checking function
4357
 
4358
      Discr : Entity_Id;
4359
      --  One discriminant to be checked in the type
4360
 
4361
      Real_Discr : Entity_Id;
4362
      --  Actual discriminant in the call
4363
 
4364
      Pref_Type : Entity_Id;
4365
      --  Type of relevant prefix (ignoring private/access stuff)
4366
 
4367
      Args : List_Id;
4368
      --  List of arguments for function call
4369
 
4370
      Formal : Entity_Id;
4371
      --  Keep track of the formal corresponding to the actual we build for
4372
      --  each discriminant, in order to be able to perform the necessary type
4373
      --  conversions.
4374
 
4375
      Scomp : Node_Id;
4376
      --  Selected component reference for checking function argument
4377
 
4378
   begin
4379
      Pref_Type := Etype (Pref);
4380
 
4381
      --  Force evaluation of the prefix, so that it does not get evaluated
4382
      --  twice (once for the check, once for the actual reference). Such a
4383
      --  double evaluation is always a potential source of inefficiency,
4384
      --  and is functionally incorrect in the volatile case, or when the
4385
      --  prefix may have side-effects. An entity or a component of an
4386
      --  entity requires no evaluation.
4387
 
4388
      if Is_Entity_Name (Pref) then
4389
         if Treat_As_Volatile (Entity (Pref)) then
4390
            Force_Evaluation (Pref, Name_Req => True);
4391
         end if;
4392
 
4393
      elsif Treat_As_Volatile (Etype (Pref)) then
4394
            Force_Evaluation (Pref, Name_Req => True);
4395
 
4396
      elsif Nkind (Pref) = N_Selected_Component
4397
        and then Is_Entity_Name (Prefix (Pref))
4398
      then
4399
         null;
4400
 
4401
      else
4402
         Force_Evaluation (Pref, Name_Req => True);
4403
      end if;
4404
 
4405
      --  For a tagged type, use the scope of the original component to
4406
      --  obtain the type, because ???
4407
 
4408
      if Is_Tagged_Type (Scope (Orig_Comp)) then
4409
         Pref_Type := Scope (Orig_Comp);
4410
 
4411
      --  For an untagged derived type, use the discriminants of the parent
4412
      --  which have been renamed in the derivation, possibly by a one-to-many
4413
      --  discriminant constraint. For non-tagged type, initially get the Etype
4414
      --  of the prefix
4415
 
4416
      else
4417
         if Is_Derived_Type (Pref_Type)
4418
           and then Number_Discriminants (Pref_Type) /=
4419
                    Number_Discriminants (Etype (Base_Type (Pref_Type)))
4420
         then
4421
            Pref_Type := Etype (Base_Type (Pref_Type));
4422
         end if;
4423
      end if;
4424
 
4425
      --  We definitely should have a checking function, This routine should
4426
      --  not be called if no discriminant checking function is present.
4427
 
4428
      pragma Assert (Present (Discr_Fct));
4429
 
4430
      --  Create the list of the actual parameters for the call. This list
4431
      --  is the list of the discriminant fields of the record expression to
4432
      --  be discriminant checked.
4433
 
4434
      Args   := New_List;
4435
      Formal := First_Formal (Discr_Fct);
4436
      Discr  := First_Discriminant (Pref_Type);
4437
      while Present (Discr) loop
4438
 
4439
         --  If we have a corresponding discriminant field, and a parent
4440
         --  subtype is present, then we want to use the corresponding
4441
         --  discriminant since this is the one with the useful value.
4442
 
4443
         if Present (Corresponding_Discriminant (Discr))
4444
           and then Ekind (Pref_Type) = E_Record_Type
4445
           and then Present (Parent_Subtype (Pref_Type))
4446
         then
4447
            Real_Discr := Corresponding_Discriminant (Discr);
4448
         else
4449
            Real_Discr := Discr;
4450
         end if;
4451
 
4452
         --  Construct the reference to the discriminant
4453
 
4454
         Scomp :=
4455
           Make_Selected_Component (Loc,
4456
             Prefix =>
4457
               Unchecked_Convert_To (Pref_Type,
4458
                 Duplicate_Subexpr (Pref)),
4459
             Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4460
 
4461
         --  Manually analyze and resolve this selected component. We really
4462
         --  want it just as it appears above, and do not want the expander
4463
         --  playing discriminal games etc with this reference. Then we append
4464
         --  the argument to the list we are gathering.
4465
 
4466
         Set_Etype (Scomp, Etype (Real_Discr));
4467
         Set_Analyzed (Scomp, True);
4468
         Append_To (Args, Convert_To (Etype (Formal), Scomp));
4469
 
4470
         Next_Formal_With_Extras (Formal);
4471
         Next_Discriminant (Discr);
4472
      end loop;
4473
 
4474
      --  Now build and insert the call
4475
 
4476
      Insert_Action (N,
4477
        Make_Raise_Constraint_Error (Loc,
4478
          Condition =>
4479
            Make_Function_Call (Loc,
4480
              Name => New_Occurrence_Of (Discr_Fct, Loc),
4481
              Parameter_Associations => Args),
4482
          Reason => CE_Discriminant_Check_Failed));
4483
   end Generate_Discriminant_Check;
4484
 
4485
   ---------------------------
4486
   -- Generate_Index_Checks --
4487
   ---------------------------
4488
 
4489
   procedure Generate_Index_Checks (N : Node_Id) is
4490
      Loc : constant Source_Ptr := Sloc (N);
4491
      A   : constant Node_Id    := Prefix (N);
4492
      Sub : Node_Id;
4493
      Ind : Nat;
4494
      Num : List_Id;
4495
 
4496
   begin
4497
      --  Ignore call if index checks suppressed for array object or type
4498
 
4499
      if (Is_Entity_Name (A) and then Index_Checks_Suppressed (Entity (A)))
4500
        or else Index_Checks_Suppressed (Etype (A))
4501
      then
4502
         return;
4503
      end if;
4504
 
4505
      --  Generate the checks
4506
 
4507
      Sub := First (Expressions (N));
4508
      Ind := 1;
4509
      while Present (Sub) loop
4510
         if Do_Range_Check (Sub) then
4511
            Set_Do_Range_Check (Sub, False);
4512
 
4513
            --  Force evaluation except for the case of a simple name of a
4514
            --  non-volatile entity.
4515
 
4516
            if not Is_Entity_Name (Sub)
4517
              or else Treat_As_Volatile (Entity (Sub))
4518
            then
4519
               Force_Evaluation (Sub);
4520
            end if;
4521
 
4522
            --  Generate a raise of constraint error with the appropriate
4523
            --  reason and a condition of the form:
4524
 
4525
            --    Base_Type(Sub) not in array'range (subscript)
4526
 
4527
            --  Note that the reason we generate the conversion to the base
4528
            --  type here is that we definitely want the range check to take
4529
            --  place, even if it looks like the subtype is OK. Optimization
4530
            --  considerations that allow us to omit the check have already
4531
            --  been taken into account in the setting of the Do_Range_Check
4532
            --  flag earlier on.
4533
 
4534
            if Ind = 1 then
4535
               Num := No_List;
4536
            else
4537
               Num :=  New_List (Make_Integer_Literal (Loc, Ind));
4538
            end if;
4539
 
4540
            Insert_Action (N,
4541
              Make_Raise_Constraint_Error (Loc,
4542
                Condition =>
4543
                  Make_Not_In (Loc,
4544
                    Left_Opnd  =>
4545
                      Convert_To (Base_Type (Etype (Sub)),
4546
                        Duplicate_Subexpr_Move_Checks (Sub)),
4547
                    Right_Opnd =>
4548
                      Make_Attribute_Reference (Loc,
4549
                        Prefix         =>
4550
                          Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
4551
                        Attribute_Name => Name_Range,
4552
                        Expressions    => Num)),
4553
                Reason => CE_Index_Check_Failed));
4554
         end if;
4555
 
4556
         Ind := Ind + 1;
4557
         Next (Sub);
4558
      end loop;
4559
   end Generate_Index_Checks;
4560
 
4561
   --------------------------
4562
   -- Generate_Range_Check --
4563
   --------------------------
4564
 
4565
   procedure Generate_Range_Check
4566
     (N           : Node_Id;
4567
      Target_Type : Entity_Id;
4568
      Reason      : RT_Exception_Code)
4569
   is
4570
      Loc              : constant Source_Ptr := Sloc (N);
4571
      Source_Type      : constant Entity_Id  := Etype (N);
4572
      Source_Base_Type : constant Entity_Id  := Base_Type (Source_Type);
4573
      Target_Base_Type : constant Entity_Id  := Base_Type (Target_Type);
4574
 
4575
   begin
4576
      --  First special case, if the source type is already within the range
4577
      --  of the target type, then no check is needed (probably we should have
4578
      --  stopped Do_Range_Check from being set in the first place, but better
4579
      --  late than later in preventing junk code!
4580
 
4581
      --  We do NOT apply this if the source node is a literal, since in this
4582
      --  case the literal has already been labeled as having the subtype of
4583
      --  the target.
4584
 
4585
      if In_Subrange_Of (Source_Type, Target_Type)
4586
        and then not
4587
          (Nkind (N) = N_Integer_Literal
4588
             or else
4589
           Nkind (N) = N_Real_Literal
4590
             or else
4591
           Nkind (N) = N_Character_Literal
4592
             or else
4593
           (Is_Entity_Name (N)
4594
              and then Ekind (Entity (N)) = E_Enumeration_Literal))
4595
      then
4596
         return;
4597
      end if;
4598
 
4599
      --  We need a check, so force evaluation of the node, so that it does
4600
      --  not get evaluated twice (once for the check, once for the actual
4601
      --  reference). Such a double evaluation is always a potential source
4602
      --  of inefficiency, and is functionally incorrect in the volatile case.
4603
 
4604
      if not Is_Entity_Name (N)
4605
        or else Treat_As_Volatile (Entity (N))
4606
      then
4607
         Force_Evaluation (N);
4608
      end if;
4609
 
4610
      --  The easiest case is when Source_Base_Type and Target_Base_Type are
4611
      --  the same since in this case we can simply do a direct check of the
4612
      --  value of N against the bounds of Target_Type.
4613
 
4614
      --    [constraint_error when N not in Target_Type]
4615
 
4616
      --  Note: this is by far the most common case, for example all cases of
4617
      --  checks on the RHS of assignments are in this category, but not all
4618
      --  cases are like this. Notably conversions can involve two types.
4619
 
4620
      if Source_Base_Type = Target_Base_Type then
4621
         Insert_Action (N,
4622
           Make_Raise_Constraint_Error (Loc,
4623
             Condition =>
4624
               Make_Not_In (Loc,
4625
                 Left_Opnd  => Duplicate_Subexpr (N),
4626
                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4627
             Reason => Reason));
4628
 
4629
      --  Next test for the case where the target type is within the bounds
4630
      --  of the base type of the source type, since in this case we can
4631
      --  simply convert these bounds to the base type of T to do the test.
4632
 
4633
      --    [constraint_error when N not in
4634
      --       Source_Base_Type (Target_Type'First)
4635
      --         ..
4636
      --       Source_Base_Type(Target_Type'Last))]
4637
 
4638
      --  The conversions will always work and need no check
4639
 
4640
      --  Unchecked_Convert_To is used instead of Convert_To to handle the case
4641
      --  of converting from an enumeration value to an integer type, such as
4642
      --  occurs for the case of generating a range check on Enum'Val(Exp)
4643
      --  (which used to be handled by gigi). This is OK, since the conversion
4644
      --  itself does not require a check.
4645
 
4646
      elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4647
         Insert_Action (N,
4648
           Make_Raise_Constraint_Error (Loc,
4649
             Condition =>
4650
               Make_Not_In (Loc,
4651
                 Left_Opnd  => Duplicate_Subexpr (N),
4652
 
4653
                 Right_Opnd =>
4654
                   Make_Range (Loc,
4655
                     Low_Bound =>
4656
                       Unchecked_Convert_To (Source_Base_Type,
4657
                         Make_Attribute_Reference (Loc,
4658
                           Prefix =>
4659
                             New_Occurrence_Of (Target_Type, Loc),
4660
                           Attribute_Name => Name_First)),
4661
 
4662
                     High_Bound =>
4663
                       Unchecked_Convert_To (Source_Base_Type,
4664
                         Make_Attribute_Reference (Loc,
4665
                           Prefix =>
4666
                             New_Occurrence_Of (Target_Type, Loc),
4667
                           Attribute_Name => Name_Last)))),
4668
             Reason => Reason));
4669
 
4670
      --  Note that at this stage we now that the Target_Base_Type is not in
4671
      --  the range of the Source_Base_Type (since even the Target_Type itself
4672
      --  is not in this range). It could still be the case that Source_Type is
4673
      --  in range of the target base type since we have not checked that case.
4674
 
