1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- E X P _ A G G R --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Errout; use Errout;
|
32 |
|
|
with Expander; use Expander;
|
33 |
|
|
with Exp_Util; use Exp_Util;
|
34 |
|
|
with Exp_Ch3; use Exp_Ch3;
|
35 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
36 |
|
|
with Exp_Ch9; use Exp_Ch9;
|
37 |
|
|
with Exp_Tss; use Exp_Tss;
|
38 |
|
|
with Fname; use Fname;
|
39 |
|
|
with Freeze; use Freeze;
|
40 |
|
|
with Itypes; use Itypes;
|
41 |
|
|
with Lib; use Lib;
|
42 |
|
|
with Namet; use Namet;
|
43 |
|
|
with Nmake; use Nmake;
|
44 |
|
|
with Nlists; use Nlists;
|
45 |
|
|
with Opt; use Opt;
|
46 |
|
|
with Restrict; use Restrict;
|
47 |
|
|
with Rident; use Rident;
|
48 |
|
|
with Rtsfind; use Rtsfind;
|
49 |
|
|
with Ttypes; use Ttypes;
|
50 |
|
|
with Sem; use Sem;
|
51 |
|
|
with Sem_Aux; use Sem_Aux;
|
52 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
53 |
|
|
with Sem_Eval; use Sem_Eval;
|
54 |
|
|
with Sem_Res; use Sem_Res;
|
55 |
|
|
with Sem_Util; use Sem_Util;
|
56 |
|
|
with Sinfo; use Sinfo;
|
57 |
|
|
with Snames; use Snames;
|
58 |
|
|
with Stand; use Stand;
|
59 |
|
|
with Targparm; use Targparm;
|
60 |
|
|
with Tbuild; use Tbuild;
|
61 |
|
|
with Uintp; use Uintp;
|
62 |
|
|
|
63 |
|
|
package body Exp_Aggr is
|
64 |
|
|
|
65 |
|
|
type Case_Bounds is record
|
66 |
|
|
Choice_Lo : Node_Id;
|
67 |
|
|
Choice_Hi : Node_Id;
|
68 |
|
|
Choice_Node : Node_Id;
|
69 |
|
|
end record;
|
70 |
|
|
|
71 |
|
|
type Case_Table_Type is array (Nat range <>) of Case_Bounds;
|
72 |
|
|
-- Table type used by Check_Case_Choices procedure
|
73 |
|
|
|
74 |
|
|
function Must_Slide
|
75 |
|
|
(Obj_Type : Entity_Id;
|
76 |
|
|
Typ : Entity_Id) return Boolean;
|
77 |
|
|
-- A static array aggregate in an object declaration can in most cases be
|
78 |
|
|
-- expanded in place. The one exception is when the aggregate is given
|
79 |
|
|
-- with component associations that specify different bounds from those of
|
80 |
|
|
-- the type definition in the object declaration. In this pathological
|
81 |
|
|
-- case the aggregate must slide, and we must introduce an intermediate
|
82 |
|
|
-- temporary to hold it.
|
83 |
|
|
--
|
84 |
|
|
-- The same holds in an assignment to one-dimensional array of arrays,
|
85 |
|
|
-- when a component may be given with bounds that differ from those of the
|
86 |
|
|
-- component type.
|
87 |
|
|
|
88 |
|
|
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
|
89 |
|
|
-- Sort the Case Table using the Lower Bound of each Choice as the key.
|
90 |
|
|
-- A simple insertion sort is used since the number of choices in a case
|
91 |
|
|
-- statement of variant part will usually be small and probably in near
|
92 |
|
|
-- sorted order.
|
93 |
|
|
|
94 |
|
|
function Has_Default_Init_Comps (N : Node_Id) return Boolean;
|
95 |
|
|
-- N is an aggregate (record or array). Checks the presence of default
|
96 |
|
|
-- initialization (<>) in any component (Ada 2005: AI-287)
|
97 |
|
|
|
98 |
|
|
function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
|
99 |
|
|
-- Returns true if N is an aggregate used to initialize the components
|
100 |
|
|
-- of an statically allocated dispatch table.
|
101 |
|
|
|
102 |
|
|
------------------------------------------------------
|
103 |
|
|
-- Local subprograms for Record Aggregate Expansion --
|
104 |
|
|
------------------------------------------------------
|
105 |
|
|
|
106 |
|
|
procedure Expand_Record_Aggregate
|
107 |
|
|
(N : Node_Id;
|
108 |
|
|
Orig_Tag : Node_Id := Empty;
|
109 |
|
|
Parent_Expr : Node_Id := Empty);
|
110 |
|
|
-- This is the top level procedure for record aggregate expansion.
|
111 |
|
|
-- Expansion for record aggregates needs expand aggregates for tagged
|
112 |
|
|
-- record types. Specifically Expand_Record_Aggregate adds the Tag
|
113 |
|
|
-- field in front of the Component_Association list that was created
|
114 |
|
|
-- during resolution by Resolve_Record_Aggregate.
|
115 |
|
|
--
|
116 |
|
|
-- N is the record aggregate node.
|
117 |
|
|
-- Orig_Tag is the value of the Tag that has to be provided for this
|
118 |
|
|
-- specific aggregate. It carries the tag corresponding to the type
|
119 |
|
|
-- of the outermost aggregate during the recursive expansion
|
120 |
|
|
-- Parent_Expr is the ancestor part of the original extension
|
121 |
|
|
-- aggregate
|
122 |
|
|
|
123 |
|
|
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
|
124 |
|
|
-- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
|
125 |
|
|
-- aggregate (which can only be a record type, this procedure is only used
|
126 |
|
|
-- for record types). Transform the given aggregate into a sequence of
|
127 |
|
|
-- assignments performed component by component.
|
128 |
|
|
|
129 |
|
|
function Build_Record_Aggr_Code
|
130 |
|
|
(N : Node_Id;
|
131 |
|
|
Typ : Entity_Id;
|
132 |
|
|
Lhs : Node_Id;
|
133 |
|
|
Flist : Node_Id := Empty;
|
134 |
|
|
Obj : Entity_Id := Empty;
|
135 |
|
|
Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
|
136 |
|
|
-- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
|
137 |
|
|
-- aggregate. Target is an expression containing the location on which the
|
138 |
|
|
-- component by component assignments will take place. Returns the list of
|
139 |
|
|
-- assignments plus all other adjustments needed for tagged and controlled
|
140 |
|
|
-- types. Flist is an expression representing the finalization list on
|
141 |
|
|
-- which to attach the controlled components if any. Obj is present in the
|
142 |
|
|
-- object declaration and dynamic allocation cases, it contains an entity
|
143 |
|
|
-- that allows to know if the value being created needs to be attached to
|
144 |
|
|
-- the final list in case of pragma Finalize_Storage_Only.
|
145 |
|
|
--
|
146 |
|
|
-- ???
|
147 |
|
|
-- The meaning of the Obj formal is extremely unclear. *What* entity
|
148 |
|
|
-- should be passed? For the object declaration case we may guess that
|
149 |
|
|
-- this is the object being declared, but what about the allocator case?
|
150 |
|
|
--
|
151 |
|
|
-- Is_Limited_Ancestor_Expansion indicates that the function has been
|
152 |
|
|
-- called recursively to expand the limited ancestor to avoid copying it.
|
153 |
|
|
|
154 |
|
|
function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
|
155 |
|
|
-- Return true if one of the component is of a discriminated type with
|
156 |
|
|
-- defaults. An aggregate for a type with mutable components must be
|
157 |
|
|
-- expanded into individual assignments.
|
158 |
|
|
|
159 |
|
|
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
|
160 |
|
|
-- If the type of the aggregate is a type extension with renamed discrimi-
|
161 |
|
|
-- nants, we must initialize the hidden discriminants of the parent.
|
162 |
|
|
-- Otherwise, the target object must not be initialized. The discriminants
|
163 |
|
|
-- are initialized by calling the initialization procedure for the type.
|
164 |
|
|
-- This is incorrect if the initialization of other components has any
|
165 |
|
|
-- side effects. We restrict this call to the case where the parent type
|
166 |
|
|
-- has a variant part, because this is the only case where the hidden
|
167 |
|
|
-- discriminants are accessed, namely when calling discriminant checking
|
168 |
|
|
-- functions of the parent type, and when applying a stream attribute to
|
169 |
|
|
-- an object of the derived type.
|
170 |
|
|
|
171 |
|
|
-----------------------------------------------------
|
172 |
|
|
-- Local Subprograms for Array Aggregate Expansion --
|
173 |
|
|
-----------------------------------------------------
|
174 |
|
|
|
175 |
|
|
function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
|
176 |
|
|
-- Very large static aggregates present problems to the back-end, and
|
177 |
|
|
-- are transformed into assignments and loops. This function verifies
|
178 |
|
|
-- that the total number of components of an aggregate is acceptable
|
179 |
|
|
-- for transformation into a purely positional static form. It is called
|
180 |
|
|
-- prior to calling Flatten.
|
181 |
|
|
-- This function also detects and warns about one-component aggregates
|
182 |
|
|
-- that appear in a non-static context. Even if the component value is
|
183 |
|
|
-- static, such an aggregate must be expanded into an assignment.
|
184 |
|
|
|
185 |
|
|
procedure Convert_Array_Aggr_In_Allocator
|
186 |
|
|
(Decl : Node_Id;
|
187 |
|
|
Aggr : Node_Id;
|
188 |
|
|
Target : Node_Id);
|
189 |
|
|
-- If the aggregate appears within an allocator and can be expanded in
|
190 |
|
|
-- place, this routine generates the individual assignments to components
|
191 |
|
|
-- of the designated object. This is an optimization over the general
|
192 |
|
|
-- case, where a temporary is first created on the stack and then used to
|
193 |
|
|
-- construct the allocated object on the heap.
|
194 |
|
|
|
195 |
|
|
procedure Convert_To_Positional
|
196 |
|
|
(N : Node_Id;
|
197 |
|
|
Max_Others_Replicate : Nat := 5;
|
198 |
|
|
Handle_Bit_Packed : Boolean := False);
|
199 |
|
|
-- If possible, convert named notation to positional notation. This
|
200 |
|
|
-- conversion is possible only in some static cases. If the conversion is
|
201 |
|
|
-- possible, then N is rewritten with the analyzed converted aggregate.
|
202 |
|
|
-- The parameter Max_Others_Replicate controls the maximum number of
|
203 |
|
|
-- values corresponding to an others choice that will be converted to
|
204 |
|
|
-- positional notation (the default of 5 is the normal limit, and reflects
|
205 |
|
|
-- the fact that normally the loop is better than a lot of separate
|
206 |
|
|
-- assignments). Note that this limit gets overridden in any case if
|
207 |
|
|
-- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
|
208 |
|
|
-- set. The parameter Handle_Bit_Packed is usually set False (since we do
|
209 |
|
|
-- not expect the back end to handle bit packed arrays, so the normal case
|
210 |
|
|
-- of conversion is pointless), but in the special case of a call from
|
211 |
|
|
-- Packed_Array_Aggregate_Handled, we set this parameter to True, since
|
212 |
|
|
-- these are cases we handle in there.
|
213 |
|
|
|
214 |
|
|
procedure Expand_Array_Aggregate (N : Node_Id);
|
215 |
|
|
-- This is the top-level routine to perform array aggregate expansion.
|
216 |
|
|
-- N is the N_Aggregate node to be expanded.
|
217 |
|
|
|
218 |
|
|
function Backend_Processing_Possible (N : Node_Id) return Boolean;
|
219 |
|
|
-- This function checks if array aggregate N can be processed directly
|
220 |
|
|
-- by the backend. If this is the case True is returned.
|
221 |
|
|
|
222 |
|
|
function Build_Array_Aggr_Code
|
223 |
|
|
(N : Node_Id;
|
224 |
|
|
Ctype : Entity_Id;
|
225 |
|
|
Index : Node_Id;
|
226 |
|
|
Into : Node_Id;
|
227 |
|
|
Scalar_Comp : Boolean;
|
228 |
|
|
Indices : List_Id := No_List;
|
229 |
|
|
Flist : Node_Id := Empty) return List_Id;
|
230 |
|
|
-- This recursive routine returns a list of statements containing the
|
231 |
|
|
-- loops and assignments that are needed for the expansion of the array
|
232 |
|
|
-- aggregate N.
|
233 |
|
|
--
|
234 |
|
|
-- N is the (sub-)aggregate node to be expanded into code. This node
|
235 |
|
|
-- has been fully analyzed, and its Etype is properly set.
|
236 |
|
|
--
|
237 |
|
|
-- Index is the index node corresponding to the array sub-aggregate N.
|
238 |
|
|
--
|
239 |
|
|
-- Into is the target expression into which we are copying the aggregate.
|
240 |
|
|
-- Note that this node may not have been analyzed yet, and so the Etype
|
241 |
|
|
-- field may not be set.
|
242 |
|
|
--
|
243 |
|
|
-- Scalar_Comp is True if the component type of the aggregate is scalar.
|
244 |
|
|
--
|
245 |
|
|
-- Indices is the current list of expressions used to index the
|
246 |
|
|
-- object we are writing into.
|
247 |
|
|
--
|
248 |
|
|
-- Flist is an expression representing the finalization list on which
|
249 |
|
|
-- to attach the controlled components if any.
|
250 |
|
|
|
251 |
|
|
function Number_Of_Choices (N : Node_Id) return Nat;
|
252 |
|
|
-- Returns the number of discrete choices (not including the others choice
|
253 |
|
|
-- if present) contained in (sub-)aggregate N.
|
254 |
|
|
|
255 |
|
|
function Late_Expansion
|
256 |
|
|
(N : Node_Id;
|
257 |
|
|
Typ : Entity_Id;
|
258 |
|
|
Target : Node_Id;
|
259 |
|
|
Flist : Node_Id := Empty;
|
260 |
|
|
Obj : Entity_Id := Empty) return List_Id;
|
261 |
|
|
-- N is a nested (record or array) aggregate that has been marked with
|
262 |
|
|
-- 'Delay_Expansion'. Typ is the expected type of the aggregate and Target
|
263 |
|
|
-- is a (duplicable) expression that will hold the result of the aggregate
|
264 |
|
|
-- expansion. Flist is the finalization list to be used to attach
|
265 |
|
|
-- controlled components. 'Obj' when non empty, carries the original
|
266 |
|
|
-- object being initialized in order to know if it needs to be attached to
|
267 |
|
|
-- the previous parameter which may not be the case in the case where
|
268 |
|
|
-- Finalize_Storage_Only is set. Basically this procedure is used to
|
269 |
|
|
-- implement top-down expansions of nested aggregates. This is necessary
|
270 |
|
|
-- for avoiding temporaries at each level as well as for propagating the
|
271 |
|
|
-- right internal finalization list.
|
272 |
|
|
|
273 |
|
|
function Make_OK_Assignment_Statement
|
274 |
|
|
(Sloc : Source_Ptr;
|
275 |
|
|
Name : Node_Id;
|
276 |
|
|
Expression : Node_Id) return Node_Id;
|
277 |
|
|
-- This is like Make_Assignment_Statement, except that Assignment_OK
|
278 |
|
|
-- is set in the left operand. All assignments built by this unit
|
279 |
|
|
-- use this routine. This is needed to deal with assignments to
|
280 |
|
|
-- initialized constants that are done in place.
|
281 |
|
|
|
282 |
|
|
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
|
283 |
|
|
-- Given an array aggregate, this function handles the case of a packed
|
284 |
|
|
-- array aggregate with all constant values, where the aggregate can be
|
285 |
|
|
-- evaluated at compile time. If this is possible, then N is rewritten
|
286 |
|
|
-- to be its proper compile time value with all the components properly
|
287 |
|
|
-- assembled. The expression is analyzed and resolved and True is
|
288 |
|
|
-- returned. If this transformation is not possible, N is unchanged
|
289 |
|
|
-- and False is returned
|
290 |
|
|
|
291 |
|
|
function Safe_Slice_Assignment (N : Node_Id) return Boolean;
|
292 |
|
|
-- If a slice assignment has an aggregate with a single others_choice,
|
293 |
|
|
-- the assignment can be done in place even if bounds are not static,
|
294 |
|
|
-- by converting it into a loop over the discrete range of the slice.
|
295 |
|
|
|
296 |
|
|
------------------
|
297 |
|
|
-- Aggr_Size_OK --
|
298 |
|
|
------------------
|
299 |
|
|
|
300 |
|
|
function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
|
301 |
|
|
Lo : Node_Id;
|
302 |
|
|
Hi : Node_Id;
|
303 |
|
|
Indx : Node_Id;
|
304 |
|
|
Siz : Int;
|
305 |
|
|
Lov : Uint;
|
306 |
|
|
Hiv : Uint;
|
307 |
|
|
|
308 |
|
|
-- The following constant determines the maximum size of an
|
309 |
|
|
-- array aggregate produced by converting named to positional
|
310 |
|
|
-- notation (e.g. from others clauses). This avoids running
|
311 |
|
|
-- away with attempts to convert huge aggregates, which hit
|
312 |
|
|
-- memory limits in the backend.
|
313 |
|
|
|
314 |
|
|
-- The normal limit is 5000, but we increase this limit to
|
315 |
|
|
-- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code)
|
316 |
|
|
-- or Restrictions (No_Implicit_Loops) is specified, since in
|
317 |
|
|
-- either case, we are at risk of declaring the program illegal
|
318 |
|
|
-- because of this limit.
|
319 |
|
|
|
320 |
|
|
Max_Aggr_Size : constant Nat :=
|
321 |
|
|
5000 + (2 ** 24 - 5000) *
|
322 |
|
|
Boolean'Pos
|
323 |
|
|
(Restriction_Active (No_Elaboration_Code)
|
324 |
|
|
or else
|
325 |
|
|
Restriction_Active (No_Implicit_Loops));
|
326 |
|
|
|
327 |
|
|
function Component_Count (T : Entity_Id) return Int;
|
328 |
|
|
-- The limit is applied to the total number of components that the
|
329 |
|
|
-- aggregate will have, which is the number of static expressions
|
330 |
|
|
-- that will appear in the flattened array. This requires a recursive
|
331 |
|
|
-- computation of the number of scalar components of the structure.
|
332 |
|
|
|
333 |
|
|
---------------------
|
334 |
|
|
-- Component_Count --
|
335 |
|
|
---------------------
|
336 |
|
|
|
337 |
|
|
function Component_Count (T : Entity_Id) return Int is
|
338 |
|
|
Res : Int := 0;
|
339 |
|
|
Comp : Entity_Id;
|
340 |
|
|
|
341 |
|
|
begin
|
342 |
|
|
if Is_Scalar_Type (T) then
|
343 |
|
|
return 1;
|
344 |
|
|
|
345 |
|
|
elsif Is_Record_Type (T) then
|
346 |
|
|
Comp := First_Component (T);
|
347 |
|
|
while Present (Comp) loop
|
348 |
|
|
Res := Res + Component_Count (Etype (Comp));
|
349 |
|
|
Next_Component (Comp);
|
350 |
|
|
end loop;
|
351 |
|
|
|
352 |
|
|
return Res;
|
353 |
|
|
|
354 |
|
|
elsif Is_Array_Type (T) then
|
355 |
|
|
declare
|
356 |
|
|
Lo : constant Node_Id :=
|
357 |
|
|
Type_Low_Bound (Etype (First_Index (T)));
|
358 |
|
|
Hi : constant Node_Id :=
|
359 |
|
|
Type_High_Bound (Etype (First_Index (T)));
|
360 |
|
|
|
361 |
|
|
Siz : constant Int := Component_Count (Component_Type (T));
|
362 |
|
|
|
363 |
|
|
begin
|
364 |
|
|
if not Compile_Time_Known_Value (Lo)
|
365 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
366 |
|
|
then
|
367 |
|
|
return 0;
|
368 |
|
|
else
|
369 |
|
|
return
|
370 |
|
|
Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
|
371 |
|
|
end if;
|
372 |
|
|
end;
|
373 |
|
|
|
374 |
|
|
else
|
375 |
|
|
-- Can only be a null for an access type
|
376 |
|
|
|
377 |
|
|
return 1;
|
378 |
|
|
end if;
|
379 |
|
|
end Component_Count;
|
380 |
|
|
|
381 |
|
|
-- Start of processing for Aggr_Size_OK
|
382 |
|
|
|
383 |
|
|
begin
|
384 |
|
|
Siz := Component_Count (Component_Type (Typ));
|
385 |
|
|
|
386 |
|
|
Indx := First_Index (Typ);
|
387 |
|
|
while Present (Indx) loop
|
388 |
|
|
Lo := Type_Low_Bound (Etype (Indx));
|
389 |
|
|
Hi := Type_High_Bound (Etype (Indx));
|
390 |
|
|
|
391 |
|
|
-- Bounds need to be known at compile time
|
392 |
|
|
|
393 |
|
|
if not Compile_Time_Known_Value (Lo)
|
394 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
395 |
|
|
then
|
396 |
|
|
return False;
|
397 |
|
|
end if;
|
398 |
|
|
|
399 |
|
|
Lov := Expr_Value (Lo);
|
400 |
|
|
Hiv := Expr_Value (Hi);
|
401 |
|
|
|
402 |
|
|
-- A flat array is always safe
|
403 |
|
|
|
404 |
|
|
if Hiv < Lov then
|
405 |
|
|
return True;
|
406 |
|
|
end if;
|
407 |
|
|
|
408 |
|
|
-- One-component aggregates are suspicious, and if the context type
|
409 |
|
|
-- is an object declaration with non-static bounds it will trip gcc;
|
410 |
|
|
-- such an aggregate must be expanded into a single assignment.
|
411 |
|
|
|
412 |
|
|
if Hiv = Lov
|
413 |
|
|
and then Nkind (Parent (N)) = N_Object_Declaration
|
414 |
|
|
then
|
415 |
|
|
declare
|
416 |
|
|
Index_Type : constant Entity_Id :=
|
417 |
|
|
Etype
|
418 |
|
|
(First_Index
|
419 |
|
|
(Etype (Defining_Identifier (Parent (N)))));
|
420 |
|
|
Indx : Node_Id;
|
421 |
|
|
|
422 |
|
|
begin
|
423 |
|
|
if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
|
424 |
|
|
or else not Compile_Time_Known_Value
|
425 |
|
|
(Type_High_Bound (Index_Type))
|
426 |
|
|
then
|
427 |
|
|
if Present (Component_Associations (N)) then
|
428 |
|
|
Indx :=
|
429 |
|
|
First (Choices (First (Component_Associations (N))));
|
430 |
|
|
if Is_Entity_Name (Indx)
|
431 |
|
|
and then not Is_Type (Entity (Indx))
|
432 |
|
|
then
|
433 |
|
|
Error_Msg_N
|
434 |
|
|
("single component aggregate in non-static context?",
|
435 |
|
|
Indx);
|
436 |
|
|
Error_Msg_N ("\maybe subtype name was meant?", Indx);
|
437 |
|
|
end if;
|
438 |
|
|
end if;
|
439 |
|
|
|
440 |
|
|
return False;
|
441 |
|
|
end if;
|
442 |
|
|
end;
|
443 |
|
|
end if;
|
444 |
|
|
|
445 |
|
|
declare
|
446 |
|
|
Rng : constant Uint := Hiv - Lov + 1;
|
447 |
|
|
|
448 |
|
|
begin
|
449 |
|
|
-- Check if size is too large
|
450 |
|
|
|
451 |
|
|
if not UI_Is_In_Int_Range (Rng) then
|
452 |
|
|
return False;
|
453 |
|
|
end if;
|
454 |
|
|
|
455 |
|
|
Siz := Siz * UI_To_Int (Rng);
|
456 |
|
|
end;
|
457 |
|
|
|
458 |
|
|
if Siz <= 0
|
459 |
|
|
or else Siz > Max_Aggr_Size
|
460 |
|
|
then
|
461 |
|
|
return False;
|
462 |
|
|
end if;
|
463 |
|
|
|
464 |
|
|
-- Bounds must be in integer range, for later array construction
|
465 |
|
|
|
466 |
|
|
if not UI_Is_In_Int_Range (Lov)
|
467 |
|
|
or else
|
468 |
|
|
not UI_Is_In_Int_Range (Hiv)
|
469 |
|
|
then
|
470 |
|
|
return False;
|
471 |
|
|
end if;
|
472 |
|
|
|
473 |
|
|
Next_Index (Indx);
|
474 |
|
|
end loop;
|
475 |
|
|
|
476 |
|
|
return True;
|
477 |
|
|
end Aggr_Size_OK;
|
478 |
|
|
|
479 |
|
|
---------------------------------
|
480 |
|
|
-- Backend_Processing_Possible --
|
481 |
|
|
---------------------------------
|
482 |
|
|
|
483 |
|
|
-- Backend processing by Gigi/gcc is possible only if all the following
|
484 |
|
|
-- conditions are met:
|
485 |
|
|
|
486 |
|
|
-- 1. N is fully positional
|
487 |
|
|
|
488 |
|
|
-- 2. N is not a bit-packed array aggregate;
|
489 |
|
|
|
490 |
|
|
-- 3. The size of N's array type must be known at compile time. Note
|
491 |
|
|
-- that this implies that the component size is also known
|
492 |
|
|
|
493 |
|
|
-- 4. The array type of N does not follow the Fortran layout convention
|
494 |
|
|
-- or if it does it must be 1 dimensional.
|
495 |
|
|
|
496 |
|
|
-- 5. The array component type may not be tagged (which could necessitate
|
497 |
|
|
-- reassignment of proper tags).
|
498 |
|
|
|
499 |
|
|
-- 6. The array component type must not have unaligned bit components
|
500 |
|
|
|
501 |
|
|
-- 7. None of the components of the aggregate may be bit unaligned
|
502 |
|
|
-- components.
|
503 |
|
|
|
504 |
|
|
-- 8. There cannot be delayed components, since we do not know enough
|
505 |
|
|
-- at this stage to know if back end processing is possible.
|
506 |
|
|
|
507 |
|
|
-- 9. There cannot be any discriminated record components, since the
|
508 |
|
|
-- back end cannot handle this complex case.
|
509 |
|
|
|
510 |
|
|
-- 10. No controlled actions need to be generated for components
|
511 |
|
|
|
512 |
|
|
-- 11. For a VM back end, the array should have no aliased components
|
513 |
|
|
|
514 |
|
|
function Backend_Processing_Possible (N : Node_Id) return Boolean is
|
515 |
|
|
Typ : constant Entity_Id := Etype (N);
|
516 |
|
|
-- Typ is the correct constrained array subtype of the aggregate
|
517 |
|
|
|
518 |
|
|
function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
|
519 |
|
|
-- This routine checks components of aggregate N, enforcing checks
|
520 |
|
|
-- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
|
521 |
|
|
-- performed on subaggregates. The Index value is the current index
|
522 |
|
|
-- being checked in the multi-dimensional case.
|
523 |
|
|
|
524 |
|
|
---------------------
|
525 |
|
|
-- Component_Check --
|
526 |
|
|
---------------------
|
527 |
|
|
|
528 |
|
|
function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
|
529 |
|
|
Expr : Node_Id;
|
530 |
|
|
|
531 |
|
|
begin
|
532 |
|
|
-- Checks 1: (no component associations)
|
533 |
|
|
|
534 |
|
|
if Present (Component_Associations (N)) then
|
535 |
|
|
return False;
|
536 |
|
|
end if;
|
537 |
|
|
|
538 |
|
|
-- Checks on components
|
539 |
|
|
|
540 |
|
|
-- Recurse to check subaggregates, which may appear in qualified
|
541 |
|
|
-- expressions. If delayed, the front-end will have to expand.
|
542 |
|
|
-- If the component is a discriminated record, treat as non-static,
|
543 |
|
|
-- as the back-end cannot handle this properly.
|
544 |
|
|
|
545 |
|
|
Expr := First (Expressions (N));
|
546 |
|
|
while Present (Expr) loop
|
547 |
|
|
|
548 |
|
|
-- Checks 8: (no delayed components)
|
549 |
|
|
|
550 |
|
|
if Is_Delayed_Aggregate (Expr) then
|
551 |
|
|
return False;
|
552 |
|
|
end if;
|
553 |
|
|
|
554 |
|
|
-- Checks 9: (no discriminated records)
|
555 |
|
|
|
556 |
|
|
if Present (Etype (Expr))
|
557 |
|
|
and then Is_Record_Type (Etype (Expr))
|
558 |
|
|
and then Has_Discriminants (Etype (Expr))
|
559 |
|
|
then
|
560 |
|
|
return False;
|
561 |
|
|
end if;
|
562 |
|
|
|
563 |
|
|
-- Checks 7. Component must not be bit aligned component
|
564 |
|
|
|
565 |
|
|
if Possible_Bit_Aligned_Component (Expr) then
|
566 |
|
|
return False;
|
567 |
|
|
end if;
|
568 |
|
|
|
569 |
|
|
-- Recursion to following indexes for multiple dimension case
|
570 |
|
|
|
571 |
|
|
if Present (Next_Index (Index))
|
572 |
|
|
and then not Component_Check (Expr, Next_Index (Index))
|
573 |
|
|
then
|
574 |
|
|
return False;
|
575 |
|
|
end if;
|
576 |
|
|
|
577 |
|
|
-- All checks for that component finished, on to next
|
578 |
|
|
|
579 |
|
|
Next (Expr);
|
580 |
|
|
end loop;
|
581 |
|
|
|
582 |
|
|
return True;
|
583 |
|
|
end Component_Check;
|
584 |
|
|
|
585 |
|
|
-- Start of processing for Backend_Processing_Possible
|
586 |
|
|
|
587 |
|
|
begin
|
588 |
|
|
-- Checks 2 (array not bit packed) and 10 (no controlled actions)
|
589 |
|
|
|
590 |
|
|
if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
|
591 |
|
|
return False;
|
592 |
|
|
end if;
|
593 |
|
|
|
594 |
|
|
-- If component is limited, aggregate must be expanded because each
|
595 |
|
|
-- component assignment must be built in place.
|
596 |
|
|
|
597 |
|
|
if Is_Inherently_Limited_Type (Component_Type (Typ)) then
|
598 |
|
|
return False;
|
599 |
|
|
end if;
|
600 |
|
|
|
601 |
|
|
-- Checks 4 (array must not be multi-dimensional Fortran case)
|
602 |
|
|
|
603 |
|
|
if Convention (Typ) = Convention_Fortran
|
604 |
|
|
and then Number_Dimensions (Typ) > 1
|
605 |
|
|
then
|
606 |
|
|
return False;
|
607 |
|
|
end if;
|
608 |
|
|
|
609 |
|
|
-- Checks 3 (size of array must be known at compile time)
|
610 |
|
|
|
611 |
|
|
if not Size_Known_At_Compile_Time (Typ) then
|
612 |
|
|
return False;
|
613 |
|
|
end if;
|
614 |
|
|
|
615 |
|
|
-- Checks on components
|
616 |
|
|
|
617 |
|
|
if not Component_Check (N, First_Index (Typ)) then
|
618 |
|
|
return False;
|
619 |
|
|
end if;
|
620 |
|
|
|
621 |
|
|
-- Checks 5 (if the component type is tagged, then we may need to do
|
622 |
|
|
-- tag adjustments. Perhaps this should be refined to check for any
|
623 |
|
|
-- component associations that actually need tag adjustment, similar
|
624 |
|
|
-- to the test in Component_Not_OK_For_Backend for record aggregates
|
625 |
|
|
-- with tagged components, but not clear whether it's worthwhile ???;
|
626 |
|
|
-- in the case of the JVM, object tags are handled implicitly)
|
627 |
|
|
|
628 |
|
|
if Is_Tagged_Type (Component_Type (Typ))
|
629 |
|
|
and then Tagged_Type_Expansion
|
630 |
|
|
then
|
631 |
|
|
return False;
|
632 |
|
|
end if;
|
633 |
|
|
|
634 |
|
|
-- Checks 6 (component type must not have bit aligned components)
|
635 |
|
|
|
636 |
|
|
if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
|
637 |
|
|
return False;
|
638 |
|
|
end if;
|
639 |
|
|
|
640 |
|
|
-- Checks 11: Array aggregates with aliased components are currently
|
641 |
|
|
-- not well supported by the VM backend; disable temporarily this
|
642 |
|
|
-- backend processing until it is definitely supported.
|
643 |
|
|
|
644 |
|
|
if VM_Target /= No_VM
|
645 |
|
|
and then Has_Aliased_Components (Base_Type (Typ))
|
646 |
|
|
then
|
647 |
|
|
return False;
|
648 |
|
|
end if;
|
649 |
|
|
|
650 |
|
|
-- Backend processing is possible
|
651 |
|
|
|
652 |
|
|
Set_Size_Known_At_Compile_Time (Etype (N), True);
|
653 |
|
|
return True;
|
654 |
|
|
end Backend_Processing_Possible;
|
655 |
|
|
|
656 |
|
|
---------------------------
|
657 |
|
|
-- Build_Array_Aggr_Code --
|
658 |
|
|
---------------------------
|
659 |
|
|
|
660 |
|
|
-- The code that we generate from a one dimensional aggregate is
|
661 |
|
|
|
662 |
|
|
-- 1. If the sub-aggregate contains discrete choices we
|
663 |
|
|
|
664 |
|
|
-- (a) Sort the discrete choices
|
665 |
|
|
|
666 |
|
|
-- (b) Otherwise for each discrete choice that specifies a range we
|
667 |
|
|
-- emit a loop. If a range specifies a maximum of three values, or
|
668 |
|
|
-- we are dealing with an expression we emit a sequence of
|
669 |
|
|
-- assignments instead of a loop.
|
670 |
|
|
|
671 |
|
|
-- (c) Generate the remaining loops to cover the others choice if any
|
672 |
|
|
|
673 |
|
|
-- 2. If the aggregate contains positional elements we
|
674 |
|
|
|
675 |
|
|
-- (a) translate the positional elements in a series of assignments
|
676 |
|
|
|
677 |
|
|
-- (b) Generate a final loop to cover the others choice if any.
|
678 |
|
|
-- Note that this final loop has to be a while loop since the case
|
679 |
|
|
|
680 |
|
|
-- L : Integer := Integer'Last;
|
681 |
|
|
-- H : Integer := Integer'Last;
|
682 |
|
|
-- A : array (L .. H) := (1, others =>0);
|
683 |
|
|
|
684 |
|
|
-- cannot be handled by a for loop. Thus for the following
|
685 |
|
|
|
686 |
|
|
-- array (L .. H) := (.. positional elements.., others =>E);
|
687 |
|
|
|
688 |
|
|
-- we always generate something like:
|
689 |
|
|
|
690 |
|
|
-- J : Index_Type := Index_Of_Last_Positional_Element;
|
691 |
|
|
-- while J < H loop
|
692 |
|
|
-- J := Index_Base'Succ (J)
|
693 |
|
|
-- Tmp (J) := E;
|
694 |
|
|
-- end loop;
|
695 |
|
|
|
696 |
|
|
function Build_Array_Aggr_Code
|
697 |
|
|
(N : Node_Id;
|
698 |
|
|
Ctype : Entity_Id;
|
699 |
|
|
Index : Node_Id;
|
700 |
|
|
Into : Node_Id;
|
701 |
|
|
Scalar_Comp : Boolean;
|
702 |
|
|
Indices : List_Id := No_List;
|
703 |
|
|
Flist : Node_Id := Empty) return List_Id
|
704 |
|
|
is
|
705 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
706 |
|
|
Index_Base : constant Entity_Id := Base_Type (Etype (Index));
|
707 |
|
|
Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
|
708 |
|
|
Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
|
709 |
|
|
|
710 |
|
|
function Add (Val : Int; To : Node_Id) return Node_Id;
|
711 |
|
|
-- Returns an expression where Val is added to expression To, unless
|
712 |
|
|
-- To+Val is provably out of To's base type range. To must be an
|
713 |
|
|
-- already analyzed expression.
|
714 |
|
|
|
715 |
|
|
function Empty_Range (L, H : Node_Id) return Boolean;
|
716 |
|
|
-- Returns True if the range defined by L .. H is certainly empty
|
717 |
|
|
|
718 |
|
|
function Equal (L, H : Node_Id) return Boolean;
|
719 |
|
|
-- Returns True if L = H for sure
|
720 |
|
|
|
721 |
|
|
function Index_Base_Name return Node_Id;
|
722 |
|
|
-- Returns a new reference to the index type name
|
723 |
|
|
|
724 |
|
|
function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
|
725 |
|
|
-- Ind must be a side-effect free expression. If the input aggregate
|
726 |
|
|
-- N to Build_Loop contains no sub-aggregates, then this function
|
727 |
|
|
-- returns the assignment statement:
|
728 |
|
|
--
|
729 |
|
|
-- Into (Indices, Ind) := Expr;
|
730 |
|
|
--
|
731 |
|
|
-- Otherwise we call Build_Code recursively
|
732 |
|
|
--
|
733 |
|
|
-- Ada 2005 (AI-287): In case of default initialized component, Expr
|
734 |
|
|
-- is empty and we generate a call to the corresponding IP subprogram.
|
735 |
|
|
|
736 |
|
|
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
|
737 |
|
|
-- Nodes L and H must be side-effect free expressions.
|
738 |
|
|
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
|
739 |
|
|
-- This routine returns the for loop statement
|
740 |
|
|
--
|
741 |
|
|
-- for J in Index_Base'(L) .. Index_Base'(H) loop
|
742 |
|
|
-- Into (Indices, J) := Expr;
|
743 |
|
|
-- end loop;
|
744 |
|
|
--
|
745 |
|
|
-- Otherwise we call Build_Code recursively.
|
746 |
|
|
-- As an optimization if the loop covers 3 or less scalar elements we
|
747 |
|
|
-- generate a sequence of assignments.
|
748 |
|
|
|
749 |
|
|
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
|
750 |
|
|
-- Nodes L and H must be side-effect free expressions.
|
751 |
|
|
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
|
752 |
|
|
-- This routine returns the while loop statement
|
753 |
|
|
--
|
754 |
|
|
-- J : Index_Base := L;
|
755 |
|
|
-- while J < H loop
|
756 |
|
|
-- J := Index_Base'Succ (J);
|
757 |
|
|
-- Into (Indices, J) := Expr;
|
758 |
|
|
-- end loop;
|
759 |
|
|
--
|
760 |
|
|
-- Otherwise we call Build_Code recursively
|
761 |
|
|
|
762 |
|
|
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
|
763 |
|
|
function Local_Expr_Value (E : Node_Id) return Uint;
|
764 |
|
|
-- These two Local routines are used to replace the corresponding ones
|
765 |
|
|
-- in sem_eval because while processing the bounds of an aggregate with
|
766 |
|
|
-- discrete choices whose index type is an enumeration, we build static
|
767 |
|
|
-- expressions not recognized by Compile_Time_Known_Value as such since
|
768 |
|
|
-- they have not yet been analyzed and resolved. All the expressions in
|
769 |
|
|
-- question are things like Index_Base_Name'Val (Const) which we can
|
770 |
|
|
-- easily recognize as being constant.
|
771 |
|
|
|
772 |
|
|
---------
|
773 |
|
|
-- Add --
|
774 |
|
|
---------
|
775 |
|
|
|
776 |
|
|
function Add (Val : Int; To : Node_Id) return Node_Id is
|
777 |
|
|
Expr_Pos : Node_Id;
|
778 |
|
|
Expr : Node_Id;
|
779 |
|
|
To_Pos : Node_Id;
|
780 |
|
|
U_To : Uint;
|
781 |
|
|
U_Val : constant Uint := UI_From_Int (Val);
|
782 |
|
|
|
783 |
|
|
begin
|
784 |
|
|
-- Note: do not try to optimize the case of Val = 0, because
|
785 |
|
|
-- we need to build a new node with the proper Sloc value anyway.
|
786 |
|
|
|
787 |
|
|
-- First test if we can do constant folding
|
788 |
|
|
|
789 |
|
|
if Local_Compile_Time_Known_Value (To) then
|
790 |
|
|
U_To := Local_Expr_Value (To) + Val;
|
791 |
|
|
|
792 |
|
|
-- Determine if our constant is outside the range of the index.
|
793 |
|
|
-- If so return an Empty node. This empty node will be caught
|
794 |
|
|
-- by Empty_Range below.
|
795 |
|
|
|
796 |
|
|
if Compile_Time_Known_Value (Index_Base_L)
|
797 |
|
|
and then U_To < Expr_Value (Index_Base_L)
|
798 |
|
|
then
|
799 |
|
|
return Empty;
|
800 |
|
|
|
801 |
|
|
elsif Compile_Time_Known_Value (Index_Base_H)
|
802 |
|
|
and then U_To > Expr_Value (Index_Base_H)
|
803 |
|
|
then
|
804 |
|
|
return Empty;
|
805 |
|
|
end if;
|
806 |
|
|
|
807 |
|
|
Expr_Pos := Make_Integer_Literal (Loc, U_To);
|
808 |
|
|
Set_Is_Static_Expression (Expr_Pos);
|
809 |
|
|
|
810 |
|
|
if not Is_Enumeration_Type (Index_Base) then
|
811 |
|
|
Expr := Expr_Pos;
|
812 |
|
|
|
813 |
|
|
-- If we are dealing with enumeration return
|
814 |
|
|
-- Index_Base'Val (Expr_Pos)
|
815 |
|
|
|
816 |
|
|
else
|
817 |
|
|
Expr :=
|
818 |
|
|
Make_Attribute_Reference
|
819 |
|
|
(Loc,
|
820 |
|
|
Prefix => Index_Base_Name,
|
821 |
|
|
Attribute_Name => Name_Val,
|
822 |
|
|
Expressions => New_List (Expr_Pos));
|
823 |
|
|
end if;
|
824 |
|
|
|
825 |
|
|
return Expr;
|
826 |
|
|
end if;
|
827 |
|
|
|
828 |
|
|
-- If we are here no constant folding possible
|
829 |
|
|
|
830 |
|
|
if not Is_Enumeration_Type (Index_Base) then
|
831 |
|
|
Expr :=
|
832 |
|
|
Make_Op_Add (Loc,
|
833 |
|
|
Left_Opnd => Duplicate_Subexpr (To),
|
834 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
|
835 |
|
|
|
836 |
|
|
-- If we are dealing with enumeration return
|
837 |
|
|
-- Index_Base'Val (Index_Base'Pos (To) + Val)
|
838 |
|
|
|
839 |
|
|
else
|
840 |
|
|
To_Pos :=
|
841 |
|
|
Make_Attribute_Reference
|
842 |
|
|
(Loc,
|
843 |
|
|
Prefix => Index_Base_Name,
|
844 |
|
|
Attribute_Name => Name_Pos,
|
845 |
|
|
Expressions => New_List (Duplicate_Subexpr (To)));
|
846 |
|
|
|
847 |
|
|
Expr_Pos :=
|
848 |
|
|
Make_Op_Add (Loc,
|
849 |
|
|
Left_Opnd => To_Pos,
|
850 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
|
851 |
|
|
|
852 |
|
|
Expr :=
|
853 |
|
|
Make_Attribute_Reference
|
854 |
|
|
(Loc,
|
855 |
|
|
Prefix => Index_Base_Name,
|
856 |
|
|
Attribute_Name => Name_Val,
|
857 |
|
|
Expressions => New_List (Expr_Pos));
|
858 |
|
|
end if;
|
859 |
|
|
|
860 |
|
|
return Expr;
|
861 |
|
|
end Add;
|
862 |
|
|
|
863 |
|
|
-----------------
|
864 |
|
|
-- Empty_Range --
|
865 |
|
|
-----------------
|
866 |
|
|
|
867 |
|
|
function Empty_Range (L, H : Node_Id) return Boolean is
|
868 |
|
|
Is_Empty : Boolean := False;
|
869 |
|
|
Low : Node_Id;
|
870 |
|
|
High : Node_Id;
|
871 |
|
|
|
872 |
|
|
begin
|
873 |
|
|
-- First check if L or H were already detected as overflowing the
|
874 |
|
|
-- index base range type by function Add above. If this is so Add
|
875 |
|
|
-- returns the empty node.
