| 1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
| 2 |
|
|
-- --
|
| 3 |
|
|
-- GNAT COMPILER COMPONENTS --
|
| 4 |
|
|
-- --
|
| 5 |
|
|
-- E X P _ F I X D --
|
| 6 |
|
|
-- --
|
| 7 |
|
|
-- B o d y --
|
| 8 |
|
|
-- --
|
| 9 |
|
|
-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
|
| 10 |
|
|
-- --
|
| 11 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
| 12 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
| 13 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
| 14 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
| 15 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
| 16 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
| 17 |
|
|
-- for more details. You should have received a copy of the GNU General --
|
| 18 |
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
| 19 |
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
| 20 |
|
|
-- --
|
| 21 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
| 22 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
| 23 |
|
|
-- --
|
| 24 |
|
|
------------------------------------------------------------------------------
|
| 25 |
|
|
|
| 26 |
|
|
with Atree; use Atree;
|
| 27 |
|
|
with Checks; use Checks;
|
| 28 |
|
|
with Einfo; use Einfo;
|
| 29 |
|
|
with Exp_Util; use Exp_Util;
|
| 30 |
|
|
with Nlists; use Nlists;
|
| 31 |
|
|
with Nmake; use Nmake;
|
| 32 |
|
|
with Rtsfind; use Rtsfind;
|
| 33 |
|
|
with Sem; use Sem;
|
| 34 |
|
|
with Sem_Eval; use Sem_Eval;
|
| 35 |
|
|
with Sem_Res; use Sem_Res;
|
| 36 |
|
|
with Sem_Util; use Sem_Util;
|
| 37 |
|
|
with Sinfo; use Sinfo;
|
| 38 |
|
|
with Stand; use Stand;
|
| 39 |
|
|
with Tbuild; use Tbuild;
|
| 40 |
|
|
with Uintp; use Uintp;
|
| 41 |
|
|
with Urealp; use Urealp;
|
| 42 |
|
|
|
| 43 |
|
|
package body Exp_Fixd is
|
| 44 |
|
|
|
| 45 |
|
|
-----------------------
|
| 46 |
|
|
-- Local Subprograms --
|
| 47 |
|
|
-----------------------
|
| 48 |
|
|
|
| 49 |
|
|
-- General note; in this unit, a number of routines are driven by the
|
| 50 |
|
|
-- types (Etype) of their operands. Since we are dealing with unanalyzed
|
| 51 |
|
|
-- expressions as they are constructed, the Etypes would not normally be
|
| 52 |
|
|
-- set, but the construction routines that we use in this unit do in fact
|
| 53 |
|
|
-- set the Etype values correctly. In addition, setting the Etype ensures
|
| 54 |
|
|
-- that the analyzer does not try to redetermine the type when the node
|
| 55 |
|
|
-- is analyzed (which would be wrong, since in the case where we set the
|
| 56 |
|
|
-- Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
|
| 57 |
|
|
-- still dealing with a normal fixed-point operation and mess it up).
|
| 58 |
|
|
|
| 59 |
|
|
function Build_Conversion
|
| 60 |
|
|
(N : Node_Id;
|
| 61 |
|
|
Typ : Entity_Id;
|
| 62 |
|
|
Expr : Node_Id;
|
| 63 |
|
|
Rchk : Boolean := False;
|
| 64 |
|
|
Trunc : Boolean := False) return Node_Id;
|
| 65 |
|
|
-- Build an expression that converts the expression Expr to type Typ,
|
| 66 |
|
|
-- taking the source location from Sloc (N). If the conversions involve
|
| 67 |
|
|
-- fixed-point types, then the Conversion_OK flag will be set so that the
|
| 68 |
|
|
-- resulting conversions do not get re-expanded. On return the resulting
|
| 69 |
|
|
-- node has its Etype set. If Rchk is set, then Do_Range_Check is set
|
| 70 |
|
|
-- in the resulting conversion node. If Trunc is set, then the
|
| 71 |
|
|
-- Float_Truncate flag is set on the conversion, which must be from
|
| 72 |
|
|
-- a floating-point type to an integer type.
|
| 73 |
|
|
|
| 74 |
|
|
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
|
| 75 |
|
|
-- Builds an N_Op_Divide node from the given left and right operand
|
| 76 |
|
|
-- expressions, using the source location from Sloc (N). The operands are
|
| 77 |
|
|
-- either both Universal_Real, in which case Build_Divide differs from
|
| 78 |
|
|
-- Make_Op_Divide only in that the Etype of the resulting node is set (to
|
| 79 |
|
|
-- Universal_Real), or they can be integer types. In this case the integer
|
| 80 |
|
|
-- types need not be the same, and Build_Divide converts the operand with
|
| 81 |
|
|
-- the smaller sized type to match the type of the other operand and sets
|
| 82 |
|
|
-- this as the result type. The Rounded_Result flag of the result in this
|
| 83 |
|
|
-- case is set from the Rounded_Result flag of node N. On return, the
|
| 84 |
|
|
-- resulting node is analyzed, and has its Etype set.
|
| 85 |
|
|
|
| 86 |
|
|
function Build_Double_Divide
|
| 87 |
|
|
(N : Node_Id;
|
| 88 |
|
|
X, Y, Z : Node_Id) return Node_Id;
|
| 89 |
|
|
-- Returns a node corresponding to the value X/(Y*Z) using the source
|
| 90 |
|
|
-- location from Sloc (N). The division is rounded if the Rounded_Result
|
| 91 |
|
|
-- flag of N is set. The integer types of X, Y, Z may be different. On
|
| 92 |
|
|
-- return the resulting node is analyzed, and has its Etype set.
|
| 93 |
|
|
|
| 94 |
|
|
procedure Build_Double_Divide_Code
|
| 95 |
|
|
(N : Node_Id;
|
| 96 |
|
|
X, Y, Z : Node_Id;
|
| 97 |
|
|
Qnn, Rnn : out Entity_Id;
|
| 98 |
|
|
Code : out List_Id);
|
| 99 |
|
|
-- Generates a sequence of code for determining the quotient and remainder
|
| 100 |
|
|
-- of the division X/(Y*Z), using the source location from Sloc (N).
|
| 101 |
|
|
-- Entities of appropriate types are allocated for the quotient and
|
| 102 |
|
|
-- remainder and returned in Qnn and Rnn. The result is rounded if the
|
| 103 |
|
|
-- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
|
| 104 |
|
|
-- appropriately set on return.
|
| 105 |
|
|
|
| 106 |
|
|
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
|
| 107 |
|
|
-- Builds an N_Op_Multiply node from the given left and right operand
|
| 108 |
|
|
-- expressions, using the source location from Sloc (N). The operands are
|
| 109 |
|
|
-- either both Universal_Real, in which case Build_Multiply differs from
|
| 110 |
|
|
-- Make_Op_Multiply only in that the Etype of the resulting node is set (to
|
| 111 |
|
|
-- Universal_Real), or they can be integer types. In this case the integer
|
| 112 |
|
|
-- types need not be the same, and Build_Multiply chooses a type long
|
| 113 |
|
|
-- enough to hold the product (i.e. twice the size of the longer of the two
|
| 114 |
|
|
-- operand types), and both operands are converted to this type. The Etype
|
| 115 |
|
|
-- of the result is also set to this value. However, the result can never
|
| 116 |
|
|
-- overflow Integer_64, so this is the largest type that is ever generated.
|
| 117 |
|
|
-- On return, the resulting node is analyzed and has its Etype set.
|
| 118 |
|
|
|
| 119 |
|
|
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
|
| 120 |
|
|
-- Builds an N_Op_Rem node from the given left and right operand
|
| 121 |
|
|
-- expressions, using the source location from Sloc (N). The operands are
|
| 122 |
|
|
-- both integer types, which need not be the same. Build_Rem converts the
|
| 123 |
|
|
-- operand with the smaller sized type to match the type of the other
|
| 124 |
|
|
-- operand and sets this as the result type. The result is never rounded
|
| 125 |
|
|
-- (rem operations cannot be rounded in any case!) On return, the resulting
|
| 126 |
|
|
-- node is analyzed and has its Etype set.
|
| 127 |
|
|
|
| 128 |
|
|
function Build_Scaled_Divide
|
| 129 |
|
|
(N : Node_Id;
|
| 130 |
|
|
X, Y, Z : Node_Id) return Node_Id;
|
| 131 |
|
|
-- Returns a node corresponding to the value X*Y/Z using the source
|
| 132 |
|
|
-- location from Sloc (N). The division is rounded if the Rounded_Result
|
| 133 |
|
|
-- flag of N is set. The integer types of X, Y, Z may be different. On
|
| 134 |
|
|
-- return the resulting node is analyzed and has is Etype set.
|
| 135 |
|
|
|
| 136 |
|
|
procedure Build_Scaled_Divide_Code
|
| 137 |
|
|
(N : Node_Id;
|
| 138 |
|
|
X, Y, Z : Node_Id;
|
| 139 |
|
|
Qnn, Rnn : out Entity_Id;
|
| 140 |
|
|
Code : out List_Id);
|
| 141 |
|
|
-- Generates a sequence of code for determining the quotient and remainder
|
| 142 |
|
|
-- of the division X*Y/Z, using the source location from Sloc (N). Entities
|
| 143 |
|
|
-- of appropriate types are allocated for the quotient and remainder and
|
| 144 |
|
|
-- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
|
| 145 |
|
|
-- The division is rounded if the Rounded_Result flag of N is set. The
|
| 146 |
|
|
-- Etype fields of Qnn and Rnn are appropriately set on return.
|
| 147 |
|
|
|
| 148 |
|
|
procedure Do_Divide_Fixed_Fixed (N : Node_Id);
|
| 149 |
|
|
-- Handles expansion of divide for case of two fixed-point operands
|
| 150 |
|
|
-- (neither of them universal), with an integer or fixed-point result.
|
| 151 |
|
|
-- N is the N_Op_Divide node to be expanded.
|
| 152 |
|
|
|
| 153 |
|
|
procedure Do_Divide_Fixed_Universal (N : Node_Id);
|
| 154 |
|
|
-- Handles expansion of divide for case of a fixed-point operand divided
|
| 155 |
|
|
-- by a universal real operand, with an integer or fixed-point result. N
|
| 156 |
|
|
-- is the N_Op_Divide node to be expanded.
|
| 157 |
|
|
|
| 158 |
|
|
procedure Do_Divide_Universal_Fixed (N : Node_Id);
|
| 159 |
|
|
-- Handles expansion of divide for case of a universal real operand
|
| 160 |
|
|
-- divided by a fixed-point operand, with an integer or fixed-point
|
| 161 |
|
|
-- result. N is the N_Op_Divide node to be expanded.
|
| 162 |
|
|
|
| 163 |
|
|
procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
|
| 164 |
|
|
-- Handles expansion of multiply for case of two fixed-point operands
|
| 165 |
|
|
-- (neither of them universal), with an integer or fixed-point result.
|
| 166 |
|
|
-- N is the N_Op_Multiply node to be expanded.
|
| 167 |
|
|
|
| 168 |
|
|
procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
|
| 169 |
|
|
-- Handles expansion of multiply for case of a fixed-point operand
|
| 170 |
|
|
-- multiplied by a universal real operand, with an integer or fixed-
|
| 171 |
|
|
-- point result. N is the N_Op_Multiply node to be expanded, and
|
| 172 |
|
|
-- Left, Right are the operands (which may have been switched).
|
| 173 |
|
|
|
| 174 |
|
|
procedure Expand_Convert_Fixed_Static (N : Node_Id);
|
| 175 |
|
|
-- This routine is called where the node N is a conversion of a literal
|
| 176 |
|
|
-- or other static expression of a fixed-point type to some other type.
|
| 177 |
|
|
-- In such cases, we simply rewrite the operand as a real literal and
|
| 178 |
|
|
-- reanalyze. This avoids problems which would otherwise result from
|
| 179 |
|
|
-- attempting to build and fold expressions involving constants.
|
| 180 |
|
|
|
| 181 |
|
|
function Fpt_Value (N : Node_Id) return Node_Id;
|
| 182 |
|
|
-- Given an operand of fixed-point operation, return an expression that
|
| 183 |
|
|
-- represents the corresponding Universal_Real value. The expression
|
| 184 |
|
|
-- can be of integer type, floating-point type, or fixed-point type.
|
| 185 |
|
|
-- The expression returned is neither analyzed and resolved. The Etype
|
| 186 |
|
|
-- of the result is properly set (to Universal_Real).
|
| 187 |
|
|
|
| 188 |
|
|
function Integer_Literal
|
| 189 |
|
|
(N : Node_Id;
|
| 190 |
|
|
V : Uint;
|
| 191 |
|
|
Negative : Boolean := False) return Node_Id;
|
| 192 |
|
|
-- Given a non-negative universal integer value, build a typed integer
|
| 193 |
|
|
-- literal node, using the smallest applicable standard integer type. If
|
| 194 |
|
|
-- and only if Negative is true a negative literal is built. If V exceeds
|
| 195 |
|
|
-- 2**63-1, the largest value allowed for perfect result set scaling
|
| 196 |
|
|
-- factors (see RM G.2.3(22)), then Empty is returned. The node N provides
|
| 197 |
|
|
-- the Sloc value for the constructed literal. The Etype of the resulting
|
| 198 |
|
|
-- literal is correctly set, and it is marked as analyzed.
|
| 199 |
|
|
|
| 200 |
|
|
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
|
| 201 |
|
|
-- Build a real literal node from the given value, the Etype of the
|
| 202 |
|
|
-- returned node is set to Universal_Real, since all floating-point
|
| 203 |
|
|
-- arithmetic operations that we construct use Universal_Real
|
| 204 |
|
|
|
| 205 |
|
|
function Rounded_Result_Set (N : Node_Id) return Boolean;
|
| 206 |
|
|
-- Returns True if N is a node that contains the Rounded_Result flag
|
| 207 |
|
|
-- and if the flag is true or the target type is an integer type.
|
| 208 |
|
|
|
| 209 |
|
|
procedure Set_Result
|
| 210 |
|
|
(N : Node_Id;
|
| 211 |
|
|
Expr : Node_Id;
|
| 212 |
|
|
Rchk : Boolean := False;
|
| 213 |
|
|
Trunc : Boolean := False);
|
| 214 |
|
|
-- N is the node for the current conversion, division or multiplication
|
| 215 |
|
|
-- operation, and Expr is an expression representing the result. Expr may
|
| 216 |
|
|
-- be of floating-point or integer type. If the operation result is fixed-
|
| 217 |
|
|
-- point, then the value of Expr is in units of small of the result type
|
| 218 |
|
|
-- (i.e. small's have already been dealt with). The result of the call is
|
| 219 |
|
|
-- to replace N by an appropriate conversion to the result type, dealing
|
| 220 |
|
|
-- with rounding for the decimal types case. The node is then analyzed and
|
| 221 |
|
|
-- resolved using the result type. If Rchk or Trunc are True, then
|
| 222 |
|
|
-- respectively Do_Range_Check and Float_Truncate are set in the
|
| 223 |
|
|
-- resulting conversion.
|
| 224 |
|
|
|
| 225 |
|
|
----------------------
|
| 226 |
|
|
-- Build_Conversion --
|
| 227 |
|
|
----------------------
|
| 228 |
|
|
|
| 229 |
|
|
function Build_Conversion
|
| 230 |
|
|
(N : Node_Id;
|
| 231 |
|
|
Typ : Entity_Id;
|
| 232 |
|
|
Expr : Node_Id;
|
| 233 |
|
|
Rchk : Boolean := False;
|
| 234 |
|
|
Trunc : Boolean := False) return Node_Id
|
| 235 |
|
|
is
|
| 236 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 237 |
|
|
Result : Node_Id;
|
| 238 |
|
|
Rcheck : Boolean := Rchk;
|
| 239 |
|
|
|
| 240 |
|
|
begin
|
| 241 |
|
|
-- A special case, if the expression is an integer literal and the
|
| 242 |
|
|
-- target type is an integer type, then just retype the integer
|
| 243 |
|
|
-- literal to the desired target type. Don't do this if we need
|
| 244 |
|
|
-- a range check.
