1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- E X P _ C H 5 --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
20 |
|
|
-- --
|
21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
23 |
|
|
-- --
|
24 |
|
|
------------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
with Atree; use Atree;
|
27 |
|
|
with Checks; use Checks;
|
28 |
|
|
with Debug; use Debug;
|
29 |
|
|
with Einfo; use Einfo;
|
30 |
|
|
with Elists; use Elists;
|
31 |
|
|
with Exp_Atag; use Exp_Atag;
|
32 |
|
|
with Exp_Aggr; use Exp_Aggr;
|
33 |
|
|
with Exp_Ch6; use Exp_Ch6;
|
34 |
|
|
with Exp_Ch7; use Exp_Ch7;
|
35 |
|
|
with Exp_Ch11; use Exp_Ch11;
|
36 |
|
|
with Exp_Dbug; use Exp_Dbug;
|
37 |
|
|
with Exp_Pakd; use Exp_Pakd;
|
38 |
|
|
with Exp_Tss; use Exp_Tss;
|
39 |
|
|
with Exp_Util; use Exp_Util;
|
40 |
|
|
with Namet; use Namet;
|
41 |
|
|
with Nlists; use Nlists;
|
42 |
|
|
with Nmake; use Nmake;
|
43 |
|
|
with Opt; use Opt;
|
44 |
|
|
with Restrict; use Restrict;
|
45 |
|
|
with Rident; use Rident;
|
46 |
|
|
with Rtsfind; use Rtsfind;
|
47 |
|
|
with Sinfo; use Sinfo;
|
48 |
|
|
with Sem; use Sem;
|
49 |
|
|
with Sem_Aux; use Sem_Aux;
|
50 |
|
|
with Sem_Ch3; use Sem_Ch3;
|
51 |
|
|
with Sem_Ch8; use Sem_Ch8;
|
52 |
|
|
with Sem_Ch13; use Sem_Ch13;
|
53 |
|
|
with Sem_Eval; use Sem_Eval;
|
54 |
|
|
with Sem_Res; use Sem_Res;
|
55 |
|
|
with Sem_Util; use Sem_Util;
|
56 |
|
|
with Snames; use Snames;
|
57 |
|
|
with Stand; use Stand;
|
58 |
|
|
with Stringt; use Stringt;
|
59 |
|
|
with Targparm; use Targparm;
|
60 |
|
|
with Tbuild; use Tbuild;
|
61 |
|
|
with Ttypes; use Ttypes;
|
62 |
|
|
with Uintp; use Uintp;
|
63 |
|
|
with Validsw; use Validsw;
|
64 |
|
|
|
65 |
|
|
package body Exp_Ch5 is
|
66 |
|
|
|
67 |
|
|
function Change_Of_Representation (N : Node_Id) return Boolean;
|
68 |
|
|
-- Determine if the right hand side of the assignment N is a type
|
69 |
|
|
-- conversion which requires a change of representation. Called
|
70 |
|
|
-- only for the array and record cases.
|
71 |
|
|
|
72 |
|
|
procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
|
73 |
|
|
-- N is an assignment which assigns an array value. This routine process
|
74 |
|
|
-- the various special cases and checks required for such assignments,
|
75 |
|
|
-- including change of representation. Rhs is normally simply the right
|
76 |
|
|
-- hand side of the assignment, except that if the right hand side is
|
77 |
|
|
-- a type conversion or a qualified expression, then the Rhs is the
|
78 |
|
|
-- actual expression inside any such type conversions or qualifications.
|
79 |
|
|
|
80 |
|
|
function Expand_Assign_Array_Loop
|
81 |
|
|
(N : Node_Id;
|
82 |
|
|
Larray : Entity_Id;
|
83 |
|
|
Rarray : Entity_Id;
|
84 |
|
|
L_Type : Entity_Id;
|
85 |
|
|
R_Type : Entity_Id;
|
86 |
|
|
Ndim : Pos;
|
87 |
|
|
Rev : Boolean) return Node_Id;
|
88 |
|
|
-- N is an assignment statement which assigns an array value. This routine
|
89 |
|
|
-- expands the assignment into a loop (or nested loops for the case of a
|
90 |
|
|
-- multi-dimensional array) to do the assignment component by component.
|
91 |
|
|
-- Larray and Rarray are the entities of the actual arrays on the left
|
92 |
|
|
-- hand and right hand sides. L_Type and R_Type are the types of these
|
93 |
|
|
-- arrays (which may not be the same, due to either sliding, or to a
|
94 |
|
|
-- change of representation case). Ndim is the number of dimensions and
|
95 |
|
|
-- the parameter Rev indicates if the loops run normally (Rev = False),
|
96 |
|
|
-- or reversed (Rev = True). The value returned is the constructed
|
97 |
|
|
-- loop statement. Auxiliary declarations are inserted before node N
|
98 |
|
|
-- using the standard Insert_Actions mechanism.
|
99 |
|
|
|
100 |
|
|
procedure Expand_Assign_Record (N : Node_Id);
|
101 |
|
|
-- N is an assignment of a non-tagged record value. This routine handles
|
102 |
|
|
-- the case where the assignment must be made component by component,
|
103 |
|
|
-- either because the target is not byte aligned, or there is a change
|
104 |
|
|
-- of representation, or when we have a tagged type with a representation
|
105 |
|
|
-- clause (this last case is required because holes in the tagged type
|
106 |
|
|
-- might be filled with components from child types).
|
107 |
|
|
|
108 |
|
|
procedure Expand_Non_Function_Return (N : Node_Id);
|
109 |
|
|
-- Called by Expand_N_Simple_Return_Statement in case we're returning from
|
110 |
|
|
-- a procedure body, entry body, accept statement, or extended return
|
111 |
|
|
-- statement. Note that all non-function returns are simple return
|
112 |
|
|
-- statements.
|
113 |
|
|
|
114 |
|
|
procedure Expand_Simple_Function_Return (N : Node_Id);
|
115 |
|
|
-- Expand simple return from function. In the case where we are returning
|
116 |
|
|
-- from a function body this is called by Expand_N_Simple_Return_Statement.
|
117 |
|
|
|
118 |
|
|
function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
|
119 |
|
|
-- Generate the necessary code for controlled and tagged assignment, that
|
120 |
|
|
-- is to say, finalization of the target before, adjustment of the target
|
121 |
|
|
-- after and save and restore of the tag and finalization pointers which
|
122 |
|
|
-- are not 'part of the value' and must not be changed upon assignment. N
|
123 |
|
|
-- is the original Assignment node.
|
124 |
|
|
|
125 |
|
|
------------------------------
|
126 |
|
|
-- Change_Of_Representation --
|
127 |
|
|
------------------------------
|
128 |
|
|
|
129 |
|
|
function Change_Of_Representation (N : Node_Id) return Boolean is
|
130 |
|
|
Rhs : constant Node_Id := Expression (N);
|
131 |
|
|
begin
|
132 |
|
|
return
|
133 |
|
|
Nkind (Rhs) = N_Type_Conversion
|
134 |
|
|
and then
|
135 |
|
|
not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
|
136 |
|
|
end Change_Of_Representation;
|
137 |
|
|
|
138 |
|
|
-------------------------
|
139 |
|
|
-- Expand_Assign_Array --
|
140 |
|
|
-------------------------
|
141 |
|
|
|
142 |
|
|
-- There are two issues here. First, do we let Gigi do a block move, or
|
143 |
|
|
-- do we expand out into a loop? Second, we need to set the two flags
|
144 |
|
|
-- Forwards_OK and Backwards_OK which show whether the block move (or
|
145 |
|
|
-- corresponding loops) can be legitimately done in a forwards (low to
|
146 |
|
|
-- high) or backwards (high to low) manner.
|
147 |
|
|
|
148 |
|
|
procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
|
149 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
150 |
|
|
|
151 |
|
|
Lhs : constant Node_Id := Name (N);
|
152 |
|
|
|
153 |
|
|
Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
|
154 |
|
|
Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
|
155 |
|
|
|
156 |
|
|
L_Type : constant Entity_Id :=
|
157 |
|
|
Underlying_Type (Get_Actual_Subtype (Act_Lhs));
|
158 |
|
|
R_Type : Entity_Id :=
|
159 |
|
|
Underlying_Type (Get_Actual_Subtype (Act_Rhs));
|
160 |
|
|
|
161 |
|
|
L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
|
162 |
|
|
R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
|
163 |
|
|
|
164 |
|
|
Crep : constant Boolean := Change_Of_Representation (N);
|
165 |
|
|
|
166 |
|
|
Larray : Node_Id;
|
167 |
|
|
Rarray : Node_Id;
|
168 |
|
|
|
169 |
|
|
Ndim : constant Pos := Number_Dimensions (L_Type);
|
170 |
|
|
|
171 |
|
|
Loop_Required : Boolean := False;
|
172 |
|
|
-- This switch is set to True if the array move must be done using
|
173 |
|
|
-- an explicit front end generated loop.
|
174 |
|
|
|
175 |
|
|
procedure Apply_Dereference (Arg : Node_Id);
|
176 |
|
|
-- If the argument is an access to an array, and the assignment is
|
177 |
|
|
-- converted into a procedure call, apply explicit dereference.
|
178 |
|
|
|
179 |
|
|
function Has_Address_Clause (Exp : Node_Id) return Boolean;
|
180 |
|
|
-- Test if Exp is a reference to an array whose declaration has
|
181 |
|
|
-- an address clause, or it is a slice of such an array.
|
182 |
|
|
|
183 |
|
|
function Is_Formal_Array (Exp : Node_Id) return Boolean;
|
184 |
|
|
-- Test if Exp is a reference to an array which is either a formal
|
185 |
|
|
-- parameter or a slice of a formal parameter. These are the cases
|
186 |
|
|
-- where hidden aliasing can occur.
|
187 |
|
|
|
188 |
|
|
function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
|
189 |
|
|
-- Determine if Exp is a reference to an array variable which is other
|
190 |
|
|
-- than an object defined in the current scope, or a slice of such
|
191 |
|
|
-- an object. Such objects can be aliased to parameters (unlike local
|
192 |
|
|
-- array references).
|
193 |
|
|
|
194 |
|
|
-----------------------
|
195 |
|
|
-- Apply_Dereference --
|
196 |
|
|
-----------------------
|
197 |
|
|
|
198 |
|
|
procedure Apply_Dereference (Arg : Node_Id) is
|
199 |
|
|
Typ : constant Entity_Id := Etype (Arg);
|
200 |
|
|
begin
|
201 |
|
|
if Is_Access_Type (Typ) then
|
202 |
|
|
Rewrite (Arg, Make_Explicit_Dereference (Loc,
|
203 |
|
|
Prefix => Relocate_Node (Arg)));
|
204 |
|
|
Analyze_And_Resolve (Arg, Designated_Type (Typ));
|
205 |
|
|
end if;
|
206 |
|
|
end Apply_Dereference;
|
207 |
|
|
|
208 |
|
|
------------------------
|
209 |
|
|
-- Has_Address_Clause --
|
210 |
|
|
------------------------
|
211 |
|
|
|
212 |
|
|
function Has_Address_Clause (Exp : Node_Id) return Boolean is
|
213 |
|
|
begin
|
214 |
|
|
return
|
215 |
|
|
(Is_Entity_Name (Exp) and then
|
216 |
|
|
Present (Address_Clause (Entity (Exp))))
|
217 |
|
|
or else
|
218 |
|
|
(Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
|
219 |
|
|
end Has_Address_Clause;
|
220 |
|
|
|
221 |
|
|
---------------------
|
222 |
|
|
-- Is_Formal_Array --
|
223 |
|
|
---------------------
|
224 |
|
|
|
225 |
|
|
function Is_Formal_Array (Exp : Node_Id) return Boolean is
|
226 |
|
|
begin
|
227 |
|
|
return
|
228 |
|
|
(Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
|
229 |
|
|
or else
|
230 |
|
|
(Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
|
231 |
|
|
end Is_Formal_Array;
|
232 |
|
|
|
233 |
|
|
------------------------
|
234 |
|
|
-- Is_Non_Local_Array --
|
235 |
|
|
------------------------
|
236 |
|
|
|
237 |
|
|
function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
|
238 |
|
|
begin
|
239 |
|
|
return (Is_Entity_Name (Exp)
|
240 |
|
|
and then Scope (Entity (Exp)) /= Current_Scope)
|
241 |
|
|
or else (Nkind (Exp) = N_Slice
|
242 |
|
|
and then Is_Non_Local_Array (Prefix (Exp)));
|
243 |
|
|
end Is_Non_Local_Array;
|
244 |
|
|
|
245 |
|
|
-- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
|
246 |
|
|
|
247 |
|
|
Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
|
248 |
|
|
Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
|
249 |
|
|
|
250 |
|
|
Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
|
251 |
|
|
Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
|
252 |
|
|
|
253 |
|
|
-- Start of processing for Expand_Assign_Array
|
254 |
|
|
|
255 |
|
|
begin
|
256 |
|
|
-- Deal with length check. Note that the length check is done with
|
257 |
|
|
-- respect to the right hand side as given, not a possible underlying
|
258 |
|
|
-- renamed object, since this would generate incorrect extra checks.
|
259 |
|
|
|
260 |
|
|
Apply_Length_Check (Rhs, L_Type);
|
261 |
|
|
|
262 |
|
|
-- We start by assuming that the move can be done in either direction,
|
263 |
|
|
-- i.e. that the two sides are completely disjoint.
|
264 |
|
|
|
265 |
|
|
Set_Forwards_OK (N, True);
|
266 |
|
|
Set_Backwards_OK (N, True);
|
267 |
|
|
|
268 |
|
|
-- Normally it is only the slice case that can lead to overlap, and
|
269 |
|
|
-- explicit checks for slices are made below. But there is one case
|
270 |
|
|
-- where the slice can be implicit and invisible to us: when we have a
|
271 |
|
|
-- one dimensional array, and either both operands are parameters, or
|
272 |
|
|
-- one is a parameter (which can be a slice passed by reference) and the
|
273 |
|
|
-- other is a non-local variable. In this case the parameter could be a
|
274 |
|
|
-- slice that overlaps with the other operand.
|
275 |
|
|
|
276 |
|
|
-- However, if the array subtype is a constrained first subtype in the
|
277 |
|
|
-- parameter case, then we don't have to worry about overlap, since
|
278 |
|
|
-- slice assignments aren't possible (other than for a slice denoting
|
279 |
|
|
-- the whole array).
|
280 |
|
|
|
281 |
|
|
-- Note: No overlap is possible if there is a change of representation,
|
282 |
|
|
-- so we can exclude this case.
|
283 |
|
|
|
284 |
|
|
if Ndim = 1
|
285 |
|
|
and then not Crep
|
286 |
|
|
and then
|
287 |
|
|
((Lhs_Formal and Rhs_Formal)
|
288 |
|
|
or else
|
289 |
|
|
(Lhs_Formal and Rhs_Non_Local_Var)
|
290 |
|
|
or else
|
291 |
|
|
(Rhs_Formal and Lhs_Non_Local_Var))
|
292 |
|
|
and then
|
293 |
|
|
(not Is_Constrained (Etype (Lhs))
|
294 |
|
|
or else not Is_First_Subtype (Etype (Lhs)))
|
295 |
|
|
|
296 |
|
|
-- In the case of compiling for the Java or .NET Virtual Machine,
|
297 |
|
|
-- slices are always passed by making a copy, so we don't have to
|
298 |
|
|
-- worry about overlap. We also want to prevent generation of "<"
|
299 |
|
|
-- comparisons for array addresses, since that's a meaningless
|
300 |
|
|
-- operation on the VM.
|
301 |
|
|
|
302 |
|
|
and then VM_Target = No_VM
|
303 |
|
|
then
|
304 |
|
|
Set_Forwards_OK (N, False);
|
305 |
|
|
Set_Backwards_OK (N, False);
|
306 |
|
|
|
307 |
|
|
-- Note: the bit-packed case is not worrisome here, since if we have
|
308 |
|
|
-- a slice passed as a parameter, it is always aligned on a byte
|
309 |
|
|
-- boundary, and if there are no explicit slices, the assignment
|
310 |
|
|
-- can be performed directly.
|
311 |
|
|
end if;
|
312 |
|
|
|
313 |
|
|
-- If either operand has an address clause clear Backwards_OK and
|
314 |
|
|
-- Forwards_OK, since we cannot tell if the operands overlap. We
|
315 |
|
|
-- exclude this treatment when Rhs is an aggregate, since we know
|
316 |
|
|
-- that overlap can't occur.
|
317 |
|
|
|
318 |
|
|
if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
|
319 |
|
|
or else Has_Address_Clause (Rhs)
|
320 |
|
|
then
|
321 |
|
|
Set_Forwards_OK (N, False);
|
322 |
|
|
Set_Backwards_OK (N, False);
|
323 |
|
|
end if;
|
324 |
|
|
|
325 |
|
|
-- We certainly must use a loop for change of representation and also
|
326 |
|
|
-- we use the operand of the conversion on the right hand side as the
|
327 |
|
|
-- effective right hand side (the component types must match in this
|
328 |
|
|
-- situation).
|
329 |
|
|
|
330 |
|
|
if Crep then
|
331 |
|
|
Act_Rhs := Get_Referenced_Object (Rhs);
|
332 |
|
|
R_Type := Get_Actual_Subtype (Act_Rhs);
|
333 |
|
|
Loop_Required := True;
|
334 |
|
|
|
335 |
|
|
-- We require a loop if the left side is possibly bit unaligned
|
336 |
|
|
|
337 |
|
|
elsif Possible_Bit_Aligned_Component (Lhs)
|
338 |
|
|
or else
|
339 |
|
|
Possible_Bit_Aligned_Component (Rhs)
|
340 |
|
|
then
|
341 |
|
|
Loop_Required := True;
|
342 |
|
|
|
343 |
|
|
-- Arrays with controlled components are expanded into a loop to force
|
344 |
|
|
-- calls to Adjust at the component level.
|
345 |
|
|
|
346 |
|
|
elsif Has_Controlled_Component (L_Type) then
|
347 |
|
|
Loop_Required := True;
|
348 |
|
|
|
349 |
|
|
-- If object is atomic, we cannot tolerate a loop
|
350 |
|
|
|
351 |
|
|
elsif Is_Atomic_Object (Act_Lhs)
|
352 |
|
|
or else
|
353 |
|
|
Is_Atomic_Object (Act_Rhs)
|
354 |
|
|
then
|
355 |
|
|
return;
|
356 |
|
|
|
357 |
|
|
-- Loop is required if we have atomic components since we have to
|
358 |
|
|
-- be sure to do any accesses on an element by element basis.
|
359 |
|
|
|
360 |
|
|
elsif Has_Atomic_Components (L_Type)
|
361 |
|
|
or else Has_Atomic_Components (R_Type)
|
362 |
|
|
or else Is_Atomic (Component_Type (L_Type))
|
363 |
|
|
or else Is_Atomic (Component_Type (R_Type))
|
364 |
|
|
then
|
365 |
|
|
Loop_Required := True;
|
366 |
|
|
|
367 |
|
|
-- Case where no slice is involved
|
368 |
|
|
|
369 |
|
|
elsif not L_Slice and not R_Slice then
|
370 |
|
|
|
371 |
|
|
-- The following code deals with the case of unconstrained bit packed
|
372 |
|
|
-- arrays. The problem is that the template for such arrays contains
|
373 |
|
|
-- the bounds of the actual source level array, but the copy of an
|
374 |
|
|
-- entire array requires the bounds of the underlying array. It would
|
375 |
|
|
-- be nice if the back end could take care of this, but right now it
|
376 |
|
|
-- does not know how, so if we have such a type, then we expand out
|
377 |
|
|
-- into a loop, which is inefficient but works correctly. If we don't
|
378 |
|
|
-- do this, we get the wrong length computed for the array to be
|
379 |
|
|
-- moved. The two cases we need to worry about are:
|
380 |
|
|
|
381 |
|
|
-- Explicit dereference of an unconstrained packed array type as in
|
382 |
|
|
-- the following example:
|
383 |
|
|
|
384 |
|
|
-- procedure C52 is
|
385 |
|
|
-- type BITS is array(INTEGER range <>) of BOOLEAN;
|
386 |
|
|
-- pragma PACK(BITS);
|
387 |
|
|
-- type A is access BITS;
|
388 |
|
|
-- P1,P2 : A;
|
389 |
|
|
-- begin
|
390 |
|
|
-- P1 := new BITS (1 .. 65_535);
|
391 |
|
|
-- P2 := new BITS (1 .. 65_535);
|
392 |
|
|
-- P2.ALL := P1.ALL;
|
393 |
|
|
-- end C52;
|
394 |
|
|
|
395 |
|
|
-- A formal parameter reference with an unconstrained bit array type
|
396 |
|
|
-- is the other case we need to worry about (here we assume the same
|
397 |
|
|
-- BITS type declared above):
|
398 |
|
|
|
399 |
|
|
-- procedure Write_All (File : out BITS; Contents : BITS);
|
400 |
|
|
-- begin
|
401 |
|
|
-- File.Storage := Contents;
|
402 |
|
|
-- end Write_All;
|
403 |
|
|
|
404 |
|
|
-- We expand to a loop in either of these two cases
|
405 |
|
|
|
406 |
|
|
-- Question for future thought. Another potentially more efficient
|
407 |
|
|
-- approach would be to create the actual subtype, and then do an
|
408 |
|
|
-- unchecked conversion to this actual subtype ???
|
409 |
|
|
|
410 |
|
|
Check_Unconstrained_Bit_Packed_Array : declare
|
411 |
|
|
|
412 |
|
|
function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
|
413 |
|
|
-- Function to perform required test for the first case, above
|
414 |
|
|
-- (dereference of an unconstrained bit packed array).
|
415 |
|
|
|
416 |
|
|
-----------------------
|
417 |
|
|
-- Is_UBPA_Reference --
|
418 |
|
|
-----------------------
|
419 |
|
|
|
420 |
|
|
function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
|
421 |
|
|
Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
|
422 |
|
|
P_Type : Entity_Id;
|
423 |
|
|
Des_Type : Entity_Id;
|
424 |
|
|
|
425 |
|
|
begin
|
426 |
|
|
if Present (Packed_Array_Type (Typ))
|
427 |
|
|
and then Is_Array_Type (Packed_Array_Type (Typ))
|
428 |
|
|
and then not Is_Constrained (Packed_Array_Type (Typ))
|
429 |
|
|
then
|
430 |
|
|
return True;
|
431 |
|
|
|
432 |
|
|
elsif Nkind (Opnd) = N_Explicit_Dereference then
|
433 |
|
|
P_Type := Underlying_Type (Etype (Prefix (Opnd)));
|
434 |
|
|
|
435 |
|
|
if not Is_Access_Type (P_Type) then
|
436 |
|
|
return False;
|
437 |
|
|
|
438 |
|
|
else
|
439 |
|
|
Des_Type := Designated_Type (P_Type);
|
440 |
|
|
return
|
441 |
|
|
Is_Bit_Packed_Array (Des_Type)
|
442 |
|
|
and then not Is_Constrained (Des_Type);
|
443 |
|
|
end if;
|
444 |
|
|
|
445 |
|
|
else
|
446 |
|
|
return False;
|
447 |
|
|
end if;
|
448 |
|
|
end Is_UBPA_Reference;
|
449 |
|
|
|
450 |
|
|
-- Start of processing for Check_Unconstrained_Bit_Packed_Array
|
451 |
|
|
|
452 |
|
|
begin
|
453 |
|
|
if Is_UBPA_Reference (Lhs)
|
454 |
|
|
or else
|
455 |
|
|
Is_UBPA_Reference (Rhs)
|
456 |
|
|
then
|
457 |
|
|
Loop_Required := True;
|
458 |
|
|
|
459 |
|
|
-- Here if we do not have the case of a reference to a bit packed
|
460 |
|
|
-- unconstrained array case. In this case gigi can most certainly
|
461 |
|
|
-- handle the assignment if a forwards move is allowed.
|
462 |
|
|
|
463 |
|
|
-- (could it handle the backwards case also???)
|
464 |
|
|
|
465 |
|
|
elsif Forwards_OK (N) then
|
466 |
|
|
return;
|
467 |
|
|
end if;
|
468 |
|
|
end Check_Unconstrained_Bit_Packed_Array;
|
469 |
|
|
|
470 |
|
|
-- The back end can always handle the assignment if the right side is a
|
471 |
|
|
-- string literal (note that overlap is definitely impossible in this
|
472 |
|
|
-- case). If the type is packed, a string literal is always converted
|
473 |
|
|
-- into an aggregate, except in the case of a null slice, for which no
|
474 |
|
|
-- aggregate can be written. In that case, rewrite the assignment as a
|
475 |
|
|
-- null statement, a length check has already been emitted to verify
|
476 |
|
|
-- that the range of the left-hand side is empty.
|
477 |
|
|
|
478 |
|
|
-- Note that this code is not executed if we have an assignment of a
|
479 |
|
|
-- string literal to a non-bit aligned component of a record, a case
|
480 |
|
|
-- which cannot be handled by the backend.
|
481 |
|
|
|
482 |
|
|
elsif Nkind (Rhs) = N_String_Literal then
|
483 |
|
|
if String_Length (Strval (Rhs)) = 0
|
484 |
|
|
and then Is_Bit_Packed_Array (L_Type)
|
485 |
|
|
then
|
486 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
487 |
|
|
Analyze (N);
|
488 |
|
|
end if;
|
489 |
|
|
|
490 |
|
|
return;
|
491 |
|
|
|
492 |
|
|
-- If either operand is bit packed, then we need a loop, since we can't
|
493 |
|
|
-- be sure that the slice is byte aligned. Similarly, if either operand
|
494 |
|
|
-- is a possibly unaligned slice, then we need a loop (since the back
|
495 |
|
|
-- end cannot handle unaligned slices).
|
496 |
|
|
|
497 |
|
|
elsif Is_Bit_Packed_Array (L_Type)
|
498 |
|
|
or else Is_Bit_Packed_Array (R_Type)
|
499 |
|
|
or else Is_Possibly_Unaligned_Slice (Lhs)
|
500 |
|
|
or else Is_Possibly_Unaligned_Slice (Rhs)
|
501 |
|
|
then
|
502 |
|
|
Loop_Required := True;
|
503 |
|
|
|
504 |
|
|
-- If we are not bit-packed, and we have only one slice, then no overlap
|
505 |
|
|
-- is possible except in the parameter case, so we can let the back end
|
506 |
|
|
-- handle things.
|
507 |
|
|
|
508 |
|
|
elsif not (L_Slice and R_Slice) then
|
509 |
|
|
if Forwards_OK (N) then
|
510 |
|
|
return;
|
511 |
|
|
end if;
|
512 |
|
|
end if;
|
513 |
|
|
|
514 |
|
|
-- If the right-hand side is a string literal, introduce a temporary for
|
515 |
|
|
-- it, for use in the generated loop that will follow.
|
516 |
|
|
|
517 |
|
|
if Nkind (Rhs) = N_String_Literal then
|
518 |
|
|
declare
|
519 |
|
|
Temp : constant Entity_Id :=
|
520 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
521 |
|
|
Decl : Node_Id;
|
522 |
|
|
|
523 |
|
|
begin
|
524 |
|
|
Decl :=
|
525 |
|
|
Make_Object_Declaration (Loc,
|
526 |
|
|
Defining_Identifier => Temp,
|
527 |
|
|
Object_Definition => New_Occurrence_Of (L_Type, Loc),
|
528 |
|
|
Expression => Relocate_Node (Rhs));
|
529 |
|
|
|
530 |
|
|
Insert_Action (N, Decl);
|
531 |
|
|
Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
|
532 |
|
|
R_Type := Etype (Temp);
|
533 |
|
|
end;
|
534 |
|
|
end if;
|
535 |
|
|
|
536 |
|
|
-- Come here to complete the analysis
|
537 |
|
|
|
538 |
|
|
-- Loop_Required: Set to True if we know that a loop is required
|
539 |
|
|
-- regardless of overlap considerations.
|
540 |
|
|
|
541 |
|
|
-- Forwards_OK: Set to False if we already know that a forwards
|
542 |
|
|
-- move is not safe, else set to True.
|
543 |
|
|
|
544 |
|
|
-- Backwards_OK: Set to False if we already know that a backwards
|
545 |
|
|
-- move is not safe, else set to True
|
546 |
|
|
|
547 |
|
|
-- Our task at this stage is to complete the overlap analysis, which can
|
548 |
|
|
-- result in possibly setting Forwards_OK or Backwards_OK to False, and
|
549 |
|
|
-- then generating the final code, either by deciding that it is OK
|
550 |
|
|
-- after all to let Gigi handle it, or by generating appropriate code
|
551 |
|
|
-- in the front end.
|
552 |
|
|
|
553 |
|
|
declare
|
554 |
|
|
L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
|
555 |
|
|
R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
|
556 |
|
|
|
557 |
|
|
Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
|
558 |
|
|
Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
|
559 |
|
|
Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
|
560 |
|
|
Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
|
561 |
|
|
|
562 |
|
|
Act_L_Array : Node_Id;
|
563 |
|
|
Act_R_Array : Node_Id;
|
564 |
|
|
|
565 |
|
|
Cleft_Lo : Node_Id;
|
566 |
|
|
Cright_Lo : Node_Id;
|
567 |
|
|
Condition : Node_Id;
|
568 |
|
|
|
569 |
|
|
Cresult : Compare_Result;
|
570 |
|
|
|
571 |
|
|
begin
|
572 |
|
|
-- Get the expressions for the arrays. If we are dealing with a
|
573 |
|
|
-- private type, then convert to the underlying type. We can do
|
574 |
|
|
-- direct assignments to an array that is a private type, but we
|
575 |
|
|
-- cannot assign to elements of the array without this extra
|
576 |
|
|
-- unchecked conversion.
|
577 |
|
|
|
578 |
|
|
if Nkind (Act_Lhs) = N_Slice then
|
579 |
|
|
Larray := Prefix (Act_Lhs);
|
580 |
|
|
else
|
581 |
|
|
Larray := Act_Lhs;
|
582 |
|
|
|
583 |
|
|
if Is_Private_Type (Etype (Larray)) then
|
584 |
|
|
Larray :=
|
585 |
|
|
Unchecked_Convert_To
|
586 |
|
|
(Underlying_Type (Etype (Larray)), Larray);
|
587 |
|
|
end if;
|
588 |
|
|
end if;
|
589 |
|
|
|
590 |
|
|
if Nkind (Act_Rhs) = N_Slice then
|
591 |
|
|
Rarray := Prefix (Act_Rhs);
|
592 |
|
|
else
|
593 |
|
|
Rarray := Act_Rhs;
|
594 |
|
|
|
595 |
|
|
if Is_Private_Type (Etype (Rarray)) then
|
596 |
|
|
Rarray :=
|
597 |
|
|
Unchecked_Convert_To
|
598 |
|
|
(Underlying_Type (Etype (Rarray)), Rarray);
|
599 |
|
|
end if;
|
600 |
|
|
end if;
|
601 |
|
|
|
602 |
|
|
-- If both sides are slices, we must figure out whether it is safe
|
603 |
|
|
-- to do the move in one direction or the other. It is always safe
|
604 |
|
|
-- if there is a change of representation since obviously two arrays
|
605 |
|
|
-- with different representations cannot possibly overlap.
|
606 |
|
|
|
607 |
|
|
if (not Crep) and L_Slice and R_Slice then
|
608 |
|
|
Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
|
609 |
|
|
Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
|
610 |
|
|
|
611 |
|
|
-- If both left and right hand arrays are entity names, and refer
|
612 |
|
|
-- to different entities, then we know that the move is safe (the
|
613 |
|
|
-- two storage areas are completely disjoint).
|
614 |
|
|
|
615 |
|
|
if Is_Entity_Name (Act_L_Array)
|
616 |
|
|
and then Is_Entity_Name (Act_R_Array)
|
617 |
|
|
and then Entity (Act_L_Array) /= Entity (Act_R_Array)
|
618 |
|
|
then
|
619 |
|
|
null;
|
620 |
|
|
|
621 |
|
|
-- Otherwise, we assume the worst, which is that the two arrays
|
622 |
|
|
-- are the same array. There is no need to check if we know that
|
623 |
|
|
-- is the case, because if we don't know it, we still have to
|
624 |
|
|
-- assume it!
|
625 |
|
|
|
626 |
|
|
-- Generally if the same array is involved, then we have an
|
627 |
|
|
-- overlapping case. We will have to really assume the worst (i.e.
|
628 |
|
|
-- set neither of the OK flags) unless we can determine the lower
|
629 |
|
|
-- or upper bounds at compile time and compare them.