|
876 |
|
|
|
877 |
|
|
if No (L) or else No (H) then
|
878 |
|
|
return True;
|
879 |
|
|
end if;
|
880 |
|
|
|
881 |
|
|
for J in 1 .. 3 loop
|
882 |
|
|
case J is
|
883 |
|
|
|
884 |
|
|
-- L > H range is empty
|
885 |
|
|
|
886 |
|
|
when 1 =>
|
887 |
|
|
Low := L;
|
888 |
|
|
High := H;
|
889 |
|
|
|
890 |
|
|
-- B_L > H range must be empty
|
891 |
|
|
|
892 |
|
|
when 2 =>
|
893 |
|
|
Low := Index_Base_L;
|
894 |
|
|
High := H;
|
895 |
|
|
|
896 |
|
|
-- L > B_H range must be empty
|
897 |
|
|
|
898 |
|
|
when 3 =>
|
899 |
|
|
Low := L;
|
900 |
|
|
High := Index_Base_H;
|
901 |
|
|
end case;
|
902 |
|
|
|
903 |
|
|
if Local_Compile_Time_Known_Value (Low)
|
904 |
|
|
and then Local_Compile_Time_Known_Value (High)
|
905 |
|
|
then
|
906 |
|
|
Is_Empty :=
|
907 |
|
|
UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
|
908 |
|
|
end if;
|
909 |
|
|
|
910 |
|
|
exit when Is_Empty;
|
911 |
|
|
end loop;
|
912 |
|
|
|
913 |
|
|
return Is_Empty;
|
914 |
|
|
end Empty_Range;
|
915 |
|
|
|
916 |
|
|
-----------
|
917 |
|
|
-- Equal --
|
918 |
|
|
-----------
|
919 |
|
|
|
920 |
|
|
function Equal (L, H : Node_Id) return Boolean is
|
921 |
|
|
begin
|
922 |
|
|
if L = H then
|
923 |
|
|
return True;
|
924 |
|
|
|
925 |
|
|
elsif Local_Compile_Time_Known_Value (L)
|
926 |
|
|
and then Local_Compile_Time_Known_Value (H)
|
927 |
|
|
then
|
928 |
|
|
return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
|
929 |
|
|
end if;
|
930 |
|
|
|
931 |
|
|
return False;
|
932 |
|
|
end Equal;
|
933 |
|
|
|
934 |
|
|
----------------
|
935 |
|
|
-- Gen_Assign --
|
936 |
|
|
----------------
|
937 |
|
|
|
938 |
|
|
function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
|
939 |
|
|
L : constant List_Id := New_List;
|
940 |
|
|
F : Entity_Id;
|
941 |
|
|
A : Node_Id;
|
942 |
|
|
|
943 |
|
|
New_Indices : List_Id;
|
944 |
|
|
Indexed_Comp : Node_Id;
|
945 |
|
|
Expr_Q : Node_Id;
|
946 |
|
|
Comp_Type : Entity_Id := Empty;
|
947 |
|
|
|
948 |
|
|
function Add_Loop_Actions (Lis : List_Id) return List_Id;
|
949 |
|
|
-- Collect insert_actions generated in the construction of a
|
950 |
|
|
-- loop, and prepend them to the sequence of assignments to
|
951 |
|
|
-- complete the eventual body of the loop.
|
952 |
|
|
|
953 |
|
|
----------------------
|
954 |
|
|
-- Add_Loop_Actions --
|
955 |
|
|
----------------------
|
956 |
|
|
|
957 |
|
|
function Add_Loop_Actions (Lis : List_Id) return List_Id is
|
958 |
|
|
Res : List_Id;
|
959 |
|
|
|
960 |
|
|
begin
|
961 |
|
|
-- Ada 2005 (AI-287): Do nothing else in case of default
|
962 |
|
|
-- initialized component.
|
963 |
|
|
|
964 |
|
|
if No (Expr) then
|
965 |
|
|
return Lis;
|
966 |
|
|
|
967 |
|
|
elsif Nkind (Parent (Expr)) = N_Component_Association
|
968 |
|
|
and then Present (Loop_Actions (Parent (Expr)))
|
969 |
|
|
then
|
970 |
|
|
Append_List (Lis, Loop_Actions (Parent (Expr)));
|
971 |
|
|
Res := Loop_Actions (Parent (Expr));
|
972 |
|
|
Set_Loop_Actions (Parent (Expr), No_List);
|
973 |
|
|
return Res;
|
974 |
|
|
|
975 |
|
|
else
|
976 |
|
|
return Lis;
|
977 |
|
|
end if;
|
978 |
|
|
end Add_Loop_Actions;
|
979 |
|
|
|
980 |
|
|
-- Start of processing for Gen_Assign
|
981 |
|
|
|
982 |
|
|
begin
|
983 |
|
|
if No (Indices) then
|
984 |
|
|
New_Indices := New_List;
|
985 |
|
|
else
|
986 |
|
|
New_Indices := New_Copy_List_Tree (Indices);
|
987 |
|
|
end if;
|
988 |
|
|
|
989 |
|
|
Append_To (New_Indices, Ind);
|
990 |
|
|
|
991 |
|
|
if Present (Flist) then
|
992 |
|
|
F := New_Copy_Tree (Flist);
|
993 |
|
|
|
994 |
|
|
elsif Present (Etype (N)) and then Needs_Finalization (Etype (N)) then
|
995 |
|
|
if Is_Entity_Name (Into)
|
996 |
|
|
and then Present (Scope (Entity (Into)))
|
997 |
|
|
then
|
998 |
|
|
F := Find_Final_List (Scope (Entity (Into)));
|
999 |
|
|
else
|
1000 |
|
|
F := Find_Final_List (Current_Scope);
|
1001 |
|
|
end if;
|
1002 |
|
|
else
|
1003 |
|
|
F := Empty;
|
1004 |
|
|
end if;
|
1005 |
|
|
|
1006 |
|
|
if Present (Next_Index (Index)) then
|
1007 |
|
|
return
|
1008 |
|
|
Add_Loop_Actions (
|
1009 |
|
|
Build_Array_Aggr_Code
|
1010 |
|
|
(N => Expr,
|
1011 |
|
|
Ctype => Ctype,
|
1012 |
|
|
Index => Next_Index (Index),
|
1013 |
|
|
Into => Into,
|
1014 |
|
|
Scalar_Comp => Scalar_Comp,
|
1015 |
|
|
Indices => New_Indices,
|
1016 |
|
|
Flist => F));
|
1017 |
|
|
end if;
|
1018 |
|
|
|
1019 |
|
|
-- If we get here then we are at a bottom-level (sub-)aggregate
|
1020 |
|
|
|
1021 |
|
|
Indexed_Comp :=
|
1022 |
|
|
Checks_Off
|
1023 |
|
|
(Make_Indexed_Component (Loc,
|
1024 |
|
|
Prefix => New_Copy_Tree (Into),
|
1025 |
|
|
Expressions => New_Indices));
|
1026 |
|
|
|
1027 |
|
|
Set_Assignment_OK (Indexed_Comp);
|
1028 |
|
|
|
1029 |
|
|
-- Ada 2005 (AI-287): In case of default initialized component, Expr
|
1030 |
|
|
-- is not present (and therefore we also initialize Expr_Q to empty).
|
1031 |
|
|
|
1032 |
|
|
if No (Expr) then
|
1033 |
|
|
Expr_Q := Empty;
|
1034 |
|
|
elsif Nkind (Expr) = N_Qualified_Expression then
|
1035 |
|
|
Expr_Q := Expression (Expr);
|
1036 |
|
|
else
|
1037 |
|
|
Expr_Q := Expr;
|
1038 |
|
|
end if;
|
1039 |
|
|
|
1040 |
|
|
if Present (Etype (N))
|
1041 |
|
|
and then Etype (N) /= Any_Composite
|
1042 |
|
|
then
|
1043 |
|
|
Comp_Type := Component_Type (Etype (N));
|
1044 |
|
|
pragma Assert (Comp_Type = Ctype); -- AI-287
|
1045 |
|
|
|
1046 |
|
|
elsif Present (Next (First (New_Indices))) then
|
1047 |
|
|
|
1048 |
|
|
-- Ada 2005 (AI-287): Do nothing in case of default initialized
|
1049 |
|
|
-- component because we have received the component type in
|
1050 |
|
|
-- the formal parameter Ctype.
|
1051 |
|
|
|
1052 |
|
|
-- ??? Some assert pragmas have been added to check if this new
|
1053 |
|
|
-- formal can be used to replace this code in all cases.
|
1054 |
|
|
|
1055 |
|
|
if Present (Expr) then
|
1056 |
|
|
|
1057 |
|
|
-- This is a multidimensional array. Recover the component
|
1058 |
|
|
-- type from the outermost aggregate, because subaggregates
|
1059 |
|
|
-- do not have an assigned type.
|
1060 |
|
|
|
1061 |
|
|
declare
|
1062 |
|
|
P : Node_Id;
|
1063 |
|
|
|
1064 |
|
|
begin
|
1065 |
|
|
P := Parent (Expr);
|
1066 |
|
|
while Present (P) loop
|
1067 |
|
|
if Nkind (P) = N_Aggregate
|
1068 |
|
|
and then Present (Etype (P))
|
1069 |
|
|
then
|
1070 |
|
|
Comp_Type := Component_Type (Etype (P));
|
1071 |
|
|
exit;
|
1072 |
|
|
|
1073 |
|
|
else
|
1074 |
|
|
P := Parent (P);
|
1075 |
|
|
end if;
|
1076 |
|
|
end loop;
|
1077 |
|
|
|
1078 |
|
|
pragma Assert (Comp_Type = Ctype); -- AI-287
|
1079 |
|
|
end;
|
1080 |
|
|
end if;
|
1081 |
|
|
end if;
|
1082 |
|
|
|
1083 |
|
|
-- Ada 2005 (AI-287): We only analyze the expression in case of non-
|
1084 |
|
|
-- default initialized components (otherwise Expr_Q is not present).
|
1085 |
|
|
|
1086 |
|
|
if Present (Expr_Q)
|
1087 |
|
|
and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
|
1088 |
|
|
then
|
1089 |
|
|
-- At this stage the Expression may not have been analyzed yet
|
1090 |
|
|
-- because the array aggregate code has not been updated to use
|
1091 |
|
|
-- the Expansion_Delayed flag and avoid analysis altogether to
|
1092 |
|
|
-- solve the same problem (see Resolve_Aggr_Expr). So let us do
|
1093 |
|
|
-- the analysis of non-array aggregates now in order to get the
|
1094 |
|
|
-- value of Expansion_Delayed flag for the inner aggregate ???
|
1095 |
|
|
|
1096 |
|
|
if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
|
1097 |
|
|
Analyze_And_Resolve (Expr_Q, Comp_Type);
|
1098 |
|
|
end if;
|
1099 |
|
|
|
1100 |
|
|
if Is_Delayed_Aggregate (Expr_Q) then
|
1101 |
|
|
|
1102 |
|
|
-- This is either a subaggregate of a multidimentional array,
|
1103 |
|
|
-- or a component of an array type whose component type is
|
1104 |
|
|
-- also an array. In the latter case, the expression may have
|
1105 |
|
|
-- component associations that provide different bounds from
|
1106 |
|
|
-- those of the component type, and sliding must occur. Instead
|
1107 |
|
|
-- of decomposing the current aggregate assignment, force the
|
1108 |
|
|
-- re-analysis of the assignment, so that a temporary will be
|
1109 |
|
|
-- generated in the usual fashion, and sliding will take place.
|
1110 |
|
|
|
1111 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement
|
1112 |
|
|
and then Is_Array_Type (Comp_Type)
|
1113 |
|
|
and then Present (Component_Associations (Expr_Q))
|
1114 |
|
|
and then Must_Slide (Comp_Type, Etype (Expr_Q))
|
1115 |
|
|
then
|
1116 |
|
|
Set_Expansion_Delayed (Expr_Q, False);
|
1117 |
|
|
Set_Analyzed (Expr_Q, False);
|
1118 |
|
|
|
1119 |
|
|
else
|
1120 |
|
|
return
|
1121 |
|
|
Add_Loop_Actions (
|
1122 |
|
|
Late_Expansion (
|
1123 |
|
|
Expr_Q, Etype (Expr_Q), Indexed_Comp, F));
|
1124 |
|
|
end if;
|
1125 |
|
|
end if;
|
1126 |
|
|
end if;
|
1127 |
|
|
|
1128 |
|
|
-- Ada 2005 (AI-287): In case of default initialized component, call
|
1129 |
|
|
-- the initialization subprogram associated with the component type.
|
1130 |
|
|
-- If the component type is an access type, add an explicit null
|
1131 |
|
|
-- assignment, because for the back-end there is an initialization
|
1132 |
|
|
-- present for the whole aggregate, and no default initialization
|
1133 |
|
|
-- will take place.
|
1134 |
|
|
|
1135 |
|
|
-- In addition, if the component type is controlled, we must call
|
1136 |
|
|
-- its Initialize procedure explicitly, because there is no explicit
|
1137 |
|
|
-- object creation that will invoke it otherwise.
|
1138 |
|
|
|
1139 |
|
|
if No (Expr) then
|
1140 |
|
|
if Present (Base_Init_Proc (Base_Type (Ctype)))
|
1141 |
|
|
or else Has_Task (Base_Type (Ctype))
|
1142 |
|
|
then
|
1143 |
|
|
Append_List_To (L,
|
1144 |
|
|
Build_Initialization_Call (Loc,
|
1145 |
|
|
Id_Ref => Indexed_Comp,
|
1146 |
|
|
Typ => Ctype,
|
1147 |
|
|
With_Default_Init => True));
|
1148 |
|
|
|
1149 |
|
|
elsif Is_Access_Type (Ctype) then
|
1150 |
|
|
Append_To (L,
|
1151 |
|
|
Make_Assignment_Statement (Loc,
|
1152 |
|
|
Name => Indexed_Comp,
|
1153 |
|
|
Expression => Make_Null (Loc)));
|
1154 |
|
|
end if;
|
1155 |
|
|
|
1156 |
|
|
if Needs_Finalization (Ctype) then
|
1157 |
|
|
Append_List_To (L,
|
1158 |
|
|
Make_Init_Call (
|
1159 |
|
|
Ref => New_Copy_Tree (Indexed_Comp),
|
1160 |
|
|
Typ => Ctype,
|
1161 |
|
|
Flist_Ref => Find_Final_List (Current_Scope),
|
1162 |
|
|
With_Attach => Make_Integer_Literal (Loc, 1)));
|
1163 |
|
|
end if;
|
1164 |
|
|
|
1165 |
|
|
else
|
1166 |
|
|
-- Now generate the assignment with no associated controlled
|
1167 |
|
|
-- actions since the target of the assignment may not have been
|
1168 |
|
|
-- initialized, it is not possible to Finalize it as expected by
|
1169 |
|
|
-- normal controlled assignment. The rest of the controlled
|
1170 |
|
|
-- actions are done manually with the proper finalization list
|
1171 |
|
|
-- coming from the context.
|
1172 |
|
|
|
1173 |
|
|
A :=
|
1174 |
|
|
Make_OK_Assignment_Statement (Loc,
|
1175 |
|
|
Name => Indexed_Comp,
|
1176 |
|
|
Expression => New_Copy_Tree (Expr));
|
1177 |
|
|
|
1178 |
|
|
if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
|
1179 |
|
|
Set_No_Ctrl_Actions (A);
|
1180 |
|
|
|
1181 |
|
|
-- If this is an aggregate for an array of arrays, each
|
1182 |
|
|
-- sub-aggregate will be expanded as well, and even with
|
1183 |
|
|
-- No_Ctrl_Actions the assignments of inner components will
|
1184 |
|
|
-- require attachment in their assignments to temporaries.
|
1185 |
|
|
-- These temporaries must be finalized for each subaggregate,
|
1186 |
|
|
-- to prevent multiple attachments of the same temporary
|
1187 |
|
|
-- location to same finalization chain (and consequently
|
1188 |
|
|
-- circular lists). To ensure that finalization takes place
|
1189 |
|
|
-- for each subaggregate we wrap the assignment in a block.
|
1190 |
|
|
|
1191 |
|
|
if Is_Array_Type (Comp_Type)
|
1192 |
|
|
and then Nkind (Expr) = N_Aggregate
|
1193 |
|
|
then
|
1194 |
|
|
A :=
|
1195 |
|
|
Make_Block_Statement (Loc,
|
1196 |
|
|
Handled_Statement_Sequence =>
|
1197 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
1198 |
|
|
Statements => New_List (A)));
|
1199 |
|
|
end if;
|
1200 |
|
|
end if;
|
1201 |
|
|
|
1202 |
|
|
Append_To (L, A);
|
1203 |
|
|
|
1204 |
|
|
-- Adjust the tag if tagged (because of possible view
|
1205 |
|
|
-- conversions), unless compiling for a VM where
|
1206 |
|
|
-- tags are implicit.
|
1207 |
|
|
|
1208 |
|
|
if Present (Comp_Type)
|
1209 |
|
|
and then Is_Tagged_Type (Comp_Type)
|
1210 |
|
|
and then Tagged_Type_Expansion
|
1211 |
|
|
then
|
1212 |
|
|
A :=
|
1213 |
|
|
Make_OK_Assignment_Statement (Loc,
|
1214 |
|
|
Name =>
|
1215 |
|
|
Make_Selected_Component (Loc,
|
1216 |
|
|
Prefix => New_Copy_Tree (Indexed_Comp),
|
1217 |
|
|
Selector_Name =>
|
1218 |
|
|
New_Reference_To
|
1219 |
|
|
(First_Tag_Component (Comp_Type), Loc)),
|
1220 |
|
|
|
1221 |
|
|
Expression =>
|
1222 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
1223 |
|
|
New_Reference_To
|
1224 |
|
|
(Node (First_Elmt (Access_Disp_Table (Comp_Type))),
|
1225 |
|
|
Loc)));
|
1226 |
|
|
|
1227 |
|
|
Append_To (L, A);
|
1228 |
|
|
end if;
|
1229 |
|
|
|
1230 |
|
|
-- Adjust and attach the component to the proper final list, which
|
1231 |
|
|
-- can be the controller of the outer record object or the final
|
1232 |
|
|
-- list associated with the scope.
|
1233 |
|
|
|
1234 |
|
|
-- If the component is itself an array of controlled types, whose
|
1235 |
|
|
-- value is given by a sub-aggregate, then the attach calls have
|
1236 |
|
|
-- been generated when individual subcomponent are assigned, and
|
1237 |
|
|
-- must not be done again to prevent malformed finalization chains
|
1238 |
|
|
-- (see comments above, concerning the creation of a block to hold
|
1239 |
|
|
-- inner finalization actions).
|
1240 |
|
|
|
1241 |
|
|
if Present (Comp_Type)
|
1242 |
|
|
and then Needs_Finalization (Comp_Type)
|
1243 |
|
|
and then not Is_Limited_Type (Comp_Type)
|
1244 |
|
|
and then not
|
1245 |
|
|
(Is_Array_Type (Comp_Type)
|
1246 |
|
|
and then Is_Controlled (Component_Type (Comp_Type))
|
1247 |
|
|
and then Nkind (Expr) = N_Aggregate)
|
1248 |
|
|
then
|
1249 |
|
|
Append_List_To (L,
|
1250 |
|
|
Make_Adjust_Call (
|
1251 |
|
|
Ref => New_Copy_Tree (Indexed_Comp),
|
1252 |
|
|
Typ => Comp_Type,
|
1253 |
|
|
Flist_Ref => F,
|
1254 |
|
|
With_Attach => Make_Integer_Literal (Loc, 1)));
|
1255 |
|
|
end if;
|
1256 |
|
|
end if;
|
1257 |
|
|
|
1258 |
|
|
return Add_Loop_Actions (L);
|
1259 |
|
|
end Gen_Assign;
|
1260 |
|
|
|
1261 |
|
|
--------------
|
1262 |
|
|
-- Gen_Loop --
|
1263 |
|
|
--------------
|
1264 |
|
|
|
1265 |
|
|
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
|
1266 |
|
|
L_J : Node_Id;
|
1267 |
|
|
|
1268 |
|
|
L_L : Node_Id;
|
1269 |
|
|
-- Index_Base'(L)
|
1270 |
|
|
|
1271 |
|
|
L_H : Node_Id;
|
1272 |
|
|
-- Index_Base'(H)
|
1273 |
|
|
|
1274 |
|
|
L_Range : Node_Id;
|
1275 |
|
|
-- Index_Base'(L) .. Index_Base'(H)
|
1276 |
|
|
|
1277 |
|
|
L_Iteration_Scheme : Node_Id;
|
1278 |
|
|
-- L_J in Index_Base'(L) .. Index_Base'(H)
|
1279 |
|
|
|
1280 |
|
|
L_Body : List_Id;
|
1281 |
|
|
-- The statements to execute in the loop
|
1282 |
|
|
|
1283 |
|
|
S : constant List_Id := New_List;
|
1284 |
|
|
-- List of statements
|
1285 |
|
|
|
1286 |
|
|
Tcopy : Node_Id;
|
1287 |
|
|
-- Copy of expression tree, used for checking purposes
|
1288 |
|
|
|
1289 |
|
|
begin
|
1290 |
|
|
-- If loop bounds define an empty range return the null statement
|
1291 |
|
|
|
1292 |
|
|
if Empty_Range (L, H) then
|
1293 |
|
|
Append_To (S, Make_Null_Statement (Loc));
|
1294 |
|
|
|
1295 |
|
|
-- Ada 2005 (AI-287): Nothing else need to be done in case of
|
1296 |
|
|
-- default initialized component.
|
1297 |
|
|
|
1298 |
|
|
if No (Expr) then
|
1299 |
|
|
null;
|
1300 |
|
|
|
1301 |
|
|
else
|
1302 |
|
|
-- The expression must be type-checked even though no component
|
1303 |
|
|
-- of the aggregate will have this value. This is done only for
|
1304 |
|
|
-- actual components of the array, not for subaggregates. Do
|
1305 |
|
|
-- the check on a copy, because the expression may be shared
|
1306 |
|
|
-- among several choices, some of which might be non-null.
|
1307 |
|
|
|
1308 |
|
|
if Present (Etype (N))
|
1309 |
|
|
and then Is_Array_Type (Etype (N))
|
1310 |
|
|
and then No (Next_Index (Index))
|
1311 |
|
|
then
|
1312 |
|
|
Expander_Mode_Save_And_Set (False);
|
1313 |
|
|
Tcopy := New_Copy_Tree (Expr);
|
1314 |
|
|
Set_Parent (Tcopy, N);
|
1315 |
|
|
Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
|
1316 |
|
|
Expander_Mode_Restore;
|
1317 |
|
|
end if;
|
1318 |
|
|
end if;
|
1319 |
|
|
|
1320 |
|
|
return S;
|
1321 |
|
|
|
1322 |
|
|
-- If loop bounds are the same then generate an assignment
|
1323 |
|
|
|
1324 |
|
|
elsif Equal (L, H) then
|
1325 |
|
|
return Gen_Assign (New_Copy_Tree (L), Expr);
|
1326 |
|
|
|
1327 |
|
|
-- If H - L <= 2 then generate a sequence of assignments when we are
|
1328 |
|
|
-- processing the bottom most aggregate and it contains scalar
|
1329 |
|
|
-- components.
|
1330 |
|
|
|
1331 |
|
|
elsif No (Next_Index (Index))
|
1332 |
|
|
and then Scalar_Comp
|
1333 |
|
|
and then Local_Compile_Time_Known_Value (L)
|
1334 |
|
|
and then Local_Compile_Time_Known_Value (H)
|
1335 |
|
|
and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
|
1336 |
|
|
then
|
1337 |
|
|
|
1338 |
|
|
Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
|
1339 |
|
|
Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
|
1340 |
|
|
|
1341 |
|
|
if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
|
1342 |
|
|
Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
|
1343 |
|
|
end if;
|
1344 |
|
|
|
1345 |
|
|
return S;
|
1346 |
|
|
end if;
|
1347 |
|
|
|
1348 |
|
|
-- Otherwise construct the loop, starting with the loop index L_J
|
1349 |
|
|
|
1350 |
|
|
L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
|
1351 |
|
|
|
1352 |
|
|
-- Construct "L .. H" in Index_Base. We use a qualified expression
|
1353 |
|
|
-- for the bound to convert to the index base, but we don't need
|
1354 |
|
|
-- to do that if we already have the base type at hand.
|
1355 |
|
|
|
1356 |
|
|
if Etype (L) = Index_Base then
|
1357 |
|
|
L_L := L;
|
1358 |
|
|
else
|
1359 |
|
|
L_L :=
|
1360 |
|
|
Make_Qualified_Expression (Loc,
|
1361 |
|
|
Subtype_Mark => Index_Base_Name,
|
1362 |
|
|
Expression => L);
|
1363 |
|
|
end if;
|
1364 |
|
|
|
1365 |
|
|
if Etype (H) = Index_Base then
|
1366 |
|
|
L_H := H;
|
1367 |
|
|
else
|
1368 |
|
|
L_H :=
|
1369 |
|
|
Make_Qualified_Expression (Loc,
|
1370 |
|
|
Subtype_Mark => Index_Base_Name,
|
1371 |
|
|
Expression => H);
|
1372 |
|
|
end if;
|
1373 |
|
|
|
1374 |
|
|
L_Range :=
|
1375 |
|
|
Make_Range (Loc,
|
1376 |
|
|
Low_Bound => L_L,
|
1377 |
|
|
High_Bound => L_H);
|
1378 |
|
|
|
1379 |
|
|
-- Construct "for L_J in Index_Base range L .. H"
|
1380 |
|
|
|
1381 |
|
|
L_Iteration_Scheme :=
|
1382 |
|
|
Make_Iteration_Scheme
|
1383 |
|
|
(Loc,
|
1384 |
|
|
Loop_Parameter_Specification =>
|
1385 |
|
|
Make_Loop_Parameter_Specification
|
1386 |
|
|
(Loc,
|
1387 |
|
|
Defining_Identifier => L_J,
|
1388 |
|
|
Discrete_Subtype_Definition => L_Range));
|
1389 |
|
|
|
1390 |
|
|
-- Construct the statements to execute in the loop body
|
1391 |
|
|
|
1392 |
|
|
L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
|
1393 |
|
|
|
1394 |
|
|
-- Construct the final loop
|
1395 |
|
|
|
1396 |
|
|
Append_To (S, Make_Implicit_Loop_Statement
|
1397 |
|
|
(Node => N,
|
1398 |
|
|
Identifier => Empty,
|
1399 |
|
|
Iteration_Scheme => L_Iteration_Scheme,
|
1400 |
|
|
Statements => L_Body));
|
1401 |
|
|
|
1402 |
|
|
-- A small optimization: if the aggregate is initialized with a box
|
1403 |
|
|
-- and the component type has no initialization procedure, remove the
|
1404 |
|
|
-- useless empty loop.
|
1405 |
|
|
|
1406 |
|
|
if Nkind (First (S)) = N_Loop_Statement
|
1407 |
|
|
and then Is_Empty_List (Statements (First (S)))
|
1408 |
|
|
then
|
1409 |
|
|
return New_List (Make_Null_Statement (Loc));
|
1410 |
|
|
else
|
1411 |
|
|
return S;
|
1412 |
|
|
end if;
|
1413 |
|
|
end Gen_Loop;
|
1414 |
|
|
|
1415 |
|
|
---------------
|
1416 |
|
|
-- Gen_While --
|
1417 |
|
|
---------------
|
1418 |
|
|
|
1419 |
|
|
-- The code built is
|
1420 |
|
|
|
1421 |
|
|
-- W_J : Index_Base := L;
|
1422 |
|
|
-- while W_J < H loop
|
1423 |
|
|
-- W_J := Index_Base'Succ (W);
|
1424 |
|
|
-- L_Body;
|
1425 |
|
|
-- end loop;
|
1426 |
|
|
|
1427 |
|
|
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
|
1428 |
|
|
W_J : Node_Id;
|
1429 |
|
|
|
1430 |
|
|
W_Decl : Node_Id;
|
1431 |
|
|
-- W_J : Base_Type := L;
|
1432 |
|
|
|
1433 |
|
|
W_Iteration_Scheme : Node_Id;
|
1434 |
|
|
-- while W_J < H
|
1435 |
|
|
|
1436 |
|
|
W_Index_Succ : Node_Id;
|
1437 |
|
|
-- Index_Base'Succ (J)
|
1438 |
|
|
|
1439 |
|
|
W_Increment : Node_Id;
|
1440 |
|
|
-- W_J := Index_Base'Succ (W)
|
1441 |
|
|
|
1442 |
|
|
W_Body : constant List_Id := New_List;
|
1443 |
|
|
-- The statements to execute in the loop
|
1444 |
|
|
|
1445 |
|
|
S : constant List_Id := New_List;
|
1446 |
|
|
-- list of statement
|
1447 |
|
|
|
1448 |
|
|
begin
|
1449 |
|
|
-- If loop bounds define an empty range or are equal return null
|
1450 |
|
|
|
1451 |
|
|
if Empty_Range (L, H) or else Equal (L, H) then
|
1452 |
|
|
Append_To (S, Make_Null_Statement (Loc));
|
1453 |
|
|
return S;
|
1454 |
|
|
end if;
|
1455 |
|
|
|
1456 |
|
|
-- Build the decl of W_J
|
1457 |
|
|
|
1458 |
|
|
W_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
|
1459 |
|
|
W_Decl :=
|
1460 |
|
|
Make_Object_Declaration
|
1461 |
|
|
(Loc,
|
1462 |
|
|
Defining_Identifier => W_J,
|
1463 |
|
|
Object_Definition => Index_Base_Name,
|
1464 |
|
|
Expression => L);
|
1465 |
|
|
|
1466 |
|
|
-- Theoretically we should do a New_Copy_Tree (L) here, but we know
|
1467 |
|
|
-- that in this particular case L is a fresh Expr generated by
|
1468 |
|
|
-- Add which we are the only ones to use.
|
1469 |
|
|
|
1470 |
|
|
Append_To (S, W_Decl);
|
1471 |
|
|
|
1472 |
|
|
-- Construct " while W_J < H"
|
1473 |
|
|
|
1474 |
|
|
W_Iteration_Scheme :=
|
1475 |
|
|
Make_Iteration_Scheme
|
1476 |
|
|
(Loc,
|
1477 |
|
|
Condition => Make_Op_Lt
|
1478 |
|
|
(Loc,
|
1479 |
|
|
Left_Opnd => New_Reference_To (W_J, Loc),
|
1480 |
|
|
Right_Opnd => New_Copy_Tree (H)));
|
1481 |
|
|
|
1482 |
|
|
-- Construct the statements to execute in the loop body
|
1483 |
|
|
|
1484 |
|
|
W_Index_Succ :=
|
1485 |
|
|
Make_Attribute_Reference
|
1486 |
|
|
(Loc,
|
1487 |
|
|
Prefix => Index_Base_Name,
|
1488 |
|
|
Attribute_Name => Name_Succ,
|
1489 |
|
|
Expressions => New_List (New_Reference_To (W_J, Loc)));
|
1490 |
|
|
|
1491 |
|
|
W_Increment :=
|
1492 |
|
|
Make_OK_Assignment_Statement
|
1493 |
|
|
(Loc,
|
1494 |
|
|
Name => New_Reference_To (W_J, Loc),
|
1495 |
|
|
Expression => W_Index_Succ);
|
1496 |
|
|
|
1497 |
|
|
Append_To (W_Body, W_Increment);
|
1498 |
|
|
Append_List_To (W_Body,
|
1499 |
|
|
Gen_Assign (New_Reference_To (W_J, Loc), Expr));
|
1500 |
|
|
|
1501 |
|
|
-- Construct the final loop
|
1502 |
|
|
|
1503 |
|
|
Append_To (S, Make_Implicit_Loop_Statement
|
1504 |
|
|
(Node => N,
|
1505 |
|
|
Identifier => Empty,
|
1506 |
|
|
Iteration_Scheme => W_Iteration_Scheme,
|
1507 |
|
|
Statements => W_Body));
|
1508 |
|
|
|
1509 |
|
|
return S;
|
1510 |
|
|
end Gen_While;
|
1511 |
|
|
|
1512 |
|
|
---------------------
|
1513 |
|
|
-- Index_Base_Name --
|
1514 |
|
|
---------------------
|
1515 |
|
|
|
1516 |
|
|
function Index_Base_Name return Node_Id is
|
1517 |
|
|
begin
|
1518 |
|
|
return New_Reference_To (Index_Base, Sloc (N));
|
1519 |
|
|
end Index_Base_Name;
|
1520 |
|
|
|
1521 |
|
|
------------------------------------
|
1522 |
|
|
-- Local_Compile_Time_Known_Value --
|
1523 |
|
|
------------------------------------
|
1524 |
|
|
|
1525 |
|
|
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
|
1526 |
|
|
begin
|
1527 |
|
|
return Compile_Time_Known_Value (E)
|
1528 |
|
|
or else
|
1529 |
|
|
(Nkind (E) = N_Attribute_Reference
|
1530 |
|
|
and then Attribute_Name (E) = Name_Val
|
1531 |
|
|
and then Compile_Time_Known_Value (First (Expressions (E))));
|
1532 |
|
|
end Local_Compile_Time_Known_Value;
|
1533 |
|
|
|
1534 |
|
|
----------------------
|
1535 |
|
|
-- Local_Expr_Value --
|
1536 |
|
|
----------------------
|
1537 |
|
|
|
1538 |
|
|
function Local_Expr_Value (E : Node_Id) return Uint is
|
1539 |
|
|
begin
|
1540 |
|
|
if Compile_Time_Known_Value (E) then
|
1541 |
|
|
return Expr_Value (E);
|
1542 |
|
|
else
|
1543 |
|
|
return Expr_Value (First (Expressions (E)));
|
1544 |
|
|
end if;
|
1545 |
|
|
end Local_Expr_Value;
|
1546 |
|
|
|
1547 |
|
|
-- Build_Array_Aggr_Code Variables
|
1548 |
|
|
|
1549 |
|
|
Assoc : Node_Id;
|
1550 |
|
|
Choice : Node_Id;
|
1551 |
|
|
Expr : Node_Id;
|
1552 |
|
|
Typ : Entity_Id;
|
1553 |
|
|
|
1554 |
|
|
Others_Expr : Node_Id := Empty;
|
1555 |
|
|
Others_Box_Present : Boolean := False;
|
1556 |
|
|
|
1557 |
|
|
Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
|
1558 |
|
|
Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
|
1559 |
|
|
-- The aggregate bounds of this specific sub-aggregate. Note that if
|
1560 |
|
|
-- the code generated by Build_Array_Aggr_Code is executed then these
|
1561 |
|
|
-- bounds are OK. Otherwise a Constraint_Error would have been raised.
|
1562 |
|
|
|
1563 |
|
|
Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
|
1564 |
|
|
Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
|
1565 |
|
|
-- After Duplicate_Subexpr these are side-effect free
|
1566 |
|
|
|
1567 |
|
|
Low : Node_Id;
|
1568 |
|
|
High : Node_Id;
|
1569 |
|
|
|
1570 |
|
|
Nb_Choices : Nat := 0;
|
1571 |
|
|
Table : Case_Table_Type (1 .. Number_Of_Choices (N));
|
1572 |
|
|
-- Used to sort all the different choice values
|
1573 |
|
|
|
1574 |
|
|
Nb_Elements : Int;
|
1575 |
|
|
-- Number of elements in the positional aggregate
|
1576 |
|
|
|
1577 |
|
|
New_Code : constant List_Id := New_List;
|
1578 |
|
|
|
1579 |
|
|
-- Start of processing for Build_Array_Aggr_Code
|
1580 |
|
|
|
1581 |
|
|
begin
|
1582 |
|
|
-- First before we start, a special case. if we have a bit packed
|
1583 |
|
|
-- array represented as a modular type, then clear the value to
|
1584 |
|
|
-- zero first, to ensure that unused bits are properly cleared.
|
1585 |
|
|
|
1586 |
|
|
Typ := Etype (N);
|
1587 |
|
|
|
1588 |
|
|
if Present (Typ)
|
1589 |
|
|
and then Is_Bit_Packed_Array (Typ)
|
1590 |
|
|
and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
|
1591 |
|
|
then
|
1592 |
|
|
Append_To (New_Code,
|
1593 |
|
|
Make_Assignment_Statement (Loc,
|
1594 |
|
|
Name => New_Copy_Tree (Into),
|
1595 |
|
|
Expression =>
|
1596 |
|
|
Unchecked_Convert_To (Typ,
|
1597 |
|
|
Make_Integer_Literal (Loc, Uint_0))));
|
1598 |
|
|
end if;
|
1599 |
|
|
|
1600 |
|
|
-- If the component type contains tasks, we need to build a Master
|
1601 |
|
|
-- entity in the current scope, because it will be needed if build-
|
1602 |
|
|
-- in-place functions are called in the expanded code.
|
1603 |
|
|
|
1604 |
|
|
if Nkind (Parent (N)) = N_Object_Declaration
|
1605 |
|
|
and then Has_Task (Typ)
|
1606 |
|
|
then
|
1607 |
|
|
Build_Master_Entity (Defining_Identifier (Parent (N)));
|
1608 |
|
|
end if;
|
1609 |
|
|
|
1610 |
|
|
-- STEP 1: Process component associations
|
1611 |
|
|
|
1612 |
|
|
-- For those associations that may generate a loop, initialize
|
1613 |
|
|
-- Loop_Actions to collect inserted actions that may be crated.
|
1614 |
|
|
|
1615 |
|
|
-- Skip this if no component associations
|
1616 |
|
|
|
1617 |
|
|
if No (Expressions (N)) then
|
1618 |
|
|
|
1619 |
|
|
-- STEP 1 (a): Sort the discrete choices
|
1620 |
|
|
|
1621 |
|
|
Assoc := First (Component_Associations (N));
|
1622 |
|
|
while Present (Assoc) loop
|
1623 |
|
|
Choice := First (Choices (Assoc));
|
1624 |
|
|
while Present (Choice) loop
|
1625 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
1626 |
|
|
Set_Loop_Actions (Assoc, New_List);
|
1627 |
|
|
|
1628 |
|
|
if Box_Present (Assoc) then
|
1629 |
|
|
Others_Box_Present := True;
|
1630 |
|
|
else
|
1631 |
|
|
Others_Expr := Expression (Assoc);
|
1632 |
|
|
end if;
|
1633 |
|
|
exit;
|
1634 |
|
|
end if;
|
1635 |
|
|
|
1636 |
|
|
Get_Index_Bounds (Choice, Low, High);
|
1637 |
|
|
|
1638 |
|
|
if Low /= High then
|
1639 |
|
|
Set_Loop_Actions (Assoc, New_List);
|
1640 |
|
|
end if;
|
1641 |
|
|
|
1642 |
|
|
Nb_Choices := Nb_Choices + 1;
|
1643 |
|
|
if Box_Present (Assoc) then
|
1644 |
|
|
Table (Nb_Choices) := (Choice_Lo => Low,
|
1645 |
|
|
Choice_Hi => High,
|
1646 |
|
|
Choice_Node => Empty);
|
1647 |
|
|
else
|
1648 |
|
|
Table (Nb_Choices) := (Choice_Lo => Low,
|
1649 |
|
|
Choice_Hi => High,
|
1650 |
|
|
Choice_Node => Expression (Assoc));
|
1651 |
|
|
end if;
|
1652 |
|
|
Next (Choice);
|
1653 |
|
|
end loop;
|
1654 |
|
|
|
1655 |
|
|
Next (Assoc);
|
1656 |
|
|
end loop;
|
1657 |
|
|
|
1658 |
|
|
-- If there is more than one set of choices these must be static
|
1659 |
|
|
-- and we can therefore sort them. Remember that Nb_Choices does not
|
1660 |
|
|
-- account for an others choice.
|
1661 |
|
|
|
1662 |
|
|
if Nb_Choices > 1 then
|
1663 |
|
|
Sort_Case_Table (Table);
|
1664 |
|
|
end if;
|
1665 |
|
|
|
1666 |
|
|
-- STEP 1 (b): take care of the whole set of discrete choices
|
1667 |
|
|
|
1668 |
|
|
for J in 1 .. Nb_Choices loop
|
1669 |
|
|
Low := Table (J).Choice_Lo;
|
1670 |
|
|
High := Table (J).Choice_Hi;
|
1671 |
|
|
Expr := Table (J).Choice_Node;
|
1672 |
|
|
Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
|
1673 |
|
|
end loop;
|
1674 |
|
|
|
1675 |
|
|
-- STEP 1 (c): generate the remaining loops to cover others choice
|
1676 |
|
|
-- We don't need to generate loops over empty gaps, but if there is
|
1677 |
|
|
-- a single empty range we must analyze the expression for semantics
|
1678 |
|
|
|
1679 |
|
|
if Present (Others_Expr) or else Others_Box_Present then
|
1680 |
|
|
declare
|
1681 |
|
|
First : Boolean := True;
|
1682 |
|
|
|
1683 |
|
|
begin
|
1684 |
|
|
for J in 0 .. Nb_Choices loop
|
1685 |
|
|
if J = 0 then
|
1686 |
|
|
Low := Aggr_Low;
|
1687 |
|
|
else
|
1688 |
|
|
Low := Add (1, To => Table (J).Choice_Hi);
|
1689 |
|
|
end if;
|
1690 |
|
|
|
1691 |
|
|
if J = Nb_Choices then
|
1692 |
|
|
High := Aggr_High;
|
1693 |
|
|
else
|
1694 |
|
|
High := Add (-1, To => Table (J + 1).Choice_Lo);
|
1695 |
|
|
end if;
|
1696 |
|
|
|
1697 |
|
|
-- If this is an expansion within an init proc, make
|
1698 |
|
|
-- sure that discriminant references are replaced by
|
1699 |
|
|
-- the corresponding discriminal.