|
| 245 |
|
|
|
| 246 |
|
|
if Nkind (Expr) = N_Integer_Literal
|
| 247 |
|
|
and then Is_Integer_Type (Typ)
|
| 248 |
|
|
and then not Rchk
|
| 249 |
|
|
then
|
| 250 |
|
|
Result := Expr;
|
| 251 |
|
|
|
| 252 |
|
|
-- Cases where we end up with a conversion. Note that we do not use the
|
| 253 |
|
|
-- Convert_To abstraction here, since we may be decorating the resulting
|
| 254 |
|
|
-- conversion with Rounded_Result and/or Conversion_OK, so we want the
|
| 255 |
|
|
-- conversion node present, even if it appears to be redundant.
|
| 256 |
|
|
|
| 257 |
|
|
else
|
| 258 |
|
|
-- Remove inner conversion if both inner and outer conversions are
|
| 259 |
|
|
-- to integer types, since the inner one serves no purpose (except
|
| 260 |
|
|
-- perhaps to set rounding, so we preserve the Rounded_Result flag)
|
| 261 |
|
|
-- and also we preserve the range check flag on the inner operand
|
| 262 |
|
|
|
| 263 |
|
|
if Is_Integer_Type (Typ)
|
| 264 |
|
|
and then Is_Integer_Type (Etype (Expr))
|
| 265 |
|
|
and then Nkind (Expr) = N_Type_Conversion
|
| 266 |
|
|
then
|
| 267 |
|
|
Result :=
|
| 268 |
|
|
Make_Type_Conversion (Loc,
|
| 269 |
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
| 270 |
|
|
Expression => Expression (Expr));
|
| 271 |
|
|
Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
|
| 272 |
|
|
Rcheck := Rcheck or Do_Range_Check (Expr);
|
| 273 |
|
|
|
| 274 |
|
|
-- For all other cases, a simple type conversion will work
|
| 275 |
|
|
|
| 276 |
|
|
else
|
| 277 |
|
|
Result :=
|
| 278 |
|
|
Make_Type_Conversion (Loc,
|
| 279 |
|
|
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
|
| 280 |
|
|
Expression => Expr);
|
| 281 |
|
|
|
| 282 |
|
|
Set_Float_Truncate (Result, Trunc);
|
| 283 |
|
|
end if;
|
| 284 |
|
|
|
| 285 |
|
|
-- Set Conversion_OK if either result or expression type is a
|
| 286 |
|
|
-- fixed-point type, since from a semantic point of view, we are
|
| 287 |
|
|
-- treating fixed-point values as integers at this stage.
|
| 288 |
|
|
|
| 289 |
|
|
if Is_Fixed_Point_Type (Typ)
|
| 290 |
|
|
or else Is_Fixed_Point_Type (Etype (Expression (Result)))
|
| 291 |
|
|
then
|
| 292 |
|
|
Set_Conversion_OK (Result);
|
| 293 |
|
|
end if;
|
| 294 |
|
|
|
| 295 |
|
|
-- Set Do_Range_Check if either it was requested by the caller,
|
| 296 |
|
|
-- or if an eliminated inner conversion had a range check.
|
| 297 |
|
|
|
| 298 |
|
|
if Rcheck then
|
| 299 |
|
|
Enable_Range_Check (Result);
|
| 300 |
|
|
else
|
| 301 |
|
|
Set_Do_Range_Check (Result, False);
|
| 302 |
|
|
end if;
|
| 303 |
|
|
end if;
|
| 304 |
|
|
|
| 305 |
|
|
Set_Etype (Result, Typ);
|
| 306 |
|
|
return Result;
|
| 307 |
|
|
end Build_Conversion;
|
| 308 |
|
|
|
| 309 |
|
|
------------------
|
| 310 |
|
|
-- Build_Divide --
|
| 311 |
|
|
------------------
|
| 312 |
|
|
|
| 313 |
|
|
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
|
| 314 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 315 |
|
|
Left_Type : constant Entity_Id := Base_Type (Etype (L));
|
| 316 |
|
|
Right_Type : constant Entity_Id := Base_Type (Etype (R));
|
| 317 |
|
|
Result_Type : Entity_Id;
|
| 318 |
|
|
Rnode : Node_Id;
|
| 319 |
|
|
|
| 320 |
|
|
begin
|
| 321 |
|
|
-- Deal with floating-point case first
|
| 322 |
|
|
|
| 323 |
|
|
if Is_Floating_Point_Type (Left_Type) then
|
| 324 |
|
|
pragma Assert (Left_Type = Universal_Real);
|
| 325 |
|
|
pragma Assert (Right_Type = Universal_Real);
|
| 326 |
|
|
|
| 327 |
|
|
Rnode := Make_Op_Divide (Loc, L, R);
|
| 328 |
|
|
Result_Type := Universal_Real;
|
| 329 |
|
|
|
| 330 |
|
|
-- Integer and fixed-point cases
|
| 331 |
|
|
|
| 332 |
|
|
else
|
| 333 |
|
|
-- An optimization. If the right operand is the literal 1, then we
|
| 334 |
|
|
-- can just return the left hand operand. Putting the optimization
|
| 335 |
|
|
-- here allows us to omit the check at the call site.
|
| 336 |
|
|
|
| 337 |
|
|
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
|
| 338 |
|
|
return L;
|
| 339 |
|
|
end if;
|
| 340 |
|
|
|
| 341 |
|
|
-- If left and right types are the same, no conversion needed
|
| 342 |
|
|
|
| 343 |
|
|
if Left_Type = Right_Type then
|
| 344 |
|
|
Result_Type := Left_Type;
|
| 345 |
|
|
Rnode :=
|
| 346 |
|
|
Make_Op_Divide (Loc,
|
| 347 |
|
|
Left_Opnd => L,
|
| 348 |
|
|
Right_Opnd => R);
|
| 349 |
|
|
|
| 350 |
|
|
-- Use left type if it is the larger of the two
|
| 351 |
|
|
|
| 352 |
|
|
elsif Esize (Left_Type) >= Esize (Right_Type) then
|
| 353 |
|
|
Result_Type := Left_Type;
|
| 354 |
|
|
Rnode :=
|
| 355 |
|
|
Make_Op_Divide (Loc,
|
| 356 |
|
|
Left_Opnd => L,
|
| 357 |
|
|
Right_Opnd => Build_Conversion (N, Left_Type, R));
|
| 358 |
|
|
|
| 359 |
|
|
-- Otherwise right type is larger of the two, us it
|
| 360 |
|
|
|
| 361 |
|
|
else
|
| 362 |
|
|
Result_Type := Right_Type;
|
| 363 |
|
|
Rnode :=
|
| 364 |
|
|
Make_Op_Divide (Loc,
|
| 365 |
|
|
Left_Opnd => Build_Conversion (N, Right_Type, L),
|
| 366 |
|
|
Right_Opnd => R);
|
| 367 |
|
|
end if;
|
| 368 |
|
|
end if;
|
| 369 |
|
|
|
| 370 |
|
|
-- We now have a divide node built with Result_Type set. First
|
| 371 |
|
|
-- set Etype of result, as required for all Build_xxx routines
|
| 372 |
|
|
|
| 373 |
|
|
Set_Etype (Rnode, Base_Type (Result_Type));
|
| 374 |
|
|
|
| 375 |
|
|
-- Set Treat_Fixed_As_Integer if operation on fixed-point type
|
| 376 |
|
|
-- since this is a literal arithmetic operation, to be performed
|
| 377 |
|
|
-- by Gigi without any consideration of small values.
|
| 378 |
|
|
|
| 379 |
|
|
if Is_Fixed_Point_Type (Result_Type) then
|
| 380 |
|
|
Set_Treat_Fixed_As_Integer (Rnode);
|
| 381 |
|
|
end if;
|
| 382 |
|
|
|
| 383 |
|
|
-- The result is rounded if the target of the operation is decimal
|
| 384 |
|
|
-- and Rounded_Result is set, or if the target of the operation
|
| 385 |
|
|
-- is an integer type.
|
| 386 |
|
|
|
| 387 |
|
|
if Is_Integer_Type (Etype (N))
|
| 388 |
|
|
or else Rounded_Result_Set (N)
|
| 389 |
|
|
then
|
| 390 |
|
|
Set_Rounded_Result (Rnode);
|
| 391 |
|
|
end if;
|
| 392 |
|
|
|
| 393 |
|
|
return Rnode;
|
| 394 |
|
|
end Build_Divide;
|
| 395 |
|
|
|
| 396 |
|
|
-------------------------
|
| 397 |
|
|
-- Build_Double_Divide --
|
| 398 |
|
|
-------------------------
|
| 399 |
|
|
|
| 400 |
|
|
function Build_Double_Divide
|
| 401 |
|
|
(N : Node_Id;
|
| 402 |
|
|
X, Y, Z : Node_Id) return Node_Id
|
| 403 |
|
|
is
|
| 404 |
|
|
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
|
| 405 |
|
|
Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
|
| 406 |
|
|
Expr : Node_Id;
|
| 407 |
|
|
|
| 408 |
|
|
begin
|
| 409 |
|
|
-- If denominator fits in 64 bits, we can build the operations directly
|
| 410 |
|
|
-- without causing any intermediate overflow, so that's what we do!
|
| 411 |
|
|
|
| 412 |
|
|
if Int'Max (Y_Size, Z_Size) <= 32 then
|
| 413 |
|
|
return
|
| 414 |
|
|
Build_Divide (N, X, Build_Multiply (N, Y, Z));
|
| 415 |
|
|
|
| 416 |
|
|
-- Otherwise we use the runtime routine
|
| 417 |
|
|
|
| 418 |
|
|
-- [Qnn : Interfaces.Integer_64,
|
| 419 |
|
|
-- Rnn : Interfaces.Integer_64;
|
| 420 |
|
|
-- Double_Divide (X, Y, Z, Qnn, Rnn, Round);
|
| 421 |
|
|
-- Qnn]
|
| 422 |
|
|
|
| 423 |
|
|
else
|
| 424 |
|
|
declare
|
| 425 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 426 |
|
|
Qnn : Entity_Id;
|
| 427 |
|
|
Rnn : Entity_Id;
|
| 428 |
|
|
Code : List_Id;
|
| 429 |
|
|
|
| 430 |
|
|
pragma Warnings (Off, Rnn);
|
| 431 |
|
|
|
| 432 |
|
|
begin
|
| 433 |
|
|
Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
|
| 434 |
|
|
Insert_Actions (N, Code);
|
| 435 |
|
|
Expr := New_Occurrence_Of (Qnn, Loc);
|
| 436 |
|
|
|
| 437 |
|
|
-- Set type of result in case used elsewhere (see note at start)
|
| 438 |
|
|
|
| 439 |
|
|
Set_Etype (Expr, Etype (Qnn));
|
| 440 |
|
|
|
| 441 |
|
|
-- Set result as analyzed (see note at start on build routines)
|
| 442 |
|
|
|
| 443 |
|
|
return Expr;
|
| 444 |
|
|
end;
|
| 445 |
|
|
end if;
|
| 446 |
|
|
end Build_Double_Divide;
|
| 447 |
|
|
|
| 448 |
|
|
------------------------------
|
| 449 |
|
|
-- Build_Double_Divide_Code --
|
| 450 |
|
|
------------------------------
|
| 451 |
|
|
|
| 452 |
|
|
-- If the denominator can be computed in 64-bits, we build
|
| 453 |
|
|
|
| 454 |
|
|
-- [Nnn : constant typ := typ (X);
|
| 455 |
|
|
-- Dnn : constant typ := typ (Y) * typ (Z)
|
| 456 |
|
|
-- Qnn : constant typ := Nnn / Dnn;
|
| 457 |
|
|
-- Rnn : constant typ := Nnn / Dnn;
|
| 458 |
|
|
|
| 459 |
|
|
-- If the numerator cannot be computed in 64 bits, we build
|
| 460 |
|
|
|
| 461 |
|
|
-- [Qnn : typ;
|
| 462 |
|
|
-- Rnn : typ;
|
| 463 |
|
|
-- Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
|
| 464 |
|
|
|
| 465 |
|
|
procedure Build_Double_Divide_Code
|
| 466 |
|
|
(N : Node_Id;
|
| 467 |
|
|
X, Y, Z : Node_Id;
|
| 468 |
|
|
Qnn, Rnn : out Entity_Id;
|
| 469 |
|
|
Code : out List_Id)
|
| 470 |
|
|
is
|
| 471 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 472 |
|
|
|
| 473 |
|
|
X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
|
| 474 |
|
|
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
|
| 475 |
|
|
Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
|
| 476 |
|
|
|
| 477 |
|
|
QR_Siz : Int;
|
| 478 |
|
|
QR_Typ : Entity_Id;
|
| 479 |
|
|
|
| 480 |
|
|
Nnn : Entity_Id;
|
| 481 |
|
|
Dnn : Entity_Id;
|
| 482 |
|
|
|
| 483 |
|
|
Quo : Node_Id;
|
| 484 |
|
|
Rnd : Entity_Id;
|
| 485 |
|
|
|
| 486 |
|
|
begin
|
| 487 |
|
|
-- Find type that will allow computation of numerator
|
| 488 |
|
|
|
| 489 |
|
|
QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
|
| 490 |
|
|
|
| 491 |
|
|
if QR_Siz <= 16 then
|
| 492 |
|
|
QR_Typ := Standard_Integer_16;
|
| 493 |
|
|
elsif QR_Siz <= 32 then
|
| 494 |
|
|
QR_Typ := Standard_Integer_32;
|
| 495 |
|
|
elsif QR_Siz <= 64 then
|
| 496 |
|
|
QR_Typ := Standard_Integer_64;
|
| 497 |
|
|
|
| 498 |
|
|
-- For more than 64, bits, we use the 64-bit integer defined in
|
| 499 |
|
|
-- Interfaces, so that it can be handled by the runtime routine
|
| 500 |
|
|
|
| 501 |
|
|
else
|
| 502 |
|
|
QR_Typ := RTE (RE_Integer_64);
|
| 503 |
|
|
end if;
|
| 504 |
|
|
|
| 505 |
|
|
-- Define quotient and remainder, and set their Etypes, so
|
| 506 |
|
|
-- that they can be picked up by Build_xxx routines.
|
| 507 |
|
|
|
| 508 |
|
|
Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
| 509 |
|
|
Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
| 510 |
|
|
|
| 511 |
|
|
Set_Etype (Qnn, QR_Typ);
|
| 512 |
|
|
Set_Etype (Rnn, QR_Typ);
|
| 513 |
|
|
|
| 514 |
|
|
-- Case that we can compute the denominator in 64 bits
|
| 515 |
|
|
|
| 516 |
|
|
if QR_Siz <= 64 then
|
| 517 |
|
|
|
| 518 |
|
|
-- Create temporaries for numerator and denominator and set Etypes,
|
| 519 |
|
|
-- so that New_Occurrence_Of picks them up for Build_xxx calls.
