OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ada/] [exp_ch6.adb] - Blame information for rev 304

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT COMPILER COMPONENTS                         --
4
--                                                                          --
5
--                              E X P _ C H 6                               --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                                                                          --
9
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10
--                                                                          --
11
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12
-- terms of the  GNU General Public License as published  by the Free Soft- --
13
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17
-- for  more details.  You should have  received  a copy of the GNU General --
18
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19
-- http://www.gnu.org/licenses for a complete copy of the license.          --
20
--                                                                          --
21
-- GNAT was originally developed  by the GNAT team at  New York University. --
22
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23
--                                                                          --
24
------------------------------------------------------------------------------
25
 
26
with Atree;    use Atree;
27
with Checks;   use Checks;
28
with Debug;    use Debug;
29
with Einfo;    use Einfo;
30
with Errout;   use Errout;
31
with Elists;   use Elists;
32
with Exp_Atag; use Exp_Atag;
33
with Exp_Ch2;  use Exp_Ch2;
34
with Exp_Ch3;  use Exp_Ch3;
35
with Exp_Ch7;  use Exp_Ch7;
36
with Exp_Ch9;  use Exp_Ch9;
37
with Exp_Dbug; use Exp_Dbug;
38
with Exp_Disp; use Exp_Disp;
39
with Exp_Dist; use Exp_Dist;
40
with Exp_Intr; use Exp_Intr;
41
with Exp_Pakd; use Exp_Pakd;
42
with Exp_Tss;  use Exp_Tss;
43
with Exp_Util; use Exp_Util;
44
with Exp_VFpt; use Exp_VFpt;
45
with Fname;    use Fname;
46
with Freeze;   use Freeze;
47
with Inline;   use Inline;
48
with Lib;      use Lib;
49
with Namet;    use Namet;
50
with Nlists;   use Nlists;
51
with Nmake;    use Nmake;
52
with Opt;      use Opt;
53
with Restrict; use Restrict;
54
with Rident;   use Rident;
55
with Rtsfind;  use Rtsfind;
56
with Sem;      use Sem;
57
with Sem_Aux;  use Sem_Aux;
58
with Sem_Ch6;  use Sem_Ch6;
59
with Sem_Ch8;  use Sem_Ch8;
60
with Sem_Ch12; use Sem_Ch12;
61
with Sem_Ch13; use Sem_Ch13;
62
with Sem_Eval; use Sem_Eval;
63
with Sem_Disp; use Sem_Disp;
64
with Sem_Dist; use Sem_Dist;
65
with Sem_Mech; use Sem_Mech;
66
with Sem_Res;  use Sem_Res;
67
with Sem_SCIL; use Sem_SCIL;
68
with Sem_Util; use Sem_Util;
69
with Sinfo;    use Sinfo;
70
with Snames;   use Snames;
71
with Stand;    use Stand;
72
with Tbuild;   use Tbuild;
73
with Uintp;    use Uintp;
74
with Validsw;  use Validsw;
75
 
76
package body Exp_Ch6 is
77
 
78
   -----------------------
79
   -- Local Subprograms --
80
   -----------------------
81
 
82
   procedure Add_Access_Actual_To_Build_In_Place_Call
83
     (Function_Call : Node_Id;
84
      Function_Id   : Entity_Id;
85
      Return_Object : Node_Id;
86
      Is_Access     : Boolean := False);
87
   --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
88
   --  object name given by Return_Object and add the attribute to the end of
89
   --  the actual parameter list associated with the build-in-place function
90
   --  call denoted by Function_Call. However, if Is_Access is True, then
91
   --  Return_Object is already an access expression, in which case it's passed
92
   --  along directly to the build-in-place function. Finally, if Return_Object
93
   --  is empty, then pass a null literal as the actual.
94
 
95
   procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
96
     (Function_Call  : Node_Id;
97
      Function_Id    : Entity_Id;
98
      Alloc_Form     : BIP_Allocation_Form := Unspecified;
99
      Alloc_Form_Exp : Node_Id             := Empty);
100
   --  Ada 2005 (AI-318-02): Add an actual indicating the form of allocation,
101
   --  if any, to be done by a build-in-place function. If Alloc_Form_Exp is
102
   --  present, then use it, otherwise pass a literal corresponding to the
103
   --  Alloc_Form parameter (which must not be Unspecified in that case).
104
 
105
   procedure Add_Extra_Actual_To_Call
106
     (Subprogram_Call : Node_Id;
107
      Extra_Formal    : Entity_Id;
108
      Extra_Actual    : Node_Id);
109
   --  Adds Extra_Actual as a named parameter association for the formal
110
   --  Extra_Formal in Subprogram_Call.
111
 
112
   procedure Add_Final_List_Actual_To_Build_In_Place_Call
113
     (Function_Call : Node_Id;
114
      Function_Id   : Entity_Id;
115
      Acc_Type      : Entity_Id;
116
      Sel_Comp      : Node_Id := Empty);
117
   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type has
118
   --  controlled parts, add an actual parameter that is a pointer to
119
   --  appropriate finalization list. The finalization list is that of the
120
   --  current scope, except for "new Acc'(F(...))" in which case it's the
121
   --  finalization list of the access type returned by the allocator. Acc_Type
122
   --  is that type in the allocator case; Empty otherwise. If Sel_Comp is
123
   --  not Empty, then it denotes a selected component and the finalization
124
   --  list is obtained from the _controller list of the prefix object.
125
 
126
   procedure Add_Task_Actuals_To_Build_In_Place_Call
127
     (Function_Call : Node_Id;
128
      Function_Id   : Entity_Id;
129
      Master_Actual : Node_Id);
130
   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
131
   --  contains tasks, add two actual parameters: the master, and a pointer to
132
   --  the caller's activation chain. Master_Actual is the actual parameter
133
   --  expression to pass for the master. In most cases, this is the current
134
   --  master (_master). The two exceptions are: If the function call is the
135
   --  initialization expression for an allocator, we pass the master of the
136
   --  access type. If the function call is the initialization expression for
137
   --  a return object, we pass along the master passed in by the caller. The
138
   --  activation chain to pass is always the local one.
139
 
140
   procedure Check_Overriding_Operation (Subp : Entity_Id);
141
   --  Subp is a dispatching operation. Check whether it may override an
142
   --  inherited private operation, in which case its DT entry is that of
143
   --  the hidden operation, not the one it may have received earlier.
144
   --  This must be done before emitting the code to set the corresponding
145
   --  DT to the address of the subprogram. The actual placement of Subp in
146
   --  the proper place in the list of primitive operations is done in
147
   --  Declare_Inherited_Private_Subprograms, which also has to deal with
148
   --  implicit operations. This duplication is unavoidable for now???
149
 
150
   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151
   --  This procedure is called only if the subprogram body N, whose spec
152
   --  has the given entity Spec, contains a parameterless recursive call.
153
   --  It attempts to generate runtime code to detect if this a case of
154
   --  infinite recursion.
155
   --
156
   --  The body is scanned to determine dependencies. If the only external
157
   --  dependencies are on a small set of scalar variables, then the values
158
   --  of these variables are captured on entry to the subprogram, and if
159
   --  the values are not changed for the call, we know immediately that
160
   --  we have an infinite recursion.
161
 
162
   procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
163
   --  For each actual of an in-out or out parameter which is a numeric
164
   --  (view) conversion of the form T (A), where A denotes a variable,
165
   --  we insert the declaration:
166
   --
167
   --    Temp : T[ := T (A)];
168
   --
169
   --  prior to the call. Then we replace the actual with a reference to Temp,
170
   --  and append the assignment:
171
   --
172
   --    A := TypeA (Temp);
173
   --
174
   --  after the call. Here TypeA is the actual type of variable A. For out
175
   --  parameters, the initial declaration has no expression. If A is not an
176
   --  entity name, we generate instead:
177
   --
178
   --    Var  : TypeA renames A;
179
   --    Temp : T := Var;       --  omitting expression for out parameter.
180
   --    ...
181
   --    Var := TypeA (Temp);
182
   --
183
   --  For other in-out parameters, we emit the required constraint checks
184
   --  before and/or after the call.
185
   --
186
   --  For all parameter modes, actuals that denote components and slices of
187
   --  packed arrays are expanded into suitable temporaries.
188
   --
189
   --  For non-scalar objects that are possibly unaligned, add call by copy
190
   --  code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
191
 
192
   procedure Expand_Inlined_Call
193
    (N         : Node_Id;
194
     Subp      : Entity_Id;
195
     Orig_Subp : Entity_Id);
196
   --  If called subprogram can be inlined by the front-end, retrieve the
197
   --  analyzed body, replace formals with actuals and expand call in place.
198
   --  Generate thunks for actuals that are expressions, and insert the
199
   --  corresponding constant declarations before the call. If the original
200
   --  call is to a derived operation, the return type is the one of the
201
   --  derived operation, but the body is that of the original, so return
202
   --  expressions in the body must be converted to the desired type (which
203
   --  is simply not noted in the tree without inline expansion).
204
 
205
   function Expand_Protected_Object_Reference
206
     (N    : Node_Id;
207
      Scop : Entity_Id) return Node_Id;
208
 
209
   procedure Expand_Protected_Subprogram_Call
210
     (N    : Node_Id;
211
      Subp : Entity_Id;
212
      Scop : Entity_Id);
213
   --  A call to a protected subprogram within the protected object may appear
214
   --  as a regular call. The list of actuals must be expanded to contain a
215
   --  reference to the object itself, and the call becomes a call to the
216
   --  corresponding protected subprogram.
217
 
218
   function Is_Null_Procedure (Subp : Entity_Id) return Boolean;
219
   --  Predicate to recognize stubbed procedures and null procedures, which
220
   --  can be inlined unconditionally in all cases.
221
 
222
   ----------------------------------------------
223
   -- Add_Access_Actual_To_Build_In_Place_Call --
224
   ----------------------------------------------
225
 
226
   procedure Add_Access_Actual_To_Build_In_Place_Call
227
     (Function_Call : Node_Id;
228
      Function_Id   : Entity_Id;
229
      Return_Object : Node_Id;
230
      Is_Access     : Boolean := False)
231
   is
232
      Loc            : constant Source_Ptr := Sloc (Function_Call);
233
      Obj_Address    : Node_Id;
234
      Obj_Acc_Formal : Entity_Id;
235
 
236
   begin
237
      --  Locate the implicit access parameter in the called function
238
 
239
      Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
240
 
241
      --  If no return object is provided, then pass null
242
 
243
      if not Present (Return_Object) then
244
         Obj_Address := Make_Null (Loc);
245
         Set_Parent (Obj_Address, Function_Call);
246
 
247
      --  If Return_Object is already an expression of an access type, then use
248
      --  it directly, since it must be an access value denoting the return
249
      --  object, and couldn't possibly be the return object itself.
250
 
251
      elsif Is_Access then
252
         Obj_Address := Return_Object;
253
         Set_Parent (Obj_Address, Function_Call);
254
 
255
      --  Apply Unrestricted_Access to caller's return object
256
 
257
      else
258
         Obj_Address :=
259
            Make_Attribute_Reference (Loc,
260
              Prefix         => Return_Object,
261
              Attribute_Name => Name_Unrestricted_Access);
262
 
263
         Set_Parent (Return_Object, Obj_Address);
264
         Set_Parent (Obj_Address, Function_Call);
265
      end if;
266
 
267
      Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
268
 
269
      --  Build the parameter association for the new actual and add it to the
270
      --  end of the function's actuals.
271
 
272
      Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
273
   end Add_Access_Actual_To_Build_In_Place_Call;
274
 
275
   --------------------------------------------------
276
   -- Add_Alloc_Form_Actual_To_Build_In_Place_Call --
277
   --------------------------------------------------
278
 
279
   procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
280
     (Function_Call  : Node_Id;
281
      Function_Id    : Entity_Id;
282
      Alloc_Form     : BIP_Allocation_Form := Unspecified;
283
      Alloc_Form_Exp : Node_Id             := Empty)
284
   is
285
      Loc               : constant Source_Ptr := Sloc (Function_Call);
286
      Alloc_Form_Actual : Node_Id;
287
      Alloc_Form_Formal : Node_Id;
288
 
289
   begin
290
      --  The allocation form generally doesn't need to be passed in the case
291
      --  of a constrained result subtype, since normally the caller performs
292
      --  the allocation in that case. However this formal is still needed in
293
      --  the case where the function has a tagged result, because generally
294
      --  such functions can be called in a dispatching context and such calls
295
      --  must be handled like calls to class-wide functions.
296
 
297
      if Is_Constrained (Underlying_Type (Etype (Function_Id)))
298
        and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
299
      then
300
         return;
301
      end if;
302
 
303
      --  Locate the implicit allocation form parameter in the called function.
304
      --  Maybe it would be better for each implicit formal of a build-in-place
305
      --  function to have a flag or a Uint attribute to identify it. ???
306
 
307
      Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
308
 
309
      if Present (Alloc_Form_Exp) then
310
         pragma Assert (Alloc_Form = Unspecified);
311
 
312
         Alloc_Form_Actual := Alloc_Form_Exp;
313
 
314
      else
315
         pragma Assert (Alloc_Form /= Unspecified);
316
 
317
         Alloc_Form_Actual :=
318
           Make_Integer_Literal (Loc,
319
             Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
320
      end if;
321
 
322
      Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
323
 
324
      --  Build the parameter association for the new actual and add it to the
325
      --  end of the function's actuals.
326
 
327
      Add_Extra_Actual_To_Call
328
        (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
329
   end Add_Alloc_Form_Actual_To_Build_In_Place_Call;
330
 
331
   ------------------------------
332
   -- Add_Extra_Actual_To_Call --
333
   ------------------------------
334
 
335
   procedure Add_Extra_Actual_To_Call
336
     (Subprogram_Call : Node_Id;
337
      Extra_Formal    : Entity_Id;
338
      Extra_Actual    : Node_Id)
339
   is
340
      Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
341
      Param_Assoc : Node_Id;
342
 
343
   begin
344
      Param_Assoc :=
345
        Make_Parameter_Association (Loc,
346
          Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
347
          Explicit_Actual_Parameter => Extra_Actual);
348
 
349
      Set_Parent (Param_Assoc, Subprogram_Call);
350
      Set_Parent (Extra_Actual, Param_Assoc);
351
 
352
      if Present (Parameter_Associations (Subprogram_Call)) then
353
         if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
354
              N_Parameter_Association
355
         then
356
 
357
            --  Find last named actual, and append
358
 
359
            declare
360
               L : Node_Id;
361
            begin
362
               L := First_Actual (Subprogram_Call);
363
               while Present (L) loop
364
                  if No (Next_Actual (L)) then
365
                     Set_Next_Named_Actual (Parent (L), Extra_Actual);
366
                     exit;
367
                  end if;
368
                  Next_Actual (L);
369
               end loop;
370
            end;
371
 
372
         else
373
            Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
374
         end if;
375
 
376
         Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
377
 
378
      else
379
         Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
380
         Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
381
      end if;
382
   end Add_Extra_Actual_To_Call;
383
 
384
   --------------------------------------------------
385
   -- Add_Final_List_Actual_To_Build_In_Place_Call --
386
   --------------------------------------------------
387
 
388
   procedure Add_Final_List_Actual_To_Build_In_Place_Call
389
     (Function_Call : Node_Id;
390
      Function_Id   : Entity_Id;
391
      Acc_Type      : Entity_Id;
392
      Sel_Comp      : Node_Id := Empty)
393
   is
394
      Loc               : constant Source_Ptr := Sloc (Function_Call);
395
      Final_List        : Node_Id;
396
      Final_List_Actual : Node_Id;
397
      Final_List_Formal : Node_Id;
398
      Is_Ctrl_Result    : constant Boolean :=
399
                            Needs_Finalization
400
                              (Underlying_Type (Etype (Function_Id)));
401
 
402
   begin
403
      --  No such extra parameter is needed if there are no controlled parts.
404
      --  The test for Needs_Finalization accounts for class-wide results
405
      --  (which potentially have controlled parts, even if the root type
406
      --  doesn't), and the test for a tagged result type is needed because
407
      --  calls to such a function can in general occur in dispatching
408
      --  contexts, which must be treated the same as a call to class-wide
409
      --  functions. Both of these situations require that a finalization list
410
      --  be passed.
411
 
412
      if not Needs_BIP_Final_List (Function_Id) then
413
         return;
414
      end if;
415
 
416
      --  Locate implicit finalization list parameter in the called function
417
 
418
      Final_List_Formal := Build_In_Place_Formal (Function_Id, BIP_Final_List);
419
 
420
      --  Create the actual which is a pointer to the appropriate finalization
421
      --  list. Acc_Type is present if and only if this call is the
422
      --  initialization of an allocator. Use the Current_Scope or the
423
      --  Acc_Type as appropriate.
424
 
425
      if Present (Acc_Type)
426
        and then (Ekind (Acc_Type) = E_Anonymous_Access_Type
427
                   or else
428
                     Present (Associated_Final_Chain (Base_Type (Acc_Type))))
429
      then
430
         Final_List := Find_Final_List (Acc_Type);
431
 
432
      --  If Sel_Comp is present and the function result is controlled, then
433
      --  the finalization list will be obtained from the _controller list of
434
      --  the selected component's prefix object.
435
 
436
      elsif Present (Sel_Comp) and then Is_Ctrl_Result then
437
         Final_List := Find_Final_List (Current_Scope, Sel_Comp);
438
 
439
      else
440
         Final_List := Find_Final_List (Current_Scope);
441
      end if;
442
 
443
      Final_List_Actual :=
444
        Make_Attribute_Reference (Loc,
445
          Prefix         => Final_List,
446
          Attribute_Name => Name_Unrestricted_Access);
447
 
448
      Analyze_And_Resolve (Final_List_Actual, Etype (Final_List_Formal));
449
 
450
      --  Build the parameter association for the new actual and add it to the
451
      --  end of the function's actuals.
452
 
453
      Add_Extra_Actual_To_Call
454
        (Function_Call, Final_List_Formal, Final_List_Actual);
455
   end Add_Final_List_Actual_To_Build_In_Place_Call;
456
 
457
   ---------------------------------------------
458
   -- Add_Task_Actuals_To_Build_In_Place_Call --
459
   ---------------------------------------------
460
 
461
   procedure Add_Task_Actuals_To_Build_In_Place_Call
462
     (Function_Call : Node_Id;
463
      Function_Id   : Entity_Id;
464
      Master_Actual : Node_Id)
465
      --  Note: Master_Actual can be Empty, but only if there are no tasks
466
   is
467
      Loc               : constant Source_Ptr := Sloc (Function_Call);
468
 
469
   begin
470
      --  No such extra parameters are needed if there are no tasks
471
 
472
      if not Has_Task (Etype (Function_Id)) then
473
         return;
474
      end if;
475
 
476
      --  The master
477
 
478
      declare
479
         Master_Formal : Node_Id;
480
      begin
481
         --  Locate implicit master parameter in the called function
482
 
483
         Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Master);
484
 
485
         Analyze_And_Resolve (Master_Actual, Etype (Master_Formal));
486
 
487
         --  Build the parameter association for the new actual and add it to
488
         --  the end of the function's actuals.
489
 
490
         Add_Extra_Actual_To_Call
491
           (Function_Call, Master_Formal, Master_Actual);
492
      end;
493
 
494
      --  The activation chain
495
 
496
      declare
497
         Activation_Chain_Actual : Node_Id;
498
         Activation_Chain_Formal : Node_Id;
499
 
500
      begin
501
         --  Locate implicit activation chain parameter in the called function
502
 
503
         Activation_Chain_Formal := Build_In_Place_Formal
504
           (Function_Id, BIP_Activation_Chain);
505
 
506
         --  Create the actual which is a pointer to the current activation
507
         --  chain
508
 
509
         Activation_Chain_Actual :=
510
           Make_Attribute_Reference (Loc,
511
             Prefix         => Make_Identifier (Loc, Name_uChain),
512
             Attribute_Name => Name_Unrestricted_Access);
513
 
514
         Analyze_And_Resolve
515
           (Activation_Chain_Actual, Etype (Activation_Chain_Formal));
516
 
517
         --  Build the parameter association for the new actual and add it to
518
         --  the end of the function's actuals.
519
 
520
         Add_Extra_Actual_To_Call
521
           (Function_Call, Activation_Chain_Formal, Activation_Chain_Actual);
522
      end;
523
   end Add_Task_Actuals_To_Build_In_Place_Call;
524
 
525
   -----------------------
526
   -- BIP_Formal_Suffix --
527
   -----------------------
528
 
529
   function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
530
   begin
531
      case Kind is
532
         when BIP_Alloc_Form       =>
533
            return "BIPalloc";
534
         when BIP_Final_List       =>
535
            return "BIPfinallist";
536
         when BIP_Master           =>
537
            return "BIPmaster";
538
         when BIP_Activation_Chain =>
539
            return "BIPactivationchain";
540
         when BIP_Object_Access    =>
541
            return "BIPaccess";
542
      end case;
543
   end BIP_Formal_Suffix;
544
 
545
   ---------------------------
546
   -- Build_In_Place_Formal --
547
   ---------------------------
548
 
549
   function Build_In_Place_Formal
550
     (Func : Entity_Id;
551
      Kind : BIP_Formal_Kind) return Entity_Id
552
   is
553
      Extra_Formal : Entity_Id := Extra_Formals (Func);
554
 
555
   begin
556
      --  Maybe it would be better for each implicit formal of a build-in-place
557
      --  function to have a flag or a Uint attribute to identify it. ???
558
 
559
      loop
560
         pragma Assert (Present (Extra_Formal));
561
         exit when
562
           Chars (Extra_Formal) =
563
             New_External_Name (Chars (Func), BIP_Formal_Suffix (Kind));
564
         Next_Formal_With_Extras (Extra_Formal);
565
      end loop;
566
 
567
      return Extra_Formal;
568
   end Build_In_Place_Formal;
569
 
570
   --------------------------------
571
   -- Check_Overriding_Operation --
572
   --------------------------------
573
 
574
   procedure Check_Overriding_Operation (Subp : Entity_Id) is
575
      Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
576
      Op_List : constant Elist_Id  := Primitive_Operations (Typ);
577
      Op_Elmt : Elmt_Id;
578
      Prim_Op : Entity_Id;
579
      Par_Op  : Entity_Id;
580
 
581
   begin
582
      if Is_Derived_Type (Typ)
583
        and then not Is_Private_Type (Typ)
584
        and then In_Open_Scopes (Scope (Etype (Typ)))
585
        and then Typ = Base_Type (Typ)
586
      then
587
         --  Subp overrides an inherited private operation if there is an
588
         --  inherited operation with a different name than Subp (see
589
         --  Derive_Subprogram) whose Alias is a hidden subprogram with the
590
         --  same name as Subp.
591
 
592
         Op_Elmt := First_Elmt (Op_List);
593
         while Present (Op_Elmt) loop
594
            Prim_Op := Node (Op_Elmt);
595
            Par_Op  := Alias (Prim_Op);
596
 
597
            if Present (Par_Op)
598
              and then not Comes_From_Source (Prim_Op)
599
              and then Chars (Prim_Op) /= Chars (Par_Op)
600
              and then Chars (Par_Op) = Chars (Subp)
601
              and then Is_Hidden (Par_Op)
602
              and then Type_Conformant (Prim_Op, Subp)
603
            then
604
               Set_DT_Position (Subp, DT_Position (Prim_Op));
605
            end if;
606
 
607
            Next_Elmt (Op_Elmt);
608
         end loop;
609
      end if;
610
   end Check_Overriding_Operation;
611
 
612
   -------------------------------
613
   -- Detect_Infinite_Recursion --
614
   -------------------------------
615
 
616
   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
617
      Loc : constant Source_Ptr := Sloc (N);
618
 
619
      Var_List : constant Elist_Id := New_Elmt_List;
620
      --  List of globals referenced by body of procedure
621
 
622
      Call_List : constant Elist_Id := New_Elmt_List;
623
      --  List of recursive calls in body of procedure
624
 
625
      Shad_List : constant Elist_Id := New_Elmt_List;
626
      --  List of entity id's for entities created to capture the value of
627
      --  referenced globals on entry to the procedure.
628
 
629
      Scop : constant Uint := Scope_Depth (Spec);
630
      --  This is used to record the scope depth of the current procedure, so
631
      --  that we can identify global references.
632
 
633
      Max_Vars : constant := 4;
634
      --  Do not test more than four global variables
635
 
636
      Count_Vars : Natural := 0;
637
      --  Count variables found so far
638
 
639
      Var  : Entity_Id;
640
      Elm  : Elmt_Id;
641
      Ent  : Entity_Id;
642
      Call : Elmt_Id;
643
      Decl : Node_Id;
644
      Test : Node_Id;
645
      Elm1 : Elmt_Id;
646
      Elm2 : Elmt_Id;
647
      Last : Node_Id;
648
 
649
      function Process (Nod : Node_Id) return Traverse_Result;
650
      --  Function to traverse the subprogram body (using Traverse_Func)
651
 
652
      -------------
653
      -- Process --
654
      -------------
655
 
656
      function Process (Nod : Node_Id) return Traverse_Result is
657
      begin
658
         --  Procedure call
659
 
660
         if Nkind (Nod) = N_Procedure_Call_Statement then
661
 
662
            --  Case of one of the detected recursive calls
663
 
664
            if Is_Entity_Name (Name (Nod))
665
              and then Has_Recursive_Call (Entity (Name (Nod)))
666
              and then Entity (Name (Nod)) = Spec
667
            then
668
               Append_Elmt (Nod, Call_List);
669
               return Skip;
670
 
671
            --  Any other procedure call may have side effects
672
 
673
            else
674
               return Abandon;
675
            end if;
676
 
677
         --  A call to a pure function can always be ignored
678
 
679
         elsif Nkind (Nod) = N_Function_Call
680
           and then Is_Entity_Name (Name (Nod))
681
           and then Is_Pure (Entity (Name (Nod)))
682
         then
683
            return Skip;
684
 
685
         --  Case of an identifier reference
686
 
687
         elsif Nkind (Nod) = N_Identifier then
688
            Ent := Entity (Nod);
689
 
690
            --  If no entity, then ignore the reference
691
 
692
            --  Not clear why this can happen. To investigate, remove this
693
            --  test and look at the crash that occurs here in 3401-004 ???
694
 
695
            if No (Ent) then
696
               return Skip;
697
 
698
            --  Ignore entities with no Scope, again not clear how this
699
            --  can happen, to investigate, look at 4108-008 ???
700
 
701
            elsif No (Scope (Ent)) then
702
               return Skip;
703
 
704
            --  Ignore the reference if not to a more global object
705
 
706
            elsif Scope_Depth (Scope (Ent)) >= Scop then
707
               return Skip;
708
 
709
            --  References to types, exceptions and constants are always OK
710
 
711
            elsif Is_Type (Ent)
712
              or else Ekind (Ent) = E_Exception
713
              or else Ekind (Ent) = E_Constant
714
            then
715
               return Skip;
716
 
717
            --  If other than a non-volatile scalar variable, we have some
718
            --  kind of global reference (e.g. to a function) that we cannot
719
            --  deal with so we forget the attempt.
720
 
721
            elsif Ekind (Ent) /= E_Variable
722
              or else not Is_Scalar_Type (Etype (Ent))
723
              or else Treat_As_Volatile (Ent)
724
            then
725
               return Abandon;
726
 
727
            --  Otherwise we have a reference to a global scalar
728
 
729
            else
730
               --  Loop through global entities already detected
731
 