|
630 |
|
|
|
631 |
|
|
else
|
632 |
|
|
Cresult :=
|
633 |
|
|
Compile_Time_Compare
|
634 |
|
|
(Left_Lo, Right_Lo, Assume_Valid => True);
|
635 |
|
|
|
636 |
|
|
if Cresult = Unknown then
|
637 |
|
|
Cresult :=
|
638 |
|
|
Compile_Time_Compare
|
639 |
|
|
(Left_Hi, Right_Hi, Assume_Valid => True);
|
640 |
|
|
end if;
|
641 |
|
|
|
642 |
|
|
case Cresult is
|
643 |
|
|
when LT | LE | EQ => Set_Backwards_OK (N, False);
|
644 |
|
|
when GT | GE => Set_Forwards_OK (N, False);
|
645 |
|
|
when NE | Unknown => Set_Backwards_OK (N, False);
|
646 |
|
|
Set_Forwards_OK (N, False);
|
647 |
|
|
end case;
|
648 |
|
|
end if;
|
649 |
|
|
end if;
|
650 |
|
|
|
651 |
|
|
-- If after that analysis Loop_Required is False, meaning that we
|
652 |
|
|
-- have not discovered some non-overlap reason for requiring a loop,
|
653 |
|
|
-- then the outcome depends on the capabilities of the back end.
|
654 |
|
|
|
655 |
|
|
if not Loop_Required then
|
656 |
|
|
|
657 |
|
|
-- The GCC back end can deal with all cases of overlap by falling
|
658 |
|
|
-- back to memmove if it cannot use a more efficient approach.
|
659 |
|
|
|
660 |
|
|
if VM_Target = No_VM and not AAMP_On_Target then
|
661 |
|
|
return;
|
662 |
|
|
|
663 |
|
|
-- Assume other back ends can handle it if Forwards_OK is set
|
664 |
|
|
|
665 |
|
|
elsif Forwards_OK (N) then
|
666 |
|
|
return;
|
667 |
|
|
|
668 |
|
|
-- If Forwards_OK is not set, the back end will need something
|
669 |
|
|
-- like memmove to handle the move. For now, this processing is
|
670 |
|
|
-- activated using the .s debug flag (-gnatd.s).
|
671 |
|
|
|
672 |
|
|
elsif Debug_Flag_Dot_S then
|
673 |
|
|
return;
|
674 |
|
|
end if;
|
675 |
|
|
end if;
|
676 |
|
|
|
677 |
|
|
-- At this stage we have to generate an explicit loop, and we have
|
678 |
|
|
-- the following cases:
|
679 |
|
|
|
680 |
|
|
-- Forwards_OK = True
|
681 |
|
|
|
682 |
|
|
-- Rnn : right_index := right_index'First;
|
683 |
|
|
-- for Lnn in left-index loop
|
684 |
|
|
-- left (Lnn) := right (Rnn);
|
685 |
|
|
-- Rnn := right_index'Succ (Rnn);
|
686 |
|
|
-- end loop;
|
687 |
|
|
|
688 |
|
|
-- Note: the above code MUST be analyzed with checks off, because
|
689 |
|
|
-- otherwise the Succ could overflow. But in any case this is more
|
690 |
|
|
-- efficient!
|
691 |
|
|
|
692 |
|
|
-- Forwards_OK = False, Backwards_OK = True
|
693 |
|
|
|
694 |
|
|
-- Rnn : right_index := right_index'Last;
|
695 |
|
|
-- for Lnn in reverse left-index loop
|
696 |
|
|
-- left (Lnn) := right (Rnn);
|
697 |
|
|
-- Rnn := right_index'Pred (Rnn);
|
698 |
|
|
-- end loop;
|
699 |
|
|
|
700 |
|
|
-- Note: the above code MUST be analyzed with checks off, because
|
701 |
|
|
-- otherwise the Pred could overflow. But in any case this is more
|
702 |
|
|
-- efficient!
|
703 |
|
|
|
704 |
|
|
-- Forwards_OK = Backwards_OK = False
|
705 |
|
|
|
706 |
|
|
-- This only happens if we have the same array on each side. It is
|
707 |
|
|
-- possible to create situations using overlays that violate this,
|
708 |
|
|
-- but we simply do not promise to get this "right" in this case.
|
709 |
|
|
|
710 |
|
|
-- There are two possible subcases. If the No_Implicit_Conditionals
|
711 |
|
|
-- restriction is set, then we generate the following code:
|
712 |
|
|
|
713 |
|
|
-- declare
|
714 |
|
|
-- T : constant <operand-type> := rhs;
|
715 |
|
|
-- begin
|
716 |
|
|
-- lhs := T;
|
717 |
|
|
-- end;
|
718 |
|
|
|
719 |
|
|
-- If implicit conditionals are permitted, then we generate:
|
720 |
|
|
|
721 |
|
|
-- if Left_Lo <= Right_Lo then
|
722 |
|
|
-- <code for Forwards_OK = True above>
|
723 |
|
|
-- else
|
724 |
|
|
-- <code for Backwards_OK = True above>
|
725 |
|
|
-- end if;
|
726 |
|
|
|
727 |
|
|
-- In order to detect possible aliasing, we examine the renamed
|
728 |
|
|
-- expression when the source or target is a renaming. However,
|
729 |
|
|
-- the renaming may be intended to capture an address that may be
|
730 |
|
|
-- affected by subsequent code, and therefore we must recover
|
731 |
|
|
-- the actual entity for the expansion that follows, not the
|
732 |
|
|
-- object it renames. In particular, if source or target designate
|
733 |
|
|
-- a portion of a dynamically allocated object, the pointer to it
|
734 |
|
|
-- may be reassigned but the renaming preserves the proper location.
|
735 |
|
|
|
736 |
|
|
if Is_Entity_Name (Rhs)
|
737 |
|
|
and then
|
738 |
|
|
Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
|
739 |
|
|
and then Nkind (Act_Rhs) = N_Slice
|
740 |
|
|
then
|
741 |
|
|
Rarray := Rhs;
|
742 |
|
|
end if;
|
743 |
|
|
|
744 |
|
|
if Is_Entity_Name (Lhs)
|
745 |
|
|
and then
|
746 |
|
|
Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
|
747 |
|
|
and then Nkind (Act_Lhs) = N_Slice
|
748 |
|
|
then
|
749 |
|
|
Larray := Lhs;
|
750 |
|
|
end if;
|
751 |
|
|
|
752 |
|
|
-- Cases where either Forwards_OK or Backwards_OK is true
|
753 |
|
|
|
754 |
|
|
if Forwards_OK (N) or else Backwards_OK (N) then
|
755 |
|
|
if Needs_Finalization (Component_Type (L_Type))
|
756 |
|
|
and then Base_Type (L_Type) = Base_Type (R_Type)
|
757 |
|
|
and then Ndim = 1
|
758 |
|
|
and then not No_Ctrl_Actions (N)
|
759 |
|
|
then
|
760 |
|
|
declare
|
761 |
|
|
Proc : constant Entity_Id :=
|
762 |
|
|
TSS (Base_Type (L_Type), TSS_Slice_Assign);
|
763 |
|
|
Actuals : List_Id;
|
764 |
|
|
|
765 |
|
|
begin
|
766 |
|
|
Apply_Dereference (Larray);
|
767 |
|
|
Apply_Dereference (Rarray);
|
768 |
|
|
Actuals := New_List (
|
769 |
|
|
Duplicate_Subexpr (Larray, Name_Req => True),
|
770 |
|
|
Duplicate_Subexpr (Rarray, Name_Req => True),
|
771 |
|
|
Duplicate_Subexpr (Left_Lo, Name_Req => True),
|
772 |
|
|
Duplicate_Subexpr (Left_Hi, Name_Req => True),
|
773 |
|
|
Duplicate_Subexpr (Right_Lo, Name_Req => True),
|
774 |
|
|
Duplicate_Subexpr (Right_Hi, Name_Req => True));
|
775 |
|
|
|
776 |
|
|
Append_To (Actuals,
|
777 |
|
|
New_Occurrence_Of (
|
778 |
|
|
Boolean_Literals (not Forwards_OK (N)), Loc));
|
779 |
|
|
|
780 |
|
|
Rewrite (N,
|
781 |
|
|
Make_Procedure_Call_Statement (Loc,
|
782 |
|
|
Name => New_Reference_To (Proc, Loc),
|
783 |
|
|
Parameter_Associations => Actuals));
|
784 |
|
|
end;
|
785 |
|
|
|
786 |
|
|
else
|
787 |
|
|
Rewrite (N,
|
788 |
|
|
Expand_Assign_Array_Loop
|
789 |
|
|
(N, Larray, Rarray, L_Type, R_Type, Ndim,
|
790 |
|
|
Rev => not Forwards_OK (N)));
|
791 |
|
|
end if;
|
792 |
|
|
|
793 |
|
|
-- Case of both are false with No_Implicit_Conditionals
|
794 |
|
|
|
795 |
|
|
elsif Restriction_Active (No_Implicit_Conditionals) then
|
796 |
|
|
declare
|
797 |
|
|
T : constant Entity_Id :=
|
798 |
|
|
Make_Defining_Identifier (Loc, Chars => Name_T);
|
799 |
|
|
|
800 |
|
|
begin
|
801 |
|
|
Rewrite (N,
|
802 |
|
|
Make_Block_Statement (Loc,
|
803 |
|
|
Declarations => New_List (
|
804 |
|
|
Make_Object_Declaration (Loc,
|
805 |
|
|
Defining_Identifier => T,
|
806 |
|
|
Constant_Present => True,
|
807 |
|
|
Object_Definition =>
|
808 |
|
|
New_Occurrence_Of (Etype (Rhs), Loc),
|
809 |
|
|
Expression => Relocate_Node (Rhs))),
|
810 |
|
|
|
811 |
|
|
Handled_Statement_Sequence =>
|
812 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
813 |
|
|
Statements => New_List (
|
814 |
|
|
Make_Assignment_Statement (Loc,
|
815 |
|
|
Name => Relocate_Node (Lhs),
|
816 |
|
|
Expression => New_Occurrence_Of (T, Loc))))));
|
817 |
|
|
end;
|
818 |
|
|
|
819 |
|
|
-- Case of both are false with implicit conditionals allowed
|
820 |
|
|
|
821 |
|
|
else
|
822 |
|
|
-- Before we generate this code, we must ensure that the left and
|
823 |
|
|
-- right side array types are defined. They may be itypes, and we
|
824 |
|
|
-- cannot let them be defined inside the if, since the first use
|
825 |
|
|
-- in the then may not be executed.
|
826 |
|
|
|
827 |
|
|
Ensure_Defined (L_Type, N);
|
828 |
|
|
Ensure_Defined (R_Type, N);
|
829 |
|
|
|
830 |
|
|
-- We normally compare addresses to find out which way round to
|
831 |
|
|
-- do the loop, since this is reliable, and handles the cases of
|
832 |
|
|
-- parameters, conversions etc. But we can't do that in the bit
|
833 |
|
|
-- packed case or the VM case, because addresses don't work there.
|
834 |
|
|
|
835 |
|
|
if not Is_Bit_Packed_Array (L_Type) and then VM_Target = No_VM then
|
836 |
|
|
Condition :=
|
837 |
|
|
Make_Op_Le (Loc,
|
838 |
|
|
Left_Opnd =>
|
839 |
|
|
Unchecked_Convert_To (RTE (RE_Integer_Address),
|
840 |
|
|
Make_Attribute_Reference (Loc,
|
841 |
|
|
Prefix =>
|
842 |
|
|
Make_Indexed_Component (Loc,
|
843 |
|
|
Prefix =>
|
844 |
|
|
Duplicate_Subexpr_Move_Checks (Larray, True),
|
845 |
|
|
Expressions => New_List (
|
846 |
|
|
Make_Attribute_Reference (Loc,
|
847 |
|
|
Prefix =>
|
848 |
|
|
New_Reference_To
|
849 |
|
|
(L_Index_Typ, Loc),
|
850 |
|
|
Attribute_Name => Name_First))),
|
851 |
|
|
Attribute_Name => Name_Address)),
|
852 |
|
|
|
853 |
|
|
Right_Opnd =>
|
854 |
|
|
Unchecked_Convert_To (RTE (RE_Integer_Address),
|
855 |
|
|
Make_Attribute_Reference (Loc,
|
856 |
|
|
Prefix =>
|
857 |
|
|
Make_Indexed_Component (Loc,
|
858 |
|
|
Prefix =>
|
859 |
|
|
Duplicate_Subexpr_Move_Checks (Rarray, True),
|
860 |
|
|
Expressions => New_List (
|
861 |
|
|
Make_Attribute_Reference (Loc,
|
862 |
|
|
Prefix =>
|
863 |
|
|
New_Reference_To
|
864 |
|
|
(R_Index_Typ, Loc),
|
865 |
|
|
Attribute_Name => Name_First))),
|
866 |
|
|
Attribute_Name => Name_Address)));
|
867 |
|
|
|
868 |
|
|
-- For the bit packed and VM cases we use the bounds. That's OK,
|
869 |
|
|
-- because we don't have to worry about parameters, since they
|
870 |
|
|
-- cannot cause overlap. Perhaps we should worry about weird slice
|
871 |
|
|
-- conversions ???
|
872 |
|
|
|
873 |
|
|
else
|
874 |
|
|
-- Copy the bounds
|
875 |
|
|
|
876 |
|
|
Cleft_Lo := New_Copy_Tree (Left_Lo);
|
877 |
|
|
Cright_Lo := New_Copy_Tree (Right_Lo);
|
878 |
|
|
|
879 |
|
|
-- If the types do not match we add an implicit conversion
|
880 |
|
|
-- here to ensure proper match
|
881 |
|
|
|
882 |
|
|
if Etype (Left_Lo) /= Etype (Right_Lo) then
|
883 |
|
|
Cright_Lo :=
|
884 |
|
|
Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
|
885 |
|
|
end if;
|
886 |
|
|
|
887 |
|
|
-- Reset the Analyzed flag, because the bounds of the index
|
888 |
|
|
-- type itself may be universal, and must must be reaanalyzed
|
889 |
|
|
-- to acquire the proper type for the back end.
|
890 |
|
|
|
891 |
|
|
Set_Analyzed (Cleft_Lo, False);
|
892 |
|
|
Set_Analyzed (Cright_Lo, False);
|
893 |
|
|
|
894 |
|
|
Condition :=
|
895 |
|
|
Make_Op_Le (Loc,
|
896 |
|
|
Left_Opnd => Cleft_Lo,
|
897 |
|
|
Right_Opnd => Cright_Lo);
|
898 |
|
|
end if;
|
899 |
|
|
|
900 |
|
|
if Needs_Finalization (Component_Type (L_Type))
|
901 |
|
|
and then Base_Type (L_Type) = Base_Type (R_Type)
|
902 |
|
|
and then Ndim = 1
|
903 |
|
|
and then not No_Ctrl_Actions (N)
|
904 |
|
|
then
|
905 |
|
|
|
906 |
|
|
-- Call TSS procedure for array assignment, passing the
|
907 |
|
|
-- explicit bounds of right and left hand sides.
|
908 |
|
|
|
909 |
|
|
declare
|
910 |
|
|
Proc : constant Entity_Id :=
|
911 |
|
|
TSS (Base_Type (L_Type), TSS_Slice_Assign);
|
912 |
|
|
Actuals : List_Id;
|
913 |
|
|
|
914 |
|
|
begin
|
915 |
|
|
Apply_Dereference (Larray);
|
916 |
|
|
Apply_Dereference (Rarray);
|
917 |
|
|
Actuals := New_List (
|
918 |
|
|
Duplicate_Subexpr (Larray, Name_Req => True),
|
919 |
|
|
Duplicate_Subexpr (Rarray, Name_Req => True),
|
920 |
|
|
Duplicate_Subexpr (Left_Lo, Name_Req => True),
|
921 |
|
|
Duplicate_Subexpr (Left_Hi, Name_Req => True),
|
922 |
|
|
Duplicate_Subexpr (Right_Lo, Name_Req => True),
|
923 |
|
|
Duplicate_Subexpr (Right_Hi, Name_Req => True));
|
924 |
|
|
|
925 |
|
|
Append_To (Actuals,
|
926 |
|
|
Make_Op_Not (Loc,
|
927 |
|
|
Right_Opnd => Condition));
|
928 |
|
|
|
929 |
|
|
Rewrite (N,
|
930 |
|
|
Make_Procedure_Call_Statement (Loc,
|
931 |
|
|
Name => New_Reference_To (Proc, Loc),
|
932 |
|
|
Parameter_Associations => Actuals));
|
933 |
|
|
end;
|
934 |
|
|
|
935 |
|
|
else
|
936 |
|
|
Rewrite (N,
|
937 |
|
|
Make_Implicit_If_Statement (N,
|
938 |
|
|
Condition => Condition,
|
939 |
|
|
|
940 |
|
|
Then_Statements => New_List (
|
941 |
|
|
Expand_Assign_Array_Loop
|
942 |
|
|
(N, Larray, Rarray, L_Type, R_Type, Ndim,
|
943 |
|
|
Rev => False)),
|
944 |
|
|
|
945 |
|
|
Else_Statements => New_List (
|
946 |
|
|
Expand_Assign_Array_Loop
|
947 |
|
|
(N, Larray, Rarray, L_Type, R_Type, Ndim,
|
948 |
|
|
Rev => True))));
|
949 |
|
|
end if;
|
950 |
|
|
end if;
|
951 |
|
|
|
952 |
|
|
Analyze (N, Suppress => All_Checks);
|
953 |
|
|
end;
|
954 |
|
|
|
955 |
|
|
exception
|
956 |
|
|
when RE_Not_Available =>
|
957 |
|
|
return;
|
958 |
|
|
end Expand_Assign_Array;
|
959 |
|
|
|
960 |
|
|
------------------------------
|
961 |
|
|
-- Expand_Assign_Array_Loop --
|
962 |
|
|
------------------------------
|
963 |
|
|
|
964 |
|
|
-- The following is an example of the loop generated for the case of a
|
965 |
|
|
-- two-dimensional array:
|
966 |
|
|
|
967 |
|
|
-- declare
|
968 |
|
|
-- R2b : Tm1X1 := 1;
|
969 |
|
|
-- begin
|
970 |
|
|
-- for L1b in 1 .. 100 loop
|
971 |
|
|
-- declare
|
972 |
|
|
-- R4b : Tm1X2 := 1;
|
973 |
|
|
-- begin
|
974 |
|
|
-- for L3b in 1 .. 100 loop
|
975 |
|
|
-- vm1 (L1b, L3b) := vm2 (R2b, R4b);
|
976 |
|
|
-- R4b := Tm1X2'succ(R4b);
|
977 |
|
|
-- end loop;
|
978 |
|
|
-- end;
|
979 |
|
|
-- R2b := Tm1X1'succ(R2b);
|
980 |
|
|
-- end loop;
|
981 |
|
|
-- end;
|
982 |
|
|
|
983 |
|
|
-- Here Rev is False, and Tm1Xn are the subscript types for the right hand
|
984 |
|
|
-- side. The declarations of R2b and R4b are inserted before the original
|
985 |
|
|
-- assignment statement.
|
986 |
|
|
|
987 |
|
|
function Expand_Assign_Array_Loop
|
988 |
|
|
(N : Node_Id;
|
989 |
|
|
Larray : Entity_Id;
|
990 |
|
|
Rarray : Entity_Id;
|
991 |
|
|
L_Type : Entity_Id;
|
992 |
|
|
R_Type : Entity_Id;
|
993 |
|
|
Ndim : Pos;
|
994 |
|
|
Rev : Boolean) return Node_Id
|
995 |
|
|
is
|
996 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
997 |
|
|
|
998 |
|
|
Lnn : array (1 .. Ndim) of Entity_Id;
|
999 |
|
|
Rnn : array (1 .. Ndim) of Entity_Id;
|
1000 |
|
|
-- Entities used as subscripts on left and right sides
|
1001 |
|
|
|
1002 |
|
|
L_Index_Type : array (1 .. Ndim) of Entity_Id;
|
1003 |
|
|
R_Index_Type : array (1 .. Ndim) of Entity_Id;
|
1004 |
|
|
-- Left and right index types
|
1005 |
|
|
|
1006 |
|
|
Assign : Node_Id;
|
1007 |
|
|
|
1008 |
|
|
F_Or_L : Name_Id;
|
1009 |
|
|
S_Or_P : Name_Id;
|
1010 |
|
|
|
1011 |
|
|
begin
|
1012 |
|
|
if Rev then
|
1013 |
|
|
F_Or_L := Name_Last;
|
1014 |
|
|
S_Or_P := Name_Pred;
|
1015 |
|
|
else
|
1016 |
|
|
F_Or_L := Name_First;
|
1017 |
|
|
S_Or_P := Name_Succ;
|
1018 |
|
|
end if;
|
1019 |
|
|
|
1020 |
|
|
-- Setup index types and subscript entities
|
1021 |
|
|
|
1022 |
|
|
declare
|
1023 |
|
|
L_Index : Node_Id;
|
1024 |
|
|
R_Index : Node_Id;
|
1025 |
|
|
|
1026 |
|
|
begin
|
1027 |
|
|
L_Index := First_Index (L_Type);
|
1028 |
|
|
R_Index := First_Index (R_Type);
|
1029 |
|
|
|
1030 |
|
|
for J in 1 .. Ndim loop
|
1031 |
|
|
Lnn (J) :=
|
1032 |
|
|
Make_Defining_Identifier (Loc,
|
1033 |
|
|
Chars => New_Internal_Name ('L'));
|
1034 |
|
|
|
1035 |
|
|
Rnn (J) :=
|
1036 |
|
|
Make_Defining_Identifier (Loc,
|
1037 |
|
|
Chars => New_Internal_Name ('R'));
|
1038 |
|
|
|
1039 |
|
|
L_Index_Type (J) := Etype (L_Index);
|
1040 |
|
|
R_Index_Type (J) := Etype (R_Index);
|
1041 |
|
|
|
1042 |
|
|
Next_Index (L_Index);
|
1043 |
|
|
Next_Index (R_Index);
|
1044 |
|
|
end loop;
|
1045 |
|
|
end;
|
1046 |
|
|
|
1047 |
|
|
-- Now construct the assignment statement
|
1048 |
|
|
|
1049 |
|
|
declare
|
1050 |
|
|
ExprL : constant List_Id := New_List;
|
1051 |
|
|
ExprR : constant List_Id := New_List;
|
1052 |
|
|
|
1053 |
|
|
begin
|
1054 |
|
|
for J in 1 .. Ndim loop
|
1055 |
|
|
Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
|
1056 |
|
|
Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
|
1057 |
|
|
end loop;
|
1058 |
|
|
|
1059 |
|
|
Assign :=
|
1060 |
|
|
Make_Assignment_Statement (Loc,
|
1061 |
|
|
Name =>
|
1062 |
|
|
Make_Indexed_Component (Loc,
|
1063 |
|
|
Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
|
1064 |
|
|
Expressions => ExprL),
|
1065 |
|
|
Expression =>
|
1066 |
|
|
Make_Indexed_Component (Loc,
|
1067 |
|
|
Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
|
1068 |
|
|
Expressions => ExprR));
|
1069 |
|
|
|
1070 |
|
|
-- We set assignment OK, since there are some cases, e.g. in object
|
1071 |
|
|
-- declarations, where we are actually assigning into a constant.
|
1072 |
|
|
-- If there really is an illegality, it was caught long before now,
|
1073 |
|
|
-- and was flagged when the original assignment was analyzed.
|
1074 |
|
|
|
1075 |
|
|
Set_Assignment_OK (Name (Assign));
|
1076 |
|
|
|
1077 |
|
|
-- Propagate the No_Ctrl_Actions flag to individual assignments
|
1078 |
|
|
|
1079 |
|
|
Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
|
1080 |
|
|
end;
|
1081 |
|
|
|
1082 |
|
|
-- Now construct the loop from the inside out, with the last subscript
|
1083 |
|
|
-- varying most rapidly. Note that Assign is first the raw assignment
|
1084 |
|
|
-- statement, and then subsequently the loop that wraps it up.
|
1085 |
|
|
|
1086 |
|
|
for J in reverse 1 .. Ndim loop
|
1087 |
|
|
Assign :=
|
1088 |
|
|
Make_Block_Statement (Loc,
|
1089 |
|
|
Declarations => New_List (
|
1090 |
|
|
Make_Object_Declaration (Loc,
|
1091 |
|
|
Defining_Identifier => Rnn (J),
|
1092 |
|
|
Object_Definition =>
|
1093 |
|
|
New_Occurrence_Of (R_Index_Type (J), Loc),
|
1094 |
|
|
Expression =>
|
1095 |
|
|
Make_Attribute_Reference (Loc,
|
1096 |
|
|
Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
|
1097 |
|
|
Attribute_Name => F_Or_L))),
|
1098 |
|
|
|
1099 |
|
|
Handled_Statement_Sequence =>
|
1100 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
1101 |
|
|
Statements => New_List (
|
1102 |
|
|
Make_Implicit_Loop_Statement (N,
|
1103 |
|
|
Iteration_Scheme =>
|
1104 |
|
|
Make_Iteration_Scheme (Loc,
|
1105 |
|
|
Loop_Parameter_Specification =>
|
1106 |
|
|
Make_Loop_Parameter_Specification (Loc,
|
1107 |
|
|
Defining_Identifier => Lnn (J),
|
1108 |
|
|
Reverse_Present => Rev,
|
1109 |
|
|
Discrete_Subtype_Definition =>
|
1110 |
|
|
New_Reference_To (L_Index_Type (J), Loc))),
|
1111 |
|
|
|
1112 |
|
|
Statements => New_List (
|
1113 |
|
|
Assign,
|
1114 |
|
|
|
1115 |
|
|
Make_Assignment_Statement (Loc,
|
1116 |
|
|
Name => New_Occurrence_Of (Rnn (J), Loc),
|
1117 |
|
|
Expression =>
|
1118 |
|
|
Make_Attribute_Reference (Loc,
|
1119 |
|
|
Prefix =>
|
1120 |
|
|
New_Occurrence_Of (R_Index_Type (J), Loc),
|
1121 |
|
|
Attribute_Name => S_Or_P,
|
1122 |
|
|
Expressions => New_List (
|
1123 |
|
|
New_Occurrence_Of (Rnn (J), Loc)))))))));
|
1124 |
|
|
end loop;
|
1125 |
|
|
|
1126 |
|
|
return Assign;
|
1127 |
|
|
end Expand_Assign_Array_Loop;
|
1128 |
|
|
|
1129 |
|
|
--------------------------
|
1130 |
|
|
-- Expand_Assign_Record --
|
1131 |
|
|
--------------------------
|
1132 |
|
|
|
1133 |
|
|
procedure Expand_Assign_Record (N : Node_Id) is
|
1134 |
|
|
Lhs : constant Node_Id := Name (N);
|
1135 |
|
|
Rhs : Node_Id := Expression (N);
|
1136 |
|
|
L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
|
1137 |
|
|
|
1138 |
|
|
begin
|
1139 |
|
|
-- If change of representation, then extract the real right hand side
|
1140 |
|
|
-- from the type conversion, and proceed with component-wise assignment,
|
1141 |
|
|
-- since the two types are not the same as far as the back end is
|
1142 |
|
|
-- concerned.
|
1143 |
|
|
|
1144 |
|
|
if Change_Of_Representation (N) then
|
1145 |
|
|
Rhs := Expression (Rhs);
|
1146 |
|
|
|
1147 |
|
|
-- If this may be a case of a large bit aligned component, then proceed
|
1148 |
|
|
-- with component-wise assignment, to avoid possible clobbering of other
|
1149 |
|
|
-- components sharing bits in the first or last byte of the component to
|
1150 |
|
|
-- be assigned.
|
1151 |
|
|
|
1152 |
|
|
elsif Possible_Bit_Aligned_Component (Lhs)
|
1153 |
|
|
or
|
1154 |
|
|
Possible_Bit_Aligned_Component (Rhs)
|
1155 |
|
|
then
|
1156 |
|
|
null;
|
1157 |
|
|
|
1158 |
|
|
-- If we have a tagged type that has a complete record representation
|
1159 |
|
|
-- clause, we must do we must do component-wise assignments, since child
|
1160 |
|
|
-- types may have used gaps for their components, and we might be
|
1161 |
|
|
-- dealing with a view conversion.
|
1162 |
|
|
|
1163 |
|
|
elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
|
1164 |
|
|
null;
|
1165 |
|
|
|
1166 |
|
|
-- If neither condition met, then nothing special to do, the back end
|
1167 |
|
|
-- can handle assignment of the entire component as a single entity.
|
1168 |
|
|
|
1169 |
|
|
else
|
1170 |
|
|
return;
|
1171 |
|
|
end if;
|
1172 |
|
|
|
1173 |
|
|
-- At this stage we know that we must do a component wise assignment
|
1174 |
|
|
|
1175 |
|
|
declare
|
1176 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1177 |
|
|
R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
|
1178 |
|
|
Decl : constant Node_Id := Declaration_Node (R_Typ);
|
1179 |
|
|
RDef : Node_Id;
|
1180 |
|
|
F : Entity_Id;
|
1181 |
|
|
|
1182 |
|
|
function Find_Component
|
1183 |
|
|
(Typ : Entity_Id;
|
1184 |
|
|
Comp : Entity_Id) return Entity_Id;
|
1185 |
|
|
-- Find the component with the given name in the underlying record
|
1186 |
|
|
-- declaration for Typ. We need to use the actual entity because the
|
1187 |
|
|
-- type may be private and resolution by identifier alone would fail.
|
1188 |
|
|
|
1189 |
|
|
function Make_Component_List_Assign
|
1190 |
|
|
(CL : Node_Id;
|
1191 |
|
|
U_U : Boolean := False) return List_Id;
|
1192 |
|
|
-- Returns a sequence of statements to assign the components that
|
1193 |
|
|
-- are referenced in the given component list. The flag U_U is
|
1194 |
|
|
-- used to force the usage of the inferred value of the variant
|
1195 |
|
|
-- part expression as the switch for the generated case statement.
|
1196 |
|
|
|
1197 |
|
|
function Make_Field_Assign
|
1198 |
|
|
(C : Entity_Id;
|
1199 |
|
|
U_U : Boolean := False) return Node_Id;
|
1200 |
|
|
-- Given C, the entity for a discriminant or component, build an
|
1201 |
|
|
-- assignment for the corresponding field values. The flag U_U
|
1202 |
|
|
-- signals the presence of an Unchecked_Union and forces the usage
|
1203 |
|
|
-- of the inferred discriminant value of C as the right hand side
|
1204 |
|
|
-- of the assignment.
|
1205 |
|
|
|
1206 |
|
|
function Make_Field_Assigns (CI : List_Id) return List_Id;
|
1207 |
|
|
-- Given CI, a component items list, construct series of statements
|
1208 |
|
|
-- for fieldwise assignment of the corresponding components.
|
1209 |
|
|
|
1210 |
|
|
--------------------
|
1211 |
|
|
-- Find_Component --
|
1212 |
|
|
--------------------
|
1213 |
|
|
|
1214 |
|
|
function Find_Component
|
1215 |
|
|
(Typ : Entity_Id;
|
1216 |
|
|
Comp : Entity_Id) return Entity_Id
|
1217 |
|
|
is
|
1218 |
|
|
Utyp : constant Entity_Id := Underlying_Type (Typ);
|
1219 |
|
|
C : Entity_Id;
|
1220 |
|
|
|
1221 |
|
|
begin
|
1222 |
|
|
C := First_Entity (Utyp);
|
1223 |
|
|
while Present (C) loop
|
1224 |
|
|
if Chars (C) = Chars (Comp) then
|
1225 |
|
|
return C;
|
1226 |
|
|
end if;
|
1227 |
|
|
|
1228 |
|
|
Next_Entity (C);
|
1229 |
|
|
end loop;
|
1230 |
|
|
|
1231 |
|
|
raise Program_Error;
|
1232 |
|
|
end Find_Component;
|
1233 |
|
|
|
1234 |
|
|
--------------------------------
|
1235 |
|
|
-- Make_Component_List_Assign --
|
1236 |
|
|
--------------------------------
|
1237 |
|
|
|
1238 |
|
|
function Make_Component_List_Assign
|
1239 |
|
|
(CL : Node_Id;
|
1240 |
|
|
U_U : Boolean := False) return List_Id
|
1241 |
|
|
is
|
1242 |
|
|
CI : constant List_Id := Component_Items (CL);
|
1243 |
|
|
VP : constant Node_Id := Variant_Part (CL);
|
1244 |
|
|
|
1245 |
|
|
Alts : List_Id;
|
1246 |
|
|
DC : Node_Id;
|
1247 |
|
|
DCH : List_Id;
|
1248 |
|
|
Expr : Node_Id;
|
1249 |
|
|
Result : List_Id;
|
1250 |
|
|
V : Node_Id;
|
1251 |
|
|
|
1252 |
|
|
begin
|
1253 |
|
|
Result := Make_Field_Assigns (CI);
|
1254 |
|
|
|
1255 |
|
|
if Present (VP) then
|
1256 |
|
|
V := First_Non_Pragma (Variants (VP));
|
1257 |
|
|
Alts := New_List;
|
1258 |
|
|
while Present (V) loop
|
1259 |
|
|
DCH := New_List;
|
1260 |
|
|
DC := First (Discrete_Choices (V));
|
1261 |
|
|
while Present (DC) loop
|
1262 |
|
|
Append_To (DCH, New_Copy_Tree (DC));
|
1263 |
|
|
Next (DC);
|
1264 |
|
|
end loop;
|
1265 |
|
|
|
1266 |
|
|
Append_To (Alts,
|
1267 |
|
|
Make_Case_Statement_Alternative (Loc,
|
1268 |
|
|
Discrete_Choices => DCH,
|
1269 |
|
|
Statements =>
|
1270 |
|
|
Make_Component_List_Assign (Component_List (V))));
|
1271 |
|
|
Next_Non_Pragma (V);
|
1272 |
|
|
end loop;
|
1273 |
|
|
|
1274 |
|
|
-- If we have an Unchecked_Union, use the value of the inferred
|
1275 |
|
|
-- discriminant of the variant part expression as the switch
|
1276 |
|
|
-- for the case statement. The case statement may later be
|
1277 |
|
|
-- folded.