|
| 520 |
|
|
|
| 521 |
|
|
Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
|
| 522 |
|
|
Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
|
| 523 |
|
|
|
| 524 |
|
|
Set_Etype (Nnn, QR_Typ);
|
| 525 |
|
|
Set_Etype (Dnn, QR_Typ);
|
| 526 |
|
|
|
| 527 |
|
|
Code := New_List (
|
| 528 |
|
|
Make_Object_Declaration (Loc,
|
| 529 |
|
|
Defining_Identifier => Nnn,
|
| 530 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 531 |
|
|
Constant_Present => True,
|
| 532 |
|
|
Expression => Build_Conversion (N, QR_Typ, X)),
|
| 533 |
|
|
|
| 534 |
|
|
Make_Object_Declaration (Loc,
|
| 535 |
|
|
Defining_Identifier => Dnn,
|
| 536 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 537 |
|
|
Constant_Present => True,
|
| 538 |
|
|
Expression =>
|
| 539 |
|
|
Build_Multiply (N,
|
| 540 |
|
|
Build_Conversion (N, QR_Typ, Y),
|
| 541 |
|
|
Build_Conversion (N, QR_Typ, Z))));
|
| 542 |
|
|
|
| 543 |
|
|
Quo :=
|
| 544 |
|
|
Build_Divide (N,
|
| 545 |
|
|
New_Occurrence_Of (Nnn, Loc),
|
| 546 |
|
|
New_Occurrence_Of (Dnn, Loc));
|
| 547 |
|
|
|
| 548 |
|
|
Set_Rounded_Result (Quo, Rounded_Result_Set (N));
|
| 549 |
|
|
|
| 550 |
|
|
Append_To (Code,
|
| 551 |
|
|
Make_Object_Declaration (Loc,
|
| 552 |
|
|
Defining_Identifier => Qnn,
|
| 553 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 554 |
|
|
Constant_Present => True,
|
| 555 |
|
|
Expression => Quo));
|
| 556 |
|
|
|
| 557 |
|
|
Append_To (Code,
|
| 558 |
|
|
Make_Object_Declaration (Loc,
|
| 559 |
|
|
Defining_Identifier => Rnn,
|
| 560 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 561 |
|
|
Constant_Present => True,
|
| 562 |
|
|
Expression =>
|
| 563 |
|
|
Build_Rem (N,
|
| 564 |
|
|
New_Occurrence_Of (Nnn, Loc),
|
| 565 |
|
|
New_Occurrence_Of (Dnn, Loc))));
|
| 566 |
|
|
|
| 567 |
|
|
-- Case where denominator does not fit in 64 bits, so we have to
|
| 568 |
|
|
-- call the runtime routine to compute the quotient and remainder
|
| 569 |
|
|
|
| 570 |
|
|
else
|
| 571 |
|
|
Rnd := Boolean_Literals (Rounded_Result_Set (N));
|
| 572 |
|
|
|
| 573 |
|
|
Code := New_List (
|
| 574 |
|
|
Make_Object_Declaration (Loc,
|
| 575 |
|
|
Defining_Identifier => Qnn,
|
| 576 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
|
| 577 |
|
|
|
| 578 |
|
|
Make_Object_Declaration (Loc,
|
| 579 |
|
|
Defining_Identifier => Rnn,
|
| 580 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
|
| 581 |
|
|
|
| 582 |
|
|
Make_Procedure_Call_Statement (Loc,
|
| 583 |
|
|
Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
|
| 584 |
|
|
Parameter_Associations => New_List (
|
| 585 |
|
|
Build_Conversion (N, QR_Typ, X),
|
| 586 |
|
|
Build_Conversion (N, QR_Typ, Y),
|
| 587 |
|
|
Build_Conversion (N, QR_Typ, Z),
|
| 588 |
|
|
New_Occurrence_Of (Qnn, Loc),
|
| 589 |
|
|
New_Occurrence_Of (Rnn, Loc),
|
| 590 |
|
|
New_Occurrence_Of (Rnd, Loc))));
|
| 591 |
|
|
end if;
|
| 592 |
|
|
end Build_Double_Divide_Code;
|
| 593 |
|
|
|
| 594 |
|
|
--------------------
|
| 595 |
|
|
-- Build_Multiply --
|
| 596 |
|
|
--------------------
|
| 597 |
|
|
|
| 598 |
|
|
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
|
| 599 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 600 |
|
|
Left_Type : constant Entity_Id := Etype (L);
|
| 601 |
|
|
Right_Type : constant Entity_Id := Etype (R);
|
| 602 |
|
|
Left_Size : Int;
|
| 603 |
|
|
Right_Size : Int;
|
| 604 |
|
|
Rsize : Int;
|
| 605 |
|
|
Result_Type : Entity_Id;
|
| 606 |
|
|
Rnode : Node_Id;
|
| 607 |
|
|
|
| 608 |
|
|
begin
|
| 609 |
|
|
-- Deal with floating-point case first
|
| 610 |
|
|
|
| 611 |
|
|
if Is_Floating_Point_Type (Left_Type) then
|
| 612 |
|
|
pragma Assert (Left_Type = Universal_Real);
|
| 613 |
|
|
pragma Assert (Right_Type = Universal_Real);
|
| 614 |
|
|
|
| 615 |
|
|
Result_Type := Universal_Real;
|
| 616 |
|
|
Rnode := Make_Op_Multiply (Loc, L, R);
|
| 617 |
|
|
|
| 618 |
|
|
-- Integer and fixed-point cases
|
| 619 |
|
|
|
| 620 |
|
|
else
|
| 621 |
|
|
-- An optimization. If the right operand is the literal 1, then we
|
| 622 |
|
|
-- can just return the left hand operand. Putting the optimization
|
| 623 |
|
|
-- here allows us to omit the check at the call site. Similarly, if
|
| 624 |
|
|
-- the left operand is the integer 1 we can return the right operand.
|
| 625 |
|
|
|
| 626 |
|
|
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
|
| 627 |
|
|
return L;
|
| 628 |
|
|
elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
|
| 629 |
|
|
return R;
|
| 630 |
|
|
end if;
|
| 631 |
|
|
|
| 632 |
|
|
-- Otherwise we need to figure out the correct result type size
|
| 633 |
|
|
-- First figure out the effective sizes of the operands. Normally
|
| 634 |
|
|
-- the effective size of an operand is the RM_Size of the operand.
|
| 635 |
|
|
-- But a special case arises with operands whose size is known at
|
| 636 |
|
|
-- compile time. In this case, we can use the actual value of the
|
| 637 |
|
|
-- operand to get its size if it would fit signed in 8 or 16 bits.
|
| 638 |
|
|
|
| 639 |
|
|
Left_Size := UI_To_Int (RM_Size (Left_Type));
|
| 640 |
|
|
|
| 641 |
|
|
if Compile_Time_Known_Value (L) then
|
| 642 |
|
|
declare
|
| 643 |
|
|
Val : constant Uint := Expr_Value (L);
|
| 644 |
|
|
begin
|
| 645 |
|
|
if Val < Int'(2 ** 7) then
|
| 646 |
|
|
Left_Size := 8;
|
| 647 |
|
|
elsif Val < Int'(2 ** 15) then
|
| 648 |
|
|
Left_Size := 16;
|
| 649 |
|
|
end if;
|
| 650 |
|
|
end;
|
| 651 |
|
|
end if;
|
| 652 |
|
|
|
| 653 |
|
|
Right_Size := UI_To_Int (RM_Size (Right_Type));
|
| 654 |
|
|
|
| 655 |
|
|
if Compile_Time_Known_Value (R) then
|
| 656 |
|
|
declare
|
| 657 |
|
|
Val : constant Uint := Expr_Value (R);
|
| 658 |
|
|
begin
|
| 659 |
|
|
if Val <= Int'(2 ** 7) then
|
| 660 |
|
|
Right_Size := 8;
|
| 661 |
|
|
elsif Val <= Int'(2 ** 15) then
|
| 662 |
|
|
Right_Size := 16;
|
| 663 |
|
|
end if;
|
| 664 |
|
|
end;
|
| 665 |
|
|
end if;
|
| 666 |
|
|
|
| 667 |
|
|
-- Now the result size must be at least twice the longer of
|
| 668 |
|
|
-- the two sizes, to accommodate all possible results.
|
| 669 |
|
|
|
| 670 |
|
|
Rsize := 2 * Int'Max (Left_Size, Right_Size);
|
| 671 |
|
|
|
| 672 |
|
|
if Rsize <= 8 then
|
| 673 |
|
|
Result_Type := Standard_Integer_8;
|
| 674 |
|
|
|
| 675 |
|
|
elsif Rsize <= 16 then
|
| 676 |
|
|
Result_Type := Standard_Integer_16;
|
| 677 |
|
|
|
| 678 |
|
|
elsif Rsize <= 32 then
|
| 679 |
|
|
Result_Type := Standard_Integer_32;
|
| 680 |
|
|
|
| 681 |
|
|
else
|
| 682 |
|
|
Result_Type := Standard_Integer_64;
|
| 683 |
|
|
end if;
|
| 684 |
|
|
|
| 685 |
|
|
Rnode :=
|
| 686 |
|
|
Make_Op_Multiply (Loc,
|
| 687 |
|
|
Left_Opnd => Build_Conversion (N, Result_Type, L),
|
| 688 |
|
|
Right_Opnd => Build_Conversion (N, Result_Type, R));
|
| 689 |
|
|
end if;
|
| 690 |
|
|
|
| 691 |
|
|
-- We now have a multiply node built with Result_Type set. First
|
| 692 |
|
|
-- set Etype of result, as required for all Build_xxx routines
|
| 693 |
|
|
|
| 694 |
|
|
Set_Etype (Rnode, Base_Type (Result_Type));
|
| 695 |
|
|
|
| 696 |
|
|
-- Set Treat_Fixed_As_Integer if operation on fixed-point type
|
| 697 |
|
|
-- since this is a literal arithmetic operation, to be performed
|
| 698 |
|
|
-- by Gigi without any consideration of small values.
|
| 699 |
|
|
|
| 700 |
|
|
if Is_Fixed_Point_Type (Result_Type) then
|
| 701 |
|
|
Set_Treat_Fixed_As_Integer (Rnode);
|
| 702 |
|
|
end if;
|
| 703 |
|
|
|
| 704 |
|
|
return Rnode;
|
| 705 |
|
|
end Build_Multiply;
|
| 706 |
|
|
|
| 707 |
|
|
---------------
|
| 708 |
|
|
-- Build_Rem --
|
| 709 |
|
|
---------------
|
| 710 |
|
|
|
| 711 |
|
|
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
|
| 712 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 713 |
|
|
Left_Type : constant Entity_Id := Etype (L);
|
| 714 |
|
|
Right_Type : constant Entity_Id := Etype (R);
|
| 715 |
|
|
Result_Type : Entity_Id;
|
| 716 |
|
|
Rnode : Node_Id;
|
| 717 |
|
|
|
| 718 |
|
|
begin
|
| 719 |
|
|
if Left_Type = Right_Type then
|
| 720 |
|
|
Result_Type := Left_Type;
|
| 721 |
|
|
Rnode :=
|
| 722 |
|
|
Make_Op_Rem (Loc,
|
| 723 |
|
|
Left_Opnd => L,
|
| 724 |
|
|
Right_Opnd => R);
|
| 725 |
|
|
|
| 726 |
|
|
-- If left size is larger, we do the remainder operation using the
|
| 727 |
|
|
-- size of the left type (i.e. the larger of the two integer types).
|
| 728 |
|
|
|
| 729 |
|
|
elsif Esize (Left_Type) >= Esize (Right_Type) then
|
| 730 |
|
|
Result_Type := Left_Type;
|
| 731 |
|
|
Rnode :=
|
| 732 |
|
|
Make_Op_Rem (Loc,
|
| 733 |
|
|
Left_Opnd => L,
|
| 734 |
|
|
Right_Opnd => Build_Conversion (N, Left_Type, R));
|
| 735 |
|
|
|
| 736 |
|
|
-- Similarly, if the right size is larger, we do the remainder
|
| 737 |
|
|
-- operation using the right type.
|
| 738 |
|
|
|
| 739 |
|
|
else
|
| 740 |
|
|
Result_Type := Right_Type;
|
| 741 |
|
|
Rnode :=
|
| 742 |
|
|
Make_Op_Rem (Loc,
|
| 743 |
|
|
Left_Opnd => Build_Conversion (N, Right_Type, L),
|
| 744 |
|
|
Right_Opnd => R);
|
| 745 |
|
|
end if;
|
| 746 |
|
|
|
| 747 |
|
|
-- We now have an N_Op_Rem node built with Result_Type set. First
|
| 748 |
|
|
-- set Etype of result, as required for all Build_xxx routines
|
| 749 |
|
|
|
| 750 |
|
|
Set_Etype (Rnode, Base_Type (Result_Type));
|
| 751 |
|
|
|
| 752 |
|
|
-- Set Treat_Fixed_As_Integer if operation on fixed-point type
|
| 753 |
|
|
-- since this is a literal arithmetic operation, to be performed
|
| 754 |
|
|
-- by Gigi without any consideration of small values.
|
| 755 |
|
|
|
| 756 |
|
|
if Is_Fixed_Point_Type (Result_Type) then
|
| 757 |
|
|
Set_Treat_Fixed_As_Integer (Rnode);
|
| 758 |
|
|
end if;
|
| 759 |
|
|
|
| 760 |
|
|
-- One more check. We did the rem operation using the larger of the
|
| 761 |
|
|
-- two types, which is reasonable. However, in the case where the
|
| 762 |
|
|
-- two types have unequal sizes, it is impossible for the result of
|
| 763 |
|
|
-- a remainder operation to be larger than the smaller of the two
|
| 764 |
|
|
-- types, so we can put a conversion round the result to keep the
|
| 765 |
|
|
-- evolving operation size as small as possible.
|
| 766 |
|
|
|
| 767 |
|
|
if Esize (Left_Type) >= Esize (Right_Type) then
|
| 768 |
|
|
Rnode := Build_Conversion (N, Right_Type, Rnode);
|
| 769 |
|
|
elsif Esize (Right_Type) >= Esize (Left_Type) then
|
| 770 |
|
|
Rnode := Build_Conversion (N, Left_Type, Rnode);
|
| 771 |
|
|
end if;
|
| 772 |
|
|
|
| 773 |
|
|
return Rnode;
|
| 774 |
|
|
end Build_Rem;
|
| 775 |
|
|
|
| 776 |
|
|
-------------------------
|
| 777 |
|
|
-- Build_Scaled_Divide --
|
| 778 |
|
|
-------------------------
|
| 779 |
|
|
|
| 780 |
|
|
function Build_Scaled_Divide
|
| 781 |
|
|
(N : Node_Id;
|
| 782 |
|
|
X, Y, Z : Node_Id) return Node_Id
|
| 783 |
|
|
is
|
| 784 |
|
|
X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
|
| 785 |
|
|
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
|
| 786 |
|
|
Expr : Node_Id;
|
| 787 |
|
|
|
| 788 |
|
|
begin
|
| 789 |
|
|
-- If numerator fits in 64 bits, we can build the operations directly
|
| 790 |
|
|
-- without causing any intermediate overflow, so that's what we do!