4675
      --  If that is the case, we can freely convert the source to the target,
4676
      --  and then test the target result against the bounds.
4677
 
4678
      elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4679
 
4680
         --  We make a temporary to hold the value of the converted value
4681
         --  (converted to the base type), and then we will do the test against
4682
         --  this temporary.
4683
 
4684
         --     Tnn : constant Target_Base_Type := Target_Base_Type (N);
4685
         --     [constraint_error when Tnn not in Target_Type]
4686
 
4687
         --  Then the conversion itself is replaced by an occurrence of Tnn
4688
 
4689
         declare
4690
            Tnn : constant Entity_Id :=
4691
                    Make_Defining_Identifier (Loc,
4692
                      Chars => New_Internal_Name ('T'));
4693
 
4694
         begin
4695
            Insert_Actions (N, New_List (
4696
              Make_Object_Declaration (Loc,
4697
                Defining_Identifier => Tnn,
4698
                Object_Definition   =>
4699
                  New_Occurrence_Of (Target_Base_Type, Loc),
4700
                Constant_Present    => True,
4701
                Expression          =>
4702
                  Make_Type_Conversion (Loc,
4703
                    Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4704
                    Expression   => Duplicate_Subexpr (N))),
4705
 
4706
              Make_Raise_Constraint_Error (Loc,
4707
                Condition =>
4708
                  Make_Not_In (Loc,
4709
                    Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
4710
                    Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4711
 
4712
                Reason => Reason)));
4713
 
4714
            Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4715
 
4716
            --  Set the type of N, because the declaration for Tnn might not
4717
            --  be analyzed yet, as is the case if N appears within a record
4718
            --  declaration, as a discriminant constraint or expression.
4719
 
4720
            Set_Etype (N, Target_Base_Type);
4721
         end;
4722
 
4723
      --  At this stage, we know that we have two scalar types, which are
4724
      --  directly convertible, and where neither scalar type has a base
4725
      --  range that is in the range of the other scalar type.
4726
 
4727
      --  The only way this can happen is with a signed and unsigned type.
4728
      --  So test for these two cases:
4729
 
4730
      else
4731
         --  Case of the source is unsigned and the target is signed
4732
 
4733
         if Is_Unsigned_Type (Source_Base_Type)
4734
           and then not Is_Unsigned_Type (Target_Base_Type)
4735
         then
4736
            --  If the source is unsigned and the target is signed, then we
4737
            --  know that the source is not shorter than the target (otherwise
4738
            --  the source base type would be in the target base type range).
4739
 
4740
            --  In other words, the unsigned type is either the same size as
4741
            --  the target, or it is larger. It cannot be smaller.
4742
 
4743
            pragma Assert
4744
              (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4745
 
4746
            --  We only need to check the low bound if the low bound of the
4747
            --  target type is non-negative. If the low bound of the target
4748
            --  type is negative, then we know that we will fit fine.
4749
 
4750
            --  If the high bound of the target type is negative, then we
4751
            --  know we have a constraint error, since we can't possibly
4752
            --  have a negative source.
4753
 
4754
            --  With these two checks out of the way, we can do the check
4755
            --  using the source type safely
4756
 
4757
            --  This is definitely the most annoying case!
4758
 
4759
            --    [constraint_error
4760
            --       when (Target_Type'First >= 0
4761
            --               and then
4762
            --                 N < Source_Base_Type (Target_Type'First))
4763
            --         or else Target_Type'Last < 0
4764
            --         or else N > Source_Base_Type (Target_Type'Last)];
4765
 
4766
            --  We turn off all checks since we know that the conversions
4767
            --  will work fine, given the guards for negative values.
4768
 
4769
            Insert_Action (N,
4770
              Make_Raise_Constraint_Error (Loc,
4771
                Condition =>
4772
                  Make_Or_Else (Loc,
4773
                    Make_Or_Else (Loc,
4774
                      Left_Opnd =>
4775
                        Make_And_Then (Loc,
4776
                          Left_Opnd => Make_Op_Ge (Loc,
4777
                            Left_Opnd =>
4778
                              Make_Attribute_Reference (Loc,
4779
                                Prefix =>
4780
                                  New_Occurrence_Of (Target_Type, Loc),
4781
                                Attribute_Name => Name_First),
4782
                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4783
 
4784
                          Right_Opnd =>
4785
                            Make_Op_Lt (Loc,
4786
                              Left_Opnd => Duplicate_Subexpr (N),
4787
                              Right_Opnd =>
4788
                                Convert_To (Source_Base_Type,
4789
                                  Make_Attribute_Reference (Loc,
4790
                                    Prefix =>
4791
                                      New_Occurrence_Of (Target_Type, Loc),
4792
                                    Attribute_Name => Name_First)))),
4793
 
4794
                      Right_Opnd =>
4795
                        Make_Op_Lt (Loc,
4796
                          Left_Opnd =>
4797
                            Make_Attribute_Reference (Loc,
4798
                              Prefix => New_Occurrence_Of (Target_Type, Loc),
4799
                              Attribute_Name => Name_Last),
4800
                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4801
 
4802
                    Right_Opnd =>
4803
                      Make_Op_Gt (Loc,
4804
                        Left_Opnd => Duplicate_Subexpr (N),
4805
                        Right_Opnd =>
4806
                          Convert_To (Source_Base_Type,
4807
                            Make_Attribute_Reference (Loc,
4808
                              Prefix => New_Occurrence_Of (Target_Type, Loc),
4809
                              Attribute_Name => Name_Last)))),
4810
 
4811
                Reason => Reason),
4812
              Suppress  => All_Checks);
4813
 
4814
         --  Only remaining possibility is that the source is signed and
4815
         --  the target is unsigned.
4816
 
4817
         else
4818
            pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4819
                             and then Is_Unsigned_Type (Target_Base_Type));
4820
 
4821
            --  If the source is signed and the target is unsigned, then we
4822
            --  know that the target is not shorter than the source (otherwise
4823
            --  the target base type would be in the source base type range).
4824
 
4825
            --  In other words, the unsigned type is either the same size as
4826
            --  the target, or it is larger. It cannot be smaller.
4827
 
4828
            --  Clearly we have an error if the source value is negative since
4829
            --  no unsigned type can have negative values. If the source type
4830
            --  is non-negative, then the check can be done using the target
4831
            --  type.
4832
 
4833
            --    Tnn : constant Target_Base_Type (N) := Target_Type;
4834
 
4835
            --    [constraint_error
4836
            --       when N < 0 or else Tnn not in Target_Type];
4837
 
4838
            --  We turn off all checks for the conversion of N to the target
4839
            --  base type, since we generate the explicit check to ensure that
4840
            --  the value is non-negative
4841
 
4842
            declare
4843
               Tnn : constant Entity_Id :=
4844
                       Make_Defining_Identifier (Loc,
4845
                         Chars => New_Internal_Name ('T'));
4846
 
4847
            begin
4848
               Insert_Actions (N, New_List (
4849
                 Make_Object_Declaration (Loc,
4850
                   Defining_Identifier => Tnn,
4851
                   Object_Definition   =>
4852
                     New_Occurrence_Of (Target_Base_Type, Loc),
4853
                   Constant_Present    => True,
4854
                   Expression          =>
4855
                     Make_Unchecked_Type_Conversion (Loc,
4856
                       Subtype_Mark =>
4857
                         New_Occurrence_Of (Target_Base_Type, Loc),
4858
                       Expression   => Duplicate_Subexpr (N))),
4859
 
4860
                 Make_Raise_Constraint_Error (Loc,
4861
                   Condition =>
4862
                     Make_Or_Else (Loc,
4863
                       Left_Opnd =>
4864
                         Make_Op_Lt (Loc,
4865
                           Left_Opnd  => Duplicate_Subexpr (N),
4866
                           Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4867
 
4868
                       Right_Opnd =>
4869
                         Make_Not_In (Loc,
4870
                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
4871
                           Right_Opnd =>
4872
                             New_Occurrence_Of (Target_Type, Loc))),
4873
 
4874
                   Reason => Reason)),
4875
                 Suppress => All_Checks);
4876
 
4877
               --  Set the Etype explicitly, because Insert_Actions may have
4878
               --  placed the declaration in the freeze list for an enclosing
4879
               --  construct, and thus it is not analyzed yet.
4880
 
4881
               Set_Etype (Tnn, Target_Base_Type);
4882
               Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4883
            end;
4884
         end if;
4885
      end if;
4886
   end Generate_Range_Check;
4887
 
4888
   ------------------
4889
   -- Get_Check_Id --
4890
   ------------------
4891
 
4892
   function Get_Check_Id (N : Name_Id) return Check_Id is
4893
   begin
4894
      --  For standard check name, we can do a direct computation
4895
 
4896
      if N in First_Check_Name .. Last_Check_Name then
4897
         return Check_Id (N - (First_Check_Name - 1));
4898
 
4899
      --  For non-standard names added by pragma Check_Name, search table
4900
 
4901
      else
4902
         for J in All_Checks + 1 .. Check_Names.Last loop
4903
            if Check_Names.Table (J) = N then
4904
               return J;
4905
            end if;
4906
         end loop;
4907
      end if;
4908
 
4909
      --  No matching name found
4910
 
4911
      return No_Check_Id;
4912
   end Get_Check_Id;
4913
 
4914
   ---------------------
4915
   -- Get_Discriminal --
4916
   ---------------------
4917
 
4918
   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4919
      Loc : constant Source_Ptr := Sloc (E);
4920
      D   : Entity_Id;
4921
      Sc  : Entity_Id;
4922
 
4923
   begin
4924
      --  The bound can be a bona fide parameter of a protected operation,
4925
      --  rather than a prival encoded as an in-parameter.
4926
 
4927
      if No (Discriminal_Link (Entity (Bound))) then
4928
         return Bound;
4929
      end if;
4930
 
4931
      --  Climb the scope stack looking for an enclosing protected type. If
4932
      --  we run out of scopes, return the bound itself.
4933
 
4934
      Sc := Scope (E);
4935
      while Present (Sc) loop
4936
         if Sc = Standard_Standard then
4937
            return Bound;
4938
 
4939
         elsif Ekind (Sc) = E_Protected_Type then
4940
            exit;
4941
         end if;
4942
 
4943
         Sc := Scope (Sc);
4944
      end loop;
4945
 
4946
      D := First_Discriminant (Sc);
4947
      while Present (D) loop
4948
         if Chars (D) = Chars (Bound) then
4949
            return New_Occurrence_Of (Discriminal (D), Loc);
4950
         end if;
4951
 
4952
         Next_Discriminant (D);
4953
      end loop;
4954
 
4955
      return Bound;
4956
   end Get_Discriminal;
4957
 
4958
   ----------------------
4959
   -- Get_Range_Checks --
4960
   ----------------------
4961
 
4962
   function Get_Range_Checks
4963
     (Ck_Node    : Node_Id;
4964
      Target_Typ : Entity_Id;
4965
      Source_Typ : Entity_Id := Empty;
4966
      Warn_Node  : Node_Id   := Empty) return Check_Result
4967
   is
4968
   begin
4969
      return Selected_Range_Checks
4970
        (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4971
   end Get_Range_Checks;
4972
 
4973
   ------------------
4974
   -- Guard_Access --
4975
   ------------------
4976
 
4977
   function Guard_Access
4978
     (Cond    : Node_Id;
4979
      Loc     : Source_Ptr;
4980
      Ck_Node : Node_Id) return Node_Id
4981
   is
4982
   begin
4983
      if Nkind (Cond) = N_Or_Else then
4984
         Set_Paren_Count (Cond, 1);
4985
      end if;
4986
 
4987
      if Nkind (Ck_Node) = N_Allocator then
4988
         return Cond;
4989
      else
4990
         return
4991
           Make_And_Then (Loc,
4992
             Left_Opnd =>
4993
               Make_Op_Ne (Loc,
4994
                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Ck_Node),
4995
                 Right_Opnd => Make_Null (Loc)),
4996
             Right_Opnd => Cond);
4997
      end if;
4998
   end Guard_Access;
4999
 
5000
   -----------------------------
5001
   -- Index_Checks_Suppressed --
5002
   -----------------------------
5003
 
5004
   function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
5005
   begin
5006
      if Present (E) and then Checks_May_Be_Suppressed (E) then
5007
         return Is_Check_Suppressed (E, Index_Check);
5008
      else
5009
         return Scope_Suppress (Index_Check);
5010
      end if;
5011
   end Index_Checks_Suppressed;
5012
 
5013
   ----------------
5014
   -- Initialize --
5015
   ----------------
5016
 
5017
   procedure Initialize is
5018
   begin
5019
      for J in Determine_Range_Cache_N'Range loop
5020
         Determine_Range_Cache_N (J) := Empty;
5021
      end loop;
5022
 