732
               Elm := First_Elmt (Var_List);
733
               loop
734
                  --  If not detected before, record this new global reference
735
 
736
                  if No (Elm) then
737
                     Count_Vars := Count_Vars + 1;
738
 
739
                     if Count_Vars <= Max_Vars then
740
                        Append_Elmt (Entity (Nod), Var_List);
741
                     else
742
                        return Abandon;
743
                     end if;
744
 
745
                     exit;
746
 
747
                  --  If recorded before, ignore
748
 
749
                  elsif Node (Elm) = Entity (Nod) then
750
                     return Skip;
751
 
752
                  --  Otherwise keep looking
753
 
754
                  else
755
                     Next_Elmt (Elm);
756
                  end if;
757
               end loop;
758
 
759
               return Skip;
760
            end if;
761
 
762
         --  For all other node kinds, recursively visit syntactic children
763
 
764
         else
765
            return OK;
766
         end if;
767
      end Process;
768
 
769
      function Traverse_Body is new Traverse_Func (Process);
770
 
771
   --  Start of processing for Detect_Infinite_Recursion
772
 
773
   begin
774
      --  Do not attempt detection in No_Implicit_Conditional mode, since we
775
      --  won't be able to generate the code to handle the recursion in any
776
      --  case.
777
 
778
      if Restriction_Active (No_Implicit_Conditionals) then
779
         return;
780
      end if;
781
 
782
      --  Otherwise do traversal and quit if we get abandon signal
783
 
784
      if Traverse_Body (N) = Abandon then
785
         return;
786
 
787
      --  We must have a call, since Has_Recursive_Call was set. If not just
788
      --  ignore (this is only an error check, so if we have a funny situation,
789
      --  due to bugs or errors, we do not want to bomb!)
790
 
791
      elsif Is_Empty_Elmt_List (Call_List) then
792
         return;
793
      end if;
794
 
795
      --  Here is the case where we detect recursion at compile time
796
 
797
      --  Push our current scope for analyzing the declarations and code that
798
      --  we will insert for the checking.
799
 
800
      Push_Scope (Spec);
801
 
802
      --  This loop builds temporary variables for each of the referenced
803
      --  globals, so that at the end of the loop the list Shad_List contains
804
      --  these temporaries in one-to-one correspondence with the elements in
805
      --  Var_List.
806
 
807
      Last := Empty;
808
      Elm := First_Elmt (Var_List);
809
      while Present (Elm) loop
810
         Var := Node (Elm);
811
         Ent :=
812
           Make_Defining_Identifier (Loc,
813
             Chars => New_Internal_Name ('S'));
814
         Append_Elmt (Ent, Shad_List);
815
 
816
         --  Insert a declaration for this temporary at the start of the
817
         --  declarations for the procedure. The temporaries are declared as
818
         --  constant objects initialized to the current values of the
819
         --  corresponding temporaries.
820
 
821
         Decl :=
822
           Make_Object_Declaration (Loc,
823
             Defining_Identifier => Ent,
824
             Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
825
             Constant_Present    => True,
826
             Expression          => New_Occurrence_Of (Var, Loc));
827
 
828
         if No (Last) then
829
            Prepend (Decl, Declarations (N));
830
         else
831
            Insert_After (Last, Decl);
832
         end if;
833
 
834
         Last := Decl;
835
         Analyze (Decl);
836
         Next_Elmt (Elm);
837
      end loop;
838
 
839
      --  Loop through calls
840
 
841
      Call := First_Elmt (Call_List);
842
      while Present (Call) loop
843
 
844
         --  Build a predicate expression of the form
845
 
846
         --    True
847
         --      and then global1 = temp1
848
         --      and then global2 = temp2
849
         --      ...
850
 
851
         --  This predicate determines if any of the global values
852
         --  referenced by the procedure have changed since the
853
         --  current call, if not an infinite recursion is assured.
854
 
855
         Test := New_Occurrence_Of (Standard_True, Loc);
856
 
857
         Elm1 := First_Elmt (Var_List);
858
         Elm2 := First_Elmt (Shad_List);
859
         while Present (Elm1) loop
860
            Test :=
861
              Make_And_Then (Loc,
862
                Left_Opnd  => Test,
863
                Right_Opnd =>
864
                  Make_Op_Eq (Loc,
865
                    Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
866
                    Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
867
 
868
            Next_Elmt (Elm1);
869
            Next_Elmt (Elm2);
870
         end loop;
871
 
872
         --  Now we replace the call with the sequence
873
 
874
         --    if no-changes (see above) then
875
         --       raise Storage_Error;
876
         --    else
877
         --       original-call
878
         --    end if;
879
 
880
         Rewrite (Node (Call),
881
           Make_If_Statement (Loc,
882
             Condition       => Test,
883
             Then_Statements => New_List (
884
               Make_Raise_Storage_Error (Loc,
885
                 Reason => SE_Infinite_Recursion)),
886
 
887
             Else_Statements => New_List (
888
               Relocate_Node (Node (Call)))));
889
 
890
         Analyze (Node (Call));
891
 
892
         Next_Elmt (Call);
893
      end loop;
894
 
895
      --  Remove temporary scope stack entry used for analysis
896
 
897
      Pop_Scope;
898
   end Detect_Infinite_Recursion;
899
 
900
   --------------------
901
   -- Expand_Actuals --
902
   --------------------
903
 
904
   procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
905
      Loc       : constant Source_Ptr := Sloc (N);
906
      Actual    : Node_Id;
907
      Formal    : Entity_Id;
908
      N_Node    : Node_Id;
909
      Post_Call : List_Id;
910
      E_Formal  : Entity_Id;
911
 
912
      procedure Add_Call_By_Copy_Code;
913
      --  For cases where the parameter must be passed by copy, this routine
914
      --  generates a temporary variable into which the actual is copied and
915
      --  then passes this as the parameter. For an OUT or IN OUT parameter,
916
      --  an assignment is also generated to copy the result back. The call
917
      --  also takes care of any constraint checks required for the type
918
      --  conversion case (on both the way in and the way out).
919
 
920
      procedure Add_Simple_Call_By_Copy_Code;
921
      --  This is similar to the above, but is used in cases where we know
922
      --  that all that is needed is to simply create a temporary and copy
923
      --  the value in and out of the temporary.
924
 
925
      procedure Check_Fortran_Logical;
926
      --  A value of type Logical that is passed through a formal parameter
927
      --  must be normalized because .TRUE. usually does not have the same
928
      --  representation as True. We assume that .FALSE. = False = 0.
929
      --  What about functions that return a logical type ???
930
 
931
      function Is_Legal_Copy return Boolean;
932
      --  Check that an actual can be copied before generating the temporary
933
      --  to be used in the call. If the actual is of a by_reference type then
934
      --  the program is illegal (this can only happen in the presence of
935
      --  rep. clauses that force an incorrect alignment). If the formal is
936
      --  a by_reference parameter imposed by a DEC pragma, emit a warning to
937
      --  the effect that this might lead to unaligned arguments.
938
 
939
      function Make_Var (Actual : Node_Id) return Entity_Id;
940
      --  Returns an entity that refers to the given actual parameter,
941
      --  Actual (not including any type conversion). If Actual is an
942
      --  entity name, then this entity is returned unchanged, otherwise
943
      --  a renaming is created to provide an entity for the actual.
944
 
945
      procedure Reset_Packed_Prefix;
946
      --  The expansion of a packed array component reference is delayed in
947
      --  the context of a call. Now we need to complete the expansion, so we
948
      --  unmark the analyzed bits in all prefixes.
949
 
950
      ---------------------------
951
      -- Add_Call_By_Copy_Code --
952
      ---------------------------
953
 
954
      procedure Add_Call_By_Copy_Code is
955
         Expr  : Node_Id;
956
         Init  : Node_Id;
957
         Temp  : Entity_Id;
958
         Indic : Node_Id;
959
         Var   : Entity_Id;
960
         F_Typ : constant Entity_Id := Etype (Formal);
961
         V_Typ : Entity_Id;
962
         Crep  : Boolean;
963
 
964
      begin
965
         if not Is_Legal_Copy then
966
            return;
967
         end if;
968
 
969
         Temp :=
970
           Make_Defining_Identifier (Loc,
971
             Chars => New_Internal_Name ('T'));
972
 
973
         --  Use formal type for temp, unless formal type is an unconstrained
974
         --  array, in which case we don't have to worry about bounds checks,
975
         --  and we use the actual type, since that has appropriate bounds.
976
 
977
         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
978
            Indic := New_Occurrence_Of (Etype (Actual), Loc);
979
         else
980
            Indic := New_Occurrence_Of (Etype (Formal), Loc);
981
         end if;
982
 
983
         if Nkind (Actual) = N_Type_Conversion then
984
            V_Typ := Etype (Expression (Actual));
985
 
986
            --  If the formal is an (in-)out parameter, capture the name
987
            --  of the variable in order to build the post-call assignment.
988
 
989
            Var := Make_Var (Expression (Actual));
990
 
991
            Crep := not Same_Representation
992
                          (F_Typ, Etype (Expression (Actual)));
993
 
994
         else
995
            V_Typ := Etype (Actual);
996
            Var   := Make_Var (Actual);
997
            Crep  := False;
998
         end if;
999
 
1000
         --  Setup initialization for case of in out parameter, or an out
1001
         --  parameter where the formal is an unconstrained array (in the
1002
         --  latter case, we have to pass in an object with bounds).
1003
 
1004
         --  If this is an out parameter, the initial copy is wasteful, so as
1005
         --  an optimization for the one-dimensional case we extract the
1006
         --  bounds of the actual and build an uninitialized temporary of the
1007
         --  right size.
1008
 
1009
         if Ekind (Formal) = E_In_Out_Parameter
1010
           or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1011
         then
1012
            if Nkind (Actual) = N_Type_Conversion then
1013
               if Conversion_OK (Actual) then
1014
                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1015
               else
1016
                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1017
               end if;
1018
 
1019
            elsif Ekind (Formal) = E_Out_Parameter
1020
              and then Is_Array_Type (F_Typ)
1021
              and then Number_Dimensions (F_Typ) = 1
1022
              and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1023
            then
1024
               --  Actual is a one-dimensional array or slice, and the type
1025
               --  requires no initialization. Create a temporary of the
1026
               --  right size, but do not copy actual into it (optimization).
1027
 
1028
               Init := Empty;
1029
               Indic :=
1030
                 Make_Subtype_Indication (Loc,
1031
                   Subtype_Mark =>
1032
                     New_Occurrence_Of (F_Typ, Loc),
1033
                   Constraint   =>
1034
                     Make_Index_Or_Discriminant_Constraint (Loc,
1035
                       Constraints => New_List (
1036
                         Make_Range (Loc,
1037
                           Low_Bound  =>
1038
                             Make_Attribute_Reference (Loc,
1039
                               Prefix => New_Occurrence_Of (Var, Loc),
1040
                               Attribute_Name => Name_First),
1041
                           High_Bound =>
1042
                             Make_Attribute_Reference (Loc,
1043
                               Prefix => New_Occurrence_Of (Var, Loc),
1044
                               Attribute_Name => Name_Last)))));
1045
 
1046
            else
1047
               Init := New_Occurrence_Of (Var, Loc);
1048
            end if;
1049
 
1050
         --  An initialization is created for packed conversions as
1051
         --  actuals for out parameters to enable Make_Object_Declaration
1052
         --  to determine the proper subtype for N_Node. Note that this
1053
         --  is wasteful because the extra copying on the call side is
1054
         --  not required for such out parameters. ???
1055
 
1056
         elsif Ekind (Formal) = E_Out_Parameter
1057
           and then Nkind (Actual) = N_Type_Conversion
1058
           and then (Is_Bit_Packed_Array (F_Typ)
1059
                       or else
1060
                     Is_Bit_Packed_Array (Etype (Expression (Actual))))
1061
         then
1062
            if Conversion_OK (Actual) then
1063
               Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1064
            else
1065
               Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1066
            end if;
1067
 
1068
         elsif Ekind (Formal) = E_In_Parameter then
1069
 
1070
            --  Handle the case in which the actual is a type conversion
1071
 
1072
            if Nkind (Actual) = N_Type_Conversion then
1073
               if Conversion_OK (Actual) then
1074
                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1075
               else
1076
                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1077
               end if;
1078
            else
1079
               Init := New_Occurrence_Of (Var, Loc);
1080
            end if;
1081
 
1082
         else
1083
            Init := Empty;
1084
         end if;
1085
 
1086
         N_Node :=
1087
           Make_Object_Declaration (Loc,
1088
             Defining_Identifier => Temp,
1089
             Object_Definition   => Indic,
1090
             Expression          => Init);
1091
         Set_Assignment_OK (N_Node);
1092
         Insert_Action (N, N_Node);
1093
 
1094
         --  Now, normally the deal here is that we use the defining
1095
         --  identifier created by that object declaration. There is
1096
         --  one exception to this. In the change of representation case
1097
         --  the above declaration will end up looking like:
1098
 
1099
         --    temp : type := identifier;
1100
 
1101
         --  And in this case we might as well use the identifier directly
1102
         --  and eliminate the temporary. Note that the analysis of the
1103
         --  declaration was not a waste of time in that case, since it is
1104
         --  what generated the necessary change of representation code. If
1105
         --  the change of representation introduced additional code, as in
1106
         --  a fixed-integer conversion, the expression is not an identifier
1107
         --  and must be kept.
1108
 
1109
         if Crep
1110
           and then Present (Expression (N_Node))
1111
           and then Is_Entity_Name (Expression (N_Node))
1112
         then
1113
            Temp := Entity (Expression (N_Node));
1114
            Rewrite (N_Node, Make_Null_Statement (Loc));
1115
         end if;
1116
 
1117
         --  For IN parameter, all we do is to replace the actual
1118
 
1119
         if Ekind (Formal) = E_In_Parameter then
1120
            Rewrite (Actual, New_Reference_To (Temp, Loc));
1121
            Analyze (Actual);
1122
 
1123
         --  Processing for OUT or IN OUT parameter
1124
 
1125
         else
1126
            --  Kill current value indications for the temporary variable we
1127
            --  created, since we just passed it as an OUT parameter.
1128
 
1129
            Kill_Current_Values (Temp);
1130
            Set_Is_Known_Valid (Temp, False);
1131
 
1132
            --  If type conversion, use reverse conversion on exit
1133
 
1134
            if Nkind (Actual) = N_Type_Conversion then
1135
               if Conversion_OK (Actual) then
1136
                  Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1137
               else
1138
                  Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1139
               end if;
1140
            else
1141
               Expr := New_Occurrence_Of (Temp, Loc);
1142
            end if;
1143
 
1144
            Rewrite (Actual, New_Reference_To (Temp, Loc));
1145
            Analyze (Actual);
1146
 
1147
            --  If the actual is a conversion of a packed reference, it may
1148
            --  already have been expanded by Remove_Side_Effects, and the
1149
            --  resulting variable is a temporary which does not designate
1150
            --  the proper out-parameter, which may not be addressable. In
1151
            --  that case, generate an assignment to the original expression
1152
            --  (before expansion of the packed reference) so that the proper
1153
            --  expansion of assignment to a packed component can take place.
1154
 
1155
            declare
1156
               Obj : Node_Id;
1157
               Lhs : Node_Id;
1158
 
1159
            begin
1160
               if Is_Renaming_Of_Object (Var)
1161
                 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1162
                 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1163
                 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1164
                   = N_Indexed_Component
1165
                 and then
1166
                   Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1167
               then
1168
                  Obj := Renamed_Object (Var);
1169
                  Lhs :=
1170
                    Make_Selected_Component (Loc,
1171
                      Prefix        =>
1172
                        New_Copy_Tree (Original_Node (Prefix (Obj))),
1173
                      Selector_Name => New_Copy (Selector_Name (Obj)));
1174
                  Reset_Analyzed_Flags (Lhs);
1175
 
1176
               else
1177
                  Lhs :=  New_Occurrence_Of (Var, Loc);
1178
               end if;
1179
 
1180
               Set_Assignment_OK (Lhs);
1181
 
1182
               Append_To (Post_Call,
1183
                 Make_Assignment_Statement (Loc,
1184
                   Name       => Lhs,
1185
                   Expression => Expr));
1186
            end;
1187
         end if;
1188
      end Add_Call_By_Copy_Code;
1189
 
1190
      ----------------------------------
1191
      -- Add_Simple_Call_By_Copy_Code --
1192
      ----------------------------------
1193
 
1194
      procedure Add_Simple_Call_By_Copy_Code is
1195
         Temp   : Entity_Id;
1196
         Decl   : Node_Id;
1197
         Incod  : Node_Id;
1198
         Outcod : Node_Id;
1199
         Lhs    : Node_Id;
1200
         Rhs    : Node_Id;
1201
         Indic  : Node_Id;
1202
         F_Typ  : constant Entity_Id := Etype (Formal);
1203
 
1204
      begin
1205
         if not Is_Legal_Copy then
1206
            return;
1207
         end if;
1208
 
1209
         --  Use formal type for temp, unless formal type is an unconstrained
1210
         --  array, in which case we don't have to worry about bounds checks,
1211
         --  and we use the actual type, since that has appropriate bounds.
1212
 
1213
         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1214
            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1215
         else
1216
            Indic := New_Occurrence_Of (Etype (Formal), Loc);
1217
         end if;
1218
 
1219
         --  Prepare to generate code
1220
 
1221
         Reset_Packed_Prefix;
1222
 
1223
         Temp :=
1224
           Make_Defining_Identifier (Loc,
1225
             Chars => New_Internal_Name ('T'));
1226
         Incod  := Relocate_Node (Actual);
1227
         Outcod := New_Copy_Tree (Incod);
1228
 
1229
         --  Generate declaration of temporary variable, initializing it
1230
         --  with the input parameter unless we have an OUT formal or
1231
         --  this is an initialization call.
1232
 
1233
         --  If the formal is an out parameter with discriminants, the
1234
         --  discriminants must be captured even if the rest of the object
1235
         --  is in principle uninitialized, because the discriminants may
1236
         --  be read by the called subprogram.
1237
 
1238
         if Ekind (Formal) = E_Out_Parameter then
1239
            Incod := Empty;
1240
 
1241
            if Has_Discriminants (Etype (Formal)) then
1242
               Indic := New_Occurrence_Of (Etype (Actual), Loc);
1243
            end if;
1244
 
1245
         elsif Inside_Init_Proc then
1246
 
1247
            --  Could use a comment here to match comment below ???
1248
 
1249
            if Nkind (Actual) /= N_Selected_Component
1250
              or else
1251
                not Has_Discriminant_Dependent_Constraint
1252
                  (Entity (Selector_Name (Actual)))
1253
            then
1254
               Incod := Empty;
1255
 
1256
            --  Otherwise, keep the component in order to generate the proper
1257
            --  actual subtype, that depends on enclosing discriminants.
1258
 
1259
            else
1260
               null;
1261
            end if;
1262
         end if;
1263
 
1264
         Decl :=
1265
           Make_Object_Declaration (Loc,
1266
             Defining_Identifier => Temp,
1267
             Object_Definition   => Indic,
1268
             Expression          => Incod);
1269
 
1270
         if Inside_Init_Proc
1271
           and then No (Incod)
1272
         then
1273
            --  If the call is to initialize a component of a composite type,
1274
            --  and the component does not depend on discriminants, use the
1275
            --  actual type of the component. This is required in case the
1276
            --  component is constrained, because in general the formal of the
1277
            --  initialization procedure will be unconstrained. Note that if
1278
            --  the component being initialized is constrained by an enclosing
1279
            --  discriminant, the presence of the initialization in the
1280
            --  declaration will generate an expression for the actual subtype.
1281
 
1282
            Set_No_Initialization (Decl);
1283
            Set_Object_Definition (Decl,
1284
              New_Occurrence_Of (Etype (Actual), Loc));
1285
         end if;
1286
 
1287
         Insert_Action (N, Decl);
1288
 
1289
         --  The actual is simply a reference to the temporary
1290
 
1291
         Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1292
 
1293
         --  Generate copy out if OUT or IN OUT parameter
1294
 
1295
         if Ekind (Formal) /= E_In_Parameter then
1296
            Lhs := Outcod;
1297
            Rhs := New_Occurrence_Of (Temp, Loc);
1298
 
1299
            --  Deal with conversion
1300
 
1301
            if Nkind (Lhs) = N_Type_Conversion then
1302
               Lhs := Expression (Lhs);
1303
               Rhs := Convert_To (Etype (Actual), Rhs);
1304
            end if;
1305
 
1306
            Append_To (Post_Call,
1307
              Make_Assignment_Statement (Loc,
1308
                Name       => Lhs,
1309
                Expression => Rhs));
1310
            Set_Assignment_OK (Name (Last (Post_Call)));
1311
         end if;
1312
      end Add_Simple_Call_By_Copy_Code;
1313
 
1314
      ---------------------------
1315
      -- Check_Fortran_Logical --
1316
      ---------------------------
1317
 
1318
      procedure Check_Fortran_Logical is
1319
         Logical : constant Entity_Id := Etype (Formal);
1320
         Var     : Entity_Id;
1321
 
1322
      --  Note: this is very incomplete, e.g. it does not handle arrays
1323
      --  of logical values. This is really not the right approach at all???)
1324
 
1325
      begin
1326
         if Convention (Subp) = Convention_Fortran
1327
           and then Root_Type (Etype (Formal)) = Standard_Boolean
1328
           and then Ekind (Formal) /= E_In_Parameter
1329
         then
1330
            Var := Make_Var (Actual);
1331
            Append_To (Post_Call,
1332
              Make_Assignment_Statement (Loc,
1333
                Name => New_Occurrence_Of (Var, Loc),
1334
                Expression =>
1335
                  Unchecked_Convert_To (
1336
                    Logical,
1337
                    Make_Op_Ne (Loc,
1338
                      Left_Opnd  => New_Occurrence_Of (Var, Loc),
1339
                      Right_Opnd =>
1340
                        Unchecked_Convert_To (
1341
                          Logical,
1342
                          New_Occurrence_Of (Standard_False, Loc))))));
1343
         end if;
1344
      end Check_Fortran_Logical;
1345
 
1346
      -------------------
1347
      -- Is_Legal_Copy --
1348
      -------------------
1349
 
1350
      function Is_Legal_Copy return Boolean is
1351
      begin
1352
         --  An attempt to copy a value of such a type can only occur if
1353
         --  representation clauses give the actual a misaligned address.
1354
 
1355
         if Is_By_Reference_Type (Etype (Formal)) then
1356
            Error_Msg_N
1357
              ("misaligned actual cannot be passed by reference", Actual);
1358
            return False;
1359
 
1360
         --  For users of Starlet, we assume that the specification of by-
1361
         --  reference mechanism is mandatory. This may lead to unaligned
1362
         --  objects but at least for DEC legacy code it is known to work.
1363
         --  The warning will alert users of this code that a problem may
1364
         --  be lurking.
1365
 
1366
         elsif Mechanism (Formal) = By_Reference
1367
           and then Is_Valued_Procedure (Scope (Formal))
1368
         then
1369
            Error_Msg_N
1370
              ("by_reference actual may be misaligned?", Actual);
1371
            return False;
1372
 
1373
         else
1374
            return True;
1375
         end if;
1376
      end Is_Legal_Copy;
1377
 
1378
      --------------
1379
      -- Make_Var --
1380
      --------------
1381
 
1382
      function Make_Var (Actual : Node_Id) return Entity_Id is
1383
         Var : Entity_Id;
1384
 
1385
      begin
1386
         if Is_Entity_Name (Actual) then
1387
            return Entity (Actual);
1388
 
1389
         else
1390
            Var :=
1391
              Make_Defining_Identifier (Loc,
1392
                Chars => New_Internal_Name ('T'));
1393
 
1394
            N_Node :=
1395
              Make_Object_Renaming_Declaration (Loc,
1396
                Defining_Identifier => Var,
1397
                Subtype_Mark        =>
1398
                  New_Occurrence_Of (Etype (Actual), Loc),
1399
                Name                => Relocate_Node (Actual));
1400
 
1401
            Insert_Action (N, N_Node);
1402
            return Var;
1403
         end if;
1404
      end Make_Var;
1405
 
1406
      -------------------------
1407
      -- Reset_Packed_Prefix --
1408
      -------------------------
1409
 
1410
      procedure Reset_Packed_Prefix is
1411
         Pfx : Node_Id := Actual;
1412
      begin
1413
         loop
1414
            Set_Analyzed (Pfx, False);
1415
            exit when
1416
              not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1417
            Pfx := Prefix (Pfx);
1418
         end loop;
1419
      end Reset_Packed_Prefix;
1420
 
1421
   --  Start of processing for Expand_Actuals
1422
 
1423
   begin
1424
      Post_Call := New_List;
1425
 
1426
      Formal := First_Formal (Subp);
1427
      Actual := First_Actual (N);
1428
      while Present (Formal) loop
1429
         E_Formal := Etype (Formal);
1430
 
1431
         if Is_Scalar_Type (E_Formal)
1432
           or else Nkind (Actual) = N_Slice
1433
         then
1434
            Check_Fortran_Logical;
1435
 
1436
         --  RM 6.4.1 (11)
1437
 
1438
         elsif Ekind (Formal) /= E_Out_Parameter then
1439
 
1440
            --  The unusual case of the current instance of a protected type
1441
            --  requires special handling. This can only occur in the context
1442
            --  of a call within the body of a protected operation.
1443
 
1444
            if Is_Entity_Name (Actual)
1445
              and then Ekind (Entity (Actual)) = E_Protected_Type
1446
              and then In_Open_Scopes (Entity (Actual))
1447
            then
1448
               if Scope (Subp) /= Entity (Actual) then
1449
                  Error_Msg_N ("operation outside protected type may not "
1450
                    & "call back its protected operations?", Actual);
1451
               end if;
1452
 
1453
               Rewrite (Actual,
1454
                 Expand_Protected_Object_Reference (N, Entity (Actual)));
1455
            end if;
1456
 
1457
            --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
1458
            --  build-in-place function, then a temporary return object needs
1459
            --  to be created and access to it must be passed to the function.
1460
            --  Currently we limit such functions to those with inherently
1461
            --  limited result subtypes, but eventually we plan to expand the
1462
            --  functions that are treated as build-in-place to include other
1463
            --  composite result types.
1464
 
1465
            if Ada_Version >= Ada_05
1466
              and then Is_Build_In_Place_Function_Call (Actual)
1467
            then
1468
               Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1469
            end if;
1470
 
1471
            Apply_Constraint_Check (Actual, E_Formal);
1472
 
1473
         --  Out parameter case. No constraint checks on access type
1474
         --  RM 6.4.1 (13)
1475
 
1476
         elsif Is_Access_Type (E_Formal) then
1477
            null;
1478
 
1479
         --  RM 6.4.1 (14)
1480
 
1481
         elsif Has_Discriminants (Base_Type (E_Formal))
1482
           or else Has_Non_Null_Base_Init_Proc (E_Formal)
1483
         then
1484
            Apply_Constraint_Check (Actual, E_Formal);
1485
 
1486
         --  RM 6.4.1 (15)
1487
 
1488
         else
1489
            Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1490
         end if;
1491
 
1492
         --  Processing for IN-OUT and OUT parameters
1493
 
1494
         if Ekind (Formal) /= E_In_Parameter then
1495
 
1496
            --  For type conversions of arrays, apply length/range checks
1497
 