|
| 791 |
|
|
|
| 792 |
|
|
if Int'Max (X_Size, Y_Size) <= 32 then
|
| 793 |
|
|
return
|
| 794 |
|
|
Build_Divide (N, Build_Multiply (N, X, Y), Z);
|
| 795 |
|
|
|
| 796 |
|
|
-- Otherwise we use the runtime routine
|
| 797 |
|
|
|
| 798 |
|
|
-- [Qnn : Integer_64,
|
| 799 |
|
|
-- Rnn : Integer_64;
|
| 800 |
|
|
-- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
|
| 801 |
|
|
-- Qnn]
|
| 802 |
|
|
|
| 803 |
|
|
else
|
| 804 |
|
|
declare
|
| 805 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 806 |
|
|
Qnn : Entity_Id;
|
| 807 |
|
|
Rnn : Entity_Id;
|
| 808 |
|
|
Code : List_Id;
|
| 809 |
|
|
|
| 810 |
|
|
pragma Warnings (Off, Rnn);
|
| 811 |
|
|
|
| 812 |
|
|
begin
|
| 813 |
|
|
Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
|
| 814 |
|
|
Insert_Actions (N, Code);
|
| 815 |
|
|
Expr := New_Occurrence_Of (Qnn, Loc);
|
| 816 |
|
|
|
| 817 |
|
|
-- Set type of result in case used elsewhere (see note at start)
|
| 818 |
|
|
|
| 819 |
|
|
Set_Etype (Expr, Etype (Qnn));
|
| 820 |
|
|
return Expr;
|
| 821 |
|
|
end;
|
| 822 |
|
|
end if;
|
| 823 |
|
|
end Build_Scaled_Divide;
|
| 824 |
|
|
|
| 825 |
|
|
------------------------------
|
| 826 |
|
|
-- Build_Scaled_Divide_Code --
|
| 827 |
|
|
------------------------------
|
| 828 |
|
|
|
| 829 |
|
|
-- If the numerator can be computed in 64-bits, we build
|
| 830 |
|
|
|
| 831 |
|
|
-- [Nnn : constant typ := typ (X) * typ (Y);
|
| 832 |
|
|
-- Dnn : constant typ := typ (Z)
|
| 833 |
|
|
-- Qnn : constant typ := Nnn / Dnn;
|
| 834 |
|
|
-- Rnn : constant typ := Nnn / Dnn;
|
| 835 |
|
|
|
| 836 |
|
|
-- If the numerator cannot be computed in 64 bits, we build
|
| 837 |
|
|
|
| 838 |
|
|
-- [Qnn : Interfaces.Integer_64;
|
| 839 |
|
|
-- Rnn : Interfaces.Integer_64;
|
| 840 |
|
|
-- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
|
| 841 |
|
|
|
| 842 |
|
|
procedure Build_Scaled_Divide_Code
|
| 843 |
|
|
(N : Node_Id;
|
| 844 |
|
|
X, Y, Z : Node_Id;
|
| 845 |
|
|
Qnn, Rnn : out Entity_Id;
|
| 846 |
|
|
Code : out List_Id)
|
| 847 |
|
|
is
|
| 848 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 849 |
|
|
|
| 850 |
|
|
X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
|
| 851 |
|
|
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
|
| 852 |
|
|
Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
|
| 853 |
|
|
|
| 854 |
|
|
QR_Siz : Int;
|
| 855 |
|
|
QR_Typ : Entity_Id;
|
| 856 |
|
|
|
| 857 |
|
|
Nnn : Entity_Id;
|
| 858 |
|
|
Dnn : Entity_Id;
|
| 859 |
|
|
|
| 860 |
|
|
Quo : Node_Id;
|
| 861 |
|
|
Rnd : Entity_Id;
|
| 862 |
|
|
|
| 863 |
|
|
begin
|
| 864 |
|
|
-- Find type that will allow computation of numerator
|
| 865 |
|
|
|
| 866 |
|
|
QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
|
| 867 |
|
|
|
| 868 |
|
|
if QR_Siz <= 16 then
|
| 869 |
|
|
QR_Typ := Standard_Integer_16;
|
| 870 |
|
|
elsif QR_Siz <= 32 then
|
| 871 |
|
|
QR_Typ := Standard_Integer_32;
|
| 872 |
|
|
elsif QR_Siz <= 64 then
|
| 873 |
|
|
QR_Typ := Standard_Integer_64;
|
| 874 |
|
|
|
| 875 |
|
|
-- For more than 64, bits, we use the 64-bit integer defined in
|
| 876 |
|
|
-- Interfaces, so that it can be handled by the runtime routine
|
| 877 |
|
|
|
| 878 |
|
|
else
|
| 879 |
|
|
QR_Typ := RTE (RE_Integer_64);
|
| 880 |
|
|
end if;
|
| 881 |
|
|
|
| 882 |
|
|
-- Define quotient and remainder, and set their Etypes, so
|
| 883 |
|
|
-- that they can be picked up by Build_xxx routines.
|
| 884 |
|
|
|
| 885 |
|
|
Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
| 886 |
|
|
Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
| 887 |
|
|
|
| 888 |
|
|
Set_Etype (Qnn, QR_Typ);
|
| 889 |
|
|
Set_Etype (Rnn, QR_Typ);
|
| 890 |
|
|
|
| 891 |
|
|
-- Case that we can compute the numerator in 64 bits
|
| 892 |
|
|
|
| 893 |
|
|
if QR_Siz <= 64 then
|
| 894 |
|
|
Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
|
| 895 |
|
|
Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
|
| 896 |
|
|
|
| 897 |
|
|
-- Set Etypes, so that they can be picked up by New_Occurrence_Of
|
| 898 |
|
|
|
| 899 |
|
|
Set_Etype (Nnn, QR_Typ);
|
| 900 |
|
|
Set_Etype (Dnn, QR_Typ);
|
| 901 |
|
|
|
| 902 |
|
|
Code := New_List (
|
| 903 |
|
|
Make_Object_Declaration (Loc,
|
| 904 |
|
|
Defining_Identifier => Nnn,
|
| 905 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 906 |
|
|
Constant_Present => True,
|
| 907 |
|
|
Expression =>
|
| 908 |
|
|
Build_Multiply (N,
|
| 909 |
|
|
Build_Conversion (N, QR_Typ, X),
|
| 910 |
|
|
Build_Conversion (N, QR_Typ, Y))),
|
| 911 |
|
|
|
| 912 |
|
|
Make_Object_Declaration (Loc,
|
| 913 |
|
|
Defining_Identifier => Dnn,
|
| 914 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 915 |
|
|
Constant_Present => True,
|
| 916 |
|
|
Expression => Build_Conversion (N, QR_Typ, Z)));
|
| 917 |
|
|
|
| 918 |
|
|
Quo :=
|
| 919 |
|
|
Build_Divide (N,
|
| 920 |
|
|
New_Occurrence_Of (Nnn, Loc),
|
| 921 |
|
|
New_Occurrence_Of (Dnn, Loc));
|
| 922 |
|
|
|
| 923 |
|
|
Append_To (Code,
|
| 924 |
|
|
Make_Object_Declaration (Loc,
|
| 925 |
|
|
Defining_Identifier => Qnn,
|
| 926 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 927 |
|
|
Constant_Present => True,
|
| 928 |
|
|
Expression => Quo));
|
| 929 |
|
|
|
| 930 |
|
|
Append_To (Code,
|
| 931 |
|
|
Make_Object_Declaration (Loc,
|
| 932 |
|
|
Defining_Identifier => Rnn,
|
| 933 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
|
| 934 |
|
|
Constant_Present => True,
|
| 935 |
|
|
Expression =>
|
| 936 |
|
|
Build_Rem (N,
|
| 937 |
|
|
New_Occurrence_Of (Nnn, Loc),
|
| 938 |
|
|
New_Occurrence_Of (Dnn, Loc))));
|
| 939 |
|
|
|
| 940 |
|
|
-- Case where numerator does not fit in 64 bits, so we have to
|
| 941 |
|
|
-- call the runtime routine to compute the quotient and remainder
|
| 942 |
|
|
|
| 943 |
|
|
else
|
| 944 |
|
|
Rnd := Boolean_Literals (Rounded_Result_Set (N));
|
| 945 |
|
|
|
| 946 |
|
|
Code := New_List (
|
| 947 |
|
|
Make_Object_Declaration (Loc,
|
| 948 |
|
|
Defining_Identifier => Qnn,
|
| 949 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
|
| 950 |
|
|
|
| 951 |
|
|
Make_Object_Declaration (Loc,
|
| 952 |
|
|
Defining_Identifier => Rnn,
|
| 953 |
|
|
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
|
| 954 |
|
|
|
| 955 |
|
|
Make_Procedure_Call_Statement (Loc,
|
| 956 |
|
|
Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
|
| 957 |
|
|
Parameter_Associations => New_List (
|
| 958 |
|
|
Build_Conversion (N, QR_Typ, X),
|
| 959 |
|
|
Build_Conversion (N, QR_Typ, Y),
|
| 960 |
|
|
Build_Conversion (N, QR_Typ, Z),
|
| 961 |
|
|
New_Occurrence_Of (Qnn, Loc),
|
| 962 |
|
|
New_Occurrence_Of (Rnn, Loc),
|
| 963 |
|
|
New_Occurrence_Of (Rnd, Loc))));
|
| 964 |
|
|
end if;
|
| 965 |
|
|
|
| 966 |
|
|
-- Set type of result, for use in caller
|
| 967 |
|
|
|
| 968 |
|
|
Set_Etype (Qnn, QR_Typ);
|
| 969 |
|
|
end Build_Scaled_Divide_Code;
|
| 970 |
|
|
|
| 971 |
|
|
---------------------------
|
| 972 |
|
|
-- Do_Divide_Fixed_Fixed --
|
| 973 |
|
|
---------------------------
|
| 974 |
|
|
|
| 975 |
|
|
-- We have:
|
| 976 |
|
|
|
| 977 |
|
|
-- (Result_Value * Result_Small) =
|
| 978 |
|
|
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
|
| 979 |
|
|
|
| 980 |
|
|
-- Result_Value = (Left_Value / Right_Value) *
|
| 981 |
|
|
-- (Left_Small / (Right_Small * Result_Small));
|
| 982 |
|
|
|
| 983 |
|
|
-- we can do the operation in integer arithmetic if this fraction is an
|
| 984 |
|
|
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
|
| 985 |
|
|
-- Otherwise the result is in the close result set and our approach is to
|
| 986 |
|
|
-- use floating-point to compute this close result.
|
| 987 |
|
|
|
| 988 |
|
|
procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
|
| 989 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 990 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 991 |
|
|
Left_Type : constant Entity_Id := Etype (Left);
|
| 992 |
|
|
Right_Type : constant Entity_Id := Etype (Right);
|
| 993 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 994 |
|
|
Right_Small : constant Ureal := Small_Value (Right_Type);
|
| 995 |
|
|
Left_Small : constant Ureal := Small_Value (Left_Type);
|
| 996 |
|
|
|
| 997 |
|
|
Result_Small : Ureal;
|
| 998 |
|
|
Frac : Ureal;
|
| 999 |
|
|
Frac_Num : Uint;
|
| 1000 |
|
|
Frac_Den : Uint;
|
| 1001 |
|
|
Lit_Int : Node_Id;
|
| 1002 |
|
|
|
| 1003 |
|
|
begin
|
| 1004 |
|
|
-- Rounding is required if the result is integral
|
| 1005 |
|
|
|
| 1006 |
|
|
if Is_Integer_Type (Result_Type) then
|
| 1007 |
|
|
Set_Rounded_Result (N);
|
| 1008 |
|
|
end if;
|
| 1009 |
|
|
|
| 1010 |
|
|
-- Get result small. If the result is an integer, treat it as though
|
| 1011 |
|
|
-- it had a small of 1.0, all other processing is identical.
|
| 1012 |
|
|
|
| 1013 |
|
|
if Is_Integer_Type (Result_Type) then
|
| 1014 |
|
|
Result_Small := Ureal_1;
|
| 1015 |
|
|
else
|
| 1016 |
|
|
Result_Small := Small_Value (Result_Type);
|
| 1017 |
|
|
end if;
|
| 1018 |
|
|
|
| 1019 |
|
|
-- Get small ratio
|
| 1020 |
|
|
|
| 1021 |
|
|
Frac := Left_Small / (Right_Small * Result_Small);
|
| 1022 |
|
|
Frac_Num := Norm_Num (Frac);
|
| 1023 |
|
|
Frac_Den := Norm_Den (Frac);
|
| 1024 |
|
|
|
| 1025 |
|
|
-- If the fraction is an integer, then we get the result by multiplying
|
| 1026 |
|
|
-- the left operand by the integer, and then dividing by the right
|
| 1027 |
|
|
-- operand (the order is important, if we did the divide first, we
|
| 1028 |
|
|
-- would lose precision).
|
| 1029 |
|
|
|
| 1030 |
|
|
if Frac_Den = 1 then
|
| 1031 |
|
|
Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
|
| 1032 |
|
|
|
| 1033 |
|
|
if Present (Lit_Int) then
|
| 1034 |
|
|
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
|
| 1035 |
|
|
return;
|
| 1036 |
|
|
end if;
|
| 1037 |
|
|
|
| 1038 |
|
|
-- If the fraction is the reciprocal of an integer, then we get the
|
| 1039 |
|
|
-- result by first multiplying the divisor by the integer, and then
|
| 1040 |
|
|
-- doing the division with the adjusted divisor.
|
| 1041 |
|
|
|
| 1042 |
|
|
-- Note: this is much better than doing two divisions: multiplications
|
| 1043 |
|
|
-- are much faster than divisions (and certainly faster than rounded
|
| 1044 |
|
|
-- divisions), and we don't get inaccuracies from double rounding.
|
| 1045 |
|
|
|
| 1046 |
|
|
elsif Frac_Num = 1 then
|
| 1047 |
|
|
Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
|
| 1048 |
|
|
|
| 1049 |
|
|
if Present (Lit_Int) then
|
| 1050 |
|
|
Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
|
| 1051 |
|
|
return;
|
| 1052 |
|
|
end if;
|
| 1053 |
|
|
end if;
|
| 1054 |
|
|
|
| 1055 |
|
|
-- If we fall through, we use floating-point to compute the result
|
| 1056 |
|
|
|
| 1057 |
|
|
Set_Result (N,
|
| 1058 |
|
|
Build_Multiply (N,
|
| 1059 |
|
|
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
|
| 1060 |
|
|
Real_Literal (N, Frac)));
|
| 1061 |
|
|
end Do_Divide_Fixed_Fixed;
|
| 1062 |
|
|
|
| 1063 |
|
|
-------------------------------
|
| 1064 |
|
|
-- Do_Divide_Fixed_Universal --
|
| 1065 |
|
|
-------------------------------
|
| 1066 |
|
|
|
| 1067 |
|
|
-- We have:
|
| 1068 |
|
|
|
| 1069 |
|
|
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
|
| 1070 |
|
|
-- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
|
| 1071 |
|
|
|
| 1072 |
|
|
-- The result is required to be in the perfect result set if the literal
|
| 1073 |
|
|
-- can be factored so that the resulting small ratio is an integer or the
|
| 1074 |
|
|
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
|
| 1075 |
|
|
-- analysis of these RM requirements:
|
| 1076 |
|
|
|
| 1077 |
|
|
-- We must factor the literal, finding an integer K:
|
| 1078 |
|
|
|
| 1079 |
|
|
-- Lit_Value = K * Right_Small
|
| 1080 |
|
|
-- Right_Small = Lit_Value / K
|
| 1081 |
|
|
|
| 1082 |
|
|
-- such that the small ratio:
|
| 1083 |
|
|
|
| 1084 |
|
|
-- Left_Small
|
| 1085 |
|
|
-- ------------------------------
|
| 1086 |
|
|
-- (Lit_Value / K) * Result_Small
|
| 1087 |
|
|
|
| 1088 |
|
|
-- Left_Small
|
| 1089 |
|
|
-- = ------------------------ * K
|
| 1090 |
|
|
-- Lit_Value * Result_Small
|
| 1091 |
|
|
|
| 1092 |
|
|
-- is an integer or the reciprocal of an integer, and for
|
| 1093 |
|
|
-- implementation efficiency we need the smallest such K.
|
| 1094 |
|
|
|
| 1095 |
|
|
-- First we reduce the left fraction to lowest terms
|
| 1096 |
|
|
|
| 1097 |
|
|
-- If numerator = 1, then for K = 1, the small ratio is the reciprocal
|
| 1098 |
|
|
-- of an integer, and this is clearly the minimum K case, so set K = 1,
|
| 1099 |
|
|
-- Right_Small = Lit_Value.
|
| 1100 |
|
|
|
| 1101 |
|
|
-- If numerator > 1, then set K to the denominator of the fraction so
|
| 1102 |
|
|
-- that the resulting small ratio is an integer (the numerator value).
|
| 1103 |
|
|
|
| 1104 |
|
|
procedure Do_Divide_Fixed_Universal (N : Node_Id) is
|
| 1105 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 1106 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 1107 |
|
|
Left_Type : constant Entity_Id := Etype (Left);
|
| 1108 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1109 |
|
|
Left_Small : constant Ureal := Small_Value (Left_Type);
|
| 1110 |
|
|
Lit_Value : constant Ureal := Realval (Right);
|
| 1111 |
|
|
|
| 1112 |
|
|
Result_Small : Ureal;
|
| 1113 |
|
|
Frac : Ureal;
|
| 1114 |
|
|
Frac_Num : Uint;
|
| 1115 |
|
|
Frac_Den : Uint;
|
| 1116 |
|
|
Lit_K : Node_Id;
|
| 1117 |
|
|
Lit_Int : Node_Id;
|
| 1118 |
|
|
|
| 1119 |
|
|
begin
|
| 1120 |
|
|
-- Get result small. If the result is an integer, treat it as though
|
| 1121 |
|
|
-- it had a small of 1.0, all other processing is identical.