5023
      Check_Names.Init;
5024
 
5025
      for J in Int range 1 .. All_Checks loop
5026
         Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
5027
      end loop;
5028
   end Initialize;
5029
 
5030
   -------------------------
5031
   -- Insert_Range_Checks --
5032
   -------------------------
5033
 
5034
   procedure Insert_Range_Checks
5035
     (Checks       : Check_Result;
5036
      Node         : Node_Id;
5037
      Suppress_Typ : Entity_Id;
5038
      Static_Sloc  : Source_Ptr := No_Location;
5039
      Flag_Node    : Node_Id    := Empty;
5040
      Do_Before    : Boolean    := False)
5041
   is
5042
      Internal_Flag_Node   : Node_Id    := Flag_Node;
5043
      Internal_Static_Sloc : Source_Ptr := Static_Sloc;
5044
 
5045
      Check_Node : Node_Id;
5046
      Checks_On  : constant Boolean :=
5047
                     (not Index_Checks_Suppressed (Suppress_Typ))
5048
                       or else
5049
                     (not Range_Checks_Suppressed (Suppress_Typ));
5050
 
5051
   begin
5052
      --  For now we just return if Checks_On is false, however this should be
5053
      --  enhanced to check for an always True value in the condition and to
5054
      --  generate a compilation warning???
5055
 
5056
      if not Expander_Active or else not Checks_On then
5057
         return;
5058
      end if;
5059
 
5060
      if Static_Sloc = No_Location then
5061
         Internal_Static_Sloc := Sloc (Node);
5062
      end if;
5063
 
5064
      if No (Flag_Node) then
5065
         Internal_Flag_Node := Node;
5066
      end if;
5067
 
5068
      for J in 1 .. 2 loop
5069
         exit when No (Checks (J));
5070
 
5071
         if Nkind (Checks (J)) = N_Raise_Constraint_Error
5072
           and then Present (Condition (Checks (J)))
5073
         then
5074
            if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
5075
               Check_Node := Checks (J);
5076
               Mark_Rewrite_Insertion (Check_Node);
5077
 
5078
               if Do_Before then
5079
                  Insert_Before_And_Analyze (Node, Check_Node);
5080
               else
5081
                  Insert_After_And_Analyze (Node, Check_Node);
5082
               end if;
5083
 
5084
               Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
5085
            end if;
5086
 
5087
         else
5088
            Check_Node :=
5089
              Make_Raise_Constraint_Error (Internal_Static_Sloc,
5090
                Reason => CE_Range_Check_Failed);
5091
            Mark_Rewrite_Insertion (Check_Node);
5092
 
5093
            if Do_Before then
5094
               Insert_Before_And_Analyze (Node, Check_Node);
5095
            else
5096
               Insert_After_And_Analyze (Node, Check_Node);
5097
            end if;
5098
         end if;
5099
      end loop;
5100
   end Insert_Range_Checks;
5101
 
5102
   ------------------------
5103
   -- Insert_Valid_Check --
5104
   ------------------------
5105
 
5106
   procedure Insert_Valid_Check (Expr : Node_Id) is
5107
      Loc : constant Source_Ptr := Sloc (Expr);
5108
      Exp : Node_Id;
5109
 
5110
   begin
5111
      --  Do not insert if checks off, or if not checking validity or
5112
      --  if expression is known to be valid
5113
 
5114
      if not Validity_Checks_On
5115
        or else Range_Or_Validity_Checks_Suppressed (Expr)
5116
        or else Expr_Known_Valid (Expr)
5117
      then
5118
         return;
5119
      end if;
5120
 
5121
      --  If we have a checked conversion, then validity check applies to
5122
      --  the expression inside the conversion, not the result, since if
5123
      --  the expression inside is valid, then so is the conversion result.
5124
 
5125
      Exp := Expr;
5126
      while Nkind (Exp) = N_Type_Conversion loop
5127
         Exp := Expression (Exp);
5128
      end loop;
5129
 
5130
      --  We are about to insert the validity check for Exp. We save and
5131
      --  reset the Do_Range_Check flag over this validity check, and then
5132
      --  put it back for the final original reference (Exp may be rewritten).
5133
 
5134
      declare
5135
         DRC : constant Boolean := Do_Range_Check (Exp);
5136
 
5137
      begin
5138
         Set_Do_Range_Check (Exp, False);
5139
 
5140
         --  Force evaluation to avoid multiple reads for atomic/volatile
5141
 
5142
         if Is_Entity_Name (Exp)
5143
           and then Is_Volatile (Entity (Exp))
5144
         then
5145
            Force_Evaluation (Exp, Name_Req => True);
5146
         end if;
5147
 
5148
         --  Insert the validity check. Note that we do this with validity
5149
         --  checks turned off, to avoid recursion, we do not want validity
5150
         --  checks on the validity checking code itself!
5151
 
5152
         Insert_Action
5153
           (Expr,
5154
            Make_Raise_Constraint_Error (Loc,
5155
              Condition =>
5156
                Make_Op_Not (Loc,
5157
                  Right_Opnd =>
5158
                    Make_Attribute_Reference (Loc,
5159
                      Prefix =>
5160
                        Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
5161
                      Attribute_Name => Name_Valid)),
5162
              Reason => CE_Invalid_Data),
5163
            Suppress => Validity_Check);
5164
 
5165
         --  If the expression is a a reference to an element of a bit-packed
5166
         --  array, then it is rewritten as a renaming declaration. If the
5167
         --  expression is an actual in a call, it has not been expanded,
5168
         --  waiting for the proper point at which to do it. The same happens
5169
         --  with renamings, so that we have to force the expansion now. This
5170
         --  non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
5171
         --  and exp_ch6.adb.
5172
 
5173
         if Is_Entity_Name (Exp)
5174
           and then Nkind (Parent (Entity (Exp))) =
5175
                      N_Object_Renaming_Declaration
5176
         then
5177
            declare
5178
               Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
5179
            begin
5180
               if Nkind (Old_Exp) = N_Indexed_Component
5181
                 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
5182
               then
5183
                  Expand_Packed_Element_Reference (Old_Exp);
5184
               end if;
5185
            end;
5186
         end if;
5187
 
5188
         --  Put back the Do_Range_Check flag on the resulting (possibly
5189
         --  rewritten) expression.
5190
 
5191
         --  Note: it might be thought that a validity check is not required
5192
         --  when a range check is present, but that's not the case, because
5193
         --  the back end is allowed to assume for the range check that the
5194
         --  operand is within its declared range (an assumption that validity
5195
         --  checking is all about NOT assuming!)
5196
 
5197
         --  Note: no need to worry about Possible_Local_Raise here, it will
5198
         --  already have been called if original node has Do_Range_Check set.
5199
 
5200
         Set_Do_Range_Check (Exp, DRC);
5201
      end;
5202
   end Insert_Valid_Check;
5203
 
5204
   ----------------------------------
5205
   -- Install_Null_Excluding_Check --
5206
   ----------------------------------
5207
 
5208
   procedure Install_Null_Excluding_Check (N : Node_Id) is
5209
      Loc : constant Source_Ptr := Sloc (N);
5210
      Typ : constant Entity_Id  := Etype (N);
5211
 
5212
      function Safe_To_Capture_In_Parameter_Value return Boolean;
5213
      --  Determines if it is safe to capture Known_Non_Null status for an
5214
      --  the entity referenced by node N. The caller ensures that N is indeed
5215
      --  an entity name. It is safe to capture the non-null status for an IN
5216
      --  parameter when the reference occurs within a declaration that is sure
5217
      --  to be executed as part of the declarative region.
5218
 
5219
      procedure Mark_Non_Null;
5220
      --  After installation of check, if the node in question is an entity
5221
      --  name, then mark this entity as non-null if possible.
5222
 
5223
      function Safe_To_Capture_In_Parameter_Value return Boolean is
5224
         E     : constant Entity_Id := Entity (N);
5225
         S     : constant Entity_Id := Current_Scope;
5226
         S_Par : Node_Id;
5227
 
5228
      begin
5229
         if Ekind (E) /= E_In_Parameter then
5230
            return False;
5231
         end if;
5232
 
5233
         --  Two initial context checks. We must be inside a subprogram body
5234
         --  with declarations and reference must not appear in nested scopes.
5235
 
5236
         if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
5237
           or else Scope (E) /= S
5238
         then
5239
            return False;
5240
         end if;
5241
 
5242
         S_Par := Parent (Parent (S));
5243
 
5244
         if Nkind (S_Par) /= N_Subprogram_Body
5245
           or else No (Declarations (S_Par))
5246
         then
5247
            return False;
5248
         end if;
5249
 
5250
         declare
5251
            N_Decl : Node_Id;
5252
            P      : Node_Id;
5253
 
5254
         begin
5255
            --  Retrieve the declaration node of N (if any). Note that N
5256
            --  may be a part of a complex initialization expression.
5257
 
5258
            P := Parent (N);
5259
            N_Decl := Empty;
5260
            while Present (P) loop
5261
 
5262
               --  If we have a short circuit form, and we are within the right
5263
               --  hand expression, we return false, since the right hand side
5264
               --  is not guaranteed to be elaborated.
5265
 
5266
               if Nkind (P) in N_Short_Circuit
5267
                 and then N = Right_Opnd (P)
5268
               then
5269
                  return False;
5270
               end if;
5271
 
5272
               --  Similarly, if we are in a conditional expression and not
5273
               --  part of the condition, then we return False, since neither
5274
               --  the THEN or ELSE expressions will always be elaborated.
5275
 
5276
               if Nkind (P) = N_Conditional_Expression
5277
                 and then N /= First (Expressions (P))
5278
               then
5279
                  return False;
5280
               end if;
5281
 
5282
               --  While traversing the parent chain, we find that N
5283
               --  belongs to a statement, thus it may never appear in
5284
               --  a declarative region.
5285
 
5286
               if Nkind (P) in N_Statement_Other_Than_Procedure_Call
5287
                 or else Nkind (P) = N_Procedure_Call_Statement
5288
               then
5289
                  return False;
5290
               end if;
5291
 
5292
               --  If we are at a declaration, record it and exit
5293
 
5294
               if Nkind (P) in N_Declaration
5295
                 and then Nkind (P) not in N_Subprogram_Specification
5296
               then
5297
                  N_Decl := P;
5298
                  exit;
5299
               end if;
5300
 
5301
               P := Parent (P);
5302
            end loop;
5303
 
5304
            if No (N_Decl) then
5305
               return False;
5306
            end if;
5307
 
5308
            return List_Containing (N_Decl) = Declarations (S_Par);
5309
         end;
5310
      end Safe_To_Capture_In_Parameter_Value;
5311
 
5312
      -------------------
5313
      -- Mark_Non_Null --
5314
      -------------------
5315
 
5316
      procedure Mark_Non_Null is
5317
      begin
5318
         --  Only case of interest is if node N is an entity name
5319
 
5320
         if Is_Entity_Name (N) then
5321
 
5322
            --  For sure, we want to clear an indication that this is known to
5323
            --  be null, since if we get past this check, it definitely is not!
5324
 
5325
            Set_Is_Known_Null (Entity (N), False);
5326
 
5327
            --  We can mark the entity as known to be non-null if either it is
5328
            --  safe to capture the value, or in the case of an IN parameter,
5329
            --  which is a constant, if the check we just installed is in the
5330
            --  declarative region of the subprogram body. In this latter case,
5331
            --  a check is decisive for the rest of the body if the expression
5332
            --  is sure to be elaborated, since we know we have to elaborate
5333
            --  all declarations before executing the body.
5334
 
5335
            --  Couldn't this always be part of Safe_To_Capture_Value ???
5336
 
5337
            if Safe_To_Capture_Value (N, Entity (N))
5338
              or else Safe_To_Capture_In_Parameter_Value
5339
            then
5340
               Set_Is_Known_Non_Null (Entity (N));
5341
            end if;
5342
         end if;
5343
      end Mark_Non_Null;
5344
 
5345
   --  Start of processing for Install_Null_Excluding_Check
5346
 
5347
   begin
5348
      pragma Assert (Is_Access_Type (Typ));
5349
 
5350
      --  No check inside a generic (why not???)
5351
 
5352
      if Inside_A_Generic then
5353
         return;
5354
      end if;
5355
 
5356
      --  No check needed if known to be non-null
5357
 
5358
      if Known_Non_Null (N) then
5359
         return;
5360
      end if;
5361
 
5362
      --  If known to be null, here is where we generate a compile time check
5363
 
5364
      if Known_Null (N) then
5365
 
5366
         --  Avoid generating warning message inside init procs
5367
 
5368
         if not Inside_Init_Proc then
5369
            Apply_Compile_Time_Constraint_Error
5370
              (N,
5371
               "null value not allowed here?",
5372
               CE_Access_Check_Failed);
5373
         else
5374
            Insert_Action (N,
5375
              Make_Raise_Constraint_Error (Loc,
5376
                Reason => CE_Access_Check_Failed));
5377
         end if;
5378
 