1498
            if Is_Array_Type (E_Formal)
1499
              and then Nkind (Actual) = N_Type_Conversion
1500
            then
1501
               if Is_Constrained (E_Formal) then
1502
                  Apply_Length_Check (Expression (Actual), E_Formal);
1503
               else
1504
                  Apply_Range_Check (Expression (Actual), E_Formal);
1505
               end if;
1506
            end if;
1507
 
1508
            --  If argument is a type conversion for a type that is passed
1509
            --  by copy, then we must pass the parameter by copy.
1510
 
1511
            if Nkind (Actual) = N_Type_Conversion
1512
              and then
1513
                (Is_Numeric_Type (E_Formal)
1514
                  or else Is_Access_Type (E_Formal)
1515
                  or else Is_Enumeration_Type (E_Formal)
1516
                  or else Is_Bit_Packed_Array (Etype (Formal))
1517
                  or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1518
 
1519
                  --  Also pass by copy if change of representation
1520
 
1521
                  or else not Same_Representation
1522
                               (Etype (Formal),
1523
                                Etype (Expression (Actual))))
1524
            then
1525
               Add_Call_By_Copy_Code;
1526
 
1527
            --  References to components of bit packed arrays are expanded
1528
            --  at this point, rather than at the point of analysis of the
1529
            --  actuals, to handle the expansion of the assignment to
1530
            --  [in] out parameters.
1531
 
1532
            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1533
               Add_Simple_Call_By_Copy_Code;
1534
 
1535
            --  If a non-scalar actual is possibly bit-aligned, we need a copy
1536
            --  because the back-end cannot cope with such objects. In other
1537
            --  cases where alignment forces a copy, the back-end generates
1538
            --  it properly. It should not be generated unconditionally in the
1539
            --  front-end because it does not know precisely the alignment
1540
            --  requirements of the target, and makes too conservative an
1541
            --  estimate, leading to superfluous copies or spurious errors
1542
            --  on by-reference parameters.
1543
 
1544
            elsif Nkind (Actual) = N_Selected_Component
1545
              and then
1546
                Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1547
              and then not Represented_As_Scalar (Etype (Formal))
1548
            then
1549
               Add_Simple_Call_By_Copy_Code;
1550
 
1551
            --  References to slices of bit packed arrays are expanded
1552
 
1553
            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1554
               Add_Call_By_Copy_Code;
1555
 
1556
            --  References to possibly unaligned slices of arrays are expanded
1557
 
1558
            elsif Is_Possibly_Unaligned_Slice (Actual) then
1559
               Add_Call_By_Copy_Code;
1560
 
1561
            --  Deal with access types where the actual subtype and the
1562
            --  formal subtype are not the same, requiring a check.
1563
 
1564
            --  It is necessary to exclude tagged types because of "downward
1565
            --  conversion" errors.
1566
 
1567
            elsif Is_Access_Type (E_Formal)
1568
              and then not Same_Type (E_Formal, Etype (Actual))
1569
              and then not Is_Tagged_Type (Designated_Type (E_Formal))
1570
            then
1571
               Add_Call_By_Copy_Code;
1572
 
1573
            --  If the actual is not a scalar and is marked for volatile
1574
            --  treatment, whereas the formal is not volatile, then pass
1575
            --  by copy unless it is a by-reference type.
1576
 
1577
            --  Note: we use Is_Volatile here rather than Treat_As_Volatile,
1578
            --  because this is the enforcement of a language rule that applies
1579
            --  only to "real" volatile variables, not e.g. to the address
1580
            --  clause overlay case.
1581
 
1582
            elsif Is_Entity_Name (Actual)
1583
              and then Is_Volatile (Entity (Actual))
1584
              and then not Is_By_Reference_Type (Etype (Actual))
1585
              and then not Is_Scalar_Type (Etype (Entity (Actual)))
1586
              and then not Is_Volatile (E_Formal)
1587
            then
1588
               Add_Call_By_Copy_Code;
1589
 
1590
            elsif Nkind (Actual) = N_Indexed_Component
1591
              and then Is_Entity_Name (Prefix (Actual))
1592
              and then Has_Volatile_Components (Entity (Prefix (Actual)))
1593
            then
1594
               Add_Call_By_Copy_Code;
1595
 
1596
            --  Add call-by-copy code for the case of scalar out parameters
1597
            --  when it is not known at compile time that the subtype of the
1598
            --  formal is a subrange of the subtype of the actual (or vice
1599
            --  versa for in out parameters), in order to get range checks
1600
            --  on such actuals. (Maybe this case should be handled earlier
1601
            --  in the if statement???)
1602
 
1603
            elsif Is_Scalar_Type (E_Formal)
1604
              and then
1605
                (not In_Subrange_Of (E_Formal, Etype (Actual))
1606
                  or else
1607
                    (Ekind (Formal) = E_In_Out_Parameter
1608
                      and then not In_Subrange_Of (Etype (Actual), E_Formal)))
1609
            then
1610
               --  Perhaps the setting back to False should be done within
1611
               --  Add_Call_By_Copy_Code, since it could get set on other
1612
               --  cases occurring above???
1613
 
1614
               if Do_Range_Check (Actual) then
1615
                  Set_Do_Range_Check (Actual, False);
1616
               end if;
1617
 
1618
               Add_Call_By_Copy_Code;
1619
            end if;
1620
 
1621
         --  Processing for IN parameters
1622
 
1623
         else
1624
            --  For IN parameters is in the packed array case, we expand an
1625
            --  indexed component (the circuit in Exp_Ch4 deliberately left
1626
            --  indexed components appearing as actuals untouched, so that
1627
            --  the special processing above for the OUT and IN OUT cases
1628
            --  could be performed. We could make the test in Exp_Ch4 more
1629
            --  complex and have it detect the parameter mode, but it is
1630
            --  easier simply to handle all cases here.)
1631
 
1632
            if Nkind (Actual) = N_Indexed_Component
1633
              and then Is_Packed (Etype (Prefix (Actual)))
1634
            then
1635
               Reset_Packed_Prefix;
1636
               Expand_Packed_Element_Reference (Actual);
1637
 
1638
            --  If we have a reference to a bit packed array, we copy it, since
1639
            --  the actual must be byte aligned.
1640
 
1641
            --  Is this really necessary in all cases???
1642
 
1643
            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1644
               Add_Simple_Call_By_Copy_Code;
1645
 
1646
            --  If a non-scalar actual is possibly unaligned, we need a copy
1647
 
1648
            elsif Is_Possibly_Unaligned_Object (Actual)
1649
              and then not Represented_As_Scalar (Etype (Formal))
1650
            then
1651
               Add_Simple_Call_By_Copy_Code;
1652
 
1653
            --  Similarly, we have to expand slices of packed arrays here
1654
            --  because the result must be byte aligned.
1655
 
1656
            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1657
               Add_Call_By_Copy_Code;
1658
 
1659
            --  Only processing remaining is to pass by copy if this is a
1660
            --  reference to a possibly unaligned slice, since the caller
1661
            --  expects an appropriately aligned argument.
1662
 
1663
            elsif Is_Possibly_Unaligned_Slice (Actual) then
1664
               Add_Call_By_Copy_Code;
1665
            end if;
1666
         end if;
1667
 
1668
         Next_Formal (Formal);
1669
         Next_Actual (Actual);
1670
      end loop;
1671
 
1672
      --  Find right place to put post call stuff if it is present
1673
 
1674
      if not Is_Empty_List (Post_Call) then
1675
 
1676
         --  If call is not a list member, it must be the triggering statement
1677
         --  of a triggering alternative or an entry call alternative, and we
1678
         --  can add the post call stuff to the corresponding statement list.
1679
 
1680
         if not Is_List_Member (N) then
1681
            declare
1682
               P : constant Node_Id := Parent (N);
1683
 
1684
            begin
1685
               pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1686
                                           N_Entry_Call_Alternative));
1687
 
1688
               if Is_Non_Empty_List (Statements (P)) then
1689
                  Insert_List_Before_And_Analyze
1690
                    (First (Statements (P)), Post_Call);
1691
               else
1692
                  Set_Statements (P, Post_Call);
1693
               end if;
1694
            end;
1695
 
1696
         --  Otherwise, normal case where N is in a statement sequence,
1697
         --  just put the post-call stuff after the call statement.
1698
 
1699
         else
1700
            Insert_Actions_After (N, Post_Call);
1701
         end if;
1702
      end if;
1703
 
1704
      --  The call node itself is re-analyzed in Expand_Call
1705
 
1706
   end Expand_Actuals;
1707
 
1708
   -----------------
1709
   -- Expand_Call --
1710
   -----------------
1711
 
1712
   --  This procedure handles expansion of function calls and procedure call
1713
   --  statements (i.e. it serves as the body for Expand_N_Function_Call and
1714
   --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
1715
 
1716
   --    Replace call to Raise_Exception by Raise_Exception_Always if possible
1717
   --    Provide values of actuals for all formals in Extra_Formals list
1718
   --    Replace "call" to enumeration literal function by literal itself
1719
   --    Rewrite call to predefined operator as operator
1720
   --    Replace actuals to in-out parameters that are numeric conversions,
1721
   --     with explicit assignment to temporaries before and after the call.
1722
   --    Remove optional actuals if First_Optional_Parameter specified.
1723
 
1724
   --   Note that the list of actuals has been filled with default expressions
1725
   --   during semantic analysis of the call. Only the extra actuals required
1726
   --   for the 'Constrained attribute and for accessibility checks are added
1727
   --   at this point.
1728
 
1729
   procedure Expand_Call (N : Node_Id) is
1730
      Loc           : constant Source_Ptr := Sloc (N);
1731
      Extra_Actuals : List_Id := No_List;
1732
      Prev          : Node_Id := Empty;
1733
 
1734
      procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1735
      --  Adds one entry to the end of the actual parameter list. Used for
1736
      --  default parameters and for extra actuals (for Extra_Formals). The
1737
      --  argument is an N_Parameter_Association node.
1738
 
1739
      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
1740
      --  Adds an extra actual to the list of extra actuals. Expr is the
1741
      --  expression for the value of the actual, EF is the entity for the
1742
      --  extra formal.
1743
 
1744
      function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1745
      --  Within an instance, a type derived from a non-tagged formal derived
1746
      --  type inherits from the original parent, not from the actual. The
1747
      --  current derivation mechanism has the derived type inherit from the
1748
      --  actual, which is only correct outside of the instance. If the
1749
      --  subprogram is inherited, we test for this particular case through a
1750
      --  convoluted tree traversal before setting the proper subprogram to be
1751
      --  called.
1752
 
1753
      --------------------------
1754
      -- Add_Actual_Parameter --
1755
      --------------------------
1756
 
1757
      procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
1758
         Actual_Expr : constant Node_Id :=
1759
                         Explicit_Actual_Parameter (Insert_Param);
1760
 
1761
      begin
1762
         --  Case of insertion is first named actual
1763
 
1764
         if No (Prev) or else
1765
            Nkind (Parent (Prev)) /= N_Parameter_Association
1766
         then
1767
            Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
1768
            Set_First_Named_Actual (N, Actual_Expr);
1769
 
1770
            if No (Prev) then
1771
               if No (Parameter_Associations (N)) then
1772
                  Set_Parameter_Associations (N, New_List);
1773
                  Append (Insert_Param, Parameter_Associations (N));
1774
               end if;
1775
            else
1776
               Insert_After (Prev, Insert_Param);
1777
            end if;
1778
 
1779
         --  Case of insertion is not first named actual
1780
 
1781
         else
1782
            Set_Next_Named_Actual
1783
              (Insert_Param, Next_Named_Actual (Parent (Prev)));
1784
            Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
1785
            Append (Insert_Param, Parameter_Associations (N));
1786
         end if;
1787
 
1788
         Prev := Actual_Expr;
1789
      end Add_Actual_Parameter;
1790
 
1791
      ----------------------
1792
      -- Add_Extra_Actual --
1793
      ----------------------
1794
 
1795
      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
1796
         Loc : constant Source_Ptr := Sloc (Expr);
1797
 
1798
      begin
1799
         if Extra_Actuals = No_List then
1800
            Extra_Actuals := New_List;
1801
            Set_Parent (Extra_Actuals, N);
1802
         end if;
1803
 
1804
         Append_To (Extra_Actuals,
1805
           Make_Parameter_Association (Loc,
1806
             Explicit_Actual_Parameter => Expr,
1807
             Selector_Name =>
1808
               Make_Identifier (Loc, Chars (EF))));
1809
 
1810
         Analyze_And_Resolve (Expr, Etype (EF));
1811
 
1812
         if Nkind (N) = N_Function_Call then
1813
            Set_Is_Accessibility_Actual (Parent (Expr));
1814
         end if;
1815
      end Add_Extra_Actual;
1816
 
1817
      ---------------------------
1818
      -- Inherited_From_Formal --
1819
      ---------------------------
1820
 
1821
      function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
1822
         Par      : Entity_Id;
1823
         Gen_Par  : Entity_Id;
1824
         Gen_Prim : Elist_Id;
1825
         Elmt     : Elmt_Id;
1826
         Indic    : Node_Id;
1827
 
1828
      begin
1829
         --  If the operation is inherited, it is attached to the corresponding
1830
         --  type derivation. If the parent in the derivation is a generic
1831
         --  actual, it is a subtype of the actual, and we have to recover the
1832
         --  original derived type declaration to find the proper parent.
1833
 
1834
         if Nkind (Parent (S)) /= N_Full_Type_Declaration
1835
           or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
1836
           or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
1837
                                                   N_Derived_Type_Definition
1838
           or else not In_Instance
1839
         then
1840
            return Empty;
1841
 
1842
         else
1843
            Indic :=
1844
              Subtype_Indication
1845
                (Type_Definition (Original_Node (Parent (S))));
1846
 
1847
            if Nkind (Indic) = N_Subtype_Indication then
1848
               Par := Entity (Subtype_Mark (Indic));
1849
            else
1850
               Par := Entity (Indic);
1851
            end if;
1852
         end if;
1853
 
1854
         if not Is_Generic_Actual_Type (Par)
1855
           or else Is_Tagged_Type (Par)
1856
           or else Nkind (Parent (Par)) /= N_Subtype_Declaration
1857
           or else not In_Open_Scopes (Scope (Par))
1858
         then
1859
            return Empty;
1860
         else
1861
            Gen_Par := Generic_Parent_Type (Parent (Par));
1862
         end if;
1863
 
1864
         --  If the actual has no generic parent type, the formal is not
1865
         --  a formal derived type, so nothing to inherit.
1866
 
1867
         if No (Gen_Par) then
1868
            return Empty;
1869
         end if;
1870
 
1871
         --  If the generic parent type is still the generic type, this is a
1872
         --  private formal, not a derived formal, and there are no operations
1873
         --  inherited from the formal.
1874
 
1875
         if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
1876
            return Empty;
1877
         end if;
1878
 
1879
         Gen_Prim := Collect_Primitive_Operations (Gen_Par);
1880
 
1881
         Elmt := First_Elmt (Gen_Prim);
1882
         while Present (Elmt) loop
1883
            if Chars (Node (Elmt)) = Chars (S) then
1884
               declare
1885
                  F1 : Entity_Id;
1886
                  F2 : Entity_Id;
1887
 
1888
               begin
1889
                  F1 := First_Formal (S);
1890
                  F2 := First_Formal (Node (Elmt));
1891
                  while Present (F1)
1892
                    and then Present (F2)
1893
                  loop
1894
                     if Etype (F1) = Etype (F2)
1895
                       or else Etype (F2) = Gen_Par
1896
                     then
1897
                        Next_Formal (F1);
1898
                        Next_Formal (F2);
1899
                     else
1900
                        Next_Elmt (Elmt);
1901
                        exit;   --  not the right subprogram
1902
                     end if;
1903
 
1904
                     return Node (Elmt);
1905
                  end loop;
1906
               end;
1907
 
1908
            else
1909
               Next_Elmt (Elmt);
1910
            end if;
1911
         end loop;
1912
 
1913
         raise Program_Error;
1914
      end Inherited_From_Formal;
1915
 
1916
      --  Local variables
1917
 
1918
      Remote        : constant Boolean := Is_Remote_Call (N);
1919
      Actual        : Node_Id;
1920
      Formal        : Entity_Id;
1921
      Orig_Subp     : Entity_Id := Empty;
1922
      Param_Count   : Natural := 0;
1923
      Parent_Formal : Entity_Id;
1924
      Parent_Subp   : Entity_Id;
1925
      Scop          : Entity_Id;
1926
      Subp          : Entity_Id;
1927
 
1928
      Prev_Orig : Node_Id;
1929
      --  Original node for an actual, which may have been rewritten. If the
1930
      --  actual is a function call that has been transformed from a selected
1931
      --  component, the original node is unanalyzed. Otherwise, it carries
1932
      --  semantic information used to generate additional actuals.
1933
 
1934
      CW_Interface_Formals_Present : Boolean := False;
1935
 
1936
   --  Start of processing for Expand_Call
1937
 
1938
   begin
1939
      --  Ignore if previous error
1940
 
1941
      if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1942
         return;
1943
      end if;
1944
 
1945
      --  Call using access to subprogram with explicit dereference
1946
 
1947
      if Nkind (Name (N)) = N_Explicit_Dereference then
1948
         Subp        := Etype (Name (N));
1949
         Parent_Subp := Empty;
1950
 
1951
      --  Case of call to simple entry, where the Name is a selected component
1952
      --  whose prefix is the task, and whose selector name is the entry name
1953
 
1954
      elsif Nkind (Name (N)) = N_Selected_Component then
1955
         Subp        := Entity (Selector_Name (Name (N)));
1956
         Parent_Subp := Empty;
1957
 
1958
      --  Case of call to member of entry family, where Name is an indexed
1959
      --  component, with the prefix being a selected component giving the
1960
      --  task and entry family name, and the index being the entry index.
1961
 
1962
      elsif Nkind (Name (N)) = N_Indexed_Component then
1963
         Subp        := Entity (Selector_Name (Prefix (Name (N))));
1964
         Parent_Subp := Empty;
1965
 
1966
      --  Normal case
1967
 
1968
      else
1969
         Subp        := Entity (Name (N));
1970
         Parent_Subp := Alias (Subp);
1971
 
1972
         --  Replace call to Raise_Exception by call to Raise_Exception_Always
1973
         --  if we can tell that the first parameter cannot possibly be null.
1974
         --  This improves efficiency by avoiding a run-time test.
1975
 
1976
         --  We do not do this if Raise_Exception_Always does not exist, which
1977
         --  can happen in configurable run time profiles which provide only a
1978
         --  Raise_Exception.
1979
 
1980
         if Is_RTE (Subp, RE_Raise_Exception)
1981
           and then RTE_Available (RE_Raise_Exception_Always)
1982
         then
1983
            declare
1984
               FA : constant Node_Id := Original_Node (First_Actual (N));
1985
 
1986
            begin
1987
               --  The case we catch is where the first argument is obtained
1988
               --  using the Identity attribute (which must always be
1989
               --  non-null).
1990
 
1991
               if Nkind (FA) = N_Attribute_Reference
1992
                 and then Attribute_Name (FA) = Name_Identity
1993
               then
1994
                  Subp := RTE (RE_Raise_Exception_Always);
1995
                  Set_Name (N, New_Occurrence_Of (Subp, Loc));
1996
               end if;
1997
            end;
1998
         end if;
1999
 
2000
         if Ekind (Subp) = E_Entry then
2001
            Parent_Subp := Empty;
2002
         end if;
2003
      end if;
2004
 
2005
      --  Ada 2005 (AI-345): We have a procedure call as a triggering
2006
      --  alternative in an asynchronous select or as an entry call in
2007
      --  a conditional or timed select. Check whether the procedure call
2008
      --  is a renaming of an entry and rewrite it as an entry call.
2009
 
2010
      if Ada_Version >= Ada_05
2011
        and then Nkind (N) = N_Procedure_Call_Statement
2012
        and then
2013
           ((Nkind (Parent (N)) = N_Triggering_Alternative
2014
               and then Triggering_Statement (Parent (N)) = N)
2015
          or else
2016
            (Nkind (Parent (N)) = N_Entry_Call_Alternative
2017
               and then Entry_Call_Statement (Parent (N)) = N))
2018
      then
2019
         declare
2020
            Ren_Decl : Node_Id;
2021
            Ren_Root : Entity_Id := Subp;
2022
 
2023
         begin
2024
            --  This may be a chain of renamings, find the root
2025
 
2026
            if Present (Alias (Ren_Root)) then
2027
               Ren_Root := Alias (Ren_Root);
2028
            end if;
2029
 
2030
            if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2031
               Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2032
 
2033
               if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2034
                  Rewrite (N,
2035
                    Make_Entry_Call_Statement (Loc,
2036
                      Name =>
2037
                        New_Copy_Tree (Name (Ren_Decl)),
2038
                      Parameter_Associations =>
2039
                        New_Copy_List_Tree (Parameter_Associations (N))));
2040
 
2041
                  return;
2042
               end if;
2043
            end if;
2044
         end;
2045
      end if;
2046
 
2047
      --  First step, compute extra actuals, corresponding to any Extra_Formals
2048
      --  present. Note that we do not access Extra_Formals directly, instead
2049
      --  we simply note the presence of the extra formals as we process the
2050
      --  regular formals collecting corresponding actuals in Extra_Actuals.
2051
 
2052
      --  We also generate any required range checks for actuals for in formals
2053
      --  as we go through the loop, since this is a convenient place to do it.
2054
      --  (Though it seems that this would be better done in Expand_Actuals???)
2055
 
2056
      Formal      := First_Formal (Subp);
2057
      Actual      := First_Actual (N);
2058
      Param_Count := 1;
2059
      while Present (Formal) loop
2060
 
2061
         --  Generate range check if required
2062
 
2063
         if Do_Range_Check (Actual)
2064
           and then Ekind (Formal) = E_In_Parameter
2065
         then
2066
            Set_Do_Range_Check (Actual, False);
2067
            Generate_Range_Check
2068
              (Actual, Etype (Formal), CE_Range_Check_Failed);
2069
         end if;
2070
 
2071
         --  Prepare to examine current entry
2072
 
2073
         Prev := Actual;
2074
         Prev_Orig := Original_Node (Prev);
2075
 
2076
         --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
2077
         --  to expand it in a further round.
2078
 
2079
         CW_Interface_Formals_Present :=
2080
           CW_Interface_Formals_Present
2081
             or else
2082
               (Ekind (Etype (Formal)) = E_Class_Wide_Type
2083
                  and then Is_Interface (Etype (Etype (Formal))))
2084
             or else
2085
               (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2086
                 and then Is_Interface (Directly_Designated_Type
2087
                                         (Etype (Etype (Formal)))));
2088
 
2089
         --  Create possible extra actual for constrained case. Usually, the
2090
         --  extra actual is of the form actual'constrained, but since this
2091
         --  attribute is only available for unconstrained records, TRUE is
2092
         --  expanded if the type of the formal happens to be constrained (for
2093
         --  instance when this procedure is inherited from an unconstrained
2094
         --  record to a constrained one) or if the actual has no discriminant
2095
         --  (its type is constrained). An exception to this is the case of a
2096
         --  private type without discriminants. In this case we pass FALSE
2097
         --  because the object has underlying discriminants with defaults.
2098
 
2099
         if Present (Extra_Constrained (Formal)) then
2100
            if Ekind (Etype (Prev)) in Private_Kind
2101
              and then not Has_Discriminants (Base_Type (Etype (Prev)))
2102
            then
2103
               Add_Extra_Actual
2104
                 (New_Occurrence_Of (Standard_False, Loc),
2105
                  Extra_Constrained (Formal));
2106
 
2107
            elsif Is_Constrained (Etype (Formal))
2108
              or else not Has_Discriminants (Etype (Prev))
2109
            then
2110
               Add_Extra_Actual
2111
                 (New_Occurrence_Of (Standard_True, Loc),
2112
                  Extra_Constrained (Formal));
2113
 
2114
            --  Do not produce extra actuals for Unchecked_Union parameters.
2115
            --  Jump directly to the end of the loop.
2116
 
2117
            elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2118
               goto Skip_Extra_Actual_Generation;
2119
 
2120
            else
2121
               --  If the actual is a type conversion, then the constrained
2122
               --  test applies to the actual, not the target type.
2123
 
2124
               declare
2125
                  Act_Prev : Node_Id;
2126
 
2127
               begin
2128
                  --  Test for unchecked conversions as well, which can occur
2129
                  --  as out parameter actuals on calls to stream procedures.
2130
 
2131
                  Act_Prev := Prev;
2132
                  while Nkind_In (Act_Prev, N_Type_Conversion,
2133
                                            N_Unchecked_Type_Conversion)
2134
                  loop
2135
                     Act_Prev := Expression (Act_Prev);
2136
                  end loop;
2137
 
2138
                  --  If the expression is a conversion of a dereference, this
2139
                  --  is internally generated code that manipulates addresses,
2140
                  --  e.g. when building interface tables. No check should
2141
                  --  occur in this case, and the discriminated object is not
2142
                  --  directly a hand.
2143
 
2144
                  if not Comes_From_Source (Actual)
2145
                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
2146
                    and then Nkind (Act_Prev) = N_Explicit_Dereference
2147
                  then
2148
                     Add_Extra_Actual
2149
                       (New_Occurrence_Of (Standard_False, Loc),
2150
                        Extra_Constrained (Formal));
2151
 
2152
                  else
2153
                     Add_Extra_Actual
2154
                       (Make_Attribute_Reference (Sloc (Prev),
2155
                        Prefix =>
2156
                          Duplicate_Subexpr_No_Checks
2157
                            (Act_Prev, Name_Req => True),
2158
                        Attribute_Name => Name_Constrained),
2159
                        Extra_Constrained (Formal));
2160
                  end if;
2161
               end;
2162
            end if;
2163
         end if;
2164
 
2165
         --  Create possible extra actual for accessibility level
2166
 
2167
         if Present (Extra_Accessibility (Formal)) then
2168
 
2169
            --  Ada 2005 (AI-252): If the actual was rewritten as an Access
2170
            --  attribute, then the original actual may be an aliased object
2171
            --  occurring as the prefix in a call using "Object.Operation"
2172
            --  notation. In that case we must pass the level of the object,
2173
            --  so Prev_Orig is reset to Prev and the attribute will be
2174
            --  processed by the code for Access attributes further below.
2175
 
2176
            if Prev_Orig /= Prev
2177
              and then Nkind (Prev) = N_Attribute_Reference
2178
              and then
2179
                Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2180
              and then Is_Aliased_View (Prev_Orig)
2181
            then
2182
               Prev_Orig := Prev;
2183
            end if;
2184
 
2185
            --  Ada 2005 (AI-251): Thunks must propagate the extra actuals
2186
            --  of accessibility levels.
2187
 
2188
            if Ekind (Current_Scope) in Subprogram_Kind
2189
              and then Is_Thunk (Current_Scope)
2190
            then
2191
               declare
2192
                  Parm_Ent : Entity_Id;
2193
 
2194
               begin
2195
                  if Is_Controlling_Actual (Actual) then
2196
 
2197
                     --  Find the corresponding actual of the thunk
2198
 
2199
                     Parm_Ent := First_Entity (Current_Scope);
2200
                     for J in 2 .. Param_Count loop
2201
                        Next_Entity (Parm_Ent);
2202
                     end loop;
2203
 