|
| 1122 |
|
|
|
| 1123 |
|
|
if Is_Integer_Type (Result_Type) then
|
| 1124 |
|
|
Result_Small := Ureal_1;
|
| 1125 |
|
|
else
|
| 1126 |
|
|
Result_Small := Small_Value (Result_Type);
|
| 1127 |
|
|
end if;
|
| 1128 |
|
|
|
| 1129 |
|
|
-- Determine if literal can be rewritten successfully
|
| 1130 |
|
|
|
| 1131 |
|
|
Frac := Left_Small / (Lit_Value * Result_Small);
|
| 1132 |
|
|
Frac_Num := Norm_Num (Frac);
|
| 1133 |
|
|
Frac_Den := Norm_Den (Frac);
|
| 1134 |
|
|
|
| 1135 |
|
|
-- Case where fraction is the reciprocal of an integer (K = 1, integer
|
| 1136 |
|
|
-- = denominator). If this integer is not too large, this is the case
|
| 1137 |
|
|
-- where the result can be obtained by dividing by this integer value.
|
| 1138 |
|
|
|
| 1139 |
|
|
if Frac_Num = 1 then
|
| 1140 |
|
|
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
|
| 1141 |
|
|
|
| 1142 |
|
|
if Present (Lit_Int) then
|
| 1143 |
|
|
Set_Result (N, Build_Divide (N, Left, Lit_Int));
|
| 1144 |
|
|
return;
|
| 1145 |
|
|
end if;
|
| 1146 |
|
|
|
| 1147 |
|
|
-- Case where we choose K to make fraction an integer (K = denominator
|
| 1148 |
|
|
-- of fraction, integer = numerator of fraction). If both K and the
|
| 1149 |
|
|
-- numerator are small enough, this is the case where the result can
|
| 1150 |
|
|
-- be obtained by first multiplying by the integer value and then
|
| 1151 |
|
|
-- dividing by K (the order is important, if we divided first, we
|
| 1152 |
|
|
-- would lose precision).
|
| 1153 |
|
|
|
| 1154 |
|
|
else
|
| 1155 |
|
|
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
|
| 1156 |
|
|
Lit_K := Integer_Literal (N, Frac_Den, False);
|
| 1157 |
|
|
|
| 1158 |
|
|
if Present (Lit_Int) and then Present (Lit_K) then
|
| 1159 |
|
|
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
|
| 1160 |
|
|
return;
|
| 1161 |
|
|
end if;
|
| 1162 |
|
|
end if;
|
| 1163 |
|
|
|
| 1164 |
|
|
-- Fall through if the literal cannot be successfully rewritten, or if
|
| 1165 |
|
|
-- the small ratio is out of range of integer arithmetic. In the former
|
| 1166 |
|
|
-- case it is fine to use floating-point to get the close result set,
|
| 1167 |
|
|
-- and in the latter case, it means that the result is zero or raises
|
| 1168 |
|
|
-- constraint error, and we can do that accurately in floating-point.
|
| 1169 |
|
|
|
| 1170 |
|
|
-- If we end up using floating-point, then we take the right integer
|
| 1171 |
|
|
-- to be one, and its small to be the value of the original right real
|
| 1172 |
|
|
-- literal. That way, we need only one floating-point multiplication.
|
| 1173 |
|
|
|
| 1174 |
|
|
Set_Result (N,
|
| 1175 |
|
|
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
|
| 1176 |
|
|
end Do_Divide_Fixed_Universal;
|
| 1177 |
|
|
|
| 1178 |
|
|
-------------------------------
|
| 1179 |
|
|
-- Do_Divide_Universal_Fixed --
|
| 1180 |
|
|
-------------------------------
|
| 1181 |
|
|
|
| 1182 |
|
|
-- We have:
|
| 1183 |
|
|
|
| 1184 |
|
|
-- (Result_Value * Result_Small) =
|
| 1185 |
|
|
-- Lit_Value / (Right_Value * Right_Small)
|
| 1186 |
|
|
-- Result_Value =
|
| 1187 |
|
|
-- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
|
| 1188 |
|
|
|
| 1189 |
|
|
-- The result is required to be in the perfect result set if the literal
|
| 1190 |
|
|
-- can be factored so that the resulting small ratio is an integer or the
|
| 1191 |
|
|
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
|
| 1192 |
|
|
-- analysis of these RM requirements:
|
| 1193 |
|
|
|
| 1194 |
|
|
-- We must factor the literal, finding an integer K:
|
| 1195 |
|
|
|
| 1196 |
|
|
-- Lit_Value = K * Left_Small
|
| 1197 |
|
|
-- Left_Small = Lit_Value / K
|
| 1198 |
|
|
|
| 1199 |
|
|
-- such that the small ratio:
|
| 1200 |
|
|
|
| 1201 |
|
|
-- (Lit_Value / K)
|
| 1202 |
|
|
-- --------------------------
|
| 1203 |
|
|
-- Right_Small * Result_Small
|
| 1204 |
|
|
|
| 1205 |
|
|
-- Lit_Value 1
|
| 1206 |
|
|
-- = -------------------------- * -
|
| 1207 |
|
|
-- Right_Small * Result_Small K
|
| 1208 |
|
|
|
| 1209 |
|
|
-- is an integer or the reciprocal of an integer, and for
|
| 1210 |
|
|
-- implementation efficiency we need the smallest such K.
|
| 1211 |
|
|
|
| 1212 |
|
|
-- First we reduce the left fraction to lowest terms
|
| 1213 |
|
|
|
| 1214 |
|
|
-- If denominator = 1, then for K = 1, the small ratio is an integer
|
| 1215 |
|
|
-- (the numerator) and this is clearly the minimum K case, so set K = 1,
|
| 1216 |
|
|
-- and Left_Small = Lit_Value.
|
| 1217 |
|
|
|
| 1218 |
|
|
-- If denominator > 1, then set K to the numerator of the fraction so
|
| 1219 |
|
|
-- that the resulting small ratio is the reciprocal of an integer (the
|
| 1220 |
|
|
-- numerator value).
|
| 1221 |
|
|
|
| 1222 |
|
|
procedure Do_Divide_Universal_Fixed (N : Node_Id) is
|
| 1223 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 1224 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 1225 |
|
|
Right_Type : constant Entity_Id := Etype (Right);
|
| 1226 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1227 |
|
|
Right_Small : constant Ureal := Small_Value (Right_Type);
|
| 1228 |
|
|
Lit_Value : constant Ureal := Realval (Left);
|
| 1229 |
|
|
|
| 1230 |
|
|
Result_Small : Ureal;
|
| 1231 |
|
|
Frac : Ureal;
|
| 1232 |
|
|
Frac_Num : Uint;
|
| 1233 |
|
|
Frac_Den : Uint;
|
| 1234 |
|
|
Lit_K : Node_Id;
|
| 1235 |
|
|
Lit_Int : Node_Id;
|
| 1236 |
|
|
|
| 1237 |
|
|
begin
|
| 1238 |
|
|
-- Get result small. If the result is an integer, treat it as though
|
| 1239 |
|
|
-- it had a small of 1.0, all other processing is identical.
|
| 1240 |
|
|
|
| 1241 |
|
|
if Is_Integer_Type (Result_Type) then
|
| 1242 |
|
|
Result_Small := Ureal_1;
|
| 1243 |
|
|
else
|
| 1244 |
|
|
Result_Small := Small_Value (Result_Type);
|
| 1245 |
|
|
end if;
|
| 1246 |
|
|
|
| 1247 |
|
|
-- Determine if literal can be rewritten successfully
|
| 1248 |
|
|
|
| 1249 |
|
|
Frac := Lit_Value / (Right_Small * Result_Small);
|
| 1250 |
|
|
Frac_Num := Norm_Num (Frac);
|
| 1251 |
|
|
Frac_Den := Norm_Den (Frac);
|
| 1252 |
|
|
|
| 1253 |
|
|
-- Case where fraction is an integer (K = 1, integer = numerator). If
|
| 1254 |
|
|
-- this integer is not too large, this is the case where the result
|
| 1255 |
|
|
-- can be obtained by dividing this integer by the right operand.
|
| 1256 |
|
|
|
| 1257 |
|
|
if Frac_Den = 1 then
|
| 1258 |
|
|
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
|
| 1259 |
|
|
|
| 1260 |
|
|
if Present (Lit_Int) then
|
| 1261 |
|
|
Set_Result (N, Build_Divide (N, Lit_Int, Right));
|
| 1262 |
|
|
return;
|
| 1263 |
|
|
end if;
|
| 1264 |
|
|
|
| 1265 |
|
|
-- Case where we choose K to make the fraction the reciprocal of an
|
| 1266 |
|
|
-- integer (K = numerator of fraction, integer = numerator of fraction).
|
| 1267 |
|
|
-- If both K and the integer are small enough, this is the case where
|
| 1268 |
|
|
-- the result can be obtained by multiplying the right operand by K
|
| 1269 |
|
|
-- and then dividing by the integer value. The order of the operations
|
| 1270 |
|
|
-- is important (if we divided first, we would lose precision).
|
| 1271 |
|
|
|
| 1272 |
|
|
else
|
| 1273 |
|
|
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
|
| 1274 |
|
|
Lit_K := Integer_Literal (N, Frac_Num, False);
|
| 1275 |
|
|
|
| 1276 |
|
|
if Present (Lit_Int) and then Present (Lit_K) then
|
| 1277 |
|
|
Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
|
| 1278 |
|
|
return;
|
| 1279 |
|
|
end if;
|
| 1280 |
|
|
end if;
|
| 1281 |
|
|
|
| 1282 |
|
|
-- Fall through if the literal cannot be successfully rewritten, or if
|
| 1283 |
|
|
-- the small ratio is out of range of integer arithmetic. In the former
|
| 1284 |
|
|
-- case it is fine to use floating-point to get the close result set,
|
| 1285 |
|
|
-- and in the latter case, it means that the result is zero or raises
|
| 1286 |
|
|
-- constraint error, and we can do that accurately in floating-point.
|
| 1287 |
|
|
|
| 1288 |
|
|
-- If we end up using floating-point, then we take the right integer
|
| 1289 |
|
|
-- to be one, and its small to be the value of the original right real
|
| 1290 |
|
|
-- literal. That way, we need only one floating-point division.
|
| 1291 |
|
|
|
| 1292 |
|
|
Set_Result (N,
|
| 1293 |
|
|
Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
|
| 1294 |
|
|
end Do_Divide_Universal_Fixed;
|
| 1295 |
|
|
|
| 1296 |
|
|
-----------------------------
|
| 1297 |
|
|
-- Do_Multiply_Fixed_Fixed --
|
| 1298 |
|
|
-----------------------------
|
| 1299 |
|
|
|
| 1300 |
|
|
-- We have:
|
| 1301 |
|
|
|
| 1302 |
|
|
-- (Result_Value * Result_Small) =
|
| 1303 |
|
|
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
|
| 1304 |
|
|
|
| 1305 |
|
|
-- Result_Value = (Left_Value * Right_Value) *
|
| 1306 |
|
|
-- (Left_Small * Right_Small) / Result_Small;
|
| 1307 |
|
|
|
| 1308 |
|
|
-- we can do the operation in integer arithmetic if this fraction is an
|
| 1309 |
|
|
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
|
| 1310 |
|
|
-- Otherwise the result is in the close result set and our approach is to
|
| 1311 |
|
|
-- use floating-point to compute this close result.
|
| 1312 |
|
|
|
| 1313 |
|
|
procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
|
| 1314 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 1315 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 1316 |
|
|
|
| 1317 |
|
|
Left_Type : constant Entity_Id := Etype (Left);
|
| 1318 |
|
|
Right_Type : constant Entity_Id := Etype (Right);
|
| 1319 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1320 |
|
|
Right_Small : constant Ureal := Small_Value (Right_Type);
|
| 1321 |
|
|
Left_Small : constant Ureal := Small_Value (Left_Type);
|
| 1322 |
|
|
|
| 1323 |
|
|
Result_Small : Ureal;
|
| 1324 |
|
|
Frac : Ureal;
|
| 1325 |
|
|
Frac_Num : Uint;
|
| 1326 |
|
|
Frac_Den : Uint;
|
| 1327 |
|
|
Lit_Int : Node_Id;
|
| 1328 |
|
|
|
| 1329 |
|
|
begin
|
| 1330 |
|
|
-- Get result small. If the result is an integer, treat it as though
|
| 1331 |
|
|
-- it had a small of 1.0, all other processing is identical.
|
| 1332 |
|
|
|
| 1333 |
|
|
if Is_Integer_Type (Result_Type) then
|
| 1334 |
|
|
Result_Small := Ureal_1;
|
| 1335 |
|
|
else
|
| 1336 |
|
|
Result_Small := Small_Value (Result_Type);
|
| 1337 |
|
|
end if;
|
| 1338 |
|
|
|
| 1339 |
|
|
-- Get small ratio
|
| 1340 |
|
|
|
| 1341 |
|
|
Frac := (Left_Small * Right_Small) / Result_Small;
|
| 1342 |
|
|
Frac_Num := Norm_Num (Frac);
|
| 1343 |
|
|
Frac_Den := Norm_Den (Frac);
|
| 1344 |
|
|
|
| 1345 |
|
|
-- If the fraction is an integer, then we get the result by multiplying
|
| 1346 |
|
|
-- the operands, and then multiplying the result by the integer value.
|
| 1347 |
|
|
|
| 1348 |
|
|
if Frac_Den = 1 then
|
| 1349 |
|
|
Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
|
| 1350 |
|
|
|
| 1351 |
|
|
if Present (Lit_Int) then
|
| 1352 |
|
|
Set_Result (N,
|
| 1353 |
|
|
Build_Multiply (N, Build_Multiply (N, Left, Right),
|
| 1354 |
|
|
Lit_Int));
|
| 1355 |
|
|
return;
|
| 1356 |
|
|
end if;
|
| 1357 |
|
|
|
| 1358 |
|
|
-- If the fraction is the reciprocal of an integer, then we get the
|
| 1359 |
|
|
-- result by multiplying the operands, and then dividing the result by
|
| 1360 |
|
|
-- the integer value. The order of the operations is important, if we
|
| 1361 |
|
|
-- divided first, we would lose precision.