|
1278 |
|
|
|
1279 |
|
|
if U_U then
|
1280 |
|
|
Expr :=
|
1281 |
|
|
New_Copy (Get_Discriminant_Value (
|
1282 |
|
|
Entity (Name (VP)),
|
1283 |
|
|
Etype (Rhs),
|
1284 |
|
|
Discriminant_Constraint (Etype (Rhs))));
|
1285 |
|
|
else
|
1286 |
|
|
Expr :=
|
1287 |
|
|
Make_Selected_Component (Loc,
|
1288 |
|
|
Prefix => Duplicate_Subexpr (Rhs),
|
1289 |
|
|
Selector_Name =>
|
1290 |
|
|
Make_Identifier (Loc, Chars (Name (VP))));
|
1291 |
|
|
end if;
|
1292 |
|
|
|
1293 |
|
|
Append_To (Result,
|
1294 |
|
|
Make_Case_Statement (Loc,
|
1295 |
|
|
Expression => Expr,
|
1296 |
|
|
Alternatives => Alts));
|
1297 |
|
|
end if;
|
1298 |
|
|
|
1299 |
|
|
return Result;
|
1300 |
|
|
end Make_Component_List_Assign;
|
1301 |
|
|
|
1302 |
|
|
-----------------------
|
1303 |
|
|
-- Make_Field_Assign --
|
1304 |
|
|
-----------------------
|
1305 |
|
|
|
1306 |
|
|
function Make_Field_Assign
|
1307 |
|
|
(C : Entity_Id;
|
1308 |
|
|
U_U : Boolean := False) return Node_Id
|
1309 |
|
|
is
|
1310 |
|
|
A : Node_Id;
|
1311 |
|
|
Expr : Node_Id;
|
1312 |
|
|
|
1313 |
|
|
begin
|
1314 |
|
|
-- In the case of an Unchecked_Union, use the discriminant
|
1315 |
|
|
-- constraint value as on the right hand side of the assignment.
|
1316 |
|
|
|
1317 |
|
|
if U_U then
|
1318 |
|
|
Expr :=
|
1319 |
|
|
New_Copy (Get_Discriminant_Value (C,
|
1320 |
|
|
Etype (Rhs),
|
1321 |
|
|
Discriminant_Constraint (Etype (Rhs))));
|
1322 |
|
|
else
|
1323 |
|
|
Expr :=
|
1324 |
|
|
Make_Selected_Component (Loc,
|
1325 |
|
|
Prefix => Duplicate_Subexpr (Rhs),
|
1326 |
|
|
Selector_Name => New_Occurrence_Of (C, Loc));
|
1327 |
|
|
end if;
|
1328 |
|
|
|
1329 |
|
|
A :=
|
1330 |
|
|
Make_Assignment_Statement (Loc,
|
1331 |
|
|
Name =>
|
1332 |
|
|
Make_Selected_Component (Loc,
|
1333 |
|
|
Prefix => Duplicate_Subexpr (Lhs),
|
1334 |
|
|
Selector_Name =>
|
1335 |
|
|
New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
|
1336 |
|
|
Expression => Expr);
|
1337 |
|
|
|
1338 |
|
|
-- Set Assignment_OK, so discriminants can be assigned
|
1339 |
|
|
|
1340 |
|
|
Set_Assignment_OK (Name (A), True);
|
1341 |
|
|
|
1342 |
|
|
if Componentwise_Assignment (N)
|
1343 |
|
|
and then Nkind (Name (A)) = N_Selected_Component
|
1344 |
|
|
and then Chars (Selector_Name (Name (A))) = Name_uParent
|
1345 |
|
|
then
|
1346 |
|
|
Set_Componentwise_Assignment (A);
|
1347 |
|
|
end if;
|
1348 |
|
|
|
1349 |
|
|
return A;
|
1350 |
|
|
end Make_Field_Assign;
|
1351 |
|
|
|
1352 |
|
|
------------------------
|
1353 |
|
|
-- Make_Field_Assigns --
|
1354 |
|
|
------------------------
|
1355 |
|
|
|
1356 |
|
|
function Make_Field_Assigns (CI : List_Id) return List_Id is
|
1357 |
|
|
Item : Node_Id;
|
1358 |
|
|
Result : List_Id;
|
1359 |
|
|
|
1360 |
|
|
begin
|
1361 |
|
|
Item := First (CI);
|
1362 |
|
|
Result := New_List;
|
1363 |
|
|
while Present (Item) loop
|
1364 |
|
|
|
1365 |
|
|
-- Look for components, but exclude _tag field assignment if
|
1366 |
|
|
-- the special Componentwise_Assignment flag is set.
|
1367 |
|
|
|
1368 |
|
|
if Nkind (Item) = N_Component_Declaration
|
1369 |
|
|
and then not (Is_Tag (Defining_Identifier (Item))
|
1370 |
|
|
and then Componentwise_Assignment (N))
|
1371 |
|
|
then
|
1372 |
|
|
Append_To
|
1373 |
|
|
(Result, Make_Field_Assign (Defining_Identifier (Item)));
|
1374 |
|
|
end if;
|
1375 |
|
|
|
1376 |
|
|
Next (Item);
|
1377 |
|
|
end loop;
|
1378 |
|
|
|
1379 |
|
|
return Result;
|
1380 |
|
|
end Make_Field_Assigns;
|
1381 |
|
|
|
1382 |
|
|
-- Start of processing for Expand_Assign_Record
|
1383 |
|
|
|
1384 |
|
|
begin
|
1385 |
|
|
-- Note that we use the base types for this processing. This results
|
1386 |
|
|
-- in some extra work in the constrained case, but the change of
|
1387 |
|
|
-- representation case is so unusual that it is not worth the effort.
|
1388 |
|
|
|
1389 |
|
|
-- First copy the discriminants. This is done unconditionally. It
|
1390 |
|
|
-- is required in the unconstrained left side case, and also in the
|
1391 |
|
|
-- case where this assignment was constructed during the expansion
|
1392 |
|
|
-- of a type conversion (since initialization of discriminants is
|
1393 |
|
|
-- suppressed in this case). It is unnecessary but harmless in
|
1394 |
|
|
-- other cases.
|
1395 |
|
|
|
1396 |
|
|
if Has_Discriminants (L_Typ) then
|
1397 |
|
|
F := First_Discriminant (R_Typ);
|
1398 |
|
|
while Present (F) loop
|
1399 |
|
|
|
1400 |
|
|
-- If we are expanding the initialization of a derived record
|
1401 |
|
|
-- that constrains or renames discriminants of the parent, we
|
1402 |
|
|
-- must use the corresponding discriminant in the parent.
|
1403 |
|
|
|
1404 |
|
|
declare
|
1405 |
|
|
CF : Entity_Id;
|
1406 |
|
|
|
1407 |
|
|
begin
|
1408 |
|
|
if Inside_Init_Proc
|
1409 |
|
|
and then Present (Corresponding_Discriminant (F))
|
1410 |
|
|
then
|
1411 |
|
|
CF := Corresponding_Discriminant (F);
|
1412 |
|
|
else
|
1413 |
|
|
CF := F;
|
1414 |
|
|
end if;
|
1415 |
|
|
|
1416 |
|
|
if Is_Unchecked_Union (Base_Type (R_Typ)) then
|
1417 |
|
|
Insert_Action (N, Make_Field_Assign (CF, True));
|
1418 |
|
|
else
|
1419 |
|
|
Insert_Action (N, Make_Field_Assign (CF));
|
1420 |
|
|
end if;
|
1421 |
|
|
|
1422 |
|
|
Next_Discriminant (F);
|
1423 |
|
|
end;
|
1424 |
|
|
end loop;
|
1425 |
|
|
end if;
|
1426 |
|
|
|
1427 |
|
|
-- We know the underlying type is a record, but its current view
|
1428 |
|
|
-- may be private. We must retrieve the usable record declaration.
|
1429 |
|
|
|
1430 |
|
|
if Nkind_In (Decl, N_Private_Type_Declaration,
|
1431 |
|
|
N_Private_Extension_Declaration)
|
1432 |
|
|
and then Present (Full_View (R_Typ))
|
1433 |
|
|
then
|
1434 |
|
|
RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
|
1435 |
|
|
else
|
1436 |
|
|
RDef := Type_Definition (Decl);
|
1437 |
|
|
end if;
|
1438 |
|
|
|
1439 |
|
|
if Nkind (RDef) = N_Derived_Type_Definition then
|
1440 |
|
|
RDef := Record_Extension_Part (RDef);
|
1441 |
|
|
end if;
|
1442 |
|
|
|
1443 |
|
|
if Nkind (RDef) = N_Record_Definition
|
1444 |
|
|
and then Present (Component_List (RDef))
|
1445 |
|
|
then
|
1446 |
|
|
if Is_Unchecked_Union (R_Typ) then
|
1447 |
|
|
Insert_Actions (N,
|
1448 |
|
|
Make_Component_List_Assign (Component_List (RDef), True));
|
1449 |
|
|
else
|
1450 |
|
|
Insert_Actions
|
1451 |
|
|
(N, Make_Component_List_Assign (Component_List (RDef)));
|
1452 |
|
|
end if;
|
1453 |
|
|
|
1454 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
1455 |
|
|
end if;
|
1456 |
|
|
end;
|
1457 |
|
|
end Expand_Assign_Record;
|
1458 |
|
|
|
1459 |
|
|
-----------------------------------
|
1460 |
|
|
-- Expand_N_Assignment_Statement --
|
1461 |
|
|
-----------------------------------
|
1462 |
|
|
|
1463 |
|
|
-- This procedure implements various cases where an assignment statement
|
1464 |
|
|
-- cannot just be passed on to the back end in untransformed state.
|
1465 |
|
|
|
1466 |
|
|
procedure Expand_N_Assignment_Statement (N : Node_Id) is
|
1467 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
1468 |
|
|
Lhs : constant Node_Id := Name (N);
|
1469 |
|
|
Rhs : constant Node_Id := Expression (N);
|
1470 |
|
|
Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
|
1471 |
|
|
Exp : Node_Id;
|
1472 |
|
|
|
1473 |
|
|
begin
|
1474 |
|
|
-- Special case to check right away, if the Componentwise_Assignment
|
1475 |
|
|
-- flag is set, this is a reanalysis from the expansion of the primitive
|
1476 |
|
|
-- assignment procedure for a tagged type, and all we need to do is to
|
1477 |
|
|
-- expand to assignment of components, because otherwise, we would get
|
1478 |
|
|
-- infinite recursion (since this looks like a tagged assignment which
|
1479 |
|
|
-- would normally try to *call* the primitive assignment procedure).
|
1480 |
|
|
|
1481 |
|
|
if Componentwise_Assignment (N) then
|
1482 |
|
|
Expand_Assign_Record (N);
|
1483 |
|
|
return;
|
1484 |
|
|
end if;
|
1485 |
|
|
|
1486 |
|
|
-- Defend against invalid subscripts on left side if we are in standard
|
1487 |
|
|
-- validity checking mode. No need to do this if we are checking all
|
1488 |
|
|
-- subscripts.
|
1489 |
|
|
|
1490 |
|
|
-- Note that we do this right away, because there are some early return
|
1491 |
|
|
-- paths in this procedure, and this is required on all paths.
|
1492 |
|
|
|
1493 |
|
|
if Validity_Checks_On
|
1494 |
|
|
and then Validity_Check_Default
|
1495 |
|
|
and then not Validity_Check_Subscripts
|
1496 |
|
|
then
|
1497 |
|
|
Check_Valid_Lvalue_Subscripts (Lhs);
|
1498 |
|
|
end if;
|
1499 |
|
|
|
1500 |
|
|
-- Ada 2005 (AI-327): Handle assignment to priority of protected object
|
1501 |
|
|
|
1502 |
|
|
-- Rewrite an assignment to X'Priority into a run-time call
|
1503 |
|
|
|
1504 |
|
|
-- For example: X'Priority := New_Prio_Expr;
|
1505 |
|
|
-- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
|
1506 |
|
|
|
1507 |
|
|
-- Note that although X'Priority is notionally an object, it is quite
|
1508 |
|
|
-- deliberately not defined as an aliased object in the RM. This means
|
1509 |
|
|
-- that it works fine to rewrite it as a call, without having to worry
|
1510 |
|
|
-- about complications that would other arise from X'Priority'Access,
|
1511 |
|
|
-- which is illegal, because of the lack of aliasing.
|
1512 |
|
|
|
1513 |
|
|
if Ada_Version >= Ada_05 then
|
1514 |
|
|
declare
|
1515 |
|
|
Call : Node_Id;
|
1516 |
|
|
Conctyp : Entity_Id;
|
1517 |
|
|
Ent : Entity_Id;
|
1518 |
|
|
Subprg : Entity_Id;
|
1519 |
|
|
RT_Subprg_Name : Node_Id;
|
1520 |
|
|
|
1521 |
|
|
begin
|
1522 |
|
|
-- Handle chains of renamings
|
1523 |
|
|
|
1524 |
|
|
Ent := Name (N);
|
1525 |
|
|
while Nkind (Ent) in N_Has_Entity
|
1526 |
|
|
and then Present (Entity (Ent))
|
1527 |
|
|
and then Present (Renamed_Object (Entity (Ent)))
|
1528 |
|
|
loop
|
1529 |
|
|
Ent := Renamed_Object (Entity (Ent));
|
1530 |
|
|
end loop;
|
1531 |
|
|
|
1532 |
|
|
-- The attribute Priority applied to protected objects has been
|
1533 |
|
|
-- previously expanded into a call to the Get_Ceiling run-time
|
1534 |
|
|
-- subprogram.
|
1535 |
|
|
|
1536 |
|
|
if Nkind (Ent) = N_Function_Call
|
1537 |
|
|
and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
|
1538 |
|
|
or else
|
1539 |
|
|
Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling))
|
1540 |
|
|
then
|
1541 |
|
|
-- Look for the enclosing concurrent type
|
1542 |
|
|
|
1543 |
|
|
Conctyp := Current_Scope;
|
1544 |
|
|
while not Is_Concurrent_Type (Conctyp) loop
|
1545 |
|
|
Conctyp := Scope (Conctyp);
|
1546 |
|
|
end loop;
|
1547 |
|
|
|
1548 |
|
|
pragma Assert (Is_Protected_Type (Conctyp));
|
1549 |
|
|
|
1550 |
|
|
-- Generate the first actual of the call
|
1551 |
|
|
|
1552 |
|
|
Subprg := Current_Scope;
|
1553 |
|
|
while not Present (Protected_Body_Subprogram (Subprg)) loop
|
1554 |
|
|
Subprg := Scope (Subprg);
|
1555 |
|
|
end loop;
|
1556 |
|
|
|
1557 |
|
|
-- Select the appropriate run-time call
|
1558 |
|
|
|
1559 |
|
|
if Number_Entries (Conctyp) = 0 then
|
1560 |
|
|
RT_Subprg_Name :=
|
1561 |
|
|
New_Reference_To (RTE (RE_Set_Ceiling), Loc);
|
1562 |
|
|
else
|
1563 |
|
|
RT_Subprg_Name :=
|
1564 |
|
|
New_Reference_To (RTE (RO_PE_Set_Ceiling), Loc);
|
1565 |
|
|
end if;
|
1566 |
|
|
|
1567 |
|
|
Call :=
|
1568 |
|
|
Make_Procedure_Call_Statement (Loc,
|
1569 |
|
|
Name => RT_Subprg_Name,
|
1570 |
|
|
Parameter_Associations => New_List (
|
1571 |
|
|
New_Copy_Tree (First (Parameter_Associations (Ent))),
|
1572 |
|
|
Relocate_Node (Expression (N))));
|
1573 |
|
|
|
1574 |
|
|
Rewrite (N, Call);
|
1575 |
|
|
Analyze (N);
|
1576 |
|
|
return;
|
1577 |
|
|
end if;
|
1578 |
|
|
end;
|
1579 |
|
|
end if;
|
1580 |
|
|
|
1581 |
|
|
-- First deal with generation of range check if required
|
1582 |
|
|
|
1583 |
|
|
if Do_Range_Check (Rhs) then
|
1584 |
|
|
Set_Do_Range_Check (Rhs, False);
|
1585 |
|
|
Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
|
1586 |
|
|
end if;
|
1587 |
|
|
|
1588 |
|
|
-- Check for a special case where a high level transformation is
|
1589 |
|
|
-- required. If we have either of:
|
1590 |
|
|
|
1591 |
|
|
-- P.field := rhs;
|
1592 |
|
|
-- P (sub) := rhs;
|
1593 |
|
|
|
1594 |
|
|
-- where P is a reference to a bit packed array, then we have to unwind
|
1595 |
|
|
-- the assignment. The exact meaning of being a reference to a bit
|
1596 |
|
|
-- packed array is as follows:
|
1597 |
|
|
|
1598 |
|
|
-- An indexed component whose prefix is a bit packed array is a
|
1599 |
|
|
-- reference to a bit packed array.
|
1600 |
|
|
|
1601 |
|
|
-- An indexed component or selected component whose prefix is a
|
1602 |
|
|
-- reference to a bit packed array is itself a reference ot a
|
1603 |
|
|
-- bit packed array.
|
1604 |
|
|
|
1605 |
|
|
-- The required transformation is
|
1606 |
|
|
|
1607 |
|
|
-- Tnn : prefix_type := P;
|
1608 |
|
|
-- Tnn.field := rhs;
|
1609 |
|
|
-- P := Tnn;
|
1610 |
|
|
|
1611 |
|
|
-- or
|
1612 |
|
|
|
1613 |
|
|
-- Tnn : prefix_type := P;
|
1614 |
|
|
-- Tnn (subscr) := rhs;
|
1615 |
|
|
-- P := Tnn;
|
1616 |
|
|
|
1617 |
|
|
-- Since P is going to be evaluated more than once, any subscripts
|
1618 |
|
|
-- in P must have their evaluation forced.
|
1619 |
|
|
|
1620 |
|
|
if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
|
1621 |
|
|
and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
|
1622 |
|
|
then
|
1623 |
|
|
declare
|
1624 |
|
|
BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
|
1625 |
|
|
BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
|
1626 |
|
|
Tnn : constant Entity_Id :=
|
1627 |
|
|
Make_Defining_Identifier (Loc,
|
1628 |
|
|
Chars => New_Internal_Name ('T'));
|
1629 |
|
|
|
1630 |
|
|
begin
|
1631 |
|
|
-- Insert the post assignment first, because we want to copy the
|
1632 |
|
|
-- BPAR_Expr tree before it gets analyzed in the context of the
|
1633 |
|
|
-- pre assignment. Note that we do not analyze the post assignment
|
1634 |
|
|
-- yet (we cannot till we have completed the analysis of the pre
|
1635 |
|
|
-- assignment). As usual, the analysis of this post assignment
|
1636 |
|
|
-- will happen on its own when we "run into" it after finishing
|
1637 |
|
|
-- the current assignment.
|
1638 |
|
|
|
1639 |
|
|
Insert_After (N,
|
1640 |
|
|
Make_Assignment_Statement (Loc,
|
1641 |
|
|
Name => New_Copy_Tree (BPAR_Expr),
|
1642 |
|
|
Expression => New_Occurrence_Of (Tnn, Loc)));
|
1643 |
|
|
|
1644 |
|
|
-- At this stage BPAR_Expr is a reference to a bit packed array
|
1645 |
|
|
-- where the reference was not expanded in the original tree,
|
1646 |
|
|
-- since it was on the left side of an assignment. But in the
|
1647 |
|
|
-- pre-assignment statement (the object definition), BPAR_Expr
|
1648 |
|
|
-- will end up on the right hand side, and must be reexpanded. To
|
1649 |
|
|
-- achieve this, we reset the analyzed flag of all selected and
|
1650 |
|
|
-- indexed components down to the actual indexed component for
|
1651 |
|
|
-- the packed array.
|
1652 |
|
|
|
1653 |
|
|
Exp := BPAR_Expr;
|
1654 |
|
|
loop
|
1655 |
|
|
Set_Analyzed (Exp, False);
|
1656 |
|
|
|
1657 |
|
|
if Nkind_In
|
1658 |
|
|
(Exp, N_Selected_Component, N_Indexed_Component)
|
1659 |
|
|
then
|
1660 |
|
|
Exp := Prefix (Exp);
|
1661 |
|
|
else
|
1662 |
|
|
exit;
|
1663 |
|
|
end if;
|
1664 |
|
|
end loop;
|
1665 |
|
|
|
1666 |
|
|
-- Now we can insert and analyze the pre-assignment
|
1667 |
|
|
|
1668 |
|
|
-- If the right-hand side requires a transient scope, it has
|
1669 |
|
|
-- already been placed on the stack. However, the declaration is
|
1670 |
|
|
-- inserted in the tree outside of this scope, and must reflect
|
1671 |
|
|
-- the proper scope for its variable. This awkward bit is forced
|
1672 |
|
|
-- by the stricter scope discipline imposed by GCC 2.97.
|
1673 |
|
|
|
1674 |
|
|
declare
|
1675 |
|
|
Uses_Transient_Scope : constant Boolean :=
|
1676 |
|
|
Scope_Is_Transient
|
1677 |
|
|
and then N = Node_To_Be_Wrapped;
|
1678 |
|
|
|
1679 |
|
|
begin
|
1680 |
|
|
if Uses_Transient_Scope then
|
1681 |
|
|
Push_Scope (Scope (Current_Scope));
|
1682 |
|
|
end if;
|
1683 |
|
|
|
1684 |
|
|
Insert_Before_And_Analyze (N,
|
1685 |
|
|
Make_Object_Declaration (Loc,
|
1686 |
|
|
Defining_Identifier => Tnn,
|
1687 |
|
|
Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
|
1688 |
|
|
Expression => BPAR_Expr));
|
1689 |
|
|
|
1690 |
|
|
if Uses_Transient_Scope then
|
1691 |
|
|
Pop_Scope;
|
1692 |
|
|
end if;
|
1693 |
|
|
end;
|
1694 |
|
|
|
1695 |
|
|
-- Now fix up the original assignment and continue processing
|
1696 |
|
|
|
1697 |
|
|
Rewrite (Prefix (Lhs),
|
1698 |
|
|
New_Occurrence_Of (Tnn, Loc));
|
1699 |
|
|
|
1700 |
|
|
-- We do not need to reanalyze that assignment, and we do not need
|
1701 |
|
|
-- to worry about references to the temporary, but we do need to
|
1702 |
|
|
-- make sure that the temporary is not marked as a true constant
|
1703 |
|
|
-- since we now have a generated assignment to it!
|
1704 |
|
|
|
1705 |
|
|
Set_Is_True_Constant (Tnn, False);
|
1706 |
|
|
end;
|
1707 |
|
|
end if;
|
1708 |
|
|
|
1709 |
|
|
-- When we have the appropriate type of aggregate in the expression (it
|
1710 |
|
|
-- has been determined during analysis of the aggregate by setting the
|
1711 |
|
|
-- delay flag), let's perform in place assignment and thus avoid
|
1712 |
|
|
-- creating a temporary.
|
1713 |
|
|
|
1714 |
|
|
if Is_Delayed_Aggregate (Rhs) then
|
1715 |
|
|
Convert_Aggr_In_Assignment (N);
|
1716 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
1717 |
|
|
Analyze (N);
|
1718 |
|
|
return;
|
1719 |
|
|
end if;
|
1720 |
|
|
|
1721 |
|
|
-- Apply discriminant check if required. If Lhs is an access type to a
|
1722 |
|
|
-- designated type with discriminants, we must always check.
|
1723 |
|
|
|
1724 |
|
|
if Has_Discriminants (Etype (Lhs)) then
|
1725 |
|
|
|
1726 |
|
|
-- Skip discriminant check if change of representation. Will be
|
1727 |
|
|
-- done when the change of representation is expanded out.
|
1728 |
|
|
|
1729 |
|
|
if not Change_Of_Representation (N) then
|
1730 |
|
|
Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
|
1731 |
|
|
end if;
|
1732 |
|
|
|
1733 |
|
|
-- If the type is private without discriminants, and the full type
|
1734 |
|
|
-- has discriminants (necessarily with defaults) a check may still be
|
1735 |
|
|
-- necessary if the Lhs is aliased. The private determinants must be
|
1736 |
|
|
-- visible to build the discriminant constraints.
|
1737 |
|
|
|
1738 |
|
|
-- Only an explicit dereference that comes from source indicates
|
1739 |
|
|
-- aliasing. Access to formals of protected operations and entries
|
1740 |
|
|
-- create dereferences but are not semantic aliasings.
|
1741 |
|
|
|
1742 |
|
|
elsif Is_Private_Type (Etype (Lhs))
|
1743 |
|
|
and then Has_Discriminants (Typ)
|
1744 |
|
|
and then Nkind (Lhs) = N_Explicit_Dereference
|
1745 |
|
|
and then Comes_From_Source (Lhs)
|
1746 |
|
|
then
|
1747 |
|
|
declare
|
1748 |
|
|
Lt : constant Entity_Id := Etype (Lhs);
|
1749 |
|
|
begin
|
1750 |
|
|
Set_Etype (Lhs, Typ);
|
1751 |
|
|
Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
|
1752 |
|
|
Apply_Discriminant_Check (Rhs, Typ, Lhs);
|
1753 |
|
|
Set_Etype (Lhs, Lt);
|
1754 |
|
|
end;
|
1755 |
|
|
|
1756 |
|
|
-- If the Lhs has a private type with unknown discriminants, it
|
1757 |
|
|
-- may have a full view with discriminants, but those are nameable
|
1758 |
|
|
-- only in the underlying type, so convert the Rhs to it before
|
1759 |
|
|
-- potential checking.
|
1760 |
|
|
|
1761 |
|
|
elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
|
1762 |
|
|
and then Has_Discriminants (Typ)
|
1763 |
|
|
then
|
1764 |
|
|
Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
|
1765 |
|
|
Apply_Discriminant_Check (Rhs, Typ, Lhs);
|
1766 |
|
|
|
1767 |
|
|
-- In the access type case, we need the same discriminant check, and
|
1768 |
|
|
-- also range checks if we have an access to constrained array.
|
1769 |
|
|
|
1770 |
|
|
elsif Is_Access_Type (Etype (Lhs))
|
1771 |
|
|
and then Is_Constrained (Designated_Type (Etype (Lhs)))
|
1772 |
|
|
then
|
1773 |
|
|
if Has_Discriminants (Designated_Type (Etype (Lhs))) then
|
1774 |
|
|
|
1775 |
|
|
-- Skip discriminant check if change of representation. Will be
|
1776 |
|
|
-- done when the change of representation is expanded out.
|
1777 |
|
|
|
1778 |
|
|
if not Change_Of_Representation (N) then
|
1779 |
|
|
Apply_Discriminant_Check (Rhs, Etype (Lhs));
|
1780 |
|
|
end if;
|
1781 |
|
|
|
1782 |
|
|
elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
|
1783 |
|
|
Apply_Range_Check (Rhs, Etype (Lhs));
|
1784 |
|
|
|
1785 |
|
|
if Is_Constrained (Etype (Lhs)) then
|
1786 |
|
|
Apply_Length_Check (Rhs, Etype (Lhs));
|
1787 |
|
|
end if;
|
1788 |
|
|
|
1789 |
|
|
if Nkind (Rhs) = N_Allocator then
|
1790 |
|
|
declare
|
1791 |
|
|
Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
|
1792 |
|
|
C_Es : Check_Result;
|
1793 |
|
|
|
1794 |
|
|
begin
|
1795 |
|
|
C_Es :=
|
1796 |
|
|
Get_Range_Checks
|
1797 |
|
|
(Lhs,
|
1798 |
|
|
Target_Typ,
|
1799 |
|
|
Etype (Designated_Type (Etype (Lhs))));
|
1800 |
|
|
|
1801 |
|
|
Insert_Range_Checks
|
1802 |
|
|
(C_Es,
|
1803 |
|
|
N,
|
1804 |
|
|
Target_Typ,
|
1805 |
|
|
Sloc (Lhs),
|
1806 |
|
|
Lhs);
|
1807 |
|
|
end;
|
1808 |
|
|
end if;
|
1809 |
|
|
end if;
|
1810 |
|
|
|
1811 |
|
|
-- Apply range check for access type case
|
1812 |
|
|
|
1813 |
|
|
elsif Is_Access_Type (Etype (Lhs))
|
1814 |
|
|
and then Nkind (Rhs) = N_Allocator
|
1815 |
|
|
and then Nkind (Expression (Rhs)) = N_Qualified_Expression
|
1816 |
|
|
then
|
1817 |
|
|
Analyze_And_Resolve (Expression (Rhs));
|
1818 |
|
|
Apply_Range_Check
|
1819 |
|
|
(Expression (Rhs), Designated_Type (Etype (Lhs)));
|
1820 |
|
|
end if;
|
1821 |
|
|
|
1822 |
|
|
-- Ada 2005 (AI-231): Generate the run-time check
|
1823 |
|
|
|
1824 |
|
|
if Is_Access_Type (Typ)
|
1825 |
|
|
and then Can_Never_Be_Null (Etype (Lhs))
|
1826 |
|
|
and then not Can_Never_Be_Null (Etype (Rhs))
|
1827 |
|
|
then
|
1828 |
|
|
Apply_Constraint_Check (Rhs, Etype (Lhs));
|
1829 |
|
|
end if;
|
1830 |
|
|
|
1831 |
|
|
-- Case of assignment to a bit packed array element
|
1832 |
|
|
|
1833 |
|
|
if Nkind (Lhs) = N_Indexed_Component
|
1834 |
|
|
and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
|
1835 |
|
|
then
|
1836 |
|
|
Expand_Bit_Packed_Element_Set (N);
|
1837 |
|
|
return;
|
1838 |
|
|
|
1839 |
|
|
-- Build-in-place function call case. Note that we're not yet doing
|
1840 |
|
|
-- build-in-place for user-written assignment statements (the assignment
|
1841 |
|
|
-- here came from an aggregate.)
|
1842 |
|
|
|
1843 |
|
|
elsif Ada_Version >= Ada_05
|
1844 |
|
|
and then Is_Build_In_Place_Function_Call (Rhs)
|
1845 |
|
|
then
|
1846 |
|
|
Make_Build_In_Place_Call_In_Assignment (N, Rhs);
|
1847 |
|
|
|
1848 |
|
|
elsif Is_Tagged_Type (Typ) and then Is_Value_Type (Etype (Lhs)) then
|
1849 |
|
|
|
1850 |
|
|
-- Nothing to do for valuetypes
|
1851 |
|
|
-- ??? Set_Scope_Is_Transient (False);
|
1852 |
|
|
|
1853 |
|
|
return;
|
1854 |
|
|
|
1855 |
|
|
elsif Is_Tagged_Type (Typ)
|
1856 |
|
|
or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
|
1857 |
|
|
then
|
1858 |
|
|
Tagged_Case : declare
|
1859 |
|
|
L : List_Id := No_List;
|
1860 |
|
|
Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
|
1861 |
|
|
|
1862 |
|
|
begin
|
1863 |
|
|
-- In the controlled case, we ensure that function calls are
|
1864 |
|
|
-- evaluated before finalizing the target. In all cases, it makes
|
1865 |
|
|
-- the expansion easier if the side-effects are removed first.
|
1866 |
|
|
|
1867 |
|
|
Remove_Side_Effects (Lhs);
|
1868 |
|
|
Remove_Side_Effects (Rhs);
|
1869 |
|
|
|
1870 |
|
|
-- Avoid recursion in the mechanism
|
1871 |
|
|
|
1872 |
|
|
Set_Analyzed (N);
|
1873 |
|
|
|
1874 |
|
|
-- If dispatching assignment, we need to dispatch to _assign
|
1875 |
|
|
|
1876 |
|
|
if Is_Class_Wide_Type (Typ)
|
1877 |
|
|
|
1878 |
|
|
-- If the type is tagged, we may as well use the predefined
|
1879 |
|
|
-- primitive assignment. This avoids inlining a lot of code
|
1880 |
|
|
-- and in the class-wide case, the assignment is replaced by
|
1881 |
|
|
-- dispatch call to _assign. Note that this cannot be done when
|
1882 |
|
|
-- discriminant checks are locally suppressed (as in extension
|
1883 |
|
|
-- aggregate expansions) because otherwise the discriminant
|
1884 |
|
|
-- check will be performed within the _assign call. It is also
|
1885 |
|
|
-- suppressed for assignments created by the expander that
|
1886 |
|
|
-- correspond to initializations, where we do want to copy the
|
1887 |
|
|
-- tag (No_Ctrl_Actions flag set True) by the expander and we
|
1888 |
|
|
-- do not need to mess with tags ever (Expand_Ctrl_Actions flag
|
1889 |
|
|
-- is set True in this case).