2204
                  else pragma Assert (Is_Entity_Name (Actual));
2205
                     Parm_Ent := Entity (Actual);
2206
                  end if;
2207
 
2208
                  Add_Extra_Actual
2209
                    (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2210
                     Extra_Accessibility (Formal));
2211
               end;
2212
 
2213
            elsif Is_Entity_Name (Prev_Orig) then
2214
 
2215
               --  When passing an access parameter, or a renaming of an access
2216
               --  parameter, as the actual to another access parameter we need
2217
               --  to pass along the actual's own access level parameter. This
2218
               --  is done if we are within the scope of the formal access
2219
               --  parameter (if this is an inlined body the extra formal is
2220
               --  irrelevant).
2221
 
2222
               if (Is_Formal (Entity (Prev_Orig))
2223
                    or else
2224
                      (Present (Renamed_Object (Entity (Prev_Orig)))
2225
                        and then
2226
                          Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2227
                        and then
2228
                          Is_Formal
2229
                            (Entity (Renamed_Object (Entity (Prev_Orig))))))
2230
                 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2231
                 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2232
               then
2233
                  declare
2234
                     Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2235
 
2236
                  begin
2237
                     pragma Assert (Present (Parm_Ent));
2238
 
2239
                     if Present (Extra_Accessibility (Parm_Ent)) then
2240
                        Add_Extra_Actual
2241
                          (New_Occurrence_Of
2242
                             (Extra_Accessibility (Parm_Ent), Loc),
2243
                           Extra_Accessibility (Formal));
2244
 
2245
                     --  If the actual access parameter does not have an
2246
                     --  associated extra formal providing its scope level,
2247
                     --  then treat the actual as having library-level
2248
                     --  accessibility.
2249
 
2250
                     else
2251
                        Add_Extra_Actual
2252
                          (Make_Integer_Literal (Loc,
2253
                             Intval => Scope_Depth (Standard_Standard)),
2254
                           Extra_Accessibility (Formal));
2255
                     end if;
2256
                  end;
2257
 
2258
               --  The actual is a normal access value, so just pass the level
2259
               --  of the actual's access type.
2260
 
2261
               else
2262
                  Add_Extra_Actual
2263
                    (Make_Integer_Literal (Loc,
2264
                       Intval => Type_Access_Level (Etype (Prev_Orig))),
2265
                     Extra_Accessibility (Formal));
2266
               end if;
2267
 
2268
            --  If the actual is an access discriminant, then pass the level
2269
            --  of the enclosing object (RM05-3.10.2(12.4/2)).
2270
 
2271
            elsif Nkind (Prev_Orig) = N_Selected_Component
2272
              and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2273
                                                       E_Discriminant
2274
              and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2275
                                                       E_Anonymous_Access_Type
2276
            then
2277
               Add_Extra_Actual
2278
                 (Make_Integer_Literal (Loc,
2279
                    Intval => Object_Access_Level (Prefix (Prev_Orig))),
2280
                  Extra_Accessibility (Formal));
2281
 
2282
            --  All other cases
2283
 
2284
            else
2285
               case Nkind (Prev_Orig) is
2286
 
2287
                  when N_Attribute_Reference =>
2288
                     case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2289
 
2290
                        --  For X'Access, pass on the level of the prefix X
2291
 
2292
                        when Attribute_Access =>
2293
                           Add_Extra_Actual
2294
                             (Make_Integer_Literal (Loc,
2295
                               Intval =>
2296
                                 Object_Access_Level
2297
                                   (Prefix (Prev_Orig))),
2298
                                    Extra_Accessibility (Formal));
2299
 
2300
                        --  Treat the unchecked attributes as library-level
2301
 
2302
                        when Attribute_Unchecked_Access |
2303
                           Attribute_Unrestricted_Access =>
2304
                           Add_Extra_Actual
2305
                             (Make_Integer_Literal (Loc,
2306
                                Intval => Scope_Depth (Standard_Standard)),
2307
                              Extra_Accessibility (Formal));
2308
 
2309
                        --  No other cases of attributes returning access
2310
                        --  values that can be passed to access parameters
2311
 
2312
                        when others =>
2313
                           raise Program_Error;
2314
 
2315
                     end case;
2316
 
2317
                  --  For allocators we pass the level of the execution of the
2318
                  --  called subprogram, which is one greater than the current
2319
                  --  scope level.
2320
 
2321
                  when N_Allocator =>
2322
                     Add_Extra_Actual
2323
                       (Make_Integer_Literal (Loc,
2324
                          Intval => Scope_Depth (Current_Scope) + 1),
2325
                        Extra_Accessibility (Formal));
2326
 
2327
                  --  For other cases we simply pass the level of the actual's
2328
                  --  access type. The type is retrieved from Prev rather than
2329
                  --  Prev_Orig, because in some cases Prev_Orig denotes an
2330
                  --  original expression that has not been analyzed.
2331
 
2332
                  when others =>
2333
                     Add_Extra_Actual
2334
                       (Make_Integer_Literal (Loc,
2335
                          Intval => Type_Access_Level (Etype (Prev))),
2336
                        Extra_Accessibility (Formal));
2337
               end case;
2338
            end if;
2339
         end if;
2340
 
2341
         --  Perform the check of 4.6(49) that prevents a null value from being
2342
         --  passed as an actual to an access parameter. Note that the check is
2343
         --  elided in the common cases of passing an access attribute or
2344
         --  access parameter as an actual. Also, we currently don't enforce
2345
         --  this check for expander-generated actuals and when -gnatdj is set.
2346
 
2347
         if Ada_Version >= Ada_05 then
2348
 
2349
            --  Ada 2005 (AI-231): Check null-excluding access types
2350
 
2351
            if Is_Access_Type (Etype (Formal))
2352
              and then Can_Never_Be_Null (Etype (Formal))
2353
              and then Nkind (Prev) /= N_Raise_Constraint_Error
2354
              and then (Known_Null (Prev)
2355
                          or else not Can_Never_Be_Null (Etype (Prev)))
2356
            then
2357
               Install_Null_Excluding_Check (Prev);
2358
            end if;
2359
 
2360
         --  Ada_Version < Ada_05
2361
 
2362
         else
2363
            if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
2364
              or else Access_Checks_Suppressed (Subp)
2365
            then
2366
               null;
2367
 
2368
            elsif Debug_Flag_J then
2369
               null;
2370
 
2371
            elsif not Comes_From_Source (Prev) then
2372
               null;
2373
 
2374
            elsif Is_Entity_Name (Prev)
2375
              and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
2376
            then
2377
               null;
2378
 
2379
            elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2380
               null;
2381
 
2382
            --  Suppress null checks when passing to access parameters of Java
2383
            --  and CIL subprograms. (Should this be done for other foreign
2384
            --  conventions as well ???)
2385
 
2386
            elsif Convention (Subp) = Convention_Java
2387
              or else Convention (Subp) = Convention_CIL
2388
            then
2389
               null;
2390
 
2391
            else
2392
               Install_Null_Excluding_Check (Prev);
2393
            end if;
2394
         end if;
2395
 
2396
         --  Perform appropriate validity checks on parameters that
2397
         --  are entities.
2398
 
2399
         if Validity_Checks_On then
2400
            if  (Ekind (Formal) = E_In_Parameter
2401
                   and then Validity_Check_In_Params)
2402
              or else
2403
                (Ekind (Formal) = E_In_Out_Parameter
2404
                   and then Validity_Check_In_Out_Params)
2405
            then
2406
               --  If the actual is an indexed component of a packed type (or
2407
               --  is an indexed or selected component whose prefix recursively
2408
               --  meets this condition), it has not been expanded yet. It will
2409
               --  be copied in the validity code that follows, and has to be
2410
               --  expanded appropriately, so reanalyze it.
2411
 
2412
               --  What we do is just to unset analyzed bits on prefixes till
2413
               --  we reach something that does not have a prefix.
2414
 
2415
               declare
2416
                  Nod : Node_Id;
2417
 
2418
               begin
2419
                  Nod := Actual;
2420
                  while Nkind_In (Nod, N_Indexed_Component,
2421
                                       N_Selected_Component)
2422
                  loop
2423
                     Set_Analyzed (Nod, False);
2424
                     Nod := Prefix (Nod);
2425
                  end loop;
2426
               end;
2427
 
2428
               Ensure_Valid (Actual);
2429
            end if;
2430
         end if;
2431
 
2432
         --  For IN OUT and OUT parameters, ensure that subscripts are valid
2433
         --  since this is a left side reference. We only do this for calls
2434
         --  from the source program since we assume that compiler generated
2435
         --  calls explicitly generate any required checks. We also need it
2436
         --  only if we are doing standard validity checks, since clearly it
2437
         --  is not needed if validity checks are off, and in subscript
2438
         --  validity checking mode, all indexed components are checked with
2439
         --  a call directly from Expand_N_Indexed_Component.
2440
 
2441
         if Comes_From_Source (N)
2442
           and then Ekind (Formal) /= E_In_Parameter
2443
           and then Validity_Checks_On
2444
           and then Validity_Check_Default
2445
           and then not Validity_Check_Subscripts
2446
         then
2447
            Check_Valid_Lvalue_Subscripts (Actual);
2448
         end if;
2449
 
2450
         --  Mark any scalar OUT parameter that is a simple variable as no
2451
         --  longer known to be valid (unless the type is always valid). This
2452
         --  reflects the fact that if an OUT parameter is never set in a
2453
         --  procedure, then it can become invalid on the procedure return.
2454
 
2455
         if Ekind (Formal) = E_Out_Parameter
2456
           and then Is_Entity_Name (Actual)
2457
           and then Ekind (Entity (Actual)) = E_Variable
2458
           and then not Is_Known_Valid (Etype (Actual))
2459
         then
2460
            Set_Is_Known_Valid (Entity (Actual), False);
2461
         end if;
2462
 
2463
         --  For an OUT or IN OUT parameter, if the actual is an entity, then
2464
         --  clear current values, since they can be clobbered. We are probably
2465
         --  doing this in more places than we need to, but better safe than
2466
         --  sorry when it comes to retaining bad current values!
2467
 
2468
         if Ekind (Formal) /= E_In_Parameter
2469
           and then Is_Entity_Name (Actual)
2470
           and then Present (Entity (Actual))
2471
         then
2472
            declare
2473
               Ent : constant Entity_Id := Entity (Actual);
2474
               Sav : Node_Id;
2475
 
2476
            begin
2477
               --  For an OUT or IN OUT parameter that is an assignable entity,
2478
               --  we do not want to clobber the Last_Assignment field, since
2479
               --  if it is set, it was precisely because it is indeed an OUT
2480
               --  or IN OUT parameter! We do reset the Is_Known_Valid flag
2481
               --  since the subprogram could have returned in invalid value.
2482
 
2483
               if (Ekind (Formal) = E_Out_Parameter
2484
                     or else
2485
                   Ekind (Formal) = E_In_Out_Parameter)
2486
                 and then Is_Assignable (Ent)
2487
               then
2488
                  Sav := Last_Assignment (Ent);
2489
                  Kill_Current_Values (Ent);
2490
                  Set_Last_Assignment (Ent, Sav);
2491
                  Set_Is_Known_Valid (Ent, False);
2492
 
2493
                  --  For all other cases, just kill the current values
2494
 
2495
               else
2496
                  Kill_Current_Values (Ent);
2497
               end if;
2498
            end;
2499
         end if;
2500
 
2501
         --  If the formal is class wide and the actual is an aggregate, force
2502
         --  evaluation so that the back end who does not know about class-wide
2503
         --  type, does not generate a temporary of the wrong size.
2504
 
2505
         if not Is_Class_Wide_Type (Etype (Formal)) then
2506
            null;
2507
 
2508
         elsif Nkind (Actual) = N_Aggregate
2509
           or else (Nkind (Actual) = N_Qualified_Expression
2510
                     and then Nkind (Expression (Actual)) = N_Aggregate)
2511
         then
2512
            Force_Evaluation (Actual);
2513
         end if;
2514
 
2515
         --  In a remote call, if the formal is of a class-wide type, check
2516
         --  that the actual meets the requirements described in E.4(18).
2517
 
2518
         if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
2519
            Insert_Action (Actual,
2520
              Make_Transportable_Check (Loc,
2521
                Duplicate_Subexpr_Move_Checks (Actual)));
2522
         end if;
2523
 
2524
         --  This label is required when skipping extra actual generation for
2525
         --  Unchecked_Union parameters.
2526
 
2527
         <<Skip_Extra_Actual_Generation>>
2528
 
2529
         Param_Count := Param_Count + 1;
2530
         Next_Actual (Actual);
2531
         Next_Formal (Formal);
2532
      end loop;
2533
 
2534
      --  If we are expanding a rhs of an assignment we need to check if tag
2535
      --  propagation is needed. You might expect this processing to be in
2536
      --  Analyze_Assignment but has to be done earlier (bottom-up) because the
2537
      --  assignment might be transformed to a declaration for an unconstrained
2538
      --  value if the expression is classwide.
2539
 
2540
      if Nkind (N) = N_Function_Call
2541
        and then Is_Tag_Indeterminate (N)
2542
        and then Is_Entity_Name (Name (N))
2543
      then
2544
         declare
2545
            Ass : Node_Id := Empty;
2546
 
2547
         begin
2548
            if Nkind (Parent (N)) = N_Assignment_Statement then
2549
               Ass := Parent (N);
2550
 
2551
            elsif Nkind (Parent (N)) = N_Qualified_Expression
2552
              and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2553
            then
2554
               Ass := Parent (Parent (N));
2555
 
2556
            elsif Nkind (Parent (N)) = N_Explicit_Dereference
2557
              and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2558
            then
2559
               Ass := Parent (Parent (N));
2560
            end if;
2561
 
2562
            if Present (Ass)
2563
              and then Is_Class_Wide_Type (Etype (Name (Ass)))
2564
            then
2565
               if Is_Access_Type (Etype (N)) then
2566
                  if Designated_Type (Etype (N)) /=
2567
                    Root_Type (Etype (Name (Ass)))
2568
                  then
2569
                     Error_Msg_NE
2570
                       ("tag-indeterminate expression "
2571
                         & " must have designated type& (RM 5.2 (6))",
2572
                           N, Root_Type (Etype (Name (Ass))));
2573
                  else
2574
                     Propagate_Tag (Name (Ass), N);
2575
                  end if;
2576
 
2577
               elsif Etype (N) /= Root_Type (Etype (Name (Ass))) then
2578
                  Error_Msg_NE
2579
                    ("tag-indeterminate expression must have type&"
2580
                     & "(RM 5.2 (6))", N, Root_Type (Etype (Name (Ass))));
2581
 
2582
               else
2583
                  Propagate_Tag (Name (Ass), N);
2584
               end if;
2585
 
2586
               --  The call will be rewritten as a dispatching call, and
2587
               --  expanded as such.
2588
 
2589
               return;
2590
            end if;
2591
         end;
2592
      end if;
2593
 
2594
      --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
2595
      --  it to point to the correct secondary virtual table
2596
 
2597
      if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement)
2598
        and then CW_Interface_Formals_Present
2599
      then
2600
         Expand_Interface_Actuals (N);
2601
      end if;
2602
 
2603
      --  Deals with Dispatch_Call if we still have a call, before expanding
2604
      --  extra actuals since this will be done on the re-analysis of the
2605
      --  dispatching call. Note that we do not try to shorten the actual
2606
      --  list for a dispatching call, it would not make sense to do so.
2607
      --  Expansion of dispatching calls is suppressed when VM_Target, because
2608
      --  the VM back-ends directly handle the generation of dispatching
2609
      --  calls and would have to undo any expansion to an indirect call.
2610
 
2611
      if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement)
2612
        and then Present (Controlling_Argument (N))
2613
      then
2614
         if Tagged_Type_Expansion then
2615
            Expand_Dispatching_Call (N);
2616
 
2617
            --  The following return is worrisome. Is it really OK to
2618
            --  skip all remaining processing in this procedure ???
2619
 
2620
            return;
2621
 
2622
         else
2623
            Apply_Tag_Checks (N);
2624
 
2625
            --  Expansion of a dispatching call results in an indirect call,
2626
            --  which in turn causes current values to be killed (see
2627
            --  Resolve_Call), so on VM targets we do the call here to ensure
2628
            --  consistent warnings between VM and non-VM targets.
2629
 
2630
            Kill_Current_Values;
2631
         end if;
2632
      end if;
2633
 
2634
      --  Similarly, expand calls to RCI subprograms on which pragma
2635
      --  All_Calls_Remote applies. The rewriting will be reanalyzed
2636
      --  later. Do this only when the call comes from source since we do
2637
      --  not want such a rewriting to occur in expanded code.
2638
 
2639
      if Is_All_Remote_Call (N) then
2640
         Expand_All_Calls_Remote_Subprogram_Call (N);
2641
 
2642
      --  Similarly, do not add extra actuals for an entry call whose entity
2643
      --  is a protected procedure, or for an internal protected subprogram
2644
      --  call, because it will be rewritten as a protected subprogram call
2645
      --  and reanalyzed (see Expand_Protected_Subprogram_Call).
2646
 
2647
      elsif Is_Protected_Type (Scope (Subp))
2648
         and then (Ekind (Subp) = E_Procedure
2649
                    or else Ekind (Subp) = E_Function)
2650
      then
2651
         null;
2652
 
2653
      --  During that loop we gathered the extra actuals (the ones that
2654
      --  correspond to Extra_Formals), so now they can be appended.
2655
 
2656
      else
2657
         while Is_Non_Empty_List (Extra_Actuals) loop
2658
            Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2659
         end loop;
2660
      end if;
2661
 
2662
      --  At this point we have all the actuals, so this is the point at
2663
      --  which the various expansion activities for actuals is carried out.
2664
 
2665
      Expand_Actuals (N, Subp);
2666
 
2667
      --  If the subprogram is a renaming, or if it is inherited, replace it
2668
      --  in the call with the name of the actual subprogram being called.
2669
      --  If this is a dispatching call, the run-time decides what to call.
2670
      --  The Alias attribute does not apply to entries.
2671
 
2672
      if Nkind (N) /= N_Entry_Call_Statement
2673
        and then No (Controlling_Argument (N))
2674
        and then Present (Parent_Subp)
2675
      then
2676
         if Present (Inherited_From_Formal (Subp)) then
2677
            Parent_Subp := Inherited_From_Formal (Subp);
2678
         else
2679
            while Present (Alias (Parent_Subp)) loop
2680
               Parent_Subp := Alias (Parent_Subp);
2681
            end loop;
2682
         end if;
2683
 
2684
         --  The below setting of Entity is suspect, see F109-018 discussion???
2685
 
2686
         Set_Entity (Name (N), Parent_Subp);
2687
 
2688
         if Is_Abstract_Subprogram (Parent_Subp)
2689
           and then not In_Instance
2690
         then
2691
            Error_Msg_NE
2692
              ("cannot call abstract subprogram &!", Name (N), Parent_Subp);
2693
         end if;
2694
 
2695
         --  Inspect all formals of derived subprogram Subp. Compare parameter
2696
         --  types with the parent subprogram and check whether an actual may
2697
         --  need a type conversion to the corresponding formal of the parent
2698
         --  subprogram.
2699
 
2700
         --  Not clear whether intrinsic subprograms need such conversions. ???
2701
 
2702
         if not Is_Intrinsic_Subprogram (Parent_Subp)
2703
           or else Is_Generic_Instance (Parent_Subp)
2704
         then
2705
            declare
2706
               procedure Convert (Act : Node_Id; Typ : Entity_Id);
2707
               --  Rewrite node Act as a type conversion of Act to Typ. Analyze
2708
               --  and resolve the newly generated construct.
2709
 
2710
               -------------
2711
               -- Convert --
2712
               -------------
2713
 
2714
               procedure Convert (Act : Node_Id; Typ : Entity_Id) is
2715
               begin
2716
                  Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
2717
                  Analyze (Act);
2718
                  Resolve (Act, Typ);
2719
               end Convert;
2720
 
2721
               --  Local variables
2722
 
2723
               Actual_Typ : Entity_Id;
2724
               Formal_Typ : Entity_Id;
2725
               Parent_Typ : Entity_Id;
2726
 
2727
            begin
2728
               Actual := First_Actual (N);
2729
               Formal := First_Formal (Subp);
2730
               Parent_Formal := First_Formal (Parent_Subp);
2731
               while Present (Formal) loop
2732
                  Actual_Typ := Etype (Actual);
2733
                  Formal_Typ := Etype (Formal);
2734
                  Parent_Typ := Etype (Parent_Formal);
2735
 
2736
                  --  For an IN parameter of a scalar type, the parent formal
2737
                  --  type and derived formal type differ or the parent formal
2738
                  --  type and actual type do not match statically.
2739
 
2740
                  if Is_Scalar_Type (Formal_Typ)
2741
                    and then Ekind (Formal) = E_In_Parameter
2742
                    and then Formal_Typ /= Parent_Typ
2743
                    and then
2744
                      not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
2745
                    and then not Raises_Constraint_Error (Actual)
2746
                  then
2747
                     Convert (Actual, Parent_Typ);
2748
                     Enable_Range_Check (Actual);
2749
 
2750
                     --  If the actual has been marked as requiring a range
2751
                     --  check, then generate it here.
2752
 
2753
                     if Do_Range_Check (Actual) then
2754
                        Set_Do_Range_Check (Actual, False);
2755
                        Generate_Range_Check
2756
                          (Actual, Etype (Formal), CE_Range_Check_Failed);
2757
                     end if;
2758
 
2759
                  --  For access types, the parent formal type and actual type
2760
                  --  differ.
2761
 
2762
                  elsif Is_Access_Type (Formal_Typ)
2763
                    and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
2764
                  then
2765
                     if Ekind (Formal) /= E_In_Parameter then
2766
                        Convert (Actual, Parent_Typ);
2767
 
2768
                     elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
2769
                       and then Designated_Type (Parent_Typ) /=
2770
                                Designated_Type (Actual_Typ)
2771
                       and then not Is_Controlling_Formal (Formal)
2772
                     then
2773
                        --  This unchecked conversion is not necessary unless
2774
                        --  inlining is enabled, because in that case the type
2775
                        --  mismatch may become visible in the body about to be
2776
                        --  inlined.
2777
 
2778
                        Rewrite (Actual,
2779
                          Unchecked_Convert_To (Parent_Typ,
2780
                            Relocate_Node (Actual)));
2781
 
2782
                        --  If the relocated node is a function call then it
2783
                        --  can be part of the expansion of the predefined
2784
                        --  equality operator of a tagged type and we may
2785
                        --  need to adjust its SCIL dispatching node.
2786
 
2787
                        if Generate_SCIL
2788
                          and then Nkind (Actual) /= N_Null
2789
                          and then Nkind (Expression (Actual))
2790
                                     = N_Function_Call
2791
                        then
2792
                           Adjust_SCIL_Node (Actual, Expression (Actual));
2793
                        end if;
2794
 
2795
                        Analyze (Actual);
2796
                        Resolve (Actual, Parent_Typ);
2797
                     end if;
2798
 
2799
                  --  For array and record types, the parent formal type and
2800
                  --  derived formal type have different sizes or pragma Pack
2801
                  --  status.
2802
 
2803
                  elsif ((Is_Array_Type (Formal_Typ)
2804
                            and then Is_Array_Type (Parent_Typ))
2805
                       or else
2806
                         (Is_Record_Type (Formal_Typ)
2807
                            and then Is_Record_Type (Parent_Typ)))
2808
                    and then
2809
                      (Esize (Formal_Typ) /= Esize (Parent_Typ)
2810
                         or else Has_Pragma_Pack (Formal_Typ) /=
2811
                                 Has_Pragma_Pack (Parent_Typ))
2812
                  then
2813
                     Convert (Actual, Parent_Typ);
2814
                  end if;
2815
 
2816
                  Next_Actual (Actual);
2817
                  Next_Formal (Formal);
2818
                  Next_Formal (Parent_Formal);
2819
               end loop;
2820
            end;
2821
         end if;
2822
 
2823
         Orig_Subp := Subp;
2824
         Subp := Parent_Subp;
2825
      end if;
2826
 
2827
      --  Check for violation of No_Abort_Statements
2828
 
2829
      if Is_RTE (Subp, RE_Abort_Task) then
2830
         Check_Restriction (No_Abort_Statements, N);
2831
 
2832
      --  Check for violation of No_Dynamic_Attachment
2833
 
2834
      elsif RTU_Loaded (Ada_Interrupts)
2835
        and then (Is_RTE (Subp, RE_Is_Reserved)      or else
2836
                  Is_RTE (Subp, RE_Is_Attached)      or else
2837
                  Is_RTE (Subp, RE_Current_Handler)  or else
2838
                  Is_RTE (Subp, RE_Attach_Handler)   or else
2839
                  Is_RTE (Subp, RE_Exchange_Handler) or else
2840
                  Is_RTE (Subp, RE_Detach_Handler)   or else
2841
                  Is_RTE (Subp, RE_Reference))
2842
      then
2843
         Check_Restriction (No_Dynamic_Attachment, N);
2844
      end if;
2845
 
2846
      --  Deal with case where call is an explicit dereference
2847
 
2848
      if Nkind (Name (N)) = N_Explicit_Dereference then
2849
 
2850
      --  Handle case of access to protected subprogram type
2851
 
2852
         if Is_Access_Protected_Subprogram_Type
2853
              (Base_Type (Etype (Prefix (Name (N)))))
2854
         then
2855
            --  If this is a call through an access to protected operation,
2856
            --  the prefix has the form (object'address, operation'access).
2857
            --  Rewrite as a for other protected calls: the object is the
2858
            --  first parameter of the list of actuals.
2859
 
2860
            declare
2861
               Call : Node_Id;
2862
               Parm : List_Id;
2863
               Nam  : Node_Id;
2864
               Obj  : Node_Id;
2865
               Ptr  : constant Node_Id := Prefix (Name (N));
2866
 
2867
               T : constant Entity_Id :=
2868
                     Equivalent_Type (Base_Type (Etype (Ptr)));
2869
 
2870
               D_T : constant Entity_Id :=
2871
                       Designated_Type (Base_Type (Etype (Ptr)));
2872
 
2873
            begin
2874
               Obj :=
2875
                 Make_Selected_Component (Loc,
2876
                   Prefix        => Unchecked_Convert_To (T, Ptr),
2877
                   Selector_Name =>
2878
                     New_Occurrence_Of (First_Entity (T), Loc));
2879
 
2880
               Nam :=
2881
                 Make_Selected_Component (Loc,
2882
                   Prefix        => Unchecked_Convert_To (T, Ptr),
2883
                   Selector_Name =>
2884
                     New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
2885
 
2886
               Nam :=
2887
                 Make_Explicit_Dereference (Loc,
2888
                   Prefix => Nam);
2889
 
2890
               if Present (Parameter_Associations (N))  then
2891
                  Parm := Parameter_Associations (N);
2892
               else
2893
                  Parm := New_List;
2894
               end if;
2895
 
2896
               Prepend (Obj, Parm);
2897
 
2898
               if Etype (D_T) = Standard_Void_Type then
2899
                  Call :=
2900
                    Make_Procedure_Call_Statement (Loc,
2901
                      Name                   => Nam,
2902
                      Parameter_Associations => Parm);
2903
               else
2904
                  Call :=
2905
                    Make_Function_Call (Loc,
2906
                      Name                   => Nam,
2907
                      Parameter_Associations => Parm);
2908
               end if;
2909
 