|
| 1362 |
|
|
|
| 1363 |
|
|
elsif Frac_Num = 1 then
|
| 1364 |
|
|
Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
|
| 1365 |
|
|
|
| 1366 |
|
|
if Present (Lit_Int) then
|
| 1367 |
|
|
Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
|
| 1368 |
|
|
return;
|
| 1369 |
|
|
end if;
|
| 1370 |
|
|
end if;
|
| 1371 |
|
|
|
| 1372 |
|
|
-- If we fall through, we use floating-point to compute the result
|
| 1373 |
|
|
|
| 1374 |
|
|
Set_Result (N,
|
| 1375 |
|
|
Build_Multiply (N,
|
| 1376 |
|
|
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
|
| 1377 |
|
|
Real_Literal (N, Frac)));
|
| 1378 |
|
|
end Do_Multiply_Fixed_Fixed;
|
| 1379 |
|
|
|
| 1380 |
|
|
---------------------------------
|
| 1381 |
|
|
-- Do_Multiply_Fixed_Universal --
|
| 1382 |
|
|
---------------------------------
|
| 1383 |
|
|
|
| 1384 |
|
|
-- We have:
|
| 1385 |
|
|
|
| 1386 |
|
|
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
|
| 1387 |
|
|
-- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
|
| 1388 |
|
|
|
| 1389 |
|
|
-- The result is required to be in the perfect result set if the literal
|
| 1390 |
|
|
-- can be factored so that the resulting small ratio is an integer or the
|
| 1391 |
|
|
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
|
| 1392 |
|
|
-- analysis of these RM requirements:
|
| 1393 |
|
|
|
| 1394 |
|
|
-- We must factor the literal, finding an integer K:
|
| 1395 |
|
|
|
| 1396 |
|
|
-- Lit_Value = K * Right_Small
|
| 1397 |
|
|
-- Right_Small = Lit_Value / K
|
| 1398 |
|
|
|
| 1399 |
|
|
-- such that the small ratio:
|
| 1400 |
|
|
|
| 1401 |
|
|
-- Left_Small * (Lit_Value / K)
|
| 1402 |
|
|
-- ----------------------------
|
| 1403 |
|
|
-- Result_Small
|
| 1404 |
|
|
|
| 1405 |
|
|
-- Left_Small * Lit_Value 1
|
| 1406 |
|
|
-- = ---------------------- * -
|
| 1407 |
|
|
-- Result_Small K
|
| 1408 |
|
|
|
| 1409 |
|
|
-- is an integer or the reciprocal of an integer, and for
|
| 1410 |
|
|
-- implementation efficiency we need the smallest such K.
|
| 1411 |
|
|
|
| 1412 |
|
|
-- First we reduce the left fraction to lowest terms
|
| 1413 |
|
|
|
| 1414 |
|
|
-- If denominator = 1, then for K = 1, the small ratio is an integer, and
|
| 1415 |
|
|
-- this is clearly the minimum K case, so set
|
| 1416 |
|
|
|
| 1417 |
|
|
-- K = 1, Right_Small = Lit_Value
|
| 1418 |
|
|
|
| 1419 |
|
|
-- If denominator > 1, then set K to the numerator of the fraction, so
|
| 1420 |
|
|
-- that the resulting small ratio is the reciprocal of the integer (the
|
| 1421 |
|
|
-- denominator value).
|
| 1422 |
|
|
|
| 1423 |
|
|
procedure Do_Multiply_Fixed_Universal
|
| 1424 |
|
|
(N : Node_Id;
|
| 1425 |
|
|
Left, Right : Node_Id)
|
| 1426 |
|
|
is
|
| 1427 |
|
|
Left_Type : constant Entity_Id := Etype (Left);
|
| 1428 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1429 |
|
|
Left_Small : constant Ureal := Small_Value (Left_Type);
|
| 1430 |
|
|
Lit_Value : constant Ureal := Realval (Right);
|
| 1431 |
|
|
|
| 1432 |
|
|
Result_Small : Ureal;
|
| 1433 |
|
|
Frac : Ureal;
|
| 1434 |
|
|
Frac_Num : Uint;
|
| 1435 |
|
|
Frac_Den : Uint;
|
| 1436 |
|
|
Lit_K : Node_Id;
|
| 1437 |
|
|
Lit_Int : Node_Id;
|
| 1438 |
|
|
|
| 1439 |
|
|
begin
|
| 1440 |
|
|
-- Get result small. If the result is an integer, treat it as though
|
| 1441 |
|
|
-- it had a small of 1.0, all other processing is identical.
|
| 1442 |
|
|
|
| 1443 |
|
|
if Is_Integer_Type (Result_Type) then
|
| 1444 |
|
|
Result_Small := Ureal_1;
|
| 1445 |
|
|
else
|
| 1446 |
|
|
Result_Small := Small_Value (Result_Type);
|
| 1447 |
|
|
end if;
|
| 1448 |
|
|
|
| 1449 |
|
|
-- Determine if literal can be rewritten successfully
|
| 1450 |
|
|
|
| 1451 |
|
|
Frac := (Left_Small * Lit_Value) / Result_Small;
|
| 1452 |
|
|
Frac_Num := Norm_Num (Frac);
|
| 1453 |
|
|
Frac_Den := Norm_Den (Frac);
|
| 1454 |
|
|
|
| 1455 |
|
|
-- Case where fraction is an integer (K = 1, integer = numerator). If
|
| 1456 |
|
|
-- this integer is not too large, this is the case where the result can
|
| 1457 |
|
|
-- be obtained by multiplying by this integer value.
|
| 1458 |
|
|
|
| 1459 |
|
|
if Frac_Den = 1 then
|
| 1460 |
|
|
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
|
| 1461 |
|
|
|
| 1462 |
|
|
if Present (Lit_Int) then
|
| 1463 |
|
|
Set_Result (N, Build_Multiply (N, Left, Lit_Int));
|
| 1464 |
|
|
return;
|
| 1465 |
|
|
end if;
|
| 1466 |
|
|
|
| 1467 |
|
|
-- Case where we choose K to make fraction the reciprocal of an integer
|
| 1468 |
|
|
-- (K = numerator of fraction, integer = denominator of fraction). If
|
| 1469 |
|
|
-- both K and the denominator are small enough, this is the case where
|
| 1470 |
|
|
-- the result can be obtained by first multiplying by K, and then
|
| 1471 |
|
|
-- dividing by the integer value.
|
| 1472 |
|
|
|
| 1473 |
|
|
else
|
| 1474 |
|
|
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
|
| 1475 |
|
|
Lit_K := Integer_Literal (N, Frac_Num);
|
| 1476 |
|
|
|
| 1477 |
|
|
if Present (Lit_Int) and then Present (Lit_K) then
|
| 1478 |
|
|
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
|
| 1479 |
|
|
return;
|
| 1480 |
|
|
end if;
|
| 1481 |
|
|
end if;
|
| 1482 |
|
|
|
| 1483 |
|
|
-- Fall through if the literal cannot be successfully rewritten, or if
|
| 1484 |
|
|
-- the small ratio is out of range of integer arithmetic. In the former
|
| 1485 |
|
|
-- case it is fine to use floating-point to get the close result set,
|
| 1486 |
|
|
-- and in the latter case, it means that the result is zero or raises
|
| 1487 |
|
|
-- constraint error, and we can do that accurately in floating-point.
|
| 1488 |
|
|
|
| 1489 |
|
|
-- If we end up using floating-point, then we take the right integer
|
| 1490 |
|
|
-- to be one, and its small to be the value of the original right real
|
| 1491 |
|
|
-- literal. That way, we need only one floating-point multiplication.
|
| 1492 |
|
|
|
| 1493 |
|
|
Set_Result (N,
|
| 1494 |
|
|
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
|
| 1495 |
|
|
end Do_Multiply_Fixed_Universal;
|
| 1496 |
|
|
|
| 1497 |
|
|
---------------------------------
|
| 1498 |
|
|
-- Expand_Convert_Fixed_Static --
|
| 1499 |
|
|
---------------------------------
|
| 1500 |
|
|
|
| 1501 |
|
|
procedure Expand_Convert_Fixed_Static (N : Node_Id) is
|
| 1502 |
|
|
begin
|
| 1503 |
|
|
Rewrite (N,
|
| 1504 |
|
|
Convert_To (Etype (N),
|
| 1505 |
|
|
Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
|
| 1506 |
|
|
Analyze_And_Resolve (N);
|
| 1507 |
|
|
end Expand_Convert_Fixed_Static;
|
| 1508 |
|
|
|
| 1509 |
|
|
-----------------------------------
|
| 1510 |
|
|
-- Expand_Convert_Fixed_To_Fixed --
|
| 1511 |
|
|
-----------------------------------
|
| 1512 |
|
|
|
| 1513 |
|
|
-- We have:
|
| 1514 |
|
|
|
| 1515 |
|
|
-- Result_Value * Result_Small = Source_Value * Source_Small
|
| 1516 |
|
|
-- Result_Value = Source_Value * (Source_Small / Result_Small)
|
| 1517 |
|
|
|
| 1518 |
|
|
-- If the small ratio (Source_Small / Result_Small) is a sufficiently small
|
| 1519 |
|
|
-- integer, then the perfect result set is obtained by a single integer
|
| 1520 |
|
|
-- multiplication.
|
| 1521 |
|
|
|
| 1522 |
|
|
-- If the small ratio is the reciprocal of a sufficiently small integer,
|
| 1523 |
|
|
-- then the perfect result set is obtained by a single integer division.
|
| 1524 |
|
|
|
| 1525 |
|
|
-- In other cases, we obtain the close result set by calculating the
|
| 1526 |
|
|
-- result in floating-point.
|
| 1527 |
|
|
|
| 1528 |
|
|
procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
|
| 1529 |
|
|
Rng_Check : constant Boolean := Do_Range_Check (N);
|
| 1530 |
|
|
Expr : constant Node_Id := Expression (N);
|
| 1531 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1532 |
|
|
Source_Type : constant Entity_Id := Etype (Expr);
|
| 1533 |
|
|
Small_Ratio : Ureal;
|
| 1534 |
|
|
Ratio_Num : Uint;
|
| 1535 |
|
|
Ratio_Den : Uint;
|
| 1536 |
|
|
Lit : Node_Id;
|
| 1537 |
|
|
|
| 1538 |
|
|
begin
|
| 1539 |
|
|
if Is_OK_Static_Expression (Expr) then
|
| 1540 |
|
|
Expand_Convert_Fixed_Static (N);
|
| 1541 |
|
|
return;
|
| 1542 |
|
|
end if;
|
| 1543 |
|
|
|
| 1544 |
|
|
Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
|
| 1545 |
|
|
Ratio_Num := Norm_Num (Small_Ratio);
|
| 1546 |
|
|
Ratio_Den := Norm_Den (Small_Ratio);
|
| 1547 |
|
|
|
| 1548 |
|
|
if Ratio_Den = 1 then
|
| 1549 |
|
|
if Ratio_Num = 1 then
|
| 1550 |
|
|
Set_Result (N, Expr);
|
| 1551 |
|
|
return;
|
| 1552 |
|
|
|
| 1553 |
|
|
else
|
| 1554 |
|
|
Lit := Integer_Literal (N, Ratio_Num);
|
| 1555 |
|
|
|
| 1556 |
|
|
if Present (Lit) then
|
| 1557 |
|
|
Set_Result (N, Build_Multiply (N, Expr, Lit));
|
| 1558 |
|
|
return;
|
| 1559 |
|
|
end if;
|
| 1560 |
|
|
end if;
|
| 1561 |
|
|
|
| 1562 |
|
|
elsif Ratio_Num = 1 then
|
| 1563 |
|
|
Lit := Integer_Literal (N, Ratio_Den);
|
| 1564 |
|
|
|
| 1565 |
|
|
if Present (Lit) then
|
| 1566 |
|
|
Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
|
| 1567 |
|
|
return;
|
| 1568 |
|
|
end if;
|
| 1569 |
|
|
end if;
|
| 1570 |
|
|
|
| 1571 |
|
|
-- Fall through to use floating-point for the close result set case
|
| 1572 |
|
|
-- either as a result of the small ratio not being an integer or the
|
| 1573 |
|
|
-- reciprocal of an integer, or if the integer is out of range.
|
| 1574 |
|
|
|
| 1575 |
|
|
Set_Result (N,
|
| 1576 |
|
|
Build_Multiply (N,
|
| 1577 |
|
|
Fpt_Value (Expr),
|
| 1578 |
|
|
Real_Literal (N, Small_Ratio)),
|
| 1579 |
|
|
Rng_Check);
|
| 1580 |
|
|
end Expand_Convert_Fixed_To_Fixed;
|
| 1581 |
|
|
|
| 1582 |
|
|
-----------------------------------
|
| 1583 |
|
|
-- Expand_Convert_Fixed_To_Float --
|
| 1584 |
|
|
-----------------------------------
|
| 1585 |
|
|
|
| 1586 |
|
|
-- If the small of the fixed type is 1.0, then we simply convert the
|
| 1587 |
|
|
-- integer value directly to the target floating-point type, otherwise
|
| 1588 |
|
|
-- we first have to multiply by the small, in Universal_Real, and then
|
| 1589 |
|
|
-- convert the result to the target floating-point type.
|
| 1590 |
|
|
|
| 1591 |
|
|
procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
|
| 1592 |
|
|
Rng_Check : constant Boolean := Do_Range_Check (N);
|
| 1593 |
|
|
Expr : constant Node_Id := Expression (N);
|
| 1594 |
|
|
Source_Type : constant Entity_Id := Etype (Expr);
|
| 1595 |
|
|
Small : constant Ureal := Small_Value (Source_Type);
|
| 1596 |
|
|
|
| 1597 |
|
|
begin
|
| 1598 |
|
|
if Is_OK_Static_Expression (Expr) then
|
| 1599 |
|
|
Expand_Convert_Fixed_Static (N);
|
| 1600 |
|
|
return;
|
| 1601 |
|
|
end if;
|
| 1602 |
|
|
|
| 1603 |
|
|
if Small = Ureal_1 then
|
| 1604 |
|
|
Set_Result (N, Expr);
|
| 1605 |
|
|
|
| 1606 |
|
|
else
|
| 1607 |
|
|
Set_Result (N,
|
| 1608 |
|
|
Build_Multiply (N,
|
| 1609 |
|
|
Fpt_Value (Expr),
|
| 1610 |
|
|
Real_Literal (N, Small)),
|
| 1611 |
|
|
Rng_Check);
|
| 1612 |
|
|
end if;
|
| 1613 |
|
|
end Expand_Convert_Fixed_To_Float;
|
| 1614 |
|
|
|
| 1615 |
|
|
-------------------------------------
|
| 1616 |
|
|
-- Expand_Convert_Fixed_To_Integer --
|
| 1617 |
|
|
-------------------------------------
|
| 1618 |
|
|
|
| 1619 |
|
|
-- We have:
|
| 1620 |
|
|
|
| 1621 |
|
|
-- Result_Value = Source_Value * Source_Small
|
| 1622 |
|
|
|
| 1623 |
|
|
-- If the small value is a sufficiently small integer, then the perfect
|
| 1624 |
|
|
-- result set is obtained by a single integer multiplication.
|
| 1625 |
|
|
|
| 1626 |
|
|
-- If the small value is the reciprocal of a sufficiently small integer,
|
| 1627 |
|
|
-- then the perfect result set is obtained by a single integer division.
|
| 1628 |
|
|
|
| 1629 |
|
|
-- In other cases, we obtain the close result set by calculating the
|
| 1630 |
|
|
-- result in floating-point.
|
| 1631 |
|
|
|
| 1632 |
|
|
procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
|
| 1633 |
|
|
Rng_Check : constant Boolean := Do_Range_Check (N);
|
| 1634 |
|
|
Expr : constant Node_Id := Expression (N);
|
| 1635 |
|
|
Source_Type : constant Entity_Id := Etype (Expr);
|
| 1636 |
|
|
Small : constant Ureal := Small_Value (Source_Type);
|
| 1637 |
|
|
Small_Num : constant Uint := Norm_Num (Small);
|
| 1638 |
|
|
Small_Den : constant Uint := Norm_Den (Small);
|
| 1639 |
|
|
Lit : Node_Id;
|
| 1640 |
|
|
|
| 1641 |
|
|
begin
|
| 1642 |
|
|
if Is_OK_Static_Expression (Expr) then
|
| 1643 |
|
|
Expand_Convert_Fixed_Static (N);
|
| 1644 |
|
|
return;
|
| 1645 |
|
|
end if;
|
| 1646 |
|
|
|
| 1647 |
|
|
if Small_Den = 1 then
|
| 1648 |
|
|
Lit := Integer_Literal (N, Small_Num);
|
| 1649 |
|
|
|
| 1650 |
|
|
if Present (Lit) then
|
| 1651 |
|
|
Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
|
| 1652 |
|
|
return;
|
| 1653 |
|
|
end if;
|
| 1654 |
|
|
|
| 1655 |
|
|
elsif Small_Num = 1 then
|
| 1656 |
|
|
Lit := Integer_Literal (N, Small_Den);
|
| 1657 |
|
|
|
| 1658 |
|
|
if Present (Lit) then
|
| 1659 |
|
|
Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
|
| 1660 |
|
|
return;
|
| 1661 |
|
|
end if;
|
| 1662 |
|
|
end if;
|
| 1663 |
|
|
|
| 1664 |
|
|
-- Fall through to use floating-point for the close result set case
|
| 1665 |
|
|
-- either as a result of the small value not being an integer or the
|
| 1666 |
|
|
-- reciprocal of an integer, or if the integer is out of range.