|
1890 |
|
|
|
1891 |
|
|
or else (Is_Tagged_Type (Typ)
|
1892 |
|
|
and then not Is_Value_Type (Etype (Lhs))
|
1893 |
|
|
and then Chars (Current_Scope) /= Name_uAssign
|
1894 |
|
|
and then Expand_Ctrl_Actions
|
1895 |
|
|
and then not Discriminant_Checks_Suppressed (Empty))
|
1896 |
|
|
then
|
1897 |
|
|
-- Fetch the primitive op _assign and proper type to call it.
|
1898 |
|
|
-- Because of possible conflicts between private and full view,
|
1899 |
|
|
-- fetch the proper type directly from the operation profile.
|
1900 |
|
|
|
1901 |
|
|
declare
|
1902 |
|
|
Op : constant Entity_Id :=
|
1903 |
|
|
Find_Prim_Op (Typ, Name_uAssign);
|
1904 |
|
|
F_Typ : Entity_Id := Etype (First_Formal (Op));
|
1905 |
|
|
|
1906 |
|
|
begin
|
1907 |
|
|
-- If the assignment is dispatching, make sure to use the
|
1908 |
|
|
-- proper type.
|
1909 |
|
|
|
1910 |
|
|
if Is_Class_Wide_Type (Typ) then
|
1911 |
|
|
F_Typ := Class_Wide_Type (F_Typ);
|
1912 |
|
|
end if;
|
1913 |
|
|
|
1914 |
|
|
L := New_List;
|
1915 |
|
|
|
1916 |
|
|
-- In case of assignment to a class-wide tagged type, before
|
1917 |
|
|
-- the assignment we generate run-time check to ensure that
|
1918 |
|
|
-- the tags of source and target match.
|
1919 |
|
|
|
1920 |
|
|
if Is_Class_Wide_Type (Typ)
|
1921 |
|
|
and then Is_Tagged_Type (Typ)
|
1922 |
|
|
and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
|
1923 |
|
|
then
|
1924 |
|
|
Append_To (L,
|
1925 |
|
|
Make_Raise_Constraint_Error (Loc,
|
1926 |
|
|
Condition =>
|
1927 |
|
|
Make_Op_Ne (Loc,
|
1928 |
|
|
Left_Opnd =>
|
1929 |
|
|
Make_Selected_Component (Loc,
|
1930 |
|
|
Prefix => Duplicate_Subexpr (Lhs),
|
1931 |
|
|
Selector_Name =>
|
1932 |
|
|
Make_Identifier (Loc,
|
1933 |
|
|
Chars => Name_uTag)),
|
1934 |
|
|
Right_Opnd =>
|
1935 |
|
|
Make_Selected_Component (Loc,
|
1936 |
|
|
Prefix => Duplicate_Subexpr (Rhs),
|
1937 |
|
|
Selector_Name =>
|
1938 |
|
|
Make_Identifier (Loc,
|
1939 |
|
|
Chars => Name_uTag))),
|
1940 |
|
|
Reason => CE_Tag_Check_Failed));
|
1941 |
|
|
end if;
|
1942 |
|
|
|
1943 |
|
|
Append_To (L,
|
1944 |
|
|
Make_Procedure_Call_Statement (Loc,
|
1945 |
|
|
Name => New_Reference_To (Op, Loc),
|
1946 |
|
|
Parameter_Associations => New_List (
|
1947 |
|
|
Unchecked_Convert_To (F_Typ,
|
1948 |
|
|
Duplicate_Subexpr (Lhs)),
|
1949 |
|
|
Unchecked_Convert_To (F_Typ,
|
1950 |
|
|
Duplicate_Subexpr (Rhs)))));
|
1951 |
|
|
end;
|
1952 |
|
|
|
1953 |
|
|
else
|
1954 |
|
|
L := Make_Tag_Ctrl_Assignment (N);
|
1955 |
|
|
|
1956 |
|
|
-- We can't afford to have destructive Finalization Actions in
|
1957 |
|
|
-- the Self assignment case, so if the target and the source
|
1958 |
|
|
-- are not obviously different, code is generated to avoid the
|
1959 |
|
|
-- self assignment case:
|
1960 |
|
|
|
1961 |
|
|
-- if lhs'address /= rhs'address then
|
1962 |
|
|
-- <code for controlled and/or tagged assignment>
|
1963 |
|
|
-- end if;
|
1964 |
|
|
|
1965 |
|
|
-- Skip this if Restriction (No_Finalization) is active
|
1966 |
|
|
|
1967 |
|
|
if not Statically_Different (Lhs, Rhs)
|
1968 |
|
|
and then Expand_Ctrl_Actions
|
1969 |
|
|
and then not Restriction_Active (No_Finalization)
|
1970 |
|
|
then
|
1971 |
|
|
L := New_List (
|
1972 |
|
|
Make_Implicit_If_Statement (N,
|
1973 |
|
|
Condition =>
|
1974 |
|
|
Make_Op_Ne (Loc,
|
1975 |
|
|
Left_Opnd =>
|
1976 |
|
|
Make_Attribute_Reference (Loc,
|
1977 |
|
|
Prefix => Duplicate_Subexpr (Lhs),
|
1978 |
|
|
Attribute_Name => Name_Address),
|
1979 |
|
|
|
1980 |
|
|
Right_Opnd =>
|
1981 |
|
|
Make_Attribute_Reference (Loc,
|
1982 |
|
|
Prefix => Duplicate_Subexpr (Rhs),
|
1983 |
|
|
Attribute_Name => Name_Address)),
|
1984 |
|
|
|
1985 |
|
|
Then_Statements => L));
|
1986 |
|
|
end if;
|
1987 |
|
|
|
1988 |
|
|
-- We need to set up an exception handler for implementing
|
1989 |
|
|
-- 7.6.1(18). The remaining adjustments are tackled by the
|
1990 |
|
|
-- implementation of adjust for record_controllers (see
|
1991 |
|
|
-- s-finimp.adb).
|
1992 |
|
|
|
1993 |
|
|
-- This is skipped if we have no finalization
|
1994 |
|
|
|
1995 |
|
|
if Expand_Ctrl_Actions
|
1996 |
|
|
and then not Restriction_Active (No_Finalization)
|
1997 |
|
|
then
|
1998 |
|
|
L := New_List (
|
1999 |
|
|
Make_Block_Statement (Loc,
|
2000 |
|
|
Handled_Statement_Sequence =>
|
2001 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
2002 |
|
|
Statements => L,
|
2003 |
|
|
Exception_Handlers => New_List (
|
2004 |
|
|
Make_Handler_For_Ctrl_Operation (Loc)))));
|
2005 |
|
|
end if;
|
2006 |
|
|
end if;
|
2007 |
|
|
|
2008 |
|
|
Rewrite (N,
|
2009 |
|
|
Make_Block_Statement (Loc,
|
2010 |
|
|
Handled_Statement_Sequence =>
|
2011 |
|
|
Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
|
2012 |
|
|
|
2013 |
|
|
-- If no restrictions on aborts, protect the whole assignment
|
2014 |
|
|
-- for controlled objects as per 9.8(11).
|
2015 |
|
|
|
2016 |
|
|
if Needs_Finalization (Typ)
|
2017 |
|
|
and then Expand_Ctrl_Actions
|
2018 |
|
|
and then Abort_Allowed
|
2019 |
|
|
then
|
2020 |
|
|
declare
|
2021 |
|
|
Blk : constant Entity_Id :=
|
2022 |
|
|
New_Internal_Entity
|
2023 |
|
|
(E_Block, Current_Scope, Sloc (N), 'B');
|
2024 |
|
|
|
2025 |
|
|
begin
|
2026 |
|
|
Set_Scope (Blk, Current_Scope);
|
2027 |
|
|
Set_Etype (Blk, Standard_Void_Type);
|
2028 |
|
|
Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
|
2029 |
|
|
|
2030 |
|
|
Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
|
2031 |
|
|
Set_At_End_Proc (Handled_Statement_Sequence (N),
|
2032 |
|
|
New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
|
2033 |
|
|
Expand_At_End_Handler
|
2034 |
|
|
(Handled_Statement_Sequence (N), Blk);
|
2035 |
|
|
end;
|
2036 |
|
|
end if;
|
2037 |
|
|
|
2038 |
|
|
-- N has been rewritten to a block statement for which it is
|
2039 |
|
|
-- known by construction that no checks are necessary: analyze
|
2040 |
|
|
-- it with all checks suppressed.
|
2041 |
|
|
|
2042 |
|
|
Analyze (N, Suppress => All_Checks);
|
2043 |
|
|
return;
|
2044 |
|
|
end Tagged_Case;
|
2045 |
|
|
|
2046 |
|
|
-- Array types
|
2047 |
|
|
|
2048 |
|
|
elsif Is_Array_Type (Typ) then
|
2049 |
|
|
declare
|
2050 |
|
|
Actual_Rhs : Node_Id := Rhs;
|
2051 |
|
|
|
2052 |
|
|
begin
|
2053 |
|
|
while Nkind_In (Actual_Rhs, N_Type_Conversion,
|
2054 |
|
|
N_Qualified_Expression)
|
2055 |
|
|
loop
|
2056 |
|
|
Actual_Rhs := Expression (Actual_Rhs);
|
2057 |
|
|
end loop;
|
2058 |
|
|
|
2059 |
|
|
Expand_Assign_Array (N, Actual_Rhs);
|
2060 |
|
|
return;
|
2061 |
|
|
end;
|
2062 |
|
|
|
2063 |
|
|
-- Record types
|
2064 |
|
|
|
2065 |
|
|
elsif Is_Record_Type (Typ) then
|
2066 |
|
|
Expand_Assign_Record (N);
|
2067 |
|
|
return;
|
2068 |
|
|
|
2069 |
|
|
-- Scalar types. This is where we perform the processing related to the
|
2070 |
|
|
-- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
|
2071 |
|
|
-- scalar values.
|
2072 |
|
|
|
2073 |
|
|
elsif Is_Scalar_Type (Typ) then
|
2074 |
|
|
|
2075 |
|
|
-- Case where right side is known valid
|
2076 |
|
|
|
2077 |
|
|
if Expr_Known_Valid (Rhs) then
|
2078 |
|
|
|
2079 |
|
|
-- Here the right side is valid, so it is fine. The case to deal
|
2080 |
|
|
-- with is when the left side is a local variable reference whose
|
2081 |
|
|
-- value is not currently known to be valid. If this is the case,
|
2082 |
|
|
-- and the assignment appears in an unconditional context, then
|
2083 |
|
|
-- we can mark the left side as now being valid if one of these
|
2084 |
|
|
-- conditions holds:
|
2085 |
|
|
|
2086 |
|
|
-- The expression of the right side has Do_Range_Check set so
|
2087 |
|
|
-- that we know a range check will be performed. Note that it
|
2088 |
|
|
-- can be the case that a range check is omitted because we
|
2089 |
|
|
-- make the assumption that we can assume validity for operands
|
2090 |
|
|
-- appearing in the right side in determining whether a range
|
2091 |
|
|
-- check is required
|
2092 |
|
|
|
2093 |
|
|
-- The subtype of the right side matches the subtype of the
|
2094 |
|
|
-- left side. In this case, even though we have not checked
|
2095 |
|
|
-- the range of the right side, we know it is in range of its
|
2096 |
|
|
-- subtype if the expression is valid.
|
2097 |
|
|
|
2098 |
|
|
if Is_Local_Variable_Reference (Lhs)
|
2099 |
|
|
and then not Is_Known_Valid (Entity (Lhs))
|
2100 |
|
|
and then In_Unconditional_Context (N)
|
2101 |
|
|
then
|
2102 |
|
|
if Do_Range_Check (Rhs)
|
2103 |
|
|
or else Etype (Lhs) = Etype (Rhs)
|
2104 |
|
|
then
|
2105 |
|
|
Set_Is_Known_Valid (Entity (Lhs), True);
|
2106 |
|
|
end if;
|
2107 |
|
|
end if;
|
2108 |
|
|
|
2109 |
|
|
-- Case where right side may be invalid in the sense of the RM
|
2110 |
|
|
-- reference above. The RM does not require that we check for the
|
2111 |
|
|
-- validity on an assignment, but it does require that the assignment
|
2112 |
|
|
-- of an invalid value not cause erroneous behavior.
|
2113 |
|
|
|
2114 |
|
|
-- The general approach in GNAT is to use the Is_Known_Valid flag
|
2115 |
|
|
-- to avoid the need for validity checking on assignments. However
|
2116 |
|
|
-- in some cases, we have to do validity checking in order to make
|
2117 |
|
|
-- sure that the setting of this flag is correct.
|
2118 |
|
|
|
2119 |
|
|
else
|
2120 |
|
|
-- Validate right side if we are validating copies
|
2121 |
|
|
|
2122 |
|
|
if Validity_Checks_On
|
2123 |
|
|
and then Validity_Check_Copies
|
2124 |
|
|
then
|
2125 |
|
|
-- Skip this if left hand side is an array or record component
|
2126 |
|
|
-- and elementary component validity checks are suppressed.
|
2127 |
|
|
|
2128 |
|
|
if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
|
2129 |
|
|
and then not Validity_Check_Components
|
2130 |
|
|
then
|
2131 |
|
|
null;
|
2132 |
|
|
else
|
2133 |
|
|
Ensure_Valid (Rhs);
|
2134 |
|
|
end if;
|
2135 |
|
|
|
2136 |
|
|
-- We can propagate this to the left side where appropriate
|
2137 |
|
|
|
2138 |
|
|
if Is_Local_Variable_Reference (Lhs)
|
2139 |
|
|
and then not Is_Known_Valid (Entity (Lhs))
|
2140 |
|
|
and then In_Unconditional_Context (N)
|
2141 |
|
|
then
|
2142 |
|
|
Set_Is_Known_Valid (Entity (Lhs), True);
|
2143 |
|
|
end if;
|
2144 |
|
|
|
2145 |
|
|
-- Otherwise check to see what should be done
|
2146 |
|
|
|
2147 |
|
|
-- If left side is a local variable, then we just set its flag to
|
2148 |
|
|
-- indicate that its value may no longer be valid, since we are
|
2149 |
|
|
-- copying a potentially invalid value.
|
2150 |
|
|
|
2151 |
|
|
elsif Is_Local_Variable_Reference (Lhs) then
|
2152 |
|
|
Set_Is_Known_Valid (Entity (Lhs), False);
|
2153 |
|
|
|
2154 |
|
|
-- Check for case of a nonlocal variable on the left side which
|
2155 |
|
|
-- is currently known to be valid. In this case, we simply ensure
|
2156 |
|
|
-- that the right side is valid. We only play the game of copying
|
2157 |
|
|
-- validity status for local variables, since we are doing this
|
2158 |
|
|
-- statically, not by tracing the full flow graph.
|
2159 |
|
|
|
2160 |
|
|
elsif Is_Entity_Name (Lhs)
|
2161 |
|
|
and then Is_Known_Valid (Entity (Lhs))
|
2162 |
|
|
then
|
2163 |
|
|
-- Note: If Validity_Checking mode is set to none, we ignore
|
2164 |
|
|
-- the Ensure_Valid call so don't worry about that case here.
|
2165 |
|
|
|
2166 |
|
|
Ensure_Valid (Rhs);
|
2167 |
|
|
|
2168 |
|
|
-- In all other cases, we can safely copy an invalid value without
|
2169 |
|
|
-- worrying about the status of the left side. Since it is not a
|
2170 |
|
|
-- variable reference it will not be considered
|
2171 |
|
|
-- as being known to be valid in any case.
|
2172 |
|
|
|
2173 |
|
|
else
|
2174 |
|
|
null;
|
2175 |
|
|
end if;
|
2176 |
|
|
end if;
|
2177 |
|
|
end if;
|
2178 |
|
|
|
2179 |
|
|
exception
|
2180 |
|
|
when RE_Not_Available =>
|
2181 |
|
|
return;
|
2182 |
|
|
end Expand_N_Assignment_Statement;
|
2183 |
|
|
|
2184 |
|
|
------------------------------
|
2185 |
|
|
-- Expand_N_Block_Statement --
|
2186 |
|
|
------------------------------
|
2187 |
|
|
|
2188 |
|
|
-- Encode entity names defined in block statement
|
2189 |
|
|
|
2190 |
|
|
procedure Expand_N_Block_Statement (N : Node_Id) is
|
2191 |
|
|
begin
|
2192 |
|
|
Qualify_Entity_Names (N);
|
2193 |
|
|
end Expand_N_Block_Statement;
|
2194 |
|
|
|
2195 |
|
|
-----------------------------
|
2196 |
|
|
-- Expand_N_Case_Statement --
|
2197 |
|
|
-----------------------------
|
2198 |
|
|
|
2199 |
|
|
procedure Expand_N_Case_Statement (N : Node_Id) is
|
2200 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2201 |
|
|
Expr : constant Node_Id := Expression (N);
|
2202 |
|
|
Alt : Node_Id;
|
2203 |
|
|
Len : Nat;
|
2204 |
|
|
Cond : Node_Id;
|
2205 |
|
|
Choice : Node_Id;
|
2206 |
|
|
Chlist : List_Id;
|
2207 |
|
|
|
2208 |
|
|
begin
|
2209 |
|
|
-- Check for the situation where we know at compile time which branch
|
2210 |
|
|
-- will be taken
|
2211 |
|
|
|
2212 |
|
|
if Compile_Time_Known_Value (Expr) then
|
2213 |
|
|
Alt := Find_Static_Alternative (N);
|
2214 |
|
|
|
2215 |
|
|
-- Move statements from this alternative after the case statement.
|
2216 |
|
|
-- They are already analyzed, so will be skipped by the analyzer.
|
2217 |
|
|
|
2218 |
|
|
Insert_List_After (N, Statements (Alt));
|
2219 |
|
|
|
2220 |
|
|
-- That leaves the case statement as a shell. So now we can kill all
|
2221 |
|
|
-- other alternatives in the case statement.
|
2222 |
|
|
|
2223 |
|
|
Kill_Dead_Code (Expression (N));
|
2224 |
|
|
|
2225 |
|
|
declare
|
2226 |
|
|
A : Node_Id;
|
2227 |
|
|
|
2228 |
|
|
begin
|
2229 |
|
|
-- Loop through case alternatives, skipping pragmas, and skipping
|
2230 |
|
|
-- the one alternative that we select (and therefore retain).
|
2231 |
|
|
|
2232 |
|
|
A := First (Alternatives (N));
|
2233 |
|
|
while Present (A) loop
|
2234 |
|
|
if A /= Alt
|
2235 |
|
|
and then Nkind (A) = N_Case_Statement_Alternative
|
2236 |
|
|
then
|
2237 |
|
|
Kill_Dead_Code (Statements (A), Warn_On_Deleted_Code);
|
2238 |
|
|
end if;
|
2239 |
|
|
|
2240 |
|
|
Next (A);
|
2241 |
|
|
end loop;
|
2242 |
|
|
end;
|
2243 |
|
|
|
2244 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
2245 |
|
|
return;
|
2246 |
|
|
end if;
|
2247 |
|
|
|
2248 |
|
|
-- Here if the choice is not determined at compile time
|
2249 |
|
|
|
2250 |
|
|
declare
|
2251 |
|
|
Last_Alt : constant Node_Id := Last (Alternatives (N));
|
2252 |
|
|
|
2253 |
|
|
Others_Present : Boolean;
|
2254 |
|
|
Others_Node : Node_Id;
|
2255 |
|
|
|
2256 |
|
|
Then_Stms : List_Id;
|
2257 |
|
|
Else_Stms : List_Id;
|
2258 |
|
|
|
2259 |
|
|
begin
|
2260 |
|
|
if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
|
2261 |
|
|
Others_Present := True;
|
2262 |
|
|
Others_Node := Last_Alt;
|
2263 |
|
|
else
|
2264 |
|
|
Others_Present := False;
|
2265 |
|
|
end if;
|
2266 |
|
|
|
2267 |
|
|
-- First step is to worry about possible invalid argument. The RM
|
2268 |
|
|
-- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
|
2269 |
|
|
-- outside the base range), then Constraint_Error must be raised.
|
2270 |
|
|
|
2271 |
|
|
-- Case of validity check required (validity checks are on, the
|
2272 |
|
|
-- expression is not known to be valid, and the case statement
|
2273 |
|
|
-- comes from source -- no need to validity check internally
|
2274 |
|
|
-- generated case statements).
|
2275 |
|
|
|
2276 |
|
|
if Validity_Check_Default then
|
2277 |
|
|
Ensure_Valid (Expr);
|
2278 |
|
|
end if;
|
2279 |
|
|
|
2280 |
|
|
-- If there is only a single alternative, just replace it with the
|
2281 |
|
|
-- sequence of statements since obviously that is what is going to
|
2282 |
|
|
-- be executed in all cases.
|
2283 |
|
|
|
2284 |
|
|
Len := List_Length (Alternatives (N));
|
2285 |
|
|
|
2286 |
|
|
if Len = 1 then
|
2287 |
|
|
-- We still need to evaluate the expression if it has any
|
2288 |
|
|
-- side effects.
|
2289 |
|
|
|
2290 |
|
|
Remove_Side_Effects (Expression (N));
|
2291 |
|
|
|
2292 |
|
|
Insert_List_After (N, Statements (First (Alternatives (N))));
|
2293 |
|
|
|
2294 |
|
|
-- That leaves the case statement as a shell. The alternative that
|
2295 |
|
|
-- will be executed is reset to a null list. So now we can kill
|
2296 |
|
|
-- the entire case statement.
|
2297 |
|
|
|
2298 |
|
|
Kill_Dead_Code (Expression (N));
|
2299 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
2300 |
|
|
return;
|
2301 |
|
|
end if;
|
2302 |
|
|
|
2303 |
|
|
-- An optimization. If there are only two alternatives, and only
|
2304 |
|
|
-- a single choice, then rewrite the whole case statement as an
|
2305 |
|
|
-- if statement, since this can result in subsequent optimizations.
|
2306 |
|
|
-- This helps not only with case statements in the source of a
|
2307 |
|
|
-- simple form, but also with generated code (discriminant check
|
2308 |
|
|
-- functions in particular)
|
2309 |
|
|
|
2310 |
|
|
if Len = 2 then
|
2311 |
|
|
Chlist := Discrete_Choices (First (Alternatives (N)));
|
2312 |
|
|
|
2313 |
|
|
if List_Length (Chlist) = 1 then
|
2314 |
|
|
Choice := First (Chlist);
|
2315 |
|
|
|
2316 |
|
|
Then_Stms := Statements (First (Alternatives (N)));
|
2317 |
|
|
Else_Stms := Statements (Last (Alternatives (N)));
|
2318 |
|
|
|
2319 |
|
|
-- For TRUE, generate "expression", not expression = true
|
2320 |
|
|
|
2321 |
|
|
if Nkind (Choice) = N_Identifier
|
2322 |
|
|
and then Entity (Choice) = Standard_True
|
2323 |
|
|
then
|
2324 |
|
|
Cond := Expression (N);
|
2325 |
|
|
|
2326 |
|
|
-- For FALSE, generate "expression" and switch then/else
|
2327 |
|
|
|
2328 |
|
|
elsif Nkind (Choice) = N_Identifier
|
2329 |
|
|
and then Entity (Choice) = Standard_False
|
2330 |
|
|
then
|
2331 |
|
|
Cond := Expression (N);
|
2332 |
|
|
Else_Stms := Statements (First (Alternatives (N)));
|
2333 |
|
|
Then_Stms := Statements (Last (Alternatives (N)));
|
2334 |
|
|
|
2335 |
|
|
-- For a range, generate "expression in range"
|
2336 |
|
|
|
2337 |
|
|
elsif Nkind (Choice) = N_Range
|
2338 |
|
|
or else (Nkind (Choice) = N_Attribute_Reference
|
2339 |
|
|
and then Attribute_Name (Choice) = Name_Range)
|
2340 |
|
|
or else (Is_Entity_Name (Choice)
|
2341 |
|
|
and then Is_Type (Entity (Choice)))
|
2342 |
|
|
or else Nkind (Choice) = N_Subtype_Indication
|
2343 |
|
|
then
|
2344 |
|
|
Cond :=
|
2345 |
|
|
Make_In (Loc,
|
2346 |
|
|
Left_Opnd => Expression (N),
|
2347 |
|
|
Right_Opnd => Relocate_Node (Choice));
|
2348 |
|
|
|
2349 |
|
|
-- For any other subexpression "expression = value"
|
2350 |
|
|
|
2351 |
|
|
else
|
2352 |
|
|
Cond :=
|
2353 |
|
|
Make_Op_Eq (Loc,
|
2354 |
|
|
Left_Opnd => Expression (N),
|
2355 |
|
|
Right_Opnd => Relocate_Node (Choice));
|
2356 |
|
|
end if;
|
2357 |
|
|
|
2358 |
|
|
-- Now rewrite the case as an IF
|
2359 |
|
|
|
2360 |
|
|
Rewrite (N,
|
2361 |
|
|
Make_If_Statement (Loc,
|
2362 |
|
|
Condition => Cond,
|
2363 |
|
|
Then_Statements => Then_Stms,
|
2364 |
|
|
Else_Statements => Else_Stms));
|
2365 |
|
|
Analyze (N);
|
2366 |
|
|
return;
|
2367 |
|
|
end if;
|
2368 |
|
|
end if;
|
2369 |
|
|
|
2370 |
|
|
-- If the last alternative is not an Others choice, replace it with
|
2371 |
|
|
-- an N_Others_Choice. Note that we do not bother to call Analyze on
|
2372 |
|
|
-- the modified case statement, since it's only effect would be to
|
2373 |
|
|
-- compute the contents of the Others_Discrete_Choices which is not
|
2374 |
|
|
-- needed by the back end anyway.
|
2375 |
|
|
|
2376 |
|
|
-- The reason we do this is that the back end always needs some
|
2377 |
|
|
-- default for a switch, so if we have not supplied one in the
|
2378 |
|
|
-- processing above for validity checking, then we need to supply
|
2379 |
|
|
-- one here.
|
2380 |
|
|
|
2381 |
|
|
if not Others_Present then
|
2382 |
|
|
Others_Node := Make_Others_Choice (Sloc (Last_Alt));
|
2383 |
|
|
Set_Others_Discrete_Choices
|
2384 |
|
|
(Others_Node, Discrete_Choices (Last_Alt));
|
2385 |
|
|
Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
|
2386 |
|
|
end if;
|
2387 |
|
|
end;
|
2388 |
|
|
end Expand_N_Case_Statement;
|
2389 |
|
|
|
2390 |
|
|
-----------------------------
|
2391 |
|
|
-- Expand_N_Exit_Statement --
|
2392 |
|
|
-----------------------------
|
2393 |
|
|
|
2394 |
|
|
-- The only processing required is to deal with a possible C/Fortran
|
2395 |
|
|
-- boolean value used as the condition for the exit statement.
|
2396 |
|
|
|
2397 |
|
|
procedure Expand_N_Exit_Statement (N : Node_Id) is
|
2398 |
|
|
begin
|
2399 |
|
|
Adjust_Condition (Condition (N));
|
2400 |
|
|
end Expand_N_Exit_Statement;
|
2401 |
|
|
|
2402 |
|
|
----------------------------------------
|
2403 |
|
|
-- Expand_N_Extended_Return_Statement --
|
2404 |
|
|
----------------------------------------
|
2405 |
|
|
|
2406 |
|
|
-- If there is a Handled_Statement_Sequence, we rewrite this:
|
2407 |
|
|
|
2408 |
|
|
-- return Result : T := <expression> do
|
2409 |
|
|
-- <handled_seq_of_stms>
|
2410 |
|
|
-- end return;
|
2411 |
|
|
|
2412 |
|
|
-- to be:
|
2413 |
|
|
|
2414 |
|
|
-- declare
|
2415 |
|
|
-- Result : T := <expression>;
|
2416 |
|
|
-- begin
|
2417 |
|
|
-- <handled_seq_of_stms>
|
2418 |
|
|
-- return Result;
|
2419 |
|
|
-- end;
|
2420 |
|
|
|
2421 |
|
|
-- Otherwise (no Handled_Statement_Sequence), we rewrite this:
|
2422 |
|
|
|
2423 |
|
|
-- return Result : T := <expression>;
|
2424 |
|
|
|
2425 |
|
|
-- to be:
|
2426 |
|
|
|
2427 |
|
|
-- return <expression>;
|
2428 |
|
|
|
2429 |
|
|
-- unless it's build-in-place or there's no <expression>, in which case
|
2430 |
|
|
-- we generate:
|
2431 |
|
|
|
2432 |
|
|
-- declare
|
2433 |
|
|
-- Result : T := <expression>;
|
2434 |
|
|
-- begin
|
2435 |
|
|
-- return Result;
|
2436 |
|
|
-- end;
|
2437 |
|
|
|
2438 |
|
|
-- Note that this case could have been written by the user as an extended
|
2439 |
|
|
-- return statement, or could have been transformed to this from a simple
|
2440 |
|
|
-- return statement.
|
2441 |
|
|
|
2442 |
|
|
-- That is, we need to have a reified return object if there are statements
|
2443 |
|
|
-- (which might refer to it) or if we're doing build-in-place (so we can
|
2444 |
|
|
-- set its address to the final resting place or if there is no expression
|
2445 |
|
|
-- (in which case default initial values might need to be set).
|
2446 |
|
|
|
2447 |
|
|
procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
|
2448 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
2449 |
|
|
|
2450 |
|
|
Return_Object_Entity : constant Entity_Id :=
|
2451 |
|
|
First_Entity (Return_Statement_Entity (N));
|
2452 |
|
|
Return_Object_Decl : constant Node_Id :=
|
2453 |
|
|
Parent (Return_Object_Entity);
|
2454 |
|
|
Parent_Function : constant Entity_Id :=
|
2455 |
|
|
Return_Applies_To (Return_Statement_Entity (N));
|
2456 |
|
|
Parent_Function_Typ : constant Entity_Id := Etype (Parent_Function);
|
2457 |
|
|
Is_Build_In_Place : constant Boolean :=
|
2458 |
|
|
Is_Build_In_Place_Function (Parent_Function);
|
2459 |
|
|
|
2460 |
|
|
Return_Stm : Node_Id;
|
2461 |
|
|
Statements : List_Id;
|
2462 |
|
|
Handled_Stm_Seq : Node_Id;
|
2463 |
|
|
Result : Node_Id;
|
2464 |
|
|
Exp : Node_Id;
|
2465 |
|
|
|
2466 |
|
|
function Has_Controlled_Parts (Typ : Entity_Id) return Boolean;
|
2467 |
|
|
-- Determine whether type Typ is controlled or contains a controlled
|
2468 |
|
|
-- subcomponent.
|
2469 |
|
|
|
2470 |
|
|
function Move_Activation_Chain return Node_Id;
|
2471 |
|
|
-- Construct a call to System.Tasking.Stages.Move_Activation_Chain
|
2472 |
|
|
-- with parameters:
|
2473 |
|
|
-- From current activation chain
|
2474 |
|
|
-- To activation chain passed in by the caller
|
2475 |
|
|
-- New_Master master passed in by the caller
|
2476 |
|
|
|
2477 |
|
|
function Move_Final_List return Node_Id;
|
2478 |
|
|
-- Construct call to System.Finalization_Implementation.Move_Final_List
|
2479 |
|
|
-- with parameters:
|
2480 |
|
|
--
|
2481 |
|
|
-- From finalization list of the return statement
|
2482 |
|
|
-- To finalization list passed in by the caller
|
2483 |
|
|
|
2484 |
|
|
--------------------------
|
2485 |
|
|
-- Has_Controlled_Parts --
|
2486 |
|
|
--------------------------
|
2487 |
|
|
|
2488 |
|
|
function Has_Controlled_Parts (Typ : Entity_Id) return Boolean is
|
2489 |
|
|
begin
|
2490 |
|
|
return
|
2491 |
|
|
Is_Controlled (Typ)
|
2492 |
|
|
or else Has_Controlled_Component (Typ);
|
2493 |
|
|
end Has_Controlled_Parts;
|
2494 |
|
|
|
2495 |
|
|
---------------------------
|
2496 |
|
|
-- Move_Activation_Chain --
|
2497 |
|
|
---------------------------
|
2498 |
|
|
|
2499 |
|
|
function Move_Activation_Chain return Node_Id is
|
2500 |
|
|
Activation_Chain_Formal : constant Entity_Id :=
|
2501 |
|
|
Build_In_Place_Formal
|
2502 |
|
|
(Parent_Function, BIP_Activation_Chain);
|
2503 |
|
|
To : constant Node_Id :=
|
2504 |
|
|
New_Reference_To
|
2505 |
|
|
(Activation_Chain_Formal, Loc);
|
2506 |
|
|
Master_Formal : constant Entity_Id :=
|
2507 |
|
|
Build_In_Place_Formal
|
2508 |
|
|
(Parent_Function, BIP_Master);
|
2509 |
|
|
New_Master : constant Node_Id :=
|
2510 |
|
|
New_Reference_To (Master_Formal, Loc);
|
2511 |
|
|
|
2512 |
|
|
Chain_Entity : Entity_Id;
|
2513 |
|
|
From : Node_Id;
|
2514 |
|
|
|
2515 |
|
|
begin
|
2516 |
|
|
Chain_Entity := First_Entity (Return_Statement_Entity (N));
|
2517 |
|
|
while Chars (Chain_Entity) /= Name_uChain loop
|
2518 |
|
|
Chain_Entity := Next_Entity (Chain_Entity);
|
2519 |
|
|
end loop;
|
2520 |
|
|
|
2521 |
|
|
From :=
|
2522 |
|
|
Make_Attribute_Reference (Loc,
|
2523 |
|
|
Prefix => New_Reference_To (Chain_Entity, Loc),
|
2524 |
|
|
Attribute_Name => Name_Unrestricted_Access);
|
2525 |
|
|
-- ??? Not clear why "Make_Identifier (Loc, Name_uChain)" doesn't
|
2526 |
|
|
-- work, instead of "New_Reference_To (Chain_Entity, Loc)" above.