5379
         Mark_Non_Null;
5380
         return;
5381
      end if;
5382
 
5383
      --  If entity is never assigned, for sure a warning is appropriate
5384
 
5385
      if Is_Entity_Name (N) then
5386
         Check_Unset_Reference (N);
5387
      end if;
5388
 
5389
      --  No check needed if checks are suppressed on the range. Note that we
5390
      --  don't set Is_Known_Non_Null in this case (we could legitimately do
5391
      --  so, since the program is erroneous, but we don't like to casually
5392
      --  propagate such conclusions from erroneosity).
5393
 
5394
      if Access_Checks_Suppressed (Typ) then
5395
         return;
5396
      end if;
5397
 
5398
      --  No check needed for access to concurrent record types generated by
5399
      --  the expander. This is not just an optimization (though it does indeed
5400
      --  remove junk checks). It also avoids generation of junk warnings.
5401
 
5402
      if Nkind (N) in N_Has_Chars
5403
        and then Chars (N) = Name_uObject
5404
        and then Is_Concurrent_Record_Type
5405
                   (Directly_Designated_Type (Etype (N)))
5406
      then
5407
         return;
5408
      end if;
5409
 
5410
      --  Otherwise install access check
5411
 
5412
      Insert_Action (N,
5413
        Make_Raise_Constraint_Error (Loc,
5414
          Condition =>
5415
            Make_Op_Eq (Loc,
5416
              Left_Opnd  => Duplicate_Subexpr_Move_Checks (N),
5417
              Right_Opnd => Make_Null (Loc)),
5418
          Reason => CE_Access_Check_Failed));
5419
 
5420
      Mark_Non_Null;
5421
   end Install_Null_Excluding_Check;
5422
 
5423
   --------------------------
5424
   -- Install_Static_Check --
5425
   --------------------------
5426
 
5427
   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
5428
      Stat : constant Boolean   := Is_Static_Expression (R_Cno);
5429
      Typ  : constant Entity_Id := Etype (R_Cno);
5430
 
5431
   begin
5432
      Rewrite (R_Cno,
5433
        Make_Raise_Constraint_Error (Loc,
5434
          Reason => CE_Range_Check_Failed));
5435
      Set_Analyzed (R_Cno);
5436
      Set_Etype (R_Cno, Typ);
5437
      Set_Raises_Constraint_Error (R_Cno);
5438
      Set_Is_Static_Expression (R_Cno, Stat);
5439
 
5440
      --  Now deal with possible local raise handling
5441
 
5442
      Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
5443
   end Install_Static_Check;
5444
 
5445
   ---------------------
5446
   -- Kill_All_Checks --
5447
   ---------------------
5448
 
5449
   procedure Kill_All_Checks is
5450
   begin
5451
      if Debug_Flag_CC then
5452
         w ("Kill_All_Checks");
5453
      end if;
5454
 
5455
      --  We reset the number of saved checks to zero, and also modify all
5456
      --  stack entries for statement ranges to indicate that the number of
5457
      --  checks at each level is now zero.
5458
 
5459
      Num_Saved_Checks := 0;
5460
 
5461
      --  Note: the Int'Min here avoids any possibility of J being out of
5462
      --  range when called from e.g. Conditional_Statements_Begin.
5463
 
5464
      for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
5465
         Saved_Checks_Stack (J) := 0;
5466
      end loop;
5467
   end Kill_All_Checks;
5468
 
5469
   -----------------
5470
   -- Kill_Checks --
5471
   -----------------
5472
 
5473
   procedure Kill_Checks (V : Entity_Id) is
5474
   begin
5475
      if Debug_Flag_CC then
5476
         w ("Kill_Checks for entity", Int (V));
5477
      end if;
5478
 
5479
      for J in 1 .. Num_Saved_Checks loop
5480
         if Saved_Checks (J).Entity = V then
5481
            if Debug_Flag_CC then
5482
               w ("   Checks killed for saved check ", J);
5483
            end if;
5484
 
5485
            Saved_Checks (J).Killed := True;
5486
         end if;
5487
      end loop;
5488
   end Kill_Checks;
5489
 
5490
   ------------------------------
5491
   -- Length_Checks_Suppressed --
5492
   ------------------------------
5493
 
5494
   function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
5495
   begin
5496
      if Present (E) and then Checks_May_Be_Suppressed (E) then
5497
         return Is_Check_Suppressed (E, Length_Check);
5498
      else
5499
         return Scope_Suppress (Length_Check);
5500
      end if;
5501
   end Length_Checks_Suppressed;
5502
 
5503
   --------------------------------
5504
   -- Overflow_Checks_Suppressed --
5505
   --------------------------------
5506
 
5507
   function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
5508
   begin
5509
      if Present (E) and then Checks_May_Be_Suppressed (E) then
5510
         return Is_Check_Suppressed (E, Overflow_Check);
5511
      else
5512
         return Scope_Suppress (Overflow_Check);
5513
      end if;
5514
   end Overflow_Checks_Suppressed;
5515
 
5516
   -----------------------------
5517
   -- Range_Checks_Suppressed --
5518
   -----------------------------
5519
 
5520
   function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
5521
   begin
5522
      if Present (E) then
5523
 
5524
         --  Note: for now we always suppress range checks on Vax float types,
5525
         --  since Gigi does not know how to generate these checks.
5526
 
5527
         if Vax_Float (E) then
5528
            return True;
5529
         elsif Kill_Range_Checks (E) then
5530
            return True;
5531
         elsif Checks_May_Be_Suppressed (E) then
5532
            return Is_Check_Suppressed (E, Range_Check);
5533
         end if;
5534
      end if;
5535
 
5536
      return Scope_Suppress (Range_Check);
5537
   end Range_Checks_Suppressed;
5538
 
5539
   -----------------------------------------
5540
   -- Range_Or_Validity_Checks_Suppressed --
5541
   -----------------------------------------
5542
 
5543
   --  Note: the coding would be simpler here if we simply made appropriate
5544
   --  calls to Range/Validity_Checks_Suppressed, but that would result in
5545
   --  duplicated checks which we prefer to avoid.
5546
 
5547
   function Range_Or_Validity_Checks_Suppressed
5548
     (Expr : Node_Id) return Boolean
5549
   is
5550
   begin
5551
      --  Immediate return if scope checks suppressed for either check
5552
 
5553
      if Scope_Suppress (Range_Check) or Scope_Suppress (Validity_Check) then
5554
         return True;
5555
      end if;
5556
 
5557
      --  If no expression, that's odd, decide that checks are suppressed,
5558
      --  since we don't want anyone trying to do checks in this case, which
5559
      --  is most likely the result of some other error.
5560
 
5561
      if No (Expr) then
5562
         return True;
5563
      end if;
5564
 
5565
      --  Expression is present, so perform suppress checks on type
5566
 
5567
      declare
5568
         Typ : constant Entity_Id := Etype (Expr);
5569
      begin
5570
         if Vax_Float (Typ) then
5571
            return True;
5572
         elsif Checks_May_Be_Suppressed (Typ)
5573
           and then (Is_Check_Suppressed (Typ, Range_Check)
5574
                       or else
5575
                     Is_Check_Suppressed (Typ, Validity_Check))
5576
         then
5577
            return True;
5578
         end if;
5579
      end;
5580
 
5581
      --  If expression is an entity name, perform checks on this entity
5582
 
5583
      if Is_Entity_Name (Expr) then
5584
         declare
5585
            Ent : constant Entity_Id := Entity (Expr);
5586
         begin
5587
            if Checks_May_Be_Suppressed (Ent) then
5588
               return Is_Check_Suppressed (Ent, Range_Check)
5589
                 or else Is_Check_Suppressed (Ent, Validity_Check);
5590
            end if;
5591
         end;
5592
      end if;
5593
 
5594
      --  If we fall through, no checks suppressed
5595
 
5596
      return False;
5597
   end Range_Or_Validity_Checks_Suppressed;
5598
 
5599
   -------------------
5600
   -- Remove_Checks --
5601
   -------------------
5602
 
5603
   procedure Remove_Checks (Expr : Node_Id) is
5604
      function Process (N : Node_Id) return Traverse_Result;
5605
      --  Process a single node during the traversal
5606
 
5607
      procedure Traverse is new Traverse_Proc (Process);
5608
      --  The traversal procedure itself
5609
 
5610
      -------------
5611
      -- Process --
5612
      -------------
5613
 
5614
      function Process (N : Node_Id) return Traverse_Result is
5615
      begin
5616
         if Nkind (N) not in N_Subexpr then
5617
            return Skip;
5618
         end if;
5619
 
5620
         Set_Do_Range_Check (N, False);
5621
 
5622
         case Nkind (N) is
5623
            when N_And_Then =>
5624
               Traverse (Left_Opnd (N));
5625
               return Skip;
5626
 
5627
            when N_Attribute_Reference =>
5628
               Set_Do_Overflow_Check (N, False);
5629
 
5630
            when N_Function_Call =>
5631
               Set_Do_Tag_Check (N, False);
5632
 
5633
            when N_Op =>
5634
               Set_Do_Overflow_Check (N, False);
5635
 
5636
               case Nkind (N) is
5637
                  when N_Op_Divide =>
5638
                     Set_Do_Division_Check (N, False);
5639
 
5640
                  when N_Op_And =>
5641
                     Set_Do_Length_Check (N, False);
5642
 
5643
                  when N_Op_Mod =>
5644
                     Set_Do_Division_Check (N, False);
5645
 
5646
                  when N_Op_Or =>
5647
                     Set_Do_Length_Check (N, False);
5648
 
5649
                  when N_Op_Rem =>
5650
                     Set_Do_Division_Check (N, False);
5651
 
5652
                  when N_Op_Xor =>
5653
                     Set_Do_Length_Check (N, False);
5654
 
5655
                  when others =>
5656
                     null;
5657
               end case;
5658
 
5659
            when N_Or_Else =>
5660
               Traverse (Left_Opnd (N));
5661
               return Skip;
5662
 
5663
            when N_Selected_Component =>
5664
               Set_Do_Discriminant_Check (N, False);
5665
 
5666
            when N_Type_Conversion =>
5667
               Set_Do_Length_Check   (N, False);
5668
               Set_Do_Tag_Check      (N, False);
5669
               Set_Do_Overflow_Check (N, False);
5670
 
5671
            when others =>
5672
               null;
5673
         end case;
5674
 
5675
         return OK;
5676
      end Process;
5677
 
5678
   --  Start of processing for Remove_Checks
5679
 
5680
   begin
5681
      Traverse (Expr);
5682
   end Remove_Checks;
5683
 
5684
   ----------------------------
5685
   -- Selected_Length_Checks --
5686
   ----------------------------
5687
 
5688
   function Selected_Length_Checks
5689
     (Ck_Node    : Node_Id;
5690
      Target_Typ : Entity_Id;
5691
      Source_Typ : Entity_Id;
5692
      Warn_Node  : Node_Id) return Check_Result
5693
   is
5694
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
5695
      S_Typ       : Entity_Id;
5696
      T_Typ       : Entity_Id;
5697
      Expr_Actual : Node_Id;
5698
      Exptyp      : Entity_Id;
5699
      Cond        : Node_Id := Empty;
5700
      Do_Access   : Boolean := False;
5701
      Wnode       : Node_Id := Warn_Node;
5702
      Ret_Result  : Check_Result := (Empty, Empty);
5703
      Num_Checks  : Natural := 0;
5704
 
5705
      procedure Add_Check (N : Node_Id);
5706
      --  Adds the action given to Ret_Result if N is non-Empty
5707
 
5708
      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
5709
      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
5710
      --  Comments required ???
5711
 
5712
      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
5713
      --  True for equal literals and for nodes that denote the same constant
5714
      --  entity, even if its value is not a static constant. This includes the
5715
      --  case of a discriminal reference within an init proc. Removes some
5716
      --  obviously superfluous checks.
5717
 
5718
      function Length_E_Cond
5719
        (Exptyp : Entity_Id;
5720
         Typ    : Entity_Id;
5721
         Indx   : Nat) return Node_Id;
5722
      --  Returns expression to compute:
5723
      --    Typ'Length /= Exptyp'Length
5724
 
5725
      function Length_N_Cond
5726
        (Expr : Node_Id;
5727
         Typ  : Entity_Id;
5728
         Indx : Nat) return Node_Id;
5729
      --  Returns expression to compute:
5730
      --    Typ'Length /= Expr'Length
5731
 
5732
      ---------------
5733
      -- Add_Check --
5734
      ---------------
5735
 
5736
      procedure Add_Check (N : Node_Id) is
5737
      begin
5738
         if Present (N) then
5739
 