|
| 1667 |
|
|
|
| 1668 |
|
|
Set_Result (N,
|
| 1669 |
|
|
Build_Multiply (N,
|
| 1670 |
|
|
Fpt_Value (Expr),
|
| 1671 |
|
|
Real_Literal (N, Small)),
|
| 1672 |
|
|
Rng_Check);
|
| 1673 |
|
|
end Expand_Convert_Fixed_To_Integer;
|
| 1674 |
|
|
|
| 1675 |
|
|
-----------------------------------
|
| 1676 |
|
|
-- Expand_Convert_Float_To_Fixed --
|
| 1677 |
|
|
-----------------------------------
|
| 1678 |
|
|
|
| 1679 |
|
|
-- We have
|
| 1680 |
|
|
|
| 1681 |
|
|
-- Result_Value * Result_Small = Operand_Value
|
| 1682 |
|
|
|
| 1683 |
|
|
-- so compute:
|
| 1684 |
|
|
|
| 1685 |
|
|
-- Result_Value = Operand_Value * (1.0 / Result_Small)
|
| 1686 |
|
|
|
| 1687 |
|
|
-- We do the small scaling in floating-point, and we do a multiplication
|
| 1688 |
|
|
-- rather than a division, since it is accurate enough for the perfect
|
| 1689 |
|
|
-- result cases, and faster.
|
| 1690 |
|
|
|
| 1691 |
|
|
procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
|
| 1692 |
|
|
Rng_Check : constant Boolean := Do_Range_Check (N);
|
| 1693 |
|
|
Expr : constant Node_Id := Expression (N);
|
| 1694 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1695 |
|
|
Small : constant Ureal := Small_Value (Result_Type);
|
| 1696 |
|
|
|
| 1697 |
|
|
begin
|
| 1698 |
|
|
-- Optimize small = 1, where we can avoid the multiply completely
|
| 1699 |
|
|
|
| 1700 |
|
|
if Small = Ureal_1 then
|
| 1701 |
|
|
Set_Result (N, Expr, Rng_Check, Trunc => True);
|
| 1702 |
|
|
|
| 1703 |
|
|
-- Normal case where multiply is required
|
| 1704 |
|
|
-- Rounding is truncating for decimal fixed point types only,
|
| 1705 |
|
|
-- see RM 4.6(29).
|
| 1706 |
|
|
|
| 1707 |
|
|
else
|
| 1708 |
|
|
Set_Result (N,
|
| 1709 |
|
|
Build_Multiply (N,
|
| 1710 |
|
|
Fpt_Value (Expr),
|
| 1711 |
|
|
Real_Literal (N, Ureal_1 / Small)),
|
| 1712 |
|
|
Rng_Check, Trunc => Is_Decimal_Fixed_Point_Type (Result_Type));
|
| 1713 |
|
|
end if;
|
| 1714 |
|
|
end Expand_Convert_Float_To_Fixed;
|
| 1715 |
|
|
|
| 1716 |
|
|
-------------------------------------
|
| 1717 |
|
|
-- Expand_Convert_Integer_To_Fixed --
|
| 1718 |
|
|
-------------------------------------
|
| 1719 |
|
|
|
| 1720 |
|
|
-- We have
|
| 1721 |
|
|
|
| 1722 |
|
|
-- Result_Value * Result_Small = Operand_Value
|
| 1723 |
|
|
-- Result_Value = Operand_Value / Result_Small
|
| 1724 |
|
|
|
| 1725 |
|
|
-- If the small value is a sufficiently small integer, then the perfect
|
| 1726 |
|
|
-- result set is obtained by a single integer division.
|
| 1727 |
|
|
|
| 1728 |
|
|
-- If the small value is the reciprocal of a sufficiently small integer,
|
| 1729 |
|
|
-- the perfect result set is obtained by a single integer multiplication.
|
| 1730 |
|
|
|
| 1731 |
|
|
-- In other cases, we obtain the close result set by calculating the
|
| 1732 |
|
|
-- result in floating-point using a multiplication by the reciprocal
|
| 1733 |
|
|
-- of the Result_Small.
|
| 1734 |
|
|
|
| 1735 |
|
|
procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
|
| 1736 |
|
|
Rng_Check : constant Boolean := Do_Range_Check (N);
|
| 1737 |
|
|
Expr : constant Node_Id := Expression (N);
|
| 1738 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 1739 |
|
|
Small : constant Ureal := Small_Value (Result_Type);
|
| 1740 |
|
|
Small_Num : constant Uint := Norm_Num (Small);
|
| 1741 |
|
|
Small_Den : constant Uint := Norm_Den (Small);
|
| 1742 |
|
|
Lit : Node_Id;
|
| 1743 |
|
|
|
| 1744 |
|
|
begin
|
| 1745 |
|
|
if Small_Den = 1 then
|
| 1746 |
|
|
Lit := Integer_Literal (N, Small_Num);
|
| 1747 |
|
|
|
| 1748 |
|
|
if Present (Lit) then
|
| 1749 |
|
|
Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
|
| 1750 |
|
|
return;
|
| 1751 |
|
|
end if;
|
| 1752 |
|
|
|
| 1753 |
|
|
elsif Small_Num = 1 then
|
| 1754 |
|
|
Lit := Integer_Literal (N, Small_Den);
|
| 1755 |
|
|
|
| 1756 |
|
|
if Present (Lit) then
|
| 1757 |
|
|
Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
|
| 1758 |
|
|
return;
|
| 1759 |
|
|
end if;
|
| 1760 |
|
|
end if;
|
| 1761 |
|
|
|
| 1762 |
|
|
-- Fall through to use floating-point for the close result set case
|
| 1763 |
|
|
-- either as a result of the small value not being an integer or the
|
| 1764 |
|
|
-- reciprocal of an integer, or if the integer is out of range.
|
| 1765 |
|
|
|
| 1766 |
|
|
Set_Result (N,
|
| 1767 |
|
|
Build_Multiply (N,
|
| 1768 |
|
|
Fpt_Value (Expr),
|
| 1769 |
|
|
Real_Literal (N, Ureal_1 / Small)),
|
| 1770 |
|
|
Rng_Check);
|
| 1771 |
|
|
end Expand_Convert_Integer_To_Fixed;
|
| 1772 |
|
|
|
| 1773 |
|
|
--------------------------------
|
| 1774 |
|
|
-- Expand_Decimal_Divide_Call --
|
| 1775 |
|
|
--------------------------------
|
| 1776 |
|
|
|
| 1777 |
|
|
-- We have four operands
|
| 1778 |
|
|
|
| 1779 |
|
|
-- Dividend
|
| 1780 |
|
|
-- Divisor
|
| 1781 |
|
|
-- Quotient
|
| 1782 |
|
|
-- Remainder
|
| 1783 |
|
|
|
| 1784 |
|
|
-- All of which are decimal types, and which thus have associated
|
| 1785 |
|
|
-- decimal scales.
|
| 1786 |
|
|
|
| 1787 |
|
|
-- Computing the quotient is a similar problem to that faced by the
|
| 1788 |
|
|
-- normal fixed-point division, except that it is simpler, because
|
| 1789 |
|
|
-- we always have compatible smalls.
|
| 1790 |
|
|
|
| 1791 |
|
|
-- Quotient = (Dividend / Divisor) * 10**q
|
| 1792 |
|
|
|
| 1793 |
|
|
-- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
|
| 1794 |
|
|
-- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
|
| 1795 |
|
|
|
| 1796 |
|
|
-- For q >= 0, we compute
|
| 1797 |
|
|
|
| 1798 |
|
|
-- Numerator := Dividend * 10 ** q
|
| 1799 |
|
|
-- Denominator := Divisor
|
| 1800 |
|
|
-- Quotient := Numerator / Denominator
|
| 1801 |
|
|
|
| 1802 |
|
|
-- For q < 0, we compute
|
| 1803 |
|
|
|
| 1804 |
|
|
-- Numerator := Dividend
|
| 1805 |
|
|
-- Denominator := Divisor * 10 ** q
|
| 1806 |
|
|
-- Quotient := Numerator / Denominator
|
| 1807 |
|
|
|
| 1808 |
|
|
-- Both these divisions are done in truncated mode, and the remainder
|
| 1809 |
|
|
-- from these divisions is used to compute the result Remainder. This
|
| 1810 |
|
|
-- remainder has the effective scale of the numerator of the division,
|
| 1811 |
|
|
|
| 1812 |
|
|
-- For q >= 0, the remainder scale is Dividend'Scale + q
|
| 1813 |
|
|
-- For q < 0, the remainder scale is Dividend'Scale
|
| 1814 |
|
|
|
| 1815 |
|
|
-- The result Remainder is then computed by a normal truncating decimal
|
| 1816 |
|
|
-- conversion from this scale to the scale of the remainder, i.e. by a
|
| 1817 |
|
|
-- division or multiplication by the appropriate power of 10.
|
| 1818 |
|
|
|
| 1819 |
|
|
procedure Expand_Decimal_Divide_Call (N : Node_Id) is
|
| 1820 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 1821 |
|
|
|
| 1822 |
|
|
Dividend : Node_Id := First_Actual (N);
|
| 1823 |
|
|
Divisor : Node_Id := Next_Actual (Dividend);
|
| 1824 |
|
|
Quotient : Node_Id := Next_Actual (Divisor);
|
| 1825 |
|
|
Remainder : Node_Id := Next_Actual (Quotient);
|
| 1826 |
|
|
|
| 1827 |
|
|
Dividend_Type : constant Entity_Id := Etype (Dividend);
|
| 1828 |
|
|
Divisor_Type : constant Entity_Id := Etype (Divisor);
|
| 1829 |
|
|
Quotient_Type : constant Entity_Id := Etype (Quotient);
|
| 1830 |
|
|
Remainder_Type : constant Entity_Id := Etype (Remainder);
|
| 1831 |
|
|
|
| 1832 |
|
|
Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
|
| 1833 |
|
|
Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
|
| 1834 |
|
|
Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
|
| 1835 |
|
|
Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
|
| 1836 |
|
|
|
| 1837 |
|
|
Q : Uint;
|
| 1838 |
|
|
Numerator_Scale : Uint;
|
| 1839 |
|
|
Stmts : List_Id;
|
| 1840 |
|
|
Qnn : Entity_Id;
|
| 1841 |
|
|
Rnn : Entity_Id;
|
| 1842 |
|
|
Computed_Remainder : Node_Id;
|
| 1843 |
|
|
Adjusted_Remainder : Node_Id;
|
| 1844 |
|
|
Scale_Adjust : Uint;
|
| 1845 |
|
|
|
| 1846 |
|
|
begin
|
| 1847 |
|
|
-- Relocate the operands, since they are now list elements, and we
|
| 1848 |
|
|
-- need to reference them separately as operands in the expanded code.
|
| 1849 |
|
|
|
| 1850 |
|
|
Dividend := Relocate_Node (Dividend);
|
| 1851 |
|
|
Divisor := Relocate_Node (Divisor);
|
| 1852 |
|
|
Quotient := Relocate_Node (Quotient);
|
| 1853 |
|
|
Remainder := Relocate_Node (Remainder);
|
| 1854 |
|
|
|
| 1855 |
|
|
-- Now compute Q, the adjustment scale
|
| 1856 |
|
|
|
| 1857 |
|
|
Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
|
| 1858 |
|
|
|
| 1859 |
|
|
-- If Q is non-negative then we need a scaled divide
|
| 1860 |
|
|
|
| 1861 |
|
|
if Q >= 0 then
|
| 1862 |
|
|
Build_Scaled_Divide_Code
|
| 1863 |
|
|
(N,
|
| 1864 |
|
|
Dividend,
|
| 1865 |
|
|
Integer_Literal (N, Uint_10 ** Q),
|
| 1866 |
|
|
Divisor,
|
| 1867 |
|
|
Qnn, Rnn, Stmts);
|
| 1868 |
|
|
|
| 1869 |
|
|
Numerator_Scale := Dividend_Scale + Q;
|
| 1870 |
|
|
|
| 1871 |
|
|
-- If Q is negative, then we need a double divide
|
| 1872 |
|
|
|
| 1873 |
|
|
else
|
| 1874 |
|
|
Build_Double_Divide_Code
|
| 1875 |
|
|
(N,
|
| 1876 |
|
|
Dividend,
|
| 1877 |
|
|
Divisor,
|
| 1878 |
|
|
Integer_Literal (N, Uint_10 ** (-Q)),
|
| 1879 |
|
|
Qnn, Rnn, Stmts);
|
| 1880 |
|
|
|
| 1881 |
|
|
Numerator_Scale := Dividend_Scale;
|
| 1882 |
|
|
end if;
|
| 1883 |
|
|
|
| 1884 |
|
|
-- Add statement to set quotient value
|
| 1885 |
|
|
|
| 1886 |
|
|
-- Quotient := quotient-type!(Qnn);
|
| 1887 |
|
|
|
| 1888 |
|
|
Append_To (Stmts,
|
| 1889 |
|
|
Make_Assignment_Statement (Loc,
|
| 1890 |
|
|
Name => Quotient,
|
| 1891 |
|
|
Expression =>
|
| 1892 |
|
|
Unchecked_Convert_To (Quotient_Type,
|
| 1893 |
|
|
Build_Conversion (N, Quotient_Type,
|
| 1894 |
|
|
New_Occurrence_Of (Qnn, Loc)))));
|
| 1895 |
|
|
|
| 1896 |
|
|
-- Now we need to deal with computing and setting the remainder. The
|
| 1897 |
|
|
-- scale of the remainder is in Numerator_Scale, and the desired
|
| 1898 |
|
|
-- scale is the scale of the given Remainder argument. There are
|
| 1899 |
|
|
-- three cases:
|
| 1900 |
|
|
|
| 1901 |
|
|
-- Numerator_Scale > Remainder_Scale
|
| 1902 |
|
|
|
| 1903 |
|
|
-- in this case, there are extra digits in the computed remainder
|
| 1904 |
|
|
-- which must be eliminated by an extra division:
|
| 1905 |
|
|
|
| 1906 |
|
|
-- computed-remainder := Numerator rem Denominator
|
| 1907 |
|
|
-- scale_adjust = Numerator_Scale - Remainder_Scale
|
| 1908 |
|
|
-- adjusted-remainder := computed-remainder / 10 ** scale_adjust
|
| 1909 |
|
|
|
| 1910 |
|
|
-- Numerator_Scale = Remainder_Scale
|
| 1911 |
|
|
|
| 1912 |
|
|
-- in this case, the we have the remainder we need
|
| 1913 |
|
|
|
| 1914 |
|
|
-- computed-remainder := Numerator rem Denominator
|
| 1915 |
|
|
-- adjusted-remainder := computed-remainder
|
| 1916 |
|
|
|
| 1917 |
|
|
-- Numerator_Scale < Remainder_Scale
|
| 1918 |
|
|
|
| 1919 |
|
|
-- in this case, we have insufficient digits in the computed
|
| 1920 |
|
|
-- remainder, which must be eliminated by an extra multiply
|
| 1921 |
|
|
|
| 1922 |
|
|
-- computed-remainder := Numerator rem Denominator
|
| 1923 |
|
|
-- scale_adjust = Remainder_Scale - Numerator_Scale
|
| 1924 |
|
|
-- adjusted-remainder := computed-remainder * 10 ** scale_adjust
|
| 1925 |
|
|
|
| 1926 |
|
|
-- Finally we assign the adjusted-remainder to the result Remainder
|
| 1927 |
|
|
-- with conversions to get the proper fixed-point type representation.