2910
               Set_First_Named_Actual (Call, First_Named_Actual (N));
2911
               Set_Etype (Call, Etype (D_T));
2912
 
2913
               --  We do not re-analyze the call to avoid infinite recursion.
2914
               --  We analyze separately the prefix and the object, and set
2915
               --  the checks on the prefix that would otherwise be emitted
2916
               --  when resolving a call.
2917
 
2918
               Rewrite (N, Call);
2919
               Analyze (Nam);
2920
               Apply_Access_Check (Nam);
2921
               Analyze (Obj);
2922
               return;
2923
            end;
2924
         end if;
2925
      end if;
2926
 
2927
      --  If this is a call to an intrinsic subprogram, then perform the
2928
      --  appropriate expansion to the corresponding tree node and we
2929
      --  are all done (since after that the call is gone!)
2930
 
2931
      --  In the case where the intrinsic is to be processed by the back end,
2932
      --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
2933
      --  since the idea in this case is to pass the call unchanged.
2934
      --  If the intrinsic is an inherited unchecked conversion, and the
2935
      --  derived type is the target type of the conversion, we must retain
2936
      --  it as the return type of the expression. Otherwise the expansion
2937
      --  below, which uses the parent operation, will yield the wrong type.
2938
 
2939
      if Is_Intrinsic_Subprogram (Subp) then
2940
         Expand_Intrinsic_Call (N, Subp);
2941
 
2942
         if Nkind (N) = N_Unchecked_Type_Conversion
2943
           and then Parent_Subp /= Orig_Subp
2944
           and then Etype (Parent_Subp) /= Etype (Orig_Subp)
2945
         then
2946
            Set_Etype (N, Etype (Orig_Subp));
2947
         end if;
2948
 
2949
         return;
2950
      end if;
2951
 
2952
      if Ekind (Subp) = E_Function
2953
        or else Ekind (Subp) = E_Procedure
2954
      then
2955
         --  We perform two simple optimization on calls:
2956
 
2957
         --  a) replace calls to null procedures unconditionally;
2958
 
2959
         --  b) for To_Address, just do an unchecked conversion. Not only is
2960
         --  this efficient, but it also avoids order of elaboration problems
2961
         --  when address clauses are inlined (address expression elaborated
2962
         --  at the wrong point).
2963
 
2964
         --  We perform these optimization regardless of whether we are in the
2965
         --  main unit or in a unit in the context of the main unit, to ensure
2966
         --  that tree generated is the same in both cases, for Inspector use.
2967
 
2968
         if Is_RTE (Subp, RE_To_Address) then
2969
            Rewrite (N,
2970
              Unchecked_Convert_To
2971
                (RTE (RE_Address), Relocate_Node (First_Actual (N))));
2972
            return;
2973
 
2974
         elsif Is_Null_Procedure (Subp)  then
2975
            Rewrite (N, Make_Null_Statement (Loc));
2976
            return;
2977
         end if;
2978
 
2979
         if Is_Inlined (Subp) then
2980
 
2981
            Inlined_Subprogram : declare
2982
               Bod         : Node_Id;
2983
               Must_Inline : Boolean := False;
2984
               Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
2985
               Scop        : constant Entity_Id := Scope (Subp);
2986
 
2987
               function In_Unfrozen_Instance return Boolean;
2988
               --  If the subprogram comes from an instance in the same unit,
2989
               --  and the instance is not yet frozen, inlining might trigger
2990
               --  order-of-elaboration problems in gigi.
2991
 
2992
               --------------------------
2993
               -- In_Unfrozen_Instance --
2994
               --------------------------
2995
 
2996
               function In_Unfrozen_Instance return Boolean is
2997
                  S : Entity_Id;
2998
 
2999
               begin
3000
                  S := Scop;
3001
                  while Present (S)
3002
                    and then S /= Standard_Standard
3003
                  loop
3004
                     if Is_Generic_Instance (S)
3005
                       and then Present (Freeze_Node (S))
3006
                       and then not Analyzed (Freeze_Node (S))
3007
                     then
3008
                        return True;
3009
                     end if;
3010
 
3011
                     S := Scope (S);
3012
                  end loop;
3013
 
3014
                  return False;
3015
               end In_Unfrozen_Instance;
3016
 
3017
            --  Start of processing for Inlined_Subprogram
3018
 
3019
            begin
3020
               --  Verify that the body to inline has already been seen, and
3021
               --  that if the body is in the current unit the inlining does
3022
               --  not occur earlier. This avoids order-of-elaboration problems
3023
               --  in the back end.
3024
 
3025
               --  This should be documented in sinfo/einfo ???
3026
 
3027
               if No (Spec)
3028
                 or else Nkind (Spec) /= N_Subprogram_Declaration
3029
                 or else No (Body_To_Inline (Spec))
3030
               then
3031
                  Must_Inline := False;
3032
 
3033
               --  If this an inherited function that returns a private type,
3034
               --  do not inline if the full view is an unconstrained array,
3035
               --  because such calls cannot be inlined.
3036
 
3037
               elsif Present (Orig_Subp)
3038
                 and then Is_Array_Type (Etype (Orig_Subp))
3039
                 and then not Is_Constrained (Etype (Orig_Subp))
3040
               then
3041
                  Must_Inline := False;
3042
 
3043
               elsif In_Unfrozen_Instance then
3044
                  Must_Inline := False;
3045
 
3046
               else
3047
                  Bod := Body_To_Inline (Spec);
3048
 
3049
                  if (In_Extended_Main_Code_Unit (N)
3050
                        or else In_Extended_Main_Code_Unit (Parent (N))
3051
                        or else Has_Pragma_Inline_Always (Subp))
3052
                    and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3053
                               or else
3054
                                 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3055
                  then
3056
                     Must_Inline := True;
3057
 
3058
                  --  If we are compiling a package body that is not the main
3059
                  --  unit, it must be for inlining/instantiation purposes,
3060
                  --  in which case we inline the call to insure that the same
3061
                  --  temporaries are generated when compiling the body by
3062
                  --  itself. Otherwise link errors can occur.
3063
 
3064
                  --  If the function being called is itself in the main unit,
3065
                  --  we cannot inline, because there is a risk of double
3066
                  --  elaboration and/or circularity: the inlining can make
3067
                  --  visible a private entity in the body of the main unit,
3068
                  --  that gigi will see before its sees its proper definition.
3069
 
3070
                  elsif not (In_Extended_Main_Code_Unit (N))
3071
                    and then In_Package_Body
3072
                  then
3073
                     Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3074
                  end if;
3075
               end if;
3076
 
3077
               if Must_Inline then
3078
                  Expand_Inlined_Call (N, Subp, Orig_Subp);
3079
 
3080
               else
3081
                  --  Let the back end handle it
3082
 
3083
                  Add_Inlined_Body (Subp);
3084
 
3085
                  if Front_End_Inlining
3086
                    and then Nkind (Spec) = N_Subprogram_Declaration
3087
                    and then (In_Extended_Main_Code_Unit (N))
3088
                    and then No (Body_To_Inline (Spec))
3089
                    and then not Has_Completion (Subp)
3090
                    and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3091
                  then
3092
                     Cannot_Inline
3093
                      ("cannot inline& (body not seen yet)?", N, Subp);
3094
                  end if;
3095
               end if;
3096
            end Inlined_Subprogram;
3097
         end if;
3098
      end if;
3099
 
3100
      --  Check for protected subprogram. This is either an intra-object call,
3101
      --  or a protected function call. Protected procedure calls are rewritten
3102
      --  as entry calls and handled accordingly.
3103
 
3104
      --  In Ada 2005, this may be an indirect call to an access parameter that
3105
      --  is an access_to_subprogram. In that case the anonymous type has a
3106
      --  scope that is a protected operation, but the call is a regular one.
3107
 
3108
      Scop := Scope (Subp);
3109
 
3110
      if Nkind (N) /= N_Entry_Call_Statement
3111
        and then Is_Protected_Type (Scop)
3112
        and then Ekind (Subp) /= E_Subprogram_Type
3113
      then
3114
         --  If the call is an internal one, it is rewritten as a call to the
3115
         --  corresponding unprotected subprogram.
3116
 
3117
         Expand_Protected_Subprogram_Call (N, Subp, Scop);
3118
      end if;
3119
 
3120
      --  Functions returning controlled objects need special attention:
3121
      --  if the return type is limited, the context is an initialization
3122
      --  and different processing applies. If the call is to a protected
3123
      --  function, the expansion above will call Expand_Call recusively.
3124
      --  To prevent a double attachment, check that the current call is
3125
      --  not a rewriting of a protected function call.
3126
 
3127
      if Needs_Finalization (Etype (Subp))
3128
        and then not Is_Inherently_Limited_Type (Etype (Subp))
3129
        and then
3130
          (No (First_Formal (Subp))
3131
            or else
3132
              not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
3133
      then
3134
         Expand_Ctrl_Function_Call (N);
3135
      end if;
3136
 
3137
      --  Test for First_Optional_Parameter, and if so, truncate parameter list
3138
      --  if there are optional parameters at the trailing end.
3139
      --  Note: we never delete procedures for call via a pointer.
3140
 
3141
      if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
3142
        and then Present (First_Optional_Parameter (Subp))
3143
      then
3144
         declare
3145
            Last_Keep_Arg : Node_Id;
3146
 
3147
         begin
3148
            --  Last_Keep_Arg will hold the last actual that should be kept.
3149
            --  If it remains empty at the end, it means that all parameters
3150
            --  are optional.
3151
 
3152
            Last_Keep_Arg := Empty;
3153
 
3154
            --  Find first optional parameter, must be present since we checked
3155
            --  the validity of the parameter before setting it.
3156
 
3157
            Formal := First_Formal (Subp);
3158
            Actual := First_Actual (N);
3159
            while Formal /= First_Optional_Parameter (Subp) loop
3160
               Last_Keep_Arg := Actual;
3161
               Next_Formal (Formal);
3162
               Next_Actual (Actual);
3163
            end loop;
3164
 
3165
            --  We have Formal and Actual pointing to the first potentially
3166
            --  droppable argument. We can drop all the trailing arguments
3167
            --  whose actual matches the default. Note that we know that all
3168
            --  remaining formals have defaults, because we checked that this
3169
            --  requirement was met before setting First_Optional_Parameter.
3170
 
3171
            --  We use Fully_Conformant_Expressions to check for identity
3172
            --  between formals and actuals, which may miss some cases, but
3173
            --  on the other hand, this is only an optimization (if we fail
3174
            --  to truncate a parameter it does not affect functionality).
3175
            --  So if the default is 3 and the actual is 1+2, we consider
3176
            --  them unequal, which hardly seems worrisome.
3177
 
3178
            while Present (Formal) loop
3179
               if not Fully_Conformant_Expressions
3180
                    (Actual, Default_Value (Formal))
3181
               then
3182
                  Last_Keep_Arg := Actual;
3183
               end if;
3184
 
3185
               Next_Formal (Formal);
3186
               Next_Actual (Actual);
3187
            end loop;
3188
 
3189
            --  If no arguments, delete entire list, this is the easy case
3190
 
3191
            if No (Last_Keep_Arg) then
3192
               Set_Parameter_Associations (N, No_List);
3193
               Set_First_Named_Actual (N, Empty);
3194
 
3195
            --  Case where at the last retained argument is positional. This
3196
            --  is also an easy case, since the retained arguments are already
3197
            --  in the right form, and we don't need to worry about the order
3198
            --  of arguments that get eliminated.
3199
 
3200
            elsif Is_List_Member (Last_Keep_Arg) then
3201
               while Present (Next (Last_Keep_Arg)) loop
3202
                  Discard_Node (Remove_Next (Last_Keep_Arg));
3203
               end loop;
3204
 
3205
               Set_First_Named_Actual (N, Empty);
3206
 
3207
            --  This is the annoying case where the last retained argument
3208
            --  is a named parameter. Since the original arguments are not
3209
            --  in declaration order, we may have to delete some fairly
3210
            --  random collection of arguments.
3211
 
3212
            else
3213
               declare
3214
                  Temp   : Node_Id;
3215
                  Passoc : Node_Id;
3216
 
3217
               begin
3218
                  --  First step, remove all the named parameters from the
3219
                  --  list (they are still chained using First_Named_Actual
3220
                  --  and Next_Named_Actual, so we have not lost them!)
3221
 
3222
                  Temp := First (Parameter_Associations (N));
3223
 
3224
                  --  Case of all parameters named, remove them all
3225
 
3226
                  if Nkind (Temp) = N_Parameter_Association then
3227
                     while Is_Non_Empty_List (Parameter_Associations (N)) loop
3228
                        Temp := Remove_Head (Parameter_Associations (N));
3229
                     end loop;
3230
 
3231
                  --  Case of mixed positional/named, remove named parameters
3232
 
3233
                  else
3234
                     while Nkind (Next (Temp)) /= N_Parameter_Association loop
3235
                        Next (Temp);
3236
                     end loop;
3237
 
3238
                     while Present (Next (Temp)) loop
3239
                        Remove (Next (Temp));
3240
                     end loop;
3241
                  end if;
3242
 
3243
                  --  Now we loop through the named parameters, till we get
3244
                  --  to the last one to be retained, adding them to the list.
3245
                  --  Note that the Next_Named_Actual list does not need to be
3246
                  --  touched since we are only reordering them on the actual
3247
                  --  parameter association list.
3248
 
3249
                  Passoc := Parent (First_Named_Actual (N));
3250
                  loop
3251
                     Temp := Relocate_Node (Passoc);
3252
                     Append_To
3253
                       (Parameter_Associations (N), Temp);
3254
                     exit when
3255
                       Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
3256
                     Passoc := Parent (Next_Named_Actual (Passoc));
3257
                  end loop;
3258
 
3259
                  Set_Next_Named_Actual (Temp, Empty);
3260
 
3261
                  loop
3262
                     Temp := Next_Named_Actual (Passoc);
3263
                     exit when No (Temp);
3264
                     Set_Next_Named_Actual
3265
                       (Passoc, Next_Named_Actual (Parent (Temp)));
3266
                  end loop;
3267
               end;
3268
 
3269
            end if;
3270
         end;
3271
      end if;
3272
   end Expand_Call;
3273
 
3274
   --------------------------
3275
   -- Expand_Inlined_Call --
3276
   --------------------------
3277
 
3278
   procedure Expand_Inlined_Call
3279
    (N         : Node_Id;
3280
     Subp      : Entity_Id;
3281
     Orig_Subp : Entity_Id)
3282
   is
3283
      Loc       : constant Source_Ptr := Sloc (N);
3284
      Is_Predef : constant Boolean :=
3285
                   Is_Predefined_File_Name
3286
                     (Unit_File_Name (Get_Source_Unit (Subp)));
3287
      Orig_Bod  : constant Node_Id :=
3288
                    Body_To_Inline (Unit_Declaration_Node (Subp));
3289
 
3290
      Blk      : Node_Id;
3291
      Bod      : Node_Id;
3292
      Decl     : Node_Id;
3293
      Decls    : constant List_Id := New_List;
3294
      Exit_Lab : Entity_Id := Empty;
3295
      F        : Entity_Id;
3296
      A        : Node_Id;
3297
      Lab_Decl : Node_Id;
3298
      Lab_Id   : Node_Id;
3299
      New_A    : Node_Id;
3300
      Num_Ret  : Int := 0;
3301
      Ret_Type : Entity_Id;
3302
      Targ     : Node_Id;
3303
      Targ1    : Node_Id;
3304
      Temp     : Entity_Id;
3305
      Temp_Typ : Entity_Id;
3306
 
3307
      Is_Unc : constant Boolean :=
3308
                    Is_Array_Type (Etype (Subp))
3309
                      and then not Is_Constrained (Etype (Subp));
3310
      --  If the type returned by the function is unconstrained and the call
3311
      --  can be inlined, special processing is required.
3312
 
3313
      procedure Make_Exit_Label;
3314
      --  Build declaration for exit label to be used in Return statements,
3315
      --  sets Exit_Lab (the label node) and Lab_Decl (corresponding implcit
3316
      --  declaration).
3317
 
3318
      function Process_Formals (N : Node_Id) return Traverse_Result;
3319
      --  Replace occurrence of a formal with the corresponding actual, or the
3320
      --  thunk generated for it.
3321
 
3322
      function Process_Sloc (Nod : Node_Id) return Traverse_Result;
3323
      --  If the call being expanded is that of an internal subprogram, set the
3324
      --  sloc of the generated block to that of the call itself, so that the
3325
      --  expansion is skipped by the "next" command in gdb.
3326
      --  Same processing for a subprogram in a predefined file, e.g.
3327
      --  Ada.Tags. If Debug_Generated_Code is true, suppress this change to
3328
      --  simplify our own development.
3329
 
3330
      procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3331
      --  If the function body is a single expression, replace call with
3332
      --  expression, else insert block appropriately.
3333
 
3334
      procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
3335
      --  If procedure body has no local variables, inline body without
3336
      --  creating block, otherwise rewrite call with block.
3337
 
3338
      function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3339
      --  Determine whether a formal parameter is used only once in Orig_Bod
3340
 
3341
      ---------------------
3342
      -- Make_Exit_Label --
3343
      ---------------------
3344
 
3345
      procedure Make_Exit_Label is
3346
      begin
3347
         --  Create exit label for subprogram if one does not exist yet
3348
 
3349
         if No (Exit_Lab) then
3350
            Lab_Id :=
3351
              Make_Identifier (Loc,
3352
                Chars => New_Internal_Name ('L'));
3353
            Set_Entity (Lab_Id,
3354
              Make_Defining_Identifier (Loc, Chars (Lab_Id)));
3355
            Exit_Lab := Make_Label (Loc, Lab_Id);
3356
 
3357
            Lab_Decl :=
3358
              Make_Implicit_Label_Declaration (Loc,
3359
                Defining_Identifier  => Entity (Lab_Id),
3360
                Label_Construct      => Exit_Lab);
3361
         end if;
3362
      end Make_Exit_Label;
3363
 
3364
      ---------------------
3365
      -- Process_Formals --
3366
      ---------------------
3367
 
3368
      function Process_Formals (N : Node_Id) return Traverse_Result is
3369
         A   : Entity_Id;
3370
         E   : Entity_Id;
3371
         Ret : Node_Id;
3372
 
3373
      begin
3374
         if Is_Entity_Name (N)
3375
           and then Present (Entity (N))
3376
         then
3377
            E := Entity (N);
3378
 
3379
            if Is_Formal (E)
3380
              and then Scope (E) = Subp
3381
            then
3382
               A := Renamed_Object (E);
3383
 
3384
               --  Rewrite the occurrence of the formal into an occurrence of
3385
               --  the actual. Also establish visibility on the proper view of
3386
               --  the actual's subtype for the body's context (if the actual's
3387
               --  subtype is private at the call point but its full view is
3388
               --  visible to the body, then the inlined tree here must be
3389
               --  analyzed with the full view).
3390
 
3391
               if Is_Entity_Name (A) then
3392
                  Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
3393
                  Check_Private_View (N);
3394
 
3395
               elsif Nkind (A) = N_Defining_Identifier then
3396
                  Rewrite (N, New_Occurrence_Of (A, Loc));
3397
                  Check_Private_View (N);
3398
 
3399
               --  Numeric literal
3400
 
3401
               else
3402
                  Rewrite (N, New_Copy (A));
3403
               end if;
3404
            end if;
3405
 
3406
            return Skip;
3407
 
3408
         elsif Nkind (N) = N_Simple_Return_Statement then
3409
            if No (Expression (N)) then
3410
               Make_Exit_Label;
3411
               Rewrite (N,
3412
                 Make_Goto_Statement (Loc,
3413
                   Name => New_Copy (Lab_Id)));
3414
 
3415
            else
3416
               if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3417
                 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3418
               then
3419
                  --  Function body is a single expression. No need for
3420
                  --  exit label.
3421
 
3422
                  null;
3423
 
3424
               else
3425
                  Num_Ret := Num_Ret + 1;
3426
                  Make_Exit_Label;
3427
               end if;
3428
 
3429
               --  Because of the presence of private types, the views of the
3430
               --  expression and the context may be different, so place an
3431
               --  unchecked conversion to the context type to avoid spurious
3432
               --  errors, e.g. when the expression is a numeric literal and
3433
               --  the context is private. If the expression is an aggregate,
3434
               --  use a qualified expression, because an aggregate is not a
3435
               --  legal argument of a conversion.
3436
 
3437
               if Nkind_In (Expression (N), N_Aggregate, N_Null) then
3438
                  Ret :=
3439
                    Make_Qualified_Expression (Sloc (N),
3440
                       Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3441
                       Expression => Relocate_Node (Expression (N)));
3442
               else
3443
                  Ret :=
3444
                    Unchecked_Convert_To
3445
                      (Ret_Type, Relocate_Node (Expression (N)));
3446
               end if;
3447
 
3448
               if Nkind (Targ) = N_Defining_Identifier then
3449
                  Rewrite (N,
3450
                    Make_Assignment_Statement (Loc,
3451
                      Name => New_Occurrence_Of (Targ, Loc),
3452
                      Expression => Ret));
3453
               else
3454
                  Rewrite (N,
3455
                    Make_Assignment_Statement (Loc,
3456
                      Name => New_Copy (Targ),
3457
                      Expression => Ret));
3458
               end if;
3459
 
3460
               Set_Assignment_OK (Name (N));
3461
 
3462
               if Present (Exit_Lab) then
3463
                  Insert_After (N,
3464
                    Make_Goto_Statement (Loc,
3465
                      Name => New_Copy (Lab_Id)));
3466
               end if;
3467
            end if;
3468
 
3469
            return OK;
3470
 
3471
         --  Remove pragma Unreferenced since it may refer to formals that
3472
         --  are not visible in the inlined body, and in any case we will
3473
         --  not be posting warnings on the inlined body so it is unneeded.
3474
 
3475
         elsif Nkind (N) = N_Pragma
3476
           and then Pragma_Name (N) = Name_Unreferenced
3477
         then
3478
            Rewrite (N, Make_Null_Statement (Sloc (N)));
3479
            return OK;
3480
 
3481
         else
3482
            return OK;
3483
         end if;
3484
      end Process_Formals;
3485
 
3486
      procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3487
 
3488
      ------------------
3489
      -- Process_Sloc --
3490
      ------------------
3491
 
3492
      function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3493
      begin
3494
         if not Debug_Generated_Code then
3495
            Set_Sloc (Nod, Sloc (N));
3496
            Set_Comes_From_Source (Nod, False);
3497
         end if;
3498
 
3499
         return OK;
3500
      end Process_Sloc;
3501
 
3502
      procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3503
 
3504
      ---------------------------
3505
      -- Rewrite_Function_Call --
3506
      ---------------------------
3507
 
3508
      procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3509
         HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3510
         Fst : constant Node_Id := First (Statements (HSS));
3511
 
3512
      begin
3513
         --  Optimize simple case: function body is a single return statement,
3514
         --  which has been expanded into an assignment.
3515
 
3516
         if Is_Empty_List (Declarations (Blk))
3517
           and then Nkind (Fst) = N_Assignment_Statement
3518
           and then No (Next (Fst))
3519
         then
3520
 
3521
            --  The function call may have been rewritten as the temporary
3522
            --  that holds the result of the call, in which case remove the
3523
            --  now useless declaration.
3524
 
3525
            if Nkind (N) = N_Identifier
3526
              and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3527
            then
3528
               Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3529
            end if;
3530
 
3531
            Rewrite (N, Expression (Fst));
3532
 
3533
         elsif Nkind (N) = N_Identifier
3534
           and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3535
         then
3536
            --  The block assigns the result of the call to the temporary
3537
 
3538
            Insert_After (Parent (Entity (N)), Blk);
3539
 
3540
         elsif Nkind (Parent (N)) = N_Assignment_Statement
3541
           and then
3542
            (Is_Entity_Name (Name (Parent (N)))
3543
               or else
3544
                  (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3545
                    and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3546
         then
3547
            --  Replace assignment with the block
3548
 
3549
            declare
3550
               Original_Assignment : constant Node_Id := Parent (N);
3551
 
3552
            begin
3553
               --  Preserve the original assignment node to keep the complete
3554
               --  assignment subtree consistent enough for Analyze_Assignment
3555
               --  to proceed (specifically, the original Lhs node must still
3556
               --  have an assignment statement as its parent).
3557
 
3558
               --  We cannot rely on Original_Node to go back from the block
3559
               --  node to the assignment node, because the assignment might
3560
               --  already be a rewrite substitution.
3561
 
3562
               Discard_Node (Relocate_Node (Original_Assignment));
3563
               Rewrite (Original_Assignment, Blk);
3564
            end;
3565
 
3566
         elsif Nkind (Parent (N)) = N_Object_Declaration then
3567
            Set_Expression (Parent (N), Empty);
3568
            Insert_After (Parent (N), Blk);
3569
 
3570
         elsif Is_Unc then
3571
            Insert_Before (Parent (N), Blk);
3572
         end if;
3573
      end Rewrite_Function_Call;
3574
 
3575
      ----------------------------
3576
      -- Rewrite_Procedure_Call --
3577
      ----------------------------
3578
 
3579
      procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
3580
         HSS  : constant Node_Id := Handled_Statement_Sequence (Blk);
3581
      begin
3582
         --  If there is a transient scope for N, this will be the scope of the
3583
         --  actions for N, and the statements in Blk need to be within this
3584
         --  scope. For example, they need to have visibility on the constant
3585
         --  declarations created for the formals.
3586
 
3587
         --  If N needs no transient scope, and if there are no declarations in
3588
         --  the inlined body, we can do a little optimization and insert the
3589
         --  statements for the body directly after N, and rewrite N to a
3590
         --  null statement, instead of rewriting N into a full-blown block
3591
         --  statement.
3592
 
3593
         if not Scope_Is_Transient
3594
           and then Is_Empty_List (Declarations (Blk))
3595
         then
3596
            Insert_List_After (N, Statements (HSS));
3597
            Rewrite (N, Make_Null_Statement (Loc));
3598
         else
3599
            Rewrite (N, Blk);
3600
         end if;
3601
      end Rewrite_Procedure_Call;
3602
 
3603
      -------------------------
3604
      -- Formal_Is_Used_Once --
3605
      -------------------------
3606
 
3607
      function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3608
         Use_Counter : Int := 0;
3609
 
3610
         function Count_Uses (N : Node_Id) return Traverse_Result;
3611
         --  Traverse the tree and count the uses of the formal parameter.
3612
         --  In this case, for optimization purposes, we do not need to
3613
         --  continue the traversal once more than one use is encountered.
3614
 
3615
         ----------------
3616
         -- Count_Uses --
3617
         ----------------
3618
 
3619
         function Count_Uses (N : Node_Id) return Traverse_Result is
3620
         begin
3621
            --  The original node is an identifier
3622
 
3623
            if Nkind (N) = N_Identifier
3624
              and then Present (Entity (N))
3625
 
3626
               --  Original node's entity points to the one in the copied body
3627
 
3628
              and then Nkind (Entity (N)) = N_Identifier
3629
              and then Present (Entity (Entity (N)))
3630
 
3631
               --  The entity of the copied node is the formal parameter
3632
 
3633
              and then Entity (Entity (N)) = Formal
3634
            then
3635
               Use_Counter := Use_Counter + 1;
3636
 
3637
               if Use_Counter > 1 then
3638
 
3639
                  --  Denote more than one use and abandon the traversal
3640
 