|
1700 |
|
|
|
1701 |
|
|
if Inside_Init_Proc then
|
1702 |
|
|
if Is_Entity_Name (Low)
|
1703 |
|
|
and then Ekind (Entity (Low)) = E_Discriminant
|
1704 |
|
|
then
|
1705 |
|
|
Set_Entity (Low, Discriminal (Entity (Low)));
|
1706 |
|
|
end if;
|
1707 |
|
|
|
1708 |
|
|
if Is_Entity_Name (High)
|
1709 |
|
|
and then Ekind (Entity (High)) = E_Discriminant
|
1710 |
|
|
then
|
1711 |
|
|
Set_Entity (High, Discriminal (Entity (High)));
|
1712 |
|
|
end if;
|
1713 |
|
|
end if;
|
1714 |
|
|
|
1715 |
|
|
if First
|
1716 |
|
|
or else not Empty_Range (Low, High)
|
1717 |
|
|
then
|
1718 |
|
|
First := False;
|
1719 |
|
|
Append_List
|
1720 |
|
|
(Gen_Loop (Low, High, Others_Expr), To => New_Code);
|
1721 |
|
|
end if;
|
1722 |
|
|
end loop;
|
1723 |
|
|
end;
|
1724 |
|
|
end if;
|
1725 |
|
|
|
1726 |
|
|
-- STEP 2: Process positional components
|
1727 |
|
|
|
1728 |
|
|
else
|
1729 |
|
|
-- STEP 2 (a): Generate the assignments for each positional element
|
1730 |
|
|
-- Note that here we have to use Aggr_L rather than Aggr_Low because
|
1731 |
|
|
-- Aggr_L is analyzed and Add wants an analyzed expression.
|
1732 |
|
|
|
1733 |
|
|
Expr := First (Expressions (N));
|
1734 |
|
|
Nb_Elements := -1;
|
1735 |
|
|
while Present (Expr) loop
|
1736 |
|
|
Nb_Elements := Nb_Elements + 1;
|
1737 |
|
|
Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
|
1738 |
|
|
To => New_Code);
|
1739 |
|
|
Next (Expr);
|
1740 |
|
|
end loop;
|
1741 |
|
|
|
1742 |
|
|
-- STEP 2 (b): Generate final loop if an others choice is present
|
1743 |
|
|
-- Here Nb_Elements gives the offset of the last positional element.
|
1744 |
|
|
|
1745 |
|
|
if Present (Component_Associations (N)) then
|
1746 |
|
|
Assoc := Last (Component_Associations (N));
|
1747 |
|
|
|
1748 |
|
|
-- Ada 2005 (AI-287)
|
1749 |
|
|
|
1750 |
|
|
if Box_Present (Assoc) then
|
1751 |
|
|
Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
|
1752 |
|
|
Aggr_High,
|
1753 |
|
|
Empty),
|
1754 |
|
|
To => New_Code);
|
1755 |
|
|
else
|
1756 |
|
|
Expr := Expression (Assoc);
|
1757 |
|
|
|
1758 |
|
|
Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
|
1759 |
|
|
Aggr_High,
|
1760 |
|
|
Expr), -- AI-287
|
1761 |
|
|
To => New_Code);
|
1762 |
|
|
end if;
|
1763 |
|
|
end if;
|
1764 |
|
|
end if;
|
1765 |
|
|
|
1766 |
|
|
return New_Code;
|
1767 |
|
|
end Build_Array_Aggr_Code;
|
1768 |
|
|
|
1769 |
|
|
----------------------------
|
1770 |
|
|
-- Build_Record_Aggr_Code --
|
1771 |
|
|
----------------------------
|
1772 |
|
|
|
1773 |
|
|
function Build_Record_Aggr_Code
|
1774 |
|
|
(N : Node_Id;
|
1775 |
|
|
Typ : Entity_Id;
|
1776 |
|
|
Lhs : Node_Id;
|
1777 |
|
|
Flist : Node_Id := Empty;
|
1778 |
|
|
Obj : Entity_Id := Empty;
|
1779 |
|
|
Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
|
1780 |
|
|
is
|
1781 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1782 |
|
|
L : constant List_Id := New_List;
|
1783 |
|
|
N_Typ : constant Entity_Id := Etype (N);
|
1784 |
|
|
|
1785 |
|
|
Comp : Node_Id;
|
1786 |
|
|
Instr : Node_Id;
|
1787 |
|
|
Ref : Node_Id;
|
1788 |
|
|
Target : Entity_Id;
|
1789 |
|
|
F : Node_Id;
|
1790 |
|
|
Comp_Type : Entity_Id;
|
1791 |
|
|
Selector : Entity_Id;
|
1792 |
|
|
Comp_Expr : Node_Id;
|
1793 |
|
|
Expr_Q : Node_Id;
|
1794 |
|
|
|
1795 |
|
|
Internal_Final_List : Node_Id := Empty;
|
1796 |
|
|
|
1797 |
|
|
-- If this is an internal aggregate, the External_Final_List is an
|
1798 |
|
|
-- expression for the controller record of the enclosing type.
|
1799 |
|
|
|
1800 |
|
|
-- If the current aggregate has several controlled components, this
|
1801 |
|
|
-- expression will appear in several calls to attach to the finali-
|
1802 |
|
|
-- zation list, and it must not be shared.
|
1803 |
|
|
|
1804 |
|
|
External_Final_List : Node_Id;
|
1805 |
|
|
Ancestor_Is_Expression : Boolean := False;
|
1806 |
|
|
Ancestor_Is_Subtype_Mark : Boolean := False;
|
1807 |
|
|
|
1808 |
|
|
Init_Typ : Entity_Id := Empty;
|
1809 |
|
|
Attach : Node_Id;
|
1810 |
|
|
|
1811 |
|
|
Ctrl_Stuff_Done : Boolean := False;
|
1812 |
|
|
-- True if Gen_Ctrl_Actions_For_Aggr has already been called; calls
|
1813 |
|
|
-- after the first do nothing.
|
1814 |
|
|
|
1815 |
|
|
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
|
1816 |
|
|
-- Returns the value that the given discriminant of an ancestor type
|
1817 |
|
|
-- should receive (in the absence of a conflict with the value provided
|
1818 |
|
|
-- by an ancestor part of an extension aggregate).
|
1819 |
|
|
|
1820 |
|
|
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
|
1821 |
|
|
-- Check that each of the discriminant values defined by the ancestor
|
1822 |
|
|
-- part of an extension aggregate match the corresponding values
|
1823 |
|
|
-- provided by either an association of the aggregate or by the
|
1824 |
|
|
-- constraint imposed by a parent type (RM95-4.3.2(8)).
|
1825 |
|
|
|
1826 |
|
|
function Compatible_Int_Bounds
|
1827 |
|
|
(Agg_Bounds : Node_Id;
|
1828 |
|
|
Typ_Bounds : Node_Id) return Boolean;
|
1829 |
|
|
-- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
|
1830 |
|
|
-- assumed that both bounds are integer ranges.
|
1831 |
|
|
|
1832 |
|
|
procedure Gen_Ctrl_Actions_For_Aggr;
|
1833 |
|
|
-- Deal with the various controlled type data structure initializations
|
1834 |
|
|
-- (but only if it hasn't been done already).
|
1835 |
|
|
|
1836 |
|
|
function Get_Constraint_Association (T : Entity_Id) return Node_Id;
|
1837 |
|
|
-- Returns the first discriminant association in the constraint
|
1838 |
|
|
-- associated with T, if any, otherwise returns Empty.
|
1839 |
|
|
|
1840 |
|
|
function Init_Controller
|
1841 |
|
|
(Target : Node_Id;
|
1842 |
|
|
Typ : Entity_Id;
|
1843 |
|
|
F : Node_Id;
|
1844 |
|
|
Attach : Node_Id;
|
1845 |
|
|
Init_Pr : Boolean) return List_Id;
|
1846 |
|
|
-- Returns the list of statements necessary to initialize the internal
|
1847 |
|
|
-- controller of the (possible) ancestor typ into target and attach it
|
1848 |
|
|
-- to finalization list F. Init_Pr conditions the call to the init proc
|
1849 |
|
|
-- since it may already be done due to ancestor initialization.
|
1850 |
|
|
|
1851 |
|
|
function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
|
1852 |
|
|
-- Check whether Bounds is a range node and its lower and higher bounds
|
1853 |
|
|
-- are integers literals.
|
1854 |
|
|
|
1855 |
|
|
---------------------------------
|
1856 |
|
|
-- Ancestor_Discriminant_Value --
|
1857 |
|
|
---------------------------------
|
1858 |
|
|
|
1859 |
|
|
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
|
1860 |
|
|
Assoc : Node_Id;
|
1861 |
|
|
Assoc_Elmt : Elmt_Id;
|
1862 |
|
|
Aggr_Comp : Entity_Id;
|
1863 |
|
|
Corresp_Disc : Entity_Id;
|
1864 |
|
|
Current_Typ : Entity_Id := Base_Type (Typ);
|
1865 |
|
|
Parent_Typ : Entity_Id;
|
1866 |
|
|
Parent_Disc : Entity_Id;
|
1867 |
|
|
Save_Assoc : Node_Id := Empty;
|
1868 |
|
|
|
1869 |
|
|
begin
|
1870 |
|
|
-- First check any discriminant associations to see if any of them
|
1871 |
|
|
-- provide a value for the discriminant.
|
1872 |
|
|
|
1873 |
|
|
if Present (Discriminant_Specifications (Parent (Current_Typ))) then
|
1874 |
|
|
Assoc := First (Component_Associations (N));
|
1875 |
|
|
while Present (Assoc) loop
|
1876 |
|
|
Aggr_Comp := Entity (First (Choices (Assoc)));
|
1877 |
|
|
|
1878 |
|
|
if Ekind (Aggr_Comp) = E_Discriminant then
|
1879 |
|
|
Save_Assoc := Expression (Assoc);
|
1880 |
|
|
|
1881 |
|
|
Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
|
1882 |
|
|
while Present (Corresp_Disc) loop
|
1883 |
|
|
|
1884 |
|
|
-- If found a corresponding discriminant then return the
|
1885 |
|
|
-- value given in the aggregate. (Note: this is not
|
1886 |
|
|
-- correct in the presence of side effects. ???)
|
1887 |
|
|
|
1888 |
|
|
if Disc = Corresp_Disc then
|
1889 |
|
|
return Duplicate_Subexpr (Expression (Assoc));
|
1890 |
|
|
end if;
|
1891 |
|
|
|
1892 |
|
|
Corresp_Disc :=
|
1893 |
|
|
Corresponding_Discriminant (Corresp_Disc);
|
1894 |
|
|
end loop;
|
1895 |
|
|
end if;
|
1896 |
|
|
|
1897 |
|
|
Next (Assoc);
|
1898 |
|
|
end loop;
|
1899 |
|
|
end if;
|
1900 |
|
|
|
1901 |
|
|
-- No match found in aggregate, so chain up parent types to find
|
1902 |
|
|
-- a constraint that defines the value of the discriminant.
|
1903 |
|
|
|
1904 |
|
|
Parent_Typ := Etype (Current_Typ);
|
1905 |
|
|
while Current_Typ /= Parent_Typ loop
|
1906 |
|
|
if Has_Discriminants (Parent_Typ)
|
1907 |
|
|
and then not Has_Unknown_Discriminants (Parent_Typ)
|
1908 |
|
|
then
|
1909 |
|
|
Parent_Disc := First_Discriminant (Parent_Typ);
|
1910 |
|
|
|
1911 |
|
|
-- We either get the association from the subtype indication
|
1912 |
|
|
-- of the type definition itself, or from the discriminant
|
1913 |
|
|
-- constraint associated with the type entity (which is
|
1914 |
|
|
-- preferable, but it's not always present ???)
|
1915 |
|
|
|
1916 |
|
|
if Is_Empty_Elmt_List (
|
1917 |
|
|
Discriminant_Constraint (Current_Typ))
|
1918 |
|
|
then
|
1919 |
|
|
Assoc := Get_Constraint_Association (Current_Typ);
|
1920 |
|
|
Assoc_Elmt := No_Elmt;
|
1921 |
|
|
else
|
1922 |
|
|
Assoc_Elmt :=
|
1923 |
|
|
First_Elmt (Discriminant_Constraint (Current_Typ));
|
1924 |
|
|
Assoc := Node (Assoc_Elmt);
|
1925 |
|
|
end if;
|
1926 |
|
|
|
1927 |
|
|
-- Traverse the discriminants of the parent type looking
|
1928 |
|
|
-- for one that corresponds.
|
1929 |
|
|
|
1930 |
|
|
while Present (Parent_Disc) and then Present (Assoc) loop
|
1931 |
|
|
Corresp_Disc := Parent_Disc;
|
1932 |
|
|
while Present (Corresp_Disc)
|
1933 |
|
|
and then Disc /= Corresp_Disc
|
1934 |
|
|
loop
|
1935 |
|
|
Corresp_Disc :=
|
1936 |
|
|
Corresponding_Discriminant (Corresp_Disc);
|
1937 |
|
|
end loop;
|
1938 |
|
|
|
1939 |
|
|
if Disc = Corresp_Disc then
|
1940 |
|
|
if Nkind (Assoc) = N_Discriminant_Association then
|
1941 |
|
|
Assoc := Expression (Assoc);
|
1942 |
|
|
end if;
|
1943 |
|
|
|
1944 |
|
|
-- If the located association directly denotes a
|
1945 |
|
|
-- discriminant, then use the value of a saved
|
1946 |
|
|
-- association of the aggregate. This is a kludge to
|
1947 |
|
|
-- handle certain cases involving multiple discriminants
|
1948 |
|
|
-- mapped to a single discriminant of a descendant. It's
|
1949 |
|
|
-- not clear how to locate the appropriate discriminant
|
1950 |
|
|
-- value for such cases. ???
|
1951 |
|
|
|
1952 |
|
|
if Is_Entity_Name (Assoc)
|
1953 |
|
|
and then Ekind (Entity (Assoc)) = E_Discriminant
|
1954 |
|
|
then
|
1955 |
|
|
Assoc := Save_Assoc;
|
1956 |
|
|
end if;
|
1957 |
|
|
|
1958 |
|
|
return Duplicate_Subexpr (Assoc);
|
1959 |
|
|
end if;
|
1960 |
|
|
|
1961 |
|
|
Next_Discriminant (Parent_Disc);
|
1962 |
|
|
|
1963 |
|
|
if No (Assoc_Elmt) then
|
1964 |
|
|
Next (Assoc);
|
1965 |
|
|
else
|
1966 |
|
|
Next_Elmt (Assoc_Elmt);
|
1967 |
|
|
if Present (Assoc_Elmt) then
|
1968 |
|
|
Assoc := Node (Assoc_Elmt);
|
1969 |
|
|
else
|
1970 |
|
|
Assoc := Empty;
|
1971 |
|
|
end if;
|
1972 |
|
|
end if;
|
1973 |
|
|
end loop;
|
1974 |
|
|
end if;
|
1975 |
|
|
|
1976 |
|
|
Current_Typ := Parent_Typ;
|
1977 |
|
|
Parent_Typ := Etype (Current_Typ);
|
1978 |
|
|
end loop;
|
1979 |
|
|
|
1980 |
|
|
-- In some cases there's no ancestor value to locate (such as
|
1981 |
|
|
-- when an ancestor part given by an expression defines the
|
1982 |
|
|
-- discriminant value).
|
1983 |
|
|
|
1984 |
|
|
return Empty;
|
1985 |
|
|
end Ancestor_Discriminant_Value;
|
1986 |
|
|
|
1987 |
|
|
----------------------------------
|
1988 |
|
|
-- Check_Ancestor_Discriminants --
|
1989 |
|
|
----------------------------------
|
1990 |
|
|
|
1991 |
|
|
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
|
1992 |
|
|
Discr : Entity_Id;
|
1993 |
|
|
Disc_Value : Node_Id;
|
1994 |
|
|
Cond : Node_Id;
|
1995 |
|
|
|
1996 |
|
|
begin
|
1997 |
|
|
Discr := First_Discriminant (Base_Type (Anc_Typ));
|
1998 |
|
|
while Present (Discr) loop
|
1999 |
|
|
Disc_Value := Ancestor_Discriminant_Value (Discr);
|
2000 |
|
|
|
2001 |
|
|
if Present (Disc_Value) then
|
2002 |
|
|
Cond := Make_Op_Ne (Loc,
|
2003 |
|
|
Left_Opnd =>
|
2004 |
|
|
Make_Selected_Component (Loc,
|
2005 |
|
|
Prefix => New_Copy_Tree (Target),
|
2006 |
|
|
Selector_Name => New_Occurrence_Of (Discr, Loc)),
|
2007 |
|
|
Right_Opnd => Disc_Value);
|
2008 |
|
|
|
2009 |
|
|
Append_To (L,
|
2010 |
|
|
Make_Raise_Constraint_Error (Loc,
|
2011 |
|
|
Condition => Cond,
|
2012 |
|
|
Reason => CE_Discriminant_Check_Failed));
|
2013 |
|
|
end if;
|
2014 |
|
|
|
2015 |
|
|
Next_Discriminant (Discr);
|
2016 |
|
|
end loop;
|
2017 |
|
|
end Check_Ancestor_Discriminants;
|
2018 |
|
|
|
2019 |
|
|
---------------------------
|
2020 |
|
|
-- Compatible_Int_Bounds --
|
2021 |
|
|
---------------------------
|
2022 |
|
|
|
2023 |
|
|
function Compatible_Int_Bounds
|
2024 |
|
|
(Agg_Bounds : Node_Id;
|
2025 |
|
|
Typ_Bounds : Node_Id) return Boolean
|
2026 |
|
|
is
|
2027 |
|
|
Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
|
2028 |
|
|
Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
|
2029 |
|
|
Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
|
2030 |
|
|
Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
|
2031 |
|
|
begin
|
2032 |
|
|
return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
|
2033 |
|
|
end Compatible_Int_Bounds;
|
2034 |
|
|
|
2035 |
|
|
--------------------------------
|
2036 |
|
|
-- Get_Constraint_Association --
|
2037 |
|
|
--------------------------------
|
2038 |
|
|
|
2039 |
|
|
function Get_Constraint_Association (T : Entity_Id) return Node_Id is
|
2040 |
|
|
Typ_Def : constant Node_Id := Type_Definition (Parent (T));
|
2041 |
|
|
Indic : constant Node_Id := Subtype_Indication (Typ_Def);
|
2042 |
|
|
|
2043 |
|
|
begin
|
2044 |
|
|
-- ??? Also need to cover case of a type mark denoting a subtype
|
2045 |
|
|
-- with constraint.
|
2046 |
|
|
|
2047 |
|
|
if Nkind (Indic) = N_Subtype_Indication
|
2048 |
|
|
and then Present (Constraint (Indic))
|
2049 |
|
|
then
|
2050 |
|
|
return First (Constraints (Constraint (Indic)));
|
2051 |
|
|
end if;
|
2052 |
|
|
|
2053 |
|
|
return Empty;
|
2054 |
|
|
end Get_Constraint_Association;
|
2055 |
|
|
|
2056 |
|
|
---------------------
|
2057 |
|
|
-- Init_Controller --
|
2058 |
|
|
---------------------
|
2059 |
|
|
|
2060 |
|
|
function Init_Controller
|
2061 |
|
|
(Target : Node_Id;
|
2062 |
|
|
Typ : Entity_Id;
|
2063 |
|
|
F : Node_Id;
|
2064 |
|
|
Attach : Node_Id;
|
2065 |
|
|
Init_Pr : Boolean) return List_Id
|
2066 |
|
|
is
|
2067 |
|
|
L : constant List_Id := New_List;
|
2068 |
|
|
Ref : Node_Id;
|
2069 |
|
|
RC : RE_Id;
|
2070 |
|
|
Target_Type : Entity_Id;
|
2071 |
|
|
|
2072 |
|
|
begin
|
2073 |
|
|
-- Generate:
|
2074 |
|
|
-- init-proc (target._controller);
|
2075 |
|
|
-- initialize (target._controller);
|
2076 |
|
|
-- Attach_to_Final_List (target._controller, F);
|
2077 |
|
|
|
2078 |
|
|
Ref :=
|
2079 |
|
|
Make_Selected_Component (Loc,
|
2080 |
|
|
Prefix => Convert_To (Typ, New_Copy_Tree (Target)),
|
2081 |
|
|
Selector_Name => Make_Identifier (Loc, Name_uController));
|
2082 |
|
|
Set_Assignment_OK (Ref);
|
2083 |
|
|
|
2084 |
|
|
-- Ada 2005 (AI-287): Give support to aggregates of limited types.
|
2085 |
|
|
-- If the type is intrinsically limited the controller is limited as
|
2086 |
|
|
-- well. If it is tagged and limited then so is the controller.
|
2087 |
|
|
-- Otherwise an untagged type may have limited components without its
|
2088 |
|
|
-- full view being limited, so the controller is not limited.
|
2089 |
|
|
|
2090 |
|
|
if Nkind (Target) = N_Identifier then
|
2091 |
|
|
Target_Type := Etype (Target);
|
2092 |
|
|
|
2093 |
|
|
elsif Nkind (Target) = N_Selected_Component then
|
2094 |
|
|
Target_Type := Etype (Selector_Name (Target));
|
2095 |
|
|
|
2096 |
|
|
elsif Nkind (Target) = N_Unchecked_Type_Conversion then
|
2097 |
|
|
Target_Type := Etype (Target);
|
2098 |
|
|
|
2099 |
|
|
elsif Nkind (Target) = N_Unchecked_Expression
|
2100 |
|
|
and then Nkind (Expression (Target)) = N_Indexed_Component
|
2101 |
|
|
then
|
2102 |
|
|
Target_Type := Etype (Prefix (Expression (Target)));
|
2103 |
|
|
|
2104 |
|
|
else
|
2105 |
|
|
Target_Type := Etype (Target);
|
2106 |
|
|
end if;
|
2107 |
|
|
|
2108 |
|
|
-- If the target has not been analyzed yet, as will happen with
|
2109 |
|
|
-- delayed expansion, use the given type (either the aggregate type
|
2110 |
|
|
-- or an ancestor) to determine limitedness.
|
2111 |
|
|
|
2112 |
|
|
if No (Target_Type) then
|
2113 |
|
|
Target_Type := Typ;
|
2114 |
|
|
end if;
|
2115 |
|
|
|
2116 |
|
|
if (Is_Tagged_Type (Target_Type))
|
2117 |
|
|
and then Is_Limited_Type (Target_Type)
|
2118 |
|
|
then
|
2119 |
|
|
RC := RE_Limited_Record_Controller;
|
2120 |
|
|
|
2121 |
|
|
elsif Is_Inherently_Limited_Type (Target_Type) then
|
2122 |
|
|
RC := RE_Limited_Record_Controller;
|
2123 |
|
|
|
2124 |
|
|
else
|
2125 |
|
|
RC := RE_Record_Controller;
|
2126 |
|
|
end if;
|
2127 |
|
|
|
2128 |
|
|
if Init_Pr then
|
2129 |
|
|
Append_List_To (L,
|
2130 |
|
|
Build_Initialization_Call (Loc,
|
2131 |
|
|
Id_Ref => Ref,
|
2132 |
|
|
Typ => RTE (RC),
|
2133 |
|
|
In_Init_Proc => Within_Init_Proc));
|
2134 |
|
|
end if;
|
2135 |
|
|
|
2136 |
|
|
Append_To (L,
|
2137 |
|
|
Make_Procedure_Call_Statement (Loc,
|
2138 |
|
|
Name =>
|
2139 |
|
|
New_Reference_To (
|
2140 |
|
|
Find_Prim_Op (RTE (RC), Name_Initialize), Loc),
|
2141 |
|
|
Parameter_Associations =>
|
2142 |
|
|
New_List (New_Copy_Tree (Ref))));
|
2143 |
|
|
|
2144 |
|
|
Append_To (L,
|
2145 |
|
|
Make_Attach_Call (
|
2146 |
|
|
Obj_Ref => New_Copy_Tree (Ref),
|
2147 |
|
|
Flist_Ref => F,
|
2148 |
|
|
With_Attach => Attach));
|
2149 |
|
|
|
2150 |
|
|
return L;
|
2151 |
|
|
end Init_Controller;
|
2152 |
|
|
|
2153 |
|
|
-------------------------
|
2154 |
|
|
-- Is_Int_Range_Bounds --
|
2155 |
|
|
-------------------------
|
2156 |
|
|
|
2157 |
|
|
function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
|
2158 |
|
|
begin
|
2159 |
|
|
return Nkind (Bounds) = N_Range
|
2160 |
|
|
and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
|
2161 |
|
|
and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
|
2162 |
|
|
end Is_Int_Range_Bounds;
|
2163 |
|
|
|
2164 |
|
|
-------------------------------
|
2165 |
|
|
-- Gen_Ctrl_Actions_For_Aggr --
|
2166 |
|
|
-------------------------------
|
2167 |
|
|
|
2168 |
|
|
procedure Gen_Ctrl_Actions_For_Aggr is
|
2169 |
|
|
Alloc : Node_Id := Empty;
|
2170 |
|
|
|
2171 |
|
|
begin
|
2172 |
|
|
-- Do the work only the first time this is called
|
2173 |
|
|
|
2174 |
|
|
if Ctrl_Stuff_Done then
|
2175 |
|
|
return;
|
2176 |
|
|
end if;
|
2177 |
|
|
|
2178 |
|
|
Ctrl_Stuff_Done := True;
|
2179 |
|
|
|
2180 |
|
|
if Present (Obj)
|
2181 |
|
|
and then Finalize_Storage_Only (Typ)
|
2182 |
|
|
and then
|
2183 |
|
|
(Is_Library_Level_Entity (Obj)
|
2184 |
|
|
or else Entity (Constant_Value (RTE (RE_Garbage_Collected))) =
|
2185 |
|
|
Standard_True)
|
2186 |
|
|
|
2187 |
|
|
-- why not Is_True (Expr_Value (RTE (RE_Garbaage_Collected) ???
|
2188 |
|
|
then
|
2189 |
|
|
Attach := Make_Integer_Literal (Loc, 0);
|
2190 |
|
|
|
2191 |
|
|
elsif Nkind (Parent (N)) = N_Qualified_Expression
|
2192 |
|
|
and then Nkind (Parent (Parent (N))) = N_Allocator
|
2193 |
|
|
then
|
2194 |
|
|
Alloc := Parent (Parent (N));
|
2195 |
|
|
Attach := Make_Integer_Literal (Loc, 2);
|
2196 |
|
|
|
2197 |
|
|
else
|
2198 |
|
|
Attach := Make_Integer_Literal (Loc, 1);
|
2199 |
|
|
end if;
|
2200 |
|
|
|
2201 |
|
|
-- Determine the external finalization list. It is either the
|
2202 |
|
|
-- finalization list of the outer-scope or the one coming from
|
2203 |
|
|
-- an outer aggregate. When the target is not a temporary, the
|
2204 |
|
|
-- proper scope is the scope of the target rather than the
|
2205 |
|
|
-- potentially transient current scope.
|
2206 |
|
|
|
2207 |
|
|
if Needs_Finalization (Typ) then
|
2208 |
|
|
|
2209 |
|
|
-- The current aggregate belongs to an allocator which creates
|
2210 |
|
|
-- an object through an anonymous access type or acts as the root
|
2211 |
|
|
-- of a coextension chain.
|
2212 |
|
|
|
2213 |
|
|
if Present (Alloc)
|
2214 |
|
|
and then
|
2215 |
|
|
(Is_Coextension_Root (Alloc)
|
2216 |
|
|
or else Ekind (Etype (Alloc)) = E_Anonymous_Access_Type)
|
2217 |
|
|
then
|
2218 |
|
|
if No (Associated_Final_Chain (Etype (Alloc))) then
|
2219 |
|
|
Build_Final_List (Alloc, Etype (Alloc));
|
2220 |
|
|
end if;
|
2221 |
|
|
|
2222 |
|
|
External_Final_List :=
|
2223 |
|
|
Make_Selected_Component (Loc,
|
2224 |
|
|
Prefix =>
|
2225 |
|
|
New_Reference_To (
|
2226 |
|
|
Associated_Final_Chain (Etype (Alloc)), Loc),
|
2227 |
|
|
Selector_Name =>
|
2228 |
|
|
Make_Identifier (Loc, Name_F));
|
2229 |
|
|
|
2230 |
|
|
elsif Present (Flist) then
|
2231 |
|
|
External_Final_List := New_Copy_Tree (Flist);
|
2232 |
|
|
|
2233 |
|
|
elsif Is_Entity_Name (Target)
|
2234 |
|
|
and then Present (Scope (Entity (Target)))
|
2235 |
|
|
then
|
2236 |
|
|
External_Final_List :=
|
2237 |
|
|
Find_Final_List (Scope (Entity (Target)));
|
2238 |
|
|
|
2239 |
|
|
else
|
2240 |
|
|
External_Final_List := Find_Final_List (Current_Scope);
|
2241 |
|
|
end if;
|
2242 |
|
|
else
|
2243 |
|
|
External_Final_List := Empty;
|
2244 |
|
|
end if;
|
2245 |
|
|
|
2246 |
|
|
-- Initialize and attach the outer object in the is_controlled case
|
2247 |
|
|
|
2248 |
|
|
if Is_Controlled (Typ) then
|
2249 |
|
|
if Ancestor_Is_Subtype_Mark then
|
2250 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
2251 |
|
|
Set_Assignment_OK (Ref);
|
2252 |
|
|
Append_To (L,
|
2253 |
|
|
Make_Procedure_Call_Statement (Loc,
|
2254 |
|
|
Name =>
|
2255 |
|
|
New_Reference_To
|
2256 |
|
|
(Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
|
2257 |
|
|
Parameter_Associations => New_List (New_Copy_Tree (Ref))));
|
2258 |
|
|
end if;
|
2259 |
|
|
|
2260 |
|
|
if not Has_Controlled_Component (Typ) then
|
2261 |
|
|
Ref := New_Copy_Tree (Target);
|
2262 |
|
|
Set_Assignment_OK (Ref);
|
2263 |
|
|
|
2264 |
|
|
-- This is an aggregate of a coextension. Do not produce a
|
2265 |
|
|
-- finalization call, but rather attach the reference of the
|
2266 |
|
|
-- aggregate to its coextension chain.
|
2267 |
|
|
|
2268 |
|
|
if Present (Alloc)
|
2269 |
|
|
and then Is_Dynamic_Coextension (Alloc)
|
2270 |
|
|
then
|
2271 |
|
|
if No (Coextensions (Alloc)) then
|
2272 |
|
|
Set_Coextensions (Alloc, New_Elmt_List);
|
2273 |
|
|
end if;
|
2274 |
|
|
|
2275 |
|
|
Append_Elmt (Ref, Coextensions (Alloc));
|
2276 |
|
|
else
|
2277 |
|
|
Append_To (L,
|
2278 |
|
|
Make_Attach_Call (
|
2279 |
|
|
Obj_Ref => Ref,
|
2280 |
|
|
Flist_Ref => New_Copy_Tree (External_Final_List),
|
2281 |
|
|
With_Attach => Attach));
|
2282 |
|
|
end if;
|
2283 |
|
|
end if;
|
2284 |
|
|
end if;
|
2285 |
|
|
|
2286 |
|
|
-- In the Has_Controlled component case, all the intermediate
|
2287 |
|
|
-- controllers must be initialized.
|
2288 |
|
|
|
2289 |
|
|
if Has_Controlled_Component (Typ)
|
2290 |
|
|
and not Is_Limited_Ancestor_Expansion
|
2291 |
|
|
then
|
2292 |
|
|
declare
|
2293 |
|
|
Inner_Typ : Entity_Id;
|
2294 |
|
|
Outer_Typ : Entity_Id;
|
2295 |
|
|
At_Root : Boolean;
|
2296 |
|
|
|
2297 |
|
|
begin
|
2298 |
|
|
-- Find outer type with a controller
|
2299 |
|
|
|
2300 |
|
|
Outer_Typ := Base_Type (Typ);
|
2301 |
|
|
while Outer_Typ /= Init_Typ
|
2302 |
|
|
and then not Has_New_Controlled_Component (Outer_Typ)
|
2303 |
|
|
loop
|
2304 |
|
|
Outer_Typ := Etype (Outer_Typ);
|
2305 |
|
|
end loop;
|
2306 |
|
|
|
2307 |
|
|
-- Attach it to the outer record controller to the external
|
2308 |
|
|
-- final list.
|
2309 |
|
|
|
2310 |
|
|
if Outer_Typ = Init_Typ then
|
2311 |
|
|
Append_List_To (L,
|
2312 |
|
|
Init_Controller (
|
2313 |
|
|
Target => Target,
|
2314 |
|
|
Typ => Outer_Typ,
|
2315 |
|
|
F => External_Final_List,
|
2316 |
|
|
Attach => Attach,
|
2317 |
|
|
Init_Pr => False));
|
2318 |
|
|
|
2319 |
|
|
At_Root := True;
|
2320 |
|
|
Inner_Typ := Init_Typ;
|
2321 |
|
|
|
2322 |
|
|
else
|
2323 |
|
|
Append_List_To (L,
|
2324 |
|
|
Init_Controller (
|
2325 |
|
|
Target => Target,
|
2326 |
|
|
Typ => Outer_Typ,
|
2327 |
|
|
F => External_Final_List,
|
2328 |
|
|
Attach => Attach,
|
2329 |
|
|
Init_Pr => True));
|
2330 |
|
|
|
2331 |
|
|
Inner_Typ := Etype (Outer_Typ);
|
2332 |
|
|
At_Root :=
|
2333 |
|
|
not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ;
|
2334 |
|
|
end if;
|
2335 |
|
|
|
2336 |
|
|
-- The outer object has to be attached as well
|
2337 |
|
|
|
2338 |
|
|
if Is_Controlled (Typ) then
|
2339 |
|
|
Ref := New_Copy_Tree (Target);
|
2340 |
|
|
Set_Assignment_OK (Ref);
|
2341 |
|
|
Append_To (L,
|
2342 |
|
|
Make_Attach_Call (
|
2343 |
|
|
Obj_Ref => Ref,
|
2344 |
|
|
Flist_Ref => New_Copy_Tree (External_Final_List),
|
2345 |
|
|
With_Attach => New_Copy_Tree (Attach)));
|
2346 |
|
|
end if;
|
2347 |
|
|
|
2348 |
|
|
-- Initialize the internal controllers for tagged types with
|
2349 |
|
|
-- more than one controller.
|
2350 |
|
|
|
2351 |
|
|
while not At_Root and then Inner_Typ /= Init_Typ loop
|
2352 |
|
|
if Has_New_Controlled_Component (Inner_Typ) then
|
2353 |
|
|
F :=
|
2354 |
|
|
Make_Selected_Component (Loc,
|
2355 |
|
|
Prefix =>
|
2356 |
|
|
Convert_To (Outer_Typ, New_Copy_Tree (Target)),
|
2357 |
|
|
Selector_Name =>
|
2358 |
|
|
Make_Identifier (Loc, Name_uController));
|
2359 |
|
|
F :=
|
2360 |
|
|
Make_Selected_Component (Loc,
|
2361 |
|
|
Prefix => F,
|
2362 |
|
|
Selector_Name => Make_Identifier (Loc, Name_F));
|
2363 |
|
|
|
2364 |
|
|
Append_List_To (L,
|
2365 |
|
|
Init_Controller (
|
2366 |
|
|
Target => Target,
|
2367 |
|
|
Typ => Inner_Typ,
|
2368 |
|
|
F => F,
|
2369 |
|
|
Attach => Make_Integer_Literal (Loc, 1),
|
2370 |
|
|
Init_Pr => True));
|
2371 |
|
|
Outer_Typ := Inner_Typ;
|
2372 |
|
|
end if;
|
2373 |
|
|
|
2374 |
|
|
-- Stop at the root
|
2375 |
|
|
|
2376 |
|
|
At_Root := Inner_Typ = Etype (Inner_Typ);
|
2377 |
|
|
Inner_Typ := Etype (Inner_Typ);
|
2378 |
|
|
end loop;
|
2379 |
|
|
|
2380 |
|
|
-- If not done yet attach the controller of the ancestor part
|
2381 |
|
|
|
2382 |
|
|
if Outer_Typ /= Init_Typ
|
2383 |
|
|
and then Inner_Typ = Init_Typ
|
2384 |
|
|
and then Has_Controlled_Component (Init_Typ)
|
2385 |
|
|
then
|
2386 |
|
|
F :=
|
2387 |
|
|
Make_Selected_Component (Loc,
|
2388 |
|
|
Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
|
2389 |
|
|
Selector_Name =>
|
2390 |
|
|
Make_Identifier (Loc, Name_uController));
|
2391 |
|
|
F :=
|
2392 |
|
|
Make_Selected_Component (Loc,
|
2393 |
|
|
Prefix => F,
|
2394 |
|
|
Selector_Name => Make_Identifier (Loc, Name_F));
|
2395 |
|
|
|
2396 |
|
|
Attach := Make_Integer_Literal (Loc, 1);
|
2397 |
|
|
Append_List_To (L,
|
2398 |
|
|
Init_Controller (
|
2399 |
|
|
Target => Target,
|
2400 |
|
|
Typ => Init_Typ,
|
2401 |
|
|
F => F,
|
2402 |
|
|
Attach => Attach,
|
2403 |
|
|
Init_Pr => False));
|
2404 |
|
|
|
2405 |
|
|
-- Note: Init_Pr is False because the ancestor part has
|
2406 |
|
|
-- already been initialized either way (by default, if
|
2407 |
|
|
-- given by a type name, otherwise from the expression).
|
2408 |
|
|
|
2409 |
|
|
end if;
|
2410 |
|
|
end;
|
2411 |
|
|
end if;
|
2412 |
|
|
end Gen_Ctrl_Actions_For_Aggr;
|
2413 |
|
|
|
2414 |
|
|
function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
|
2415 |
|
|
-- If default expression of a component mentions a discriminant of the
|
2416 |
|
|
-- type, it must be rewritten as the discriminant of the target object.
|
2417 |
|
|
|
2418 |
|
|
function Replace_Type (Expr : Node_Id) return Traverse_Result;
|
2419 |
|
|
-- If the aggregate contains a self-reference, traverse each expression
|
2420 |
|
|
-- to replace a possible self-reference with a reference to the proper
|
2421 |
|
|
-- component of the target of the assignment.
|
2422 |
|
|
|
2423 |
|
|
--------------------------
|
2424 |
|
|
-- Rewrite_Discriminant --
|
2425 |
|
|
--------------------------
|
2426 |
|
|
|
2427 |
|
|
function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
|
2428 |
|
|
begin
|
2429 |
|
|
if Nkind (Expr) = N_Identifier
|
2430 |
|
|
and then Present (Entity (Expr))
|
2431 |
|
|
and then Ekind (Entity (Expr)) = E_In_Parameter
|
2432 |
|
|
and then Present (Discriminal_Link (Entity (Expr)))
|
2433 |
|
|
then
|
2434 |
|
|
Rewrite (Expr,
|
2435 |
|
|
Make_Selected_Component (Loc,
|
2436 |
|
|
Prefix => New_Occurrence_Of (Obj, Loc),
|
2437 |
|
|
Selector_Name => Make_Identifier (Loc, Chars (Expr))));
|
2438 |
|
|
end if;
|
2439 |
|
|
return OK;
|
2440 |
|
|
end Rewrite_Discriminant;
|
2441 |
|
|
|
2442 |
|
|
------------------
|
2443 |
|
|
-- Replace_Type --
|
2444 |
|
|
------------------
|
2445 |
|
|
|
2446 |
|
|
function Replace_Type (Expr : Node_Id) return Traverse_Result is
|
2447 |
|
|
begin
|
2448 |
|
|
-- Note regarding the Root_Type test below: Aggregate components for
|
2449 |
|
|
-- self-referential types include attribute references to the current
|
2450 |
|
|
-- instance, of the form: Typ'access, etc.. These references are
|
2451 |
|
|
-- rewritten as references to the target of the aggregate: the
|
2452 |
|
|
-- left-hand side of an assignment, the entity in a declaration,
|
2453 |
|
|
-- or a temporary. Without this test, we would improperly extended
|
2454 |
|
|
-- this rewriting to attribute references whose prefix was not the
|
2455 |
|
|
-- type of the aggregate.
|
2456 |
|
|
|
2457 |
|
|
if Nkind (Expr) = N_Attribute_Reference
|
2458 |
|
|
and then Is_Entity_Name (Prefix (Expr))
|
2459 |
|
|
and then Is_Type (Entity (Prefix (Expr)))
|
2460 |
|
|
and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
|
2461 |
|
|
then
|
2462 |
|
|
if Is_Entity_Name (Lhs) then
|
2463 |
|
|
Rewrite (Prefix (Expr),
|
2464 |
|
|
New_Occurrence_Of (Entity (Lhs), Loc));
|
2465 |
|
|
|
2466 |
|
|
elsif Nkind (Lhs) = N_Selected_Component then
|
2467 |
|
|
Rewrite (Expr,
|
2468 |
|
|
Make_Attribute_Reference (Loc,
|
2469 |
|
|
Attribute_Name => Name_Unrestricted_Access,
|
2470 |
|
|
Prefix => New_Copy_Tree (Prefix (Lhs))));
|
2471 |
|
|
Set_Analyzed (Parent (Expr), False);
|
2472 |
|
|
|
2473 |
|
|
else
|
2474 |
|
|
Rewrite (Expr,
|
2475 |
|
|
Make_Attribute_Reference (Loc,
|
2476 |
|
|
Attribute_Name => Name_Unrestricted_Access,
|
2477 |
|
|
Prefix => New_Copy_Tree (Lhs)));
|
2478 |
|
|
Set_Analyzed (Parent (Expr), False);
|
2479 |
|
|
end if;
|
2480 |
|
|
end if;
|
2481 |
|
|
|
2482 |
|
|
return OK;
|
2483 |
|
|
end Replace_Type;
|
2484 |
|
|
|
2485 |
|
|
procedure Replace_Self_Reference is
|
2486 |
|
|
new Traverse_Proc (Replace_Type);
|
2487 |
|
|
|
2488 |
|
|
procedure Replace_Discriminants is
|
2489 |
|
|
new Traverse_Proc (Rewrite_Discriminant);
|
2490 |
|
|
|
2491 |
|
|
-- Start of processing for Build_Record_Aggr_Code
|
2492 |
|
|
|
2493 |
|
|
begin
|
2494 |
|
|
if Has_Self_Reference (N) then
|
2495 |
|
|
Replace_Self_Reference (N);
|
2496 |
|
|
end if;
|
2497 |
|
|
|
2498 |
|
|
-- If the target of the aggregate is class-wide, we must convert it
|
2499 |
|
|
-- to the actual type of the aggregate, so that the proper components
|
2500 |
|
|
-- are visible. We know already that the types are compatible.