5740
            --  For now, ignore attempt to place more than 2 checks ???
5741
 
5742
            if Num_Checks = 2 then
5743
               return;
5744
            end if;
5745
 
5746
            pragma Assert (Num_Checks <= 1);
5747
            Num_Checks := Num_Checks + 1;
5748
            Ret_Result (Num_Checks) := N;
5749
         end if;
5750
      end Add_Check;
5751
 
5752
      ------------------
5753
      -- Get_E_Length --
5754
      ------------------
5755
 
5756
      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
5757
         SE : constant Entity_Id := Scope (E);
5758
         N  : Node_Id;
5759
         E1 : Entity_Id := E;
5760
 
5761
      begin
5762
         if Ekind (Scope (E)) = E_Record_Type
5763
           and then Has_Discriminants (Scope (E))
5764
         then
5765
            N := Build_Discriminal_Subtype_Of_Component (E);
5766
 
5767
            if Present (N) then
5768
               Insert_Action (Ck_Node, N);
5769
               E1 := Defining_Identifier (N);
5770
            end if;
5771
         end if;
5772
 
5773
         if Ekind (E1) = E_String_Literal_Subtype then
5774
            return
5775
              Make_Integer_Literal (Loc,
5776
                Intval => String_Literal_Length (E1));
5777
 
5778
         elsif SE /= Standard_Standard
5779
           and then Ekind (Scope (SE)) = E_Protected_Type
5780
           and then Has_Discriminants (Scope (SE))
5781
           and then Has_Completion (Scope (SE))
5782
           and then not Inside_Init_Proc
5783
         then
5784
            --  If the type whose length is needed is a private component
5785
            --  constrained by a discriminant, we must expand the 'Length
5786
            --  attribute into an explicit computation, using the discriminal
5787
            --  of the current protected operation. This is because the actual
5788
            --  type of the prival is constructed after the protected opera-
5789
            --  tion has been fully expanded.
5790
 
5791
            declare
5792
               Indx_Type : Node_Id;
5793
               Lo        : Node_Id;
5794
               Hi        : Node_Id;
5795
               Do_Expand : Boolean := False;
5796
 
5797
            begin
5798
               Indx_Type := First_Index (E);
5799
 
5800
               for J in 1 .. Indx - 1 loop
5801
                  Next_Index (Indx_Type);
5802
               end loop;
5803
 
5804
               Get_Index_Bounds (Indx_Type, Lo, Hi);
5805
 
5806
               if Nkind (Lo) = N_Identifier
5807
                 and then Ekind (Entity (Lo)) = E_In_Parameter
5808
               then
5809
                  Lo := Get_Discriminal (E, Lo);
5810
                  Do_Expand := True;
5811
               end if;
5812
 
5813
               if Nkind (Hi) = N_Identifier
5814
                 and then Ekind (Entity (Hi)) = E_In_Parameter
5815
               then
5816
                  Hi := Get_Discriminal (E, Hi);
5817
                  Do_Expand := True;
5818
               end if;
5819
 
5820
               if Do_Expand then
5821
                  if not Is_Entity_Name (Lo) then
5822
                     Lo := Duplicate_Subexpr_No_Checks (Lo);
5823
                  end if;
5824
 
5825
                  if not Is_Entity_Name (Hi) then
5826
                     Lo := Duplicate_Subexpr_No_Checks (Hi);
5827
                  end if;
5828
 
5829
                  N :=
5830
                    Make_Op_Add (Loc,
5831
                      Left_Opnd =>
5832
                        Make_Op_Subtract (Loc,
5833
                          Left_Opnd  => Hi,
5834
                          Right_Opnd => Lo),
5835
 
5836
                      Right_Opnd => Make_Integer_Literal (Loc, 1));
5837
                  return N;
5838
 
5839
               else
5840
                  N :=
5841
                    Make_Attribute_Reference (Loc,
5842
                      Attribute_Name => Name_Length,
5843
                      Prefix =>
5844
                        New_Occurrence_Of (E1, Loc));
5845
 
5846
                  if Indx > 1 then
5847
                     Set_Expressions (N, New_List (
5848
                       Make_Integer_Literal (Loc, Indx)));
5849
                  end if;
5850
 
5851
                  return N;
5852
               end if;
5853
            end;
5854
 
5855
         else
5856
            N :=
5857
              Make_Attribute_Reference (Loc,
5858
                Attribute_Name => Name_Length,
5859
                Prefix =>
5860
                  New_Occurrence_Of (E1, Loc));
5861
 
5862
            if Indx > 1 then
5863
               Set_Expressions (N, New_List (
5864
                 Make_Integer_Literal (Loc, Indx)));
5865
            end if;
5866
 
5867
            return N;
5868
         end if;
5869
      end Get_E_Length;
5870
 
5871
      ------------------
5872
      -- Get_N_Length --
5873
      ------------------
5874
 
5875
      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5876
      begin
5877
         return
5878
           Make_Attribute_Reference (Loc,
5879
             Attribute_Name => Name_Length,
5880
             Prefix =>
5881
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5882
             Expressions => New_List (
5883
               Make_Integer_Literal (Loc, Indx)));
5884
      end Get_N_Length;
5885
 
5886
      -------------------
5887
      -- Length_E_Cond --
5888
      -------------------
5889
 
5890
      function Length_E_Cond
5891
        (Exptyp : Entity_Id;
5892
         Typ    : Entity_Id;
5893
         Indx   : Nat) return Node_Id
5894
      is
5895
      begin
5896
         return
5897
           Make_Op_Ne (Loc,
5898
             Left_Opnd  => Get_E_Length (Typ, Indx),
5899
             Right_Opnd => Get_E_Length (Exptyp, Indx));
5900
      end Length_E_Cond;
5901
 
5902
      -------------------
5903
      -- Length_N_Cond --
5904
      -------------------
5905
 
5906
      function Length_N_Cond
5907
        (Expr : Node_Id;
5908
         Typ  : Entity_Id;
5909
         Indx : Nat) return Node_Id
5910
      is
5911
      begin
5912
         return
5913
           Make_Op_Ne (Loc,
5914
             Left_Opnd  => Get_E_Length (Typ, Indx),
5915
             Right_Opnd => Get_N_Length (Expr, Indx));
5916
      end Length_N_Cond;
5917
 
5918
      -----------------
5919
      -- Same_Bounds --
5920
      -----------------
5921
 
5922
      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5923
      begin
5924
         return
5925
           (Nkind (L) = N_Integer_Literal
5926
             and then Nkind (R) = N_Integer_Literal
5927
             and then Intval (L) = Intval (R))
5928
 
5929
          or else
5930
            (Is_Entity_Name (L)
5931
              and then Ekind (Entity (L)) = E_Constant
5932
              and then ((Is_Entity_Name (R)
5933
                         and then Entity (L) = Entity (R))
5934
                        or else
5935
                       (Nkind (R) = N_Type_Conversion
5936
                         and then Is_Entity_Name (Expression (R))
5937
                         and then Entity (L) = Entity (Expression (R)))))
5938
 
5939
          or else
5940
            (Is_Entity_Name (R)
5941
              and then Ekind (Entity (R)) = E_Constant
5942
              and then Nkind (L) = N_Type_Conversion
5943
              and then Is_Entity_Name (Expression (L))
5944
              and then Entity (R) = Entity (Expression (L)))
5945
 
5946
         or else
5947
            (Is_Entity_Name (L)
5948
              and then Is_Entity_Name (R)
5949
              and then Entity (L) = Entity (R)
5950
              and then Ekind (Entity (L)) = E_In_Parameter
5951
              and then Inside_Init_Proc);
5952
      end Same_Bounds;
5953
 
5954
   --  Start of processing for Selected_Length_Checks
5955
 
5956
   begin
5957
      if not Expander_Active then
5958
         return Ret_Result;
5959
      end if;
5960
 
5961
      if Target_Typ = Any_Type
5962
        or else Target_Typ = Any_Composite
5963
        or else Raises_Constraint_Error (Ck_Node)
5964
      then
5965
         return Ret_Result;
5966
      end if;
5967
 
5968
      if No (Wnode) then
5969
         Wnode := Ck_Node;
5970
      end if;
5971
 
5972
      T_Typ := Target_Typ;
5973
 
5974
      if No (Source_Typ) then
5975
         S_Typ := Etype (Ck_Node);
5976
      else
5977
         S_Typ := Source_Typ;
5978
      end if;
5979
 
5980
      if S_Typ = Any_Type or else S_Typ = Any_Composite then
5981
         return Ret_Result;
5982
      end if;
5983
 
5984
      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5985
         S_Typ := Designated_Type (S_Typ);
5986
         T_Typ := Designated_Type (T_Typ);
5987
         Do_Access := True;
5988
 
5989
         --  A simple optimization for the null case
5990
 
5991
         if Known_Null (Ck_Node) then
5992
            return Ret_Result;
5993
         end if;
5994
      end if;
5995
 
5996
      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5997
         if Is_Constrained (T_Typ) then
5998
 
5999
            --  The checking code to be generated will freeze the
6000
            --  corresponding array type. However, we must freeze the
6001
            --  type now, so that the freeze node does not appear within
6002
            --  the generated condional expression, but ahead of it.
6003
 
6004
            Freeze_Before (Ck_Node, T_Typ);
6005
 
6006
            Expr_Actual := Get_Referenced_Object (Ck_Node);
6007
            Exptyp      := Get_Actual_Subtype (Ck_Node);
6008
 
6009
            if Is_Access_Type (Exptyp) then
6010
               Exptyp := Designated_Type (Exptyp);
6011
            end if;
6012
 
6013
            --  String_Literal case. This needs to be handled specially be-
6014
            --  cause no index types are available for string literals. The
6015
            --  condition is simply:
6016
 
6017
            --    T_Typ'Length = string-literal-length
6018
 
6019
            if Nkind (Expr_Actual) = N_String_Literal
6020
              and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
6021
            then
6022
               Cond :=
6023
                 Make_Op_Ne (Loc,
6024
                   Left_Opnd  => Get_E_Length (T_Typ, 1),
6025
                   Right_Opnd =>
6026
                     Make_Integer_Literal (Loc,
6027
                       Intval =>
6028
                         String_Literal_Length (Etype (Expr_Actual))));
6029
 
6030
            --  General array case. Here we have a usable actual subtype for
6031
            --  the expression, and the condition is built from the two types
6032
            --  (Do_Length):
6033
 
6034
            --     T_Typ'Length     /= Exptyp'Length     or else
6035
            --     T_Typ'Length (2) /= Exptyp'Length (2) or else
6036
            --     T_Typ'Length (3) /= Exptyp'Length (3) or else
6037
            --     ...
6038
 
6039
            elsif Is_Constrained (Exptyp) then
6040
               declare
6041
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
6042
 
6043
                  L_Index  : Node_Id;
6044
                  R_Index  : Node_Id;
6045
                  L_Low    : Node_Id;
6046
                  L_High   : Node_Id;
6047
                  R_Low    : Node_Id;
6048
                  R_High   : Node_Id;
6049
                  L_Length : Uint;
6050
                  R_Length : Uint;
6051
                  Ref_Node : Node_Id;
6052
 
6053
               begin
6054
                  --  At the library level, we need to ensure that the type of
6055
                  --  the object is elaborated before the check itself is
6056
                  --  emitted. This is only done if the object is in the
6057
                  --  current compilation unit, otherwise the type is frozen
6058
                  --  and elaborated in its unit.
6059
 
6060
                  if Is_Itype (Exptyp)
6061
                    and then
6062
                      Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
6063
                    and then
6064
                      not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
6065
                    and then In_Open_Scopes (Scope (Exptyp))
6066
                  then
6067
                     Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
6068
                     Set_Itype (Ref_Node, Exptyp);
6069
                     Insert_Action (Ck_Node, Ref_Node);
6070
                  end if;
6071
 
6072
                  L_Index := First_Index (T_Typ);
6073
                  R_Index := First_Index (Exptyp);
6074
 
6075
                  for Indx in 1 .. Ndims loop
6076
                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
6077
                               or else
6078
                             Nkind (R_Index) = N_Raise_Constraint_Error)
6079
                     then
6080
                        Get_Index_Bounds (L_Index, L_Low, L_High);
6081
                        Get_Index_Bounds (R_Index, R_Low, R_High);
6082
 
6083
                        --  Deal with compile time length check. Note that we
6084
                        --  skip this in the access case, because the access
6085
                        --  value may be null, so we cannot know statically.
6086
 
6087
                        if not Do_Access
6088
                          and then Compile_Time_Known_Value (L_Low)
6089
                          and then Compile_Time_Known_Value (L_High)
6090
                          and then Compile_Time_Known_Value (R_Low)
6091
                          and then Compile_Time_Known_Value (R_High)
6092
                        then
6093
                           if Expr_Value (L_High) >= Expr_Value (L_Low) then
6094
                              L_Length := Expr_Value (L_High) -
6095
                                          Expr_Value (L_Low) + 1;
6096
                           else
6097
                              L_Length := UI_From_Int (0);
6098
                           end if;
6099
 