3641
                  Use_Counter := 2;
3642
                  return Abandon;
3643
 
3644
               end if;
3645
            end if;
3646
 
3647
            return OK;
3648
         end Count_Uses;
3649
 
3650
         procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3651
 
3652
      --  Start of processing for Formal_Is_Used_Once
3653
 
3654
      begin
3655
         Count_Formal_Uses (Orig_Bod);
3656
         return Use_Counter = 1;
3657
      end Formal_Is_Used_Once;
3658
 
3659
   --  Start of processing for Expand_Inlined_Call
3660
 
3661
   begin
3662
 
3663
      --  Check for an illegal attempt to inline a recursive procedure. If the
3664
      --  subprogram has parameters this is detected when trying to supply a
3665
      --  binding for parameters that already have one. For parameterless
3666
      --  subprograms this must be done explicitly.
3667
 
3668
      if In_Open_Scopes (Subp) then
3669
         Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
3670
         Set_Is_Inlined (Subp, False);
3671
         return;
3672
      end if;
3673
 
3674
      if Nkind (Orig_Bod) = N_Defining_Identifier
3675
        or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
3676
      then
3677
         --  Subprogram is a renaming_as_body. Calls appearing after the
3678
         --  renaming can be replaced with calls to the renamed entity
3679
         --  directly, because the subprograms are subtype conformant. If
3680
         --  the renamed subprogram is an inherited operation, we must redo
3681
         --  the expansion because implicit conversions may be needed.
3682
 
3683
         Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3684
 
3685
         if Present (Alias (Orig_Bod)) then
3686
            Expand_Call (N);
3687
         end if;
3688
 
3689
         return;
3690
      end if;
3691
 
3692
      --  Use generic machinery to copy body of inlined subprogram, as if it
3693
      --  were an instantiation, resetting source locations appropriately, so
3694
      --  that nested inlined calls appear in the main unit.
3695
 
3696
      Save_Env (Subp, Empty);
3697
      Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3698
 
3699
      Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3700
      Blk :=
3701
        Make_Block_Statement (Loc,
3702
          Declarations => Declarations (Bod),
3703
          Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
3704
 
3705
      if No (Declarations (Bod)) then
3706
         Set_Declarations (Blk, New_List);
3707
      end if;
3708
 
3709
      --  For the unconstrained case, capture the name of the local
3710
      --  variable that holds the result. This must be the first declaration
3711
      --  in the block, because its bounds cannot depend on local variables.
3712
      --  Otherwise there is no way to declare the result outside of the
3713
      --  block. Needless to say, in general the bounds will depend on the
3714
      --  actuals in the call.
3715
 
3716
      if Is_Unc then
3717
         Targ1 := Defining_Identifier (First (Declarations (Blk)));
3718
      end if;
3719
 
3720
      --  If this is a derived function, establish the proper return type
3721
 
3722
      if Present (Orig_Subp)
3723
        and then Orig_Subp /= Subp
3724
      then
3725
         Ret_Type := Etype (Orig_Subp);
3726
      else
3727
         Ret_Type := Etype (Subp);
3728
      end if;
3729
 
3730
      --  Create temporaries for the actuals that are expressions, or that
3731
      --  are scalars and require copying to preserve semantics.
3732
 
3733
      F := First_Formal (Subp);
3734
      A := First_Actual (N);
3735
      while Present (F) loop
3736
         if Present (Renamed_Object (F)) then
3737
            Error_Msg_N ("cannot inline call to recursive subprogram", N);
3738
            return;
3739
         end if;
3740
 
3741
         --  If the argument may be a controlling argument in a call within
3742
         --  the inlined body, we must preserve its classwide nature to insure
3743
         --  that dynamic dispatching take place subsequently. If the formal
3744
         --  has a constraint it must be preserved to retain the semantics of
3745
         --  the body.
3746
 
3747
         if Is_Class_Wide_Type (Etype (F))
3748
           or else (Is_Access_Type (Etype (F))
3749
                      and then
3750
                    Is_Class_Wide_Type (Designated_Type (Etype (F))))
3751
         then
3752
            Temp_Typ := Etype (F);
3753
 
3754
         elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3755
           and then Etype (F) /= Base_Type (Etype (F))
3756
         then
3757
            Temp_Typ := Etype (F);
3758
 
3759
         else
3760
            Temp_Typ := Etype (A);
3761
         end if;
3762
 
3763
         --  If the actual is a simple name or a literal, no need to
3764
         --  create a temporary, object can be used directly.
3765
 
3766
         --  If the actual is a literal and the formal has its address taken,
3767
         --  we cannot pass the literal itself as an argument, so its value
3768
         --  must be captured in a temporary.
3769
 
3770
         if (Is_Entity_Name (A)
3771
              and then
3772
               (not Is_Scalar_Type (Etype (A))
3773
                 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3774
 
3775
         --  When the actual is an identifier and the corresponding formal
3776
         --  is used only once in the original body, the formal can be
3777
         --  substituted directly with the actual parameter.
3778
 
3779
           or else (Nkind (A) = N_Identifier
3780
             and then Formal_Is_Used_Once (F))
3781
 
3782
           or else
3783
             (Nkind_In (A, N_Real_Literal,
3784
                            N_Integer_Literal,
3785
                            N_Character_Literal)
3786
                and then not Address_Taken (F))
3787
         then
3788
            if Etype (F) /= Etype (A) then
3789
               Set_Renamed_Object
3790
                (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3791
            else
3792
               Set_Renamed_Object (F, A);
3793
            end if;
3794
 
3795
         else
3796
            Temp :=
3797
              Make_Defining_Identifier (Loc,
3798
                Chars => New_Internal_Name ('C'));
3799
 
3800
            --  If the actual for an in/in-out parameter is a view conversion,
3801
            --  make it into an unchecked conversion, given that an untagged
3802
            --  type conversion is not a proper object for a renaming.
3803
 
3804
            --  In-out conversions that involve real conversions have already
3805
            --  been transformed in Expand_Actuals.
3806
 
3807
            if Nkind (A) = N_Type_Conversion
3808
              and then Ekind (F) /= E_In_Parameter
3809
            then
3810
               New_A :=
3811
                 Make_Unchecked_Type_Conversion (Loc,
3812
                   Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3813
                   Expression   => Relocate_Node (Expression (A)));
3814
 
3815
            elsif Etype (F) /= Etype (A) then
3816
               New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3817
               Temp_Typ := Etype (F);
3818
 
3819
            else
3820
               New_A := Relocate_Node (A);
3821
            end if;
3822
 
3823
            Set_Sloc (New_A, Sloc (N));
3824
 
3825
            --  If the actual has a by-reference type, it cannot be copied, so
3826
            --  its value is captured in a renaming declaration. Otherwise
3827
            --  declare a local constant initialized with the actual.
3828
 
3829
            --  We also use a renaming declaration for expressions of an array
3830
            --  type that is not bit-packed, both for efficiency reasons and to
3831
            --  respect the semantics of the call: in most cases the original
3832
            --  call will pass the parameter by reference, and thus the inlined
3833
            --  code will have the same semantics.
3834
 
3835
            if Ekind (F) = E_In_Parameter
3836
              and then not Is_Limited_Type (Etype (A))
3837
              and then not Is_Tagged_Type  (Etype (A))
3838
              and then
3839
               (not Is_Array_Type (Etype (A))
3840
                 or else not Is_Object_Reference (A)
3841
                 or else Is_Bit_Packed_Array (Etype (A)))
3842
            then
3843
               Decl :=
3844
                 Make_Object_Declaration (Loc,
3845
                   Defining_Identifier => Temp,
3846
                   Constant_Present => True,
3847
                   Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3848
                   Expression => New_A);
3849
            else
3850
               Decl :=
3851
                 Make_Object_Renaming_Declaration (Loc,
3852
                   Defining_Identifier => Temp,
3853
                   Subtype_Mark        => New_Occurrence_Of (Temp_Typ, Loc),
3854
                   Name                => New_A);
3855
            end if;
3856
 
3857
            Append (Decl, Decls);
3858
            Set_Renamed_Object (F, Temp);
3859
         end if;
3860
 
3861
         Next_Formal (F);
3862
         Next_Actual (A);
3863
      end loop;
3864
 
3865
      --  Establish target of function call. If context is not assignment or
3866
      --  declaration, create a temporary as a target. The declaration for
3867
      --  the temporary may be subsequently optimized away if the body is a
3868
      --  single expression, or if the left-hand side of the assignment is
3869
      --  simple enough, i.e. an entity or an explicit dereference of one.
3870
 
3871
      if Ekind (Subp) = E_Function then
3872
         if Nkind (Parent (N)) = N_Assignment_Statement
3873
           and then Is_Entity_Name (Name (Parent (N)))
3874
         then
3875
            Targ := Name (Parent (N));
3876
 
3877
         elsif Nkind (Parent (N)) = N_Assignment_Statement
3878
           and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3879
           and then Is_Entity_Name (Prefix (Name (Parent (N))))
3880
         then
3881
            Targ := Name (Parent (N));
3882
 
3883
         else
3884
            --  Replace call with temporary and create its declaration
3885
 
3886
            Temp :=
3887
              Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3888
            Set_Is_Internal (Temp);
3889
 
3890
            --  For the unconstrained case, the generated temporary has the
3891
            --  same constrained declaration as the result variable. It may
3892
            --  eventually be possible to remove that temporary and use the
3893
            --  result variable directly.
3894
 
3895
            if Is_Unc then
3896
               Decl :=
3897
                 Make_Object_Declaration (Loc,
3898
                   Defining_Identifier => Temp,
3899
                   Object_Definition =>
3900
                     New_Copy_Tree (Object_Definition (Parent (Targ1))));
3901
 
3902
               Replace_Formals (Decl);
3903
 
3904
            else
3905
               Decl :=
3906
                 Make_Object_Declaration (Loc,
3907
                   Defining_Identifier => Temp,
3908
                   Object_Definition =>
3909
                     New_Occurrence_Of (Ret_Type, Loc));
3910
 
3911
               Set_Etype (Temp, Ret_Type);
3912
            end if;
3913
 
3914
            Set_No_Initialization (Decl);
3915
            Append (Decl, Decls);
3916
            Rewrite (N, New_Occurrence_Of (Temp, Loc));
3917
            Targ := Temp;
3918
         end if;
3919
      end if;
3920
 
3921
      Insert_Actions (N, Decls);
3922
 
3923
      --  Traverse the tree and replace formals with actuals or their thunks.
3924
      --  Attach block to tree before analysis and rewriting.
3925
 
3926
      Replace_Formals (Blk);
3927
      Set_Parent (Blk, N);
3928
 
3929
      if not Comes_From_Source (Subp)
3930
        or else Is_Predef
3931
      then
3932
         Reset_Slocs (Blk);
3933
      end if;
3934
 
3935
      if Present (Exit_Lab) then
3936
 
3937
         --  If the body was a single expression, the single return statement
3938
         --  and the corresponding label are useless.
3939
 
3940
         if Num_Ret = 1
3941
           and then
3942
             Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3943
               N_Goto_Statement
3944
         then
3945
            Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3946
         else
3947
            Append (Lab_Decl, (Declarations (Blk)));
3948
            Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3949
         end if;
3950
      end if;
3951
 
3952
      --  Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
3953
      --  conflicting private views that Gigi would ignore. If this is a
3954
      --  predefined unit, analyze with checks off, as is done in the non-
3955
      --  inlined run-time units.
3956
 
3957
      declare
3958
         I_Flag : constant Boolean := In_Inlined_Body;
3959
 
3960
      begin
3961
         In_Inlined_Body := True;
3962
 
3963
         if Is_Predef then
3964
            declare
3965
               Style : constant Boolean := Style_Check;
3966
            begin
3967
               Style_Check := False;
3968
               Analyze (Blk, Suppress => All_Checks);
3969
               Style_Check := Style;
3970
            end;
3971
 
3972
         else
3973
            Analyze (Blk);
3974
         end if;
3975
 
3976
         In_Inlined_Body := I_Flag;
3977
      end;
3978
 
3979
      if Ekind (Subp) = E_Procedure then
3980
         Rewrite_Procedure_Call (N, Blk);
3981
      else
3982
         Rewrite_Function_Call (N, Blk);
3983
 
3984
         --  For the unconstrained case, the replacement of the call has been
3985
         --  made prior to the complete analysis of the generated declarations.
3986
         --  Propagate the proper type now.
3987
 
3988
         if Is_Unc then
3989
            if Nkind (N) = N_Identifier then
3990
               Set_Etype (N, Etype (Entity (N)));
3991
            else
3992
               Set_Etype (N, Etype (Targ1));
3993
            end if;
3994
         end if;
3995
      end if;
3996
 
3997
      Restore_Env;
3998
 
3999
      --  Cleanup mapping between formals and actuals for other expansions
4000
 
4001
      F := First_Formal (Subp);
4002
      while Present (F) loop
4003
         Set_Renamed_Object (F, Empty);
4004
         Next_Formal (F);
4005
      end loop;
4006
   end Expand_Inlined_Call;
4007
 
4008
   ----------------------------
4009
   -- Expand_N_Function_Call --
4010
   ----------------------------
4011
 
4012
   procedure Expand_N_Function_Call (N : Node_Id) is
4013
   begin
4014
      Expand_Call (N);
4015
 
4016
      --  If the return value of a foreign compiled function is VAX Float, then
4017
      --  expand the return (adjusts the location of the return value on
4018
      --  Alpha/VMS, no-op everywhere else).
4019
      --  Comes_From_Source intercepts recursive expansion.
4020
 
4021
      if Vax_Float (Etype (N))
4022
        and then Nkind (N) = N_Function_Call
4023
        and then Present (Name (N))
4024
        and then Present (Entity (Name (N)))
4025
        and then Has_Foreign_Convention (Entity (Name (N)))
4026
        and then Comes_From_Source (Parent (N))
4027
      then
4028
         Expand_Vax_Foreign_Return (N);
4029
      end if;
4030
   end Expand_N_Function_Call;
4031
 
4032
   ---------------------------------------
4033
   -- Expand_N_Procedure_Call_Statement --
4034
   ---------------------------------------
4035
 
4036
   procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
4037
   begin
4038
      Expand_Call (N);
4039
   end Expand_N_Procedure_Call_Statement;
4040
 
4041
   ------------------------------
4042
   -- Expand_N_Subprogram_Body --
4043
   ------------------------------
4044
 
4045
   --  Add poll call if ATC polling is enabled, unless the body will be inlined
4046
   --  by the back-end.
4047
 
4048
   --  Add dummy push/pop label nodes at start and end to clear any local
4049
   --  exception indications if local-exception-to-goto optimization is active.
4050
 
4051
   --  Add return statement if last statement in body is not a return statement
4052
   --  (this makes things easier on Gigi which does not want to have to handle
4053
   --  a missing return).
4054
 
4055
   --  Add call to Activate_Tasks if body is a task activator
4056
 
4057
   --  Deal with possible detection of infinite recursion
4058
 
4059
   --  Eliminate body completely if convention stubbed
4060
 
4061
   --  Encode entity names within body, since we will not need to reference
4062
   --  these entities any longer in the front end.
4063
 
4064
   --  Initialize scalar out parameters if Initialize/Normalize_Scalars
4065
 
4066
   --  Reset Pure indication if any parameter has root type System.Address
4067
 
4068
   --  Wrap thread body
4069
 
4070
   procedure Expand_N_Subprogram_Body (N : Node_Id) is
4071
      Loc      : constant Source_Ptr := Sloc (N);
4072
      H        : constant Node_Id    := Handled_Statement_Sequence (N);
4073
      Body_Id  : Entity_Id;
4074
      Except_H : Node_Id;
4075
      L        : List_Id;
4076
      Spec_Id  : Entity_Id;
4077
 
4078
      procedure Add_Return (S : List_Id);
4079
      --  Append a return statement to the statement sequence S if the last
4080
      --  statement is not already a return or a goto statement. Note that
4081
      --  the latter test is not critical, it does not matter if we add a few
4082
      --  extra returns, since they get eliminated anyway later on.
4083
 
4084
      ----------------
4085
      -- Add_Return --
4086
      ----------------
4087
 
4088
      procedure Add_Return (S : List_Id) is
4089
         Last_Stm : Node_Id;
4090
         Loc      : Source_Ptr;
4091
 
4092
      begin
4093
         --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
4094
         --  not relevant in this context since they are not executable.
4095
 
4096
         Last_Stm := Last (S);
4097
         while Nkind (Last_Stm) in N_Pop_xxx_Label loop
4098
            Prev (Last_Stm);
4099
         end loop;
4100
 
4101
         --  Now insert return unless last statement is a transfer
4102
 
4103
         if not Is_Transfer (Last_Stm) then
4104
 
4105
            --  The source location for the return is the end label of the
4106
            --  procedure if present. Otherwise use the sloc of the last
4107
            --  statement in the list. If the list comes from a generated
4108
            --  exception handler and we are not debugging generated code,
4109
            --  all the statements within the handler are made invisible
4110
            --  to the debugger.
4111
 
4112
            if Nkind (Parent (S)) = N_Exception_Handler
4113
              and then not Comes_From_Source (Parent (S))
4114
            then
4115
               Loc := Sloc (Last_Stm);
4116
 
4117
            elsif Present (End_Label (H)) then
4118
               Loc := Sloc (End_Label (H));
4119
 
4120
            else
4121
               Loc := Sloc (Last_Stm);
4122
            end if;
4123
 
4124
            declare
4125
               Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
4126
 
4127
            begin
4128
               --  Append return statement, and set analyzed manually. We can't
4129
               --  call Analyze on this return since the scope is wrong.
4130
 
4131
               --  Note: it almost works to push the scope and then do the
4132
               --  Analyze call, but something goes wrong in some weird cases
4133
               --  and it is not worth worrying about ???
4134
 
4135
               Append_To (S, Rtn);
4136
               Set_Analyzed (Rtn);
4137
 
4138
               --  Call _Postconditions procedure if appropriate. We need to
4139
               --  do this explicitly because we did not analyze the generated
4140
               --  return statement above, so the call did not get inserted.
4141
 
4142
               if Ekind (Spec_Id) = E_Procedure
4143
                 and then Has_Postconditions (Spec_Id)
4144
               then
4145
                  pragma Assert (Present (Postcondition_Proc (Spec_Id)));
4146
                  Insert_Action (Rtn,
4147
                    Make_Procedure_Call_Statement (Loc,
4148
                      Name =>
4149
                        New_Reference_To (Postcondition_Proc (Spec_Id), Loc)));
4150
               end if;
4151
            end;
4152
         end if;
4153
      end Add_Return;
4154
 
4155
   --  Start of processing for Expand_N_Subprogram_Body
4156
 
4157
   begin
4158
      --  Set L to either the list of declarations if present, or to the list
4159
      --  of statements if no declarations are present. This is used to insert
4160
      --  new stuff at the start.
4161
 
4162
      if Is_Non_Empty_List (Declarations (N)) then
4163
         L := Declarations (N);
4164
      else
4165
         L := Statements (H);
4166
      end if;
4167
 
4168
      --  If local-exception-to-goto optimization active, insert dummy push
4169
      --  statements at start, and dummy pop statements at end.
4170
 
4171
      if (Debug_Flag_Dot_G
4172
           or else Restriction_Active (No_Exception_Propagation))
4173
        and then Is_Non_Empty_List (L)
4174
      then
4175
         declare
4176
            FS  : constant Node_Id    := First (L);
4177
            FL  : constant Source_Ptr := Sloc (FS);
4178
            LS  : Node_Id;
4179
            LL  : Source_Ptr;
4180
 
4181
         begin
4182
            --  LS points to either last statement, if statements are present
4183
            --  or to the last declaration if there are no statements present.
4184
            --  It is the node after which the pop's are generated.
4185
 
4186
            if Is_Non_Empty_List (Statements (H)) then
4187
               LS := Last (Statements (H));
4188
            else
4189
               LS := Last (L);
4190
            end if;
4191
 
4192
            LL := Sloc (LS);
4193
 
4194
            Insert_List_Before_And_Analyze (FS, New_List (
4195
              Make_Push_Constraint_Error_Label (FL),
4196
              Make_Push_Program_Error_Label    (FL),
4197
              Make_Push_Storage_Error_Label    (FL)));
4198
 
4199
            Insert_List_After_And_Analyze (LS, New_List (
4200
              Make_Pop_Constraint_Error_Label  (LL),
4201
              Make_Pop_Program_Error_Label     (LL),
4202
              Make_Pop_Storage_Error_Label     (LL)));
4203
         end;
4204
      end if;
4205
 
4206
      --  Find entity for subprogram
4207
 
4208
      Body_Id := Defining_Entity (N);
4209
 
4210
      if Present (Corresponding_Spec (N)) then
4211
         Spec_Id := Corresponding_Spec (N);
4212
      else
4213
         Spec_Id := Body_Id;
4214
      end if;
4215
 
4216
      --  Need poll on entry to subprogram if polling enabled. We only do this
4217
      --  for non-empty subprograms, since it does not seem necessary to poll
4218
      --  for a dummy null subprogram.
4219
 
4220
      if Is_Non_Empty_List (L) then
4221
 
4222
         --  Do not add a polling call if the subprogram is to be inlined by
4223
         --  the back-end, to avoid repeated calls with multiple inlinings.
4224
 
4225
         if Is_Inlined (Spec_Id)
4226
           and then Front_End_Inlining
4227
           and then Optimization_Level > 1
4228
         then
4229
            null;
4230
         else
4231
            Generate_Poll_Call (First (L));
4232
         end if;
4233
      end if;
4234
 
4235
      --  If this is a Pure function which has any parameters whose root type
4236
      --  is System.Address, reset the Pure indication, since it will likely
4237
      --  cause incorrect code to be generated as the parameter is probably
4238
      --  a pointer, and the fact that the same pointer is passed does not mean
4239
      --  that the same value is being referenced.
4240
 
4241
      --  Note that if the programmer gave an explicit Pure_Function pragma,
4242
      --  then we believe the programmer, and leave the subprogram Pure.
4243
 
4244
      --  This code should probably be at the freeze point, so that it happens
4245
      --  even on a -gnatc (or more importantly -gnatt) compile, so that the
4246
      --  semantic tree has Is_Pure set properly ???
4247
 
4248
      if Is_Pure (Spec_Id)
4249
        and then Is_Subprogram (Spec_Id)
4250
        and then not Has_Pragma_Pure_Function (Spec_Id)
4251
      then
4252
         declare
4253
            F : Entity_Id;
4254
 
4255
         begin
4256
            F := First_Formal (Spec_Id);
4257
            while Present (F) loop
4258
               if Is_Descendent_Of_Address (Etype (F)) then
4259
                  Set_Is_Pure (Spec_Id, False);
4260
 
4261
                  if Spec_Id /= Body_Id then
4262
                     Set_Is_Pure (Body_Id, False);
4263
                  end if;
4264
 
4265
                  exit;
4266
               end if;
4267
 
4268
               Next_Formal (F);
4269
            end loop;
4270
         end;
4271
      end if;
4272
 
4273
      --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
4274
 
4275
      if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
4276
         declare
4277
            F : Entity_Id;
4278
 
4279
         begin
4280
            --  Loop through formals
4281
 
4282
            F := First_Formal (Spec_Id);
4283
            while Present (F) loop
4284
               if Is_Scalar_Type (Etype (F))
4285
                 and then Ekind (F) = E_Out_Parameter
4286
               then
4287
                  Check_Restriction (No_Default_Initialization, F);
4288
 
4289
                  --  Insert the initialization. We turn off validity checks
4290
                  --  for this assignment, since we do not want any check on
4291
                  --  the initial value itself (which may well be invalid).
4292
 
4293
                  Insert_Before_And_Analyze (First (L),
4294
                    Make_Assignment_Statement (Loc,
4295
                      Name       => New_Occurrence_Of (F, Loc),
4296
                      Expression => Get_Simple_Init_Val (Etype (F), N)),
4297
                    Suppress => Validity_Check);
4298
               end if;
4299
 
4300
               Next_Formal (F);
4301
            end loop;
4302
         end;
4303
      end if;
4304
 
4305
      --  Clear out statement list for stubbed procedure
4306
 
4307
      if Present (Corresponding_Spec (N)) then
4308
         Set_Elaboration_Flag (N, Spec_Id);
4309
 
4310
         if Convention (Spec_Id) = Convention_Stubbed
4311
           or else Is_Eliminated (Spec_Id)
4312
         then
4313
            Set_Declarations (N, Empty_List);
4314
            Set_Handled_Statement_Sequence (N,
4315
              Make_Handled_Sequence_Of_Statements (Loc,
4316
                Statements => New_List (
4317
                  Make_Null_Statement (Loc))));
4318
            return;
4319
         end if;
4320
      end if;
4321
 
4322
      --  Create a set of discriminals for the next protected subprogram body
4323
 
4324
      if Is_List_Member (N)
4325
        and then Present (Parent (List_Containing (N)))
4326
        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4327
        and then Present (Next_Protected_Operation (N))
4328
      then
4329
         Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
4330
      end if;
4331
 
4332
      --  Returns_By_Ref flag is normally set when the subprogram is frozen but
4333
      --  subprograms with no specs are not frozen.
4334
 
4335
      declare
4336
         Typ  : constant Entity_Id := Etype (Spec_Id);
4337
         Utyp : constant Entity_Id := Underlying_Type (Typ);
4338
 
4339
      begin
4340
         if not Acts_As_Spec (N)
4341
           and then Nkind (Parent (Parent (Spec_Id))) /=
4342
             N_Subprogram_Body_Stub
4343
         then
4344
            null;
4345
 
4346
         elsif Is_Inherently_Limited_Type (Typ) then
4347
            Set_Returns_By_Ref (Spec_Id);
4348
 
4349
         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4350
            Set_Returns_By_Ref (Spec_Id);
4351
         end if;
4352
      end;
4353
 
4354
      --  For a procedure, we add a return for all possible syntactic ends of
4355
      --  the subprogram.
4356
 
4357
      if Ekind (Spec_Id) = E_Procedure
4358
        or else Ekind (Spec_Id) = E_Generic_Procedure
4359
      then
4360
         Add_Return (Statements (H));
4361
 
4362
         if Present (Exception_Handlers (H)) then
4363
            Except_H := First_Non_Pragma (Exception_Handlers (H));
4364
            while Present (Except_H) loop
4365
               Add_Return (Statements (Except_H));
4366
               Next_Non_Pragma (Except_H);
4367
            end loop;
4368
         end if;
4369
 
4370
      --  For a function, we must deal with the case where there is at least
4371
      --  one missing return. What we do is to wrap the entire body of the
4372
      --  function in a block:
4373
 
4374
      --    begin
4375
      --      ...
4376
      --    end;
4377
 
4378
      --  becomes
4379
 
4380
      --    begin
4381
      --       begin
4382
      --          ...
4383
      --       end;
4384
 
4385
      --       raise Program_Error;
4386
      --    end;
4387
 
4388
      --  This approach is necessary because the raise must be signalled to the
4389
      --  caller, not handled by any local handler (RM 6.4(11)).
4390
 
4391
      --  Note: we do not need to analyze the constructed sequence here, since
4392
      --  it has no handler, and an attempt to analyze the handled statement
4393
      --  sequence twice is risky in various ways (e.g. the issue of expanding
4394
      --  cleanup actions twice).
4395
 