|
2501 |
|
|
|
2502 |
|
|
if Present (Etype (Lhs))
|
2503 |
|
|
and then Is_Class_Wide_Type (Etype (Lhs))
|
2504 |
|
|
then
|
2505 |
|
|
Target := Unchecked_Convert_To (Typ, Lhs);
|
2506 |
|
|
else
|
2507 |
|
|
Target := Lhs;
|
2508 |
|
|
end if;
|
2509 |
|
|
|
2510 |
|
|
-- Deal with the ancestor part of extension aggregates or with the
|
2511 |
|
|
-- discriminants of the root type.
|
2512 |
|
|
|
2513 |
|
|
if Nkind (N) = N_Extension_Aggregate then
|
2514 |
|
|
declare
|
2515 |
|
|
A : constant Node_Id := Ancestor_Part (N);
|
2516 |
|
|
Assign : List_Id;
|
2517 |
|
|
|
2518 |
|
|
begin
|
2519 |
|
|
-- If the ancestor part is a subtype mark "T", we generate
|
2520 |
|
|
|
2521 |
|
|
-- init-proc (T(tmp)); if T is constrained and
|
2522 |
|
|
-- init-proc (S(tmp)); where S applies an appropriate
|
2523 |
|
|
-- constraint if T is unconstrained
|
2524 |
|
|
|
2525 |
|
|
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
|
2526 |
|
|
Ancestor_Is_Subtype_Mark := True;
|
2527 |
|
|
|
2528 |
|
|
if Is_Constrained (Entity (A)) then
|
2529 |
|
|
Init_Typ := Entity (A);
|
2530 |
|
|
|
2531 |
|
|
-- For an ancestor part given by an unconstrained type mark,
|
2532 |
|
|
-- create a subtype constrained by appropriate corresponding
|
2533 |
|
|
-- discriminant values coming from either associations of the
|
2534 |
|
|
-- aggregate or a constraint on a parent type. The subtype will
|
2535 |
|
|
-- be used to generate the correct default value for the
|
2536 |
|
|
-- ancestor part.
|
2537 |
|
|
|
2538 |
|
|
elsif Has_Discriminants (Entity (A)) then
|
2539 |
|
|
declare
|
2540 |
|
|
Anc_Typ : constant Entity_Id := Entity (A);
|
2541 |
|
|
Anc_Constr : constant List_Id := New_List;
|
2542 |
|
|
Discrim : Entity_Id;
|
2543 |
|
|
Disc_Value : Node_Id;
|
2544 |
|
|
New_Indic : Node_Id;
|
2545 |
|
|
Subt_Decl : Node_Id;
|
2546 |
|
|
|
2547 |
|
|
begin
|
2548 |
|
|
Discrim := First_Discriminant (Anc_Typ);
|
2549 |
|
|
while Present (Discrim) loop
|
2550 |
|
|
Disc_Value := Ancestor_Discriminant_Value (Discrim);
|
2551 |
|
|
Append_To (Anc_Constr, Disc_Value);
|
2552 |
|
|
Next_Discriminant (Discrim);
|
2553 |
|
|
end loop;
|
2554 |
|
|
|
2555 |
|
|
New_Indic :=
|
2556 |
|
|
Make_Subtype_Indication (Loc,
|
2557 |
|
|
Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
|
2558 |
|
|
Constraint =>
|
2559 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
2560 |
|
|
Constraints => Anc_Constr));
|
2561 |
|
|
|
2562 |
|
|
Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
|
2563 |
|
|
|
2564 |
|
|
Subt_Decl :=
|
2565 |
|
|
Make_Subtype_Declaration (Loc,
|
2566 |
|
|
Defining_Identifier => Init_Typ,
|
2567 |
|
|
Subtype_Indication => New_Indic);
|
2568 |
|
|
|
2569 |
|
|
-- Itypes must be analyzed with checks off Declaration
|
2570 |
|
|
-- must have a parent for proper handling of subsidiary
|
2571 |
|
|
-- actions.
|
2572 |
|
|
|
2573 |
|
|
Set_Parent (Subt_Decl, N);
|
2574 |
|
|
Analyze (Subt_Decl, Suppress => All_Checks);
|
2575 |
|
|
end;
|
2576 |
|
|
end if;
|
2577 |
|
|
|
2578 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
2579 |
|
|
Set_Assignment_OK (Ref);
|
2580 |
|
|
|
2581 |
|
|
if not Is_Interface (Init_Typ) then
|
2582 |
|
|
Append_List_To (L,
|
2583 |
|
|
Build_Initialization_Call (Loc,
|
2584 |
|
|
Id_Ref => Ref,
|
2585 |
|
|
Typ => Init_Typ,
|
2586 |
|
|
In_Init_Proc => Within_Init_Proc,
|
2587 |
|
|
With_Default_Init => Has_Default_Init_Comps (N)
|
2588 |
|
|
or else
|
2589 |
|
|
Has_Task (Base_Type (Init_Typ))));
|
2590 |
|
|
|
2591 |
|
|
if Is_Constrained (Entity (A))
|
2592 |
|
|
and then Has_Discriminants (Entity (A))
|
2593 |
|
|
then
|
2594 |
|
|
Check_Ancestor_Discriminants (Entity (A));
|
2595 |
|
|
end if;
|
2596 |
|
|
end if;
|
2597 |
|
|
|
2598 |
|
|
-- Handle calls to C++ constructors
|
2599 |
|
|
|
2600 |
|
|
elsif Is_CPP_Constructor_Call (A) then
|
2601 |
|
|
Init_Typ := Etype (A);
|
2602 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
2603 |
|
|
Set_Assignment_OK (Ref);
|
2604 |
|
|
|
2605 |
|
|
Append_List_To (L,
|
2606 |
|
|
Build_Initialization_Call (Loc,
|
2607 |
|
|
Id_Ref => Ref,
|
2608 |
|
|
Typ => Init_Typ,
|
2609 |
|
|
In_Init_Proc => Within_Init_Proc,
|
2610 |
|
|
With_Default_Init => Has_Default_Init_Comps (N),
|
2611 |
|
|
Constructor_Ref => A));
|
2612 |
|
|
|
2613 |
|
|
-- Ada 2005 (AI-287): If the ancestor part is an aggregate of
|
2614 |
|
|
-- limited type, a recursive call expands the ancestor. Note that
|
2615 |
|
|
-- in the limited case, the ancestor part must be either a
|
2616 |
|
|
-- function call (possibly qualified, or wrapped in an unchecked
|
2617 |
|
|
-- conversion) or aggregate (definitely qualified).
|
2618 |
|
|
-- The ancestor part can also be a function call (that may be
|
2619 |
|
|
-- transformed into an explicit dereference) or a qualification
|
2620 |
|
|
-- of one such.
|
2621 |
|
|
|
2622 |
|
|
elsif Is_Limited_Type (Etype (A))
|
2623 |
|
|
and then Nkind_In (Unqualify (A), N_Aggregate,
|
2624 |
|
|
N_Extension_Aggregate)
|
2625 |
|
|
then
|
2626 |
|
|
Ancestor_Is_Expression := True;
|
2627 |
|
|
|
2628 |
|
|
-- Set up finalization data for enclosing record, because
|
2629 |
|
|
-- controlled subcomponents of the ancestor part will be
|
2630 |
|
|
-- attached to it.
|
2631 |
|
|
|
2632 |
|
|
Gen_Ctrl_Actions_For_Aggr;
|
2633 |
|
|
|
2634 |
|
|
Append_List_To (L,
|
2635 |
|
|
Build_Record_Aggr_Code (
|
2636 |
|
|
N => Unqualify (A),
|
2637 |
|
|
Typ => Etype (Unqualify (A)),
|
2638 |
|
|
Lhs => Target,
|
2639 |
|
|
Flist => Flist,
|
2640 |
|
|
Obj => Obj,
|
2641 |
|
|
Is_Limited_Ancestor_Expansion => True));
|
2642 |
|
|
|
2643 |
|
|
-- If the ancestor part is an expression "E", we generate
|
2644 |
|
|
|
2645 |
|
|
-- T(tmp) := E;
|
2646 |
|
|
|
2647 |
|
|
-- In Ada 2005, this includes the case of a (possibly qualified)
|
2648 |
|
|
-- limited function call. The assignment will turn into a
|
2649 |
|
|
-- build-in-place function call (for further details, see
|
2650 |
|
|
-- Make_Build_In_Place_Call_In_Assignment).
|
2651 |
|
|
|
2652 |
|
|
else
|
2653 |
|
|
Ancestor_Is_Expression := True;
|
2654 |
|
|
Init_Typ := Etype (A);
|
2655 |
|
|
|
2656 |
|
|
-- If the ancestor part is an aggregate, force its full
|
2657 |
|
|
-- expansion, which was delayed.
|
2658 |
|
|
|
2659 |
|
|
if Nkind_In (Unqualify (A), N_Aggregate,
|
2660 |
|
|
N_Extension_Aggregate)
|
2661 |
|
|
then
|
2662 |
|
|
Set_Analyzed (A, False);
|
2663 |
|
|
Set_Analyzed (Expression (A), False);
|
2664 |
|
|
end if;
|
2665 |
|
|
|
2666 |
|
|
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
|
2667 |
|
|
Set_Assignment_OK (Ref);
|
2668 |
|
|
|
2669 |
|
|
-- Make the assignment without usual controlled actions since
|
2670 |
|
|
-- we only want the post adjust but not the pre finalize here
|
2671 |
|
|
-- Add manual adjust when necessary.
|
2672 |
|
|
|
2673 |
|
|
Assign := New_List (
|
2674 |
|
|
Make_OK_Assignment_Statement (Loc,
|
2675 |
|
|
Name => Ref,
|
2676 |
|
|
Expression => A));
|
2677 |
|
|
Set_No_Ctrl_Actions (First (Assign));
|
2678 |
|
|
|
2679 |
|
|
-- Assign the tag now to make sure that the dispatching call in
|
2680 |
|
|
-- the subsequent deep_adjust works properly (unless VM_Target,
|
2681 |
|
|
-- where tags are implicit).
|
2682 |
|
|
|
2683 |
|
|
if Tagged_Type_Expansion then
|
2684 |
|
|
Instr :=
|
2685 |
|
|
Make_OK_Assignment_Statement (Loc,
|
2686 |
|
|
Name =>
|
2687 |
|
|
Make_Selected_Component (Loc,
|
2688 |
|
|
Prefix => New_Copy_Tree (Target),
|
2689 |
|
|
Selector_Name =>
|
2690 |
|
|
New_Reference_To
|
2691 |
|
|
(First_Tag_Component (Base_Type (Typ)), Loc)),
|
2692 |
|
|
|
2693 |
|
|
Expression =>
|
2694 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
2695 |
|
|
New_Reference_To
|
2696 |
|
|
(Node (First_Elmt
|
2697 |
|
|
(Access_Disp_Table (Base_Type (Typ)))),
|
2698 |
|
|
Loc)));
|
2699 |
|
|
|
2700 |
|
|
Set_Assignment_OK (Name (Instr));
|
2701 |
|
|
Append_To (Assign, Instr);
|
2702 |
|
|
|
2703 |
|
|
-- Ada 2005 (AI-251): If tagged type has progenitors we must
|
2704 |
|
|
-- also initialize tags of the secondary dispatch tables.
|
2705 |
|
|
|
2706 |
|
|
if Has_Interfaces (Base_Type (Typ)) then
|
2707 |
|
|
Init_Secondary_Tags
|
2708 |
|
|
(Typ => Base_Type (Typ),
|
2709 |
|
|
Target => Target,
|
2710 |
|
|
Stmts_List => Assign);
|
2711 |
|
|
end if;
|
2712 |
|
|
end if;
|
2713 |
|
|
|
2714 |
|
|
-- Call Adjust manually
|
2715 |
|
|
|
2716 |
|
|
if Needs_Finalization (Etype (A))
|
2717 |
|
|
and then not Is_Limited_Type (Etype (A))
|
2718 |
|
|
then
|
2719 |
|
|
Append_List_To (Assign,
|
2720 |
|
|
Make_Adjust_Call (
|
2721 |
|
|
Ref => New_Copy_Tree (Ref),
|
2722 |
|
|
Typ => Etype (A),
|
2723 |
|
|
Flist_Ref => New_Reference_To (
|
2724 |
|
|
RTE (RE_Global_Final_List), Loc),
|
2725 |
|
|
With_Attach => Make_Integer_Literal (Loc, 0)));
|
2726 |
|
|
end if;
|
2727 |
|
|
|
2728 |
|
|
Append_To (L,
|
2729 |
|
|
Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
|
2730 |
|
|
|
2731 |
|
|
if Has_Discriminants (Init_Typ) then
|
2732 |
|
|
Check_Ancestor_Discriminants (Init_Typ);
|
2733 |
|
|
end if;
|
2734 |
|
|
end if;
|
2735 |
|
|
end;
|
2736 |
|
|
|
2737 |
|
|
-- Normal case (not an extension aggregate)
|
2738 |
|
|
|
2739 |
|
|
else
|
2740 |
|
|
-- Generate the discriminant expressions, component by component.
|
2741 |
|
|
-- If the base type is an unchecked union, the discriminants are
|
2742 |
|
|
-- unknown to the back-end and absent from a value of the type, so
|
2743 |
|
|
-- assignments for them are not emitted.
|
2744 |
|
|
|
2745 |
|
|
if Has_Discriminants (Typ)
|
2746 |
|
|
and then not Is_Unchecked_Union (Base_Type (Typ))
|
2747 |
|
|
then
|
2748 |
|
|
-- If the type is derived, and constrains discriminants of the
|
2749 |
|
|
-- parent type, these discriminants are not components of the
|
2750 |
|
|
-- aggregate, and must be initialized explicitly. They are not
|
2751 |
|
|
-- visible components of the object, but can become visible with
|
2752 |
|
|
-- a view conversion to the ancestor.
|
2753 |
|
|
|
2754 |
|
|
declare
|
2755 |
|
|
Btype : Entity_Id;
|
2756 |
|
|
Parent_Type : Entity_Id;
|
2757 |
|
|
Disc : Entity_Id;
|
2758 |
|
|
Discr_Val : Elmt_Id;
|
2759 |
|
|
|
2760 |
|
|
begin
|
2761 |
|
|
Btype := Base_Type (Typ);
|
2762 |
|
|
while Is_Derived_Type (Btype)
|
2763 |
|
|
and then Present (Stored_Constraint (Btype))
|
2764 |
|
|
loop
|
2765 |
|
|
Parent_Type := Etype (Btype);
|
2766 |
|
|
|
2767 |
|
|
Disc := First_Discriminant (Parent_Type);
|
2768 |
|
|
Discr_Val :=
|
2769 |
|
|
First_Elmt (Stored_Constraint (Base_Type (Typ)));
|
2770 |
|
|
while Present (Discr_Val) loop
|
2771 |
|
|
|
2772 |
|
|
-- Only those discriminants of the parent that are not
|
2773 |
|
|
-- renamed by discriminants of the derived type need to
|
2774 |
|
|
-- be added explicitly.
|
2775 |
|
|
|
2776 |
|
|
if not Is_Entity_Name (Node (Discr_Val))
|
2777 |
|
|
or else
|
2778 |
|
|
Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
|
2779 |
|
|
then
|
2780 |
|
|
Comp_Expr :=
|
2781 |
|
|
Make_Selected_Component (Loc,
|
2782 |
|
|
Prefix => New_Copy_Tree (Target),
|
2783 |
|
|
Selector_Name => New_Occurrence_Of (Disc, Loc));
|
2784 |
|
|
|
2785 |
|
|
Instr :=
|
2786 |
|
|
Make_OK_Assignment_Statement (Loc,
|
2787 |
|
|
Name => Comp_Expr,
|
2788 |
|
|
Expression => New_Copy_Tree (Node (Discr_Val)));
|
2789 |
|
|
|
2790 |
|
|
Set_No_Ctrl_Actions (Instr);
|
2791 |
|
|
Append_To (L, Instr);
|
2792 |
|
|
end if;
|
2793 |
|
|
|
2794 |
|
|
Next_Discriminant (Disc);
|
2795 |
|
|
Next_Elmt (Discr_Val);
|
2796 |
|
|
end loop;
|
2797 |
|
|
|
2798 |
|
|
Btype := Base_Type (Parent_Type);
|
2799 |
|
|
end loop;
|
2800 |
|
|
end;
|
2801 |
|
|
|
2802 |
|
|
-- Generate discriminant init values for the visible discriminants
|
2803 |
|
|
|
2804 |
|
|
declare
|
2805 |
|
|
Discriminant : Entity_Id;
|
2806 |
|
|
Discriminant_Value : Node_Id;
|
2807 |
|
|
|
2808 |
|
|
begin
|
2809 |
|
|
Discriminant := First_Stored_Discriminant (Typ);
|
2810 |
|
|
while Present (Discriminant) loop
|
2811 |
|
|
Comp_Expr :=
|
2812 |
|
|
Make_Selected_Component (Loc,
|
2813 |
|
|
Prefix => New_Copy_Tree (Target),
|
2814 |
|
|
Selector_Name => New_Occurrence_Of (Discriminant, Loc));
|
2815 |
|
|
|
2816 |
|
|
Discriminant_Value :=
|
2817 |
|
|
Get_Discriminant_Value (
|
2818 |
|
|
Discriminant,
|
2819 |
|
|
N_Typ,
|
2820 |
|
|
Discriminant_Constraint (N_Typ));
|
2821 |
|
|
|
2822 |
|
|
Instr :=
|
2823 |
|
|
Make_OK_Assignment_Statement (Loc,
|
2824 |
|
|
Name => Comp_Expr,
|
2825 |
|
|
Expression => New_Copy_Tree (Discriminant_Value));
|
2826 |
|
|
|
2827 |
|
|
Set_No_Ctrl_Actions (Instr);
|
2828 |
|
|
Append_To (L, Instr);
|
2829 |
|
|
|
2830 |
|
|
Next_Stored_Discriminant (Discriminant);
|
2831 |
|
|
end loop;
|
2832 |
|
|
end;
|
2833 |
|
|
end if;
|
2834 |
|
|
end if;
|
2835 |
|
|
|
2836 |
|
|
-- For CPP types we generate an implicit call to the C++ default
|
2837 |
|
|
-- constructor to ensure the proper initialization of the _Tag
|
2838 |
|
|
-- component.
|
2839 |
|
|
|
2840 |
|
|
if Is_CPP_Class (Typ) then
|
2841 |
|
|
pragma Assert (Present (Base_Init_Proc (Typ)));
|
2842 |
|
|
Append_List_To (L,
|
2843 |
|
|
Build_Initialization_Call (Loc,
|
2844 |
|
|
Id_Ref => Lhs,
|
2845 |
|
|
Typ => Typ));
|
2846 |
|
|
end if;
|
2847 |
|
|
|
2848 |
|
|
-- Generate the assignments, component by component
|
2849 |
|
|
|
2850 |
|
|
-- tmp.comp1 := Expr1_From_Aggr;
|
2851 |
|
|
-- tmp.comp2 := Expr2_From_Aggr;
|
2852 |
|
|
-- ....
|
2853 |
|
|
|
2854 |
|
|
Comp := First (Component_Associations (N));
|
2855 |
|
|
while Present (Comp) loop
|
2856 |
|
|
Selector := Entity (First (Choices (Comp)));
|
2857 |
|
|
|
2858 |
|
|
-- C++ constructors
|
2859 |
|
|
|
2860 |
|
|
if Is_CPP_Constructor_Call (Expression (Comp)) then
|
2861 |
|
|
Append_List_To (L,
|
2862 |
|
|
Build_Initialization_Call (Loc,
|
2863 |
|
|
Id_Ref => Make_Selected_Component (Loc,
|
2864 |
|
|
Prefix => New_Copy_Tree (Target),
|
2865 |
|
|
Selector_Name => New_Occurrence_Of (Selector,
|
2866 |
|
|
Loc)),
|
2867 |
|
|
Typ => Etype (Selector),
|
2868 |
|
|
Enclos_Type => Typ,
|
2869 |
|
|
With_Default_Init => True,
|
2870 |
|
|
Constructor_Ref => Expression (Comp)));
|
2871 |
|
|
|
2872 |
|
|
-- Ada 2005 (AI-287): For each default-initialized component generate
|
2873 |
|
|
-- a call to the corresponding IP subprogram if available.
|
2874 |
|
|
|
2875 |
|
|
elsif Box_Present (Comp)
|
2876 |
|
|
and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
|
2877 |
|
|
then
|
2878 |
|
|
if Ekind (Selector) /= E_Discriminant then
|
2879 |
|
|
Gen_Ctrl_Actions_For_Aggr;
|
2880 |
|
|
end if;
|
2881 |
|
|
|
2882 |
|
|
-- Ada 2005 (AI-287): If the component type has tasks then
|
2883 |
|
|
-- generate the activation chain and master entities (except
|
2884 |
|
|
-- in case of an allocator because in that case these entities
|
2885 |
|
|
-- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
|
2886 |
|
|
|
2887 |
|
|
declare
|
2888 |
|
|
Ctype : constant Entity_Id := Etype (Selector);
|
2889 |
|
|
Inside_Allocator : Boolean := False;
|
2890 |
|
|
P : Node_Id := Parent (N);
|
2891 |
|
|
|
2892 |
|
|
begin
|
2893 |
|
|
if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
|
2894 |
|
|
while Present (P) loop
|
2895 |
|
|
if Nkind (P) = N_Allocator then
|
2896 |
|
|
Inside_Allocator := True;
|
2897 |
|
|
exit;
|
2898 |
|
|
end if;
|
2899 |
|
|
|
2900 |
|
|
P := Parent (P);
|
2901 |
|
|
end loop;
|
2902 |
|
|
|
2903 |
|
|
if not Inside_Init_Proc and not Inside_Allocator then
|
2904 |
|
|
Build_Activation_Chain_Entity (N);
|
2905 |
|
|
end if;
|
2906 |
|
|
end if;
|
2907 |
|
|
end;
|
2908 |
|
|
|
2909 |
|
|
Append_List_To (L,
|
2910 |
|
|
Build_Initialization_Call (Loc,
|
2911 |
|
|
Id_Ref => Make_Selected_Component (Loc,
|
2912 |
|
|
Prefix => New_Copy_Tree (Target),
|
2913 |
|
|
Selector_Name => New_Occurrence_Of (Selector,
|
2914 |
|
|
Loc)),
|
2915 |
|
|
Typ => Etype (Selector),
|
2916 |
|
|
Enclos_Type => Typ,
|
2917 |
|
|
With_Default_Init => True));
|
2918 |
|
|
|
2919 |
|
|
-- Prepare for component assignment
|
2920 |
|
|
|
2921 |
|
|
elsif Ekind (Selector) /= E_Discriminant
|
2922 |
|
|
or else Nkind (N) = N_Extension_Aggregate
|
2923 |
|
|
then
|
2924 |
|
|
-- All the discriminants have now been assigned
|
2925 |
|
|
|
2926 |
|
|
-- This is now a good moment to initialize and attach all the
|
2927 |
|
|
-- controllers. Their position may depend on the discriminants.
|
2928 |
|
|
|
2929 |
|
|
if Ekind (Selector) /= E_Discriminant then
|
2930 |
|
|
Gen_Ctrl_Actions_For_Aggr;
|
2931 |
|
|
end if;
|
2932 |
|
|
|
2933 |
|
|
Comp_Type := Etype (Selector);
|
2934 |
|
|
Comp_Expr :=
|
2935 |
|
|
Make_Selected_Component (Loc,
|
2936 |
|
|
Prefix => New_Copy_Tree (Target),
|
2937 |
|
|
Selector_Name => New_Occurrence_Of (Selector, Loc));
|
2938 |
|
|
|
2939 |
|
|
if Nkind (Expression (Comp)) = N_Qualified_Expression then
|
2940 |
|
|
Expr_Q := Expression (Expression (Comp));
|
2941 |
|
|
else
|
2942 |
|
|
Expr_Q := Expression (Comp);
|
2943 |
|
|
end if;
|
2944 |
|
|
|
2945 |
|
|
-- The controller is the one of the parent type defining the
|
2946 |
|
|
-- component (in case of inherited components).
|
2947 |
|
|
|
2948 |
|
|
if Needs_Finalization (Comp_Type) then
|
2949 |
|
|
Internal_Final_List :=
|
2950 |
|
|
Make_Selected_Component (Loc,
|
2951 |
|
|
Prefix => Convert_To (
|
2952 |
|
|
Scope (Original_Record_Component (Selector)),
|
2953 |
|
|
New_Copy_Tree (Target)),
|
2954 |
|
|
Selector_Name =>
|
2955 |
|
|
Make_Identifier (Loc, Name_uController));
|
2956 |
|
|
|
2957 |
|
|
Internal_Final_List :=
|
2958 |
|
|
Make_Selected_Component (Loc,
|
2959 |
|
|
Prefix => Internal_Final_List,
|
2960 |
|
|
Selector_Name => Make_Identifier (Loc, Name_F));
|
2961 |
|
|
|
2962 |
|
|
-- The internal final list can be part of a constant object
|
2963 |
|
|
|
2964 |
|
|
Set_Assignment_OK (Internal_Final_List);
|
2965 |
|
|
|
2966 |
|
|
else
|
2967 |
|
|
Internal_Final_List := Empty;
|
2968 |
|
|
end if;
|
2969 |
|
|
|
2970 |
|
|
-- Now either create the assignment or generate the code for the
|
2971 |
|
|
-- inner aggregate top-down.
|
2972 |
|
|
|
2973 |
|
|
if Is_Delayed_Aggregate (Expr_Q) then
|
2974 |
|
|
|
2975 |
|
|
-- We have the following case of aggregate nesting inside
|
2976 |
|
|
-- an object declaration:
|
2977 |
|
|
|
2978 |
|
|
-- type Arr_Typ is array (Integer range <>) of ...;
|
2979 |
|
|
|
2980 |
|
|
-- type Rec_Typ (...) is record
|
2981 |
|
|
-- Obj_Arr_Typ : Arr_Typ (A .. B);
|
2982 |
|
|
-- end record;
|
2983 |
|
|
|
2984 |
|
|
-- Obj_Rec_Typ : Rec_Typ := (...,
|
2985 |
|
|
-- Obj_Arr_Typ => (X => (...), Y => (...)));
|
2986 |
|
|
|
2987 |
|
|
-- The length of the ranges of the aggregate and Obj_Add_Typ
|
2988 |
|
|
-- are equal (B - A = Y - X), but they do not coincide (X /=
|
2989 |
|
|
-- A and B /= Y). This case requires array sliding which is
|
2990 |
|
|
-- performed in the following manner:
|
2991 |
|
|
|
2992 |
|
|
-- subtype Arr_Sub is Arr_Typ (X .. Y);
|
2993 |
|
|
-- Temp : Arr_Sub;
|
2994 |
|
|
-- Temp (X) := (...);
|
2995 |
|
|
-- ...
|
2996 |
|
|
-- Temp (Y) := (...);
|
2997 |
|
|
-- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
|
2998 |
|
|
|
2999 |
|
|
if Ekind (Comp_Type) = E_Array_Subtype
|
3000 |
|
|
and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
|
3001 |
|
|
and then Is_Int_Range_Bounds (First_Index (Comp_Type))
|
3002 |
|
|
and then not
|
3003 |
|
|
Compatible_Int_Bounds
|
3004 |
|
|
(Agg_Bounds => Aggregate_Bounds (Expr_Q),
|
3005 |
|
|
Typ_Bounds => First_Index (Comp_Type))
|
3006 |
|
|
then
|
3007 |
|
|
-- Create the array subtype with bounds equal to those of
|
3008 |
|
|
-- the corresponding aggregate.
|
3009 |
|
|
|
3010 |
|
|
declare
|
3011 |
|
|
SubE : constant Entity_Id :=
|
3012 |
|
|
Make_Defining_Identifier (Loc,
|
3013 |
|
|
Chars => New_Internal_Name ('T'));
|
3014 |
|
|
|
3015 |
|
|
SubD : constant Node_Id :=
|
3016 |
|
|
Make_Subtype_Declaration (Loc,
|
3017 |
|
|
Defining_Identifier => SubE,
|
3018 |
|
|
Subtype_Indication =>
|
3019 |
|
|
Make_Subtype_Indication (Loc,
|
3020 |
|
|
Subtype_Mark =>
|
3021 |
|
|
New_Reference_To
|
3022 |
|
|
(Etype (Comp_Type), Loc),
|
3023 |
|
|
Constraint =>
|
3024 |
|
|
Make_Index_Or_Discriminant_Constraint
|
3025 |
|
|
(Loc,
|
3026 |
|
|
Constraints => New_List (
|
3027 |
|
|
New_Copy_Tree
|
3028 |
|
|
(Aggregate_Bounds (Expr_Q))))));
|
3029 |
|
|
|
3030 |
|
|
-- Create a temporary array of the above subtype which
|
3031 |
|
|
-- will be used to capture the aggregate assignments.
|
3032 |
|
|
|
3033 |
|
|
TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
|
3034 |
|
|
|
3035 |
|
|
TmpD : constant Node_Id :=
|
3036 |
|
|
Make_Object_Declaration (Loc,
|
3037 |
|
|
Defining_Identifier => TmpE,
|
3038 |
|
|
Object_Definition =>
|
3039 |
|
|
New_Reference_To (SubE, Loc));
|
3040 |
|
|
|
3041 |
|
|
begin
|
3042 |
|
|
Set_No_Initialization (TmpD);
|
3043 |
|
|
Append_To (L, SubD);
|
3044 |
|
|
Append_To (L, TmpD);
|
3045 |
|
|
|
3046 |
|
|
-- Expand aggregate into assignments to the temp array
|
3047 |
|
|
|
3048 |
|
|
Append_List_To (L,
|
3049 |
|
|
Late_Expansion (Expr_Q, Comp_Type,
|
3050 |
|
|
New_Reference_To (TmpE, Loc), Internal_Final_List));
|
3051 |
|
|
|
3052 |
|
|
-- Slide
|
3053 |
|
|
|
3054 |
|
|
Append_To (L,
|
3055 |
|
|
Make_Assignment_Statement (Loc,
|
3056 |
|
|
Name => New_Copy_Tree (Comp_Expr),
|
3057 |
|
|
Expression => New_Reference_To (TmpE, Loc)));
|
3058 |
|
|
|
3059 |
|
|
-- Do not pass the original aggregate to Gigi as is,
|
3060 |
|
|
-- since it will potentially clobber the front or the end
|
3061 |
|
|
-- of the array. Setting the expression to empty is safe
|
3062 |
|
|
-- since all aggregates are expanded into assignments.
|
3063 |
|
|
|
3064 |
|
|
if Present (Obj) then
|
3065 |
|
|
Set_Expression (Parent (Obj), Empty);
|
3066 |
|
|
end if;
|
3067 |
|
|
end;
|
3068 |
|
|
|
3069 |
|
|
-- Normal case (sliding not required)
|
3070 |
|
|
|
3071 |
|
|
else
|
3072 |
|
|
Append_List_To (L,
|
3073 |
|
|
Late_Expansion (Expr_Q, Comp_Type, Comp_Expr,
|
3074 |
|
|
Internal_Final_List));
|
3075 |
|
|
end if;
|
3076 |
|
|
|
3077 |
|
|
-- Expr_Q is not delayed aggregate
|
3078 |
|
|
|
3079 |
|
|
else
|
3080 |
|
|
if Has_Discriminants (Typ) then
|
3081 |
|
|
Replace_Discriminants (Expr_Q);
|
3082 |
|
|
end if;
|
3083 |
|
|
|
3084 |
|
|
Instr :=
|
3085 |
|
|
Make_OK_Assignment_Statement (Loc,
|
3086 |
|
|
Name => Comp_Expr,
|
3087 |
|
|
Expression => Expr_Q);
|
3088 |
|
|
|
3089 |
|
|
Set_No_Ctrl_Actions (Instr);
|
3090 |
|
|
Append_To (L, Instr);
|
3091 |
|
|
|
3092 |
|
|
-- Adjust the tag if tagged (because of possible view
|
3093 |
|
|
-- conversions), unless compiling for a VM where tags are
|
3094 |
|
|
-- implicit.
|
3095 |
|
|
|
3096 |
|
|
-- tmp.comp._tag := comp_typ'tag;
|
3097 |
|
|
|
3098 |
|
|
if Is_Tagged_Type (Comp_Type)
|
3099 |
|
|
and then Tagged_Type_Expansion
|
3100 |
|
|
then
|
3101 |
|
|
Instr :=
|
3102 |
|
|
Make_OK_Assignment_Statement (Loc,
|
3103 |
|
|
Name =>
|
3104 |
|
|
Make_Selected_Component (Loc,
|
3105 |
|
|
Prefix => New_Copy_Tree (Comp_Expr),
|
3106 |
|
|
Selector_Name =>
|
3107 |
|
|
New_Reference_To
|
3108 |
|
|
(First_Tag_Component (Comp_Type), Loc)),
|
3109 |
|
|
|
3110 |
|
|
Expression =>
|
3111 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
3112 |
|
|
New_Reference_To
|
3113 |
|
|
(Node (First_Elmt (Access_Disp_Table (Comp_Type))),
|
3114 |
|
|
Loc)));
|
3115 |
|
|
|
3116 |
|
|
Append_To (L, Instr);
|
3117 |
|
|
end if;
|
3118 |
|
|
|
3119 |
|
|
-- Adjust and Attach the component to the proper controller
|
3120 |
|
|
|
3121 |
|
|
-- Adjust (tmp.comp);
|
3122 |
|
|
-- Attach_To_Final_List (tmp.comp,
|
3123 |
|
|
-- comp_typ (tmp)._record_controller.f)
|
3124 |
|
|
|
3125 |
|
|
if Needs_Finalization (Comp_Type)
|
3126 |
|
|
and then not Is_Limited_Type (Comp_Type)
|
3127 |
|
|
then
|
3128 |
|
|
Append_List_To (L,
|
3129 |
|
|
Make_Adjust_Call (
|
3130 |
|
|
Ref => New_Copy_Tree (Comp_Expr),
|
3131 |
|
|
Typ => Comp_Type,
|
3132 |
|
|
Flist_Ref => Internal_Final_List,
|
3133 |
|
|
With_Attach => Make_Integer_Literal (Loc, 1)));
|
3134 |
|
|
end if;
|
3135 |
|
|
end if;
|
3136 |
|
|
|
3137 |
|
|
-- ???
|
3138 |
|
|
|
3139 |
|
|
elsif Ekind (Selector) = E_Discriminant
|
3140 |
|
|
and then Nkind (N) /= N_Extension_Aggregate
|
3141 |
|
|
and then Nkind (Parent (N)) = N_Component_Association
|
3142 |
|
|
and then Is_Constrained (Typ)
|
3143 |
|
|
then
|
3144 |
|
|
-- We must check that the discriminant value imposed by the
|
3145 |
|
|
-- context is the same as the value given in the subaggregate,
|
3146 |
|
|
-- because after the expansion into assignments there is no
|
3147 |
|
|
-- record on which to perform a regular discriminant check.
|
3148 |
|
|
|
3149 |
|
|
declare
|
3150 |
|
|
D_Val : Elmt_Id;
|
3151 |
|
|
Disc : Entity_Id;
|
3152 |
|
|
|
3153 |
|
|
begin
|
3154 |
|
|
D_Val := First_Elmt (Discriminant_Constraint (Typ));
|
3155 |
|
|
Disc := First_Discriminant (Typ);
|
3156 |
|
|
while Chars (Disc) /= Chars (Selector) loop
|
3157 |
|
|
Next_Discriminant (Disc);
|
3158 |
|
|
Next_Elmt (D_Val);
|
3159 |
|
|
end loop;
|
3160 |
|
|
|
3161 |
|
|
pragma Assert (Present (D_Val));
|
3162 |
|
|
|
3163 |
|
|
-- This check cannot performed for components that are
|
3164 |
|
|
-- constrained by a current instance, because this is not a
|
3165 |
|
|
-- value that can be compared with the actual constraint.
|
3166 |
|
|
|
3167 |
|
|
if Nkind (Node (D_Val)) /= N_Attribute_Reference
|
3168 |
|
|
or else not Is_Entity_Name (Prefix (Node (D_Val)))
|
3169 |
|
|
or else not Is_Type (Entity (Prefix (Node (D_Val))))
|
3170 |
|
|
then
|
3171 |
|
|
Append_To (L,
|
3172 |
|
|
Make_Raise_Constraint_Error (Loc,
|
3173 |
|
|
Condition =>
|
3174 |
|
|
Make_Op_Ne (Loc,
|
3175 |
|
|
Left_Opnd => New_Copy_Tree (Node (D_Val)),
|
3176 |
|
|
Right_Opnd => Expression (Comp)),
|
3177 |
|
|
Reason => CE_Discriminant_Check_Failed));
|
3178 |
|
|
|
3179 |
|
|
else
|
3180 |
|
|
-- Find self-reference in previous discriminant assignment,
|
3181 |
|
|
-- and replace with proper expression.
|
3182 |
|
|
|
3183 |
|
|
declare
|
3184 |
|
|
Ass : Node_Id;
|
3185 |
|
|
|
3186 |
|
|
begin
|
3187 |
|
|
Ass := First (L);
|
3188 |
|
|
while Present (Ass) loop
|
3189 |
|
|
if Nkind (Ass) = N_Assignment_Statement
|
3190 |
|
|
and then Nkind (Name (Ass)) = N_Selected_Component
|
3191 |
|
|
and then Chars (Selector_Name (Name (Ass))) =
|
3192 |
|
|
Chars (Disc)
|
3193 |
|
|
then
|
3194 |
|
|
Set_Expression
|
3195 |
|
|
(Ass, New_Copy_Tree (Expression (Comp)));
|
3196 |
|
|
exit;
|
3197 |
|
|
end if;
|
3198 |
|
|
Next (Ass);
|
3199 |
|
|
end loop;
|
3200 |
|
|
end;
|
3201 |
|
|
end if;
|
3202 |
|
|
end;
|
3203 |
|
|
end if;
|
3204 |
|
|
|
3205 |
|
|
Next (Comp);
|
3206 |
|
|
end loop;
|
3207 |
|
|
|
3208 |
|
|
-- If the type is tagged, the tag needs to be initialized (unless
|
3209 |
|
|
-- compiling for the Java VM where tags are implicit). It is done
|
3210 |
|
|
-- late in the initialization process because in some cases, we call
|
3211 |
|
|
-- the init proc of an ancestor which will not leave out the right tag
|
3212 |
|
|
|
3213 |
|
|
if Ancestor_Is_Expression then
|
3214 |
|
|
null;
|
3215 |
|
|
|
3216 |
|
|
-- For CPP types we generated a call to the C++ default constructor
|
3217 |
|
|
-- before the components have been initialized to ensure the proper
|
3218 |
|
|
-- initialization of the _Tag component (see above).
|
3219 |
|
|
|
3220 |
|
|
elsif Is_CPP_Class (Typ) then
|
3221 |
|
|
null;
|
3222 |
|
|
|
3223 |
|
|
elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
|
3224 |
|
|
Instr :=
|
3225 |
|
|
Make_OK_Assignment_Statement (Loc,
|
3226 |
|
|
Name =>
|
3227 |
|
|
Make_Selected_Component (Loc,
|
3228 |
|
|
Prefix => New_Copy_Tree (Target),
|
3229 |
|
|
Selector_Name =>
|
3230 |
|
|
New_Reference_To
|
3231 |
|
|
(First_Tag_Component (Base_Type (Typ)), Loc)),
|
3232 |
|
|
|
3233 |
|
|
Expression =>
|
3234 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
3235 |
|
|
New_Reference_To
|
3236 |
|
|
(Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
|
3237 |
|
|
Loc)));
|
3238 |
|
|
|
3239 |
|
|
Append_To (L, Instr);
|
3240 |
|
|
|
3241 |
|
|
-- Ada 2005 (AI-251): If the tagged type has been derived from
|
3242 |
|
|
-- abstract interfaces we must also initialize the tags of the
|
3243 |
|
|
-- secondary dispatch tables.
|
3244 |
|
|
|
3245 |
|
|
if Has_Interfaces (Base_Type (Typ)) then
|
3246 |
|
|
Init_Secondary_Tags
|
3247 |
|
|
(Typ => Base_Type (Typ),
|
3248 |
|
|
Target => Target,
|
3249 |
|
|
Stmts_List => L);
|
3250 |
|
|
end if;
|
3251 |
|
|
end if;
|
3252 |
|
|
|
3253 |
|
|
-- If the controllers have not been initialized yet (by lack of non-
|
3254 |
|
|
-- discriminant components), let's do it now.