|
2527 |
|
|
|
2528 |
|
|
return
|
2529 |
|
|
Make_Procedure_Call_Statement (Loc,
|
2530 |
|
|
Name => New_Reference_To (RTE (RE_Move_Activation_Chain), Loc),
|
2531 |
|
|
Parameter_Associations => New_List (From, To, New_Master));
|
2532 |
|
|
end Move_Activation_Chain;
|
2533 |
|
|
|
2534 |
|
|
---------------------
|
2535 |
|
|
-- Move_Final_List --
|
2536 |
|
|
---------------------
|
2537 |
|
|
|
2538 |
|
|
function Move_Final_List return Node_Id is
|
2539 |
|
|
Flist : constant Entity_Id :=
|
2540 |
|
|
Finalization_Chain_Entity (Return_Statement_Entity (N));
|
2541 |
|
|
|
2542 |
|
|
From : constant Node_Id := New_Reference_To (Flist, Loc);
|
2543 |
|
|
|
2544 |
|
|
Caller_Final_List : constant Entity_Id :=
|
2545 |
|
|
Build_In_Place_Formal
|
2546 |
|
|
(Parent_Function, BIP_Final_List);
|
2547 |
|
|
|
2548 |
|
|
To : constant Node_Id := New_Reference_To (Caller_Final_List, Loc);
|
2549 |
|
|
|
2550 |
|
|
begin
|
2551 |
|
|
-- Catch cases where a finalization chain entity has not been
|
2552 |
|
|
-- associated with the return statement entity.
|
2553 |
|
|
|
2554 |
|
|
pragma Assert (Present (Flist));
|
2555 |
|
|
|
2556 |
|
|
-- Build required call
|
2557 |
|
|
|
2558 |
|
|
return
|
2559 |
|
|
Make_If_Statement (Loc,
|
2560 |
|
|
Condition =>
|
2561 |
|
|
Make_Op_Ne (Loc,
|
2562 |
|
|
Left_Opnd => New_Copy (From),
|
2563 |
|
|
Right_Opnd => New_Node (N_Null, Loc)),
|
2564 |
|
|
Then_Statements =>
|
2565 |
|
|
New_List (
|
2566 |
|
|
Make_Procedure_Call_Statement (Loc,
|
2567 |
|
|
Name => New_Reference_To (RTE (RE_Move_Final_List), Loc),
|
2568 |
|
|
Parameter_Associations => New_List (From, To))));
|
2569 |
|
|
end Move_Final_List;
|
2570 |
|
|
|
2571 |
|
|
-- Start of processing for Expand_N_Extended_Return_Statement
|
2572 |
|
|
|
2573 |
|
|
begin
|
2574 |
|
|
if Nkind (Return_Object_Decl) = N_Object_Declaration then
|
2575 |
|
|
Exp := Expression (Return_Object_Decl);
|
2576 |
|
|
else
|
2577 |
|
|
Exp := Empty;
|
2578 |
|
|
end if;
|
2579 |
|
|
|
2580 |
|
|
Handled_Stm_Seq := Handled_Statement_Sequence (N);
|
2581 |
|
|
|
2582 |
|
|
-- Build a simple_return_statement that returns the return object when
|
2583 |
|
|
-- there is a statement sequence, or no expression, or the result will
|
2584 |
|
|
-- be built in place. Note however that we currently do this for all
|
2585 |
|
|
-- composite cases, even though nonlimited composite results are not yet
|
2586 |
|
|
-- built in place (though we plan to do so eventually).
|
2587 |
|
|
|
2588 |
|
|
if Present (Handled_Stm_Seq)
|
2589 |
|
|
or else Is_Composite_Type (Etype (Parent_Function))
|
2590 |
|
|
or else No (Exp)
|
2591 |
|
|
then
|
2592 |
|
|
if No (Handled_Stm_Seq) then
|
2593 |
|
|
Statements := New_List;
|
2594 |
|
|
|
2595 |
|
|
-- If the extended return has a handled statement sequence, then wrap
|
2596 |
|
|
-- it in a block and use the block as the first statement.
|
2597 |
|
|
|
2598 |
|
|
else
|
2599 |
|
|
Statements :=
|
2600 |
|
|
New_List (Make_Block_Statement (Loc,
|
2601 |
|
|
Declarations => New_List,
|
2602 |
|
|
Handled_Statement_Sequence => Handled_Stm_Seq));
|
2603 |
|
|
end if;
|
2604 |
|
|
|
2605 |
|
|
-- If control gets past the above Statements, we have successfully
|
2606 |
|
|
-- completed the return statement. If the result type has controlled
|
2607 |
|
|
-- parts and the return is for a build-in-place function, then we
|
2608 |
|
|
-- call Move_Final_List to transfer responsibility for finalization
|
2609 |
|
|
-- of the return object to the caller. An alternative would be to
|
2610 |
|
|
-- declare a Success flag in the function, initialize it to False,
|
2611 |
|
|
-- and set it to True here. Then move the Move_Final_List call into
|
2612 |
|
|
-- the cleanup code, and check Success. If Success then make a call
|
2613 |
|
|
-- to Move_Final_List else do finalization. Then we can remove the
|
2614 |
|
|
-- abort-deferral and the nulling-out of the From parameter from
|
2615 |
|
|
-- Move_Final_List. Note that the current method is not quite correct
|
2616 |
|
|
-- in the rather obscure case of a select-then-abort statement whose
|
2617 |
|
|
-- abortable part contains the return statement.
|
2618 |
|
|
|
2619 |
|
|
-- Check the type of the function to determine whether to move the
|
2620 |
|
|
-- finalization list. A special case arises when processing a simple
|
2621 |
|
|
-- return statement which has been rewritten as an extended return.
|
2622 |
|
|
-- In that case check the type of the returned object or the original
|
2623 |
|
|
-- expression.
|
2624 |
|
|
|
2625 |
|
|
if Is_Build_In_Place
|
2626 |
|
|
and then
|
2627 |
|
|
(Has_Controlled_Parts (Parent_Function_Typ)
|
2628 |
|
|
or else (Is_Class_Wide_Type (Parent_Function_Typ)
|
2629 |
|
|
and then
|
2630 |
|
|
Has_Controlled_Parts (Root_Type (Parent_Function_Typ)))
|
2631 |
|
|
or else Has_Controlled_Parts (Etype (Return_Object_Entity))
|
2632 |
|
|
or else (Present (Exp)
|
2633 |
|
|
and then Has_Controlled_Parts (Etype (Exp))))
|
2634 |
|
|
then
|
2635 |
|
|
Append_To (Statements, Move_Final_List);
|
2636 |
|
|
end if;
|
2637 |
|
|
|
2638 |
|
|
-- Similarly to the above Move_Final_List, if the result type
|
2639 |
|
|
-- contains tasks, we call Move_Activation_Chain. Later, the cleanup
|
2640 |
|
|
-- code will call Complete_Master, which will terminate any
|
2641 |
|
|
-- unactivated tasks belonging to the return statement master. But
|
2642 |
|
|
-- Move_Activation_Chain updates their master to be that of the
|
2643 |
|
|
-- caller, so they will not be terminated unless the return statement
|
2644 |
|
|
-- completes unsuccessfully due to exception, abort, goto, or exit.
|
2645 |
|
|
-- As a formality, we test whether the function requires the result
|
2646 |
|
|
-- to be built in place, though that's necessarily true for the case
|
2647 |
|
|
-- of result types with task parts.
|
2648 |
|
|
|
2649 |
|
|
if Is_Build_In_Place and Has_Task (Etype (Parent_Function)) then
|
2650 |
|
|
Append_To (Statements, Move_Activation_Chain);
|
2651 |
|
|
end if;
|
2652 |
|
|
|
2653 |
|
|
-- Build a simple_return_statement that returns the return object
|
2654 |
|
|
|
2655 |
|
|
Return_Stm :=
|
2656 |
|
|
Make_Simple_Return_Statement (Loc,
|
2657 |
|
|
Expression => New_Occurrence_Of (Return_Object_Entity, Loc));
|
2658 |
|
|
Append_To (Statements, Return_Stm);
|
2659 |
|
|
|
2660 |
|
|
Handled_Stm_Seq :=
|
2661 |
|
|
Make_Handled_Sequence_Of_Statements (Loc, Statements);
|
2662 |
|
|
end if;
|
2663 |
|
|
|
2664 |
|
|
-- Case where we build a block
|
2665 |
|
|
|
2666 |
|
|
if Present (Handled_Stm_Seq) then
|
2667 |
|
|
Result :=
|
2668 |
|
|
Make_Block_Statement (Loc,
|
2669 |
|
|
Declarations => Return_Object_Declarations (N),
|
2670 |
|
|
Handled_Statement_Sequence => Handled_Stm_Seq);
|
2671 |
|
|
|
2672 |
|
|
-- We set the entity of the new block statement to be that of the
|
2673 |
|
|
-- return statement. This is necessary so that various fields, such
|
2674 |
|
|
-- as Finalization_Chain_Entity carry over from the return statement
|
2675 |
|
|
-- to the block. Note that this block is unusual, in that its entity
|
2676 |
|
|
-- is an E_Return_Statement rather than an E_Block.
|
2677 |
|
|
|
2678 |
|
|
Set_Identifier
|
2679 |
|
|
(Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
|
2680 |
|
|
|
2681 |
|
|
-- If the object decl was already rewritten as a renaming, then
|
2682 |
|
|
-- we don't want to do the object allocation and transformation of
|
2683 |
|
|
-- of the return object declaration to a renaming. This case occurs
|
2684 |
|
|
-- when the return object is initialized by a call to another
|
2685 |
|
|
-- build-in-place function, and that function is responsible for the
|
2686 |
|
|
-- allocation of the return object.
|
2687 |
|
|
|
2688 |
|
|
if Is_Build_In_Place
|
2689 |
|
|
and then
|
2690 |
|
|
Nkind (Return_Object_Decl) = N_Object_Renaming_Declaration
|
2691 |
|
|
then
|
2692 |
|
|
pragma Assert (Nkind (Original_Node (Return_Object_Decl)) =
|
2693 |
|
|
N_Object_Declaration
|
2694 |
|
|
and then Is_Build_In_Place_Function_Call
|
2695 |
|
|
(Expression (Original_Node (Return_Object_Decl))));
|
2696 |
|
|
|
2697 |
|
|
Set_By_Ref (Return_Stm); -- Return build-in-place results by ref
|
2698 |
|
|
|
2699 |
|
|
elsif Is_Build_In_Place then
|
2700 |
|
|
|
2701 |
|
|
-- Locate the implicit access parameter associated with the
|
2702 |
|
|
-- caller-supplied return object and convert the return
|
2703 |
|
|
-- statement's return object declaration to a renaming of a
|
2704 |
|
|
-- dereference of the access parameter. If the return object's
|
2705 |
|
|
-- declaration includes an expression that has not already been
|
2706 |
|
|
-- expanded as separate assignments, then add an assignment
|
2707 |
|
|
-- statement to ensure the return object gets initialized.
|
2708 |
|
|
|
2709 |
|
|
-- declare
|
2710 |
|
|
-- Result : T [:= <expression>];
|
2711 |
|
|
-- begin
|
2712 |
|
|
-- ...
|
2713 |
|
|
|
2714 |
|
|
-- is converted to
|
2715 |
|
|
|
2716 |
|
|
-- declare
|
2717 |
|
|
-- Result : T renames FuncRA.all;
|
2718 |
|
|
-- [Result := <expression;]
|
2719 |
|
|
-- begin
|
2720 |
|
|
-- ...
|
2721 |
|
|
|
2722 |
|
|
declare
|
2723 |
|
|
Return_Obj_Id : constant Entity_Id :=
|
2724 |
|
|
Defining_Identifier (Return_Object_Decl);
|
2725 |
|
|
Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
|
2726 |
|
|
Return_Obj_Expr : constant Node_Id :=
|
2727 |
|
|
Expression (Return_Object_Decl);
|
2728 |
|
|
Result_Subt : constant Entity_Id :=
|
2729 |
|
|
Etype (Parent_Function);
|
2730 |
|
|
Constr_Result : constant Boolean :=
|
2731 |
|
|
Is_Constrained (Result_Subt);
|
2732 |
|
|
Obj_Alloc_Formal : Entity_Id;
|
2733 |
|
|
Object_Access : Entity_Id;
|
2734 |
|
|
Obj_Acc_Deref : Node_Id;
|
2735 |
|
|
Init_Assignment : Node_Id := Empty;
|
2736 |
|
|
|
2737 |
|
|
begin
|
2738 |
|
|
-- Build-in-place results must be returned by reference
|
2739 |
|
|
|
2740 |
|
|
Set_By_Ref (Return_Stm);
|
2741 |
|
|
|
2742 |
|
|
-- Retrieve the implicit access parameter passed by the caller
|
2743 |
|
|
|
2744 |
|
|
Object_Access :=
|
2745 |
|
|
Build_In_Place_Formal (Parent_Function, BIP_Object_Access);
|
2746 |
|
|
|
2747 |
|
|
-- If the return object's declaration includes an expression
|
2748 |
|
|
-- and the declaration isn't marked as No_Initialization, then
|
2749 |
|
|
-- we need to generate an assignment to the object and insert
|
2750 |
|
|
-- it after the declaration before rewriting it as a renaming
|
2751 |
|
|
-- (otherwise we'll lose the initialization). The case where
|
2752 |
|
|
-- the result type is an interface (or class-wide interface)
|
2753 |
|
|
-- is also excluded because the context of the function call
|
2754 |
|
|
-- must be unconstrained, so the initialization will always
|
2755 |
|
|
-- be done as part of an allocator evaluation (storage pool
|
2756 |
|
|
-- or secondary stack), never to a constrained target object
|
2757 |
|
|
-- passed in by the caller. Besides the assignment being
|
2758 |
|
|
-- unneeded in this case, it avoids problems with trying to
|
2759 |
|
|
-- generate a dispatching assignment when the return expression
|
2760 |
|
|
-- is a nonlimited descendant of a limited interface (the
|
2761 |
|
|
-- interface has no assignment operation).
|
2762 |
|
|
|
2763 |
|
|
if Present (Return_Obj_Expr)
|
2764 |
|
|
and then not No_Initialization (Return_Object_Decl)
|
2765 |
|
|
and then not Is_Interface (Return_Obj_Typ)
|
2766 |
|
|
then
|
2767 |
|
|
Init_Assignment :=
|
2768 |
|
|
Make_Assignment_Statement (Loc,
|
2769 |
|
|
Name => New_Reference_To (Return_Obj_Id, Loc),
|
2770 |
|
|
Expression => Relocate_Node (Return_Obj_Expr));
|
2771 |
|
|
Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
|
2772 |
|
|
Set_Assignment_OK (Name (Init_Assignment));
|
2773 |
|
|
Set_No_Ctrl_Actions (Init_Assignment);
|
2774 |
|
|
|
2775 |
|
|
Set_Parent (Name (Init_Assignment), Init_Assignment);
|
2776 |
|
|
Set_Parent (Expression (Init_Assignment), Init_Assignment);
|
2777 |
|
|
|
2778 |
|
|
Set_Expression (Return_Object_Decl, Empty);
|
2779 |
|
|
|
2780 |
|
|
if Is_Class_Wide_Type (Etype (Return_Obj_Id))
|
2781 |
|
|
and then not Is_Class_Wide_Type
|
2782 |
|
|
(Etype (Expression (Init_Assignment)))
|
2783 |
|
|
then
|
2784 |
|
|
Rewrite (Expression (Init_Assignment),
|
2785 |
|
|
Make_Type_Conversion (Loc,
|
2786 |
|
|
Subtype_Mark =>
|
2787 |
|
|
New_Occurrence_Of
|
2788 |
|
|
(Etype (Return_Obj_Id), Loc),
|
2789 |
|
|
Expression =>
|
2790 |
|
|
Relocate_Node (Expression (Init_Assignment))));
|
2791 |
|
|
end if;
|
2792 |
|
|
|
2793 |
|
|
-- In the case of functions where the calling context can
|
2794 |
|
|
-- determine the form of allocation needed, initialization
|
2795 |
|
|
-- is done with each part of the if statement that handles
|
2796 |
|
|
-- the different forms of allocation (this is true for
|
2797 |
|
|
-- unconstrained and tagged result subtypes).
|
2798 |
|
|
|
2799 |
|
|
if Constr_Result
|
2800 |
|
|
and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
|
2801 |
|
|
then
|
2802 |
|
|
Insert_After (Return_Object_Decl, Init_Assignment);
|
2803 |
|
|
end if;
|
2804 |
|
|
end if;
|
2805 |
|
|
|
2806 |
|
|
-- When the function's subtype is unconstrained, a run-time
|
2807 |
|
|
-- test is needed to determine the form of allocation to use
|
2808 |
|
|
-- for the return object. The function has an implicit formal
|
2809 |
|
|
-- parameter indicating this. If the BIP_Alloc_Form formal has
|
2810 |
|
|
-- the value one, then the caller has passed access to an
|
2811 |
|
|
-- existing object for use as the return object. If the value
|
2812 |
|
|
-- is two, then the return object must be allocated on the
|
2813 |
|
|
-- secondary stack. Otherwise, the object must be allocated in
|
2814 |
|
|
-- a storage pool (currently only supported for the global
|
2815 |
|
|
-- heap, user-defined storage pools TBD ???). We generate an
|
2816 |
|
|
-- if statement to test the implicit allocation formal and
|
2817 |
|
|
-- initialize a local access value appropriately, creating
|
2818 |
|
|
-- allocators in the secondary stack and global heap cases.
|
2819 |
|
|
-- The special formal also exists and must be tested when the
|
2820 |
|
|
-- function has a tagged result, even when the result subtype
|
2821 |
|
|
-- is constrained, because in general such functions can be
|
2822 |
|
|
-- called in dispatching contexts and must be handled similarly
|
2823 |
|
|
-- to functions with a class-wide result.
|
2824 |
|
|
|
2825 |
|
|
if not Constr_Result
|
2826 |
|
|
or else Is_Tagged_Type (Underlying_Type (Result_Subt))
|
2827 |
|
|
then
|
2828 |
|
|
Obj_Alloc_Formal :=
|
2829 |
|
|
Build_In_Place_Formal (Parent_Function, BIP_Alloc_Form);
|
2830 |
|
|
|
2831 |
|
|
declare
|
2832 |
|
|
Ref_Type : Entity_Id;
|
2833 |
|
|
Ptr_Type_Decl : Node_Id;
|
2834 |
|
|
Alloc_Obj_Id : Entity_Id;
|
2835 |
|
|
Alloc_Obj_Decl : Node_Id;
|
2836 |
|
|
Alloc_If_Stmt : Node_Id;
|
2837 |
|
|
SS_Allocator : Node_Id;
|
2838 |
|
|
Heap_Allocator : Node_Id;
|
2839 |
|
|
|
2840 |
|
|
begin
|
2841 |
|
|
-- Reuse the itype created for the function's implicit
|
2842 |
|
|
-- access formal. This avoids the need to create a new
|
2843 |
|
|
-- access type here, plus it allows assigning the access
|
2844 |
|
|
-- formal directly without applying a conversion.
|
2845 |
|
|
|
2846 |
|
|
-- Ref_Type := Etype (Object_Access);
|
2847 |
|
|
|
2848 |
|
|
-- Create an access type designating the function's
|
2849 |
|
|
-- result subtype.
|
2850 |
|
|
|
2851 |
|
|
Ref_Type :=
|
2852 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
|
2853 |
|
|
|
2854 |
|
|
Ptr_Type_Decl :=
|
2855 |
|
|
Make_Full_Type_Declaration (Loc,
|
2856 |
|
|
Defining_Identifier => Ref_Type,
|
2857 |
|
|
Type_Definition =>
|
2858 |
|
|
Make_Access_To_Object_Definition (Loc,
|
2859 |
|
|
All_Present => True,
|
2860 |
|
|
Subtype_Indication =>
|
2861 |
|
|
New_Reference_To (Return_Obj_Typ, Loc)));
|
2862 |
|
|
|
2863 |
|
|
Insert_Before (Return_Object_Decl, Ptr_Type_Decl);
|
2864 |
|
|
|
2865 |
|
|
-- Create an access object that will be initialized to an
|
2866 |
|
|
-- access value denoting the return object, either coming
|
2867 |
|
|
-- from an implicit access value passed in by the caller
|
2868 |
|
|
-- or from the result of an allocator.
|
2869 |
|
|
|
2870 |
|
|
Alloc_Obj_Id :=
|
2871 |
|
|
Make_Defining_Identifier (Loc,
|
2872 |
|
|
Chars => New_Internal_Name ('R'));
|
2873 |
|
|
Set_Etype (Alloc_Obj_Id, Ref_Type);
|
2874 |
|
|
|
2875 |
|
|
Alloc_Obj_Decl :=
|
2876 |
|
|
Make_Object_Declaration (Loc,
|
2877 |
|
|
Defining_Identifier => Alloc_Obj_Id,
|
2878 |
|
|
Object_Definition => New_Reference_To
|
2879 |
|
|
(Ref_Type, Loc));
|
2880 |
|
|
|
2881 |
|
|
Insert_Before (Return_Object_Decl, Alloc_Obj_Decl);
|
2882 |
|
|
|
2883 |
|
|
-- Create allocators for both the secondary stack and
|
2884 |
|
|
-- global heap. If there's an initialization expression,
|
2885 |
|
|
-- then create these as initialized allocators.
|
2886 |
|
|
|
2887 |
|
|
if Present (Return_Obj_Expr)
|
2888 |
|
|
and then not No_Initialization (Return_Object_Decl)
|
2889 |
|
|
then
|
2890 |
|
|
-- Always use the type of the expression for the
|
2891 |
|
|
-- qualified expression, rather than the result type.
|
2892 |
|
|
-- In general we cannot always use the result type
|
2893 |
|
|
-- for the allocator, because the expression might be
|
2894 |
|
|
-- of a specific type, such as in the case of an
|
2895 |
|
|
-- aggregate or even a nonlimited object when the
|
2896 |
|
|
-- result type is a limited class-wide interface type.
|
2897 |
|
|
|
2898 |
|
|
Heap_Allocator :=
|
2899 |
|
|
Make_Allocator (Loc,
|
2900 |
|
|
Expression =>
|
2901 |
|
|
Make_Qualified_Expression (Loc,
|
2902 |
|
|
Subtype_Mark =>
|
2903 |
|
|
New_Reference_To
|
2904 |
|
|
(Etype (Return_Obj_Expr), Loc),
|
2905 |
|
|
Expression =>
|
2906 |
|
|
New_Copy_Tree (Return_Obj_Expr)));
|
2907 |
|
|
|
2908 |
|
|
else
|
2909 |
|
|
-- If the function returns a class-wide type we cannot
|
2910 |
|
|
-- use the return type for the allocator. Instead we
|
2911 |
|
|
-- use the type of the expression, which must be an
|
2912 |
|
|
-- aggregate of a definite type.
|
2913 |
|
|
|
2914 |
|
|
if Is_Class_Wide_Type (Return_Obj_Typ) then
|
2915 |
|
|
Heap_Allocator :=
|
2916 |
|
|
Make_Allocator (Loc,
|
2917 |
|
|
Expression =>
|
2918 |
|
|
New_Reference_To
|
2919 |
|
|
(Etype (Return_Obj_Expr), Loc));
|
2920 |
|
|
else
|
2921 |
|
|
Heap_Allocator :=
|
2922 |
|
|
Make_Allocator (Loc,
|
2923 |
|
|
Expression =>
|
2924 |
|
|
New_Reference_To (Return_Obj_Typ, Loc));
|
2925 |
|
|
end if;
|
2926 |
|
|
|
2927 |
|
|
-- If the object requires default initialization then
|
2928 |
|
|
-- that will happen later following the elaboration of
|
2929 |
|
|
-- the object renaming. If we don't turn it off here
|
2930 |
|
|
-- then the object will be default initialized twice.
|
2931 |
|
|
|
2932 |
|
|
Set_No_Initialization (Heap_Allocator);
|
2933 |
|
|
end if;
|
2934 |
|
|
|
2935 |
|
|
-- If the No_Allocators restriction is active, then only
|
2936 |
|
|
-- an allocator for secondary stack allocation is needed.
|
2937 |
|
|
-- It's OK for such allocators to have Comes_From_Source
|
2938 |
|
|
-- set to False, because gigi knows not to flag them as
|
2939 |
|
|
-- being a violation of No_Implicit_Heap_Allocations.
|
2940 |
|
|
|
2941 |
|
|
if Restriction_Active (No_Allocators) then
|
2942 |
|
|
SS_Allocator := Heap_Allocator;
|
2943 |
|
|
Heap_Allocator := Make_Null (Loc);
|
2944 |
|
|
|
2945 |
|
|
-- Otherwise the heap allocator may be needed, so we make
|
2946 |
|
|
-- another allocator for secondary stack allocation.
|
2947 |
|
|
|
2948 |
|
|
else
|
2949 |
|
|
SS_Allocator := New_Copy_Tree (Heap_Allocator);
|
2950 |
|
|
|
2951 |
|
|
-- The heap allocator is marked Comes_From_Source
|
2952 |
|
|
-- since it corresponds to an explicit user-written
|
2953 |
|
|
-- allocator (that is, it will only be executed on
|
2954 |
|
|
-- behalf of callers that call the function as
|
2955 |
|
|
-- initialization for such an allocator). This
|
2956 |
|
|
-- prevents errors when No_Implicit_Heap_Allocations
|
2957 |
|
|
-- is in force.
|
2958 |
|
|
|
2959 |
|
|
Set_Comes_From_Source (Heap_Allocator, True);
|
2960 |
|
|
end if;
|
2961 |
|
|
|
2962 |
|
|
-- The allocator is returned on the secondary stack. We
|
2963 |
|
|
-- don't do this on VM targets, since the SS is not used.
|
2964 |
|
|
|
2965 |
|
|
if VM_Target = No_VM then
|
2966 |
|
|
Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
|
2967 |
|
|
Set_Procedure_To_Call
|
2968 |
|
|
(SS_Allocator, RTE (RE_SS_Allocate));
|
2969 |
|
|
|
2970 |
|
|
-- The allocator is returned on the secondary stack,
|
2971 |
|
|
-- so indicate that the function return, as well as
|
2972 |
|
|
-- the block that encloses the allocator, must not
|
2973 |
|
|
-- release it. The flags must be set now because the
|
2974 |
|
|
-- decision to use the secondary stack is done very
|
2975 |
|
|
-- late in the course of expanding the return
|
2976 |
|
|
-- statement, past the point where these flags are
|
2977 |
|
|
-- normally set.
|
2978 |
|
|
|
2979 |
|
|
Set_Sec_Stack_Needed_For_Return (Parent_Function);
|
2980 |
|
|
Set_Sec_Stack_Needed_For_Return
|
2981 |
|
|
(Return_Statement_Entity (N));
|
2982 |
|
|
Set_Uses_Sec_Stack (Parent_Function);
|
2983 |
|
|
Set_Uses_Sec_Stack (Return_Statement_Entity (N));
|
2984 |
|
|
end if;
|
2985 |
|
|
|
2986 |
|
|
-- Create an if statement to test the BIP_Alloc_Form
|
2987 |
|
|
-- formal and initialize the access object to either the
|
2988 |
|
|
-- BIP_Object_Access formal (BIP_Alloc_Form = 0), the
|
2989 |
|
|
-- result of allocating the object in the secondary stack
|
2990 |
|
|
-- (BIP_Alloc_Form = 1), or else an allocator to create
|
2991 |
|
|
-- the return object in the heap (BIP_Alloc_Form = 2).
|
2992 |
|
|
|
2993 |
|
|
-- ??? An unchecked type conversion must be made in the
|
2994 |
|
|
-- case of assigning the access object formal to the
|
2995 |
|
|
-- local access object, because a normal conversion would
|
2996 |
|
|
-- be illegal in some cases (such as converting access-
|
2997 |
|
|
-- to-unconstrained to access-to-constrained), but the
|
2998 |
|
|
-- the unchecked conversion will presumably fail to work
|
2999 |
|
|
-- right in just such cases. It's not clear at all how to
|
3000 |
|
|
-- handle this. ???
|
3001 |
|
|
|
3002 |
|
|
Alloc_If_Stmt :=
|
3003 |
|
|
Make_If_Statement (Loc,
|
3004 |
|
|
Condition =>
|
3005 |
|
|
Make_Op_Eq (Loc,
|
3006 |
|
|
Left_Opnd =>
|
3007 |
|
|
New_Reference_To (Obj_Alloc_Formal, Loc),
|
3008 |
|
|
Right_Opnd =>
|
3009 |
|
|
Make_Integer_Literal (Loc,
|
3010 |
|
|
UI_From_Int (BIP_Allocation_Form'Pos
|
3011 |
|
|
(Caller_Allocation)))),
|
3012 |
|
|
Then_Statements =>
|
3013 |
|
|
New_List (Make_Assignment_Statement (Loc,
|
3014 |
|
|
Name =>
|
3015 |
|
|
New_Reference_To
|
3016 |
|
|
(Alloc_Obj_Id, Loc),
|
3017 |
|
|
Expression =>
|
3018 |
|
|
Make_Unchecked_Type_Conversion (Loc,
|
3019 |
|
|
Subtype_Mark =>
|
3020 |
|
|
New_Reference_To (Ref_Type, Loc),
|
3021 |
|
|
Expression =>
|
3022 |
|
|
New_Reference_To
|
3023 |
|
|
(Object_Access, Loc)))),
|
3024 |
|
|
Elsif_Parts =>
|
3025 |
|
|
New_List (Make_Elsif_Part (Loc,
|
3026 |
|
|
Condition =>
|
3027 |
|
|
Make_Op_Eq (Loc,
|
3028 |
|
|
Left_Opnd =>
|
3029 |
|
|
New_Reference_To
|
3030 |
|
|
(Obj_Alloc_Formal, Loc),
|
3031 |
|
|
Right_Opnd =>
|
3032 |
|
|
Make_Integer_Literal (Loc,
|
3033 |
|
|
UI_From_Int (
|
3034 |
|
|
BIP_Allocation_Form'Pos
|
3035 |
|
|
(Secondary_Stack)))),
|
3036 |
|
|
Then_Statements =>
|
3037 |
|
|
New_List
|
3038 |
|
|
(Make_Assignment_Statement (Loc,
|
3039 |
|
|
Name =>
|
3040 |
|
|
New_Reference_To
|
3041 |
|
|
(Alloc_Obj_Id, Loc),
|
3042 |
|
|
Expression =>
|
3043 |
|
|
SS_Allocator)))),
|
3044 |
|
|
Else_Statements =>
|
3045 |
|
|
New_List (Make_Assignment_Statement (Loc,
|
3046 |
|
|
Name =>
|
3047 |
|
|
New_Reference_To
|
3048 |
|
|
(Alloc_Obj_Id, Loc),
|
3049 |
|
|
Expression =>
|
3050 |
|
|
Heap_Allocator)));
|
3051 |
|
|
|
3052 |
|
|
-- If a separate initialization assignment was created
|
3053 |
|
|
-- earlier, append that following the assignment of the
|
3054 |
|
|
-- implicit access formal to the access object, to ensure
|
3055 |
|
|
-- that the return object is initialized in that case.
|
3056 |
|
|
-- In this situation, the target of the assignment must
|
3057 |
|
|
-- be rewritten to denote a dereference of the access to
|
3058 |
|
|
-- the return object passed in by the caller.
|
3059 |
|
|
|
3060 |
|
|
if Present (Init_Assignment) then
|
3061 |
|
|
Rewrite (Name (Init_Assignment),
|
3062 |
|
|
Make_Explicit_Dereference (Loc,
|
3063 |
|
|
Prefix => New_Reference_To (Alloc_Obj_Id, Loc)));
|
3064 |
|
|
Set_Etype
|
3065 |
|
|
(Name (Init_Assignment), Etype (Return_Obj_Id));
|
3066 |
|
|
|
3067 |
|
|
Append_To
|
3068 |
|
|
(Then_Statements (Alloc_If_Stmt),
|
3069 |
|
|
Init_Assignment);
|
3070 |
|
|
end if;
|
3071 |
|
|
|
3072 |
|
|
Insert_Before (Return_Object_Decl, Alloc_If_Stmt);
|
3073 |
|
|
|
3074 |
|
|
-- Remember the local access object for use in the
|
3075 |
|
|
-- dereference of the renaming created below.