6100
                           if Expr_Value (R_High) >= Expr_Value (R_Low) then
6101
                              R_Length := Expr_Value (R_High) -
6102
                                          Expr_Value (R_Low) + 1;
6103
                           else
6104
                              R_Length := UI_From_Int (0);
6105
                           end if;
6106
 
6107
                           if L_Length > R_Length then
6108
                              Add_Check
6109
                                (Compile_Time_Constraint_Error
6110
                                  (Wnode, "too few elements for}?", T_Typ));
6111
 
6112
                           elsif  L_Length < R_Length then
6113
                              Add_Check
6114
                                (Compile_Time_Constraint_Error
6115
                                  (Wnode, "too many elements for}?", T_Typ));
6116
                           end if;
6117
 
6118
                        --  The comparison for an individual index subtype
6119
                        --  is omitted if the corresponding index subtypes
6120
                        --  statically match, since the result is known to
6121
                        --  be true. Note that this test is worth while even
6122
                        --  though we do static evaluation, because non-static
6123
                        --  subtypes can statically match.
6124
 
6125
                        elsif not
6126
                          Subtypes_Statically_Match
6127
                            (Etype (L_Index), Etype (R_Index))
6128
 
6129
                          and then not
6130
                            (Same_Bounds (L_Low, R_Low)
6131
                              and then Same_Bounds (L_High, R_High))
6132
                        then
6133
                           Evolve_Or_Else
6134
                             (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
6135
                        end if;
6136
 
6137
                        Next (L_Index);
6138
                        Next (R_Index);
6139
                     end if;
6140
                  end loop;
6141
               end;
6142
 
6143
            --  Handle cases where we do not get a usable actual subtype that
6144
            --  is constrained. This happens for example in the function call
6145
            --  and explicit dereference cases. In these cases, we have to get
6146
            --  the length or range from the expression itself, making sure we
6147
            --  do not evaluate it more than once.
6148
 
6149
            --  Here Ck_Node is the original expression, or more properly the
6150
            --  result of applying Duplicate_Expr to the original tree, forcing
6151
            --  the result to be a name.
6152
 
6153
            else
6154
               declare
6155
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
6156
 
6157
               begin
6158
                  --  Build the condition for the explicit dereference case
6159
 
6160
                  for Indx in 1 .. Ndims loop
6161
                     Evolve_Or_Else
6162
                       (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
6163
                  end loop;
6164
               end;
6165
            end if;
6166
         end if;
6167
      end if;
6168
 
6169
      --  Construct the test and insert into the tree
6170
 
6171
      if Present (Cond) then
6172
         if Do_Access then
6173
            Cond := Guard_Access (Cond, Loc, Ck_Node);
6174
         end if;
6175
 
6176
         Add_Check
6177
           (Make_Raise_Constraint_Error (Loc,
6178
              Condition => Cond,
6179
              Reason => CE_Length_Check_Failed));
6180
      end if;
6181
 
6182
      return Ret_Result;
6183
   end Selected_Length_Checks;
6184
 
6185
   ---------------------------
6186
   -- Selected_Range_Checks --
6187
   ---------------------------
6188
 
6189
   function Selected_Range_Checks
6190
     (Ck_Node    : Node_Id;
6191
      Target_Typ : Entity_Id;
6192
      Source_Typ : Entity_Id;
6193
      Warn_Node  : Node_Id) return Check_Result
6194
   is
6195
      Loc         : constant Source_Ptr := Sloc (Ck_Node);
6196
      S_Typ       : Entity_Id;
6197
      T_Typ       : Entity_Id;
6198
      Expr_Actual : Node_Id;
6199
      Exptyp      : Entity_Id;
6200
      Cond        : Node_Id := Empty;
6201
      Do_Access   : Boolean := False;
6202
      Wnode       : Node_Id  := Warn_Node;
6203
      Ret_Result  : Check_Result := (Empty, Empty);
6204
      Num_Checks  : Integer := 0;
6205
 
6206
      procedure Add_Check (N : Node_Id);
6207
      --  Adds the action given to Ret_Result if N is non-Empty
6208
 
6209
      function Discrete_Range_Cond
6210
        (Expr : Node_Id;
6211
         Typ  : Entity_Id) return Node_Id;
6212
      --  Returns expression to compute:
6213
      --    Low_Bound (Expr) < Typ'First
6214
      --      or else
6215
      --    High_Bound (Expr) > Typ'Last
6216
 
6217
      function Discrete_Expr_Cond
6218
        (Expr : Node_Id;
6219
         Typ  : Entity_Id) return Node_Id;
6220
      --  Returns expression to compute:
6221
      --    Expr < Typ'First
6222
      --      or else
6223
      --    Expr > Typ'Last
6224
 
6225
      function Get_E_First_Or_Last
6226
        (E    : Entity_Id;
6227
         Indx : Nat;
6228
         Nam  : Name_Id) return Node_Id;
6229
      --  Returns expression to compute:
6230
      --    E'First or E'Last
6231
 
6232
      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
6233
      function Get_N_Last  (N : Node_Id; Indx : Nat) return Node_Id;
6234
      --  Returns expression to compute:
6235
      --    N'First or N'Last using Duplicate_Subexpr_No_Checks
6236
 
6237
      function Range_E_Cond
6238
        (Exptyp : Entity_Id;
6239
         Typ    : Entity_Id;
6240
         Indx   : Nat)
6241
         return   Node_Id;
6242
      --  Returns expression to compute:
6243
      --    Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
6244
 
6245
      function Range_Equal_E_Cond
6246
        (Exptyp : Entity_Id;
6247
         Typ    : Entity_Id;
6248
         Indx   : Nat) return Node_Id;
6249
      --  Returns expression to compute:
6250
      --    Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
6251
 
6252
      function Range_N_Cond
6253
        (Expr : Node_Id;
6254
         Typ  : Entity_Id;
6255
         Indx : Nat) return Node_Id;
6256
      --  Return expression to compute:
6257
      --    Expr'First < Typ'First or else Expr'Last > Typ'Last
6258
 
6259
      ---------------
6260
      -- Add_Check --
6261
      ---------------
6262
 
6263
      procedure Add_Check (N : Node_Id) is
6264
      begin
6265
         if Present (N) then
6266
 
6267
            --  For now, ignore attempt to place more than 2 checks ???
6268
 
6269
            if Num_Checks = 2 then
6270
               return;
6271
            end if;
6272
 
6273
            pragma Assert (Num_Checks <= 1);
6274
            Num_Checks := Num_Checks + 1;
6275
            Ret_Result (Num_Checks) := N;
6276
         end if;
6277
      end Add_Check;
6278
 
6279
      -------------------------
6280
      -- Discrete_Expr_Cond --
6281
      -------------------------
6282
 
6283
      function Discrete_Expr_Cond
6284
        (Expr : Node_Id;
6285
         Typ  : Entity_Id) return Node_Id
6286
      is
6287
      begin
6288
         return
6289
           Make_Or_Else (Loc,
6290
             Left_Opnd =>
6291
               Make_Op_Lt (Loc,
6292
                 Left_Opnd =>
6293
                   Convert_To (Base_Type (Typ),
6294
                     Duplicate_Subexpr_No_Checks (Expr)),
6295
                 Right_Opnd =>
6296
                   Convert_To (Base_Type (Typ),
6297
                               Get_E_First_Or_Last (Typ, 0, Name_First))),
6298
 
6299
             Right_Opnd =>
6300
               Make_Op_Gt (Loc,
6301
                 Left_Opnd =>
6302
                   Convert_To (Base_Type (Typ),
6303
                     Duplicate_Subexpr_No_Checks (Expr)),
6304
                 Right_Opnd =>
6305
                   Convert_To
6306
                     (Base_Type (Typ),
6307
                      Get_E_First_Or_Last (Typ, 0, Name_Last))));
6308
      end Discrete_Expr_Cond;
6309
 
6310
      -------------------------
6311
      -- Discrete_Range_Cond --
6312
      -------------------------
6313
 
6314
      function Discrete_Range_Cond
6315
        (Expr : Node_Id;
6316
         Typ  : Entity_Id) return Node_Id
6317
      is
6318
         LB : Node_Id := Low_Bound (Expr);
6319
         HB : Node_Id := High_Bound (Expr);
6320
 
6321
         Left_Opnd  : Node_Id;
6322
         Right_Opnd : Node_Id;
6323
 
6324
      begin
6325
         if Nkind (LB) = N_Identifier
6326
           and then Ekind (Entity (LB)) = E_Discriminant
6327
         then
6328
            LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6329
         end if;
6330
 
6331
         if Nkind (HB) = N_Identifier
6332
           and then Ekind (Entity (HB)) = E_Discriminant
6333
         then
6334
            HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6335
         end if;
6336
 
6337
         Left_Opnd :=
6338
           Make_Op_Lt (Loc,
6339
             Left_Opnd  =>
6340
               Convert_To
6341
                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
6342
 
6343
             Right_Opnd =>
6344
               Convert_To
6345
                 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
6346
 
6347
         if Base_Type (Typ) = Typ then
6348
            return Left_Opnd;
6349
 
6350
         elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
6351
            and then
6352
               Compile_Time_Known_Value (High_Bound (Scalar_Range
6353
                                                     (Base_Type (Typ))))
6354
         then
6355
            if Is_Floating_Point_Type (Typ) then
6356
               if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
6357
                  Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
6358
               then
6359
                  return Left_Opnd;
6360
               end if;
6361
 
6362
            else
6363
               if Expr_Value (High_Bound (Scalar_Range (Typ))) =
6364
                  Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
6365
               then
6366
                  return Left_Opnd;
6367
               end if;
6368
            end if;
6369
         end if;
6370
 
6371
         Right_Opnd :=
6372
           Make_Op_Gt (Loc,
6373
             Left_Opnd  =>
6374
               Convert_To
6375
                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
6376
 
6377
             Right_Opnd =>
6378
               Convert_To
6379
                 (Base_Type (Typ),
6380
                  Get_E_First_Or_Last (Typ, 0, Name_Last)));
6381
 
6382
         return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
6383
      end Discrete_Range_Cond;
6384
 
6385
      -------------------------
6386
      -- Get_E_First_Or_Last --
6387
      -------------------------
6388
 
6389
      function Get_E_First_Or_Last
6390
        (E    : Entity_Id;
6391
         Indx : Nat;
6392
         Nam  : Name_Id) return Node_Id
6393
      is
6394
         N     : Node_Id;
6395
         LB    : Node_Id;
6396
         HB    : Node_Id;
6397
         Bound : Node_Id;
6398
 
6399
      begin
6400
         if Is_Array_Type (E) then
6401
            N := First_Index (E);
6402
 
6403
            for J in 2 .. Indx loop
6404
               Next_Index (N);
6405
            end loop;
6406
 
6407
         else
6408
            N := Scalar_Range (E);
6409
         end if;
6410
 
6411
         if Nkind (N) = N_Subtype_Indication then
6412
            LB := Low_Bound (Range_Expression (Constraint (N)));
6413
            HB := High_Bound (Range_Expression (Constraint (N)));
6414
 
6415
         elsif Is_Entity_Name (N) then
6416
            LB := Type_Low_Bound  (Etype (N));
6417
            HB := Type_High_Bound (Etype (N));
6418
 
6419
         else
6420
            LB := Low_Bound  (N);
6421
            HB := High_Bound (N);
6422
         end if;
6423
 
6424
         if Nam = Name_First then
6425
            Bound := LB;
6426
         else
6427
            Bound := HB;
6428
         end if;
6429
 
6430
         if Nkind (Bound) = N_Identifier
6431
           and then Ekind (Entity (Bound)) = E_Discriminant
6432
         then
6433
            --  If this is a task discriminant, and we are the body, we must
6434
            --  retrieve the corresponding body discriminal. This is another
6435
            --  consequence of the early creation of discriminals, and the
6436
            --  need to generate constraint checks before their declarations
6437
            --  are made visible.
6438
 
6439
            if Is_Concurrent_Record_Type (Scope (Entity (Bound)))  then
6440
               declare
6441
                  Tsk : constant Entity_Id :=
6442
                          Corresponding_Concurrent_Type
6443
                           (Scope (Entity (Bound)));
6444
                  Disc : Entity_Id;
6445
 
6446
               begin
6447
                  if In_Open_Scopes (Tsk)
6448
                    and then Has_Completion (Tsk)
6449
                  then
6450
                     --  Find discriminant of original task, and use its
6451
                     --  current discriminal, which is the renaming within
6452
                     --  the task body.
6453
 