|
3255 |
|
|
|
3256 |
|
|
Gen_Ctrl_Actions_For_Aggr;
|
3257 |
|
|
|
3258 |
|
|
return L;
|
3259 |
|
|
end Build_Record_Aggr_Code;
|
3260 |
|
|
|
3261 |
|
|
-------------------------------
|
3262 |
|
|
-- Convert_Aggr_In_Allocator --
|
3263 |
|
|
-------------------------------
|
3264 |
|
|
|
3265 |
|
|
procedure Convert_Aggr_In_Allocator
|
3266 |
|
|
(Alloc : Node_Id;
|
3267 |
|
|
Decl : Node_Id;
|
3268 |
|
|
Aggr : Node_Id)
|
3269 |
|
|
is
|
3270 |
|
|
Loc : constant Source_Ptr := Sloc (Aggr);
|
3271 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
3272 |
|
|
Temp : constant Entity_Id := Defining_Identifier (Decl);
|
3273 |
|
|
|
3274 |
|
|
Occ : constant Node_Id :=
|
3275 |
|
|
Unchecked_Convert_To (Typ,
|
3276 |
|
|
Make_Explicit_Dereference (Loc,
|
3277 |
|
|
New_Reference_To (Temp, Loc)));
|
3278 |
|
|
|
3279 |
|
|
Access_Type : constant Entity_Id := Etype (Temp);
|
3280 |
|
|
Flist : Entity_Id;
|
3281 |
|
|
|
3282 |
|
|
begin
|
3283 |
|
|
-- If the allocator is for an access discriminant, there is no
|
3284 |
|
|
-- finalization list for the anonymous access type, and the eventual
|
3285 |
|
|
-- finalization of the object is handled through the coextension
|
3286 |
|
|
-- mechanism. If the enclosing object is not dynamically allocated,
|
3287 |
|
|
-- the access discriminant is itself placed on the stack. Otherwise,
|
3288 |
|
|
-- some other finalization list is used (see exp_ch4.adb).
|
3289 |
|
|
|
3290 |
|
|
-- Decl has been inserted in the code ahead of the allocator, using
|
3291 |
|
|
-- Insert_Actions. We use Insert_Actions below as well, to ensure that
|
3292 |
|
|
-- subsequent insertions are done in the proper order. Using (for
|
3293 |
|
|
-- example) Insert_Actions_After to place the expanded aggregate
|
3294 |
|
|
-- immediately after Decl may lead to out-of-order references if the
|
3295 |
|
|
-- allocator has generated a finalization list, as when the designated
|
3296 |
|
|
-- object is controlled and there is an open transient scope.
|
3297 |
|
|
|
3298 |
|
|
if Ekind (Access_Type) = E_Anonymous_Access_Type
|
3299 |
|
|
and then Nkind (Associated_Node_For_Itype (Access_Type)) =
|
3300 |
|
|
N_Discriminant_Specification
|
3301 |
|
|
then
|
3302 |
|
|
Flist := Empty;
|
3303 |
|
|
|
3304 |
|
|
elsif Needs_Finalization (Typ) then
|
3305 |
|
|
Flist := Find_Final_List (Access_Type);
|
3306 |
|
|
|
3307 |
|
|
-- Otherwise there are no controlled actions to be performed.
|
3308 |
|
|
|
3309 |
|
|
else
|
3310 |
|
|
Flist := Empty;
|
3311 |
|
|
end if;
|
3312 |
|
|
|
3313 |
|
|
if Is_Array_Type (Typ) then
|
3314 |
|
|
Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
|
3315 |
|
|
|
3316 |
|
|
elsif Has_Default_Init_Comps (Aggr) then
|
3317 |
|
|
declare
|
3318 |
|
|
L : constant List_Id := New_List;
|
3319 |
|
|
Init_Stmts : List_Id;
|
3320 |
|
|
|
3321 |
|
|
begin
|
3322 |
|
|
Init_Stmts :=
|
3323 |
|
|
Late_Expansion
|
3324 |
|
|
(Aggr, Typ, Occ,
|
3325 |
|
|
Flist,
|
3326 |
|
|
Associated_Final_Chain (Base_Type (Access_Type)));
|
3327 |
|
|
|
3328 |
|
|
-- ??? Dubious actual for Obj: expect 'the original object being
|
3329 |
|
|
-- initialized'
|
3330 |
|
|
|
3331 |
|
|
if Has_Task (Typ) then
|
3332 |
|
|
Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
|
3333 |
|
|
Insert_Actions (Alloc, L);
|
3334 |
|
|
else
|
3335 |
|
|
Insert_Actions (Alloc, Init_Stmts);
|
3336 |
|
|
end if;
|
3337 |
|
|
end;
|
3338 |
|
|
|
3339 |
|
|
else
|
3340 |
|
|
Insert_Actions (Alloc,
|
3341 |
|
|
Late_Expansion
|
3342 |
|
|
(Aggr, Typ, Occ, Flist,
|
3343 |
|
|
Associated_Final_Chain (Base_Type (Access_Type))));
|
3344 |
|
|
|
3345 |
|
|
-- ??? Dubious actual for Obj: expect 'the original object being
|
3346 |
|
|
-- initialized'
|
3347 |
|
|
|
3348 |
|
|
end if;
|
3349 |
|
|
end Convert_Aggr_In_Allocator;
|
3350 |
|
|
|
3351 |
|
|
--------------------------------
|
3352 |
|
|
-- Convert_Aggr_In_Assignment --
|
3353 |
|
|
--------------------------------
|
3354 |
|
|
|
3355 |
|
|
procedure Convert_Aggr_In_Assignment (N : Node_Id) is
|
3356 |
|
|
Aggr : Node_Id := Expression (N);
|
3357 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
3358 |
|
|
Occ : constant Node_Id := New_Copy_Tree (Name (N));
|
3359 |
|
|
|
3360 |
|
|
begin
|
3361 |
|
|
if Nkind (Aggr) = N_Qualified_Expression then
|
3362 |
|
|
Aggr := Expression (Aggr);
|
3363 |
|
|
end if;
|
3364 |
|
|
|
3365 |
|
|
Insert_Actions_After (N,
|
3366 |
|
|
Late_Expansion
|
3367 |
|
|
(Aggr, Typ, Occ,
|
3368 |
|
|
Find_Final_List (Typ, New_Copy_Tree (Occ))));
|
3369 |
|
|
end Convert_Aggr_In_Assignment;
|
3370 |
|
|
|
3371 |
|
|
---------------------------------
|
3372 |
|
|
-- Convert_Aggr_In_Object_Decl --
|
3373 |
|
|
---------------------------------
|
3374 |
|
|
|
3375 |
|
|
procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
|
3376 |
|
|
Obj : constant Entity_Id := Defining_Identifier (N);
|
3377 |
|
|
Aggr : Node_Id := Expression (N);
|
3378 |
|
|
Loc : constant Source_Ptr := Sloc (Aggr);
|
3379 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
3380 |
|
|
Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
|
3381 |
|
|
|
3382 |
|
|
function Discriminants_Ok return Boolean;
|
3383 |
|
|
-- If the object type is constrained, the discriminants in the
|
3384 |
|
|
-- aggregate must be checked against the discriminants of the subtype.
|
3385 |
|
|
-- This cannot be done using Apply_Discriminant_Checks because after
|
3386 |
|
|
-- expansion there is no aggregate left to check.
|
3387 |
|
|
|
3388 |
|
|
----------------------
|
3389 |
|
|
-- Discriminants_Ok --
|
3390 |
|
|
----------------------
|
3391 |
|
|
|
3392 |
|
|
function Discriminants_Ok return Boolean is
|
3393 |
|
|
Cond : Node_Id := Empty;
|
3394 |
|
|
Check : Node_Id;
|
3395 |
|
|
D : Entity_Id;
|
3396 |
|
|
Disc1 : Elmt_Id;
|
3397 |
|
|
Disc2 : Elmt_Id;
|
3398 |
|
|
Val1 : Node_Id;
|
3399 |
|
|
Val2 : Node_Id;
|
3400 |
|
|
|
3401 |
|
|
begin
|
3402 |
|
|
D := First_Discriminant (Typ);
|
3403 |
|
|
Disc1 := First_Elmt (Discriminant_Constraint (Typ));
|
3404 |
|
|
Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
|
3405 |
|
|
while Present (Disc1) and then Present (Disc2) loop
|
3406 |
|
|
Val1 := Node (Disc1);
|
3407 |
|
|
Val2 := Node (Disc2);
|
3408 |
|
|
|
3409 |
|
|
if not Is_OK_Static_Expression (Val1)
|
3410 |
|
|
or else not Is_OK_Static_Expression (Val2)
|
3411 |
|
|
then
|
3412 |
|
|
Check := Make_Op_Ne (Loc,
|
3413 |
|
|
Left_Opnd => Duplicate_Subexpr (Val1),
|
3414 |
|
|
Right_Opnd => Duplicate_Subexpr (Val2));
|
3415 |
|
|
|
3416 |
|
|
if No (Cond) then
|
3417 |
|
|
Cond := Check;
|
3418 |
|
|
|
3419 |
|
|
else
|
3420 |
|
|
Cond := Make_Or_Else (Loc,
|
3421 |
|
|
Left_Opnd => Cond,
|
3422 |
|
|
Right_Opnd => Check);
|
3423 |
|
|
end if;
|
3424 |
|
|
|
3425 |
|
|
elsif Expr_Value (Val1) /= Expr_Value (Val2) then
|
3426 |
|
|
Apply_Compile_Time_Constraint_Error (Aggr,
|
3427 |
|
|
Msg => "incorrect value for discriminant&?",
|
3428 |
|
|
Reason => CE_Discriminant_Check_Failed,
|
3429 |
|
|
Ent => D);
|
3430 |
|
|
return False;
|
3431 |
|
|
end if;
|
3432 |
|
|
|
3433 |
|
|
Next_Discriminant (D);
|
3434 |
|
|
Next_Elmt (Disc1);
|
3435 |
|
|
Next_Elmt (Disc2);
|
3436 |
|
|
end loop;
|
3437 |
|
|
|
3438 |
|
|
-- If any discriminant constraint is non-static, emit a check
|
3439 |
|
|
|
3440 |
|
|
if Present (Cond) then
|
3441 |
|
|
Insert_Action (N,
|
3442 |
|
|
Make_Raise_Constraint_Error (Loc,
|
3443 |
|
|
Condition => Cond,
|
3444 |
|
|
Reason => CE_Discriminant_Check_Failed));
|
3445 |
|
|
end if;
|
3446 |
|
|
|
3447 |
|
|
return True;
|
3448 |
|
|
end Discriminants_Ok;
|
3449 |
|
|
|
3450 |
|
|
-- Start of processing for Convert_Aggr_In_Object_Decl
|
3451 |
|
|
|
3452 |
|
|
begin
|
3453 |
|
|
Set_Assignment_OK (Occ);
|
3454 |
|
|
|
3455 |
|
|
if Nkind (Aggr) = N_Qualified_Expression then
|
3456 |
|
|
Aggr := Expression (Aggr);
|
3457 |
|
|
end if;
|
3458 |
|
|
|
3459 |
|
|
if Has_Discriminants (Typ)
|
3460 |
|
|
and then Typ /= Etype (Obj)
|
3461 |
|
|
and then Is_Constrained (Etype (Obj))
|
3462 |
|
|
and then not Discriminants_Ok
|
3463 |
|
|
then
|
3464 |
|
|
return;
|
3465 |
|
|
end if;
|
3466 |
|
|
|
3467 |
|
|
-- If the context is an extended return statement, it has its own
|
3468 |
|
|
-- finalization machinery (i.e. works like a transient scope) and
|
3469 |
|
|
-- we do not want to create an additional one, because objects on
|
3470 |
|
|
-- the finalization list of the return must be moved to the caller's
|
3471 |
|
|
-- finalization list to complete the return.
|
3472 |
|
|
|
3473 |
|
|
-- However, if the aggregate is limited, it is built in place, and the
|
3474 |
|
|
-- controlled components are not assigned to intermediate temporaries
|
3475 |
|
|
-- so there is no need for a transient scope in this case either.
|
3476 |
|
|
|
3477 |
|
|
if Requires_Transient_Scope (Typ)
|
3478 |
|
|
and then Ekind (Current_Scope) /= E_Return_Statement
|
3479 |
|
|
and then not Is_Limited_Type (Typ)
|
3480 |
|
|
then
|
3481 |
|
|
Establish_Transient_Scope
|
3482 |
|
|
(Aggr,
|
3483 |
|
|
Sec_Stack =>
|
3484 |
|
|
Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
|
3485 |
|
|
end if;
|
3486 |
|
|
|
3487 |
|
|
Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj));
|
3488 |
|
|
Set_No_Initialization (N);
|
3489 |
|
|
Initialize_Discriminants (N, Typ);
|
3490 |
|
|
end Convert_Aggr_In_Object_Decl;
|
3491 |
|
|
|
3492 |
|
|
-------------------------------------
|
3493 |
|
|
-- Convert_Array_Aggr_In_Allocator --
|
3494 |
|
|
-------------------------------------
|
3495 |
|
|
|
3496 |
|
|
procedure Convert_Array_Aggr_In_Allocator
|
3497 |
|
|
(Decl : Node_Id;
|
3498 |
|
|
Aggr : Node_Id;
|
3499 |
|
|
Target : Node_Id)
|
3500 |
|
|
is
|
3501 |
|
|
Aggr_Code : List_Id;
|
3502 |
|
|
Typ : constant Entity_Id := Etype (Aggr);
|
3503 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ);
|
3504 |
|
|
|
3505 |
|
|
begin
|
3506 |
|
|
-- The target is an explicit dereference of the allocated object.
|
3507 |
|
|
-- Generate component assignments to it, as for an aggregate that
|
3508 |
|
|
-- appears on the right-hand side of an assignment statement.
|
3509 |
|
|
|
3510 |
|
|
Aggr_Code :=
|
3511 |
|
|
Build_Array_Aggr_Code (Aggr,
|
3512 |
|
|
Ctype => Ctyp,
|
3513 |
|
|
Index => First_Index (Typ),
|
3514 |
|
|
Into => Target,
|
3515 |
|
|
Scalar_Comp => Is_Scalar_Type (Ctyp));
|
3516 |
|
|
|
3517 |
|
|
Insert_Actions_After (Decl, Aggr_Code);
|
3518 |
|
|
end Convert_Array_Aggr_In_Allocator;
|
3519 |
|
|
|
3520 |
|
|
----------------------------
|
3521 |
|
|
-- Convert_To_Assignments --
|
3522 |
|
|
----------------------------
|
3523 |
|
|
|
3524 |
|
|
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
|
3525 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3526 |
|
|
T : Entity_Id;
|
3527 |
|
|
Temp : Entity_Id;
|
3528 |
|
|
|
3529 |
|
|
Instr : Node_Id;
|
3530 |
|
|
Target_Expr : Node_Id;
|
3531 |
|
|
Parent_Kind : Node_Kind;
|
3532 |
|
|
Unc_Decl : Boolean := False;
|
3533 |
|
|
Parent_Node : Node_Id;
|
3534 |
|
|
|
3535 |
|
|
begin
|
3536 |
|
|
pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
|
3537 |
|
|
pragma Assert (Is_Record_Type (Typ));
|
3538 |
|
|
|
3539 |
|
|
Parent_Node := Parent (N);
|
3540 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
3541 |
|
|
|
3542 |
|
|
if Parent_Kind = N_Qualified_Expression then
|
3543 |
|
|
|
3544 |
|
|
-- Check if we are in a unconstrained declaration because in this
|
3545 |
|
|
-- case the current delayed expansion mechanism doesn't work when
|
3546 |
|
|
-- the declared object size depend on the initializing expr.
|
3547 |
|
|
|
3548 |
|
|
begin
|
3549 |
|
|
Parent_Node := Parent (Parent_Node);
|
3550 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
3551 |
|
|
|
3552 |
|
|
if Parent_Kind = N_Object_Declaration then
|
3553 |
|
|
Unc_Decl :=
|
3554 |
|
|
not Is_Entity_Name (Object_Definition (Parent_Node))
|
3555 |
|
|
or else Has_Discriminants
|
3556 |
|
|
(Entity (Object_Definition (Parent_Node)))
|
3557 |
|
|
or else Is_Class_Wide_Type
|
3558 |
|
|
(Entity (Object_Definition (Parent_Node)));
|
3559 |
|
|
end if;
|
3560 |
|
|
end;
|
3561 |
|
|
end if;
|
3562 |
|
|
|
3563 |
|
|
-- Just set the Delay flag in the cases where the transformation will be
|
3564 |
|
|
-- done top down from above.
|
3565 |
|
|
|
3566 |
|
|
if False
|
3567 |
|
|
|
3568 |
|
|
-- Internal aggregate (transformed when expanding the parent)
|
3569 |
|
|
|
3570 |
|
|
or else Parent_Kind = N_Aggregate
|
3571 |
|
|
or else Parent_Kind = N_Extension_Aggregate
|
3572 |
|
|
or else Parent_Kind = N_Component_Association
|
3573 |
|
|
|
3574 |
|
|
-- Allocator (see Convert_Aggr_In_Allocator)
|
3575 |
|
|
|
3576 |
|
|
or else Parent_Kind = N_Allocator
|
3577 |
|
|
|
3578 |
|
|
-- Object declaration (see Convert_Aggr_In_Object_Decl)
|
3579 |
|
|
|
3580 |
|
|
or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
|
3581 |
|
|
|
3582 |
|
|
-- Safe assignment (see Convert_Aggr_Assignments). So far only the
|
3583 |
|
|
-- assignments in init procs are taken into account.
|
3584 |
|
|
|
3585 |
|
|
or else (Parent_Kind = N_Assignment_Statement
|
3586 |
|
|
and then Inside_Init_Proc)
|
3587 |
|
|
|
3588 |
|
|
-- (Ada 2005) An inherently limited type in a return statement,
|
3589 |
|
|
-- which will be handled in a build-in-place fashion, and may be
|
3590 |
|
|
-- rewritten as an extended return and have its own finalization
|
3591 |
|
|
-- machinery. In the case of a simple return, the aggregate needs
|
3592 |
|
|
-- to be delayed until the scope for the return statement has been
|
3593 |
|
|
-- created, so that any finalization chain will be associated with
|
3594 |
|
|
-- that scope. For extended returns, we delay expansion to avoid the
|
3595 |
|
|
-- creation of an unwanted transient scope that could result in
|
3596 |
|
|
-- premature finalization of the return object (which is built in
|
3597 |
|
|
-- in place within the caller's scope).
|
3598 |
|
|
|
3599 |
|
|
or else
|
3600 |
|
|
(Is_Inherently_Limited_Type (Typ)
|
3601 |
|
|
and then
|
3602 |
|
|
(Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
|
3603 |
|
|
or else Nkind (Parent_Node) = N_Simple_Return_Statement))
|
3604 |
|
|
then
|
3605 |
|
|
Set_Expansion_Delayed (N);
|
3606 |
|
|
return;
|
3607 |
|
|
end if;
|
3608 |
|
|
|
3609 |
|
|
if Requires_Transient_Scope (Typ) then
|
3610 |
|
|
Establish_Transient_Scope
|
3611 |
|
|
(N, Sec_Stack =>
|
3612 |
|
|
Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
|
3613 |
|
|
end if;
|
3614 |
|
|
|
3615 |
|
|
-- If the aggregate is non-limited, create a temporary. If it is limited
|
3616 |
|
|
-- and the context is an assignment, this is a subaggregate for an
|
3617 |
|
|
-- enclosing aggregate being expanded. It must be built in place, so use
|
3618 |
|
|
-- the target of the current assignment.
|
3619 |
|
|
|
3620 |
|
|
if Is_Limited_Type (Typ)
|
3621 |
|
|
and then Nkind (Parent (N)) = N_Assignment_Statement
|
3622 |
|
|
then
|
3623 |
|
|
Target_Expr := New_Copy_Tree (Name (Parent (N)));
|
3624 |
|
|
Insert_Actions
|
3625 |
|
|
(Parent (N), Build_Record_Aggr_Code (N, Typ, Target_Expr));
|
3626 |
|
|
Rewrite (Parent (N), Make_Null_Statement (Loc));
|
3627 |
|
|
|
3628 |
|
|
else
|
3629 |
|
|
Temp := Make_Temporary (Loc, 'A', N);
|
3630 |
|
|
|
3631 |
|
|
-- If the type inherits unknown discriminants, use the view with
|
3632 |
|
|
-- known discriminants if available.
|
3633 |
|
|
|
3634 |
|
|
if Has_Unknown_Discriminants (Typ)
|
3635 |
|
|
and then Present (Underlying_Record_View (Typ))
|
3636 |
|
|
then
|
3637 |
|
|
T := Underlying_Record_View (Typ);
|
3638 |
|
|
else
|
3639 |
|
|
T := Typ;
|
3640 |
|
|
end if;
|
3641 |
|
|
|
3642 |
|
|
Instr :=
|
3643 |
|
|
Make_Object_Declaration (Loc,
|
3644 |
|
|
Defining_Identifier => Temp,
|
3645 |
|
|
Object_Definition => New_Occurrence_Of (T, Loc));
|
3646 |
|
|
|
3647 |
|
|
Set_No_Initialization (Instr);
|
3648 |
|
|
Insert_Action (N, Instr);
|
3649 |
|
|
Initialize_Discriminants (Instr, T);
|
3650 |
|
|
Target_Expr := New_Occurrence_Of (Temp, Loc);
|
3651 |
|
|
Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
|
3652 |
|
|
Rewrite (N, New_Occurrence_Of (Temp, Loc));
|
3653 |
|
|
Analyze_And_Resolve (N, T);
|
3654 |
|
|
end if;
|
3655 |
|
|
end Convert_To_Assignments;
|
3656 |
|
|
|
3657 |
|
|
---------------------------
|
3658 |
|
|
-- Convert_To_Positional --
|
3659 |
|
|
---------------------------
|
3660 |
|
|
|
3661 |
|
|
procedure Convert_To_Positional
|
3662 |
|
|
(N : Node_Id;
|
3663 |
|
|
Max_Others_Replicate : Nat := 5;
|
3664 |
|
|
Handle_Bit_Packed : Boolean := False)
|
3665 |
|
|
is
|
3666 |
|
|
Typ : constant Entity_Id := Etype (N);
|
3667 |
|
|
|
3668 |
|
|
Static_Components : Boolean := True;
|
3669 |
|
|
|
3670 |
|
|
procedure Check_Static_Components;
|
3671 |
|
|
-- Check whether all components of the aggregate are compile-time known
|
3672 |
|
|
-- values, and can be passed as is to the back-end without further
|
3673 |
|
|
-- expansion.
|
3674 |
|
|
|
3675 |
|
|
function Flatten
|
3676 |
|
|
(N : Node_Id;
|
3677 |
|
|
Ix : Node_Id;
|
3678 |
|
|
Ixb : Node_Id) return Boolean;
|
3679 |
|
|
-- Convert the aggregate into a purely positional form if possible. On
|
3680 |
|
|
-- entry the bounds of all dimensions are known to be static, and the
|
3681 |
|
|
-- total number of components is safe enough to expand.
|
3682 |
|
|
|
3683 |
|
|
function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
|
3684 |
|
|
-- Return True iff the array N is flat (which is not trivial in the case
|
3685 |
|
|
-- of multidimensionsl aggregates).
|
3686 |
|
|
|
3687 |
|
|
-----------------------------
|
3688 |
|
|
-- Check_Static_Components --
|
3689 |
|
|
-----------------------------
|
3690 |
|
|
|
3691 |
|
|
procedure Check_Static_Components is
|
3692 |
|
|
Expr : Node_Id;
|
3693 |
|
|
|
3694 |
|
|
begin
|
3695 |
|
|
Static_Components := True;
|
3696 |
|
|
|
3697 |
|
|
if Nkind (N) = N_String_Literal then
|
3698 |
|
|
null;
|
3699 |
|
|
|
3700 |
|
|
elsif Present (Expressions (N)) then
|
3701 |
|
|
Expr := First (Expressions (N));
|
3702 |
|
|
while Present (Expr) loop
|
3703 |
|
|
if Nkind (Expr) /= N_Aggregate
|
3704 |
|
|
or else not Compile_Time_Known_Aggregate (Expr)
|
3705 |
|
|
or else Expansion_Delayed (Expr)
|
3706 |
|
|
then
|
3707 |
|
|
Static_Components := False;
|
3708 |
|
|
exit;
|
3709 |
|
|
end if;
|
3710 |
|
|
|
3711 |
|
|
Next (Expr);
|
3712 |
|
|
end loop;
|
3713 |
|
|
end if;
|
3714 |
|
|
|
3715 |
|
|
if Nkind (N) = N_Aggregate
|
3716 |
|
|
and then Present (Component_Associations (N))
|
3717 |
|
|
then
|
3718 |
|
|
Expr := First (Component_Associations (N));
|
3719 |
|
|
while Present (Expr) loop
|
3720 |
|
|
if Nkind (Expression (Expr)) = N_Integer_Literal then
|
3721 |
|
|
null;
|
3722 |
|
|
|
3723 |
|
|
elsif Nkind (Expression (Expr)) /= N_Aggregate
|
3724 |
|
|
or else
|
3725 |
|
|
not Compile_Time_Known_Aggregate (Expression (Expr))
|
3726 |
|
|
or else Expansion_Delayed (Expression (Expr))
|
3727 |
|
|
then
|
3728 |
|
|
Static_Components := False;
|
3729 |
|
|
exit;
|
3730 |
|
|
end if;
|
3731 |
|
|
|
3732 |
|
|
Next (Expr);
|
3733 |
|
|
end loop;
|
3734 |
|
|
end if;
|
3735 |
|
|
end Check_Static_Components;
|
3736 |
|
|
|
3737 |
|
|
-------------
|
3738 |
|
|
-- Flatten --
|
3739 |
|
|
-------------
|
3740 |
|
|
|
3741 |
|
|
function Flatten
|
3742 |
|
|
(N : Node_Id;
|
3743 |
|
|
Ix : Node_Id;
|
3744 |
|
|
Ixb : Node_Id) return Boolean
|
3745 |
|
|
is
|
3746 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3747 |
|
|
Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
|
3748 |
|
|
Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
|
3749 |
|
|
Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
|
3750 |
|
|
Lov : Uint;
|
3751 |
|
|
Hiv : Uint;
|
3752 |
|
|
|
3753 |
|
|
begin
|
3754 |
|
|
if Nkind (Original_Node (N)) = N_String_Literal then
|
3755 |
|
|
return True;
|
3756 |
|
|
end if;
|
3757 |
|
|
|
3758 |
|
|
if not Compile_Time_Known_Value (Lo)
|
3759 |
|
|
or else not Compile_Time_Known_Value (Hi)
|
3760 |
|
|
then
|
3761 |
|
|
return False;
|
3762 |
|
|
end if;
|
3763 |
|
|
|
3764 |
|
|
Lov := Expr_Value (Lo);
|
3765 |
|
|
Hiv := Expr_Value (Hi);
|
3766 |
|
|
|
3767 |
|
|
if Hiv < Lov
|
3768 |
|
|
or else not Compile_Time_Known_Value (Blo)
|
3769 |
|
|
then
|
3770 |
|
|
return False;
|
3771 |
|
|
end if;
|
3772 |
|
|
|
3773 |
|
|
-- Determine if set of alternatives is suitable for conversion and
|
3774 |
|
|
-- build an array containing the values in sequence.
|
3775 |
|
|
|
3776 |
|
|
declare
|
3777 |
|
|
Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
|
3778 |
|
|
of Node_Id := (others => Empty);
|
3779 |
|
|
-- The values in the aggregate sorted appropriately
|
3780 |
|
|
|
3781 |
|
|
Vlist : List_Id;
|
3782 |
|
|
-- Same data as Vals in list form
|
3783 |
|
|
|
3784 |
|
|
Rep_Count : Nat;
|
3785 |
|
|
-- Used to validate Max_Others_Replicate limit
|
3786 |
|
|
|
3787 |
|
|
Elmt : Node_Id;
|
3788 |
|
|
Num : Int := UI_To_Int (Lov);
|
3789 |
|
|
Choice : Node_Id;
|
3790 |
|
|
Lo, Hi : Node_Id;
|
3791 |
|
|
|
3792 |
|
|
begin
|
3793 |
|
|
if Present (Expressions (N)) then
|
3794 |
|
|
Elmt := First (Expressions (N));
|
3795 |
|
|
while Present (Elmt) loop
|
3796 |
|
|
if Nkind (Elmt) = N_Aggregate
|
3797 |
|
|
and then Present (Next_Index (Ix))
|
3798 |
|
|
and then
|
3799 |
|
|
not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
|
3800 |
|
|
then
|
3801 |
|
|
return False;
|
3802 |
|
|
end if;
|
3803 |
|
|
|
3804 |
|
|
Vals (Num) := Relocate_Node (Elmt);
|
3805 |
|
|
Num := Num + 1;
|
3806 |
|
|
|
3807 |
|
|
Next (Elmt);
|
3808 |
|
|
end loop;
|
3809 |
|
|
end if;
|
3810 |
|
|
|
3811 |
|
|
if No (Component_Associations (N)) then
|
3812 |
|
|
return True;
|
3813 |
|
|
end if;
|
3814 |
|
|
|
3815 |
|
|
Elmt := First (Component_Associations (N));
|
3816 |
|
|
|
3817 |
|
|
if Nkind (Expression (Elmt)) = N_Aggregate then
|
3818 |
|
|
if Present (Next_Index (Ix))
|
3819 |
|
|
and then
|
3820 |
|
|
not Flatten
|
3821 |
|
|
(Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
|
3822 |
|
|
then
|
3823 |
|
|
return False;
|
3824 |
|
|
end if;
|
3825 |
|
|
end if;
|
3826 |
|
|
|
3827 |
|
|
Component_Loop : while Present (Elmt) loop
|
3828 |
|
|
Choice := First (Choices (Elmt));
|
3829 |
|
|
Choice_Loop : while Present (Choice) loop
|
3830 |
|
|
|
3831 |
|
|
-- If we have an others choice, fill in the missing elements
|
3832 |
|
|
-- subject to the limit established by Max_Others_Replicate.
|
3833 |
|
|
|
3834 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
3835 |
|
|
Rep_Count := 0;
|
3836 |
|
|
|
3837 |
|
|
for J in Vals'Range loop
|
3838 |
|
|
if No (Vals (J)) then
|
3839 |
|
|
Vals (J) := New_Copy_Tree (Expression (Elmt));
|
3840 |
|
|
Rep_Count := Rep_Count + 1;
|
3841 |
|
|
|
3842 |
|
|
-- Check for maximum others replication. Note that
|
3843 |
|
|
-- we skip this test if either of the restrictions
|
3844 |
|
|
-- No_Elaboration_Code or No_Implicit_Loops is
|
3845 |
|
|
-- active, if this is a preelaborable unit or a
|
3846 |
|
|
-- predefined unit. This ensures that predefined
|
3847 |
|
|
-- units get the same level of constant folding in
|
3848 |
|
|
-- Ada 95 and Ada 05, where their categorization
|
3849 |
|
|
-- has changed.
|
3850 |
|
|
|
3851 |
|
|
declare
|
3852 |
|
|
P : constant Entity_Id :=
|
3853 |
|
|
Cunit_Entity (Current_Sem_Unit);
|
3854 |
|
|
|
3855 |
|
|
begin
|
3856 |
|
|
-- Check if duplication OK and if so continue
|
3857 |
|
|
-- processing.
|
3858 |
|
|
|
3859 |
|
|
if Restriction_Active (No_Elaboration_Code)
|
3860 |
|
|
or else Restriction_Active (No_Implicit_Loops)
|
3861 |
|
|
or else Is_Preelaborated (P)
|
3862 |
|
|
or else (Ekind (P) = E_Package_Body
|
3863 |
|
|
and then
|
3864 |
|
|
Is_Preelaborated (Spec_Entity (P)))
|
3865 |
|
|
or else
|
3866 |
|
|
Is_Predefined_File_Name
|
3867 |
|
|
(Unit_File_Name (Get_Source_Unit (P)))
|
3868 |
|
|
then
|
3869 |
|
|
null;
|
3870 |
|
|
|
3871 |
|
|
-- If duplication not OK, then we return False
|
3872 |
|
|
-- if the replication count is too high
|
3873 |
|
|
|
3874 |
|
|
elsif Rep_Count > Max_Others_Replicate then
|
3875 |
|
|
return False;
|
3876 |
|
|
|
3877 |
|
|
-- Continue on if duplication not OK, but the
|
3878 |
|
|
-- replication count is not excessive.
|
3879 |
|
|
|
3880 |
|
|
else
|
3881 |
|
|
null;
|
3882 |
|
|
end if;
|
3883 |
|
|
end;
|
3884 |
|
|
end if;
|
3885 |
|
|
end loop;
|
3886 |
|
|
|
3887 |
|
|
exit Component_Loop;
|
3888 |
|
|
|
3889 |
|
|
-- Case of a subtype mark
|
3890 |
|
|
|
3891 |
|
|
elsif Nkind (Choice) = N_Identifier
|
3892 |
|
|
and then Is_Type (Entity (Choice))
|
3893 |
|
|
then
|
3894 |
|
|
Lo := Type_Low_Bound (Etype (Choice));
|
3895 |
|
|
Hi := Type_High_Bound (Etype (Choice));
|
3896 |
|
|
|
3897 |
|
|
-- Case of subtype indication
|
3898 |
|
|
|
3899 |
|
|
elsif Nkind (Choice) = N_Subtype_Indication then
|
3900 |
|
|
Lo := Low_Bound (Range_Expression (Constraint (Choice)));
|
3901 |
|
|
Hi := High_Bound (Range_Expression (Constraint (Choice)));
|
3902 |
|
|
|
3903 |
|
|
-- Case of a range
|
3904 |
|
|
|
3905 |
|
|
elsif Nkind (Choice) = N_Range then
|
3906 |
|
|
Lo := Low_Bound (Choice);
|
3907 |
|
|
Hi := High_Bound (Choice);
|
3908 |
|
|
|
3909 |
|
|
-- Normal subexpression case
|
3910 |
|
|
|
3911 |
|
|
else pragma Assert (Nkind (Choice) in N_Subexpr);
|
3912 |
|
|
if not Compile_Time_Known_Value (Choice) then
|
3913 |
|
|
return False;
|
3914 |
|
|
|
3915 |
|
|
else
|
3916 |
|
|
Vals (UI_To_Int (Expr_Value (Choice))) :=
|
3917 |
|
|
New_Copy_Tree (Expression (Elmt));
|
3918 |
|
|
goto Continue;
|
3919 |
|
|
end if;
|
3920 |
|
|
end if;
|
3921 |
|
|
|
3922 |
|
|
-- Range cases merge with Lo,Hi set
|
3923 |
|
|
|
3924 |
|
|
if not Compile_Time_Known_Value (Lo)
|
3925 |
|
|
or else
|
3926 |
|
|
not Compile_Time_Known_Value (Hi)
|
3927 |
|
|
then
|
3928 |
|
|
return False;
|
3929 |
|
|
else
|
3930 |
|
|
for J in UI_To_Int (Expr_Value (Lo)) ..
|
3931 |
|
|
UI_To_Int (Expr_Value (Hi))
|
3932 |
|
|
loop
|
3933 |
|
|
Vals (J) := New_Copy_Tree (Expression (Elmt));
|
3934 |
|
|
end loop;
|
3935 |
|
|
end if;
|
3936 |
|
|
|
3937 |
|
|
<<Continue>>
|
3938 |
|
|
Next (Choice);
|
3939 |
|
|
end loop Choice_Loop;
|
3940 |
|
|
|
3941 |
|
|
Next (Elmt);
|
3942 |
|
|
end loop Component_Loop;
|
3943 |
|
|
|
3944 |
|
|
-- If we get here the conversion is possible
|
3945 |
|
|
|
3946 |
|
|
Vlist := New_List;
|
3947 |
|
|
for J in Vals'Range loop
|
3948 |
|
|
Append (Vals (J), Vlist);
|
3949 |
|
|
end loop;
|
3950 |
|
|
|
3951 |
|
|
Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
|
3952 |
|
|
Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
|
3953 |
|
|
return True;
|
3954 |
|
|
end;
|
3955 |
|
|
end Flatten;
|
3956 |
|
|
|
3957 |
|
|
-------------
|
3958 |
|
|
-- Is_Flat --
|
3959 |
|
|
-------------
|
3960 |
|
|
|
3961 |
|
|
function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
|
3962 |
|
|
Elmt : Node_Id;
|
3963 |
|
|
|
3964 |
|
|
begin
|
3965 |
|
|
if Dims = 0 then
|
3966 |
|
|
return True;
|
3967 |
|
|
|
3968 |
|
|
elsif Nkind (N) = N_Aggregate then
|
3969 |
|
|
if Present (Component_Associations (N)) then
|
3970 |
|
|
return False;
|
3971 |
|
|
|
3972 |
|
|
else
|
3973 |
|
|
Elmt := First (Expressions (N));
|
3974 |
|
|
while Present (Elmt) loop
|
3975 |
|
|
if not Is_Flat (Elmt, Dims - 1) then
|
3976 |
|
|
return False;
|
3977 |
|
|
end if;
|
3978 |
|
|
|
3979 |
|
|
Next (Elmt);
|
3980 |
|
|
end loop;
|
3981 |
|
|
|
3982 |
|
|
return True;
|
3983 |
|
|
end if;
|
3984 |
|
|
else
|
3985 |
|
|
return True;
|
3986 |
|
|
end if;
|
3987 |
|
|
end Is_Flat;
|
3988 |
|
|
|
3989 |
|
|
-- Start of processing for Convert_To_Positional
|
3990 |
|
|
|
3991 |
|
|
begin
|
3992 |
|
|
-- Ada 2005 (AI-287): Do not convert in case of default initialized
|
3993 |
|
|
-- components because in this case will need to call the corresponding
|
3994 |
|
|
-- IP procedure.
|
3995 |
|
|
|
3996 |
|
|
if Has_Default_Init_Comps (N) then
|
3997 |
|
|
return;
|
3998 |
|
|
end if;
|
3999 |
|
|
|
4000 |
|
|
if Is_Flat (N, Number_Dimensions (Typ)) then
|
4001 |
|
|
return;
|
4002 |
|
|
end if;
|
4003 |
|
|
|
4004 |
|
|
if Is_Bit_Packed_Array (Typ)
|
4005 |
|
|
and then not Handle_Bit_Packed
|
4006 |
|
|
then
|
4007 |
|
|
return;
|
4008 |
|
|
end if;
|
4009 |
|
|
|
4010 |
|
|
-- Do not convert to positional if controlled components are involved
|
4011 |
|
|
-- since these require special processing
|
4012 |
|
|
|
4013 |
|
|
if Has_Controlled_Component (Typ) then
|
4014 |
|
|
return;
|
4015 |
|
|
end if;
|
4016 |
|
|
|
4017 |
|
|
Check_Static_Components;
|
4018 |
|
|
|
4019 |
|
|
-- If the size is known, or all the components are static, try to
|
4020 |
|
|
-- build a fully positional aggregate.
|
4021 |
|
|
|
4022 |
|
|
-- The size of the type may not be known for an aggregate with
|
4023 |
|
|
-- discriminated array components, but if the components are static
|
4024 |
|
|
-- it is still possible to verify statically that the length is
|
4025 |
|
|
-- compatible with the upper bound of the type, and therefore it is
|
4026 |
|
|
-- worth flattening such aggregates as well.
|
4027 |
|
|
|
4028 |
|
|
-- For now the back-end expands these aggregates into individual
|
4029 |
|
|
-- assignments to the target anyway, but it is conceivable that
|
4030 |
|
|
-- it will eventually be able to treat such aggregates statically???
|
4031 |
|
|
|
4032 |
|
|
if Aggr_Size_OK (N, Typ)
|
4033 |
|
|
and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
|
4034 |
|
|
then
|
4035 |
|
|
if Static_Components then
|
4036 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
4037 |
|
|
Set_Expansion_Delayed (N, False);
|
4038 |
|
|
end if;
|
4039 |
|
|
|
4040 |
|
|
Analyze_And_Resolve (N, Typ);
|
4041 |
|
|
end if;
|
4042 |
|
|
end Convert_To_Positional;
|
4043 |
|
|
|
4044 |
|
|
----------------------------
|
4045 |
|
|
-- Expand_Array_Aggregate --
|
4046 |
|
|
----------------------------
|
4047 |
|
|
|
4048 |
|
|
-- Array aggregate expansion proceeds as follows:
|
4049 |
|
|
|
4050 |
|
|
-- 1. If requested we generate code to perform all the array aggregate
|
4051 |
|
|
-- bound checks, specifically
|
4052 |
|
|
|
4053 |
|
|
-- (a) Check that the index range defined by aggregate bounds is
|
4054 |
|
|
-- compatible with corresponding index subtype.
|
4055 |
|
|
|
4056 |
|
|
-- (b) If an others choice is present check that no aggregate
|
4057 |
|
|
-- index is outside the bounds of the index constraint.
|
4058 |
|
|
|
4059 |
|
|
-- (c) For multidimensional arrays make sure that all subaggregates
|
4060 |
|
|
-- corresponding to the same dimension have the same bounds.
|
4061 |
|
|
|
4062 |
|
|
-- 2. Check for packed array aggregate which can be converted to a
|
4063 |
|
|
-- constant so that the aggregate disappeares completely.
|
4064 |
|
|
|
4065 |
|
|
-- 3. Check case of nested aggregate. Generally nested aggregates are
|
4066 |
|
|
-- handled during the processing of the parent aggregate.
|
4067 |
|
|
|
4068 |
|
|
-- 4. Check if the aggregate can be statically processed. If this is the
|
4069 |
|
|
-- case pass it as is to Gigi. Note that a necessary condition for
|
4070 |
|
|
-- static processing is that the aggregate be fully positional.
|
4071 |
|
|
|
4072 |
|
|
-- 5. If in place aggregate expansion is possible (i.e. no need to create
|
4073 |
|
|
-- a temporary) then mark the aggregate as such and return. Otherwise
|
4074 |
|
|
-- create a new temporary and generate the appropriate initialization
|
4075 |
|
|
-- code.
|
4076 |
|
|
|
4077 |
|
|
procedure Expand_Array_Aggregate (N : Node_Id) is
|
4078 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4079 |
|
|
|
4080 |
|
|
Typ : constant Entity_Id := Etype (N);
|
4081 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ);
|
4082 |
|
|
-- Typ is the correct constrained array subtype of the aggregate
|
4083 |
|
|
-- Ctyp is the corresponding component type.
|
4084 |
|
|
|
4085 |
|
|
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
|
4086 |
|
|
-- Number of aggregate index dimensions
|
4087 |
|
|
|
4088 |
|
|
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
|
4089 |
|
|
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
|
4090 |
|
|
-- Low and High bounds of the constraint for each aggregate index
|
4091 |
|
|
|
4092 |
|
|
Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
|
4093 |
|
|
-- The type of each index
|
4094 |
|
|
|
4095 |
|
|
Maybe_In_Place_OK : Boolean;
|
4096 |
|
|
-- If the type is neither controlled nor packed and the aggregate
|
4097 |
|
|
-- is the expression in an assignment, assignment in place may be
|
4098 |
|
|
-- possible, provided other conditions are met on the LHS.