|
3076 |
|
|
|
3077 |
|
|
Object_Access := Alloc_Obj_Id;
|
3078 |
|
|
end;
|
3079 |
|
|
end if;
|
3080 |
|
|
|
3081 |
|
|
-- Replace the return object declaration with a renaming of a
|
3082 |
|
|
-- dereference of the access value designating the return
|
3083 |
|
|
-- object.
|
3084 |
|
|
|
3085 |
|
|
Obj_Acc_Deref :=
|
3086 |
|
|
Make_Explicit_Dereference (Loc,
|
3087 |
|
|
Prefix => New_Reference_To (Object_Access, Loc));
|
3088 |
|
|
|
3089 |
|
|
Rewrite (Return_Object_Decl,
|
3090 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
3091 |
|
|
Defining_Identifier => Return_Obj_Id,
|
3092 |
|
|
Access_Definition => Empty,
|
3093 |
|
|
Subtype_Mark => New_Occurrence_Of
|
3094 |
|
|
(Return_Obj_Typ, Loc),
|
3095 |
|
|
Name => Obj_Acc_Deref));
|
3096 |
|
|
|
3097 |
|
|
Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
|
3098 |
|
|
end;
|
3099 |
|
|
end if;
|
3100 |
|
|
|
3101 |
|
|
-- Case where we do not build a block
|
3102 |
|
|
|
3103 |
|
|
else
|
3104 |
|
|
-- We're about to drop Return_Object_Declarations on the floor, so
|
3105 |
|
|
-- we need to insert it, in case it got expanded into useful code.
|
3106 |
|
|
|
3107 |
|
|
Insert_List_Before (N, Return_Object_Declarations (N));
|
3108 |
|
|
|
3109 |
|
|
-- Build simple_return_statement that returns the expression directly
|
3110 |
|
|
|
3111 |
|
|
Return_Stm := Make_Simple_Return_Statement (Loc, Expression => Exp);
|
3112 |
|
|
|
3113 |
|
|
Result := Return_Stm;
|
3114 |
|
|
end if;
|
3115 |
|
|
|
3116 |
|
|
-- Set the flag to prevent infinite recursion
|
3117 |
|
|
|
3118 |
|
|
Set_Comes_From_Extended_Return_Statement (Return_Stm);
|
3119 |
|
|
|
3120 |
|
|
Rewrite (N, Result);
|
3121 |
|
|
Analyze (N);
|
3122 |
|
|
end Expand_N_Extended_Return_Statement;
|
3123 |
|
|
|
3124 |
|
|
-----------------------------
|
3125 |
|
|
-- Expand_N_Goto_Statement --
|
3126 |
|
|
-----------------------------
|
3127 |
|
|
|
3128 |
|
|
-- Add poll before goto if polling active
|
3129 |
|
|
|
3130 |
|
|
procedure Expand_N_Goto_Statement (N : Node_Id) is
|
3131 |
|
|
begin
|
3132 |
|
|
Generate_Poll_Call (N);
|
3133 |
|
|
end Expand_N_Goto_Statement;
|
3134 |
|
|
|
3135 |
|
|
---------------------------
|
3136 |
|
|
-- Expand_N_If_Statement --
|
3137 |
|
|
---------------------------
|
3138 |
|
|
|
3139 |
|
|
-- First we deal with the case of C and Fortran convention boolean values,
|
3140 |
|
|
-- with zero/non-zero semantics.
|
3141 |
|
|
|
3142 |
|
|
-- Second, we deal with the obvious rewriting for the cases where the
|
3143 |
|
|
-- condition of the IF is known at compile time to be True or False.
|
3144 |
|
|
|
3145 |
|
|
-- Third, we remove elsif parts which have non-empty Condition_Actions and
|
3146 |
|
|
-- rewrite as independent if statements. For example:
|
3147 |
|
|
|
3148 |
|
|
-- if x then xs
|
3149 |
|
|
-- elsif y then ys
|
3150 |
|
|
-- ...
|
3151 |
|
|
-- end if;
|
3152 |
|
|
|
3153 |
|
|
-- becomes
|
3154 |
|
|
--
|
3155 |
|
|
-- if x then xs
|
3156 |
|
|
-- else
|
3157 |
|
|
-- <<condition actions of y>>
|
3158 |
|
|
-- if y then ys
|
3159 |
|
|
-- ...
|
3160 |
|
|
-- end if;
|
3161 |
|
|
-- end if;
|
3162 |
|
|
|
3163 |
|
|
-- This rewriting is needed if at least one elsif part has a non-empty
|
3164 |
|
|
-- Condition_Actions list. We also do the same processing if there is a
|
3165 |
|
|
-- constant condition in an elsif part (in conjunction with the first
|
3166 |
|
|
-- processing step mentioned above, for the recursive call made to deal
|
3167 |
|
|
-- with the created inner if, this deals with properly optimizing the
|
3168 |
|
|
-- cases of constant elsif conditions).
|
3169 |
|
|
|
3170 |
|
|
procedure Expand_N_If_Statement (N : Node_Id) is
|
3171 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3172 |
|
|
Hed : Node_Id;
|
3173 |
|
|
E : Node_Id;
|
3174 |
|
|
New_If : Node_Id;
|
3175 |
|
|
|
3176 |
|
|
Warn_If_Deleted : constant Boolean :=
|
3177 |
|
|
Warn_On_Deleted_Code and then Comes_From_Source (N);
|
3178 |
|
|
-- Indicates whether we want warnings when we delete branches of the
|
3179 |
|
|
-- if statement based on constant condition analysis. We never want
|
3180 |
|
|
-- these warnings for expander generated code.
|
3181 |
|
|
|
3182 |
|
|
begin
|
3183 |
|
|
Adjust_Condition (Condition (N));
|
3184 |
|
|
|
3185 |
|
|
-- The following loop deals with constant conditions for the IF. We
|
3186 |
|
|
-- need a loop because as we eliminate False conditions, we grab the
|
3187 |
|
|
-- first elsif condition and use it as the primary condition.
|
3188 |
|
|
|
3189 |
|
|
while Compile_Time_Known_Value (Condition (N)) loop
|
3190 |
|
|
|
3191 |
|
|
-- If condition is True, we can simply rewrite the if statement now
|
3192 |
|
|
-- by replacing it by the series of then statements.
|
3193 |
|
|
|
3194 |
|
|
if Is_True (Expr_Value (Condition (N))) then
|
3195 |
|
|
|
3196 |
|
|
-- All the else parts can be killed
|
3197 |
|
|
|
3198 |
|
|
Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
|
3199 |
|
|
Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
|
3200 |
|
|
|
3201 |
|
|
Hed := Remove_Head (Then_Statements (N));
|
3202 |
|
|
Insert_List_After (N, Then_Statements (N));
|
3203 |
|
|
Rewrite (N, Hed);
|
3204 |
|
|
return;
|
3205 |
|
|
|
3206 |
|
|
-- If condition is False, then we can delete the condition and
|
3207 |
|
|
-- the Then statements
|
3208 |
|
|
|
3209 |
|
|
else
|
3210 |
|
|
-- We do not delete the condition if constant condition warnings
|
3211 |
|
|
-- are enabled, since otherwise we end up deleting the desired
|
3212 |
|
|
-- warning. Of course the backend will get rid of this True/False
|
3213 |
|
|
-- test anyway, so nothing is lost here.
|
3214 |
|
|
|
3215 |
|
|
if not Constant_Condition_Warnings then
|
3216 |
|
|
Kill_Dead_Code (Condition (N));
|
3217 |
|
|
end if;
|
3218 |
|
|
|
3219 |
|
|
Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
|
3220 |
|
|
|
3221 |
|
|
-- If there are no elsif statements, then we simply replace the
|
3222 |
|
|
-- entire if statement by the sequence of else statements.
|
3223 |
|
|
|
3224 |
|
|
if No (Elsif_Parts (N)) then
|
3225 |
|
|
if No (Else_Statements (N))
|
3226 |
|
|
or else Is_Empty_List (Else_Statements (N))
|
3227 |
|
|
then
|
3228 |
|
|
Rewrite (N,
|
3229 |
|
|
Make_Null_Statement (Sloc (N)));
|
3230 |
|
|
else
|
3231 |
|
|
Hed := Remove_Head (Else_Statements (N));
|
3232 |
|
|
Insert_List_After (N, Else_Statements (N));
|
3233 |
|
|
Rewrite (N, Hed);
|
3234 |
|
|
end if;
|
3235 |
|
|
|
3236 |
|
|
return;
|
3237 |
|
|
|
3238 |
|
|
-- If there are elsif statements, the first of them becomes the
|
3239 |
|
|
-- if/then section of the rebuilt if statement This is the case
|
3240 |
|
|
-- where we loop to reprocess this copied condition.
|
3241 |
|
|
|
3242 |
|
|
else
|
3243 |
|
|
Hed := Remove_Head (Elsif_Parts (N));
|
3244 |
|
|
Insert_Actions (N, Condition_Actions (Hed));
|
3245 |
|
|
Set_Condition (N, Condition (Hed));
|
3246 |
|
|
Set_Then_Statements (N, Then_Statements (Hed));
|
3247 |
|
|
|
3248 |
|
|
-- Hed might have been captured as the condition determining
|
3249 |
|
|
-- the current value for an entity. Now it is detached from
|
3250 |
|
|
-- the tree, so a Current_Value pointer in the condition might
|
3251 |
|
|
-- need to be updated.
|
3252 |
|
|
|
3253 |
|
|
Set_Current_Value_Condition (N);
|
3254 |
|
|
|
3255 |
|
|
if Is_Empty_List (Elsif_Parts (N)) then
|
3256 |
|
|
Set_Elsif_Parts (N, No_List);
|
3257 |
|
|
end if;
|
3258 |
|
|
end if;
|
3259 |
|
|
end if;
|
3260 |
|
|
end loop;
|
3261 |
|
|
|
3262 |
|
|
-- Loop through elsif parts, dealing with constant conditions and
|
3263 |
|
|
-- possible expression actions that are present.
|
3264 |
|
|
|
3265 |
|
|
if Present (Elsif_Parts (N)) then
|
3266 |
|
|
E := First (Elsif_Parts (N));
|
3267 |
|
|
while Present (E) loop
|
3268 |
|
|
Adjust_Condition (Condition (E));
|
3269 |
|
|
|
3270 |
|
|
-- If there are condition actions, then rewrite the if statement
|
3271 |
|
|
-- as indicated above. We also do the same rewrite for a True or
|
3272 |
|
|
-- False condition. The further processing of this constant
|
3273 |
|
|
-- condition is then done by the recursive call to expand the
|
3274 |
|
|
-- newly created if statement
|
3275 |
|
|
|
3276 |
|
|
if Present (Condition_Actions (E))
|
3277 |
|
|
or else Compile_Time_Known_Value (Condition (E))
|
3278 |
|
|
then
|
3279 |
|
|
-- Note this is not an implicit if statement, since it is part
|
3280 |
|
|
-- of an explicit if statement in the source (or of an implicit
|
3281 |
|
|
-- if statement that has already been tested).
|
3282 |
|
|
|
3283 |
|
|
New_If :=
|
3284 |
|
|
Make_If_Statement (Sloc (E),
|
3285 |
|
|
Condition => Condition (E),
|
3286 |
|
|
Then_Statements => Then_Statements (E),
|
3287 |
|
|
Elsif_Parts => No_List,
|
3288 |
|
|
Else_Statements => Else_Statements (N));
|
3289 |
|
|
|
3290 |
|
|
-- Elsif parts for new if come from remaining elsif's of parent
|
3291 |
|
|
|
3292 |
|
|
while Present (Next (E)) loop
|
3293 |
|
|
if No (Elsif_Parts (New_If)) then
|
3294 |
|
|
Set_Elsif_Parts (New_If, New_List);
|
3295 |
|
|
end if;
|
3296 |
|
|
|
3297 |
|
|
Append (Remove_Next (E), Elsif_Parts (New_If));
|
3298 |
|
|
end loop;
|
3299 |
|
|
|
3300 |
|
|
Set_Else_Statements (N, New_List (New_If));
|
3301 |
|
|
|
3302 |
|
|
if Present (Condition_Actions (E)) then
|
3303 |
|
|
Insert_List_Before (New_If, Condition_Actions (E));
|
3304 |
|
|
end if;
|
3305 |
|
|
|
3306 |
|
|
Remove (E);
|
3307 |
|
|
|
3308 |
|
|
if Is_Empty_List (Elsif_Parts (N)) then
|
3309 |
|
|
Set_Elsif_Parts (N, No_List);
|
3310 |
|
|
end if;
|
3311 |
|
|
|
3312 |
|
|
Analyze (New_If);
|
3313 |
|
|
return;
|
3314 |
|
|
|
3315 |
|
|
-- No special processing for that elsif part, move to next
|
3316 |
|
|
|
3317 |
|
|
else
|
3318 |
|
|
Next (E);
|
3319 |
|
|
end if;
|
3320 |
|
|
end loop;
|
3321 |
|
|
end if;
|
3322 |
|
|
|
3323 |
|
|
-- Some more optimizations applicable if we still have an IF statement
|
3324 |
|
|
|
3325 |
|
|
if Nkind (N) /= N_If_Statement then
|
3326 |
|
|
return;
|
3327 |
|
|
end if;
|
3328 |
|
|
|
3329 |
|
|
-- Another optimization, special cases that can be simplified
|
3330 |
|
|
|
3331 |
|
|
-- if expression then
|
3332 |
|
|
-- return true;
|
3333 |
|
|
-- else
|
3334 |
|
|
-- return false;
|
3335 |
|
|
-- end if;
|
3336 |
|
|
|
3337 |
|
|
-- can be changed to:
|
3338 |
|
|
|
3339 |
|
|
-- return expression;
|
3340 |
|
|
|
3341 |
|
|
-- and
|
3342 |
|
|
|
3343 |
|
|
-- if expression then
|
3344 |
|
|
-- return false;
|
3345 |
|
|
-- else
|
3346 |
|
|
-- return true;
|
3347 |
|
|
-- end if;
|
3348 |
|
|
|
3349 |
|
|
-- can be changed to:
|
3350 |
|
|
|
3351 |
|
|
-- return not (expression);
|
3352 |
|
|
|
3353 |
|
|
-- Only do these optimizations if we are at least at -O1 level and
|
3354 |
|
|
-- do not do them if control flow optimizations are suppressed.
|
3355 |
|
|
|
3356 |
|
|
if Optimization_Level > 0
|
3357 |
|
|
and then not Opt.Suppress_Control_Flow_Optimizations
|
3358 |
|
|
then
|
3359 |
|
|
if Nkind (N) = N_If_Statement
|
3360 |
|
|
and then No (Elsif_Parts (N))
|
3361 |
|
|
and then Present (Else_Statements (N))
|
3362 |
|
|
and then List_Length (Then_Statements (N)) = 1
|
3363 |
|
|
and then List_Length (Else_Statements (N)) = 1
|
3364 |
|
|
then
|
3365 |
|
|
declare
|
3366 |
|
|
Then_Stm : constant Node_Id := First (Then_Statements (N));
|
3367 |
|
|
Else_Stm : constant Node_Id := First (Else_Statements (N));
|
3368 |
|
|
|
3369 |
|
|
begin
|
3370 |
|
|
if Nkind (Then_Stm) = N_Simple_Return_Statement
|
3371 |
|
|
and then
|
3372 |
|
|
Nkind (Else_Stm) = N_Simple_Return_Statement
|
3373 |
|
|
then
|
3374 |
|
|
declare
|
3375 |
|
|
Then_Expr : constant Node_Id := Expression (Then_Stm);
|
3376 |
|
|
Else_Expr : constant Node_Id := Expression (Else_Stm);
|
3377 |
|
|
|
3378 |
|
|
begin
|
3379 |
|
|
if Nkind (Then_Expr) = N_Identifier
|
3380 |
|
|
and then
|
3381 |
|
|
Nkind (Else_Expr) = N_Identifier
|
3382 |
|
|
then
|
3383 |
|
|
if Entity (Then_Expr) = Standard_True
|
3384 |
|
|
and then Entity (Else_Expr) = Standard_False
|
3385 |
|
|
then
|
3386 |
|
|
Rewrite (N,
|
3387 |
|
|
Make_Simple_Return_Statement (Loc,
|
3388 |
|
|
Expression => Relocate_Node (Condition (N))));
|
3389 |
|
|
Analyze (N);
|
3390 |
|
|
return;
|
3391 |
|
|
|
3392 |
|
|
elsif Entity (Then_Expr) = Standard_False
|
3393 |
|
|
and then Entity (Else_Expr) = Standard_True
|
3394 |
|
|
then
|
3395 |
|
|
Rewrite (N,
|
3396 |
|
|
Make_Simple_Return_Statement (Loc,
|
3397 |
|
|
Expression =>
|
3398 |
|
|
Make_Op_Not (Loc,
|
3399 |
|
|
Right_Opnd =>
|
3400 |
|
|
Relocate_Node (Condition (N)))));
|
3401 |
|
|
Analyze (N);
|
3402 |
|
|
return;
|
3403 |
|
|
end if;
|
3404 |
|
|
end if;
|
3405 |
|
|
end;
|
3406 |
|
|
end if;
|
3407 |
|
|
end;
|
3408 |
|
|
end if;
|
3409 |
|
|
end if;
|
3410 |
|
|
end Expand_N_If_Statement;
|
3411 |
|
|
|
3412 |
|
|
-----------------------------
|
3413 |
|
|
-- Expand_N_Loop_Statement --
|
3414 |
|
|
-----------------------------
|
3415 |
|
|
|
3416 |
|
|
-- 1. Remove null loop entirely
|
3417 |
|
|
-- 2. Deal with while condition for C/Fortran boolean
|
3418 |
|
|
-- 3. Deal with loops with a non-standard enumeration type range
|
3419 |
|
|
-- 4. Deal with while loops where Condition_Actions is set
|
3420 |
|
|
-- 5. Insert polling call if required
|
3421 |
|
|
|
3422 |
|
|
procedure Expand_N_Loop_Statement (N : Node_Id) is
|
3423 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3424 |
|
|
Isc : constant Node_Id := Iteration_Scheme (N);
|
3425 |
|
|
|
3426 |
|
|
begin
|
3427 |
|
|
-- Delete null loop
|
3428 |
|
|
|
3429 |
|
|
if Is_Null_Loop (N) then
|
3430 |
|
|
Rewrite (N, Make_Null_Statement (Loc));
|
3431 |
|
|
return;
|
3432 |
|
|
end if;
|
3433 |
|
|
|
3434 |
|
|
-- Deal with condition for C/Fortran Boolean
|
3435 |
|
|
|
3436 |
|
|
if Present (Isc) then
|
3437 |
|
|
Adjust_Condition (Condition (Isc));
|
3438 |
|
|
end if;
|
3439 |
|
|
|
3440 |
|
|
-- Generate polling call
|
3441 |
|
|
|
3442 |
|
|
if Is_Non_Empty_List (Statements (N)) then
|
3443 |
|
|
Generate_Poll_Call (First (Statements (N)));
|
3444 |
|
|
end if;
|
3445 |
|
|
|
3446 |
|
|
-- Nothing more to do for plain loop with no iteration scheme
|
3447 |
|
|
|
3448 |
|
|
if No (Isc) then
|
3449 |
|
|
return;
|
3450 |
|
|
end if;
|
3451 |
|
|
|
3452 |
|
|
-- Note: we do not have to worry about validity checking of the for loop
|
3453 |
|
|
-- range bounds here, since they were frozen with constant declarations
|
3454 |
|
|
-- and it is during that process that the validity checking is done.
|
3455 |
|
|
|
3456 |
|
|
-- Handle the case where we have a for loop with the range type being an
|
3457 |
|
|
-- enumeration type with non-standard representation. In this case we
|
3458 |
|
|
-- expand:
|
3459 |
|
|
|
3460 |
|
|
-- for x in [reverse] a .. b loop
|
3461 |
|
|
-- ...
|
3462 |
|
|
-- end loop;
|
3463 |
|
|
|
3464 |
|
|
-- to
|
3465 |
|
|
|
3466 |
|
|
-- for xP in [reverse] integer
|
3467 |
|
|
-- range etype'Pos (a) .. etype'Pos (b) loop
|
3468 |
|
|
-- declare
|
3469 |
|
|
-- x : constant etype := Pos_To_Rep (xP);
|
3470 |
|
|
-- begin
|
3471 |
|
|
-- ...
|
3472 |
|
|
-- end;
|
3473 |
|
|
-- end loop;
|
3474 |
|
|
|
3475 |
|
|
if Present (Loop_Parameter_Specification (Isc)) then
|
3476 |
|
|
declare
|
3477 |
|
|
LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
|
3478 |
|
|
Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
|
3479 |
|
|
Ltype : constant Entity_Id := Etype (Loop_Id);
|
3480 |
|
|
Btype : constant Entity_Id := Base_Type (Ltype);
|
3481 |
|
|
Expr : Node_Id;
|
3482 |
|
|
New_Id : Entity_Id;
|
3483 |
|
|
|
3484 |
|
|
begin
|
3485 |
|
|
if not Is_Enumeration_Type (Btype)
|
3486 |
|
|
or else No (Enum_Pos_To_Rep (Btype))
|
3487 |
|
|
then
|
3488 |
|
|
return;
|
3489 |
|
|
end if;
|
3490 |
|
|
|
3491 |
|
|
New_Id :=
|
3492 |
|
|
Make_Defining_Identifier (Loc,
|
3493 |
|
|
Chars => New_External_Name (Chars (Loop_Id), 'P'));
|
3494 |
|
|
|
3495 |
|
|
-- If the type has a contiguous representation, successive values
|
3496 |
|
|
-- can be generated as offsets from the first literal.
|
3497 |
|
|
|
3498 |
|
|
if Has_Contiguous_Rep (Btype) then
|
3499 |
|
|
Expr :=
|
3500 |
|
|
Unchecked_Convert_To (Btype,
|
3501 |
|
|
Make_Op_Add (Loc,
|
3502 |
|
|
Left_Opnd =>
|
3503 |
|
|
Make_Integer_Literal (Loc,
|
3504 |
|
|
Enumeration_Rep (First_Literal (Btype))),
|
3505 |
|
|
Right_Opnd => New_Reference_To (New_Id, Loc)));
|
3506 |
|
|
else
|
3507 |
|
|
-- Use the constructed array Enum_Pos_To_Rep
|
3508 |
|
|
|
3509 |
|
|
Expr :=
|
3510 |
|
|
Make_Indexed_Component (Loc,
|
3511 |
|
|
Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
|
3512 |
|
|
Expressions => New_List (New_Reference_To (New_Id, Loc)));
|
3513 |
|
|
end if;
|
3514 |
|
|
|
3515 |
|
|
Rewrite (N,
|
3516 |
|
|
Make_Loop_Statement (Loc,
|
3517 |
|
|
Identifier => Identifier (N),
|
3518 |
|
|
|
3519 |
|
|
Iteration_Scheme =>
|
3520 |
|
|
Make_Iteration_Scheme (Loc,
|
3521 |
|
|
Loop_Parameter_Specification =>
|
3522 |
|
|
Make_Loop_Parameter_Specification (Loc,
|
3523 |
|
|
Defining_Identifier => New_Id,
|
3524 |
|
|
Reverse_Present => Reverse_Present (LPS),
|
3525 |
|
|
|
3526 |
|
|
Discrete_Subtype_Definition =>
|
3527 |
|
|
Make_Subtype_Indication (Loc,
|
3528 |
|
|
|
3529 |
|
|
Subtype_Mark =>
|
3530 |
|
|
New_Reference_To (Standard_Natural, Loc),
|
3531 |
|
|
|
3532 |
|
|
Constraint =>
|
3533 |
|
|
Make_Range_Constraint (Loc,
|
3534 |
|
|
Range_Expression =>
|
3535 |
|
|
Make_Range (Loc,
|
3536 |
|
|
|
3537 |
|
|
Low_Bound =>
|
3538 |
|
|
Make_Attribute_Reference (Loc,
|
3539 |
|
|
Prefix =>
|
3540 |
|
|
New_Reference_To (Btype, Loc),
|
3541 |
|
|
|
3542 |
|
|
Attribute_Name => Name_Pos,
|
3543 |
|
|
|
3544 |
|
|
Expressions => New_List (
|
3545 |
|
|
Relocate_Node
|
3546 |
|
|
(Type_Low_Bound (Ltype)))),
|
3547 |
|
|
|
3548 |
|
|
High_Bound =>
|
3549 |
|
|
Make_Attribute_Reference (Loc,
|
3550 |
|
|
Prefix =>
|
3551 |
|
|
New_Reference_To (Btype, Loc),
|
3552 |
|
|
|
3553 |
|
|
Attribute_Name => Name_Pos,
|
3554 |
|
|
|
3555 |
|
|
Expressions => New_List (
|
3556 |
|
|
Relocate_Node
|
3557 |
|
|
(Type_High_Bound (Ltype))))))))),
|
3558 |
|
|
|
3559 |
|
|
Statements => New_List (
|
3560 |
|
|
Make_Block_Statement (Loc,
|
3561 |
|
|
Declarations => New_List (
|
3562 |
|
|
Make_Object_Declaration (Loc,
|
3563 |
|
|
Defining_Identifier => Loop_Id,
|
3564 |
|
|
Constant_Present => True,
|
3565 |
|
|
Object_Definition => New_Reference_To (Ltype, Loc),
|
3566 |
|
|
Expression => Expr)),
|
3567 |
|
|
|
3568 |
|
|
Handled_Statement_Sequence =>
|
3569 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
3570 |
|
|
Statements => Statements (N)))),
|
3571 |
|
|
|
3572 |
|
|
End_Label => End_Label (N)));
|
3573 |
|
|
Analyze (N);
|
3574 |
|
|
end;
|
3575 |
|
|
|
3576 |
|
|
-- Second case, if we have a while loop with Condition_Actions set, then
|
3577 |
|
|
-- we change it into a plain loop:
|
3578 |
|
|
|
3579 |
|
|
-- while C loop
|
3580 |
|
|
-- ...
|
3581 |
|
|
-- end loop;
|
3582 |
|
|
|
3583 |
|
|
-- changed to:
|
3584 |
|
|
|
3585 |
|
|
-- loop
|
3586 |
|
|
-- <<condition actions>>
|
3587 |
|
|
-- exit when not C;
|
3588 |
|
|
-- ...
|
3589 |
|
|
-- end loop
|
3590 |
|
|
|
3591 |
|
|
elsif Present (Isc)
|
3592 |
|
|
and then Present (Condition_Actions (Isc))
|
3593 |
|
|
then
|
3594 |
|
|
declare
|
3595 |
|
|
ES : Node_Id;
|
3596 |
|
|
|
3597 |
|
|
begin
|
3598 |
|
|
ES :=
|
3599 |
|
|
Make_Exit_Statement (Sloc (Condition (Isc)),
|
3600 |
|
|
Condition =>
|
3601 |
|
|
Make_Op_Not (Sloc (Condition (Isc)),
|
3602 |
|
|
Right_Opnd => Condition (Isc)));
|
3603 |
|
|
|
3604 |
|
|
Prepend (ES, Statements (N));
|
3605 |
|
|
Insert_List_Before (ES, Condition_Actions (Isc));
|
3606 |
|
|
|
3607 |
|
|
-- This is not an implicit loop, since it is generated in response
|
3608 |
|
|
-- to the loop statement being processed. If this is itself
|
3609 |
|
|
-- implicit, the restriction has already been checked. If not,
|
3610 |
|
|
-- it is an explicit loop.
|
3611 |
|
|
|
3612 |
|
|
Rewrite (N,
|
3613 |
|
|
Make_Loop_Statement (Sloc (N),
|
3614 |
|
|
Identifier => Identifier (N),
|
3615 |
|
|
Statements => Statements (N),
|
3616 |
|
|
End_Label => End_Label (N)));
|
3617 |
|
|
|
3618 |
|
|
Analyze (N);
|
3619 |
|
|
end;
|
3620 |
|
|
end if;
|
3621 |
|
|
end Expand_N_Loop_Statement;
|
3622 |
|
|
|
3623 |
|
|
--------------------------------------
|
3624 |
|
|
-- Expand_N_Simple_Return_Statement --
|
3625 |
|
|
--------------------------------------
|
3626 |
|
|
|
3627 |
|
|
procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
|
3628 |
|
|
begin
|
3629 |
|
|
-- Defend against previous errors (i.e. the return statement calls a
|
3630 |
|
|
-- function that is not available in configurable runtime).
|
3631 |
|
|
|
3632 |
|
|
if Present (Expression (N))
|
3633 |
|
|
and then Nkind (Expression (N)) = N_Empty
|
3634 |
|
|
then
|
3635 |
|
|
return;
|
3636 |
|
|
end if;
|
3637 |
|
|
|
3638 |
|
|
-- Distinguish the function and non-function cases:
|
3639 |
|
|
|
3640 |
|
|
case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
|
3641 |
|
|
|
3642 |
|
|
when E_Function |
|
3643 |
|
|
E_Generic_Function =>
|
3644 |
|
|
Expand_Simple_Function_Return (N);
|
3645 |
|
|
|
3646 |
|
|
when E_Procedure |
|
3647 |
|
|
E_Generic_Procedure |
|
3648 |
|
|
E_Entry |
|
3649 |
|
|
E_Entry_Family |
|
3650 |
|
|
E_Return_Statement =>
|
3651 |
|
|
Expand_Non_Function_Return (N);
|
3652 |
|
|
|
3653 |
|
|
when others =>
|
3654 |
|
|
raise Program_Error;
|
3655 |
|
|
end case;
|
3656 |
|
|
|
3657 |
|
|
exception
|
3658 |
|
|
when RE_Not_Available =>
|
3659 |
|
|
return;
|
3660 |
|
|
end Expand_N_Simple_Return_Statement;
|
3661 |
|
|
|
3662 |
|
|
--------------------------------
|
3663 |
|
|
-- Expand_Non_Function_Return --
|
3664 |
|
|
--------------------------------
|
3665 |
|
|
|
3666 |
|
|
procedure Expand_Non_Function_Return (N : Node_Id) is
|
3667 |
|
|
pragma Assert (No (Expression (N)));
|
3668 |
|
|
|
3669 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3670 |
|
|
Scope_Id : Entity_Id :=
|
3671 |
|
|
Return_Applies_To (Return_Statement_Entity (N));
|
3672 |
|
|
Kind : constant Entity_Kind := Ekind (Scope_Id);
|
3673 |
|
|
Call : Node_Id;
|
3674 |
|
|
Acc_Stat : Node_Id;
|
3675 |
|
|
Goto_Stat : Node_Id;
|
3676 |
|
|
Lab_Node : Node_Id;
|
3677 |
|
|
|
3678 |
|
|
begin
|
3679 |
|
|
-- Call _Postconditions procedure if procedure with active
|
3680 |
|
|
-- postconditions. Here, we use the Postcondition_Proc attribute, which
|
3681 |
|
|
-- is needed for implicitly-generated returns. Functions never
|
3682 |
|
|
-- have implicitly-generated returns, and there's no room for
|
3683 |
|
|
-- Postcondition_Proc in E_Function, so we look up the identifier
|
3684 |
|
|
-- Name_uPostconditions for function returns (see
|
3685 |
|
|
-- Expand_Simple_Function_Return).
|
3686 |
|
|
|
3687 |
|
|
if Ekind (Scope_Id) = E_Procedure
|
3688 |
|
|
and then Has_Postconditions (Scope_Id)
|
3689 |
|
|
then
|
3690 |
|
|
pragma Assert (Present (Postcondition_Proc (Scope_Id)));
|
3691 |
|
|
Insert_Action (N,
|
3692 |
|
|
Make_Procedure_Call_Statement (Loc,
|
3693 |
|
|
Name => New_Reference_To (Postcondition_Proc (Scope_Id), Loc)));
|
3694 |
|
|
end if;
|
3695 |
|
|
|
3696 |
|
|
-- If it is a return from a procedure do no extra steps
|
3697 |
|
|
|
3698 |
|
|
if Kind = E_Procedure or else Kind = E_Generic_Procedure then
|
3699 |
|
|
return;
|
3700 |
|
|
|
3701 |
|
|
-- If it is a nested return within an extended one, replace it with a
|
3702 |
|
|
-- return of the previously declared return object.
|
3703 |
|
|
|
3704 |
|
|
elsif Kind = E_Return_Statement then
|
3705 |
|
|
Rewrite (N,
|
3706 |
|
|
Make_Simple_Return_Statement (Loc,
|
3707 |
|
|
Expression =>
|
3708 |
|
|
New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
|
3709 |
|
|
Set_Comes_From_Extended_Return_Statement (N);
|
3710 |
|
|
Set_Return_Statement_Entity (N, Scope_Id);
|
3711 |
|
|
Expand_Simple_Function_Return (N);
|
3712 |
|
|
return;
|
3713 |
|
|
end if;
|
3714 |
|
|
|
3715 |
|
|
pragma Assert (Is_Entry (Scope_Id));
|
3716 |
|
|
|
3717 |
|
|
-- Look at the enclosing block to see whether the return is from an
|
3718 |
|
|
-- accept statement or an entry body.