6454
                     Disc :=  First_Discriminant (Tsk);
6455
                     while Present (Disc) loop
6456
                        if Chars (Disc) = Chars (Entity (Bound)) then
6457
                           Set_Scope (Discriminal (Disc), Tsk);
6458
                           return New_Occurrence_Of (Discriminal (Disc), Loc);
6459
                        end if;
6460
 
6461
                        Next_Discriminant (Disc);
6462
                     end loop;
6463
 
6464
                     --  That loop should always succeed in finding a matching
6465
                     --  entry and returning. Fatal error if not.
6466
 
6467
                     raise Program_Error;
6468
 
6469
                  else
6470
                     return
6471
                       New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
6472
                  end if;
6473
               end;
6474
            else
6475
               return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
6476
            end if;
6477
 
6478
         elsif Nkind (Bound) = N_Identifier
6479
           and then Ekind (Entity (Bound)) = E_In_Parameter
6480
           and then not Inside_Init_Proc
6481
         then
6482
            return Get_Discriminal (E, Bound);
6483
 
6484
         elsif Nkind (Bound) = N_Integer_Literal then
6485
            return Make_Integer_Literal (Loc, Intval (Bound));
6486
 
6487
         --  Case of a bound rewritten to an N_Raise_Constraint_Error node
6488
         --  because it is an out-of-range value. Duplicate_Subexpr cannot be
6489
         --  called on this node because an N_Raise_Constraint_Error is not
6490
         --  side effect free, and we may not assume that we are in the proper
6491
         --  context to remove side effects on it at the point of reference.
6492
 
6493
         elsif Nkind (Bound) = N_Raise_Constraint_Error then
6494
            return New_Copy_Tree (Bound);
6495
 
6496
         else
6497
            return Duplicate_Subexpr_No_Checks (Bound);
6498
         end if;
6499
      end Get_E_First_Or_Last;
6500
 
6501
      -----------------
6502
      -- Get_N_First --
6503
      -----------------
6504
 
6505
      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
6506
      begin
6507
         return
6508
           Make_Attribute_Reference (Loc,
6509
             Attribute_Name => Name_First,
6510
             Prefix =>
6511
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
6512
             Expressions => New_List (
6513
               Make_Integer_Literal (Loc, Indx)));
6514
      end Get_N_First;
6515
 
6516
      ----------------
6517
      -- Get_N_Last --
6518
      ----------------
6519
 
6520
      function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
6521
      begin
6522
         return
6523
           Make_Attribute_Reference (Loc,
6524
             Attribute_Name => Name_Last,
6525
             Prefix =>
6526
               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
6527
             Expressions => New_List (
6528
              Make_Integer_Literal (Loc, Indx)));
6529
      end Get_N_Last;
6530
 
6531
      ------------------
6532
      -- Range_E_Cond --
6533
      ------------------
6534
 
6535
      function Range_E_Cond
6536
        (Exptyp : Entity_Id;
6537
         Typ    : Entity_Id;
6538
         Indx   : Nat) return Node_Id
6539
      is
6540
      begin
6541
         return
6542
           Make_Or_Else (Loc,
6543
             Left_Opnd =>
6544
               Make_Op_Lt (Loc,
6545
                 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
6546
                 Right_Opnd  => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6547
 
6548
             Right_Opnd =>
6549
               Make_Op_Gt (Loc,
6550
                 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
6551
                 Right_Opnd  => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
6552
      end Range_E_Cond;
6553
 
6554
      ------------------------
6555
      -- Range_Equal_E_Cond --
6556
      ------------------------
6557
 
6558
      function Range_Equal_E_Cond
6559
        (Exptyp : Entity_Id;
6560
         Typ    : Entity_Id;
6561
         Indx   : Nat) return Node_Id
6562
      is
6563
      begin
6564
         return
6565
           Make_Or_Else (Loc,
6566
             Left_Opnd =>
6567
               Make_Op_Ne (Loc,
6568
                 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
6569
                 Right_Opnd  => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6570
             Right_Opnd =>
6571
               Make_Op_Ne (Loc,
6572
                 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
6573
                 Right_Opnd  => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
6574
      end Range_Equal_E_Cond;
6575
 
6576
      ------------------
6577
      -- Range_N_Cond --
6578
      ------------------
6579
 
6580
      function Range_N_Cond
6581
        (Expr : Node_Id;
6582
         Typ  : Entity_Id;
6583
         Indx : Nat) return Node_Id
6584
      is
6585
      begin
6586
         return
6587
           Make_Or_Else (Loc,
6588
             Left_Opnd =>
6589
               Make_Op_Lt (Loc,
6590
                 Left_Opnd => Get_N_First (Expr, Indx),
6591
                 Right_Opnd  => Get_E_First_Or_Last (Typ, Indx, Name_First)),
6592
 
6593
             Right_Opnd =>
6594
               Make_Op_Gt (Loc,
6595
                 Left_Opnd => Get_N_Last (Expr, Indx),
6596
                 Right_Opnd  => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
6597
      end Range_N_Cond;
6598
 
6599
   --  Start of processing for Selected_Range_Checks
6600
 
6601
   begin
6602
      if not Expander_Active then
6603
         return Ret_Result;
6604
      end if;
6605
 
6606
      if Target_Typ = Any_Type
6607
        or else Target_Typ = Any_Composite
6608
        or else Raises_Constraint_Error (Ck_Node)
6609
      then
6610
         return Ret_Result;
6611
      end if;
6612
 
6613
      if No (Wnode) then
6614
         Wnode := Ck_Node;
6615
      end if;
6616
 
6617
      T_Typ := Target_Typ;
6618
 
6619
      if No (Source_Typ) then
6620
         S_Typ := Etype (Ck_Node);
6621
      else
6622
         S_Typ := Source_Typ;
6623
      end if;
6624
 
6625
      if S_Typ = Any_Type or else S_Typ = Any_Composite then
6626
         return Ret_Result;
6627
      end if;
6628
 
6629
      --  The order of evaluating T_Typ before S_Typ seems to be critical
6630
      --  because S_Typ can be derived from Etype (Ck_Node), if it's not passed
6631
      --  in, and since Node can be an N_Range node, it might be invalid.
6632
      --  Should there be an assert check somewhere for taking the Etype of
6633
      --  an N_Range node ???
6634
 
6635
      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
6636
         S_Typ := Designated_Type (S_Typ);
6637
         T_Typ := Designated_Type (T_Typ);
6638
         Do_Access := True;
6639
 
6640
         --  A simple optimization for the null case
6641
 
6642
         if Known_Null (Ck_Node) then
6643
            return Ret_Result;
6644
         end if;
6645
      end if;
6646
 
6647
      --  For an N_Range Node, check for a null range and then if not
6648
      --  null generate a range check action.
6649
 
6650
      if Nkind (Ck_Node) = N_Range then
6651
 
6652
         --  There's no point in checking a range against itself
6653
 
6654
         if Ck_Node = Scalar_Range (T_Typ) then
6655
            return Ret_Result;
6656
         end if;
6657
 
6658
         declare
6659
            T_LB       : constant Node_Id := Type_Low_Bound  (T_Typ);
6660
            T_HB       : constant Node_Id := Type_High_Bound (T_Typ);
6661
            Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
6662
            Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
6663
 
6664
            LB         : Node_Id := Low_Bound (Ck_Node);
6665
            HB         : Node_Id := High_Bound (Ck_Node);
6666
            Known_LB   : Boolean;
6667
            Known_HB   : Boolean;
6668
 
6669
            Null_Range     : Boolean;
6670
            Out_Of_Range_L : Boolean;
6671
            Out_Of_Range_H : Boolean;
6672
 
6673
         begin
6674
            --  Compute what is known at compile time
6675
 
6676
            if Known_T_LB and Known_T_HB then
6677
               if Compile_Time_Known_Value (LB) then
6678
                  Known_LB := True;
6679
 
6680
               --  There's no point in checking that a bound is within its
6681
               --  own range so pretend that it is known in this case. First
6682
               --  deal with low bound.
6683
 
6684
               elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
6685
                 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
6686
               then
6687
                  LB := T_LB;
6688
                  Known_LB := True;
6689
 
6690
               else
6691
                  Known_LB := False;
6692
               end if;
6693
 
6694
               --  Likewise for the high bound
6695
 
6696
               if Compile_Time_Known_Value (HB) then
6697
                  Known_HB := True;
6698
 
6699
               elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
6700
                 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
6701
               then
6702
                  HB := T_HB;
6703
                  Known_HB := True;
6704
 
6705
               else
6706
                  Known_HB := False;
6707
               end if;
6708
            end if;
6709
 
6710
            --  Check for case where everything is static and we can do the
6711
            --  check at compile time. This is skipped if we have an access
6712
            --  type, since the access value may be null.
6713
 
6714
            --  ??? This code can be improved since you only need to know that
6715
            --  the two respective bounds (LB & T_LB or HB & T_HB) are known at
6716
            --  compile time to emit pertinent messages.
6717
 
6718
            if Known_T_LB and Known_T_HB and Known_LB and Known_HB
6719
              and not Do_Access
6720
            then
6721
               --  Floating-point case
6722
 
6723
               if Is_Floating_Point_Type (S_Typ) then
6724
                  Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
6725
                  Out_Of_Range_L :=
6726
                    (Expr_Value_R (LB) < Expr_Value_R (T_LB))
6727
                      or else
6728
                    (Expr_Value_R (LB) > Expr_Value_R (T_HB));
6729
 
6730
                  Out_Of_Range_H :=
6731
                    (Expr_Value_R (HB) > Expr_Value_R (T_HB))
6732
                      or else
6733
                    (Expr_Value_R (HB) < Expr_Value_R (T_LB));
6734
 
6735
               --  Fixed or discrete type case
6736
 
6737
               else
6738
                  Null_Range := Expr_Value (HB) < Expr_Value (LB);
6739
                  Out_Of_Range_L :=
6740
                    (Expr_Value (LB) < Expr_Value (T_LB))
6741
                      or else
6742
                    (Expr_Value (LB) > Expr_Value (T_HB));
6743
 
6744
                  Out_Of_Range_H :=
6745
                    (Expr_Value (HB) > Expr_Value (T_HB))
6746
                      or else
6747
                    (Expr_Value (HB) < Expr_Value (T_LB));
6748
               end if;
6749
 
6750
               if not Null_Range then
6751
                  if Out_Of_Range_L then
6752
                     if No (Warn_Node) then
6753
                        Add_Check
6754
                          (Compile_Time_Constraint_Error
6755
                             (Low_Bound (Ck_Node),
6756
                              "static value out of range of}?", T_Typ));
6757
 
6758
                     else
6759
                        Add_Check
6760
                          (Compile_Time_Constraint_Error
6761
                            (Wnode,
6762
                             "static range out of bounds of}?", T_Typ));
6763
                     end if;
6764
                  end if;
6765
 
6766
                  if Out_Of_Range_H then
6767
                     if No (Warn_Node) then
6768
                        Add_Check
6769
                          (Compile_Time_Constraint_Error
6770
                             (High_Bound (Ck_Node),
6771
                              "static value out of range of}?", T_Typ));
6772
 
6773
                     else
6774
                        Add_Check
6775
                          (Compile_Time_Constraint_Error
6776
                             (Wnode,
6777
                              "static range out of bounds of}?", T_Typ));
6778
                     end if;
6779
                  end if;
6780
               end if;
6781
 
6782
            else
6783
               declare
6784
                  LB : Node_Id := Low_Bound (Ck_Node);
6785
                  HB : Node_Id := High_Bound (Ck_Node);
6786
 
6787
               begin
6788
                  --  If either bound is a discriminant and we are within the
6789
                  --  record declaration, it is a use of the discriminant in a
6790
                  --  constraint of a component, and nothing can be checked
6791
                  --  here. The check will be emitted within the init proc.
6792
                  --  Before then, the discriminal has no real meaning.
6793
                  --  Similarly, if the entity is a discriminal, there is no
6794
                  --  check to perform yet.
6795
 
6796
                  --  The same holds within a discriminated synchronized type,
6797
                  --  where the discriminant may constrain a component or an
6798
                  --  entry family.
6799
 
6800
                  if Nkind (LB) = N_Identifier
6801
                    and then Denotes_Discriminant (LB, True)
6802
                  then
6803
                     if Current_Scope = Scope (Entity (LB))
6804
                       or else Is_Concurrent_Type (Current_Scope)
6805
                       or else Ekind (Entity (LB)) /= E_Discriminant
6806
                     then
6807
                        return Ret_Result;
6808
                     else
6809
                        LB :=
6810
                          New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6811
                     end if;
6812
                  end if;
6813
 