|
4099 |
|
|
|
4100 |
|
|
Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
|
4101 |
|
|
(others => False);
|
4102 |
|
|
-- If Others_Present (J) is True, then there is an others choice
|
4103 |
|
|
-- in one of the sub-aggregates of N at dimension J.
|
4104 |
|
|
|
4105 |
|
|
procedure Build_Constrained_Type (Positional : Boolean);
|
4106 |
|
|
-- If the subtype is not static or unconstrained, build a constrained
|
4107 |
|
|
-- type using the computable sizes of the aggregate and its sub-
|
4108 |
|
|
-- aggregates.
|
4109 |
|
|
|
4110 |
|
|
procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
|
4111 |
|
|
-- Checks that the bounds of Aggr_Bounds are within the bounds defined
|
4112 |
|
|
-- by Index_Bounds.
|
4113 |
|
|
|
4114 |
|
|
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
|
4115 |
|
|
-- Checks that in a multi-dimensional array aggregate all subaggregates
|
4116 |
|
|
-- corresponding to the same dimension have the same bounds.
|
4117 |
|
|
-- Sub_Aggr is an array sub-aggregate. Dim is the dimension
|
4118 |
|
|
-- corresponding to the sub-aggregate.
|
4119 |
|
|
|
4120 |
|
|
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
|
4121 |
|
|
-- Computes the values of array Others_Present. Sub_Aggr is the
|
4122 |
|
|
-- array sub-aggregate we start the computation from. Dim is the
|
4123 |
|
|
-- dimension corresponding to the sub-aggregate.
|
4124 |
|
|
|
4125 |
|
|
function Has_Address_Clause (D : Node_Id) return Boolean;
|
4126 |
|
|
-- If the aggregate is the expression in an object declaration, it
|
4127 |
|
|
-- cannot be expanded in place. This function does a lookahead in the
|
4128 |
|
|
-- current declarative part to find an address clause for the object
|
4129 |
|
|
-- being declared.
|
4130 |
|
|
|
4131 |
|
|
function In_Place_Assign_OK return Boolean;
|
4132 |
|
|
-- Simple predicate to determine whether an aggregate assignment can
|
4133 |
|
|
-- be done in place, because none of the new values can depend on the
|
4134 |
|
|
-- components of the target of the assignment.
|
4135 |
|
|
|
4136 |
|
|
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
|
4137 |
|
|
-- Checks that if an others choice is present in any sub-aggregate no
|
4138 |
|
|
-- aggregate index is outside the bounds of the index constraint.
|
4139 |
|
|
-- Sub_Aggr is an array sub-aggregate. Dim is the dimension
|
4140 |
|
|
-- corresponding to the sub-aggregate.
|
4141 |
|
|
|
4142 |
|
|
----------------------------
|
4143 |
|
|
-- Build_Constrained_Type --
|
4144 |
|
|
----------------------------
|
4145 |
|
|
|
4146 |
|
|
procedure Build_Constrained_Type (Positional : Boolean) is
|
4147 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4148 |
|
|
Agg_Type : Entity_Id;
|
4149 |
|
|
Comp : Node_Id;
|
4150 |
|
|
Decl : Node_Id;
|
4151 |
|
|
Typ : constant Entity_Id := Etype (N);
|
4152 |
|
|
Indices : constant List_Id := New_List;
|
4153 |
|
|
Num : Int;
|
4154 |
|
|
Sub_Agg : Node_Id;
|
4155 |
|
|
|
4156 |
|
|
begin
|
4157 |
|
|
Agg_Type :=
|
4158 |
|
|
Make_Defining_Identifier (
|
4159 |
|
|
Loc, New_Internal_Name ('A'));
|
4160 |
|
|
|
4161 |
|
|
-- If the aggregate is purely positional, all its subaggregates
|
4162 |
|
|
-- have the same size. We collect the dimensions from the first
|
4163 |
|
|
-- subaggregate at each level.
|
4164 |
|
|
|
4165 |
|
|
if Positional then
|
4166 |
|
|
Sub_Agg := N;
|
4167 |
|
|
|
4168 |
|
|
for D in 1 .. Number_Dimensions (Typ) loop
|
4169 |
|
|
Sub_Agg := First (Expressions (Sub_Agg));
|
4170 |
|
|
|
4171 |
|
|
Comp := Sub_Agg;
|
4172 |
|
|
Num := 0;
|
4173 |
|
|
while Present (Comp) loop
|
4174 |
|
|
Num := Num + 1;
|
4175 |
|
|
Next (Comp);
|
4176 |
|
|
end loop;
|
4177 |
|
|
|
4178 |
|
|
Append (
|
4179 |
|
|
Make_Range (Loc,
|
4180 |
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
4181 |
|
|
High_Bound =>
|
4182 |
|
|
Make_Integer_Literal (Loc, Num)),
|
4183 |
|
|
Indices);
|
4184 |
|
|
end loop;
|
4185 |
|
|
|
4186 |
|
|
else
|
4187 |
|
|
-- We know the aggregate type is unconstrained and the aggregate
|
4188 |
|
|
-- is not processable by the back end, therefore not necessarily
|
4189 |
|
|
-- positional. Retrieve each dimension bounds (computed earlier).
|
4190 |
|
|
-- earlier.
|
4191 |
|
|
|
4192 |
|
|
for D in 1 .. Number_Dimensions (Typ) loop
|
4193 |
|
|
Append (
|
4194 |
|
|
Make_Range (Loc,
|
4195 |
|
|
Low_Bound => Aggr_Low (D),
|
4196 |
|
|
High_Bound => Aggr_High (D)),
|
4197 |
|
|
Indices);
|
4198 |
|
|
end loop;
|
4199 |
|
|
end if;
|
4200 |
|
|
|
4201 |
|
|
Decl :=
|
4202 |
|
|
Make_Full_Type_Declaration (Loc,
|
4203 |
|
|
Defining_Identifier => Agg_Type,
|
4204 |
|
|
Type_Definition =>
|
4205 |
|
|
Make_Constrained_Array_Definition (Loc,
|
4206 |
|
|
Discrete_Subtype_Definitions => Indices,
|
4207 |
|
|
Component_Definition =>
|
4208 |
|
|
Make_Component_Definition (Loc,
|
4209 |
|
|
Aliased_Present => False,
|
4210 |
|
|
Subtype_Indication =>
|
4211 |
|
|
New_Occurrence_Of (Component_Type (Typ), Loc))));
|
4212 |
|
|
|
4213 |
|
|
Insert_Action (N, Decl);
|
4214 |
|
|
Analyze (Decl);
|
4215 |
|
|
Set_Etype (N, Agg_Type);
|
4216 |
|
|
Set_Is_Itype (Agg_Type);
|
4217 |
|
|
Freeze_Itype (Agg_Type, N);
|
4218 |
|
|
end Build_Constrained_Type;
|
4219 |
|
|
|
4220 |
|
|
------------------
|
4221 |
|
|
-- Check_Bounds --
|
4222 |
|
|
------------------
|
4223 |
|
|
|
4224 |
|
|
procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
|
4225 |
|
|
Aggr_Lo : Node_Id;
|
4226 |
|
|
Aggr_Hi : Node_Id;
|
4227 |
|
|
|
4228 |
|
|
Ind_Lo : Node_Id;
|
4229 |
|
|
Ind_Hi : Node_Id;
|
4230 |
|
|
|
4231 |
|
|
Cond : Node_Id := Empty;
|
4232 |
|
|
|
4233 |
|
|
begin
|
4234 |
|
|
Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
|
4235 |
|
|
Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
|
4236 |
|
|
|
4237 |
|
|
-- Generate the following test:
|
4238 |
|
|
--
|
4239 |
|
|
-- [constraint_error when
|
4240 |
|
|
-- Aggr_Lo <= Aggr_Hi and then
|
4241 |
|
|
-- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
|
4242 |
|
|
|
4243 |
|
|
-- As an optimization try to see if some tests are trivially vacuous
|
4244 |
|
|
-- because we are comparing an expression against itself.
|
4245 |
|
|
|
4246 |
|
|
if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
|
4247 |
|
|
Cond := Empty;
|
4248 |
|
|
|
4249 |
|
|
elsif Aggr_Hi = Ind_Hi then
|
4250 |
|
|
Cond :=
|
4251 |
|
|
Make_Op_Lt (Loc,
|
4252 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
4253 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
|
4254 |
|
|
|
4255 |
|
|
elsif Aggr_Lo = Ind_Lo then
|
4256 |
|
|
Cond :=
|
4257 |
|
|
Make_Op_Gt (Loc,
|
4258 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
|
4259 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
|
4260 |
|
|
|
4261 |
|
|
else
|
4262 |
|
|
Cond :=
|
4263 |
|
|
Make_Or_Else (Loc,
|
4264 |
|
|
Left_Opnd =>
|
4265 |
|
|
Make_Op_Lt (Loc,
|
4266 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
4267 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
|
4268 |
|
|
|
4269 |
|
|
Right_Opnd =>
|
4270 |
|
|
Make_Op_Gt (Loc,
|
4271 |
|
|
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
|
4272 |
|
|
Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
|
4273 |
|
|
end if;
|
4274 |
|
|
|
4275 |
|
|
if Present (Cond) then
|
4276 |
|
|
Cond :=
|
4277 |
|
|
Make_And_Then (Loc,
|
4278 |
|
|
Left_Opnd =>
|
4279 |
|
|
Make_Op_Le (Loc,
|
4280 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
4281 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
|
4282 |
|
|
|
4283 |
|
|
Right_Opnd => Cond);
|
4284 |
|
|
|
4285 |
|
|
Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
|
4286 |
|
|
Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
|
4287 |
|
|
Insert_Action (N,
|
4288 |
|
|
Make_Raise_Constraint_Error (Loc,
|
4289 |
|
|
Condition => Cond,
|
4290 |
|
|
Reason => CE_Length_Check_Failed));
|
4291 |
|
|
end if;
|
4292 |
|
|
end Check_Bounds;
|
4293 |
|
|
|
4294 |
|
|
----------------------------
|
4295 |
|
|
-- Check_Same_Aggr_Bounds --
|
4296 |
|
|
----------------------------
|
4297 |
|
|
|
4298 |
|
|
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
|
4299 |
|
|
Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
|
4300 |
|
|
Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
|
4301 |
|
|
-- The bounds of this specific sub-aggregate
|
4302 |
|
|
|
4303 |
|
|
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
|
4304 |
|
|
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
|
4305 |
|
|
-- The bounds of the aggregate for this dimension
|
4306 |
|
|
|
4307 |
|
|
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
|
4308 |
|
|
-- The index type for this dimension.xxx
|
4309 |
|
|
|
4310 |
|
|
Cond : Node_Id := Empty;
|
4311 |
|
|
Assoc : Node_Id;
|
4312 |
|
|
Expr : Node_Id;
|
4313 |
|
|
|
4314 |
|
|
begin
|
4315 |
|
|
-- If index checks are on generate the test
|
4316 |
|
|
|
4317 |
|
|
-- [constraint_error when
|
4318 |
|
|
-- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
|
4319 |
|
|
|
4320 |
|
|
-- As an optimization try to see if some tests are trivially vacuos
|
4321 |
|
|
-- because we are comparing an expression against itself. Also for
|
4322 |
|
|
-- the first dimension the test is trivially vacuous because there
|
4323 |
|
|
-- is just one aggregate for dimension 1.
|
4324 |
|
|
|
4325 |
|
|
if Index_Checks_Suppressed (Ind_Typ) then
|
4326 |
|
|
Cond := Empty;
|
4327 |
|
|
|
4328 |
|
|
elsif Dim = 1
|
4329 |
|
|
or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
|
4330 |
|
|
then
|
4331 |
|
|
Cond := Empty;
|
4332 |
|
|
|
4333 |
|
|
elsif Aggr_Hi = Sub_Hi then
|
4334 |
|
|
Cond :=
|
4335 |
|
|
Make_Op_Ne (Loc,
|
4336 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
4337 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
|
4338 |
|
|
|
4339 |
|
|
elsif Aggr_Lo = Sub_Lo then
|
4340 |
|
|
Cond :=
|
4341 |
|
|
Make_Op_Ne (Loc,
|
4342 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
|
4343 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
|
4344 |
|
|
|
4345 |
|
|
else
|
4346 |
|
|
Cond :=
|
4347 |
|
|
Make_Or_Else (Loc,
|
4348 |
|
|
Left_Opnd =>
|
4349 |
|
|
Make_Op_Ne (Loc,
|
4350 |
|
|
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
|
4351 |
|
|
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
|
4352 |
|
|
|
4353 |
|
|
Right_Opnd =>
|
4354 |
|
|
Make_Op_Ne (Loc,
|
4355 |
|
|
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
|
4356 |
|
|
Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
|
4357 |
|
|
end if;
|
4358 |
|
|
|
4359 |
|
|
if Present (Cond) then
|
4360 |
|
|
Insert_Action (N,
|
4361 |
|
|
Make_Raise_Constraint_Error (Loc,
|
4362 |
|
|
Condition => Cond,
|
4363 |
|
|
Reason => CE_Length_Check_Failed));
|
4364 |
|
|
end if;
|
4365 |
|
|
|
4366 |
|
|
-- Now look inside the sub-aggregate to see if there is more work
|
4367 |
|
|
|
4368 |
|
|
if Dim < Aggr_Dimension then
|
4369 |
|
|
|
4370 |
|
|
-- Process positional components
|
4371 |
|
|
|
4372 |
|
|
if Present (Expressions (Sub_Aggr)) then
|
4373 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
4374 |
|
|
while Present (Expr) loop
|
4375 |
|
|
Check_Same_Aggr_Bounds (Expr, Dim + 1);
|
4376 |
|
|
Next (Expr);
|
4377 |
|
|
end loop;
|
4378 |
|
|
end if;
|
4379 |
|
|
|
4380 |
|
|
-- Process component associations
|
4381 |
|
|
|
4382 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
4383 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
4384 |
|
|
while Present (Assoc) loop
|
4385 |
|
|
Expr := Expression (Assoc);
|
4386 |
|
|
Check_Same_Aggr_Bounds (Expr, Dim + 1);
|
4387 |
|
|
Next (Assoc);
|
4388 |
|
|
end loop;
|
4389 |
|
|
end if;
|
4390 |
|
|
end if;
|
4391 |
|
|
end Check_Same_Aggr_Bounds;
|
4392 |
|
|
|
4393 |
|
|
----------------------------
|
4394 |
|
|
-- Compute_Others_Present --
|
4395 |
|
|
----------------------------
|
4396 |
|
|
|
4397 |
|
|
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
|
4398 |
|
|
Assoc : Node_Id;
|
4399 |
|
|
Expr : Node_Id;
|
4400 |
|
|
|
4401 |
|
|
begin
|
4402 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
4403 |
|
|
Assoc := Last (Component_Associations (Sub_Aggr));
|
4404 |
|
|
|
4405 |
|
|
if Nkind (First (Choices (Assoc))) = N_Others_Choice then
|
4406 |
|
|
Others_Present (Dim) := True;
|
4407 |
|
|
end if;
|
4408 |
|
|
end if;
|
4409 |
|
|
|
4410 |
|
|
-- Now look inside the sub-aggregate to see if there is more work
|
4411 |
|
|
|
4412 |
|
|
if Dim < Aggr_Dimension then
|
4413 |
|
|
|
4414 |
|
|
-- Process positional components
|
4415 |
|
|
|
4416 |
|
|
if Present (Expressions (Sub_Aggr)) then
|
4417 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
4418 |
|
|
while Present (Expr) loop
|
4419 |
|
|
Compute_Others_Present (Expr, Dim + 1);
|
4420 |
|
|
Next (Expr);
|
4421 |
|
|
end loop;
|
4422 |
|
|
end if;
|
4423 |
|
|
|
4424 |
|
|
-- Process component associations
|
4425 |
|
|
|
4426 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
4427 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
4428 |
|
|
while Present (Assoc) loop
|
4429 |
|
|
Expr := Expression (Assoc);
|
4430 |
|
|
Compute_Others_Present (Expr, Dim + 1);
|
4431 |
|
|
Next (Assoc);
|
4432 |
|
|
end loop;
|
4433 |
|
|
end if;
|
4434 |
|
|
end if;
|
4435 |
|
|
end Compute_Others_Present;
|
4436 |
|
|
|
4437 |
|
|
------------------------
|
4438 |
|
|
-- Has_Address_Clause --
|
4439 |
|
|
------------------------
|
4440 |
|
|
|
4441 |
|
|
function Has_Address_Clause (D : Node_Id) return Boolean is
|
4442 |
|
|
Id : constant Entity_Id := Defining_Identifier (D);
|
4443 |
|
|
Decl : Node_Id;
|
4444 |
|
|
|
4445 |
|
|
begin
|
4446 |
|
|
Decl := Next (D);
|
4447 |
|
|
while Present (Decl) loop
|
4448 |
|
|
if Nkind (Decl) = N_At_Clause
|
4449 |
|
|
and then Chars (Identifier (Decl)) = Chars (Id)
|
4450 |
|
|
then
|
4451 |
|
|
return True;
|
4452 |
|
|
|
4453 |
|
|
elsif Nkind (Decl) = N_Attribute_Definition_Clause
|
4454 |
|
|
and then Chars (Decl) = Name_Address
|
4455 |
|
|
and then Chars (Name (Decl)) = Chars (Id)
|
4456 |
|
|
then
|
4457 |
|
|
return True;
|
4458 |
|
|
end if;
|
4459 |
|
|
|
4460 |
|
|
Next (Decl);
|
4461 |
|
|
end loop;
|
4462 |
|
|
|
4463 |
|
|
return False;
|
4464 |
|
|
end Has_Address_Clause;
|
4465 |
|
|
|
4466 |
|
|
------------------------
|
4467 |
|
|
-- In_Place_Assign_OK --
|
4468 |
|
|
------------------------
|
4469 |
|
|
|
4470 |
|
|
function In_Place_Assign_OK return Boolean is
|
4471 |
|
|
Aggr_In : Node_Id;
|
4472 |
|
|
Aggr_Lo : Node_Id;
|
4473 |
|
|
Aggr_Hi : Node_Id;
|
4474 |
|
|
Obj_In : Node_Id;
|
4475 |
|
|
Obj_Lo : Node_Id;
|
4476 |
|
|
Obj_Hi : Node_Id;
|
4477 |
|
|
|
4478 |
|
|
function Is_Others_Aggregate (Aggr : Node_Id) return Boolean;
|
4479 |
|
|
-- Aggregates that consist of a single Others choice are safe
|
4480 |
|
|
-- if the single expression is.
|
4481 |
|
|
|
4482 |
|
|
function Safe_Aggregate (Aggr : Node_Id) return Boolean;
|
4483 |
|
|
-- Check recursively that each component of a (sub)aggregate does
|
4484 |
|
|
-- not depend on the variable being assigned to.
|
4485 |
|
|
|
4486 |
|
|
function Safe_Component (Expr : Node_Id) return Boolean;
|
4487 |
|
|
-- Verify that an expression cannot depend on the variable being
|
4488 |
|
|
-- assigned to. Room for improvement here (but less than before).
|
4489 |
|
|
|
4490 |
|
|
-------------------------
|
4491 |
|
|
-- Is_Others_Aggregate --
|
4492 |
|
|
-------------------------
|
4493 |
|
|
|
4494 |
|
|
function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
|
4495 |
|
|
begin
|
4496 |
|
|
return No (Expressions (Aggr))
|
4497 |
|
|
and then Nkind
|
4498 |
|
|
(First (Choices (First (Component_Associations (Aggr)))))
|
4499 |
|
|
= N_Others_Choice;
|
4500 |
|
|
end Is_Others_Aggregate;
|
4501 |
|
|
|
4502 |
|
|
--------------------
|
4503 |
|
|
-- Safe_Aggregate --
|
4504 |
|
|
--------------------
|
4505 |
|
|
|
4506 |
|
|
function Safe_Aggregate (Aggr : Node_Id) return Boolean is
|
4507 |
|
|
Expr : Node_Id;
|
4508 |
|
|
|
4509 |
|
|
begin
|
4510 |
|
|
if Present (Expressions (Aggr)) then
|
4511 |
|
|
Expr := First (Expressions (Aggr));
|
4512 |
|
|
while Present (Expr) loop
|
4513 |
|
|
if Nkind (Expr) = N_Aggregate then
|
4514 |
|
|
if not Safe_Aggregate (Expr) then
|
4515 |
|
|
return False;
|
4516 |
|
|
end if;
|
4517 |
|
|
|
4518 |
|
|
elsif not Safe_Component (Expr) then
|
4519 |
|
|
return False;
|
4520 |
|
|
end if;
|
4521 |
|
|
|
4522 |
|
|
Next (Expr);
|
4523 |
|
|
end loop;
|
4524 |
|
|
end if;
|
4525 |
|
|
|
4526 |
|
|
if Present (Component_Associations (Aggr)) then
|
4527 |
|
|
Expr := First (Component_Associations (Aggr));
|
4528 |
|
|
while Present (Expr) loop
|
4529 |
|
|
if Nkind (Expression (Expr)) = N_Aggregate then
|
4530 |
|
|
if not Safe_Aggregate (Expression (Expr)) then
|
4531 |
|
|
return False;
|
4532 |
|
|
end if;
|
4533 |
|
|
|
4534 |
|
|
elsif not Safe_Component (Expression (Expr)) then
|
4535 |
|
|
return False;
|
4536 |
|
|
end if;
|
4537 |
|
|
|
4538 |
|
|
Next (Expr);
|
4539 |
|
|
end loop;
|
4540 |
|
|
end if;
|
4541 |
|
|
|
4542 |
|
|
return True;
|
4543 |
|
|
end Safe_Aggregate;
|
4544 |
|
|
|
4545 |
|
|
--------------------
|
4546 |
|
|
-- Safe_Component --
|
4547 |
|
|
--------------------
|
4548 |
|
|
|
4549 |
|
|
function Safe_Component (Expr : Node_Id) return Boolean is
|
4550 |
|
|
Comp : Node_Id := Expr;
|
4551 |
|
|
|
4552 |
|
|
function Check_Component (Comp : Node_Id) return Boolean;
|
4553 |
|
|
-- Do the recursive traversal, after copy
|
4554 |
|
|
|
4555 |
|
|
---------------------
|
4556 |
|
|
-- Check_Component --
|
4557 |
|
|
---------------------
|
4558 |
|
|
|
4559 |
|
|
function Check_Component (Comp : Node_Id) return Boolean is
|
4560 |
|
|
begin
|
4561 |
|
|
if Is_Overloaded (Comp) then
|
4562 |
|
|
return False;
|
4563 |
|
|
end if;
|
4564 |
|
|
|
4565 |
|
|
return Compile_Time_Known_Value (Comp)
|
4566 |
|
|
|
4567 |
|
|
or else (Is_Entity_Name (Comp)
|
4568 |
|
|
and then Present (Entity (Comp))
|
4569 |
|
|
and then No (Renamed_Object (Entity (Comp))))
|
4570 |
|
|
|
4571 |
|
|
or else (Nkind (Comp) = N_Attribute_Reference
|
4572 |
|
|
and then Check_Component (Prefix (Comp)))
|
4573 |
|
|
|
4574 |
|
|
or else (Nkind (Comp) in N_Binary_Op
|
4575 |
|
|
and then Check_Component (Left_Opnd (Comp))
|
4576 |
|
|
and then Check_Component (Right_Opnd (Comp)))
|
4577 |
|
|
|
4578 |
|
|
or else (Nkind (Comp) in N_Unary_Op
|
4579 |
|
|
and then Check_Component (Right_Opnd (Comp)))
|
4580 |
|
|
|
4581 |
|
|
or else (Nkind (Comp) = N_Selected_Component
|
4582 |
|
|
and then Check_Component (Prefix (Comp)))
|
4583 |
|
|
|
4584 |
|
|
or else (Nkind (Comp) = N_Unchecked_Type_Conversion
|
4585 |
|
|
and then Check_Component (Expression (Comp)));
|
4586 |
|
|
end Check_Component;
|
4587 |
|
|
|
4588 |
|
|
-- Start of processing for Safe_Component
|
4589 |
|
|
|
4590 |
|
|
begin
|
4591 |
|
|
-- If the component appears in an association that may
|
4592 |
|
|
-- correspond to more than one element, it is not analyzed
|
4593 |
|
|
-- before the expansion into assignments, to avoid side effects.
|
4594 |
|
|
-- We analyze, but do not resolve the copy, to obtain sufficient
|
4595 |
|
|
-- entity information for the checks that follow. If component is
|
4596 |
|
|
-- overloaded we assume an unsafe function call.
|
4597 |
|
|
|
4598 |
|
|
if not Analyzed (Comp) then
|
4599 |
|
|
if Is_Overloaded (Expr) then
|
4600 |
|
|
return False;
|
4601 |
|
|
|
4602 |
|
|
elsif Nkind (Expr) = N_Aggregate
|
4603 |
|
|
and then not Is_Others_Aggregate (Expr)
|
4604 |
|
|
then
|
4605 |
|
|
return False;
|
4606 |
|
|
|
4607 |
|
|
elsif Nkind (Expr) = N_Allocator then
|
4608 |
|
|
|
4609 |
|
|
-- For now, too complex to analyze
|
4610 |
|
|
|
4611 |
|
|
return False;
|
4612 |
|
|
end if;
|
4613 |
|
|
|
4614 |
|
|
Comp := New_Copy_Tree (Expr);
|
4615 |
|
|
Set_Parent (Comp, Parent (Expr));
|
4616 |
|
|
Analyze (Comp);
|
4617 |
|
|
end if;
|
4618 |
|
|
|
4619 |
|
|
if Nkind (Comp) = N_Aggregate then
|
4620 |
|
|
return Safe_Aggregate (Comp);
|
4621 |
|
|
else
|
4622 |
|
|
return Check_Component (Comp);
|
4623 |
|
|
end if;
|
4624 |
|
|
end Safe_Component;
|
4625 |
|
|
|
4626 |
|
|
-- Start of processing for In_Place_Assign_OK
|
4627 |
|
|
|
4628 |
|
|
begin
|
4629 |
|
|
if Present (Component_Associations (N)) then
|
4630 |
|
|
|
4631 |
|
|
-- On assignment, sliding can take place, so we cannot do the
|
4632 |
|
|
-- assignment in place unless the bounds of the aggregate are
|
4633 |
|
|
-- statically equal to those of the target.
|
4634 |
|
|
|
4635 |
|
|
-- If the aggregate is given by an others choice, the bounds
|
4636 |
|
|
-- are derived from the left-hand side, and the assignment is
|
4637 |
|
|
-- safe if the expression is.
|
4638 |
|
|
|
4639 |
|
|
if Is_Others_Aggregate (N) then
|
4640 |
|
|
return
|
4641 |
|
|
Safe_Component
|
4642 |
|
|
(Expression (First (Component_Associations (N))));
|
4643 |
|
|
end if;
|
4644 |
|
|
|
4645 |
|
|
Aggr_In := First_Index (Etype (N));
|
4646 |
|
|
|
4647 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement then
|
4648 |
|
|
Obj_In := First_Index (Etype (Name (Parent (N))));
|
4649 |
|
|
|
4650 |
|
|
else
|
4651 |
|
|
-- Context is an allocator. Check bounds of aggregate
|
4652 |
|
|
-- against given type in qualified expression.
|
4653 |
|
|
|
4654 |
|
|
pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
|
4655 |
|
|
Obj_In :=
|
4656 |
|
|
First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
|
4657 |
|
|
end if;
|
4658 |
|
|
|
4659 |
|
|
while Present (Aggr_In) loop
|
4660 |
|
|
Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
|
4661 |
|
|
Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
|
4662 |
|
|
|
4663 |
|
|
if not Compile_Time_Known_Value (Aggr_Lo)
|
4664 |
|
|
or else not Compile_Time_Known_Value (Aggr_Hi)
|
4665 |
|
|
or else not Compile_Time_Known_Value (Obj_Lo)
|
4666 |
|
|
or else not Compile_Time_Known_Value (Obj_Hi)
|
4667 |
|
|
or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
|
4668 |
|
|
or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
|
4669 |
|
|
then
|
4670 |
|
|
return False;
|
4671 |
|
|
end if;
|
4672 |
|
|
|
4673 |
|
|
Next_Index (Aggr_In);
|
4674 |
|
|
Next_Index (Obj_In);
|
4675 |
|
|
end loop;
|
4676 |
|
|
end if;
|
4677 |
|
|
|
4678 |
|
|
-- Now check the component values themselves
|
4679 |
|
|
|
4680 |
|
|
return Safe_Aggregate (N);
|
4681 |
|
|
end In_Place_Assign_OK;
|
4682 |
|
|
|
4683 |
|
|
------------------
|
4684 |
|
|
-- Others_Check --
|
4685 |
|
|
------------------
|
4686 |
|
|
|
4687 |
|
|
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
|
4688 |
|
|
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
|
4689 |
|
|
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
|
4690 |
|
|
-- The bounds of the aggregate for this dimension
|
4691 |
|
|
|
4692 |
|
|
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
|
4693 |
|
|
-- The index type for this dimension
|
4694 |
|
|
|
4695 |
|
|
Need_To_Check : Boolean := False;
|
4696 |
|
|
|
4697 |
|
|
Choices_Lo : Node_Id := Empty;
|
4698 |
|
|
Choices_Hi : Node_Id := Empty;
|
4699 |
|
|
-- The lowest and highest discrete choices for a named sub-aggregate
|
4700 |
|
|
|
4701 |
|
|
Nb_Choices : Int := -1;
|
4702 |
|
|
-- The number of discrete non-others choices in this sub-aggregate
|
4703 |
|
|
|
4704 |
|
|
Nb_Elements : Uint := Uint_0;
|
4705 |
|
|
-- The number of elements in a positional aggregate
|
4706 |
|
|
|
4707 |
|
|
Cond : Node_Id := Empty;
|
4708 |
|
|
|
4709 |
|
|
Assoc : Node_Id;
|
4710 |
|
|
Choice : Node_Id;
|
4711 |
|
|
Expr : Node_Id;
|
4712 |
|
|
|
4713 |
|
|
begin
|
4714 |
|
|
-- Check if we have an others choice. If we do make sure that this
|
4715 |
|
|
-- sub-aggregate contains at least one element in addition to the
|
4716 |
|
|
-- others choice.
|
4717 |
|
|
|
4718 |
|
|
if Range_Checks_Suppressed (Ind_Typ) then
|
4719 |
|
|
Need_To_Check := False;
|
4720 |
|
|
|
4721 |
|
|
elsif Present (Expressions (Sub_Aggr))
|
4722 |
|
|
and then Present (Component_Associations (Sub_Aggr))
|
4723 |
|
|
then
|
4724 |
|
|
Need_To_Check := True;
|
4725 |
|
|
|
4726 |
|
|
elsif Present (Component_Associations (Sub_Aggr)) then
|
4727 |
|
|
Assoc := Last (Component_Associations (Sub_Aggr));
|
4728 |
|
|
|
4729 |
|
|
if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
|
4730 |
|
|
Need_To_Check := False;
|
4731 |
|
|
|
4732 |
|
|
else
|
4733 |
|
|
-- Count the number of discrete choices. Start with -1 because
|
4734 |
|
|
-- the others choice does not count.
|
4735 |
|
|
|
4736 |
|
|
Nb_Choices := -1;
|
4737 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
4738 |
|
|
while Present (Assoc) loop
|
4739 |
|
|
Choice := First (Choices (Assoc));
|
4740 |
|
|
while Present (Choice) loop
|
4741 |
|
|
Nb_Choices := Nb_Choices + 1;
|
4742 |
|
|
Next (Choice);
|
4743 |
|
|
end loop;
|
4744 |
|
|
|
4745 |
|
|
Next (Assoc);
|
4746 |
|
|
end loop;
|
4747 |
|
|
|
4748 |
|
|
-- If there is only an others choice nothing to do
|
4749 |
|
|
|
4750 |
|
|
Need_To_Check := (Nb_Choices > 0);
|
4751 |
|
|
end if;
|
4752 |
|
|
|
4753 |
|
|
else
|
4754 |
|
|
Need_To_Check := False;
|
4755 |
|
|
end if;
|
4756 |
|
|
|
4757 |
|
|
-- If we are dealing with a positional sub-aggregate with an others
|
4758 |
|
|
-- choice then compute the number or positional elements.
|
4759 |
|
|
|
4760 |
|
|
if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
|
4761 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
4762 |
|
|
Nb_Elements := Uint_0;
|
4763 |
|
|
while Present (Expr) loop
|
4764 |
|
|
Nb_Elements := Nb_Elements + 1;
|
4765 |
|
|
Next (Expr);
|
4766 |
|
|
end loop;
|
4767 |
|
|
|
4768 |
|
|
-- If the aggregate contains discrete choices and an others choice
|
4769 |
|
|
-- compute the smallest and largest discrete choice values.
|
4770 |
|
|
|
4771 |
|
|
elsif Need_To_Check then
|
4772 |
|
|
Compute_Choices_Lo_And_Choices_Hi : declare
|
4773 |
|
|
|
4774 |
|
|
Table : Case_Table_Type (1 .. Nb_Choices);
|
4775 |
|
|
-- Used to sort all the different choice values
|
4776 |
|
|
|
4777 |
|
|
J : Pos := 1;
|
4778 |
|
|
Low : Node_Id;
|
4779 |
|
|
High : Node_Id;
|
4780 |
|
|
|
4781 |
|
|
begin
|
4782 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
4783 |
|
|
while Present (Assoc) loop
|
4784 |
|
|
Choice := First (Choices (Assoc));
|
4785 |
|
|
while Present (Choice) loop
|
4786 |
|
|
if Nkind (Choice) = N_Others_Choice then
|
4787 |
|
|
exit;
|
4788 |
|
|
end if;
|
4789 |
|
|
|
4790 |
|
|
Get_Index_Bounds (Choice, Low, High);
|
4791 |
|
|
Table (J).Choice_Lo := Low;
|
4792 |
|
|
Table (J).Choice_Hi := High;
|
4793 |
|
|
|
4794 |
|
|
J := J + 1;
|
4795 |
|
|
Next (Choice);
|
4796 |
|
|
end loop;
|
4797 |
|
|
|
4798 |
|
|
Next (Assoc);
|
4799 |
|
|
end loop;
|
4800 |
|
|
|
4801 |
|
|
-- Sort the discrete choices
|
4802 |
|
|
|
4803 |
|
|
Sort_Case_Table (Table);
|
4804 |
|
|
|
4805 |
|
|
Choices_Lo := Table (1).Choice_Lo;
|
4806 |
|
|
Choices_Hi := Table (Nb_Choices).Choice_Hi;
|
4807 |
|
|
end Compute_Choices_Lo_And_Choices_Hi;
|
4808 |
|
|
end if;
|
4809 |
|
|
|
4810 |
|
|
-- If no others choice in this sub-aggregate, or the aggregate
|
4811 |
|
|
-- comprises only an others choice, nothing to do.
|
4812 |
|
|
|
4813 |
|
|
if not Need_To_Check then
|
4814 |
|
|
Cond := Empty;
|
4815 |
|
|
|
4816 |
|
|
-- If we are dealing with an aggregate containing an others choice
|
4817 |
|
|
-- and positional components, we generate the following test:
|
4818 |
|
|
|
4819 |
|
|
-- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
|
4820 |
|
|
-- Ind_Typ'Pos (Aggr_Hi)
|
4821 |
|
|
-- then
|
4822 |
|
|
-- raise Constraint_Error;
|
4823 |
|
|
-- end if;
|
4824 |
|
|
|
4825 |
|
|
elsif Nb_Elements > Uint_0 then
|
4826 |
|
|
Cond :=
|
4827 |
|
|
Make_Op_Gt (Loc,
|
4828 |
|
|
Left_Opnd =>
|
4829 |
|
|
Make_Op_Add (Loc,
|
4830 |
|
|
Left_Opnd =>
|
4831 |
|
|
Make_Attribute_Reference (Loc,
|
4832 |
|
|
Prefix => New_Reference_To (Ind_Typ, Loc),
|
4833 |
|
|
Attribute_Name => Name_Pos,
|
4834 |
|
|
Expressions =>
|
4835 |
|
|
New_List
|
4836 |
|
|
(Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
|
4837 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
|
4838 |
|
|
|
4839 |
|
|
Right_Opnd =>
|
4840 |
|
|
Make_Attribute_Reference (Loc,
|
4841 |
|
|
Prefix => New_Reference_To (Ind_Typ, Loc),
|
4842 |
|
|
Attribute_Name => Name_Pos,
|
4843 |
|
|
Expressions => New_List (
|
4844 |
|
|
Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
|
4845 |
|
|
|
4846 |
|
|
-- If we are dealing with an aggregate containing an others choice
|
4847 |
|
|
-- and discrete choices we generate the following test:
|
4848 |
|
|
|
4849 |
|
|
-- [constraint_error when
|
4850 |
|
|
-- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
|
4851 |
|
|
|
4852 |
|
|
else
|
4853 |
|
|
Cond :=
|
4854 |
|
|
Make_Or_Else (Loc,
|
4855 |
|
|
Left_Opnd =>
|
4856 |
|
|
Make_Op_Lt (Loc,
|
4857 |
|
|
Left_Opnd =>
|
4858 |
|
|
Duplicate_Subexpr_Move_Checks (Choices_Lo),
|
4859 |
|
|
Right_Opnd =>
|
4860 |
|
|
Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
|
4861 |
|
|
|
4862 |
|
|
Right_Opnd =>
|
4863 |
|
|
Make_Op_Gt (Loc,
|
4864 |
|
|
Left_Opnd =>
|
4865 |
|
|
Duplicate_Subexpr (Choices_Hi),
|
4866 |
|
|
Right_Opnd =>
|
4867 |
|
|
Duplicate_Subexpr (Aggr_Hi)));
|
4868 |
|
|
end if;
|
4869 |
|
|
|
4870 |
|
|
if Present (Cond) then
|
4871 |
|
|
Insert_Action (N,
|
4872 |
|
|
Make_Raise_Constraint_Error (Loc,
|
4873 |
|
|
Condition => Cond,
|
4874 |
|
|
Reason => CE_Length_Check_Failed));
|
4875 |
|
|
-- Questionable reason code, shouldn't that be a
|
4876 |
|
|
-- CE_Range_Check_Failed ???
|
4877 |
|
|
end if;
|
4878 |
|
|
|
4879 |
|
|
-- Now look inside the sub-aggregate to see if there is more work
|
4880 |
|
|
|
4881 |
|
|
if Dim < Aggr_Dimension then
|
4882 |
|
|
|
4883 |
|
|
-- Process positional components
|
4884 |
|
|
|
4885 |
|
|
if Present (Expressions (Sub_Aggr)) then
|
4886 |
|
|
Expr := First (Expressions (Sub_Aggr));
|
4887 |
|
|
while Present (Expr) loop
|
4888 |
|
|
Others_Check (Expr, Dim + 1);
|
4889 |
|
|
Next (Expr);
|
4890 |
|
|
end loop;
|
4891 |
|
|
end if;
|
4892 |
|
|
|
4893 |
|
|
-- Process component associations
|
4894 |
|
|
|
4895 |
|
|
if Present (Component_Associations (Sub_Aggr)) then
|
4896 |
|
|
Assoc := First (Component_Associations (Sub_Aggr));
|
4897 |
|
|
while Present (Assoc) loop
|
4898 |
|
|
Expr := Expression (Assoc);
|
4899 |
|
|
Others_Check (Expr, Dim + 1);
|
4900 |
|
|
Next (Assoc);
|
4901 |
|
|
end loop;
|
4902 |
|
|
end if;
|
4903 |
|
|
end if;
|
4904 |
|
|
end Others_Check;
|
4905 |
|
|
|
4906 |
|
|
-- Remaining Expand_Array_Aggregate variables
|
4907 |
|
|
|
4908 |
|
|
Tmp : Entity_Id;
|
4909 |
|
|
-- Holds the temporary aggregate value
|
4910 |
|
|
|
4911 |
|
|
Tmp_Decl : Node_Id;
|
4912 |
|
|
-- Holds the declaration of Tmp
|
4913 |
|
|
|
4914 |
|
|
Aggr_Code : List_Id;
|
4915 |
|
|
Parent_Node : Node_Id;
|
4916 |
|
|
Parent_Kind : Node_Kind;
|
4917 |
|
|
|
4918 |
|
|
-- Start of processing for Expand_Array_Aggregate
|
4919 |
|
|
|
4920 |
|
|
begin
|
4921 |
|
|
-- Do not touch the special aggregates of attributes used for Asm calls
|
4922 |
|
|
|
4923 |
|
|
if Is_RTE (Ctyp, RE_Asm_Input_Operand)
|
4924 |
|
|
or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
|
4925 |
|
|
then
|
4926 |
|
|
return;
|
4927 |
|
|
end if;
|
4928 |
|
|
|
4929 |
|
|
-- If the semantic analyzer has determined that aggregate N will raise
|
4930 |
|
|
-- Constraint_Error at run-time, then the aggregate node has been
|
4931 |
|
|
-- replaced with an N_Raise_Constraint_Error node and we should
|
4932 |
|
|
-- never get here.
|
4933 |
|
|
|
4934 |
|
|
pragma Assert (not Raises_Constraint_Error (N));
|
4935 |
|
|
|
4936 |
|
|
-- STEP 1a
|
4937 |
|
|
|
4938 |
|
|
-- Check that the index range defined by aggregate bounds is
|
4939 |
|
|
-- compatible with corresponding index subtype.
|
4940 |
|
|
|
4941 |
|
|
Index_Compatibility_Check : declare
|
4942 |
|
|
Aggr_Index_Range : Node_Id := First_Index (Typ);
|
4943 |
|
|
-- The current aggregate index range
|
4944 |
|
|
|
4945 |
|
|
Index_Constraint : Node_Id := First_Index (Etype (Typ));
|
4946 |
|
|
-- The corresponding index constraint against which we have to
|
4947 |
|
|
-- check the above aggregate index range.
|
4948 |
|
|
|
4949 |
|
|
begin
|
4950 |
|
|
Compute_Others_Present (N, 1);
|
4951 |
|
|
|
4952 |
|
|
for J in 1 .. Aggr_Dimension loop
|
4953 |
|
|
-- There is no need to emit a check if an others choice is
|
4954 |
|
|
-- present for this array aggregate dimension since in this
|
4955 |
|
|
-- case one of N's sub-aggregates has taken its bounds from the
|
4956 |
|
|
-- context and these bounds must have been checked already. In
|
4957 |
|
|
-- addition all sub-aggregates corresponding to the same
|
4958 |
|
|
-- dimension must all have the same bounds (checked in (c) below).