|
3719 |
|
|
|
3720 |
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
3721 |
|
|
Scope_Id := Scope_Stack.Table (J).Entity;
|
3722 |
|
|
exit when Is_Concurrent_Type (Scope_Id);
|
3723 |
|
|
end loop;
|
3724 |
|
|
|
3725 |
|
|
-- If it is a return from accept statement it is expanded as call to
|
3726 |
|
|
-- RTS Complete_Rendezvous and a goto to the end of the accept body.
|
3727 |
|
|
|
3728 |
|
|
-- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
|
3729 |
|
|
-- Expand_N_Accept_Alternative in exp_ch9.adb)
|
3730 |
|
|
|
3731 |
|
|
if Is_Task_Type (Scope_Id) then
|
3732 |
|
|
|
3733 |
|
|
Call :=
|
3734 |
|
|
Make_Procedure_Call_Statement (Loc,
|
3735 |
|
|
Name => New_Reference_To (RTE (RE_Complete_Rendezvous), Loc));
|
3736 |
|
|
Insert_Before (N, Call);
|
3737 |
|
|
-- why not insert actions here???
|
3738 |
|
|
Analyze (Call);
|
3739 |
|
|
|
3740 |
|
|
Acc_Stat := Parent (N);
|
3741 |
|
|
while Nkind (Acc_Stat) /= N_Accept_Statement loop
|
3742 |
|
|
Acc_Stat := Parent (Acc_Stat);
|
3743 |
|
|
end loop;
|
3744 |
|
|
|
3745 |
|
|
Lab_Node := Last (Statements
|
3746 |
|
|
(Handled_Statement_Sequence (Acc_Stat)));
|
3747 |
|
|
|
3748 |
|
|
Goto_Stat := Make_Goto_Statement (Loc,
|
3749 |
|
|
Name => New_Occurrence_Of
|
3750 |
|
|
(Entity (Identifier (Lab_Node)), Loc));
|
3751 |
|
|
|
3752 |
|
|
Set_Analyzed (Goto_Stat);
|
3753 |
|
|
|
3754 |
|
|
Rewrite (N, Goto_Stat);
|
3755 |
|
|
Analyze (N);
|
3756 |
|
|
|
3757 |
|
|
-- If it is a return from an entry body, put a Complete_Entry_Body call
|
3758 |
|
|
-- in front of the return.
|
3759 |
|
|
|
3760 |
|
|
elsif Is_Protected_Type (Scope_Id) then
|
3761 |
|
|
Call :=
|
3762 |
|
|
Make_Procedure_Call_Statement (Loc,
|
3763 |
|
|
Name =>
|
3764 |
|
|
New_Reference_To (RTE (RE_Complete_Entry_Body), Loc),
|
3765 |
|
|
Parameter_Associations => New_List (
|
3766 |
|
|
Make_Attribute_Reference (Loc,
|
3767 |
|
|
Prefix =>
|
3768 |
|
|
New_Reference_To
|
3769 |
|
|
(Find_Protection_Object (Current_Scope), Loc),
|
3770 |
|
|
Attribute_Name =>
|
3771 |
|
|
Name_Unchecked_Access)));
|
3772 |
|
|
|
3773 |
|
|
Insert_Before (N, Call);
|
3774 |
|
|
Analyze (Call);
|
3775 |
|
|
end if;
|
3776 |
|
|
end Expand_Non_Function_Return;
|
3777 |
|
|
|
3778 |
|
|
-----------------------------------
|
3779 |
|
|
-- Expand_Simple_Function_Return --
|
3780 |
|
|
-----------------------------------
|
3781 |
|
|
|
3782 |
|
|
-- The "simple" comes from the syntax rule simple_return_statement.
|
3783 |
|
|
-- The semantics are not at all simple!
|
3784 |
|
|
|
3785 |
|
|
procedure Expand_Simple_Function_Return (N : Node_Id) is
|
3786 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
3787 |
|
|
|
3788 |
|
|
Scope_Id : constant Entity_Id :=
|
3789 |
|
|
Return_Applies_To (Return_Statement_Entity (N));
|
3790 |
|
|
-- The function we are returning from
|
3791 |
|
|
|
3792 |
|
|
R_Type : constant Entity_Id := Etype (Scope_Id);
|
3793 |
|
|
-- The result type of the function
|
3794 |
|
|
|
3795 |
|
|
Utyp : constant Entity_Id := Underlying_Type (R_Type);
|
3796 |
|
|
|
3797 |
|
|
Exp : constant Node_Id := Expression (N);
|
3798 |
|
|
pragma Assert (Present (Exp));
|
3799 |
|
|
|
3800 |
|
|
Exptyp : constant Entity_Id := Etype (Exp);
|
3801 |
|
|
-- The type of the expression (not necessarily the same as R_Type)
|
3802 |
|
|
|
3803 |
|
|
Subtype_Ind : Node_Id;
|
3804 |
|
|
-- If the result type of the function is class-wide and the
|
3805 |
|
|
-- expression has a specific type, then we use the expression's
|
3806 |
|
|
-- type as the type of the return object. In cases where the
|
3807 |
|
|
-- expression is an aggregate that is built in place, this avoids
|
3808 |
|
|
-- the need for an expensive conversion of the return object to
|
3809 |
|
|
-- the specific type on assignments to the individual components.
|
3810 |
|
|
|
3811 |
|
|
begin
|
3812 |
|
|
if Is_Class_Wide_Type (R_Type)
|
3813 |
|
|
and then not Is_Class_Wide_Type (Etype (Exp))
|
3814 |
|
|
then
|
3815 |
|
|
Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
|
3816 |
|
|
else
|
3817 |
|
|
Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
|
3818 |
|
|
end if;
|
3819 |
|
|
|
3820 |
|
|
-- For the case of a simple return that does not come from an extended
|
3821 |
|
|
-- return, in the case of Ada 2005 where we are returning a limited
|
3822 |
|
|
-- type, we rewrite "return <expression>;" to be:
|
3823 |
|
|
|
3824 |
|
|
-- return _anon_ : <return_subtype> := <expression>
|
3825 |
|
|
|
3826 |
|
|
-- The expansion produced by Expand_N_Extended_Return_Statement will
|
3827 |
|
|
-- contain simple return statements (for example, a block containing
|
3828 |
|
|
-- simple return of the return object), which brings us back here with
|
3829 |
|
|
-- Comes_From_Extended_Return_Statement set. The reason for the barrier
|
3830 |
|
|
-- checking for a simple return that does not come from an extended
|
3831 |
|
|
-- return is to avoid this infinite recursion.
|
3832 |
|
|
|
3833 |
|
|
-- The reason for this design is that for Ada 2005 limited returns, we
|
3834 |
|
|
-- need to reify the return object, so we can build it "in place", and
|
3835 |
|
|
-- we need a block statement to hang finalization and tasking stuff.
|
3836 |
|
|
|
3837 |
|
|
-- ??? In order to avoid disruption, we avoid translating to extended
|
3838 |
|
|
-- return except in the cases where we really need to (Ada 2005 for
|
3839 |
|
|
-- inherently limited). We might prefer to do this translation in all
|
3840 |
|
|
-- cases (except perhaps for the case of Ada 95 inherently limited),
|
3841 |
|
|
-- in order to fully exercise the Expand_N_Extended_Return_Statement
|
3842 |
|
|
-- code. This would also allow us to do the build-in-place optimization
|
3843 |
|
|
-- for efficiency even in cases where it is semantically not required.
|
3844 |
|
|
|
3845 |
|
|
-- As before, we check the type of the return expression rather than the
|
3846 |
|
|
-- return type of the function, because the latter may be a limited
|
3847 |
|
|
-- class-wide interface type, which is not a limited type, even though
|
3848 |
|
|
-- the type of the expression may be.
|
3849 |
|
|
|
3850 |
|
|
if not Comes_From_Extended_Return_Statement (N)
|
3851 |
|
|
and then Is_Inherently_Limited_Type (Etype (Expression (N)))
|
3852 |
|
|
and then Ada_Version >= Ada_05
|
3853 |
|
|
and then not Debug_Flag_Dot_L
|
3854 |
|
|
then
|
3855 |
|
|
declare
|
3856 |
|
|
Return_Object_Entity : constant Entity_Id :=
|
3857 |
|
|
Make_Defining_Identifier (Loc,
|
3858 |
|
|
New_Internal_Name ('R'));
|
3859 |
|
|
Obj_Decl : constant Node_Id :=
|
3860 |
|
|
Make_Object_Declaration (Loc,
|
3861 |
|
|
Defining_Identifier => Return_Object_Entity,
|
3862 |
|
|
Object_Definition => Subtype_Ind,
|
3863 |
|
|
Expression => Exp);
|
3864 |
|
|
|
3865 |
|
|
Ext : constant Node_Id := Make_Extended_Return_Statement (Loc,
|
3866 |
|
|
Return_Object_Declarations => New_List (Obj_Decl));
|
3867 |
|
|
-- Do not perform this high-level optimization if the result type
|
3868 |
|
|
-- is an interface because the "this" pointer must be displaced.
|
3869 |
|
|
|
3870 |
|
|
begin
|
3871 |
|
|
Rewrite (N, Ext);
|
3872 |
|
|
Analyze (N);
|
3873 |
|
|
return;
|
3874 |
|
|
end;
|
3875 |
|
|
end if;
|
3876 |
|
|
|
3877 |
|
|
-- Here we have a simple return statement that is part of the expansion
|
3878 |
|
|
-- of an extended return statement (either written by the user, or
|
3879 |
|
|
-- generated by the above code).
|
3880 |
|
|
|
3881 |
|
|
-- Always normalize C/Fortran boolean result. This is not always needed,
|
3882 |
|
|
-- but it seems a good idea to minimize the passing around of non-
|
3883 |
|
|
-- normalized values, and in any case this handles the processing of
|
3884 |
|
|
-- barrier functions for protected types, which turn the condition into
|
3885 |
|
|
-- a return statement.
|
3886 |
|
|
|
3887 |
|
|
if Is_Boolean_Type (Exptyp)
|
3888 |
|
|
and then Nonzero_Is_True (Exptyp)
|
3889 |
|
|
then
|
3890 |
|
|
Adjust_Condition (Exp);
|
3891 |
|
|
Adjust_Result_Type (Exp, Exptyp);
|
3892 |
|
|
end if;
|
3893 |
|
|
|
3894 |
|
|
-- Do validity check if enabled for returns
|
3895 |
|
|
|
3896 |
|
|
if Validity_Checks_On
|
3897 |
|
|
and then Validity_Check_Returns
|
3898 |
|
|
then
|
3899 |
|
|
Ensure_Valid (Exp);
|
3900 |
|
|
end if;
|
3901 |
|
|
|
3902 |
|
|
-- Check the result expression of a scalar function against the subtype
|
3903 |
|
|
-- of the function by inserting a conversion. This conversion must
|
3904 |
|
|
-- eventually be performed for other classes of types, but for now it's
|
3905 |
|
|
-- only done for scalars.
|
3906 |
|
|
-- ???
|
3907 |
|
|
|
3908 |
|
|
if Is_Scalar_Type (Exptyp) then
|
3909 |
|
|
Rewrite (Exp, Convert_To (R_Type, Exp));
|
3910 |
|
|
|
3911 |
|
|
-- The expression is resolved to ensure that the conversion gets
|
3912 |
|
|
-- expanded to generate a possible constraint check.
|
3913 |
|
|
|
3914 |
|
|
Analyze_And_Resolve (Exp, R_Type);
|
3915 |
|
|
end if;
|
3916 |
|
|
|
3917 |
|
|
-- Deal with returning variable length objects and controlled types
|
3918 |
|
|
|
3919 |
|
|
-- Nothing to do if we are returning by reference, or this is not a
|
3920 |
|
|
-- type that requires special processing (indicated by the fact that
|
3921 |
|
|
-- it requires a cleanup scope for the secondary stack case).
|
3922 |
|
|
|
3923 |
|
|
if Is_Inherently_Limited_Type (Exptyp)
|
3924 |
|
|
or else Is_Limited_Interface (Exptyp)
|
3925 |
|
|
then
|
3926 |
|
|
null;
|
3927 |
|
|
|
3928 |
|
|
elsif not Requires_Transient_Scope (R_Type) then
|
3929 |
|
|
|
3930 |
|
|
-- Mutable records with no variable length components are not
|
3931 |
|
|
-- returned on the sec-stack, so we need to make sure that the
|
3932 |
|
|
-- backend will only copy back the size of the actual value, and not
|
3933 |
|
|
-- the maximum size. We create an actual subtype for this purpose.
|
3934 |
|
|
|
3935 |
|
|
declare
|
3936 |
|
|
Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
|
3937 |
|
|
Decl : Node_Id;
|
3938 |
|
|
Ent : Entity_Id;
|
3939 |
|
|
begin
|
3940 |
|
|
if Has_Discriminants (Ubt)
|
3941 |
|
|
and then not Is_Constrained (Ubt)
|
3942 |
|
|
and then not Has_Unchecked_Union (Ubt)
|
3943 |
|
|
then
|
3944 |
|
|
Decl := Build_Actual_Subtype (Ubt, Exp);
|
3945 |
|
|
Ent := Defining_Identifier (Decl);
|
3946 |
|
|
Insert_Action (Exp, Decl);
|
3947 |
|
|
Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
|
3948 |
|
|
Analyze_And_Resolve (Exp);
|
3949 |
|
|
end if;
|
3950 |
|
|
end;
|
3951 |
|
|
|
3952 |
|
|
-- Here if secondary stack is used
|
3953 |
|
|
|
3954 |
|
|
else
|
3955 |
|
|
-- Make sure that no surrounding block will reclaim the secondary
|
3956 |
|
|
-- stack on which we are going to put the result. Not only may this
|
3957 |
|
|
-- introduce secondary stack leaks but worse, if the reclamation is
|
3958 |
|
|
-- done too early, then the result we are returning may get
|
3959 |
|
|
-- clobbered.
|
3960 |
|
|
|
3961 |
|
|
declare
|
3962 |
|
|
S : Entity_Id;
|
3963 |
|
|
begin
|
3964 |
|
|
S := Current_Scope;
|
3965 |
|
|
while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
|
3966 |
|
|
Set_Sec_Stack_Needed_For_Return (S, True);
|
3967 |
|
|
S := Enclosing_Dynamic_Scope (S);
|
3968 |
|
|
end loop;
|
3969 |
|
|
end;
|
3970 |
|
|
|
3971 |
|
|
-- Optimize the case where the result is a function call. In this
|
3972 |
|
|
-- case either the result is already on the secondary stack, or is
|
3973 |
|
|
-- already being returned with the stack pointer depressed and no
|
3974 |
|
|
-- further processing is required except to set the By_Ref flag to
|
3975 |
|
|
-- ensure that gigi does not attempt an extra unnecessary copy.
|
3976 |
|
|
-- (actually not just unnecessary but harmfully wrong in the case
|
3977 |
|
|
-- of a controlled type, where gigi does not know how to do a copy).
|
3978 |
|
|
-- To make up for a gcc 2.8.1 deficiency (???), we perform
|
3979 |
|
|
-- the copy for array types if the constrained status of the
|
3980 |
|
|
-- target type is different from that of the expression.
|
3981 |
|
|
|
3982 |
|
|
if Requires_Transient_Scope (Exptyp)
|
3983 |
|
|
and then
|
3984 |
|
|
(not Is_Array_Type (Exptyp)
|
3985 |
|
|
or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
|
3986 |
|
|
or else CW_Or_Has_Controlled_Part (Utyp))
|
3987 |
|
|
and then Nkind (Exp) = N_Function_Call
|
3988 |
|
|
then
|
3989 |
|
|
Set_By_Ref (N);
|
3990 |
|
|
|
3991 |
|
|
-- Remove side effects from the expression now so that other parts
|
3992 |
|
|
-- of the expander do not have to reanalyze this node without this
|
3993 |
|
|
-- optimization
|
3994 |
|
|
|
3995 |
|
|
Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
|
3996 |
|
|
|
3997 |
|
|
-- For controlled types, do the allocation on the secondary stack
|
3998 |
|
|
-- manually in order to call adjust at the right time:
|
3999 |
|
|
|
4000 |
|
|
-- type Anon1 is access R_Type;
|
4001 |
|
|
-- for Anon1'Storage_pool use ss_pool;
|
4002 |
|
|
-- Anon2 : anon1 := new R_Type'(expr);
|
4003 |
|
|
-- return Anon2.all;
|
4004 |
|
|
|
4005 |
|
|
-- We do the same for classwide types that are not potentially
|
4006 |
|
|
-- controlled (by the virtue of restriction No_Finalization) because
|
4007 |
|
|
-- gigi is not able to properly allocate class-wide types.
|
4008 |
|
|
|
4009 |
|
|
elsif CW_Or_Has_Controlled_Part (Utyp) then
|
4010 |
|
|
declare
|
4011 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4012 |
|
|
Temp : constant Entity_Id :=
|
4013 |
|
|
Make_Defining_Identifier (Loc,
|
4014 |
|
|
Chars => New_Internal_Name ('R'));
|
4015 |
|
|
Acc_Typ : constant Entity_Id :=
|
4016 |
|
|
Make_Defining_Identifier (Loc,
|
4017 |
|
|
Chars => New_Internal_Name ('A'));
|
4018 |
|
|
Alloc_Node : Node_Id;
|
4019 |
|
|
|
4020 |
|
|
begin
|
4021 |
|
|
Set_Ekind (Acc_Typ, E_Access_Type);
|
4022 |
|
|
|
4023 |
|
|
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
|
4024 |
|
|
|
4025 |
|
|
-- This is an allocator for the secondary stack, and it's fine
|
4026 |
|
|
-- to have Comes_From_Source set False on it, as gigi knows not
|
4027 |
|
|
-- to flag it as a violation of No_Implicit_Heap_Allocations.
|
4028 |
|
|
|
4029 |
|
|
Alloc_Node :=
|
4030 |
|
|
Make_Allocator (Loc,
|
4031 |
|
|
Expression =>
|
4032 |
|
|
Make_Qualified_Expression (Loc,
|
4033 |
|
|
Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
|
4034 |
|
|
Expression => Relocate_Node (Exp)));
|
4035 |
|
|
|
4036 |
|
|
-- We do not want discriminant checks on the declaration,
|
4037 |
|
|
-- given that it gets its value from the allocator.
|
4038 |
|
|
|
4039 |
|
|
Set_No_Initialization (Alloc_Node);
|
4040 |
|
|
|
4041 |
|
|
Insert_List_Before_And_Analyze (N, New_List (
|
4042 |
|
|
Make_Full_Type_Declaration (Loc,
|
4043 |
|
|
Defining_Identifier => Acc_Typ,
|
4044 |
|
|
Type_Definition =>
|
4045 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4046 |
|
|
Subtype_Indication => Subtype_Ind)),
|
4047 |
|
|
|
4048 |
|
|
Make_Object_Declaration (Loc,
|
4049 |
|
|
Defining_Identifier => Temp,
|
4050 |
|
|
Object_Definition => New_Reference_To (Acc_Typ, Loc),
|
4051 |
|
|
Expression => Alloc_Node)));
|
4052 |
|
|
|
4053 |
|
|
Rewrite (Exp,
|
4054 |
|
|
Make_Explicit_Dereference (Loc,
|
4055 |
|
|
Prefix => New_Reference_To (Temp, Loc)));
|
4056 |
|
|
|
4057 |
|
|
Analyze_And_Resolve (Exp, R_Type);
|
4058 |
|
|
end;
|
4059 |
|
|
|
4060 |
|
|
-- Otherwise use the gigi mechanism to allocate result on the
|
4061 |
|
|
-- secondary stack.
|
4062 |
|
|
|
4063 |
|
|
else
|
4064 |
|
|
Check_Restriction (No_Secondary_Stack, N);
|
4065 |
|
|
Set_Storage_Pool (N, RTE (RE_SS_Pool));
|
4066 |
|
|
|
4067 |
|
|
-- If we are generating code for the VM do not use
|
4068 |
|
|
-- SS_Allocate since everything is heap-allocated anyway.
|
4069 |
|
|
|
4070 |
|
|
if VM_Target = No_VM then
|
4071 |
|
|
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
|
4072 |
|
|
end if;
|
4073 |
|
|
end if;
|
4074 |
|
|
end if;
|
4075 |
|
|
|
4076 |
|
|
-- Implement the rules of 6.5(8-10), which require a tag check in the
|
4077 |
|
|
-- case of a limited tagged return type, and tag reassignment for
|
4078 |
|
|
-- nonlimited tagged results. These actions are needed when the return
|
4079 |
|
|
-- type is a specific tagged type and the result expression is a
|
4080 |
|
|
-- conversion or a formal parameter, because in that case the tag of the
|
4081 |
|
|
-- expression might differ from the tag of the specific result type.
|
4082 |
|
|
|
4083 |
|
|
if Is_Tagged_Type (Utyp)
|
4084 |
|
|
and then not Is_Class_Wide_Type (Utyp)
|
4085 |
|
|
and then (Nkind_In (Exp, N_Type_Conversion,
|
4086 |
|
|
N_Unchecked_Type_Conversion)
|
4087 |
|
|
or else (Is_Entity_Name (Exp)
|
4088 |
|
|
and then Ekind (Entity (Exp)) in Formal_Kind))
|
4089 |
|
|
then
|
4090 |
|
|
-- When the return type is limited, perform a check that the
|
4091 |
|
|
-- tag of the result is the same as the tag of the return type.
|
4092 |
|
|
|
4093 |
|
|
if Is_Limited_Type (R_Type) then
|
4094 |
|
|
Insert_Action (Exp,
|
4095 |
|
|
Make_Raise_Constraint_Error (Loc,
|
4096 |
|
|
Condition =>
|
4097 |
|
|
Make_Op_Ne (Loc,
|
4098 |
|
|
Left_Opnd =>
|
4099 |
|
|
Make_Selected_Component (Loc,
|
4100 |
|
|
Prefix => Duplicate_Subexpr (Exp),
|
4101 |
|
|
Selector_Name =>
|
4102 |
|
|
New_Reference_To (First_Tag_Component (Utyp), Loc)),
|
4103 |
|
|
Right_Opnd =>
|
4104 |
|
|
Unchecked_Convert_To (RTE (RE_Tag),
|
4105 |
|
|
New_Reference_To
|
4106 |
|
|
(Node (First_Elmt
|
4107 |
|
|
(Access_Disp_Table (Base_Type (Utyp)))),
|
4108 |
|
|
Loc))),
|
4109 |
|
|
Reason => CE_Tag_Check_Failed));
|
4110 |
|
|
|
4111 |
|
|
-- If the result type is a specific nonlimited tagged type, then we
|
4112 |
|
|
-- have to ensure that the tag of the result is that of the result
|
4113 |
|
|
-- type. This is handled by making a copy of the expression in the
|
4114 |
|
|
-- case where it might have a different tag, namely when the
|
4115 |
|
|
-- expression is a conversion or a formal parameter. We create a new
|
4116 |
|
|
-- object of the result type and initialize it from the expression,
|
4117 |
|
|
-- which will implicitly force the tag to be set appropriately.
|
4118 |
|
|
|
4119 |
|
|
else
|
4120 |
|
|
declare
|
4121 |
|
|
Result_Id : constant Entity_Id :=
|
4122 |
|
|
Make_Defining_Identifier (Loc,
|
4123 |
|
|
Chars => New_Internal_Name ('R'));
|
4124 |
|
|
Result_Exp : constant Node_Id :=
|
4125 |
|
|
New_Reference_To (Result_Id, Loc);
|
4126 |
|
|
Result_Obj : constant Node_Id :=
|
4127 |
|
|
Make_Object_Declaration (Loc,
|
4128 |
|
|
Defining_Identifier => Result_Id,
|
4129 |
|
|
Object_Definition =>
|
4130 |
|
|
New_Reference_To (R_Type, Loc),
|
4131 |
|
|
Constant_Present => True,
|
4132 |
|
|
Expression => Relocate_Node (Exp));
|
4133 |
|
|
|
4134 |
|
|
begin
|
4135 |
|
|
Set_Assignment_OK (Result_Obj);
|
4136 |
|
|
Insert_Action (Exp, Result_Obj);
|
4137 |
|
|
|
4138 |
|
|
Rewrite (Exp, Result_Exp);
|
4139 |
|
|
Analyze_And_Resolve (Exp, R_Type);
|
4140 |
|
|
end;
|
4141 |
|
|
end if;
|
4142 |
|
|
|
4143 |
|
|
-- Ada 2005 (AI-344): If the result type is class-wide, then insert
|
4144 |
|
|
-- a check that the level of the return expression's underlying type
|
4145 |
|
|
-- is not deeper than the level of the master enclosing the function.
|
4146 |
|
|
-- Always generate the check when the type of the return expression
|
4147 |
|
|
-- is class-wide, when it's a type conversion, or when it's a formal
|
4148 |
|
|
-- parameter. Otherwise, suppress the check in the case where the
|
4149 |
|
|
-- return expression has a specific type whose level is known not to
|
4150 |
|
|
-- be statically deeper than the function's result type.
|
4151 |
|
|
|
4152 |
|
|
-- Note: accessibility check is skipped in the VM case, since there
|
4153 |
|
|
-- does not seem to be any practical way to implement this check.
|
4154 |
|
|
|
4155 |
|
|
elsif Ada_Version >= Ada_05
|
4156 |
|
|
and then Tagged_Type_Expansion
|
4157 |
|
|
and then Is_Class_Wide_Type (R_Type)
|
4158 |
|
|
and then not Scope_Suppress (Accessibility_Check)
|
4159 |
|
|
and then
|
4160 |
|
|
(Is_Class_Wide_Type (Etype (Exp))
|
4161 |
|
|
or else Nkind_In (Exp, N_Type_Conversion,
|
4162 |
|
|
N_Unchecked_Type_Conversion)
|
4163 |
|
|
or else (Is_Entity_Name (Exp)
|
4164 |
|
|
and then Ekind (Entity (Exp)) in Formal_Kind)
|
4165 |
|
|
or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
|
4166 |
|
|
Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
|
4167 |
|
|
then
|
4168 |
|
|
declare
|
4169 |
|
|
Tag_Node : Node_Id;
|
4170 |
|
|
|
4171 |
|
|
begin
|
4172 |
|
|
-- Ada 2005 (AI-251): In class-wide interface objects we displace
|
4173 |
|
|
-- "this" to reference the base of the object --- required to get
|
4174 |
|
|
-- access to the TSD of the object.
|
4175 |
|
|
|
4176 |
|
|
if Is_Class_Wide_Type (Etype (Exp))
|
4177 |
|
|
and then Is_Interface (Etype (Exp))
|
4178 |
|
|
and then Nkind (Exp) = N_Explicit_Dereference
|
4179 |
|
|
then
|
4180 |
|
|
Tag_Node :=
|
4181 |
|
|
Make_Explicit_Dereference (Loc,
|
4182 |
|
|
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
|
4183 |
|
|
Make_Function_Call (Loc,
|
4184 |
|
|
Name => New_Reference_To (RTE (RE_Base_Address), Loc),
|
4185 |
|
|
Parameter_Associations => New_List (
|
4186 |
|
|
Unchecked_Convert_To (RTE (RE_Address),
|
4187 |
|
|
Duplicate_Subexpr (Prefix (Exp)))))));
|
4188 |
|
|
else
|
4189 |
|
|
Tag_Node :=
|
4190 |
|
|
Make_Attribute_Reference (Loc,
|
4191 |
|
|
Prefix => Duplicate_Subexpr (Exp),
|
4192 |
|
|
Attribute_Name => Name_Tag);
|
4193 |
|
|
end if;
|
4194 |
|
|
|
4195 |
|
|
Insert_Action (Exp,
|
4196 |
|
|
Make_Raise_Program_Error (Loc,
|
4197 |
|
|
Condition =>
|
4198 |
|
|
Make_Op_Gt (Loc,
|
4199 |
|
|
Left_Opnd =>
|
4200 |
|
|
Build_Get_Access_Level (Loc, Tag_Node),
|
4201 |
|
|
Right_Opnd =>
|
4202 |
|
|
Make_Integer_Literal (Loc,
|
4203 |
|
|
Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
|
4204 |
|
|
Reason => PE_Accessibility_Check_Failed));
|
4205 |
|
|
end;
|
4206 |
|
|
end if;
|
4207 |
|
|
|
4208 |
|
|
-- If we are returning an object that may not be bit-aligned, then
|
4209 |
|
|
-- copy the value into a temporary first. This copy may need to expand
|
4210 |
|
|
-- to a loop of component operations..
|
4211 |
|
|
|
4212 |
|
|
if Is_Possibly_Unaligned_Slice (Exp)
|
4213 |
|
|
or else Is_Possibly_Unaligned_Object (Exp)
|
4214 |
|
|
then
|
4215 |
|
|
declare
|
4216 |
|
|
Tnn : constant Entity_Id :=
|
4217 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
4218 |
|
|
begin
|
4219 |
|
|
Insert_Action (Exp,
|
4220 |
|
|
Make_Object_Declaration (Loc,
|
4221 |
|
|
Defining_Identifier => Tnn,
|
4222 |
|
|
Constant_Present => True,
|
4223 |
|
|
Object_Definition => New_Occurrence_Of (R_Type, Loc),
|
4224 |
|
|
Expression => Relocate_Node (Exp)),
|
4225 |
|
|
Suppress => All_Checks);
|
4226 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
4227 |
|
|
end;
|
4228 |
|
|
end if;
|
4229 |
|
|
|
4230 |
|
|
-- Generate call to postcondition checks if they are present
|
4231 |
|
|
|
4232 |
|
|
if Ekind (Scope_Id) = E_Function
|
4233 |
|
|
and then Has_Postconditions (Scope_Id)
|
4234 |
|
|
then
|
4235 |
|
|
-- We are going to reference the returned value twice in this case,
|
4236 |
|
|
-- once in the call to _Postconditions, and once in the actual return
|
4237 |
|
|
-- statement, but we can't have side effects happening twice, and in
|
4238 |
|
|
-- any case for efficiency we don't want to do the computation twice.
|
4239 |
|
|
|
4240 |
|
|
-- If the returned expression is an entity name, we don't need to
|
4241 |
|
|
-- worry since it is efficient and safe to reference it twice, that's
|
4242 |
|
|
-- also true for literals other than string literals, and for the
|
4243 |
|
|
-- case of X.all where X is an entity name.
|
4244 |
|
|
|
4245 |
|
|
if Is_Entity_Name (Exp)
|
4246 |
|
|
or else Nkind_In (Exp, N_Character_Literal,
|
4247 |
|
|
N_Integer_Literal,
|
4248 |
|
|
N_Real_Literal)
|
4249 |
|
|
or else (Nkind (Exp) = N_Explicit_Dereference
|
4250 |
|
|
and then Is_Entity_Name (Prefix (Exp)))
|
4251 |
|
|
then
|
4252 |
|
|
null;
|
4253 |
|
|
|
4254 |
|
|
-- Otherwise we are going to need a temporary to capture the value
|
4255 |
|
|
|
4256 |
|
|
else
|
4257 |
|
|
declare
|
4258 |
|
|
Tnn : constant Entity_Id :=
|
4259 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
4260 |
|
|
|
4261 |
|
|
begin
|
4262 |
|
|
-- For a complex expression of an elementary type, capture
|
4263 |
|
|
-- value in the temporary and use it as the reference.
|
4264 |
|
|
|
4265 |
|
|
if Is_Elementary_Type (R_Type) then
|
4266 |
|
|
Insert_Action (Exp,
|
4267 |
|
|
Make_Object_Declaration (Loc,
|
4268 |
|
|
Defining_Identifier => Tnn,
|
4269 |
|
|
Constant_Present => True,
|
4270 |
|
|
Object_Definition => New_Occurrence_Of (R_Type, Loc),
|
4271 |
|
|
Expression => Relocate_Node (Exp)),
|
4272 |
|
|
Suppress => All_Checks);
|
4273 |
|
|
|
4274 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
4275 |
|
|
|
4276 |
|
|
-- If we have something we can rename, generate a renaming of
|
4277 |
|
|
-- the object and replace the expression with a reference
|
4278 |
|
|
|
4279 |
|
|
elsif Is_Object_Reference (Exp) then
|
4280 |
|
|
Insert_Action (Exp,
|
4281 |
|
|
Make_Object_Renaming_Declaration (Loc,
|
4282 |
|
|
Defining_Identifier => Tnn,
|
4283 |
|
|
Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
|
4284 |
|
|
Name => Relocate_Node (Exp)),
|
4285 |
|
|
Suppress => All_Checks);
|
4286 |
|
|
|
4287 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
4288 |
|
|
|
4289 |
|
|
-- Otherwise we have something like a string literal or an
|
4290 |
|
|
-- aggregate. We could copy the value, but that would be
|
4291 |
|
|
-- inefficient. Instead we make a reference to the value and
|
4292 |
|
|
-- capture this reference with a renaming, the expression is
|
4293 |
|
|
-- then replaced by a dereference of this renaming.
|
4294 |
|
|
|
4295 |
|
|
else
|
4296 |
|
|
-- For now, copy the value, since the code below does not
|
4297 |
|
|
-- seem to work correctly ???