6814
                  if Nkind (HB) = N_Identifier
6815
                    and then Denotes_Discriminant (HB, True)
6816
                  then
6817
                     if Current_Scope = Scope (Entity (HB))
6818
                       or else Is_Concurrent_Type (Current_Scope)
6819
                       or else Ekind (Entity (HB)) /= E_Discriminant
6820
                     then
6821
                        return Ret_Result;
6822
                     else
6823
                        HB :=
6824
                          New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6825
                     end if;
6826
                  end if;
6827
 
6828
                  Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6829
                  Set_Paren_Count (Cond, 1);
6830
 
6831
                  Cond :=
6832
                    Make_And_Then (Loc,
6833
                      Left_Opnd =>
6834
                        Make_Op_Ge (Loc,
6835
                          Left_Opnd  => Duplicate_Subexpr_No_Checks (HB),
6836
                          Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
6837
                      Right_Opnd => Cond);
6838
               end;
6839
            end if;
6840
         end;
6841
 
6842
      elsif Is_Scalar_Type (S_Typ) then
6843
 
6844
         --  This somewhat duplicates what Apply_Scalar_Range_Check does,
6845
         --  except the above simply sets a flag in the node and lets
6846
         --  gigi generate the check base on the Etype of the expression.
6847
         --  Sometimes, however we want to do a dynamic check against an
6848
         --  arbitrary target type, so we do that here.
6849
 
6850
         if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6851
            Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6852
 
6853
         --  For literals, we can tell if the constraint error will be
6854
         --  raised at compile time, so we never need a dynamic check, but
6855
         --  if the exception will be raised, then post the usual warning,
6856
         --  and replace the literal with a raise constraint error
6857
         --  expression. As usual, skip this for access types
6858
 
6859
         elsif Compile_Time_Known_Value (Ck_Node)
6860
           and then not Do_Access
6861
         then
6862
            declare
6863
               LB : constant Node_Id := Type_Low_Bound (T_Typ);
6864
               UB : constant Node_Id := Type_High_Bound (T_Typ);
6865
 
6866
               Out_Of_Range  : Boolean;
6867
               Static_Bounds : constant Boolean :=
6868
                                 Compile_Time_Known_Value (LB)
6869
                                   and Compile_Time_Known_Value (UB);
6870
 
6871
            begin
6872
               --  Following range tests should use Sem_Eval routine ???
6873
 
6874
               if Static_Bounds then
6875
                  if Is_Floating_Point_Type (S_Typ) then
6876
                     Out_Of_Range :=
6877
                       (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6878
                         or else
6879
                       (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6880
 
6881
                  --  Fixed or discrete type
6882
 
6883
                  else
6884
                     Out_Of_Range :=
6885
                       Expr_Value (Ck_Node) < Expr_Value (LB)
6886
                         or else
6887
                       Expr_Value (Ck_Node) > Expr_Value (UB);
6888
                  end if;
6889
 
6890
                  --  Bounds of the type are static and the literal is out of
6891
                  --  range so output a warning message.
6892
 
6893
                  if Out_Of_Range then
6894
                     if No (Warn_Node) then
6895
                        Add_Check
6896
                          (Compile_Time_Constraint_Error
6897
                             (Ck_Node,
6898
                              "static value out of range of}?", T_Typ));
6899
 
6900
                     else
6901
                        Add_Check
6902
                          (Compile_Time_Constraint_Error
6903
                             (Wnode,
6904
                              "static value out of range of}?", T_Typ));
6905
                     end if;
6906
                  end if;
6907
 
6908
               else
6909
                  Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6910
               end if;
6911
            end;
6912
 
6913
         --  Here for the case of a non-static expression, we need a runtime
6914
         --  check unless the source type range is guaranteed to be in the
6915
         --  range of the target type.
6916
 
6917
         else
6918
            if not In_Subrange_Of (S_Typ, T_Typ) then
6919
               Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6920
            end if;
6921
         end if;
6922
      end if;
6923
 
6924
      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6925
         if Is_Constrained (T_Typ) then
6926
 
6927
            Expr_Actual := Get_Referenced_Object (Ck_Node);
6928
            Exptyp      := Get_Actual_Subtype (Expr_Actual);
6929
 
6930
            if Is_Access_Type (Exptyp) then
6931
               Exptyp := Designated_Type (Exptyp);
6932
            end if;
6933
 
6934
            --  String_Literal case. This needs to be handled specially be-
6935
            --  cause no index types are available for string literals. The
6936
            --  condition is simply:
6937
 
6938
            --    T_Typ'Length = string-literal-length
6939
 
6940
            if Nkind (Expr_Actual) = N_String_Literal then
6941
               null;
6942
 
6943
            --  General array case. Here we have a usable actual subtype for
6944
            --  the expression, and the condition is built from the two types
6945
 
6946
            --     T_Typ'First     < Exptyp'First     or else
6947
            --     T_Typ'Last      > Exptyp'Last      or else
6948
            --     T_Typ'First(1)  < Exptyp'First(1)  or else
6949
            --     T_Typ'Last(1)   > Exptyp'Last(1)   or else
6950
            --     ...
6951
 
6952
            elsif Is_Constrained (Exptyp) then
6953
               declare
6954
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
6955
 
6956
                  L_Index : Node_Id;
6957
                  R_Index : Node_Id;
6958
 
6959
               begin
6960
                  L_Index := First_Index (T_Typ);
6961
                  R_Index := First_Index (Exptyp);
6962
 
6963
                  for Indx in 1 .. Ndims loop
6964
                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
6965
                               or else
6966
                             Nkind (R_Index) = N_Raise_Constraint_Error)
6967
                     then
6968
                        --  Deal with compile time length check. Note that we
6969
                        --  skip this in the access case, because the access
6970
                        --  value may be null, so we cannot know statically.
6971
 
6972
                        if not
6973
                          Subtypes_Statically_Match
6974
                            (Etype (L_Index), Etype (R_Index))
6975
                        then
6976
                           --  If the target type is constrained then we
6977
                           --  have to check for exact equality of bounds
6978
                           --  (required for qualified expressions).
6979
 
6980
                           if Is_Constrained (T_Typ) then
6981
                              Evolve_Or_Else
6982
                                (Cond,
6983
                                 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
6984
                           else
6985
                              Evolve_Or_Else
6986
                                (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6987
                           end if;
6988
                        end if;
6989
 
6990
                        Next (L_Index);
6991
                        Next (R_Index);
6992
                     end if;
6993
                  end loop;
6994
               end;
6995
 
6996
            --  Handle cases where we do not get a usable actual subtype that
6997
            --  is constrained. This happens for example in the function call
6998
            --  and explicit dereference cases. In these cases, we have to get
6999
            --  the length or range from the expression itself, making sure we
7000
            --  do not evaluate it more than once.
7001
 
7002
            --  Here Ck_Node is the original expression, or more properly the
7003
            --  result of applying Duplicate_Expr to the original tree,
7004
            --  forcing the result to be a name.
7005
 
7006
            else
7007
               declare
7008
                  Ndims : constant Nat := Number_Dimensions (T_Typ);
7009
 
7010
               begin
7011
                  --  Build the condition for the explicit dereference case
7012
 
7013
                  for Indx in 1 .. Ndims loop
7014
                     Evolve_Or_Else
7015
                       (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
7016
                  end loop;
7017
               end;
7018
            end if;
7019
 
7020
         else
7021
            --  For a conversion to an unconstrained array type, generate an
7022
            --  Action to check that the bounds of the source value are within
7023
            --  the constraints imposed by the target type (RM 4.6(38)). No
7024
            --  check is needed for a conversion to an access to unconstrained
7025
            --  array type, as 4.6(24.15/2) requires the designated subtypes
7026
            --  of the two access types to statically match.
7027
 
7028
            if Nkind (Parent (Ck_Node)) = N_Type_Conversion
7029
              and then not Do_Access
7030
            then
7031
               declare
7032
                  Opnd_Index : Node_Id;
7033
                  Targ_Index : Node_Id;
7034
                  Opnd_Range : Node_Id;
7035
 
7036
               begin
7037
                  Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
7038
                  Targ_Index := First_Index (T_Typ);
7039
                  while Present (Opnd_Index) loop
7040
 
7041
                     --  If the index is a range, use its bounds. If it is an
7042
                     --  entity (as will be the case if it is a named subtype
7043
                     --  or an itype created for a slice) retrieve its range.
7044
 
7045
                     if Is_Entity_Name (Opnd_Index)
7046
                       and then Is_Type (Entity (Opnd_Index))
7047
                     then
7048
                        Opnd_Range := Scalar_Range (Entity (Opnd_Index));
7049
                     else
7050
                        Opnd_Range := Opnd_Index;
7051
                     end if;
7052
 
7053
                     if Nkind (Opnd_Range) = N_Range then
7054
                        if  Is_In_Range
7055
                             (Low_Bound (Opnd_Range), Etype (Targ_Index),
7056
                              Assume_Valid => True)
7057
                          and then
7058
                            Is_In_Range
7059
                             (High_Bound (Opnd_Range), Etype (Targ_Index),
7060
                              Assume_Valid => True)
7061
                        then
7062
                           null;
7063
 
7064
                        --  If null range, no check needed
7065
 
7066
                        elsif
7067
                          Compile_Time_Known_Value (High_Bound (Opnd_Range))
7068
                            and then
7069
                          Compile_Time_Known_Value (Low_Bound (Opnd_Range))
7070
                            and then
7071
                              Expr_Value (High_Bound (Opnd_Range)) <
7072
                                  Expr_Value (Low_Bound (Opnd_Range))
7073
                        then
7074
                           null;
7075
 
7076
                        elsif Is_Out_Of_Range
7077
                                (Low_Bound (Opnd_Range), Etype (Targ_Index),
7078
                                 Assume_Valid => True)
7079
                          or else
7080
                              Is_Out_Of_Range
7081
                                (High_Bound (Opnd_Range), Etype (Targ_Index),
7082
                                 Assume_Valid => True)
7083
                        then
7084
                           Add_Check
7085
                             (Compile_Time_Constraint_Error
7086
                               (Wnode, "value out of range of}?", T_Typ));
7087
 
7088
                        else
7089
                           Evolve_Or_Else
7090
                             (Cond,
7091
                              Discrete_Range_Cond
7092
                                (Opnd_Range, Etype (Targ_Index)));
7093
                        end if;
7094
                     end if;
7095
 
7096
                     Next_Index (Opnd_Index);
7097
                     Next_Index (Targ_Index);
7098
                  end loop;
7099
               end;
7100
            end if;
7101
         end if;
7102
      end if;
7103
 
7104
      --  Construct the test and insert into the tree
7105
 
7106
      if Present (Cond) then
7107
         if Do_Access then
7108
            Cond := Guard_Access (Cond, Loc, Ck_Node);
7109
         end if;
7110
 
7111
         Add_Check
7112
           (Make_Raise_Constraint_Error (Loc,
7113
             Condition => Cond,
7114
             Reason    => CE_Range_Check_Failed));
7115
      end if;
7116
 
7117
      return Ret_Result;
7118
   end Selected_Range_Checks;
7119
 
7120
   -------------------------------
7121
   -- Storage_Checks_Suppressed --
7122
   -------------------------------
7123
 
7124
   function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
7125
   begin
7126
      if Present (E) and then Checks_May_Be_Suppressed (E) then
7127
         return Is_Check_Suppressed (E, Storage_Check);
7128
      else
7129
         return Scope_Suppress (Storage_Check);
7130
      end if;
7131
   end Storage_Checks_Suppressed;
7132
 
7133
   ---------------------------
7134
   -- Tag_Checks_Suppressed --
7135
   ---------------------------
7136
 
7137
   function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
7138
   begin
7139
      if Present (E) then
7140
         if Kill_Tag_Checks (E) then
7141
            return True;
7142
         elsif Checks_May_Be_Suppressed (E) then
7143
            return Is_Check_Suppressed (E, Tag_Check);
7144
         end if;
7145
      end if;
7146
 
7147
      return Scope_Suppress (Tag_Check);
7148
   end Tag_Checks_Suppressed;
7149
 
7150
   --------------------------
7151
   -- Validity_Check_Range --
7152
   --------------------------
7153
 
7154
   procedure Validity_Check_Range (N : Node_Id) is
7155
   begin
7156
      if Validity_Checks_On and Validity_Check_Operands then
7157
         if Nkind (N) = N_Range then
7158
            Ensure_Valid (Low_Bound (N));
7159
            Ensure_Valid (High_Bound (N));
7160
         end if;
7161
      end if;
7162
   end Validity_Check_Range;
7163
 
7164
   --------------------------------
7165
   -- Validity_Checks_Suppressed --
7166
   --------------------------------
7167
 
7168
   function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
7169
   begin
7170
      if Present (E) and then Checks_May_Be_Suppressed (E) then
7171
         return Is_Check_Suppressed (E, Validity_Check);
7172
      else
7173
         return Scope_Suppress (Validity_Check);
7174
      end if;
7175
   end Validity_Checks_Suppressed;
7176
 
7177
end Checks;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.