4396
      elsif Has_Missing_Return (Spec_Id) then
4397
         declare
4398
            Hloc : constant Source_Ptr := Sloc (H);
4399
            Blok : constant Node_Id    :=
4400
                     Make_Block_Statement (Hloc,
4401
                       Handled_Statement_Sequence => H);
4402
            Rais : constant Node_Id    :=
4403
                     Make_Raise_Program_Error (Hloc,
4404
                       Reason => PE_Missing_Return);
4405
 
4406
         begin
4407
            Set_Handled_Statement_Sequence (N,
4408
              Make_Handled_Sequence_Of_Statements (Hloc,
4409
                Statements => New_List (Blok, Rais)));
4410
 
4411
            Push_Scope (Spec_Id);
4412
            Analyze (Blok);
4413
            Analyze (Rais);
4414
            Pop_Scope;
4415
         end;
4416
      end if;
4417
 
4418
      --  If subprogram contains a parameterless recursive call, then we may
4419
      --  have an infinite recursion, so see if we can generate code to check
4420
      --  for this possibility if storage checks are not suppressed.
4421
 
4422
      if Ekind (Spec_Id) = E_Procedure
4423
        and then Has_Recursive_Call (Spec_Id)
4424
        and then not Storage_Checks_Suppressed (Spec_Id)
4425
      then
4426
         Detect_Infinite_Recursion (N, Spec_Id);
4427
      end if;
4428
 
4429
      --  Set to encode entity names in package body before gigi is called
4430
 
4431
      Qualify_Entity_Names (N);
4432
   end Expand_N_Subprogram_Body;
4433
 
4434
   -----------------------------------
4435
   -- Expand_N_Subprogram_Body_Stub --
4436
   -----------------------------------
4437
 
4438
   procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
4439
   begin
4440
      if Present (Corresponding_Body (N)) then
4441
         Expand_N_Subprogram_Body (
4442
           Unit_Declaration_Node (Corresponding_Body (N)));
4443
      end if;
4444
   end Expand_N_Subprogram_Body_Stub;
4445
 
4446
   -------------------------------------
4447
   -- Expand_N_Subprogram_Declaration --
4448
   -------------------------------------
4449
 
4450
   --  If the declaration appears within a protected body, it is a private
4451
   --  operation of the protected type. We must create the corresponding
4452
   --  protected subprogram an associated formals. For a normal protected
4453
   --  operation, this is done when expanding the protected type declaration.
4454
 
4455
   --  If the declaration is for a null procedure, emit null body
4456
 
4457
   procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
4458
      Loc       : constant Source_Ptr := Sloc (N);
4459
      Subp      : constant Entity_Id  := Defining_Entity (N);
4460
      Scop      : constant Entity_Id  := Scope (Subp);
4461
      Prot_Decl : Node_Id;
4462
      Prot_Bod  : Node_Id;
4463
      Prot_Id   : Entity_Id;
4464
 
4465
   begin
4466
      --  Deal with case of protected subprogram. Do not generate protected
4467
      --  operation if operation is flagged as eliminated.
4468
 
4469
      if Is_List_Member (N)
4470
        and then Present (Parent (List_Containing (N)))
4471
        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
4472
        and then Is_Protected_Type (Scop)
4473
      then
4474
         if No (Protected_Body_Subprogram (Subp))
4475
           and then not Is_Eliminated (Subp)
4476
         then
4477
            Prot_Decl :=
4478
              Make_Subprogram_Declaration (Loc,
4479
                Specification =>
4480
                  Build_Protected_Sub_Specification
4481
                    (N, Scop, Unprotected_Mode));
4482
 
4483
            --  The protected subprogram is declared outside of the protected
4484
            --  body. Given that the body has frozen all entities so far, we
4485
            --  analyze the subprogram and perform freezing actions explicitly.
4486
            --  including the generation of an explicit freeze node, to ensure
4487
            --  that gigi has the proper order of elaboration.
4488
            --  If the body is a subunit, the insertion point is before the
4489
            --  stub in the parent.
4490
 
4491
            Prot_Bod := Parent (List_Containing (N));
4492
 
4493
            if Nkind (Parent (Prot_Bod)) = N_Subunit then
4494
               Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
4495
            end if;
4496
 
4497
            Insert_Before (Prot_Bod, Prot_Decl);
4498
            Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
4499
            Set_Has_Delayed_Freeze (Prot_Id);
4500
 
4501
            Push_Scope (Scope (Scop));
4502
            Analyze (Prot_Decl);
4503
            Insert_Actions (N, Freeze_Entity (Prot_Id, Loc));
4504
            Set_Protected_Body_Subprogram (Subp, Prot_Id);
4505
 
4506
            --  Create protected operation as well. Even though the operation
4507
            --  is only accessible within the body, it is possible to make it
4508
            --  available outside of the protected object by using 'Access to
4509
            --  provide a callback, so build protected version in all cases.
4510
 
4511
            Prot_Decl :=
4512
              Make_Subprogram_Declaration (Loc,
4513
                Specification =>
4514
                  Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
4515
            Insert_Before (Prot_Bod, Prot_Decl);
4516
            Analyze (Prot_Decl);
4517
 
4518
            Pop_Scope;
4519
         end if;
4520
 
4521
      --  Ada 2005 (AI-348): Generate body for a null procedure.
4522
      --  In most cases this is superfluous because calls to it
4523
      --  will be automatically inlined, but we definitely need
4524
      --  the body if preconditions for the procedure are present.
4525
 
4526
      elsif Nkind (Specification (N)) = N_Procedure_Specification
4527
        and then Null_Present (Specification (N))
4528
      then
4529
         declare
4530
            Bod : constant Node_Id := Body_To_Inline (N);
4531
 
4532
         begin
4533
            Set_Has_Completion (Subp, False);
4534
            Append_Freeze_Action (Subp, Bod);
4535
 
4536
            --  The body now contains raise statements, so calls to it will
4537
            --  not be inlined.
4538
 
4539
            Set_Is_Inlined (Subp, False);
4540
         end;
4541
      end if;
4542
   end Expand_N_Subprogram_Declaration;
4543
 
4544
   ---------------------------------------
4545
   -- Expand_Protected_Object_Reference --
4546
   ---------------------------------------
4547
 
4548
   function Expand_Protected_Object_Reference
4549
     (N    : Node_Id;
4550
      Scop : Entity_Id) return Node_Id
4551
   is
4552
      Loc   : constant Source_Ptr := Sloc (N);
4553
      Corr  : Entity_Id;
4554
      Rec   : Node_Id;
4555
      Param : Entity_Id;
4556
      Proc  : Entity_Id;
4557
 
4558
   begin
4559
      Rec :=
4560
        Make_Identifier (Loc,
4561
          Chars => Name_uObject);
4562
      Set_Etype (Rec, Corresponding_Record_Type (Scop));
4563
 
4564
      --  Find enclosing protected operation, and retrieve its first parameter,
4565
      --  which denotes the enclosing protected object. If the enclosing
4566
      --  operation is an entry, we are immediately within the protected body,
4567
      --  and we can retrieve the object from the service entries procedure. A
4568
      --  barrier function has the same signature as an entry. A barrier
4569
      --  function is compiled within the protected object, but unlike
4570
      --  protected operations its never needs locks, so that its protected
4571
      --  body subprogram points to itself.
4572
 
4573
      Proc := Current_Scope;
4574
      while Present (Proc)
4575
        and then Scope (Proc) /= Scop
4576
      loop
4577
         Proc := Scope (Proc);
4578
      end loop;
4579
 
4580
      Corr := Protected_Body_Subprogram (Proc);
4581
 
4582
      if No (Corr) then
4583
 
4584
         --  Previous error left expansion incomplete.
4585
         --  Nothing to do on this call.
4586
 
4587
         return Empty;
4588
      end if;
4589
 
4590
      Param :=
4591
        Defining_Identifier
4592
          (First (Parameter_Specifications (Parent (Corr))));
4593
 
4594
      if Is_Subprogram (Proc)
4595
        and then Proc /= Corr
4596
      then
4597
         --  Protected function or procedure
4598
 
4599
         Set_Entity (Rec, Param);
4600
 
4601
         --  Rec is a reference to an entity which will not be in scope when
4602
         --  the call is reanalyzed, and needs no further analysis.
4603
 
4604
         Set_Analyzed (Rec);
4605
 
4606
      else
4607
         --  Entry or barrier function for entry body. The first parameter of
4608
         --  the entry body procedure is pointer to the object. We create a
4609
         --  local variable of the proper type, duplicating what is done to
4610
         --  define _object later on.
4611
 
4612
         declare
4613
            Decls : List_Id;
4614
            Obj_Ptr : constant Entity_Id :=  Make_Defining_Identifier (Loc,
4615
                                               Chars =>
4616
                                                 New_Internal_Name ('T'));
4617
 
4618
         begin
4619
            Decls := New_List (
4620
              Make_Full_Type_Declaration (Loc,
4621
                Defining_Identifier => Obj_Ptr,
4622
                  Type_Definition =>
4623
                     Make_Access_To_Object_Definition (Loc,
4624
                       Subtype_Indication =>
4625
                         New_Reference_To
4626
                      (Corresponding_Record_Type (Scop), Loc))));
4627
 
4628
            Insert_Actions (N, Decls);
4629
            Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
4630
 
4631
            Rec :=
4632
              Make_Explicit_Dereference (Loc,
4633
                Unchecked_Convert_To (Obj_Ptr,
4634
                  New_Occurrence_Of (Param, Loc)));
4635
 
4636
            --  Analyze new actual. Other actuals in calls are already analyzed
4637
            --  and the list of actuals is not reanalyzed after rewriting.
4638
 
4639
            Set_Parent (Rec, N);
4640
            Analyze (Rec);
4641
         end;
4642
      end if;
4643
 
4644
      return Rec;
4645
   end Expand_Protected_Object_Reference;
4646
 
4647
   --------------------------------------
4648
   -- Expand_Protected_Subprogram_Call --
4649
   --------------------------------------
4650
 
4651
   procedure Expand_Protected_Subprogram_Call
4652
     (N    : Node_Id;
4653
      Subp : Entity_Id;
4654
      Scop : Entity_Id)
4655
   is
4656
      Rec   : Node_Id;
4657
 
4658
   begin
4659
      --  If the protected object is not an enclosing scope, this is
4660
      --  an inter-object function call. Inter-object procedure
4661
      --  calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
4662
      --  The call is intra-object only if the subprogram being
4663
      --  called is in the protected body being compiled, and if the
4664
      --  protected object in the call is statically the enclosing type.
4665
      --  The object may be an component of some other data structure,
4666
      --  in which case this must be handled as an inter-object call.
4667
 
4668
      if not In_Open_Scopes (Scop)
4669
        or else not Is_Entity_Name (Name (N))
4670
      then
4671
         if Nkind (Name (N)) = N_Selected_Component then
4672
            Rec := Prefix (Name (N));
4673
 
4674
         else
4675
            pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
4676
            Rec := Prefix (Prefix (Name (N)));
4677
         end if;
4678
 
4679
         Build_Protected_Subprogram_Call (N,
4680
           Name => New_Occurrence_Of (Subp, Sloc (N)),
4681
           Rec =>  Convert_Concurrent (Rec, Etype (Rec)),
4682
           External => True);
4683
 
4684
      else
4685
         Rec := Expand_Protected_Object_Reference (N, Scop);
4686
 
4687
         if No (Rec) then
4688
            return;
4689
         end if;
4690
 
4691
         Build_Protected_Subprogram_Call (N,
4692
           Name     => Name (N),
4693
           Rec      => Rec,
4694
           External => False);
4695
 
4696
      end if;
4697
 
4698
      --  If it is a function call it can appear in elaboration code and
4699
      --  the called entity must be frozen here.
4700
 
4701
      if Ekind (Subp) = E_Function then
4702
         Freeze_Expression (Name (N));
4703
      end if;
4704
 
4705
      --  Analyze and resolve the new call. The actuals have already been
4706
      --  resolved, but expansion of a function call will add extra actuals
4707
      --  if needed. Analysis of a procedure call already includes resolution.
4708
 
4709
      Analyze (N);
4710
 
4711
      if Ekind (Subp) = E_Function then
4712
         Resolve (N, Etype (Subp));
4713
      end if;
4714
   end Expand_Protected_Subprogram_Call;
4715
 
4716
   --------------------------------
4717
   -- Is_Build_In_Place_Function --
4718
   --------------------------------
4719
 
4720
   function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
4721
   begin
4722
      --  For now we test whether E denotes a function or access-to-function
4723
      --  type whose result subtype is inherently limited. Later this test may
4724
      --  be revised to allow composite nonlimited types. Functions with a
4725
      --  foreign convention or whose result type has a foreign convention
4726
      --  never qualify.
4727
 
4728
      if Ekind (E) = E_Function
4729
        or else Ekind (E) = E_Generic_Function
4730
        or else (Ekind (E) = E_Subprogram_Type
4731
                  and then Etype (E) /= Standard_Void_Type)
4732
      then
4733
         --  Note: If you have Convention (C) on an inherently limited type,
4734
         --  you're on your own. That is, the C code will have to be carefully
4735
         --  written to know about the Ada conventions.
4736
 
4737
         if Has_Foreign_Convention (E)
4738
           or else Has_Foreign_Convention (Etype (E))
4739
         then
4740
            return False;
4741
 
4742
         --  In Ada 2005 all functions with an inherently limited return type
4743
         --  must be handled using a build-in-place profile, including the case
4744
         --  of a function with a limited interface result, where the function
4745
         --  may return objects of nonlimited descendants.
4746
 
4747
         else
4748
            return Is_Inherently_Limited_Type (Etype (E))
4749
              and then Ada_Version >= Ada_05
4750
              and then not Debug_Flag_Dot_L;
4751
         end if;
4752
 
4753
      else
4754
         return False;
4755
      end if;
4756
   end Is_Build_In_Place_Function;
4757
 
4758
   -------------------------------------
4759
   -- Is_Build_In_Place_Function_Call --
4760
   -------------------------------------
4761
 
4762
   function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
4763
      Exp_Node    : Node_Id := N;
4764
      Function_Id : Entity_Id;
4765
 
4766
   begin
4767
      --  Step past qualification or unchecked conversion (the latter can occur
4768
      --  in cases of calls to 'Input).
4769
 
4770
      if Nkind_In
4771
           (Exp_Node, N_Qualified_Expression, N_Unchecked_Type_Conversion)
4772
      then
4773
         Exp_Node := Expression (N);
4774
      end if;
4775
 
4776
      if Nkind (Exp_Node) /= N_Function_Call then
4777
         return False;
4778
 
4779
      else
4780
         if Is_Entity_Name (Name (Exp_Node)) then
4781
            Function_Id := Entity (Name (Exp_Node));
4782
 
4783
         elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
4784
            Function_Id := Etype (Name (Exp_Node));
4785
         end if;
4786
 
4787
         return Is_Build_In_Place_Function (Function_Id);
4788
      end if;
4789
   end Is_Build_In_Place_Function_Call;
4790
 
4791
   -----------------------
4792
   -- Freeze_Subprogram --
4793
   -----------------------
4794
 
4795
   procedure Freeze_Subprogram (N : Node_Id) is
4796
      Loc : constant Source_Ptr := Sloc (N);
4797
 
4798
      procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
4799
      --  (Ada 2005): Register a predefined primitive in all the secondary
4800
      --  dispatch tables of its primitive type.
4801
 
4802
      ----------------------------------
4803
      -- Register_Predefined_DT_Entry --
4804
      ----------------------------------
4805
 
4806
      procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
4807
         Iface_DT_Ptr : Elmt_Id;
4808
         Tagged_Typ   : Entity_Id;
4809
         Thunk_Id     : Entity_Id;
4810
         Thunk_Code   : Node_Id;
4811
 
4812
      begin
4813
         Tagged_Typ := Find_Dispatching_Type (Prim);
4814
 
4815
         if No (Access_Disp_Table (Tagged_Typ))
4816
           or else not Has_Interfaces (Tagged_Typ)
4817
           or else not RTE_Available (RE_Interface_Tag)
4818
           or else Restriction_Active (No_Dispatching_Calls)
4819
         then
4820
            return;
4821
         end if;
4822
 
4823
         --  Skip the first two access-to-dispatch-table pointers since they
4824
         --  leads to the primary dispatch table (predefined DT and user
4825
         --  defined DT). We are only concerned with the secondary dispatch
4826
         --  table pointers. Note that the access-to- dispatch-table pointer
4827
         --  corresponds to the first implemented interface retrieved below.
4828
 
4829
         Iface_DT_Ptr :=
4830
           Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
4831
 
4832
         while Present (Iface_DT_Ptr)
4833
            and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
4834
         loop
4835
            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
4836
            Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
4837
 
4838
            if Present (Thunk_Code) then
4839
               Insert_Actions_After (N, New_List (
4840
                 Thunk_Code,
4841
 
4842
                 Build_Set_Predefined_Prim_Op_Address (Loc,
4843
                   Tag_Node =>
4844
                     New_Reference_To (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
4845
                   Position => DT_Position (Prim),
4846
                   Address_Node =>
4847
                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
4848
                       Make_Attribute_Reference (Loc,
4849
                         Prefix         => New_Reference_To (Thunk_Id, Loc),
4850
                         Attribute_Name => Name_Unrestricted_Access))),
4851
 
4852
                 Build_Set_Predefined_Prim_Op_Address (Loc,
4853
                   Tag_Node =>
4854
                     New_Reference_To
4855
                      (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
4856
                       Loc),
4857
                   Position => DT_Position (Prim),
4858
                   Address_Node =>
4859
                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
4860
                       Make_Attribute_Reference (Loc,
4861
                         Prefix         => New_Reference_To (Prim, Loc),
4862
                         Attribute_Name => Name_Unrestricted_Access)))));
4863
            end if;
4864
 
4865
            --  Skip the tag of the predefined primitives dispatch table
4866
 
4867
            Next_Elmt (Iface_DT_Ptr);
4868
            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
4869
 
4870
            --  Skip the tag of the no-thunks dispatch table
4871
 
4872
            Next_Elmt (Iface_DT_Ptr);
4873
            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
4874
 
4875
            --  Skip the tag of the predefined primitives no-thunks dispatch
4876
            --  table
4877
 
4878
            Next_Elmt (Iface_DT_Ptr);
4879
            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
4880
 
4881
            Next_Elmt (Iface_DT_Ptr);
4882
         end loop;
4883
      end Register_Predefined_DT_Entry;
4884
 
4885
      --  Local variables
4886
 
4887
      Subp : constant Entity_Id := Entity (N);
4888
 
4889
   --  Start of processing for Freeze_Subprogram
4890
 
4891
   begin
4892
      --  We suppress the initialization of the dispatch table entry when
4893
      --  VM_Target because the dispatching mechanism is handled internally
4894
      --  by the VM.
4895
 
4896
      if Is_Dispatching_Operation (Subp)
4897
        and then not Is_Abstract_Subprogram (Subp)
4898
        and then Present (DTC_Entity (Subp))
4899
        and then Present (Scope (DTC_Entity (Subp)))
4900
        and then Tagged_Type_Expansion
4901
        and then not Restriction_Active (No_Dispatching_Calls)
4902
        and then RTE_Available (RE_Tag)
4903
      then
4904
         declare
4905
            Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
4906
 
4907
         begin
4908
            --  Handle private overridden primitives
4909
 
4910
            if not Is_CPP_Class (Typ) then
4911
               Check_Overriding_Operation (Subp);
4912
            end if;
4913
 
4914
            --  We assume that imported CPP primitives correspond with objects
4915
            --  whose constructor is in the CPP side; therefore we don't need
4916
            --  to generate code to register them in the dispatch table.
4917
 
4918
            if Is_CPP_Class (Typ) then
4919
               null;
4920
 
4921
            --  Handle CPP primitives found in derivations of CPP_Class types.
4922
            --  These primitives must have been inherited from some parent, and
4923
            --  there is no need to register them in the dispatch table because
4924
            --  Build_Inherit_Prims takes care of the initialization of these
4925
            --  slots.
4926
 
4927
            elsif Is_Imported (Subp)
4928
                    and then (Convention (Subp) = Convention_CPP
4929
                                or else Convention (Subp) = Convention_C)
4930
            then
4931
               null;
4932
 
4933
            --  Generate code to register the primitive in non statically
4934
            --  allocated dispatch tables
4935
 
4936
            elsif not Static_Dispatch_Tables
4937
              or else not
4938
                Is_Library_Level_Tagged_Type (Scope (DTC_Entity (Subp)))
4939
            then
4940
               --  When a primitive is frozen, enter its name in its dispatch
4941
               --  table slot.
4942
 
4943
               if not Is_Interface (Typ)
4944
                 or else Present (Interface_Alias (Subp))
4945
               then
4946
                  if Is_Predefined_Dispatching_Operation (Subp) then
4947
                     Register_Predefined_DT_Entry (Subp);
4948
                  end if;
4949
 
4950
                  Insert_Actions_After (N,
4951
                    Register_Primitive (Loc, Prim => Subp));
4952
               end if;
4953
            end if;
4954
         end;
4955
      end if;
4956
 
4957
      --  Mark functions that return by reference. Note that it cannot be part
4958
      --  of the normal semantic analysis of the spec since the underlying
4959
      --  returned type may not be known yet (for private types).
4960
 
4961
      declare
4962
         Typ  : constant Entity_Id := Etype (Subp);
4963
         Utyp : constant Entity_Id := Underlying_Type (Typ);
4964
      begin
4965
         if Is_Inherently_Limited_Type (Typ) then
4966
            Set_Returns_By_Ref (Subp);
4967
         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4968
            Set_Returns_By_Ref (Subp);
4969
         end if;
4970
      end;
4971
   end Freeze_Subprogram;
4972
 
4973
   -----------------------
4974
   -- Is_Null_Procedure --
4975
   -----------------------
4976
 
4977
   function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
4978
      Decl : constant Node_Id := Unit_Declaration_Node (Subp);
4979
 
4980
   begin
4981
      if Ekind (Subp) /= E_Procedure then
4982
         return False;
4983
 
4984
      --  Check if this is a declared null procedure
4985
 
4986
      elsif Nkind (Decl) = N_Subprogram_Declaration then
4987
         if not Null_Present (Specification (Decl)) then
4988
            return False;
4989
 
4990
         elsif No (Body_To_Inline (Decl)) then
4991
            return False;
4992
 
4993
         --  Check if the body contains only a null statement, followed by
4994
         --  the return statement added during expansion.
4995
 
4996
         else
4997
            declare
4998
               Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
4999
 
5000
               Stat  : Node_Id;
5001
               Stat2 : Node_Id;
5002
 
5003
            begin
5004
               if Nkind (Orig_Bod) /= N_Subprogram_Body then
5005
                  return False;
5006
               else
5007
                  --  We must skip SCIL nodes because they are currently
5008
                  --  implemented as special N_Null_Statement nodes.
5009
 
5010
                  Stat :=
5011
                     First_Non_SCIL_Node
5012
                       (Statements (Handled_Statement_Sequence (Orig_Bod)));
5013
                  Stat2 := Next_Non_SCIL_Node (Stat);
5014
 
5015
                  return
5016
                     Is_Empty_List (Declarations (Orig_Bod))
5017
                       and then Nkind (Stat) = N_Null_Statement
5018
                       and then
5019
                        (No (Stat2)
5020
                          or else
5021
                            (Nkind (Stat2) = N_Simple_Return_Statement
5022
                              and then No (Next (Stat2))));
5023
               end if;
5024
            end;
5025
         end if;
5026
 
5027
      else
5028
         return False;
5029
      end if;
5030
   end Is_Null_Procedure;
5031
 
5032
   -------------------------------------------
5033
   -- Make_Build_In_Place_Call_In_Allocator --
5034
   -------------------------------------------
5035
 
5036
   procedure Make_Build_In_Place_Call_In_Allocator
5037
     (Allocator     : Node_Id;
5038
      Function_Call : Node_Id)
5039
   is
5040
      Loc               : Source_Ptr;
5041
      Func_Call         : Node_Id := Function_Call;
5042
      Function_Id       : Entity_Id;
5043
      Result_Subt       : Entity_Id;
5044
      Acc_Type          : constant Entity_Id := Etype (Allocator);
5045
      New_Allocator     : Node_Id;
5046
      Return_Obj_Access : Entity_Id;
5047
 
5048
   begin
5049
      --  Step past qualification or unchecked conversion (the latter can occur
5050
      --  in cases of calls to 'Input).
5051
 
5052
      if Nkind_In (Func_Call,
5053
                   N_Qualified_Expression,
5054
                   N_Unchecked_Type_Conversion)
5055
      then
5056
         Func_Call := Expression (Func_Call);
5057
      end if;
5058
 
5059
      --  If the call has already been processed to add build-in-place actuals
5060
      --  then return. This should not normally occur in an allocator context,
5061
      --  but we add the protection as a defensive measure.
5062
 
5063
      if Is_Expanded_Build_In_Place_Call (Func_Call) then
5064
         return;
5065
      end if;
5066
 
5067
      --  Mark the call as processed as a build-in-place call
5068
 
5069
      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5070
 
5071
      Loc := Sloc (Function_Call);
5072
 
5073
      if Is_Entity_Name (Name (Func_Call)) then
5074
         Function_Id := Entity (Name (Func_Call));
5075
 
5076
      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5077
         Function_Id := Etype (Name (Func_Call));
5078
 
5079
      else
5080
         raise Program_Error;
5081
      end if;
5082
 
5083
      Result_Subt := Etype (Function_Id);
5084
 
5085
      --  When the result subtype is constrained, the return object must be
5086
      --  allocated on the caller side, and access to it is passed to the
5087
      --  function.
5088
 
5089
      --  Here and in related routines, we must examine the full view of the
5090
      --  type, because the view at the point of call may differ from that
5091
      --  that in the function body, and the expansion mechanism depends on
5092
      --  the characteristics of the full view.
5093
 
5094
      if Is_Constrained (Underlying_Type (Result_Subt)) then
5095
 
5096
         --  Replace the initialized allocator of form "new T'(Func (...))"
5097
         --  with an uninitialized allocator of form "new T", where T is the
5098
         --  result subtype of the called function. The call to the function
5099
         --  is handled separately further below.
5100
 
5101
         New_Allocator :=
5102
           Make_Allocator (Loc,
5103
             Expression => New_Reference_To (Result_Subt, Loc));
5104
         Set_No_Initialization (New_Allocator);
5105
 
5106
         --  Copy attributes to new allocator. Note that the new allocator
5107
         --  logically comes from source if the original one did, so copy the
5108
         --  relevant flag. This ensures proper treatment of the restriction
5109
         --  No_Implicit_Heap_Allocations in this case.
5110
 
5111
         Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
5112
         Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
5113
         Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
5114
 
5115
         Rewrite (Allocator, New_Allocator);
5116
 
5117
         --  Create a new access object and initialize it to the result of the
5118
         --  new uninitialized allocator.
5119
 
5120
         Return_Obj_Access :=
5121
           Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
5122
         Set_Etype (Return_Obj_Access, Acc_Type);
5123
 
5124
         Insert_Action (Allocator,
5125
           Make_Object_Declaration (Loc,
5126
             Defining_Identifier => Return_Obj_Access,
5127
             Object_Definition   => New_Reference_To (Acc_Type, Loc),
5128
             Expression          => Relocate_Node (Allocator)));
5129
 
5130
         --  When the function has a controlling result, an allocation-form
5131
         --  parameter must be passed indicating that the caller is allocating
5132
         --  the result object. This is needed because such a function can be
5133
         --  called as a dispatching operation and must be treated similarly
5134
         --  to functions with unconstrained result subtypes.
5135
 