|
4298 |
|
|
|
4299 |
|
|
Insert_Action (Exp,
|
4300 |
|
|
Make_Object_Declaration (Loc,
|
4301 |
|
|
Defining_Identifier => Tnn,
|
4302 |
|
|
Constant_Present => True,
|
4303 |
|
|
Object_Definition => New_Occurrence_Of (R_Type, Loc),
|
4304 |
|
|
Expression => Relocate_Node (Exp)),
|
4305 |
|
|
Suppress => All_Checks);
|
4306 |
|
|
|
4307 |
|
|
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
|
4308 |
|
|
|
4309 |
|
|
-- Insert_Action (Exp,
|
4310 |
|
|
-- Make_Object_Renaming_Declaration (Loc,
|
4311 |
|
|
-- Defining_Identifier => Tnn,
|
4312 |
|
|
-- Access_Definition =>
|
4313 |
|
|
-- Make_Access_Definition (Loc,
|
4314 |
|
|
-- All_Present => True,
|
4315 |
|
|
-- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
|
4316 |
|
|
-- Name =>
|
4317 |
|
|
-- Make_Reference (Loc,
|
4318 |
|
|
-- Prefix => Relocate_Node (Exp))),
|
4319 |
|
|
-- Suppress => All_Checks);
|
4320 |
|
|
|
4321 |
|
|
-- Rewrite (Exp,
|
4322 |
|
|
-- Make_Explicit_Dereference (Loc,
|
4323 |
|
|
-- Prefix => New_Occurrence_Of (Tnn, Loc)));
|
4324 |
|
|
end if;
|
4325 |
|
|
end;
|
4326 |
|
|
end if;
|
4327 |
|
|
|
4328 |
|
|
-- Generate call to _postconditions
|
4329 |
|
|
|
4330 |
|
|
Insert_Action (Exp,
|
4331 |
|
|
Make_Procedure_Call_Statement (Loc,
|
4332 |
|
|
Name => Make_Identifier (Loc, Name_uPostconditions),
|
4333 |
|
|
Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
|
4334 |
|
|
end if;
|
4335 |
|
|
|
4336 |
|
|
-- Ada 2005 (AI-251): If this return statement corresponds with an
|
4337 |
|
|
-- simple return statement associated with an extended return statement
|
4338 |
|
|
-- and the type of the returned object is an interface then generate an
|
4339 |
|
|
-- implicit conversion to force displacement of the "this" pointer.
|
4340 |
|
|
|
4341 |
|
|
if Ada_Version >= Ada_05
|
4342 |
|
|
and then Comes_From_Extended_Return_Statement (N)
|
4343 |
|
|
and then Nkind (Expression (N)) = N_Identifier
|
4344 |
|
|
and then Is_Interface (Utyp)
|
4345 |
|
|
and then Utyp /= Underlying_Type (Exptyp)
|
4346 |
|
|
then
|
4347 |
|
|
Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
|
4348 |
|
|
Analyze_And_Resolve (Exp);
|
4349 |
|
|
end if;
|
4350 |
|
|
end Expand_Simple_Function_Return;
|
4351 |
|
|
|
4352 |
|
|
------------------------------
|
4353 |
|
|
-- Make_Tag_Ctrl_Assignment --
|
4354 |
|
|
------------------------------
|
4355 |
|
|
|
4356 |
|
|
function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
|
4357 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
4358 |
|
|
L : constant Node_Id := Name (N);
|
4359 |
|
|
T : constant Entity_Id := Underlying_Type (Etype (L));
|
4360 |
|
|
|
4361 |
|
|
Ctrl_Act : constant Boolean := Needs_Finalization (T)
|
4362 |
|
|
and then not No_Ctrl_Actions (N);
|
4363 |
|
|
|
4364 |
|
|
Component_Assign : constant Boolean :=
|
4365 |
|
|
Is_Fully_Repped_Tagged_Type (T);
|
4366 |
|
|
|
4367 |
|
|
Save_Tag : constant Boolean := Is_Tagged_Type (T)
|
4368 |
|
|
and then not Component_Assign
|
4369 |
|
|
and then not No_Ctrl_Actions (N)
|
4370 |
|
|
and then Tagged_Type_Expansion;
|
4371 |
|
|
-- Tags are not saved and restored when VM_Target because VM tags are
|
4372 |
|
|
-- represented implicitly in objects.
|
4373 |
|
|
|
4374 |
|
|
Res : List_Id;
|
4375 |
|
|
Tag_Tmp : Entity_Id;
|
4376 |
|
|
|
4377 |
|
|
Prev_Tmp : Entity_Id;
|
4378 |
|
|
Next_Tmp : Entity_Id;
|
4379 |
|
|
Ctrl_Ref : Node_Id;
|
4380 |
|
|
|
4381 |
|
|
begin
|
4382 |
|
|
Res := New_List;
|
4383 |
|
|
|
4384 |
|
|
-- Finalize the target of the assignment when controlled
|
4385 |
|
|
|
4386 |
|
|
-- We have two exceptions here:
|
4387 |
|
|
|
4388 |
|
|
-- 1. If we are in an init proc since it is an initialization more
|
4389 |
|
|
-- than an assignment.
|
4390 |
|
|
|
4391 |
|
|
-- 2. If the left-hand side is a temporary that was not initialized
|
4392 |
|
|
-- (or the parent part of a temporary since it is the case in
|
4393 |
|
|
-- extension aggregates). Such a temporary does not come from
|
4394 |
|
|
-- source. We must examine the original node for the prefix, because
|
4395 |
|
|
-- it may be a component of an entry formal, in which case it has
|
4396 |
|
|
-- been rewritten and does not appear to come from source either.
|
4397 |
|
|
|
4398 |
|
|
-- Case of init proc
|
4399 |
|
|
|
4400 |
|
|
if not Ctrl_Act then
|
4401 |
|
|
null;
|
4402 |
|
|
|
4403 |
|
|
-- The left hand side is an uninitialized temporary object
|
4404 |
|
|
|
4405 |
|
|
elsif Nkind (L) = N_Type_Conversion
|
4406 |
|
|
and then Is_Entity_Name (Expression (L))
|
4407 |
|
|
and then Nkind (Parent (Entity (Expression (L)))) =
|
4408 |
|
|
N_Object_Declaration
|
4409 |
|
|
and then No_Initialization (Parent (Entity (Expression (L))))
|
4410 |
|
|
then
|
4411 |
|
|
null;
|
4412 |
|
|
|
4413 |
|
|
else
|
4414 |
|
|
Append_List_To (Res,
|
4415 |
|
|
Make_Final_Call
|
4416 |
|
|
(Ref => Duplicate_Subexpr_No_Checks (L),
|
4417 |
|
|
Typ => Etype (L),
|
4418 |
|
|
With_Detach => New_Reference_To (Standard_False, Loc)));
|
4419 |
|
|
end if;
|
4420 |
|
|
|
4421 |
|
|
-- Save the Tag in a local variable Tag_Tmp
|
4422 |
|
|
|
4423 |
|
|
if Save_Tag then
|
4424 |
|
|
Tag_Tmp :=
|
4425 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
|
4426 |
|
|
|
4427 |
|
|
Append_To (Res,
|
4428 |
|
|
Make_Object_Declaration (Loc,
|
4429 |
|
|
Defining_Identifier => Tag_Tmp,
|
4430 |
|
|
Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
|
4431 |
|
|
Expression =>
|
4432 |
|
|
Make_Selected_Component (Loc,
|
4433 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (L),
|
4434 |
|
|
Selector_Name => New_Reference_To (First_Tag_Component (T),
|
4435 |
|
|
Loc))));
|
4436 |
|
|
|
4437 |
|
|
-- Otherwise Tag_Tmp not used
|
4438 |
|
|
|
4439 |
|
|
else
|
4440 |
|
|
Tag_Tmp := Empty;
|
4441 |
|
|
end if;
|
4442 |
|
|
|
4443 |
|
|
if Ctrl_Act then
|
4444 |
|
|
if VM_Target /= No_VM then
|
4445 |
|
|
|
4446 |
|
|
-- Cannot assign part of the object in a VM context, so instead
|
4447 |
|
|
-- fallback to the previous mechanism, even though it is not
|
4448 |
|
|
-- completely correct ???
|
4449 |
|
|
|
4450 |
|
|
-- Save the Finalization Pointers in local variables Prev_Tmp and
|
4451 |
|
|
-- Next_Tmp. For objects with Has_Controlled_Component set, these
|
4452 |
|
|
-- pointers are in the Record_Controller
|
4453 |
|
|
|
4454 |
|
|
Ctrl_Ref := Duplicate_Subexpr (L);
|
4455 |
|
|
|
4456 |
|
|
if Has_Controlled_Component (T) then
|
4457 |
|
|
Ctrl_Ref :=
|
4458 |
|
|
Make_Selected_Component (Loc,
|
4459 |
|
|
Prefix => Ctrl_Ref,
|
4460 |
|
|
Selector_Name =>
|
4461 |
|
|
New_Reference_To (Controller_Component (T), Loc));
|
4462 |
|
|
end if;
|
4463 |
|
|
|
4464 |
|
|
Prev_Tmp :=
|
4465 |
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('B'));
|
4466 |
|
|
|
4467 |
|
|
Append_To (Res,
|
4468 |
|
|
Make_Object_Declaration (Loc,
|
4469 |
|
|
Defining_Identifier => Prev_Tmp,
|
4470 |
|
|
|
4471 |
|
|
Object_Definition =>
|
4472 |
|
|
New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
|
4473 |
|
|
|
4474 |
|
|
Expression =>
|
4475 |
|
|
Make_Selected_Component (Loc,
|
4476 |
|
|
Prefix =>
|
4477 |
|
|
Unchecked_Convert_To (RTE (RE_Finalizable), Ctrl_Ref),
|
4478 |
|
|
Selector_Name => Make_Identifier (Loc, Name_Prev))));
|
4479 |
|
|
|
4480 |
|
|
Next_Tmp :=
|
4481 |
|
|
Make_Defining_Identifier (Loc,
|
4482 |
|
|
Chars => New_Internal_Name ('C'));
|
4483 |
|
|
|
4484 |
|
|
Append_To (Res,
|
4485 |
|
|
Make_Object_Declaration (Loc,
|
4486 |
|
|
Defining_Identifier => Next_Tmp,
|
4487 |
|
|
|
4488 |
|
|
Object_Definition =>
|
4489 |
|
|
New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
|
4490 |
|
|
|
4491 |
|
|
Expression =>
|
4492 |
|
|
Make_Selected_Component (Loc,
|
4493 |
|
|
Prefix =>
|
4494 |
|
|
Unchecked_Convert_To (RTE (RE_Finalizable),
|
4495 |
|
|
New_Copy_Tree (Ctrl_Ref)),
|
4496 |
|
|
Selector_Name => Make_Identifier (Loc, Name_Next))));
|
4497 |
|
|
|
4498 |
|
|
-- Do the Assignment
|
4499 |
|
|
|
4500 |
|
|
Append_To (Res, Relocate_Node (N));
|
4501 |
|
|
|
4502 |
|
|
else
|
4503 |
|
|
-- Regular (non VM) processing for controlled types and types with
|
4504 |
|
|
-- controlled components
|
4505 |
|
|
|
4506 |
|
|
-- Variables of such types contain pointers used to chain them in
|
4507 |
|
|
-- finalization lists, in addition to user data. These pointers
|
4508 |
|
|
-- are specific to each object of the type, not to the value being
|
4509 |
|
|
-- assigned.
|
4510 |
|
|
|
4511 |
|
|
-- Thus they need to be left intact during the assignment. We
|
4512 |
|
|
-- achieve this by constructing a Storage_Array subtype, and by
|
4513 |
|
|
-- overlaying objects of this type on the source and target of the
|
4514 |
|
|
-- assignment. The assignment is then rewritten to assignments of
|
4515 |
|
|
-- slices of these arrays, copying the user data, and leaving the
|
4516 |
|
|
-- pointers untouched.
|
4517 |
|
|
|
4518 |
|
|
Controlled_Actions : declare
|
4519 |
|
|
Prev_Ref : Node_Id;
|
4520 |
|
|
-- A reference to the Prev component of the record controller
|
4521 |
|
|
|
4522 |
|
|
First_After_Root : Node_Id := Empty;
|
4523 |
|
|
-- Index of first byte to be copied (used to skip
|
4524 |
|
|
-- Root_Controlled in controlled objects).
|
4525 |
|
|
|
4526 |
|
|
Last_Before_Hole : Node_Id := Empty;
|
4527 |
|
|
-- Index of last byte to be copied before outermost record
|
4528 |
|
|
-- controller data.
|
4529 |
|
|
|
4530 |
|
|
Hole_Length : Node_Id := Empty;
|
4531 |
|
|
-- Length of record controller data (Prev and Next pointers)
|
4532 |
|
|
|
4533 |
|
|
First_After_Hole : Node_Id := Empty;
|
4534 |
|
|
-- Index of first byte to be copied after outermost record
|
4535 |
|
|
-- controller data.
|
4536 |
|
|
|
4537 |
|
|
Expr, Source_Size : Node_Id;
|
4538 |
|
|
Source_Actual_Subtype : Entity_Id;
|
4539 |
|
|
-- Used for computation of the size of the data to be copied
|
4540 |
|
|
|
4541 |
|
|
Range_Type : Entity_Id;
|
4542 |
|
|
Opaque_Type : Entity_Id;
|
4543 |
|
|
|
4544 |
|
|
function Build_Slice
|
4545 |
|
|
(Rec : Entity_Id;
|
4546 |
|
|
Lo : Node_Id;
|
4547 |
|
|
Hi : Node_Id) return Node_Id;
|
4548 |
|
|
-- Build and return a slice of an array of type S overlaid on
|
4549 |
|
|
-- object Rec, with bounds specified by Lo and Hi. If either
|
4550 |
|
|
-- bound is empty, a default of S'First (respectively S'Last)
|
4551 |
|
|
-- is used.
|
4552 |
|
|
|
4553 |
|
|
-----------------
|
4554 |
|
|
-- Build_Slice --
|
4555 |
|
|
-----------------
|
4556 |
|
|
|
4557 |
|
|
function Build_Slice
|
4558 |
|
|
(Rec : Node_Id;
|
4559 |
|
|
Lo : Node_Id;
|
4560 |
|
|
Hi : Node_Id) return Node_Id
|
4561 |
|
|
is
|
4562 |
|
|
Lo_Bound : Node_Id;
|
4563 |
|
|
Hi_Bound : Node_Id;
|
4564 |
|
|
|
4565 |
|
|
Opaque : constant Node_Id :=
|
4566 |
|
|
Unchecked_Convert_To (Opaque_Type,
|
4567 |
|
|
Make_Attribute_Reference (Loc,
|
4568 |
|
|
Prefix => Rec,
|
4569 |
|
|
Attribute_Name => Name_Address));
|
4570 |
|
|
-- Access value designating an opaque storage array of type
|
4571 |
|
|
-- S overlaid on record Rec.
|
4572 |
|
|
|
4573 |
|
|
begin
|
4574 |
|
|
-- Compute slice bounds using S'First (1) and S'Last as
|
4575 |
|
|
-- default values when not specified by the caller.
|
4576 |
|
|
|
4577 |
|
|
if No (Lo) then
|
4578 |
|
|
Lo_Bound := Make_Integer_Literal (Loc, 1);
|
4579 |
|
|
else
|
4580 |
|
|
Lo_Bound := Lo;
|
4581 |
|
|
end if;
|
4582 |
|
|
|
4583 |
|
|
if No (Hi) then
|
4584 |
|
|
Hi_Bound := Make_Attribute_Reference (Loc,
|
4585 |
|
|
Prefix => New_Occurrence_Of (Range_Type, Loc),
|
4586 |
|
|
Attribute_Name => Name_Last);
|
4587 |
|
|
else
|
4588 |
|
|
Hi_Bound := Hi;
|
4589 |
|
|
end if;
|
4590 |
|
|
|
4591 |
|
|
return Make_Slice (Loc,
|
4592 |
|
|
Prefix =>
|
4593 |
|
|
Opaque,
|
4594 |
|
|
Discrete_Range => Make_Range (Loc,
|
4595 |
|
|
Lo_Bound, Hi_Bound));
|
4596 |
|
|
end Build_Slice;
|
4597 |
|
|
|
4598 |
|
|
-- Start of processing for Controlled_Actions
|
4599 |
|
|
|
4600 |
|
|
begin
|
4601 |
|
|
-- Create a constrained subtype of Storage_Array whose size
|
4602 |
|
|
-- corresponds to the value being assigned.
|
4603 |
|
|
|
4604 |
|
|
-- subtype G is Storage_Offset range
|
4605 |
|
|
-- 1 .. (Expr'Size + Storage_Unit - 1) / Storage_Unit
|
4606 |
|
|
|
4607 |
|
|
Expr := Duplicate_Subexpr_No_Checks (Expression (N));
|
4608 |
|
|
|
4609 |
|
|
if Nkind (Expr) = N_Qualified_Expression then
|
4610 |
|
|
Expr := Expression (Expr);
|
4611 |
|
|
end if;
|
4612 |
|
|
|
4613 |
|
|
Source_Actual_Subtype := Etype (Expr);
|
4614 |
|
|
|
4615 |
|
|
if Has_Discriminants (Source_Actual_Subtype)
|
4616 |
|
|
and then not Is_Constrained (Source_Actual_Subtype)
|
4617 |
|
|
then
|
4618 |
|
|
Append_To (Res,
|
4619 |
|
|
Build_Actual_Subtype (Source_Actual_Subtype, Expr));
|
4620 |
|
|
Source_Actual_Subtype := Defining_Identifier (Last (Res));
|
4621 |
|
|
end if;
|
4622 |
|
|
|
4623 |
|
|
Source_Size :=
|
4624 |
|
|
Make_Op_Add (Loc,
|
4625 |
|
|
Left_Opnd =>
|
4626 |
|
|
Make_Attribute_Reference (Loc,
|
4627 |
|
|
Prefix =>
|
4628 |
|
|
New_Occurrence_Of (Source_Actual_Subtype, Loc),
|
4629 |
|
|
Attribute_Name => Name_Size),
|
4630 |
|
|
Right_Opnd =>
|
4631 |
|
|
Make_Integer_Literal (Loc,
|
4632 |
|
|
Intval => System_Storage_Unit - 1));
|
4633 |
|
|
|
4634 |
|
|
Source_Size :=
|
4635 |
|
|
Make_Op_Divide (Loc,
|
4636 |
|
|
Left_Opnd => Source_Size,
|
4637 |
|
|
Right_Opnd =>
|
4638 |
|
|
Make_Integer_Literal (Loc,
|
4639 |
|
|
Intval => System_Storage_Unit));
|
4640 |
|
|
|
4641 |
|
|
Range_Type :=
|
4642 |
|
|
Make_Defining_Identifier (Loc,
|
4643 |
|
|
New_Internal_Name ('G'));
|
4644 |
|
|
|
4645 |
|
|
Append_To (Res,
|
4646 |
|
|
Make_Subtype_Declaration (Loc,
|
4647 |
|
|
Defining_Identifier => Range_Type,
|
4648 |
|
|
Subtype_Indication =>
|
4649 |
|
|
Make_Subtype_Indication (Loc,
|
4650 |
|
|
Subtype_Mark =>
|
4651 |
|
|
New_Reference_To (RTE (RE_Storage_Offset), Loc),
|
4652 |
|
|
Constraint => Make_Range_Constraint (Loc,
|
4653 |
|
|
Range_Expression =>
|
4654 |
|
|
Make_Range (Loc,
|
4655 |
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
4656 |
|
|
High_Bound => Source_Size)))));
|
4657 |
|
|
|
4658 |
|
|
-- subtype S is Storage_Array (G)
|
4659 |
|
|
|
4660 |
|
|
Append_To (Res,
|
4661 |
|
|
Make_Subtype_Declaration (Loc,
|
4662 |
|
|
Defining_Identifier =>
|
4663 |
|
|
Make_Defining_Identifier (Loc,
|
4664 |
|
|
New_Internal_Name ('S')),
|
4665 |
|
|
Subtype_Indication =>
|
4666 |
|
|
Make_Subtype_Indication (Loc,
|
4667 |
|
|
Subtype_Mark =>
|
4668 |
|
|
New_Reference_To (RTE (RE_Storage_Array), Loc),
|
4669 |
|
|
Constraint =>
|
4670 |
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
4671 |
|
|
Constraints =>
|
4672 |
|
|
New_List (New_Reference_To (Range_Type, Loc))))));
|
4673 |
|
|
|
4674 |
|
|
-- type A is access S
|
4675 |
|
|
|
4676 |
|
|
Opaque_Type :=
|
4677 |
|
|
Make_Defining_Identifier (Loc,
|
4678 |
|
|
Chars => New_Internal_Name ('A'));
|
4679 |
|
|
|
4680 |
|
|
Append_To (Res,
|
4681 |
|
|
Make_Full_Type_Declaration (Loc,
|
4682 |
|
|
Defining_Identifier => Opaque_Type,
|
4683 |
|
|
Type_Definition =>
|
4684 |
|
|
Make_Access_To_Object_Definition (Loc,
|
4685 |
|
|
Subtype_Indication =>
|
4686 |
|
|
New_Occurrence_Of (
|
4687 |
|
|
Defining_Identifier (Last (Res)), Loc))));
|
4688 |
|
|
|
4689 |
|
|
-- Generate appropriate slice assignments
|
4690 |
|
|
|
4691 |
|
|
First_After_Root := Make_Integer_Literal (Loc, 1);
|
4692 |
|
|
|
4693 |
|
|
-- For controlled object, skip Root_Controlled part
|
4694 |
|
|
|
4695 |
|
|
if Is_Controlled (T) then
|
4696 |
|
|
First_After_Root :=
|
4697 |
|
|
Make_Op_Add (Loc,
|
4698 |
|
|
First_After_Root,
|
4699 |
|
|
Make_Op_Divide (Loc,
|
4700 |
|
|
Make_Attribute_Reference (Loc,
|
4701 |
|
|
Prefix =>
|
4702 |
|
|
New_Occurrence_Of (RTE (RE_Root_Controlled), Loc),
|
4703 |
|
|
Attribute_Name => Name_Size),
|
4704 |
|
|
Make_Integer_Literal (Loc, System_Storage_Unit)));
|
4705 |
|
|
end if;
|
4706 |
|
|
|
4707 |
|
|
-- For the case of a record with controlled components, skip
|
4708 |
|
|
-- record controller Prev/Next components. These components
|
4709 |
|
|
-- constitute a 'hole' in the middle of the data to be copied.
|
4710 |
|
|
|
4711 |
|
|
if Has_Controlled_Component (T) then
|
4712 |
|
|
Prev_Ref :=
|
4713 |
|
|
Make_Selected_Component (Loc,
|
4714 |
|
|
Prefix =>
|
4715 |
|
|
Make_Selected_Component (Loc,
|
4716 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (L),
|
4717 |
|
|
Selector_Name =>
|
4718 |
|
|
New_Reference_To (Controller_Component (T), Loc)),
|
4719 |
|
|
Selector_Name => Make_Identifier (Loc, Name_Prev));
|
4720 |
|
|
|
4721 |
|
|
-- Last index before hole: determined by position of the
|
4722 |
|
|
-- _Controller.Prev component.
|
4723 |
|
|
|
4724 |
|
|
Last_Before_Hole :=
|
4725 |
|
|
Make_Defining_Identifier (Loc,
|
4726 |
|
|
New_Internal_Name ('L'));
|
4727 |
|
|
|
4728 |
|
|
Append_To (Res,
|
4729 |
|
|
Make_Object_Declaration (Loc,
|
4730 |
|
|
Defining_Identifier => Last_Before_Hole,
|
4731 |
|
|
Object_Definition => New_Occurrence_Of (
|
4732 |
|
|
RTE (RE_Storage_Offset), Loc),
|
4733 |
|
|
Constant_Present => True,
|
4734 |
|
|
Expression => Make_Op_Add (Loc,
|
4735 |
|
|
Make_Attribute_Reference (Loc,
|
4736 |
|
|
Prefix => Prev_Ref,
|
4737 |
|
|
Attribute_Name => Name_Position),
|
4738 |
|
|
Make_Attribute_Reference (Loc,
|
4739 |
|
|
Prefix => New_Copy_Tree (Prefix (Prev_Ref)),
|
4740 |
|
|
Attribute_Name => Name_Position))));
|
4741 |
|
|
|
4742 |
|
|
-- Hole length: size of the Prev and Next components
|
4743 |
|
|
|
4744 |
|
|
Hole_Length :=
|
4745 |
|
|
Make_Op_Multiply (Loc,
|
4746 |
|
|
Left_Opnd => Make_Integer_Literal (Loc, Uint_2),
|
4747 |
|
|
Right_Opnd =>
|
4748 |
|
|
Make_Op_Divide (Loc,
|
4749 |
|
|
Left_Opnd =>
|
4750 |
|
|
Make_Attribute_Reference (Loc,
|
4751 |
|
|
Prefix => New_Copy_Tree (Prev_Ref),
|
4752 |
|
|
Attribute_Name => Name_Size),
|
4753 |
|
|
Right_Opnd =>
|
4754 |
|
|
Make_Integer_Literal (Loc,
|
4755 |
|
|
Intval => System_Storage_Unit)));
|
4756 |
|
|
|
4757 |
|
|
-- First index after hole
|
4758 |
|
|
|
4759 |
|
|
First_After_Hole :=
|
4760 |
|
|
Make_Defining_Identifier (Loc,
|
4761 |
|
|
New_Internal_Name ('F'));
|
4762 |
|
|
|
4763 |
|
|
Append_To (Res,
|
4764 |
|
|
Make_Object_Declaration (Loc,
|
4765 |
|
|
Defining_Identifier => First_After_Hole,
|
4766 |
|
|
Object_Definition => New_Occurrence_Of (
|
4767 |
|
|
RTE (RE_Storage_Offset), Loc),
|
4768 |
|
|
Constant_Present => True,
|
4769 |
|
|
Expression =>
|
4770 |
|
|
Make_Op_Add (Loc,
|
4771 |
|
|
Left_Opnd =>
|
4772 |
|
|
Make_Op_Add (Loc,
|
4773 |
|
|
Left_Opnd =>
|
4774 |
|
|
New_Occurrence_Of (Last_Before_Hole, Loc),
|
4775 |
|
|
Right_Opnd => Hole_Length),
|
4776 |
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
4777 |
|
|
|
4778 |
|
|
Last_Before_Hole :=
|
4779 |
|
|
New_Occurrence_Of (Last_Before_Hole, Loc);
|
4780 |
|
|
First_After_Hole :=
|
4781 |
|
|
New_Occurrence_Of (First_After_Hole, Loc);
|
4782 |
|
|
end if;
|
4783 |
|
|
|
4784 |
|
|
-- Assign the first slice (possibly skipping Root_Controlled,
|
4785 |
|
|
-- up to the beginning of the record controller if present,
|
4786 |
|
|
-- up to the end of the object if not).
|
4787 |
|
|
|
4788 |
|
|
Append_To (Res, Make_Assignment_Statement (Loc,
|
4789 |
|
|
Name => Build_Slice (
|
4790 |
|
|
Rec => Duplicate_Subexpr_No_Checks (L),
|
4791 |
|
|
Lo => First_After_Root,
|
4792 |
|
|
Hi => Last_Before_Hole),
|
4793 |
|
|
|
4794 |
|
|
Expression => Build_Slice (
|
4795 |
|
|
Rec => Expression (N),
|
4796 |
|
|
Lo => First_After_Root,
|
4797 |
|
|
Hi => New_Copy_Tree (Last_Before_Hole))));
|
4798 |
|
|
|
4799 |
|
|
if Present (First_After_Hole) then
|
4800 |
|
|
|
4801 |
|
|
-- If a record controller is present, copy the second slice,
|
4802 |
|
|
-- from right after the _Controller.Next component up to the
|
4803 |
|
|
-- end of the object.
|
4804 |
|
|
|
4805 |
|
|
Append_To (Res, Make_Assignment_Statement (Loc,
|
4806 |
|
|
Name => Build_Slice (
|
4807 |
|
|
Rec => Duplicate_Subexpr_No_Checks (L),
|
4808 |
|
|
Lo => First_After_Hole,
|
4809 |
|
|
Hi => Empty),
|
4810 |
|
|
Expression => Build_Slice (
|
4811 |
|
|
Rec => Duplicate_Subexpr_No_Checks (Expression (N)),
|
4812 |
|
|
Lo => New_Copy_Tree (First_After_Hole),
|
4813 |
|
|
Hi => Empty)));
|
4814 |
|
|
end if;
|
4815 |
|
|
end Controlled_Actions;
|
4816 |
|
|
end if;
|
4817 |
|
|
|
4818 |
|
|
-- Not controlled case
|
4819 |
|
|
|
4820 |
|
|
else
|
4821 |
|
|
declare
|
4822 |
|
|
Asn : constant Node_Id := Relocate_Node (N);
|
4823 |
|
|
|
4824 |
|
|
begin
|
4825 |
|
|
-- If this is the case of a tagged type with a full rep clause,
|
4826 |
|
|
-- we must expand it into component assignments, so we mark the
|
4827 |
|
|
-- node as unanalyzed, to get it reanalyzed, but flag it has
|
4828 |
|
|
-- requiring component-wise assignment so we don't get infinite
|
4829 |
|
|
-- recursion.
|
4830 |
|
|
|
4831 |
|
|
if Component_Assign then
|
4832 |
|
|
Set_Analyzed (Asn, False);
|
4833 |
|
|
Set_Componentwise_Assignment (Asn, True);
|
4834 |
|
|
end if;
|
4835 |
|
|
|
4836 |
|
|
Append_To (Res, Asn);
|
4837 |
|
|
end;
|
4838 |
|
|
end if;
|
4839 |
|
|
|
4840 |
|
|
-- Restore the tag
|
4841 |
|
|
|
4842 |
|
|
if Save_Tag then
|
4843 |
|
|
Append_To (Res,
|
4844 |
|
|
Make_Assignment_Statement (Loc,
|
4845 |
|
|
Name =>
|
4846 |
|
|
Make_Selected_Component (Loc,
|
4847 |
|
|
Prefix => Duplicate_Subexpr_No_Checks (L),
|
4848 |
|
|
Selector_Name => New_Reference_To (First_Tag_Component (T),
|
4849 |
|
|
Loc)),
|
4850 |
|
|
Expression => New_Reference_To (Tag_Tmp, Loc)));
|
4851 |
|
|
end if;
|
4852 |
|
|
|
4853 |
|
|
if Ctrl_Act then
|
4854 |
|
|
if VM_Target /= No_VM then
|
4855 |
|
|
-- Restore the finalization pointers
|
4856 |
|
|
|
4857 |
|
|
Append_To (Res,
|
4858 |
|
|
Make_Assignment_Statement (Loc,
|
4859 |
|
|
Name =>
|
4860 |
|
|
Make_Selected_Component (Loc,
|
4861 |
|
|
Prefix =>
|
4862 |
|
|
Unchecked_Convert_To (RTE (RE_Finalizable),
|
4863 |
|
|
New_Copy_Tree (Ctrl_Ref)),
|
4864 |
|
|
Selector_Name => Make_Identifier (Loc, Name_Prev)),
|
4865 |
|
|
Expression => New_Reference_To (Prev_Tmp, Loc)));
|
4866 |
|
|
|
4867 |
|
|
Append_To (Res,
|
4868 |
|
|
Make_Assignment_Statement (Loc,
|
4869 |
|
|
Name =>
|
4870 |
|
|
Make_Selected_Component (Loc,
|
4871 |
|
|
Prefix =>
|
4872 |
|
|
Unchecked_Convert_To (RTE (RE_Finalizable),
|
4873 |
|
|
New_Copy_Tree (Ctrl_Ref)),
|
4874 |
|
|
Selector_Name => Make_Identifier (Loc, Name_Next)),
|
4875 |
|
|
Expression => New_Reference_To (Next_Tmp, Loc)));
|
4876 |
|
|
end if;
|
4877 |
|
|
|
4878 |
|
|
-- Adjust the target after the assignment when controlled (not in the
|
4879 |
|
|
-- init proc since it is an initialization more than an assignment).
|
4880 |
|
|
|
4881 |
|
|
Append_List_To (Res,
|
4882 |
|
|
Make_Adjust_Call (
|
4883 |
|
|
Ref => Duplicate_Subexpr_Move_Checks (L),
|
4884 |
|
|
Typ => Etype (L),
|
4885 |
|
|
Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
|
4886 |
|
|
With_Attach => Make_Integer_Literal (Loc, 0)));
|
4887 |
|
|
end if;
|
4888 |
|
|
|
4889 |
|
|
return Res;
|
4890 |
|
|
|
4891 |
|
|
exception
|
4892 |
|
|
-- Could use comment here ???
|
4893 |
|
|
|
4894 |
|
|
when RE_Not_Available =>
|
4895 |
|
|
return Empty_List;
|
4896 |
|
|
end Make_Tag_Ctrl_Assignment;
|
4897 |
|
|
|
4898 |
|
|
end Exp_Ch5;
|