|
4959 |
|
|
|
4960 |
|
|
if not Range_Checks_Suppressed (Etype (Index_Constraint))
|
4961 |
|
|
and then not Others_Present (J)
|
4962 |
|
|
then
|
4963 |
|
|
-- We don't use Checks.Apply_Range_Check here because it emits
|
4964 |
|
|
-- a spurious check. Namely it checks that the range defined by
|
4965 |
|
|
-- the aggregate bounds is non empty. But we know this already
|
4966 |
|
|
-- if we get here.
|
4967 |
|
|
|
4968 |
|
|
Check_Bounds (Aggr_Index_Range, Index_Constraint);
|
4969 |
|
|
end if;
|
4970 |
|
|
|
4971 |
|
|
-- Save the low and high bounds of the aggregate index as well as
|
4972 |
|
|
-- the index type for later use in checks (b) and (c) below.
|
4973 |
|
|
|
4974 |
|
|
Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
|
4975 |
|
|
Aggr_High (J) := High_Bound (Aggr_Index_Range);
|
4976 |
|
|
|
4977 |
|
|
Aggr_Index_Typ (J) := Etype (Index_Constraint);
|
4978 |
|
|
|
4979 |
|
|
Next_Index (Aggr_Index_Range);
|
4980 |
|
|
Next_Index (Index_Constraint);
|
4981 |
|
|
end loop;
|
4982 |
|
|
end Index_Compatibility_Check;
|
4983 |
|
|
|
4984 |
|
|
-- STEP 1b
|
4985 |
|
|
|
4986 |
|
|
-- If an others choice is present check that no aggregate index is
|
4987 |
|
|
-- outside the bounds of the index constraint.
|
4988 |
|
|
|
4989 |
|
|
Others_Check (N, 1);
|
4990 |
|
|
|
4991 |
|
|
-- STEP 1c
|
4992 |
|
|
|
4993 |
|
|
-- For multidimensional arrays make sure that all subaggregates
|
4994 |
|
|
-- corresponding to the same dimension have the same bounds.
|
4995 |
|
|
|
4996 |
|
|
if Aggr_Dimension > 1 then
|
4997 |
|
|
Check_Same_Aggr_Bounds (N, 1);
|
4998 |
|
|
end if;
|
4999 |
|
|
|
5000 |
|
|
-- STEP 2
|
5001 |
|
|
|
5002 |
|
|
-- Here we test for is packed array aggregate that we can handle at
|
5003 |
|
|
-- compile time. If so, return with transformation done. Note that we do
|
5004 |
|
|
-- this even if the aggregate is nested, because once we have done this
|
5005 |
|
|
-- processing, there is no more nested aggregate!
|
5006 |
|
|
|
5007 |
|
|
if Packed_Array_Aggregate_Handled (N) then
|
5008 |
|
|
return;
|
5009 |
|
|
end if;
|
5010 |
|
|
|
5011 |
|
|
-- At this point we try to convert to positional form
|
5012 |
|
|
|
5013 |
|
|
if Ekind (Current_Scope) = E_Package
|
5014 |
|
|
and then Static_Elaboration_Desired (Current_Scope)
|
5015 |
|
|
then
|
5016 |
|
|
Convert_To_Positional (N, Max_Others_Replicate => 100);
|
5017 |
|
|
|
5018 |
|
|
else
|
5019 |
|
|
Convert_To_Positional (N);
|
5020 |
|
|
end if;
|
5021 |
|
|
|
5022 |
|
|
-- if the result is no longer an aggregate (e.g. it may be a string
|
5023 |
|
|
-- literal, or a temporary which has the needed value), then we are
|
5024 |
|
|
-- done, since there is no longer a nested aggregate.
|
5025 |
|
|
|
5026 |
|
|
if Nkind (N) /= N_Aggregate then
|
5027 |
|
|
return;
|
5028 |
|
|
|
5029 |
|
|
-- We are also done if the result is an analyzed aggregate
|
5030 |
|
|
-- This case could use more comments ???
|
5031 |
|
|
|
5032 |
|
|
elsif Analyzed (N)
|
5033 |
|
|
and then N /= Original_Node (N)
|
5034 |
|
|
then
|
5035 |
|
|
return;
|
5036 |
|
|
end if;
|
5037 |
|
|
|
5038 |
|
|
-- If all aggregate components are compile-time known and the aggregate
|
5039 |
|
|
-- has been flattened, nothing left to do. The same occurs if the
|
5040 |
|
|
-- aggregate is used to initialize the components of an statically
|
5041 |
|
|
-- allocated dispatch table.
|
5042 |
|
|
|
5043 |
|
|
if Compile_Time_Known_Aggregate (N)
|
5044 |
|
|
or else Is_Static_Dispatch_Table_Aggregate (N)
|
5045 |
|
|
then
|
5046 |
|
|
Set_Expansion_Delayed (N, False);
|
5047 |
|
|
return;
|
5048 |
|
|
end if;
|
5049 |
|
|
|
5050 |
|
|
-- Now see if back end processing is possible
|
5051 |
|
|
|
5052 |
|
|
if Backend_Processing_Possible (N) then
|
5053 |
|
|
|
5054 |
|
|
-- If the aggregate is static but the constraints are not, build
|
5055 |
|
|
-- a static subtype for the aggregate, so that Gigi can place it
|
5056 |
|
|
-- in static memory. Perform an unchecked_conversion to the non-
|
5057 |
|
|
-- static type imposed by the context.
|
5058 |
|
|
|
5059 |
|
|
declare
|
5060 |
|
|
Itype : constant Entity_Id := Etype (N);
|
5061 |
|
|
Index : Node_Id;
|
5062 |
|
|
Needs_Type : Boolean := False;
|
5063 |
|
|
|
5064 |
|
|
begin
|
5065 |
|
|
Index := First_Index (Itype);
|
5066 |
|
|
while Present (Index) loop
|
5067 |
|
|
if not Is_Static_Subtype (Etype (Index)) then
|
5068 |
|
|
Needs_Type := True;
|
5069 |
|
|
exit;
|
5070 |
|
|
else
|
5071 |
|
|
Next_Index (Index);
|
5072 |
|
|
end if;
|
5073 |
|
|
end loop;
|
5074 |
|
|
|
5075 |
|
|
if Needs_Type then
|
5076 |
|
|
Build_Constrained_Type (Positional => True);
|
5077 |
|
|
Rewrite (N, Unchecked_Convert_To (Itype, N));
|
5078 |
|
|
Analyze (N);
|
5079 |
|
|
end if;
|
5080 |
|
|
end;
|
5081 |
|
|
|
5082 |
|
|
return;
|
5083 |
|
|
end if;
|
5084 |
|
|
|
5085 |
|
|
-- STEP 3
|
5086 |
|
|
|
5087 |
|
|
-- Delay expansion for nested aggregates: it will be taken care of
|
5088 |
|
|
-- when the parent aggregate is expanded.
|
5089 |
|
|
|
5090 |
|
|
Parent_Node := Parent (N);
|
5091 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
5092 |
|
|
|
5093 |
|
|
if Parent_Kind = N_Qualified_Expression then
|
5094 |
|
|
Parent_Node := Parent (Parent_Node);
|
5095 |
|
|
Parent_Kind := Nkind (Parent_Node);
|
5096 |
|
|
end if;
|
5097 |
|
|
|
5098 |
|
|
if Parent_Kind = N_Aggregate
|
5099 |
|
|
or else Parent_Kind = N_Extension_Aggregate
|
5100 |
|
|
or else Parent_Kind = N_Component_Association
|
5101 |
|
|
or else (Parent_Kind = N_Object_Declaration
|
5102 |
|
|
and then Needs_Finalization (Typ))
|
5103 |
|
|
or else (Parent_Kind = N_Assignment_Statement
|
5104 |
|
|
and then Inside_Init_Proc)
|
5105 |
|
|
then
|
5106 |
|
|
if Static_Array_Aggregate (N)
|
5107 |
|
|
or else Compile_Time_Known_Aggregate (N)
|
5108 |
|
|
then
|
5109 |
|
|
Set_Expansion_Delayed (N, False);
|
5110 |
|
|
return;
|
5111 |
|
|
else
|
5112 |
|
|
Set_Expansion_Delayed (N);
|
5113 |
|
|
return;
|
5114 |
|
|
end if;
|
5115 |
|
|
end if;
|
5116 |
|
|
|
5117 |
|
|
-- STEP 4
|
5118 |
|
|
|
5119 |
|
|
-- Look if in place aggregate expansion is possible
|
5120 |
|
|
|
5121 |
|
|
-- For object declarations we build the aggregate in place, unless
|
5122 |
|
|
-- the array is bit-packed or the component is controlled.
|
5123 |
|
|
|
5124 |
|
|
-- For assignments we do the assignment in place if all the component
|
5125 |
|
|
-- associations have compile-time known values. For other cases we
|
5126 |
|
|
-- create a temporary. The analysis for safety of on-line assignment
|
5127 |
|
|
-- is delicate, i.e. we don't know how to do it fully yet ???
|
5128 |
|
|
|
5129 |
|
|
-- For allocators we assign to the designated object in place if the
|
5130 |
|
|
-- aggregate meets the same conditions as other in-place assignments.
|
5131 |
|
|
-- In this case the aggregate may not come from source but was created
|
5132 |
|
|
-- for default initialization, e.g. with Initialize_Scalars.
|
5133 |
|
|
|
5134 |
|
|
if Requires_Transient_Scope (Typ) then
|
5135 |
|
|
Establish_Transient_Scope
|
5136 |
|
|
(N, Sec_Stack => Has_Controlled_Component (Typ));
|
5137 |
|
|
end if;
|
5138 |
|
|
|
5139 |
|
|
if Has_Default_Init_Comps (N) then
|
5140 |
|
|
Maybe_In_Place_OK := False;
|
5141 |
|
|
|
5142 |
|
|
elsif Is_Bit_Packed_Array (Typ)
|
5143 |
|
|
or else Has_Controlled_Component (Typ)
|
5144 |
|
|
then
|
5145 |
|
|
Maybe_In_Place_OK := False;
|
5146 |
|
|
|
5147 |
|
|
else
|
5148 |
|
|
Maybe_In_Place_OK :=
|
5149 |
|
|
(Nkind (Parent (N)) = N_Assignment_Statement
|
5150 |
|
|
and then Comes_From_Source (N)
|
5151 |
|
|
and then In_Place_Assign_OK)
|
5152 |
|
|
|
5153 |
|
|
or else
|
5154 |
|
|
(Nkind (Parent (Parent (N))) = N_Allocator
|
5155 |
|
|
and then In_Place_Assign_OK);
|
5156 |
|
|
end if;
|
5157 |
|
|
|
5158 |
|
|
-- If this is an array of tasks, it will be expanded into build-in-place
|
5159 |
|
|
-- assignments. Build an activation chain for the tasks now.
|
5160 |
|
|
|
5161 |
|
|
if Has_Task (Etype (N)) then
|
5162 |
|
|
Build_Activation_Chain_Entity (N);
|
5163 |
|
|
end if;
|
5164 |
|
|
|
5165 |
|
|
if not Has_Default_Init_Comps (N)
|
5166 |
|
|
and then Comes_From_Source (Parent (N))
|
5167 |
|
|
and then Nkind (Parent (N)) = N_Object_Declaration
|
5168 |
|
|
and then not
|
5169 |
|
|
Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
|
5170 |
|
|
and then N = Expression (Parent (N))
|
5171 |
|
|
and then not Is_Bit_Packed_Array (Typ)
|
5172 |
|
|
and then not Has_Controlled_Component (Typ)
|
5173 |
|
|
and then not Has_Address_Clause (Parent (N))
|
5174 |
|
|
then
|
5175 |
|
|
Tmp := Defining_Identifier (Parent (N));
|
5176 |
|
|
Set_No_Initialization (Parent (N));
|
5177 |
|
|
Set_Expression (Parent (N), Empty);
|
5178 |
|
|
|
5179 |
|
|
-- Set the type of the entity, for use in the analysis of the
|
5180 |
|
|
-- subsequent indexed assignments. If the nominal type is not
|
5181 |
|
|
-- constrained, build a subtype from the known bounds of the
|
5182 |
|
|
-- aggregate. If the declaration has a subtype mark, use it,
|
5183 |
|
|
-- otherwise use the itype of the aggregate.
|
5184 |
|
|
|
5185 |
|
|
if not Is_Constrained (Typ) then
|
5186 |
|
|
Build_Constrained_Type (Positional => False);
|
5187 |
|
|
elsif Is_Entity_Name (Object_Definition (Parent (N)))
|
5188 |
|
|
and then Is_Constrained (Entity (Object_Definition (Parent (N))))
|
5189 |
|
|
then
|
5190 |
|
|
Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
|
5191 |
|
|
else
|
5192 |
|
|
Set_Size_Known_At_Compile_Time (Typ, False);
|
5193 |
|
|
Set_Etype (Tmp, Typ);
|
5194 |
|
|
end if;
|
5195 |
|
|
|
5196 |
|
|
elsif Maybe_In_Place_OK
|
5197 |
|
|
and then Nkind (Parent (N)) = N_Qualified_Expression
|
5198 |
|
|
and then Nkind (Parent (Parent (N))) = N_Allocator
|
5199 |
|
|
then
|
5200 |
|
|
Set_Expansion_Delayed (N);
|
5201 |
|
|
return;
|
5202 |
|
|
|
5203 |
|
|
-- In the remaining cases the aggregate is the RHS of an assignment
|
5204 |
|
|
|
5205 |
|
|
elsif Maybe_In_Place_OK
|
5206 |
|
|
and then Is_Entity_Name (Name (Parent (N)))
|
5207 |
|
|
then
|
5208 |
|
|
Tmp := Entity (Name (Parent (N)));
|
5209 |
|
|
|
5210 |
|
|
if Etype (Tmp) /= Etype (N) then
|
5211 |
|
|
Apply_Length_Check (N, Etype (Tmp));
|
5212 |
|
|
|
5213 |
|
|
if Nkind (N) = N_Raise_Constraint_Error then
|
5214 |
|
|
|
5215 |
|
|
-- Static error, nothing further to expand
|
5216 |
|
|
|
5217 |
|
|
return;
|
5218 |
|
|
end if;
|
5219 |
|
|
end if;
|
5220 |
|
|
|
5221 |
|
|
elsif Maybe_In_Place_OK
|
5222 |
|
|
and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
|
5223 |
|
|
and then Is_Entity_Name (Prefix (Name (Parent (N))))
|
5224 |
|
|
then
|
5225 |
|
|
Tmp := Name (Parent (N));
|
5226 |
|
|
|
5227 |
|
|
if Etype (Tmp) /= Etype (N) then
|
5228 |
|
|
Apply_Length_Check (N, Etype (Tmp));
|
5229 |
|
|
end if;
|
5230 |
|
|
|
5231 |
|
|
elsif Maybe_In_Place_OK
|
5232 |
|
|
and then Nkind (Name (Parent (N))) = N_Slice
|
5233 |
|
|
and then Safe_Slice_Assignment (N)
|
5234 |
|
|
then
|
5235 |
|
|
-- Safe_Slice_Assignment rewrites assignment as a loop
|
5236 |
|
|
|
5237 |
|
|
return;
|
5238 |
|
|
|
5239 |
|
|
-- Step 5
|
5240 |
|
|
|
5241 |
|
|
-- In place aggregate expansion is not possible
|
5242 |
|
|
|
5243 |
|
|
else
|
5244 |
|
|
Maybe_In_Place_OK := False;
|
5245 |
|
|
Tmp := Make_Temporary (Loc, 'A', N);
|
5246 |
|
|
Tmp_Decl :=
|
5247 |
|
|
Make_Object_Declaration
|
5248 |
|
|
(Loc,
|
5249 |
|
|
Defining_Identifier => Tmp,
|
5250 |
|
|
Object_Definition => New_Occurrence_Of (Typ, Loc));
|
5251 |
|
|
Set_No_Initialization (Tmp_Decl, True);
|
5252 |
|
|
|
5253 |
|
|
-- If we are within a loop, the temporary will be pushed on the
|
5254 |
|
|
-- stack at each iteration. If the aggregate is the expression for an
|
5255 |
|
|
-- allocator, it will be immediately copied to the heap and can
|
5256 |
|
|
-- be reclaimed at once. We create a transient scope around the
|
5257 |
|
|
-- aggregate for this purpose.
|
5258 |
|
|
|
5259 |
|
|
if Ekind (Current_Scope) = E_Loop
|
5260 |
|
|
and then Nkind (Parent (Parent (N))) = N_Allocator
|
5261 |
|
|
then
|
5262 |
|
|
Establish_Transient_Scope (N, False);
|
5263 |
|
|
end if;
|
5264 |
|
|
|
5265 |
|
|
Insert_Action (N, Tmp_Decl);
|
5266 |
|
|
end if;
|
5267 |
|
|
|
5268 |
|
|
-- Construct and insert the aggregate code. We can safely suppress index
|
5269 |
|
|
-- checks because this code is guaranteed not to raise CE on index
|
5270 |
|
|
-- checks. However we should *not* suppress all checks.
|
5271 |
|
|
|
5272 |
|
|
declare
|
5273 |
|
|
Target : Node_Id;
|
5274 |
|
|
|
5275 |
|
|
begin
|
5276 |
|
|
if Nkind (Tmp) = N_Defining_Identifier then
|
5277 |
|
|
Target := New_Reference_To (Tmp, Loc);
|
5278 |
|
|
|
5279 |
|
|
else
|
5280 |
|
|
|
5281 |
|
|
if Has_Default_Init_Comps (N) then
|
5282 |
|
|
|
5283 |
|
|
-- Ada 2005 (AI-287): This case has not been analyzed???
|
5284 |
|
|
|
5285 |
|
|
raise Program_Error;
|
5286 |
|
|
end if;
|
5287 |
|
|
|
5288 |
|
|
-- Name in assignment is explicit dereference
|
5289 |
|
|
|
5290 |
|
|
Target := New_Copy (Tmp);
|
5291 |
|
|
end if;
|
5292 |
|
|
|
5293 |
|
|
Aggr_Code :=
|
5294 |
|
|
Build_Array_Aggr_Code (N,
|
5295 |
|
|
Ctype => Ctyp,
|
5296 |
|
|
Index => First_Index (Typ),
|
5297 |
|
|
Into => Target,
|
5298 |
|
|
Scalar_Comp => Is_Scalar_Type (Ctyp));
|
5299 |
|
|
end;
|
5300 |
|
|
|
5301 |
|
|
if Comes_From_Source (Tmp) then
|
5302 |
|
|
Insert_Actions_After (Parent (N), Aggr_Code);
|
5303 |
|
|
|
5304 |
|
|
else
|
5305 |
|
|
Insert_Actions (N, Aggr_Code);
|
5306 |
|
|
end if;
|
5307 |
|
|
|
5308 |
|
|
-- If the aggregate has been assigned in place, remove the original
|
5309 |
|
|
-- assignment.
|
5310 |
|
|
|
5311 |
|
|
if Nkind (Parent (N)) = N_Assignment_Statement
|
5312 |
|
|
and then Maybe_In_Place_OK
|
5313 |
|
|
then
|
5314 |
|
|
Rewrite (Parent (N), Make_Null_Statement (Loc));
|
5315 |
|
|
|
5316 |
|
|
elsif Nkind (Parent (N)) /= N_Object_Declaration
|
5317 |
|
|
or else Tmp /= Defining_Identifier (Parent (N))
|
5318 |
|
|
then
|
5319 |
|
|
Rewrite (N, New_Occurrence_Of (Tmp, Loc));
|
5320 |
|
|
Analyze_And_Resolve (N, Typ);
|
5321 |
|
|
end if;
|
5322 |
|
|
end Expand_Array_Aggregate;
|
5323 |
|
|
|
5324 |
|
|
------------------------
|
5325 |
|
|
-- Expand_N_Aggregate --
|
5326 |
|
|
------------------------
|
5327 |
|
|
|
5328 |
|
|
procedure Expand_N_Aggregate (N : Node_Id) is
|
5329 |
|
|
begin
|
5330 |
|
|
if Is_Record_Type (Etype (N)) then
|
5331 |
|
|
Expand_Record_Aggregate (N);
|
5332 |
|
|
else
|
5333 |
|
|
Expand_Array_Aggregate (N);
|
5334 |
|
|
end if;
|
5335 |
|
|
exception
|
5336 |
|
|
when RE_Not_Available =>
|
5337 |
|
|
return;
|
5338 |
|
|
end Expand_N_Aggregate;
|
5339 |
|
|
|
5340 |
|
|
----------------------------------
|
5341 |
|
|
-- Expand_N_Extension_Aggregate --
|
5342 |
|
|
----------------------------------
|
5343 |
|
|
|
5344 |
|
|
-- If the ancestor part is an expression, add a component association for
|
5345 |
|
|
-- the parent field. If the type of the ancestor part is not the direct
|
5346 |
|
|
-- parent of the expected type, build recursively the needed ancestors.
|
5347 |
|
|
-- If the ancestor part is a subtype_mark, replace aggregate with a decla-
|
5348 |
|
|
-- ration for a temporary of the expected type, followed by individual
|
5349 |
|
|
-- assignments to the given components.
|
5350 |
|
|
|
5351 |
|
|
procedure Expand_N_Extension_Aggregate (N : Node_Id) is
|
5352 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5353 |
|
|
A : constant Node_Id := Ancestor_Part (N);
|
5354 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5355 |
|
|
|
5356 |
|
|
begin
|
5357 |
|
|
-- If the ancestor is a subtype mark, an init proc must be called
|
5358 |
|
|
-- on the resulting object which thus has to be materialized in
|
5359 |
|
|
-- the front-end
|
5360 |
|
|
|
5361 |
|
|
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
|
5362 |
|
|
Convert_To_Assignments (N, Typ);
|
5363 |
|
|
|
5364 |
|
|
-- The extension aggregate is transformed into a record aggregate
|
5365 |
|
|
-- of the following form (c1 and c2 are inherited components)
|
5366 |
|
|
|
5367 |
|
|
-- (Exp with c3 => a, c4 => b)
|
5368 |
|
|
-- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b)
|
5369 |
|
|
|
5370 |
|
|
else
|
5371 |
|
|
Set_Etype (N, Typ);
|
5372 |
|
|
|
5373 |
|
|
if Tagged_Type_Expansion then
|
5374 |
|
|
Expand_Record_Aggregate (N,
|
5375 |
|
|
Orig_Tag =>
|
5376 |
|
|
New_Occurrence_Of
|
5377 |
|
|
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
|
5378 |
|
|
Parent_Expr => A);
|
5379 |
|
|
else
|
5380 |
|
|
-- No tag is needed in the case of a VM
|
5381 |
|
|
Expand_Record_Aggregate (N,
|
5382 |
|
|
Parent_Expr => A);
|
5383 |
|
|
end if;
|
5384 |
|
|
end if;
|
5385 |
|
|
|
5386 |
|
|
exception
|
5387 |
|
|
when RE_Not_Available =>
|
5388 |
|
|
return;
|
5389 |
|
|
end Expand_N_Extension_Aggregate;
|
5390 |
|
|
|
5391 |
|
|
-----------------------------
|
5392 |
|
|
-- Expand_Record_Aggregate --
|
5393 |
|
|
-----------------------------
|
5394 |
|
|
|
5395 |
|
|
procedure Expand_Record_Aggregate
|
5396 |
|
|
(N : Node_Id;
|
5397 |
|
|
Orig_Tag : Node_Id := Empty;
|
5398 |
|
|
Parent_Expr : Node_Id := Empty)
|
5399 |
|
|
is
|
5400 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
5401 |
|
|
Comps : constant List_Id := Component_Associations (N);
|
5402 |
|
|
Typ : constant Entity_Id := Etype (N);
|
5403 |
|
|
Base_Typ : constant Entity_Id := Base_Type (Typ);
|
5404 |
|
|
|
5405 |
|
|
Static_Components : Boolean := True;
|
5406 |
|
|
-- Flag to indicate whether all components are compile-time known,
|
5407 |
|
|
-- and the aggregate can be constructed statically and handled by
|
5408 |
|
|
-- the back-end.
|
5409 |
|
|
|
5410 |
|
|
function Component_Not_OK_For_Backend return Boolean;
|
5411 |
|
|
-- Check for presence of component which makes it impossible for the
|
5412 |
|
|
-- backend to process the aggregate, thus requiring the use of a series
|
5413 |
|
|
-- of assignment statements. Cases checked for are a nested aggregate
|
5414 |
|
|
-- needing Late_Expansion, the presence of a tagged component which may
|
5415 |
|
|
-- need tag adjustment, and a bit unaligned component reference.
|
5416 |
|
|
--
|
5417 |
|
|
-- We also force expansion into assignments if a component is of a
|
5418 |
|
|
-- mutable type (including a private type with discriminants) because
|
5419 |
|
|
-- in that case the size of the component to be copied may be smaller
|
5420 |
|
|
-- than the side of the target, and there is no simple way for gigi
|
5421 |
|
|
-- to compute the size of the object to be copied.
|
5422 |
|
|
--
|
5423 |
|
|
-- NOTE: This is part of the ongoing work to define precisely the
|
5424 |
|
|
-- interface between front-end and back-end handling of aggregates.
|
5425 |
|
|
-- In general it is desirable to pass aggregates as they are to gigi,
|
5426 |
|
|
-- in order to minimize elaboration code. This is one case where the
|
5427 |
|
|
-- semantics of Ada complicate the analysis and lead to anomalies in
|
5428 |
|
|
-- the gcc back-end if the aggregate is not expanded into assignments.
|
5429 |
|
|
|
5430 |
|
|
----------------------------------
|
5431 |
|
|
-- Component_Not_OK_For_Backend --
|
5432 |
|
|
----------------------------------
|
5433 |
|
|
|
5434 |
|
|
function Component_Not_OK_For_Backend return Boolean is
|
5435 |
|
|
C : Node_Id;
|
5436 |
|
|
Expr_Q : Node_Id;
|
5437 |
|
|
|
5438 |
|
|
begin
|
5439 |
|
|
if No (Comps) then
|
5440 |
|
|
return False;
|
5441 |
|
|
end if;
|
5442 |
|
|
|
5443 |
|
|
C := First (Comps);
|
5444 |
|
|
while Present (C) loop
|
5445 |
|
|
if Nkind (Expression (C)) = N_Qualified_Expression then
|
5446 |
|
|
Expr_Q := Expression (Expression (C));
|
5447 |
|
|
else
|
5448 |
|
|
Expr_Q := Expression (C);
|
5449 |
|
|
end if;
|
5450 |
|
|
|
5451 |
|
|
-- Return true if the aggregate has any associations for tagged
|
5452 |
|
|
-- components that may require tag adjustment.
|
5453 |
|
|
|
5454 |
|
|
-- These are cases where the source expression may have a tag that
|
5455 |
|
|
-- could differ from the component tag (e.g., can occur for type
|
5456 |
|
|
-- conversions and formal parameters). (Tag adjustment not needed
|
5457 |
|
|
-- if VM_Target because object tags are implicit in the machine.)
|
5458 |
|
|
|
5459 |
|
|
if Is_Tagged_Type (Etype (Expr_Q))
|
5460 |
|
|
and then (Nkind (Expr_Q) = N_Type_Conversion
|
5461 |
|
|
or else (Is_Entity_Name (Expr_Q)
|
5462 |
|
|
and then
|
5463 |
|
|
Ekind (Entity (Expr_Q)) in Formal_Kind))
|
5464 |
|
|
and then Tagged_Type_Expansion
|
5465 |
|
|
then
|
5466 |
|
|
Static_Components := False;
|
5467 |
|
|
return True;
|
5468 |
|
|
|
5469 |
|
|
elsif Is_Delayed_Aggregate (Expr_Q) then
|
5470 |
|
|
Static_Components := False;
|
5471 |
|
|
return True;
|
5472 |
|
|
|
5473 |
|
|
elsif Possible_Bit_Aligned_Component (Expr_Q) then
|
5474 |
|
|
Static_Components := False;
|
5475 |
|
|
return True;
|
5476 |
|
|
end if;
|
5477 |
|
|
|
5478 |
|
|
if Is_Scalar_Type (Etype (Expr_Q)) then
|
5479 |
|
|
if not Compile_Time_Known_Value (Expr_Q) then
|
5480 |
|
|
Static_Components := False;
|
5481 |
|
|
end if;
|
5482 |
|
|
|
5483 |
|
|
elsif Nkind (Expr_Q) /= N_Aggregate
|
5484 |
|
|
or else not Compile_Time_Known_Aggregate (Expr_Q)
|
5485 |
|
|
then
|
5486 |
|
|
Static_Components := False;
|
5487 |
|
|
|
5488 |
|
|
if Is_Private_Type (Etype (Expr_Q))
|
5489 |
|
|
and then Has_Discriminants (Etype (Expr_Q))
|
5490 |
|
|
then
|
5491 |
|
|
return True;
|
5492 |
|
|
end if;
|
5493 |
|
|
end if;
|
5494 |
|
|
|
5495 |
|
|
Next (C);
|
5496 |
|
|
end loop;
|
5497 |
|
|
|
5498 |
|
|
return False;
|
5499 |
|
|
end Component_Not_OK_For_Backend;
|
5500 |
|
|
|
5501 |
|
|
-- Remaining Expand_Record_Aggregate variables
|
5502 |
|
|
|
5503 |
|
|
Tag_Value : Node_Id;
|
5504 |
|
|
Comp : Entity_Id;
|
5505 |
|
|
New_Comp : Node_Id;
|
5506 |
|
|
|
5507 |
|
|
-- Start of processing for Expand_Record_Aggregate
|
5508 |
|
|
|
5509 |
|
|
begin
|
5510 |
|
|
-- If the aggregate is to be assigned to an atomic variable, we
|
5511 |
|
|
-- have to prevent a piecemeal assignment even if the aggregate
|
5512 |
|
|
-- is to be expanded. We create a temporary for the aggregate, and
|
5513 |
|
|
-- assign the temporary instead, so that the back end can generate
|
5514 |
|
|
-- an atomic move for it.
|
5515 |
|
|
|
5516 |
|
|
if Is_Atomic (Typ)
|
5517 |
|
|
and then Comes_From_Source (Parent (N))
|
5518 |
|
|
and then Is_Atomic_Aggregate (N, Typ)
|
5519 |
|
|
then
|
5520 |
|
|
return;
|
5521 |
|
|
|
5522 |
|
|
-- No special management required for aggregates used to initialize
|
5523 |
|
|
-- statically allocated dispatch tables
|
5524 |
|
|
|
5525 |
|
|
elsif Is_Static_Dispatch_Table_Aggregate (N) then
|
5526 |
|
|
return;
|
5527 |
|
|
end if;
|
5528 |
|
|
|
5529 |
|
|
-- Ada 2005 (AI-318-2): We need to convert to assignments if components
|
5530 |
|
|
-- are build-in-place function calls. This test could be more specific,
|
5531 |
|
|
-- but doing it for all inherently limited aggregates seems harmless.
|
5532 |
|
|
-- The assignments will turn into build-in-place function calls (see
|
5533 |
|
|
-- Make_Build_In_Place_Call_In_Assignment).
|
5534 |
|
|
|
5535 |
|
|
if Ada_Version >= Ada_05 and then Is_Inherently_Limited_Type (Typ) then
|
5536 |
|
|
Convert_To_Assignments (N, Typ);
|
5537 |
|
|
|
5538 |
|
|
-- Gigi doesn't handle properly temporaries of variable size
|
5539 |
|
|
-- so we generate it in the front-end
|
5540 |
|
|
|
5541 |
|
|
elsif not Size_Known_At_Compile_Time (Typ) then
|
5542 |
|
|
Convert_To_Assignments (N, Typ);
|
5543 |
|
|
|
5544 |
|
|
-- Temporaries for controlled aggregates need to be attached to a
|
5545 |
|
|
-- final chain in order to be properly finalized, so it has to
|
5546 |
|
|
-- be created in the front-end
|
5547 |
|
|
|
5548 |
|
|
elsif Is_Controlled (Typ)
|
5549 |
|
|
or else Has_Controlled_Component (Base_Type (Typ))
|
5550 |
|
|
then
|
5551 |
|
|
Convert_To_Assignments (N, Typ);
|
5552 |
|
|
|
5553 |
|
|
-- Ada 2005 (AI-287): In case of default initialized components we
|
5554 |
|
|
-- convert the aggregate into assignments.
|
5555 |
|
|
|
5556 |
|
|
elsif Has_Default_Init_Comps (N) then
|
5557 |
|
|
Convert_To_Assignments (N, Typ);
|
5558 |
|
|
|
5559 |
|
|
-- Check components
|
5560 |
|
|
|
5561 |
|
|
elsif Component_Not_OK_For_Backend then
|
5562 |
|
|
Convert_To_Assignments (N, Typ);
|
5563 |
|
|
|
5564 |
|
|
-- If an ancestor is private, some components are not inherited and
|
5565 |
|
|
-- we cannot expand into a record aggregate
|
5566 |
|
|
|
5567 |
|
|
elsif Has_Private_Ancestor (Typ) then
|
5568 |
|
|
Convert_To_Assignments (N, Typ);
|
5569 |
|
|
|
5570 |
|
|
-- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
|
5571 |
|
|
-- is not able to handle the aggregate for Late_Request.
|
5572 |
|
|
|
5573 |
|
|
elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
|
5574 |
|
|
Convert_To_Assignments (N, Typ);
|
5575 |
|
|
|
5576 |
|
|
-- If the tagged types covers interface types we need to initialize all
|
5577 |
|
|
-- hidden components containing pointers to secondary dispatch tables.
|
5578 |
|
|
|
5579 |
|
|
elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
|
5580 |
|
|
Convert_To_Assignments (N, Typ);
|
5581 |
|
|
|
5582 |
|
|
-- If some components are mutable, the size of the aggregate component
|
5583 |
|
|
-- may be distinct from the default size of the type component, so
|
5584 |
|
|
-- we need to expand to insure that the back-end copies the proper
|
5585 |
|
|
-- size of the data.
|
5586 |
|
|
|
5587 |
|
|
elsif Has_Mutable_Components (Typ) then
|
5588 |
|
|
Convert_To_Assignments (N, Typ);
|
5589 |
|
|
|
5590 |
|
|
-- If the type involved has any non-bit aligned components, then we are
|
5591 |
|
|
-- not sure that the back end can handle this case correctly.
|
5592 |
|
|
|
5593 |
|
|
elsif Type_May_Have_Bit_Aligned_Components (Typ) then
|
5594 |
|
|
Convert_To_Assignments (N, Typ);
|
5595 |
|
|
|
5596 |
|
|
-- In all other cases, build a proper aggregate handlable by gigi
|
5597 |
|
|
|
5598 |
|
|
else
|
5599 |
|
|
if Nkind (N) = N_Aggregate then
|
5600 |
|
|
|
5601 |
|
|
-- If the aggregate is static and can be handled by the back-end,
|
5602 |
|
|
-- nothing left to do.
|
5603 |
|
|
|
5604 |
|
|
if Static_Components then
|
5605 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
5606 |
|
|
Set_Expansion_Delayed (N, False);
|
5607 |
|
|
end if;
|
5608 |
|
|
end if;
|
5609 |
|
|
|
5610 |
|
|
-- If no discriminants, nothing special to do
|
5611 |
|
|
|
5612 |
|
|
if not Has_Discriminants (Typ) then
|
5613 |
|
|
null;
|
5614 |
|
|
|
5615 |
|
|
-- Case of discriminants present
|
5616 |
|
|
|
5617 |
|
|
elsif Is_Derived_Type (Typ) then
|
5618 |
|
|
|
5619 |
|
|
-- For untagged types, non-stored discriminants are replaced
|
5620 |
|
|
-- with stored discriminants, which are the ones that gigi uses
|
5621 |
|
|
-- to describe the type and its components.
|
5622 |
|
|
|
5623 |
|
|
Generate_Aggregate_For_Derived_Type : declare
|
5624 |
|
|
Constraints : constant List_Id := New_List;
|
5625 |
|
|
First_Comp : Node_Id;
|
5626 |
|
|
Discriminant : Entity_Id;
|
5627 |
|
|
Decl : Node_Id;
|
5628 |
|
|
Num_Disc : Int := 0;
|
5629 |
|
|
Num_Gird : Int := 0;
|
5630 |
|
|
|
5631 |
|
|
procedure Prepend_Stored_Values (T : Entity_Id);
|
5632 |
|
|
-- Scan the list of stored discriminants of the type, and add
|
5633 |
|
|
-- their values to the aggregate being built.
|
5634 |
|
|
|
5635 |
|
|
---------------------------
|
5636 |
|
|
-- Prepend_Stored_Values --
|
5637 |
|
|
---------------------------
|
5638 |
|
|
|
5639 |
|
|
procedure Prepend_Stored_Values (T : Entity_Id) is
|
5640 |
|
|
begin
|
5641 |
|
|
Discriminant := First_Stored_Discriminant (T);
|
5642 |
|
|
while Present (Discriminant) loop
|
5643 |
|
|
New_Comp :=
|
5644 |
|
|
Make_Component_Association (Loc,
|
5645 |
|
|
Choices =>
|
5646 |
|
|
New_List (New_Occurrence_Of (Discriminant, Loc)),
|
5647 |
|
|
|
5648 |
|
|
Expression =>
|
5649 |
|
|
New_Copy_Tree (
|
5650 |
|
|
Get_Discriminant_Value (
|
5651 |
|
|
Discriminant,
|
5652 |
|
|
Typ,
|
5653 |
|
|
Discriminant_Constraint (Typ))));
|
5654 |
|
|
|
5655 |
|
|
if No (First_Comp) then
|
5656 |
|
|
Prepend_To (Component_Associations (N), New_Comp);
|
5657 |
|
|
else
|
5658 |
|
|
Insert_After (First_Comp, New_Comp);
|
5659 |
|
|
end if;
|
5660 |
|
|
|
5661 |
|
|
First_Comp := New_Comp;
|
5662 |
|
|
Next_Stored_Discriminant (Discriminant);
|
5663 |
|
|
end loop;
|
5664 |
|
|
end Prepend_Stored_Values;
|
5665 |
|
|
|
5666 |
|
|
-- Start of processing for Generate_Aggregate_For_Derived_Type
|
5667 |
|
|
|
5668 |
|
|
begin
|
5669 |
|
|
-- Remove the associations for the discriminant of derived type
|
5670 |
|
|
|
5671 |
|
|
First_Comp := First (Component_Associations (N));
|
5672 |
|
|
while Present (First_Comp) loop
|
5673 |
|
|
Comp := First_Comp;
|
5674 |
|
|
Next (First_Comp);
|
5675 |
|
|
|
5676 |
|
|
if Ekind (Entity
|
5677 |
|
|
(First (Choices (Comp)))) = E_Discriminant
|
5678 |
|
|
then
|
5679 |
|
|
Remove (Comp);
|
5680 |
|
|
Num_Disc := Num_Disc + 1;
|
5681 |
|
|
end if;
|
5682 |
|
|
end loop;
|
5683 |
|
|
|
5684 |
|
|
-- Insert stored discriminant associations in the correct
|
5685 |
|
|
-- order. If there are more stored discriminants than new
|
5686 |
|
|
-- discriminants, there is at least one new discriminant that
|
5687 |
|
|
-- constrains more than one of the stored discriminants. In
|
5688 |
|
|
-- this case we need to construct a proper subtype of the
|
5689 |
|
|
-- parent type, in order to supply values to all the
|
5690 |
|
|
-- components. Otherwise there is one-one correspondence
|
5691 |
|
|
-- between the constraints and the stored discriminants.
|
5692 |
|
|
|
5693 |
|
|
First_Comp := Empty;
|
5694 |
|
|
|
5695 |
|
|
Discriminant := First_Stored_Discriminant (Base_Type (Typ));
|
5696 |
|
|
while Present (Discriminant) loop
|
5697 |
|
|
Num_Gird := Num_Gird + 1;
|
5698 |
|
|
Next_Stored_Discriminant (Discriminant);
|
5699 |
|
|
end loop;
|
5700 |
|
|
|
5701 |
|
|
-- Case of more stored discriminants than new discriminants
|
5702 |
|
|
|
5703 |
|
|
if Num_Gird > Num_Disc then
|
5704 |
|
|
|
5705 |
|
|
-- Create a proper subtype of the parent type, which is the
|
5706 |
|
|
-- proper implementation type for the aggregate, and convert
|
5707 |
|
|
-- it to the intended target type.
|
5708 |
|
|
|
5709 |
|
|
Discriminant := First_Stored_Discriminant (Base_Type (Typ));
|
5710 |
|
|
while Present (Discriminant) loop
|
5711 |
|
|
New_Comp :=
|
5712 |
|
|
New_Copy_Tree (
|
5713 |
|
|
Get_Discriminant_Value (
|
5714 |
|
|
Discriminant,
|
5715 |
|
|
Typ,
|
5716 |
|
|
Discriminant_Constraint (Typ)));
|
5717 |
|
|
Append (New_Comp, Constraints);
|
5718 |
|
|
Next_Stored_Discriminant (Discriminant);
|
5719 |
|
|
end loop;
|
5720 |
|
|
|
5721 |
|
|
Decl :=
|
5722 |
|
|
Make_Subtype_Declaration (Loc,
|
5723 |
|
|
Defining_Identifier =>
|
5724 |
|
|
Make_Defining_Identifier (Loc,
|
5725 |
|
|
New_Internal_Name ('T')),
|
5726 |
|
|
Subtype_Indication =>
|
5727 |
|
|
Make_Subtype_Indication (Loc,
|
5728 |
|
|
Subtype_Mark =>
|
5729 |
|
|
New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
|
5730 |
|
|
Constraint =>
|
5731 |
|
|
Make_Index_Or_Discriminant_Constraint
|
5732 |
|
|
(Loc, Constraints)));
|
5733 |
|
|
|
5734 |
|
|
Insert_Action (N, Decl);
|
5735 |
|
|
Prepend_Stored_Values (Base_Type (Typ));
|
5736 |
|
|
|
5737 |
|
|
Set_Etype (N, Defining_Identifier (Decl));
|
5738 |
|
|
Set_Analyzed (N);
|
5739 |
|
|
|
5740 |
|
|
Rewrite (N, Unchecked_Convert_To (Typ, N));
|
5741 |
|
|
Analyze (N);
|
5742 |
|
|
|
5743 |
|
|
-- Case where we do not have fewer new discriminants than
|
5744 |
|
|
-- stored discriminants, so in this case we can simply use the
|
5745 |
|
|
-- stored discriminants of the subtype.