5136
         Add_Alloc_Form_Actual_To_Build_In_Place_Call
5137
           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5138
 
5139
         Add_Final_List_Actual_To_Build_In_Place_Call
5140
           (Func_Call, Function_Id, Acc_Type);
5141
 
5142
         Add_Task_Actuals_To_Build_In_Place_Call
5143
           (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
5144
 
5145
         --  Add an implicit actual to the function call that provides access
5146
         --  to the allocated object. An unchecked conversion to the (specific)
5147
         --  result subtype of the function is inserted to handle cases where
5148
         --  the access type of the allocator has a class-wide designated type.
5149
 
5150
         Add_Access_Actual_To_Build_In_Place_Call
5151
           (Func_Call,
5152
            Function_Id,
5153
            Make_Unchecked_Type_Conversion (Loc,
5154
              Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5155
              Expression   =>
5156
                Make_Explicit_Dereference (Loc,
5157
                  Prefix => New_Reference_To (Return_Obj_Access, Loc))));
5158
 
5159
      --  When the result subtype is unconstrained, the function itself must
5160
      --  perform the allocation of the return object, so we pass parameters
5161
      --  indicating that. We don't yet handle the case where the allocation
5162
      --  must be done in a user-defined storage pool, which will require
5163
      --  passing another actual or two to provide allocation/deallocation
5164
      --  operations. ???
5165
 
5166
      else
5167
 
5168
         --  Pass an allocation parameter indicating that the function should
5169
         --  allocate its result on the heap.
5170
 
5171
         Add_Alloc_Form_Actual_To_Build_In_Place_Call
5172
           (Func_Call, Function_Id, Alloc_Form => Global_Heap);
5173
 
5174
         Add_Final_List_Actual_To_Build_In_Place_Call
5175
           (Func_Call, Function_Id, Acc_Type);
5176
 
5177
         Add_Task_Actuals_To_Build_In_Place_Call
5178
           (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
5179
 
5180
         --  The caller does not provide the return object in this case, so we
5181
         --  have to pass null for the object access actual.
5182
 
5183
         Add_Access_Actual_To_Build_In_Place_Call
5184
           (Func_Call, Function_Id, Return_Object => Empty);
5185
      end if;
5186
 
5187
      --  Finally, replace the allocator node with a reference to the result
5188
      --  of the function call itself (which will effectively be an access
5189
      --  to the object created by the allocator).
5190
 
5191
      Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
5192
      Analyze_And_Resolve (Allocator, Acc_Type);
5193
   end Make_Build_In_Place_Call_In_Allocator;
5194
 
5195
   ---------------------------------------------------
5196
   -- Make_Build_In_Place_Call_In_Anonymous_Context --
5197
   ---------------------------------------------------
5198
 
5199
   procedure Make_Build_In_Place_Call_In_Anonymous_Context
5200
     (Function_Call : Node_Id)
5201
   is
5202
      Loc             : Source_Ptr;
5203
      Func_Call       : Node_Id := Function_Call;
5204
      Function_Id     : Entity_Id;
5205
      Result_Subt     : Entity_Id;
5206
      Return_Obj_Id   : Entity_Id;
5207
      Return_Obj_Decl : Entity_Id;
5208
 
5209
   begin
5210
      --  Step past qualification or unchecked conversion (the latter can occur
5211
      --  in cases of calls to 'Input).
5212
 
5213
      if Nkind_In (Func_Call, N_Qualified_Expression,
5214
                              N_Unchecked_Type_Conversion)
5215
      then
5216
         Func_Call := Expression (Func_Call);
5217
      end if;
5218
 
5219
      --  If the call has already been processed to add build-in-place actuals
5220
      --  then return. One place this can occur is for calls to build-in-place
5221
      --  functions that occur within a call to a protected operation, where
5222
      --  due to rewriting and expansion of the protected call there can be
5223
      --  more than one call to Expand_Actuals for the same set of actuals.
5224
 
5225
      if Is_Expanded_Build_In_Place_Call (Func_Call) then
5226
         return;
5227
      end if;
5228
 
5229
      --  Mark the call as processed as a build-in-place call
5230
 
5231
      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5232
 
5233
      Loc := Sloc (Function_Call);
5234
 
5235
      if Is_Entity_Name (Name (Func_Call)) then
5236
         Function_Id := Entity (Name (Func_Call));
5237
 
5238
      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5239
         Function_Id := Etype (Name (Func_Call));
5240
 
5241
      else
5242
         raise Program_Error;
5243
      end if;
5244
 
5245
      Result_Subt := Etype (Function_Id);
5246
 
5247
      --  When the result subtype is constrained, an object of the subtype is
5248
      --  declared and an access value designating it is passed as an actual.
5249
 
5250
      if Is_Constrained (Underlying_Type (Result_Subt)) then
5251
 
5252
         --  Create a temporary object to hold the function result
5253
 
5254
         Return_Obj_Id :=
5255
           Make_Defining_Identifier (Loc,
5256
             Chars => New_Internal_Name ('R'));
5257
         Set_Etype (Return_Obj_Id, Result_Subt);
5258
 
5259
         Return_Obj_Decl :=
5260
           Make_Object_Declaration (Loc,
5261
             Defining_Identifier => Return_Obj_Id,
5262
             Aliased_Present     => True,
5263
             Object_Definition   => New_Reference_To (Result_Subt, Loc));
5264
 
5265
         Set_No_Initialization (Return_Obj_Decl);
5266
 
5267
         Insert_Action (Func_Call, Return_Obj_Decl);
5268
 
5269
         --  When the function has a controlling result, an allocation-form
5270
         --  parameter must be passed indicating that the caller is allocating
5271
         --  the result object. This is needed because such a function can be
5272
         --  called as a dispatching operation and must be treated similarly
5273
         --  to functions with unconstrained result subtypes.
5274
 
5275
         Add_Alloc_Form_Actual_To_Build_In_Place_Call
5276
           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5277
 
5278
         Add_Final_List_Actual_To_Build_In_Place_Call
5279
           (Func_Call, Function_Id, Acc_Type => Empty);
5280
 
5281
         Add_Task_Actuals_To_Build_In_Place_Call
5282
           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5283
 
5284
         --  Add an implicit actual to the function call that provides access
5285
         --  to the caller's return object.
5286
 
5287
         Add_Access_Actual_To_Build_In_Place_Call
5288
           (Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
5289
 
5290
      --  When the result subtype is unconstrained, the function must allocate
5291
      --  the return object in the secondary stack, so appropriate implicit
5292
      --  parameters are added to the call to indicate that. A transient
5293
      --  scope is established to ensure eventual cleanup of the result.
5294
 
5295
      else
5296
 
5297
         --  Pass an allocation parameter indicating that the function should
5298
         --  allocate its result on the secondary stack.
5299
 
5300
         Add_Alloc_Form_Actual_To_Build_In_Place_Call
5301
           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
5302
 
5303
         Add_Final_List_Actual_To_Build_In_Place_Call
5304
           (Func_Call, Function_Id, Acc_Type => Empty);
5305
 
5306
         Add_Task_Actuals_To_Build_In_Place_Call
5307
           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5308
 
5309
         --  Pass a null value to the function since no return object is
5310
         --  available on the caller side.
5311
 
5312
         Add_Access_Actual_To_Build_In_Place_Call
5313
           (Func_Call, Function_Id, Empty);
5314
 
5315
         Establish_Transient_Scope (Func_Call, Sec_Stack => True);
5316
      end if;
5317
   end Make_Build_In_Place_Call_In_Anonymous_Context;
5318
 
5319
   --------------------------------------------
5320
   -- Make_Build_In_Place_Call_In_Assignment --
5321
   --------------------------------------------
5322
 
5323
   procedure Make_Build_In_Place_Call_In_Assignment
5324
     (Assign        : Node_Id;
5325
      Function_Call : Node_Id)
5326
   is
5327
      Lhs          : constant Node_Id := Name (Assign);
5328
      Func_Call    : Node_Id := Function_Call;
5329
      Func_Id      : Entity_Id;
5330
      Loc          : Source_Ptr;
5331
      Obj_Decl     : Node_Id;
5332
      Obj_Id       : Entity_Id;
5333
      Ptr_Typ      : Entity_Id;
5334
      Ptr_Typ_Decl : Node_Id;
5335
      Result_Subt  : Entity_Id;
5336
      Target       : Node_Id;
5337
 
5338
   begin
5339
      --  Step past qualification or unchecked conversion (the latter can occur
5340
      --  in cases of calls to 'Input).
5341
 
5342
      if Nkind_In (Func_Call, N_Qualified_Expression,
5343
                              N_Unchecked_Type_Conversion)
5344
      then
5345
         Func_Call := Expression (Func_Call);
5346
      end if;
5347
 
5348
      --  If the call has already been processed to add build-in-place actuals
5349
      --  then return. This should not normally occur in an assignment context,
5350
      --  but we add the protection as a defensive measure.
5351
 
5352
      if Is_Expanded_Build_In_Place_Call (Func_Call) then
5353
         return;
5354
      end if;
5355
 
5356
      --  Mark the call as processed as a build-in-place call
5357
 
5358
      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5359
 
5360
      Loc := Sloc (Function_Call);
5361
 
5362
      if Is_Entity_Name (Name (Func_Call)) then
5363
         Func_Id := Entity (Name (Func_Call));
5364
 
5365
      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5366
         Func_Id := Etype (Name (Func_Call));
5367
 
5368
      else
5369
         raise Program_Error;
5370
      end if;
5371
 
5372
      Result_Subt := Etype (Func_Id);
5373
 
5374
      --  When the result subtype is unconstrained, an additional actual must
5375
      --  be passed to indicate that the caller is providing the return object.
5376
      --  This parameter must also be passed when the called function has a
5377
      --  controlling result, because dispatching calls to the function needs
5378
      --  to be treated effectively the same as calls to class-wide functions.
5379
 
5380
      Add_Alloc_Form_Actual_To_Build_In_Place_Call
5381
        (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
5382
 
5383
      --  If Lhs is a selected component, then pass it along so that its prefix
5384
      --  object will be used as the source of the finalization list.
5385
 
5386
      if Nkind (Lhs) = N_Selected_Component then
5387
         Add_Final_List_Actual_To_Build_In_Place_Call
5388
           (Func_Call, Func_Id, Acc_Type => Empty, Sel_Comp => Lhs);
5389
      else
5390
         Add_Final_List_Actual_To_Build_In_Place_Call
5391
           (Func_Call, Func_Id, Acc_Type => Empty);
5392
      end if;
5393
 
5394
      Add_Task_Actuals_To_Build_In_Place_Call
5395
        (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
5396
 
5397
      --  Add an implicit actual to the function call that provides access to
5398
      --  the caller's return object.
5399
 
5400
      Add_Access_Actual_To_Build_In_Place_Call
5401
        (Func_Call,
5402
         Func_Id,
5403
         Make_Unchecked_Type_Conversion (Loc,
5404
           Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5405
           Expression   => Relocate_Node (Lhs)));
5406
 
5407
      --  Create an access type designating the function's result subtype
5408
 
5409
      Ptr_Typ :=
5410
        Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
5411
 
5412
      Ptr_Typ_Decl :=
5413
        Make_Full_Type_Declaration (Loc,
5414
          Defining_Identifier => Ptr_Typ,
5415
          Type_Definition =>
5416
            Make_Access_To_Object_Definition (Loc,
5417
              All_Present => True,
5418
              Subtype_Indication =>
5419
                New_Reference_To (Result_Subt, Loc)));
5420
      Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
5421
 
5422
      --  Finally, create an access object initialized to a reference to the
5423
      --  function call.
5424
 
5425
      Obj_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
5426
      Set_Etype (Obj_Id, Ptr_Typ);
5427
 
5428
      Obj_Decl :=
5429
        Make_Object_Declaration (Loc,
5430
          Defining_Identifier => Obj_Id,
5431
          Object_Definition =>
5432
            New_Reference_To (Ptr_Typ, Loc),
5433
          Expression =>
5434
            Make_Reference (Loc,
5435
              Prefix => Relocate_Node (Func_Call)));
5436
      Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
5437
 
5438
      Rewrite (Assign, Make_Null_Statement (Loc));
5439
 
5440
      --  Retrieve the target of the assignment
5441
 
5442
      if Nkind (Lhs) = N_Selected_Component then
5443
         Target := Selector_Name (Lhs);
5444
      elsif Nkind (Lhs) = N_Type_Conversion then
5445
         Target := Expression (Lhs);
5446
      else
5447
         Target := Lhs;
5448
      end if;
5449
 
5450
      --  If we are assigning to a return object or this is an expression of
5451
      --  an extension aggregate, the target should either be an identifier
5452
      --  or a simple expression. All other cases imply a different scenario.
5453
 
5454
      if Nkind (Target) in N_Has_Entity then
5455
         Target := Entity (Target);
5456
      else
5457
         return;
5458
      end if;
5459
 
5460
      --  When the target of the assignment is a return object of an enclosing
5461
      --  build-in-place function and also requires finalization, the list
5462
      --  generated for the assignment must be moved to that of the enclosing
5463
      --  function.
5464
 
5465
      --    function Enclosing_BIP_Function return Ctrl_Typ is
5466
      --    begin
5467
      --       return (Ctrl_Parent_Part => BIP_Function with ...);
5468
      --    end Enclosing_BIP_Function;
5469
 
5470
      if Is_Return_Object (Target)
5471
        and then Needs_Finalization (Etype (Target))
5472
        and then Needs_Finalization (Result_Subt)
5473
      then
5474
         declare
5475
            Obj_List  : constant Node_Id := Find_Final_List (Obj_Id);
5476
            Encl_List : Node_Id;
5477
            Encl_Scop : Entity_Id;
5478
 
5479
         begin
5480
            Encl_Scop := Scope (Target);
5481
 
5482
            --  Locate the scope of the extended return statement
5483
 
5484
            while Present (Encl_Scop)
5485
              and then Ekind (Encl_Scop) /= E_Return_Statement
5486
            loop
5487
               Encl_Scop := Scope (Encl_Scop);
5488
            end loop;
5489
 
5490
            --  A return object should always be enclosed by a return statement
5491
            --  scope at some level.
5492
 
5493
            pragma Assert (Present (Encl_Scop));
5494
 
5495
            Encl_List :=
5496
              Make_Attribute_Reference (Loc,
5497
                Prefix =>
5498
                  New_Reference_To (
5499
                    Finalization_Chain_Entity (Encl_Scop), Loc),
5500
                Attribute_Name => Name_Unrestricted_Access);
5501
 
5502
            --  Generate a call to move final list
5503
 
5504
            Insert_After_And_Analyze (Obj_Decl,
5505
              Make_Procedure_Call_Statement (Loc,
5506
                Name =>
5507
                  New_Reference_To (RTE (RE_Move_Final_List), Loc),
5508
                Parameter_Associations => New_List (Obj_List, Encl_List)));
5509
         end;
5510
      end if;
5511
   end Make_Build_In_Place_Call_In_Assignment;
5512
 
5513
   ----------------------------------------------------
5514
   -- Make_Build_In_Place_Call_In_Object_Declaration --
5515
   ----------------------------------------------------
5516
 
5517
   procedure Make_Build_In_Place_Call_In_Object_Declaration
5518
     (Object_Decl   : Node_Id;
5519
      Function_Call : Node_Id)
5520
   is
5521
      Loc             : Source_Ptr;
5522
      Obj_Def_Id      : constant Entity_Id :=
5523
                          Defining_Identifier (Object_Decl);
5524
 
5525
      Func_Call       : Node_Id := Function_Call;
5526
      Function_Id     : Entity_Id;
5527
      Result_Subt     : Entity_Id;
5528
      Caller_Object   : Node_Id;
5529
      Call_Deref      : Node_Id;
5530
      Ref_Type        : Entity_Id;
5531
      Ptr_Typ_Decl    : Node_Id;
5532
      Def_Id          : Entity_Id;
5533
      New_Expr        : Node_Id;
5534
      Enclosing_Func  : Entity_Id;
5535
      Pass_Caller_Acc : Boolean := False;
5536
 
5537
   begin
5538
      --  Step past qualification or unchecked conversion (the latter can occur
5539
      --  in cases of calls to 'Input).
5540
 
5541
      if Nkind_In (Func_Call, N_Qualified_Expression,
5542
                              N_Unchecked_Type_Conversion)
5543
      then
5544
         Func_Call := Expression (Func_Call);
5545
      end if;
5546
 
5547
      --  If the call has already been processed to add build-in-place actuals
5548
      --  then return. This should not normally occur in an object declaration,
5549
      --  but we add the protection as a defensive measure.
5550
 
5551
      if Is_Expanded_Build_In_Place_Call (Func_Call) then
5552
         return;
5553
      end if;
5554
 
5555
      --  Mark the call as processed as a build-in-place call
5556
 
5557
      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
5558
 
5559
      Loc := Sloc (Function_Call);
5560
 
5561
      if Is_Entity_Name (Name (Func_Call)) then
5562
         Function_Id := Entity (Name (Func_Call));
5563
 
5564
      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
5565
         Function_Id := Etype (Name (Func_Call));
5566
 
5567
      else
5568
         raise Program_Error;
5569
      end if;
5570
 
5571
      Result_Subt := Etype (Function_Id);
5572
 
5573
      --  In the constrained case, add an implicit actual to the function call
5574
      --  that provides access to the declared object. An unchecked conversion
5575
      --  to the (specific) result type of the function is inserted to handle
5576
      --  the case where the object is declared with a class-wide type.
5577
 
5578
      if Is_Constrained (Underlying_Type (Result_Subt)) then
5579
         Caller_Object :=
5580
            Make_Unchecked_Type_Conversion (Loc,
5581
              Subtype_Mark => New_Reference_To (Result_Subt, Loc),
5582
              Expression   => New_Reference_To (Obj_Def_Id, Loc));
5583
 
5584
         --  When the function has a controlling result, an allocation-form
5585
         --  parameter must be passed indicating that the caller is allocating
5586
         --  the result object. This is needed because such a function can be
5587
         --  called as a dispatching operation and must be treated similarly
5588
         --  to functions with unconstrained result subtypes.
5589
 
5590
         Add_Alloc_Form_Actual_To_Build_In_Place_Call
5591
           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5592
 
5593
      --  If the function's result subtype is unconstrained and the object is
5594
      --  a return object of an enclosing build-in-place function, then the
5595
      --  implicit build-in-place parameters of the enclosing function must be
5596
      --  passed along to the called function. (Unfortunately, this won't cover
5597
      --  the case of extension aggregates where the ancestor part is a build-
5598
      --  in-place unconstrained function call that should be passed along the
5599
      --  caller's parameters. Currently those get mishandled by reassigning
5600
      --  the result of the call to the aggregate return object, when the call
5601
      --  result should really be directly built in place in the aggregate and
5602
      --  not built in a temporary. ???)
5603
 
5604
      elsif Is_Return_Object (Defining_Identifier (Object_Decl)) then
5605
         Pass_Caller_Acc := True;
5606
 
5607
         Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
5608
 
5609
         --  If the enclosing function has a constrained result type, then
5610
         --  caller allocation will be used.
5611
 
5612
         if Is_Constrained (Etype (Enclosing_Func)) then
5613
            Add_Alloc_Form_Actual_To_Build_In_Place_Call
5614
              (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
5615
 
5616
         --  Otherwise, when the enclosing function has an unconstrained result
5617
         --  type, the BIP_Alloc_Form formal of the enclosing function must be
5618
         --  passed along to the callee.
5619
 
5620
         else
5621
            Add_Alloc_Form_Actual_To_Build_In_Place_Call
5622
              (Func_Call,
5623
               Function_Id,
5624
               Alloc_Form_Exp =>
5625
                 New_Reference_To
5626
                   (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
5627
                    Loc));
5628
         end if;
5629
 
5630
         --  Retrieve the BIPacc formal from the enclosing function and convert
5631
         --  it to the access type of the callee's BIP_Object_Access formal.
5632
 
5633
         Caller_Object :=
5634
            Make_Unchecked_Type_Conversion (Loc,
5635
              Subtype_Mark =>
5636
                New_Reference_To
5637
                  (Etype
5638
                     (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
5639
                   Loc),
5640
              Expression   =>
5641
                New_Reference_To
5642
                  (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
5643
                   Loc));
5644
 
5645
      --  In other unconstrained cases, pass an indication to do the allocation
5646
      --  on the secondary stack and set Caller_Object to Empty so that a null
5647
      --  value will be passed for the caller's object address. A transient
5648
      --  scope is established to ensure eventual cleanup of the result.
5649
 
5650
      else
5651
         Add_Alloc_Form_Actual_To_Build_In_Place_Call
5652
           (Func_Call,
5653
            Function_Id,
5654
            Alloc_Form => Secondary_Stack);
5655
         Caller_Object := Empty;
5656
 
5657
         Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
5658
      end if;
5659
 
5660
      Add_Final_List_Actual_To_Build_In_Place_Call
5661
        (Func_Call, Function_Id, Acc_Type => Empty);
5662
 
5663
      if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
5664
        and then Has_Task (Result_Subt)
5665
      then
5666
         Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
5667
 
5668
         --  Here we're passing along the master that was passed in to this
5669
         --  function.
5670
 
5671
         Add_Task_Actuals_To_Build_In_Place_Call
5672
           (Func_Call, Function_Id,
5673
            Master_Actual =>
5674
              New_Reference_To
5675
                (Build_In_Place_Formal (Enclosing_Func, BIP_Master), Loc));
5676
 
5677
      else
5678
         Add_Task_Actuals_To_Build_In_Place_Call
5679
           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
5680
      end if;
5681
 
5682
      Add_Access_Actual_To_Build_In_Place_Call
5683
        (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
5684
 
5685
      --  Create an access type designating the function's result subtype
5686
 
5687
      Ref_Type :=
5688
        Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
5689
 
5690
      Ptr_Typ_Decl :=
5691
        Make_Full_Type_Declaration (Loc,
5692
          Defining_Identifier => Ref_Type,
5693
          Type_Definition =>
5694
            Make_Access_To_Object_Definition (Loc,
5695
              All_Present => True,
5696
              Subtype_Indication =>
5697
                New_Reference_To (Result_Subt, Loc)));
5698
 
5699
      --  The access type and its accompanying object must be inserted after
5700
      --  the object declaration in the constrained case, so that the function
5701
      --  call can be passed access to the object. In the unconstrained case,
5702
      --  the access type and object must be inserted before the object, since
5703
      --  the object declaration is rewritten to be a renaming of a dereference
5704
      --  of the access object.
5705
 
5706
      if Is_Constrained (Underlying_Type (Result_Subt)) then
5707
         Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
5708
      else
5709
         Insert_Action (Object_Decl, Ptr_Typ_Decl);
5710
      end if;
5711
 
5712
      --  Finally, create an access object initialized to a reference to the
5713
      --  function call.
5714
 
5715
      Def_Id :=
5716
        Make_Defining_Identifier (Loc,
5717
          Chars => New_Internal_Name ('R'));
5718
      Set_Etype (Def_Id, Ref_Type);
5719
 
5720
      New_Expr :=
5721
        Make_Reference (Loc,
5722
          Prefix => Relocate_Node (Func_Call));
5723
 
5724
      Insert_After_And_Analyze (Ptr_Typ_Decl,
5725
        Make_Object_Declaration (Loc,
5726
          Defining_Identifier => Def_Id,
5727
          Object_Definition   => New_Reference_To (Ref_Type, Loc),
5728
          Expression          => New_Expr));
5729
 
5730
      if Is_Constrained (Underlying_Type (Result_Subt)) then
5731
         Set_Expression (Object_Decl, Empty);
5732
         Set_No_Initialization (Object_Decl);
5733
 
5734
      --  In case of an unconstrained result subtype, rewrite the object
5735
      --  declaration as an object renaming where the renamed object is a
5736
      --  dereference of <function_Call>'reference:
5737
      --
5738
      --      Obj : Subt renames <function_call>'Ref.all;
5739
 
5740
      else
5741
         Call_Deref :=
5742
           Make_Explicit_Dereference (Loc,
5743
             Prefix => New_Reference_To (Def_Id, Loc));
5744
 
5745
         Rewrite (Object_Decl,
5746
           Make_Object_Renaming_Declaration (Loc,
5747
             Defining_Identifier => Make_Defining_Identifier (Loc,
5748
                                      New_Internal_Name ('D')),
5749
             Access_Definition   => Empty,
5750
             Subtype_Mark        => New_Occurrence_Of (Result_Subt, Loc),
5751
             Name                => Call_Deref));
5752
 
5753
         Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
5754
 
5755
         Analyze (Object_Decl);
5756
 
5757
         --  Replace the internal identifier of the renaming declaration's
5758
         --  entity with identifier of the original object entity. We also have
5759
         --  to exchange the entities containing their defining identifiers to
5760
         --  ensure the correct replacement of the object declaration by the
5761
         --  object renaming declaration to avoid homograph conflicts (since
5762
         --  the object declaration's defining identifier was already entered
5763
         --  in current scope). The Next_Entity links of the two entities also
5764
         --  have to be swapped since the entities are part of the return
5765
         --  scope's entity list and the list structure would otherwise be
5766
         --  corrupted. Finally, the homonym chain must be preserved as well.
5767
 
5768
         declare
5769
            Renaming_Def_Id  : constant Entity_Id :=
5770
                                 Defining_Identifier (Object_Decl);
5771
            Next_Entity_Temp : constant Entity_Id :=
5772
                                 Next_Entity (Renaming_Def_Id);
5773
         begin
5774
            Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
5775
 
5776
            --  Swap next entity links in preparation for exchanging entities
5777
 
5778
            Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
5779
            Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
5780
            Set_Homonym     (Renaming_Def_Id, Homonym (Obj_Def_Id));
5781
 
5782
            Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
5783
         end;
5784
      end if;
5785
 
5786
      --  If the object entity has a class-wide Etype, then we need to change
5787
      --  it to the result subtype of the function call, because otherwise the
5788
      --  object will be class-wide without an explicit initialization and
5789
      --  won't be allocated properly by the back end. It seems unclean to make
5790
      --  such a revision to the type at this point, and we should try to
5791
      --  improve this treatment when build-in-place functions with class-wide
5792
      --  results are implemented. ???
5793
 
5794
      if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
5795
         Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
5796
      end if;
5797
   end Make_Build_In_Place_Call_In_Object_Declaration;
5798
 
5799
   --------------------------
5800
   -- Needs_BIP_Final_List --
5801
   --------------------------
5802
 
5803
   function Needs_BIP_Final_List (E : Entity_Id) return Boolean is
5804
      pragma Assert (Is_Build_In_Place_Function (E));
5805
      Result_Subt : constant Entity_Id := Underlying_Type (Etype (E));
5806
 
5807
   begin
5808
      --  We need the BIP_Final_List if the result type needs finalization. We
5809
      --  also need it for tagged types, even if not class-wide, because some
5810
      --  type extension might need finalization, and all overriding functions
5811
      --  must have the same calling conventions. However, if there is a
5812
      --  pragma Restrictions (No_Finalization), we never need this parameter.
5813
 
5814
      return (Needs_Finalization (Result_Subt)
5815
               or else Is_Tagged_Type (Underlying_Type (Result_Subt)))
5816
        and then not Restriction_Active (No_Finalization);
5817
   end Needs_BIP_Final_List;
5818
 
5819
end Exp_Ch6;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.