|
5746 |
|
|
|
5747 |
|
|
else
|
5748 |
|
|
Prepend_Stored_Values (Typ);
|
5749 |
|
|
end if;
|
5750 |
|
|
end Generate_Aggregate_For_Derived_Type;
|
5751 |
|
|
end if;
|
5752 |
|
|
|
5753 |
|
|
if Is_Tagged_Type (Typ) then
|
5754 |
|
|
|
5755 |
|
|
-- The tagged case, _parent and _tag component must be created
|
5756 |
|
|
|
5757 |
|
|
-- Reset null_present unconditionally. tagged records always have
|
5758 |
|
|
-- at least one field (the tag or the parent)
|
5759 |
|
|
|
5760 |
|
|
Set_Null_Record_Present (N, False);
|
5761 |
|
|
|
5762 |
|
|
-- When the current aggregate comes from the expansion of an
|
5763 |
|
|
-- extension aggregate, the parent expr is replaced by an
|
5764 |
|
|
-- aggregate formed by selected components of this expr
|
5765 |
|
|
|
5766 |
|
|
if Present (Parent_Expr)
|
5767 |
|
|
and then Is_Empty_List (Comps)
|
5768 |
|
|
then
|
5769 |
|
|
Comp := First_Component_Or_Discriminant (Typ);
|
5770 |
|
|
while Present (Comp) loop
|
5771 |
|
|
|
5772 |
|
|
-- Skip all expander-generated components
|
5773 |
|
|
|
5774 |
|
|
if
|
5775 |
|
|
not Comes_From_Source (Original_Record_Component (Comp))
|
5776 |
|
|
then
|
5777 |
|
|
null;
|
5778 |
|
|
|
5779 |
|
|
else
|
5780 |
|
|
New_Comp :=
|
5781 |
|
|
Make_Selected_Component (Loc,
|
5782 |
|
|
Prefix =>
|
5783 |
|
|
Unchecked_Convert_To (Typ,
|
5784 |
|
|
Duplicate_Subexpr (Parent_Expr, True)),
|
5785 |
|
|
|
5786 |
|
|
Selector_Name => New_Occurrence_Of (Comp, Loc));
|
5787 |
|
|
|
5788 |
|
|
Append_To (Comps,
|
5789 |
|
|
Make_Component_Association (Loc,
|
5790 |
|
|
Choices =>
|
5791 |
|
|
New_List (New_Occurrence_Of (Comp, Loc)),
|
5792 |
|
|
Expression =>
|
5793 |
|
|
New_Comp));
|
5794 |
|
|
|
5795 |
|
|
Analyze_And_Resolve (New_Comp, Etype (Comp));
|
5796 |
|
|
end if;
|
5797 |
|
|
|
5798 |
|
|
Next_Component_Or_Discriminant (Comp);
|
5799 |
|
|
end loop;
|
5800 |
|
|
end if;
|
5801 |
|
|
|
5802 |
|
|
-- Compute the value for the Tag now, if the type is a root it
|
5803 |
|
|
-- will be included in the aggregate right away, otherwise it will
|
5804 |
|
|
-- be propagated to the parent aggregate
|
5805 |
|
|
|
5806 |
|
|
if Present (Orig_Tag) then
|
5807 |
|
|
Tag_Value := Orig_Tag;
|
5808 |
|
|
elsif not Tagged_Type_Expansion then
|
5809 |
|
|
Tag_Value := Empty;
|
5810 |
|
|
else
|
5811 |
|
|
Tag_Value :=
|
5812 |
|
|
New_Occurrence_Of
|
5813 |
|
|
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
|
5814 |
|
|
end if;
|
5815 |
|
|
|
5816 |
|
|
-- For a derived type, an aggregate for the parent is formed with
|
5817 |
|
|
-- all the inherited components.
|
5818 |
|
|
|
5819 |
|
|
if Is_Derived_Type (Typ) then
|
5820 |
|
|
|
5821 |
|
|
declare
|
5822 |
|
|
First_Comp : Node_Id;
|
5823 |
|
|
Parent_Comps : List_Id;
|
5824 |
|
|
Parent_Aggr : Node_Id;
|
5825 |
|
|
Parent_Name : Node_Id;
|
5826 |
|
|
|
5827 |
|
|
begin
|
5828 |
|
|
-- Remove the inherited component association from the
|
5829 |
|
|
-- aggregate and store them in the parent aggregate
|
5830 |
|
|
|
5831 |
|
|
First_Comp := First (Component_Associations (N));
|
5832 |
|
|
Parent_Comps := New_List;
|
5833 |
|
|
while Present (First_Comp)
|
5834 |
|
|
and then Scope (Original_Record_Component (
|
5835 |
|
|
Entity (First (Choices (First_Comp))))) /= Base_Typ
|
5836 |
|
|
loop
|
5837 |
|
|
Comp := First_Comp;
|
5838 |
|
|
Next (First_Comp);
|
5839 |
|
|
Remove (Comp);
|
5840 |
|
|
Append (Comp, Parent_Comps);
|
5841 |
|
|
end loop;
|
5842 |
|
|
|
5843 |
|
|
Parent_Aggr := Make_Aggregate (Loc,
|
5844 |
|
|
Component_Associations => Parent_Comps);
|
5845 |
|
|
Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
|
5846 |
|
|
|
5847 |
|
|
-- Find the _parent component
|
5848 |
|
|
|
5849 |
|
|
Comp := First_Component (Typ);
|
5850 |
|
|
while Chars (Comp) /= Name_uParent loop
|
5851 |
|
|
Comp := Next_Component (Comp);
|
5852 |
|
|
end loop;
|
5853 |
|
|
|
5854 |
|
|
Parent_Name := New_Occurrence_Of (Comp, Loc);
|
5855 |
|
|
|
5856 |
|
|
-- Insert the parent aggregate
|
5857 |
|
|
|
5858 |
|
|
Prepend_To (Component_Associations (N),
|
5859 |
|
|
Make_Component_Association (Loc,
|
5860 |
|
|
Choices => New_List (Parent_Name),
|
5861 |
|
|
Expression => Parent_Aggr));
|
5862 |
|
|
|
5863 |
|
|
-- Expand recursively the parent propagating the right Tag
|
5864 |
|
|
|
5865 |
|
|
Expand_Record_Aggregate (
|
5866 |
|
|
Parent_Aggr, Tag_Value, Parent_Expr);
|
5867 |
|
|
end;
|
5868 |
|
|
|
5869 |
|
|
-- For a root type, the tag component is added (unless compiling
|
5870 |
|
|
-- for the VMs, where tags are implicit).
|
5871 |
|
|
|
5872 |
|
|
elsif Tagged_Type_Expansion then
|
5873 |
|
|
declare
|
5874 |
|
|
Tag_Name : constant Node_Id :=
|
5875 |
|
|
New_Occurrence_Of
|
5876 |
|
|
(First_Tag_Component (Typ), Loc);
|
5877 |
|
|
Typ_Tag : constant Entity_Id := RTE (RE_Tag);
|
5878 |
|
|
Conv_Node : constant Node_Id :=
|
5879 |
|
|
Unchecked_Convert_To (Typ_Tag, Tag_Value);
|
5880 |
|
|
|
5881 |
|
|
begin
|
5882 |
|
|
Set_Etype (Conv_Node, Typ_Tag);
|
5883 |
|
|
Prepend_To (Component_Associations (N),
|
5884 |
|
|
Make_Component_Association (Loc,
|
5885 |
|
|
Choices => New_List (Tag_Name),
|
5886 |
|
|
Expression => Conv_Node));
|
5887 |
|
|
end;
|
5888 |
|
|
end if;
|
5889 |
|
|
end if;
|
5890 |
|
|
end if;
|
5891 |
|
|
|
5892 |
|
|
end Expand_Record_Aggregate;
|
5893 |
|
|
|
5894 |
|
|
----------------------------
|
5895 |
|
|
-- Has_Default_Init_Comps --
|
5896 |
|
|
----------------------------
|
5897 |
|
|
|
5898 |
|
|
function Has_Default_Init_Comps (N : Node_Id) return Boolean is
|
5899 |
|
|
Comps : constant List_Id := Component_Associations (N);
|
5900 |
|
|
C : Node_Id;
|
5901 |
|
|
Expr : Node_Id;
|
5902 |
|
|
begin
|
5903 |
|
|
pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
|
5904 |
|
|
|
5905 |
|
|
if No (Comps) then
|
5906 |
|
|
return False;
|
5907 |
|
|
end if;
|
5908 |
|
|
|
5909 |
|
|
if Has_Self_Reference (N) then
|
5910 |
|
|
return True;
|
5911 |
|
|
end if;
|
5912 |
|
|
|
5913 |
|
|
-- Check if any direct component has default initialized components
|
5914 |
|
|
|
5915 |
|
|
C := First (Comps);
|
5916 |
|
|
while Present (C) loop
|
5917 |
|
|
if Box_Present (C) then
|
5918 |
|
|
return True;
|
5919 |
|
|
end if;
|
5920 |
|
|
|
5921 |
|
|
Next (C);
|
5922 |
|
|
end loop;
|
5923 |
|
|
|
5924 |
|
|
-- Recursive call in case of aggregate expression
|
5925 |
|
|
|
5926 |
|
|
C := First (Comps);
|
5927 |
|
|
while Present (C) loop
|
5928 |
|
|
Expr := Expression (C);
|
5929 |
|
|
|
5930 |
|
|
if Present (Expr)
|
5931 |
|
|
and then
|
5932 |
|
|
Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
|
5933 |
|
|
and then Has_Default_Init_Comps (Expr)
|
5934 |
|
|
then
|
5935 |
|
|
return True;
|
5936 |
|
|
end if;
|
5937 |
|
|
|
5938 |
|
|
Next (C);
|
5939 |
|
|
end loop;
|
5940 |
|
|
|
5941 |
|
|
return False;
|
5942 |
|
|
end Has_Default_Init_Comps;
|
5943 |
|
|
|
5944 |
|
|
--------------------------
|
5945 |
|
|
-- Is_Delayed_Aggregate --
|
5946 |
|
|
--------------------------
|
5947 |
|
|
|
5948 |
|
|
function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
|
5949 |
|
|
Node : Node_Id := N;
|
5950 |
|
|
Kind : Node_Kind := Nkind (Node);
|
5951 |
|
|
|
5952 |
|
|
begin
|
5953 |
|
|
if Kind = N_Qualified_Expression then
|
5954 |
|
|
Node := Expression (Node);
|
5955 |
|
|
Kind := Nkind (Node);
|
5956 |
|
|
end if;
|
5957 |
|
|
|
5958 |
|
|
if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
|
5959 |
|
|
return False;
|
5960 |
|
|
else
|
5961 |
|
|
return Expansion_Delayed (Node);
|
5962 |
|
|
end if;
|
5963 |
|
|
end Is_Delayed_Aggregate;
|
5964 |
|
|
|
5965 |
|
|
----------------------------------------
|
5966 |
|
|
-- Is_Static_Dispatch_Table_Aggregate --
|
5967 |
|
|
----------------------------------------
|
5968 |
|
|
|
5969 |
|
|
function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
|
5970 |
|
|
Typ : constant Entity_Id := Base_Type (Etype (N));
|
5971 |
|
|
|
5972 |
|
|
begin
|
5973 |
|
|
return Static_Dispatch_Tables
|
5974 |
|
|
and then Tagged_Type_Expansion
|
5975 |
|
|
and then RTU_Loaded (Ada_Tags)
|
5976 |
|
|
|
5977 |
|
|
-- Avoid circularity when rebuilding the compiler
|
5978 |
|
|
|
5979 |
|
|
and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
|
5980 |
|
|
and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
|
5981 |
|
|
or else
|
5982 |
|
|
Typ = RTE (RE_Address_Array)
|
5983 |
|
|
or else
|
5984 |
|
|
Typ = RTE (RE_Type_Specific_Data)
|
5985 |
|
|
or else
|
5986 |
|
|
Typ = RTE (RE_Tag_Table)
|
5987 |
|
|
or else
|
5988 |
|
|
(RTE_Available (RE_Interface_Data)
|
5989 |
|
|
and then Typ = RTE (RE_Interface_Data))
|
5990 |
|
|
or else
|
5991 |
|
|
(RTE_Available (RE_Interfaces_Array)
|
5992 |
|
|
and then Typ = RTE (RE_Interfaces_Array))
|
5993 |
|
|
or else
|
5994 |
|
|
(RTE_Available (RE_Interface_Data_Element)
|
5995 |
|
|
and then Typ = RTE (RE_Interface_Data_Element)));
|
5996 |
|
|
end Is_Static_Dispatch_Table_Aggregate;
|
5997 |
|
|
|
5998 |
|
|
--------------------
|
5999 |
|
|
-- Late_Expansion --
|
6000 |
|
|
--------------------
|
6001 |
|
|
|
6002 |
|
|
function Late_Expansion
|
6003 |
|
|
(N : Node_Id;
|
6004 |
|
|
Typ : Entity_Id;
|
6005 |
|
|
Target : Node_Id;
|
6006 |
|
|
Flist : Node_Id := Empty;
|
6007 |
|
|
Obj : Entity_Id := Empty) return List_Id
|
6008 |
|
|
is
|
6009 |
|
|
begin
|
6010 |
|
|
if Is_Record_Type (Etype (N)) then
|
6011 |
|
|
return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj);
|
6012 |
|
|
|
6013 |
|
|
else pragma Assert (Is_Array_Type (Etype (N)));
|
6014 |
|
|
return
|
6015 |
|
|
Build_Array_Aggr_Code
|
6016 |
|
|
(N => N,
|
6017 |
|
|
Ctype => Component_Type (Etype (N)),
|
6018 |
|
|
Index => First_Index (Typ),
|
6019 |
|
|
Into => Target,
|
6020 |
|
|
Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
|
6021 |
|
|
Indices => No_List,
|
6022 |
|
|
Flist => Flist);
|
6023 |
|
|
end if;
|
6024 |
|
|
end Late_Expansion;
|
6025 |
|
|
|
6026 |
|
|
----------------------------------
|
6027 |
|
|
-- Make_OK_Assignment_Statement --
|
6028 |
|
|
----------------------------------
|
6029 |
|
|
|
6030 |
|
|
function Make_OK_Assignment_Statement
|
6031 |
|
|
(Sloc : Source_Ptr;
|
6032 |
|
|
Name : Node_Id;
|
6033 |
|
|
Expression : Node_Id) return Node_Id
|
6034 |
|
|
is
|
6035 |
|
|
begin
|
6036 |
|
|
Set_Assignment_OK (Name);
|
6037 |
|
|
|
6038 |
|
|
return Make_Assignment_Statement (Sloc, Name, Expression);
|
6039 |
|
|
end Make_OK_Assignment_Statement;
|
6040 |
|
|
|
6041 |
|
|
-----------------------
|
6042 |
|
|
-- Number_Of_Choices --
|
6043 |
|
|
-----------------------
|
6044 |
|
|
|
6045 |
|
|
function Number_Of_Choices (N : Node_Id) return Nat is
|
6046 |
|
|
Assoc : Node_Id;
|
6047 |
|
|
Choice : Node_Id;
|
6048 |
|
|
|
6049 |
|
|
Nb_Choices : Nat := 0;
|
6050 |
|
|
|
6051 |
|
|
begin
|
6052 |
|
|
if Present (Expressions (N)) then
|
6053 |
|
|
return 0;
|
6054 |
|
|
end if;
|
6055 |
|
|
|
6056 |
|
|
Assoc := First (Component_Associations (N));
|
6057 |
|
|
while Present (Assoc) loop
|
6058 |
|
|
Choice := First (Choices (Assoc));
|
6059 |
|
|
while Present (Choice) loop
|
6060 |
|
|
if Nkind (Choice) /= N_Others_Choice then
|
6061 |
|
|
Nb_Choices := Nb_Choices + 1;
|
6062 |
|
|
end if;
|
6063 |
|
|
|
6064 |
|
|
Next (Choice);
|
6065 |
|
|
end loop;
|
6066 |
|
|
|
6067 |
|
|
Next (Assoc);
|
6068 |
|
|
end loop;
|
6069 |
|
|
|
6070 |
|
|
return Nb_Choices;
|
6071 |
|
|
end Number_Of_Choices;
|
6072 |
|
|
|
6073 |
|
|
------------------------------------
|
6074 |
|
|
-- Packed_Array_Aggregate_Handled --
|
6075 |
|
|
------------------------------------
|
6076 |
|
|
|
6077 |
|
|
-- The current version of this procedure will handle at compile time
|
6078 |
|
|
-- any array aggregate that meets these conditions:
|
6079 |
|
|
|
6080 |
|
|
-- One dimensional, bit packed
|
6081 |
|
|
-- Underlying packed type is modular type
|
6082 |
|
|
-- Bounds are within 32-bit Int range
|
6083 |
|
|
-- All bounds and values are static
|
6084 |
|
|
|
6085 |
|
|
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
|
6086 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6087 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6088 |
|
|
Ctyp : constant Entity_Id := Component_Type (Typ);
|
6089 |
|
|
|
6090 |
|
|
Not_Handled : exception;
|
6091 |
|
|
-- Exception raised if this aggregate cannot be handled
|
6092 |
|
|
|
6093 |
|
|
begin
|
6094 |
|
|
-- For now, handle only one dimensional bit packed arrays
|
6095 |
|
|
|
6096 |
|
|
if not Is_Bit_Packed_Array (Typ)
|
6097 |
|
|
or else Number_Dimensions (Typ) > 1
|
6098 |
|
|
or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
|
6099 |
|
|
then
|
6100 |
|
|
return False;
|
6101 |
|
|
end if;
|
6102 |
|
|
|
6103 |
|
|
if not Is_Scalar_Type (Component_Type (Typ))
|
6104 |
|
|
and then Has_Non_Standard_Rep (Component_Type (Typ))
|
6105 |
|
|
then
|
6106 |
|
|
return False;
|
6107 |
|
|
end if;
|
6108 |
|
|
|
6109 |
|
|
declare
|
6110 |
|
|
Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
|
6111 |
|
|
|
6112 |
|
|
Lo : Node_Id;
|
6113 |
|
|
Hi : Node_Id;
|
6114 |
|
|
-- Bounds of index type
|
6115 |
|
|
|
6116 |
|
|
Lob : Uint;
|
6117 |
|
|
Hib : Uint;
|
6118 |
|
|
-- Values of bounds if compile time known
|
6119 |
|
|
|
6120 |
|
|
function Get_Component_Val (N : Node_Id) return Uint;
|
6121 |
|
|
-- Given a expression value N of the component type Ctyp, returns a
|
6122 |
|
|
-- value of Csiz (component size) bits representing this value. If
|
6123 |
|
|
-- the value is non-static or any other reason exists why the value
|
6124 |
|
|
-- cannot be returned, then Not_Handled is raised.
|
6125 |
|
|
|
6126 |
|
|
-----------------------
|
6127 |
|
|
-- Get_Component_Val --
|
6128 |
|
|
-----------------------
|
6129 |
|
|
|
6130 |
|
|
function Get_Component_Val (N : Node_Id) return Uint is
|
6131 |
|
|
Val : Uint;
|
6132 |
|
|
|
6133 |
|
|
begin
|
6134 |
|
|
-- We have to analyze the expression here before doing any further
|
6135 |
|
|
-- processing here. The analysis of such expressions is deferred
|
6136 |
|
|
-- till expansion to prevent some problems of premature analysis.
|
6137 |
|
|
|
6138 |
|
|
Analyze_And_Resolve (N, Ctyp);
|
6139 |
|
|
|
6140 |
|
|
-- Must have a compile time value. String literals have to be
|
6141 |
|
|
-- converted into temporaries as well, because they cannot easily
|
6142 |
|
|
-- be converted into their bit representation.
|
6143 |
|
|
|
6144 |
|
|
if not Compile_Time_Known_Value (N)
|
6145 |
|
|
or else Nkind (N) = N_String_Literal
|
6146 |
|
|
then
|
6147 |
|
|
raise Not_Handled;
|
6148 |
|
|
end if;
|
6149 |
|
|
|
6150 |
|
|
Val := Expr_Rep_Value (N);
|
6151 |
|
|
|
6152 |
|
|
-- Adjust for bias, and strip proper number of bits
|
6153 |
|
|
|
6154 |
|
|
if Has_Biased_Representation (Ctyp) then
|
6155 |
|
|
Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
|
6156 |
|
|
end if;
|
6157 |
|
|
|
6158 |
|
|
return Val mod Uint_2 ** Csiz;
|
6159 |
|
|
end Get_Component_Val;
|
6160 |
|
|
|
6161 |
|
|
-- Here we know we have a one dimensional bit packed array
|
6162 |
|
|
|
6163 |
|
|
begin
|
6164 |
|
|
Get_Index_Bounds (First_Index (Typ), Lo, Hi);
|
6165 |
|
|
|
6166 |
|
|
-- Cannot do anything if bounds are dynamic
|
6167 |
|
|
|
6168 |
|
|
if not Compile_Time_Known_Value (Lo)
|
6169 |
|
|
or else
|
6170 |
|
|
not Compile_Time_Known_Value (Hi)
|
6171 |
|
|
then
|
6172 |
|
|
return False;
|
6173 |
|
|
end if;
|
6174 |
|
|
|
6175 |
|
|
-- Or are silly out of range of int bounds
|
6176 |
|
|
|
6177 |
|
|
Lob := Expr_Value (Lo);
|
6178 |
|
|
Hib := Expr_Value (Hi);
|
6179 |
|
|
|
6180 |
|
|
if not UI_Is_In_Int_Range (Lob)
|
6181 |
|
|
or else
|
6182 |
|
|
not UI_Is_In_Int_Range (Hib)
|
6183 |
|
|
then
|
6184 |
|
|
return False;
|
6185 |
|
|
end if;
|
6186 |
|
|
|
6187 |
|
|
-- At this stage we have a suitable aggregate for handling at compile
|
6188 |
|
|
-- time (the only remaining checks are that the values of expressions
|
6189 |
|
|
-- in the aggregate are compile time known (check is performed by
|
6190 |
|
|
-- Get_Component_Val), and that any subtypes or ranges are statically
|
6191 |
|
|
-- known.
|
6192 |
|
|
|
6193 |
|
|
-- If the aggregate is not fully positional at this stage, then
|
6194 |
|
|
-- convert it to positional form. Either this will fail, in which
|
6195 |
|
|
-- case we can do nothing, or it will succeed, in which case we have
|
6196 |
|
|
-- succeeded in handling the aggregate, or it will stay an aggregate,
|
6197 |
|
|
-- in which case we have failed to handle this case.
|
6198 |
|
|
|
6199 |
|
|
if Present (Component_Associations (N)) then
|
6200 |
|
|
Convert_To_Positional
|
6201 |
|
|
(N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
|
6202 |
|
|
return Nkind (N) /= N_Aggregate;
|
6203 |
|
|
end if;
|
6204 |
|
|
|
6205 |
|
|
-- Otherwise we are all positional, so convert to proper value
|
6206 |
|
|
|
6207 |
|
|
declare
|
6208 |
|
|
Lov : constant Int := UI_To_Int (Lob);
|
6209 |
|
|
Hiv : constant Int := UI_To_Int (Hib);
|
6210 |
|
|
|
6211 |
|
|
Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
|
6212 |
|
|
-- The length of the array (number of elements)
|
6213 |
|
|
|
6214 |
|
|
Aggregate_Val : Uint;
|
6215 |
|
|
-- Value of aggregate. The value is set in the low order bits of
|
6216 |
|
|
-- this value. For the little-endian case, the values are stored
|
6217 |
|
|
-- from low-order to high-order and for the big-endian case the
|
6218 |
|
|
-- values are stored from high-order to low-order. Note that gigi
|
6219 |
|
|
-- will take care of the conversions to left justify the value in
|
6220 |
|
|
-- the big endian case (because of left justified modular type
|
6221 |
|
|
-- processing), so we do not have to worry about that here.
|
6222 |
|
|
|
6223 |
|
|
Lit : Node_Id;
|
6224 |
|
|
-- Integer literal for resulting constructed value
|
6225 |
|
|
|
6226 |
|
|
Shift : Nat;
|
6227 |
|
|
-- Shift count from low order for next value
|
6228 |
|
|
|
6229 |
|
|
Incr : Int;
|
6230 |
|
|
-- Shift increment for loop
|
6231 |
|
|
|
6232 |
|
|
Expr : Node_Id;
|
6233 |
|
|
-- Next expression from positional parameters of aggregate
|
6234 |
|
|
|
6235 |
|
|
begin
|
6236 |
|
|
-- For little endian, we fill up the low order bits of the target
|
6237 |
|
|
-- value. For big endian we fill up the high order bits of the
|
6238 |
|
|
-- target value (which is a left justified modular value).
|
6239 |
|
|
|
6240 |
|
|
if Bytes_Big_Endian xor Debug_Flag_8 then
|
6241 |
|
|
Shift := Csiz * (Len - 1);
|
6242 |
|
|
Incr := -Csiz;
|
6243 |
|
|
else
|
6244 |
|
|
Shift := 0;
|
6245 |
|
|
Incr := +Csiz;
|
6246 |
|
|
end if;
|
6247 |
|
|
|
6248 |
|
|
-- Loop to set the values
|
6249 |
|
|
|
6250 |
|
|
if Len = 0 then
|
6251 |
|
|
Aggregate_Val := Uint_0;
|
6252 |
|
|
else
|
6253 |
|
|
Expr := First (Expressions (N));
|
6254 |
|
|
Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
|
6255 |
|
|
|
6256 |
|
|
for J in 2 .. Len loop
|
6257 |
|
|
Shift := Shift + Incr;
|
6258 |
|
|
Next (Expr);
|
6259 |
|
|
Aggregate_Val :=
|
6260 |
|
|
Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
|
6261 |
|
|
end loop;
|
6262 |
|
|
end if;
|
6263 |
|
|
|
6264 |
|
|
-- Now we can rewrite with the proper value
|
6265 |
|
|
|
6266 |
|
|
Lit :=
|
6267 |
|
|
Make_Integer_Literal (Loc,
|
6268 |
|
|
Intval => Aggregate_Val);
|
6269 |
|
|
Set_Print_In_Hex (Lit);
|
6270 |
|
|
|
6271 |
|
|
-- Construct the expression using this literal. Note that it is
|
6272 |
|
|
-- important to qualify the literal with its proper modular type
|
6273 |
|
|
-- since universal integer does not have the required range and
|
6274 |
|
|
-- also this is a left justified modular type, which is important
|
6275 |
|
|
-- in the big-endian case.
|
6276 |
|
|
|
6277 |
|
|
Rewrite (N,
|
6278 |
|
|
Unchecked_Convert_To (Typ,
|
6279 |
|
|
Make_Qualified_Expression (Loc,
|
6280 |
|
|
Subtype_Mark =>
|
6281 |
|
|
New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
|
6282 |
|
|
Expression => Lit)));
|
6283 |
|
|
|
6284 |
|
|
Analyze_And_Resolve (N, Typ);
|
6285 |
|
|
return True;
|
6286 |
|
|
end;
|
6287 |
|
|
end;
|
6288 |
|
|
|
6289 |
|
|
exception
|
6290 |
|
|
when Not_Handled =>
|
6291 |
|
|
return False;
|
6292 |
|
|
end Packed_Array_Aggregate_Handled;
|
6293 |
|
|
|
6294 |
|
|
----------------------------
|
6295 |
|
|
-- Has_Mutable_Components --
|
6296 |
|
|
----------------------------
|
6297 |
|
|
|
6298 |
|
|
function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
|
6299 |
|
|
Comp : Entity_Id;
|
6300 |
|
|
|
6301 |
|
|
begin
|
6302 |
|
|
Comp := First_Component (Typ);
|
6303 |
|
|
while Present (Comp) loop
|
6304 |
|
|
if Is_Record_Type (Etype (Comp))
|
6305 |
|
|
and then Has_Discriminants (Etype (Comp))
|
6306 |
|
|
and then not Is_Constrained (Etype (Comp))
|
6307 |
|
|
then
|
6308 |
|
|
return True;
|
6309 |
|
|
end if;
|
6310 |
|
|
|
6311 |
|
|
Next_Component (Comp);
|
6312 |
|
|
end loop;
|
6313 |
|
|
|
6314 |
|
|
return False;
|
6315 |
|
|
end Has_Mutable_Components;
|
6316 |
|
|
|
6317 |
|
|
------------------------------
|
6318 |
|
|
-- Initialize_Discriminants --
|
6319 |
|
|
------------------------------
|
6320 |
|
|
|
6321 |
|
|
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
|
6322 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
6323 |
|
|
Bas : constant Entity_Id := Base_Type (Typ);
|
6324 |
|
|
Par : constant Entity_Id := Etype (Bas);
|
6325 |
|
|
Decl : constant Node_Id := Parent (Par);
|
6326 |
|
|
Ref : Node_Id;
|
6327 |
|
|
|
6328 |
|
|
begin
|
6329 |
|
|
if Is_Tagged_Type (Bas)
|
6330 |
|
|
and then Is_Derived_Type (Bas)
|
6331 |
|
|
and then Has_Discriminants (Par)
|
6332 |
|
|
and then Has_Discriminants (Bas)
|
6333 |
|
|
and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
|
6334 |
|
|
and then Nkind (Decl) = N_Full_Type_Declaration
|
6335 |
|
|
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
|
6336 |
|
|
and then Present
|
6337 |
|
|
(Variant_Part (Component_List (Type_Definition (Decl))))
|
6338 |
|
|
and then Nkind (N) /= N_Extension_Aggregate
|
6339 |
|
|
then
|
6340 |
|
|
|
6341 |
|
|
-- Call init proc to set discriminants.
|
6342 |
|
|
-- There should eventually be a special procedure for this ???
|
6343 |
|
|
|
6344 |
|
|
Ref := New_Reference_To (Defining_Identifier (N), Loc);
|
6345 |
|
|
Insert_Actions_After (N,
|
6346 |
|
|
Build_Initialization_Call (Sloc (N), Ref, Typ));
|
6347 |
|
|
end if;
|
6348 |
|
|
end Initialize_Discriminants;
|
6349 |
|
|
|
6350 |
|
|
----------------
|
6351 |
|
|
-- Must_Slide --
|
6352 |
|
|
----------------
|
6353 |
|
|
|
6354 |
|
|
function Must_Slide
|
6355 |
|
|
(Obj_Type : Entity_Id;
|
6356 |
|
|
Typ : Entity_Id) return Boolean
|
6357 |
|
|
is
|
6358 |
|
|
L1, L2, H1, H2 : Node_Id;
|
6359 |
|
|
begin
|
6360 |
|
|
-- No sliding if the type of the object is not established yet, if it is
|
6361 |
|
|
-- an unconstrained type whose actual subtype comes from the aggregate,
|
6362 |
|
|
-- or if the two types are identical.
|
6363 |
|
|
|
6364 |
|
|
if not Is_Array_Type (Obj_Type) then
|
6365 |
|
|
return False;
|
6366 |
|
|
|
6367 |
|
|
elsif not Is_Constrained (Obj_Type) then
|
6368 |
|
|
return False;
|
6369 |
|
|
|
6370 |
|
|
elsif Typ = Obj_Type then
|
6371 |
|
|
return False;
|
6372 |
|
|
|
6373 |
|
|
else
|
6374 |
|
|
-- Sliding can only occur along the first dimension
|
6375 |
|
|
|
6376 |
|
|
Get_Index_Bounds (First_Index (Typ), L1, H1);
|
6377 |
|
|
Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
|
6378 |
|
|
|
6379 |
|
|
if not Is_Static_Expression (L1)
|
6380 |
|
|
or else not Is_Static_Expression (L2)
|
6381 |
|
|
or else not Is_Static_Expression (H1)
|
6382 |
|
|
or else not Is_Static_Expression (H2)
|
6383 |
|
|
then
|
6384 |
|
|
return False;
|
6385 |
|
|
else
|
6386 |
|
|
return Expr_Value (L1) /= Expr_Value (L2)
|
6387 |
|
|
or else Expr_Value (H1) /= Expr_Value (H2);
|
6388 |
|
|
end if;
|
6389 |
|
|
end if;
|
6390 |
|
|
end Must_Slide;
|
6391 |
|
|
|
6392 |
|
|
---------------------------
|
6393 |
|
|
-- Safe_Slice_Assignment --
|
6394 |
|
|
---------------------------
|
6395 |
|
|
|
6396 |
|
|
function Safe_Slice_Assignment (N : Node_Id) return Boolean is
|
6397 |
|
|
Loc : constant Source_Ptr := Sloc (Parent (N));
|
6398 |
|
|
Pref : constant Node_Id := Prefix (Name (Parent (N)));
|
6399 |
|
|
Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
|
6400 |
|
|
Expr : Node_Id;
|
6401 |
|
|
L_J : Entity_Id;
|
6402 |
|
|
L_Iter : Node_Id;
|
6403 |
|
|
L_Body : Node_Id;
|
6404 |
|
|
Stat : Node_Id;
|
6405 |
|
|
|
6406 |
|
|
begin
|
6407 |
|
|
-- Generate: for J in Range loop Pref (J) := Expr; end loop;
|
6408 |
|
|
|
6409 |
|
|
if Comes_From_Source (N)
|
6410 |
|
|
and then No (Expressions (N))
|
6411 |
|
|
and then Nkind (First (Choices (First (Component_Associations (N)))))
|
6412 |
|
|
= N_Others_Choice
|
6413 |
|
|
then
|
6414 |
|
|
Expr :=
|
6415 |
|
|
Expression (First (Component_Associations (N)));
|
6416 |
|
|
L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
|
6417 |
|
|
|
6418 |
|
|
L_Iter :=
|
6419 |
|
|
Make_Iteration_Scheme (Loc,
|
6420 |
|
|
Loop_Parameter_Specification =>
|
6421 |
|
|
Make_Loop_Parameter_Specification
|
6422 |
|
|
(Loc,
|
6423 |
|
|
Defining_Identifier => L_J,
|
6424 |
|
|
Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
|
6425 |
|
|
|
6426 |
|
|
L_Body :=
|
6427 |
|
|
Make_Assignment_Statement (Loc,
|
6428 |
|
|
Name =>
|
6429 |
|
|
Make_Indexed_Component (Loc,
|
6430 |
|
|
Prefix => Relocate_Node (Pref),
|
6431 |
|
|
Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
|
6432 |
|
|
Expression => Relocate_Node (Expr));
|
6433 |
|
|
|
6434 |
|
|
-- Construct the final loop
|
6435 |
|
|
|
6436 |
|
|
Stat :=
|
6437 |
|
|
Make_Implicit_Loop_Statement
|
6438 |
|
|
(Node => Parent (N),
|
6439 |
|
|
Identifier => Empty,
|
6440 |
|
|
Iteration_Scheme => L_Iter,
|
6441 |
|
|
Statements => New_List (L_Body));
|
6442 |
|
|
|
6443 |
|
|
-- Set type of aggregate to be type of lhs in assignment,
|
6444 |
|
|
-- to suppress redundant length checks.
|
6445 |
|
|
|
6446 |
|
|
Set_Etype (N, Etype (Name (Parent (N))));
|
6447 |
|
|
|
6448 |
|
|
Rewrite (Parent (N), Stat);
|
6449 |
|
|
Analyze (Parent (N));
|
6450 |
|
|
return True;
|
6451 |
|
|
|
6452 |
|
|
else
|
6453 |
|
|
return False;
|
6454 |
|
|
end if;
|
6455 |
|
|
end Safe_Slice_Assignment;
|
6456 |
|
|
|
6457 |
|
|
---------------------
|
6458 |
|
|
-- Sort_Case_Table --
|
6459 |
|
|
---------------------
|
6460 |
|
|
|
6461 |
|
|
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
|
6462 |
|
|
L : constant Int := Case_Table'First;
|
6463 |
|
|
U : constant Int := Case_Table'Last;
|
6464 |
|
|
K : Int;
|
6465 |
|
|
J : Int;
|
6466 |
|
|
T : Case_Bounds;
|
6467 |
|
|
|
6468 |
|
|
begin
|
6469 |
|
|
K := L;
|
6470 |
|
|
while K /= U loop
|
6471 |
|
|
T := Case_Table (K + 1);
|
6472 |
|
|
|
6473 |
|
|
J := K + 1;
|
6474 |
|
|
while J /= L
|
6475 |
|
|
and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
|
6476 |
|
|
Expr_Value (T.Choice_Lo)
|
6477 |
|
|
loop
|
6478 |
|
|
Case_Table (J) := Case_Table (J - 1);
|
6479 |
|
|
J := J - 1;
|
6480 |
|
|
end loop;
|
6481 |
|
|
|
6482 |
|
|
Case_Table (J) := T;
|
6483 |
|
|
K := K + 1;
|
6484 |
|
|
end loop;
|
6485 |
|
|
end Sort_Case_Table;
|
6486 |
|
|
|
6487 |
|
|
----------------------------
|
6488 |
|
|
-- Static_Array_Aggregate --
|
6489 |
|
|
----------------------------
|
6490 |
|
|
|
6491 |
|
|
function Static_Array_Aggregate (N : Node_Id) return Boolean is
|
6492 |
|
|
Bounds : constant Node_Id := Aggregate_Bounds (N);
|
6493 |
|
|
|
6494 |
|
|
Typ : constant Entity_Id := Etype (N);
|
6495 |
|
|
Comp_Type : constant Entity_Id := Component_Type (Typ);
|
6496 |
|
|
Agg : Node_Id;
|
6497 |
|
|
Expr : Node_Id;
|
6498 |
|
|
Lo : Node_Id;
|
6499 |
|
|
Hi : Node_Id;
|
6500 |
|
|
|
6501 |
|
|
begin
|
6502 |
|
|
if Is_Tagged_Type (Typ)
|
6503 |
|
|
or else Is_Controlled (Typ)
|
6504 |
|
|
or else Is_Packed (Typ)
|
6505 |
|
|
then
|
6506 |
|
|
return False;
|
6507 |
|
|
end if;
|
6508 |
|
|
|
6509 |
|
|
if Present (Bounds)
|
6510 |
|
|
and then Nkind (Bounds) = N_Range
|
6511 |
|
|
and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
|
6512 |
|
|
and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
|
6513 |
|
|
then
|
6514 |
|
|
Lo := Low_Bound (Bounds);
|
6515 |
|
|
Hi := High_Bound (Bounds);
|
6516 |
|
|
|
6517 |
|
|
if No (Component_Associations (N)) then
|
6518 |
|
|
|
6519 |
|
|
-- Verify that all components are static integers
|
6520 |
|
|
|
6521 |
|
|
Expr := First (Expressions (N));
|
6522 |
|
|
while Present (Expr) loop
|
6523 |
|
|
if Nkind (Expr) /= N_Integer_Literal then
|
6524 |
|
|
return False;
|
6525 |
|
|
end if;
|
6526 |
|
|
|
6527 |
|
|
Next (Expr);
|
6528 |
|
|
end loop;
|
6529 |
|
|
|
6530 |
|
|
return True;
|
6531 |
|
|
|
6532 |
|
|
else
|
6533 |
|
|
-- We allow only a single named association, either a static
|
6534 |
|
|
-- range or an others_clause, with a static expression.
|
6535 |
|
|
|
6536 |
|
|
Expr := First (Component_Associations (N));
|
6537 |
|
|
|
6538 |
|
|
if Present (Expressions (N)) then
|
6539 |
|
|
return False;
|
6540 |
|
|
|
6541 |
|
|
elsif Present (Next (Expr)) then
|
6542 |
|
|
return False;
|
6543 |
|
|
|
6544 |
|
|
elsif Present (Next (First (Choices (Expr)))) then
|
6545 |
|
|
return False;
|
6546 |
|
|
|
6547 |
|
|
else
|
6548 |
|
|
-- The aggregate is static if all components are literals,
|
6549 |
|
|
-- or else all its components are static aggregates for the
|
6550 |
|
|
-- component type. We also limit the size of a static aggregate
|
6551 |
|
|
-- to prevent runaway static expressions.
|
6552 |
|
|
|
6553 |
|
|
if Is_Array_Type (Comp_Type)
|
6554 |
|
|
or else Is_Record_Type (Comp_Type)
|
6555 |
|
|
then
|
6556 |
|
|
if Nkind (Expression (Expr)) /= N_Aggregate
|
6557 |
|
|
or else
|
6558 |
|
|
not Compile_Time_Known_Aggregate (Expression (Expr))
|
6559 |
|
|
then
|
6560 |
|
|
return False;
|
6561 |
|
|
end if;
|
6562 |
|
|
|
6563 |
|
|
elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
|
6564 |
|
|
return False;
|
6565 |
|
|
|
6566 |
|
|
elsif not Aggr_Size_OK (N, Typ) then
|
6567 |
|
|
return False;
|
6568 |
|
|
end if;
|
6569 |
|
|
|
6570 |
|
|
-- Create a positional aggregate with the right number of
|
6571 |
|
|
-- copies of the expression.
|
6572 |
|
|
|
6573 |
|
|
Agg := Make_Aggregate (Sloc (N), New_List, No_List);
|
6574 |
|
|
|
6575 |
|
|
for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
|
6576 |
|
|
loop
|
6577 |
|
|
Append_To
|
6578 |
|
|
(Expressions (Agg), New_Copy (Expression (Expr)));
|
6579 |
|
|
|
6580 |
|
|
-- The copied expression must be analyzed and resolved.
|
6581 |
|
|
-- Besides setting the type, this ensures that static
|
6582 |
|
|
-- expressions are appropriately marked as such.
|
6583 |
|
|
|
6584 |
|
|
Analyze_And_Resolve
|
6585 |
|
|
(Last (Expressions (Agg)), Component_Type (Typ));
|
6586 |
|
|
end loop;
|
6587 |
|
|
|
6588 |
|
|
Set_Aggregate_Bounds (Agg, Bounds);
|
6589 |
|
|
Set_Etype (Agg, Typ);
|
6590 |
|
|
Set_Analyzed (Agg);
|
6591 |
|
|
Rewrite (N, Agg);
|
6592 |
|
|
Set_Compile_Time_Known_Aggregate (N);
|
6593 |
|
|
|
6594 |
|
|
return True;
|
6595 |
|
|
end if;
|
6596 |
|
|
end if;
|
6597 |
|
|
|
6598 |
|
|
else
|
6599 |
|
|
return False;
|
6600 |
|
|
end if;
|
6601 |
|
|
end Static_Array_Aggregate;
|
6602 |
|
|
|
6603 |
|
|
end Exp_Aggr;
|