|
| 1928 |
|
|
|
| 1929 |
|
|
Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
|
| 1930 |
|
|
|
| 1931 |
|
|
if Numerator_Scale > Remainder_Scale then
|
| 1932 |
|
|
Scale_Adjust := Numerator_Scale - Remainder_Scale;
|
| 1933 |
|
|
Adjusted_Remainder :=
|
| 1934 |
|
|
Build_Divide
|
| 1935 |
|
|
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
|
| 1936 |
|
|
|
| 1937 |
|
|
elsif Numerator_Scale = Remainder_Scale then
|
| 1938 |
|
|
Adjusted_Remainder := Computed_Remainder;
|
| 1939 |
|
|
|
| 1940 |
|
|
else -- Numerator_Scale < Remainder_Scale
|
| 1941 |
|
|
Scale_Adjust := Remainder_Scale - Numerator_Scale;
|
| 1942 |
|
|
Adjusted_Remainder :=
|
| 1943 |
|
|
Build_Multiply
|
| 1944 |
|
|
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
|
| 1945 |
|
|
end if;
|
| 1946 |
|
|
|
| 1947 |
|
|
-- Assignment of remainder result
|
| 1948 |
|
|
|
| 1949 |
|
|
Append_To (Stmts,
|
| 1950 |
|
|
Make_Assignment_Statement (Loc,
|
| 1951 |
|
|
Name => Remainder,
|
| 1952 |
|
|
Expression =>
|
| 1953 |
|
|
Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
|
| 1954 |
|
|
|
| 1955 |
|
|
-- Final step is to rewrite the call with a block containing the
|
| 1956 |
|
|
-- above sequence of constructed statements for the divide operation.
|
| 1957 |
|
|
|
| 1958 |
|
|
Rewrite (N,
|
| 1959 |
|
|
Make_Block_Statement (Loc,
|
| 1960 |
|
|
Handled_Statement_Sequence =>
|
| 1961 |
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
| 1962 |
|
|
Statements => Stmts)));
|
| 1963 |
|
|
|
| 1964 |
|
|
Analyze (N);
|
| 1965 |
|
|
end Expand_Decimal_Divide_Call;
|
| 1966 |
|
|
|
| 1967 |
|
|
-----------------------------------------------
|
| 1968 |
|
|
-- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
|
| 1969 |
|
|
-----------------------------------------------
|
| 1970 |
|
|
|
| 1971 |
|
|
procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
|
| 1972 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 1973 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 1974 |
|
|
|
| 1975 |
|
|
begin
|
| 1976 |
|
|
-- Suppress expansion of a fixed-by-fixed division if the
|
| 1977 |
|
|
-- operation is supported directly by the target.
|
| 1978 |
|
|
|
| 1979 |
|
|
if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
|
| 1980 |
|
|
return;
|
| 1981 |
|
|
end if;
|
| 1982 |
|
|
|
| 1983 |
|
|
if Etype (Left) = Universal_Real then
|
| 1984 |
|
|
Do_Divide_Universal_Fixed (N);
|
| 1985 |
|
|
|
| 1986 |
|
|
elsif Etype (Right) = Universal_Real then
|
| 1987 |
|
|
Do_Divide_Fixed_Universal (N);
|
| 1988 |
|
|
|
| 1989 |
|
|
else
|
| 1990 |
|
|
Do_Divide_Fixed_Fixed (N);
|
| 1991 |
|
|
end if;
|
| 1992 |
|
|
end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
|
| 1993 |
|
|
|
| 1994 |
|
|
-----------------------------------------------
|
| 1995 |
|
|
-- Expand_Divide_Fixed_By_Fixed_Giving_Float --
|
| 1996 |
|
|
-----------------------------------------------
|
| 1997 |
|
|
|
| 1998 |
|
|
-- The division is done in Universal_Real, and the result is multiplied
|
| 1999 |
|
|
-- by the small ratio, which is Small (Right) / Small (Left). Special
|
| 2000 |
|
|
-- treatment is required for universal operands, which represent their
|
| 2001 |
|
|
-- own value and do not require conversion.
|
| 2002 |
|
|
|
| 2003 |
|
|
procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
|
| 2004 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 2005 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 2006 |
|
|
|
| 2007 |
|
|
Left_Type : constant Entity_Id := Etype (Left);
|
| 2008 |
|
|
Right_Type : constant Entity_Id := Etype (Right);
|
| 2009 |
|
|
|
| 2010 |
|
|
begin
|
| 2011 |
|
|
-- Case of left operand is universal real, the result we want is:
|
| 2012 |
|
|
|
| 2013 |
|
|
-- Left_Value / (Right_Value * Right_Small)
|
| 2014 |
|
|
|
| 2015 |
|
|
-- so we compute this as:
|
| 2016 |
|
|
|
| 2017 |
|
|
-- (Left_Value / Right_Small) / Right_Value
|
| 2018 |
|
|
|
| 2019 |
|
|
if Left_Type = Universal_Real then
|
| 2020 |
|
|
Set_Result (N,
|
| 2021 |
|
|
Build_Divide (N,
|
| 2022 |
|
|
Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
|
| 2023 |
|
|
Fpt_Value (Right)));
|
| 2024 |
|
|
|
| 2025 |
|
|
-- Case of right operand is universal real, the result we want is
|
| 2026 |
|
|
|
| 2027 |
|
|
-- (Left_Value * Left_Small) / Right_Value
|
| 2028 |
|
|
|
| 2029 |
|
|
-- so we compute this as:
|
| 2030 |
|
|
|
| 2031 |
|
|
-- Left_Value * (Left_Small / Right_Value)
|
| 2032 |
|
|
|
| 2033 |
|
|
-- Note we invert to a multiplication since usually floating-point
|
| 2034 |
|
|
-- multiplication is much faster than floating-point division.
|
| 2035 |
|
|
|
| 2036 |
|
|
elsif Right_Type = Universal_Real then
|
| 2037 |
|
|
Set_Result (N,
|
| 2038 |
|
|
Build_Multiply (N,
|
| 2039 |
|
|
Fpt_Value (Left),
|
| 2040 |
|
|
Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
|
| 2041 |
|
|
|
| 2042 |
|
|
-- Both operands are fixed, so the value we want is
|
| 2043 |
|
|
|
| 2044 |
|
|
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
|
| 2045 |
|
|
|
| 2046 |
|
|
-- which we compute as:
|
| 2047 |
|
|
|
| 2048 |
|
|
-- (Left_Value / Right_Value) * (Left_Small / Right_Small)
|
| 2049 |
|
|
|
| 2050 |
|
|
else
|
| 2051 |
|
|
Set_Result (N,
|
| 2052 |
|
|
Build_Multiply (N,
|
| 2053 |
|
|
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
|
| 2054 |
|
|
Real_Literal (N,
|
| 2055 |
|
|
Small_Value (Left_Type) / Small_Value (Right_Type))));
|
| 2056 |
|
|
end if;
|
| 2057 |
|
|
end Expand_Divide_Fixed_By_Fixed_Giving_Float;
|
| 2058 |
|
|
|
| 2059 |
|
|
-------------------------------------------------
|
| 2060 |
|
|
-- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
|
| 2061 |
|
|
-------------------------------------------------
|
| 2062 |
|
|
|
| 2063 |
|
|
procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
|
| 2064 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 2065 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 2066 |
|
|
begin
|
| 2067 |
|
|
if Etype (Left) = Universal_Real then
|
| 2068 |
|
|
Do_Divide_Universal_Fixed (N);
|
| 2069 |
|
|
elsif Etype (Right) = Universal_Real then
|
| 2070 |
|
|
Do_Divide_Fixed_Universal (N);
|
| 2071 |
|
|
else
|
| 2072 |
|
|
Do_Divide_Fixed_Fixed (N);
|
| 2073 |
|
|
end if;
|
| 2074 |
|
|
end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
|
| 2075 |
|
|
|
| 2076 |
|
|
-------------------------------------------------
|
| 2077 |
|
|
-- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
|
| 2078 |
|
|
-------------------------------------------------
|
| 2079 |
|
|
|
| 2080 |
|
|
-- Since the operand and result fixed-point type is the same, this is
|
| 2081 |
|
|
-- a straight divide by the right operand, the small can be ignored.
|
| 2082 |
|
|
|
| 2083 |
|
|
procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
|
| 2084 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 2085 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 2086 |
|
|
begin
|
| 2087 |
|
|
Set_Result (N, Build_Divide (N, Left, Right));
|
| 2088 |
|
|
end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
|
| 2089 |
|
|
|
| 2090 |
|
|
-------------------------------------------------
|
| 2091 |
|
|
-- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
|
| 2092 |
|
|
-------------------------------------------------
|
| 2093 |
|
|
|
| 2094 |
|
|
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
|
| 2095 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 2096 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 2097 |
|
|
|
| 2098 |
|
|
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
|
| 2099 |
|
|
-- The operand may be a non-static universal value, such an
|
| 2100 |
|
|
-- exponentiation with a non-static exponent. In that case, treat
|
| 2101 |
|
|
-- as a fixed * fixed multiplication, and convert the argument to
|
| 2102 |
|
|
-- the target fixed type.
|
| 2103 |
|
|
|
| 2104 |
|
|
----------------------------------
|
| 2105 |
|
|
-- Rewrite_Non_Static_Universal --
|
| 2106 |
|
|
----------------------------------
|
| 2107 |
|
|
|
| 2108 |
|
|
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
|
| 2109 |
|
|
Loc : constant Source_Ptr := Sloc (N);
|
| 2110 |
|
|
begin
|
| 2111 |
|
|
Rewrite (Opnd,
|
| 2112 |
|
|
Make_Type_Conversion (Loc,
|
| 2113 |
|
|
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
|
| 2114 |
|
|
Expression => Expression (Opnd)));
|
| 2115 |
|
|
Analyze_And_Resolve (Opnd, Etype (N));
|
| 2116 |
|
|
end Rewrite_Non_Static_Universal;
|
| 2117 |
|
|
|
| 2118 |
|
|
-- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
|
| 2119 |
|
|
|
| 2120 |
|
|
begin
|
| 2121 |
|
|
-- Suppress expansion of a fixed-by-fixed multiplication if the
|
| 2122 |
|
|
-- operation is supported directly by the target.
|
| 2123 |
|
|
|
| 2124 |
|
|
if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
|
| 2125 |
|
|
return;
|
| 2126 |
|
|
end if;
|
| 2127 |
|
|
|
| 2128 |
|
|
if Etype (Left) = Universal_Real then
|
| 2129 |
|
|
if Nkind (Left) = N_Real_Literal then
|
| 2130 |
|
|
Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
|
| 2131 |
|
|
|
| 2132 |
|
|
elsif Nkind (Left) = N_Type_Conversion then
|
| 2133 |
|
|
Rewrite_Non_Static_Universal (Left);
|
| 2134 |
|
|
Do_Multiply_Fixed_Fixed (N);
|
| 2135 |
|
|
end if;
|
| 2136 |
|
|
|
| 2137 |
|
|
elsif Etype (Right) = Universal_Real then
|
| 2138 |
|
|
if Nkind (Right) = N_Real_Literal then
|
| 2139 |
|
|
Do_Multiply_Fixed_Universal (N, Left, Right);
|
| 2140 |
|
|
|
| 2141 |
|
|
elsif Nkind (Right) = N_Type_Conversion then
|
| 2142 |
|
|
Rewrite_Non_Static_Universal (Right);
|
| 2143 |
|
|
Do_Multiply_Fixed_Fixed (N);
|
| 2144 |
|
|
end if;
|
| 2145 |
|
|
|
| 2146 |
|
|
else
|
| 2147 |
|
|
Do_Multiply_Fixed_Fixed (N);
|
| 2148 |
|
|
end if;
|
| 2149 |
|
|
end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
|
| 2150 |
|
|
|
| 2151 |
|
|
-------------------------------------------------
|
| 2152 |
|
|
-- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
|
| 2153 |
|
|
-------------------------------------------------
|
| 2154 |
|
|
|
| 2155 |
|
|
-- The multiply is done in Universal_Real, and the result is multiplied
|
| 2156 |
|
|
-- by the adjustment for the smalls which is Small (Right) * Small (Left).
|
| 2157 |
|
|
-- Special treatment is required for universal operands.
|
| 2158 |
|
|
|
| 2159 |
|
|
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
|
| 2160 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 2161 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 2162 |
|
|
|
| 2163 |
|
|
Left_Type : constant Entity_Id := Etype (Left);
|
| 2164 |
|
|
Right_Type : constant Entity_Id := Etype (Right);
|
| 2165 |
|
|
|
| 2166 |
|
|
begin
|
| 2167 |
|
|
-- Case of left operand is universal real, the result we want is
|
| 2168 |
|
|
|
| 2169 |
|
|
-- Left_Value * (Right_Value * Right_Small)
|
| 2170 |
|
|
|
| 2171 |
|
|
-- so we compute this as:
|
| 2172 |
|
|
|
| 2173 |
|
|
-- (Left_Value * Right_Small) * Right_Value;
|
| 2174 |
|
|
|
| 2175 |
|
|
if Left_Type = Universal_Real then
|
| 2176 |
|
|
Set_Result (N,
|
| 2177 |
|
|
Build_Multiply (N,
|
| 2178 |
|
|
Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
|
| 2179 |
|
|
Fpt_Value (Right)));
|
| 2180 |
|
|
|
| 2181 |
|
|
-- Case of right operand is universal real, the result we want is
|
| 2182 |
|
|
|
| 2183 |
|
|
-- (Left_Value * Left_Small) * Right_Value
|
| 2184 |
|
|
|
| 2185 |
|
|
-- so we compute this as:
|
| 2186 |
|
|
|
| 2187 |
|
|
-- Left_Value * (Left_Small * Right_Value)
|
| 2188 |
|
|
|
| 2189 |
|
|
elsif Right_Type = Universal_Real then
|
| 2190 |
|
|
Set_Result (N,
|
| 2191 |
|
|
Build_Multiply (N,
|
| 2192 |
|
|
Fpt_Value (Left),
|
| 2193 |
|
|
Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
|
| 2194 |
|
|
|
| 2195 |
|
|
-- Both operands are fixed, so the value we want is
|
| 2196 |
|
|
|
| 2197 |
|
|
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
|
| 2198 |
|
|
|
| 2199 |
|
|
-- which we compute as:
|
| 2200 |
|
|
|
| 2201 |
|
|
-- (Left_Value * Right_Value) * (Right_Small * Left_Small)
|
| 2202 |
|
|
|
| 2203 |
|
|
else
|
| 2204 |
|
|
Set_Result (N,
|
| 2205 |
|
|
Build_Multiply (N,
|
| 2206 |
|
|
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
|
| 2207 |
|
|
Real_Literal (N,
|
| 2208 |
|
|
Small_Value (Right_Type) * Small_Value (Left_Type))));
|
| 2209 |
|
|
end if;
|
| 2210 |
|
|
end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
|
| 2211 |
|
|
|
| 2212 |
|
|
---------------------------------------------------
|
| 2213 |
|
|
-- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
|
| 2214 |
|
|
---------------------------------------------------
|
| 2215 |
|
|
|
| 2216 |
|
|
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
|
| 2217 |
|
|
Left : constant Node_Id := Left_Opnd (N);
|
| 2218 |
|
|
Right : constant Node_Id := Right_Opnd (N);
|
| 2219 |
|
|
begin
|
| 2220 |
|
|
if Etype (Left) = Universal_Real then
|
| 2221 |
|
|
Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
|
| 2222 |
|
|
elsif Etype (Right) = Universal_Real then
|
| 2223 |
|
|
Do_Multiply_Fixed_Universal (N, Left, Right);
|
| 2224 |
|
|
else
|
| 2225 |
|
|
Do_Multiply_Fixed_Fixed (N);
|
| 2226 |
|
|
end if;
|
| 2227 |
|
|
end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
|
| 2228 |
|
|
|
| 2229 |
|
|
---------------------------------------------------
|
| 2230 |
|
|
-- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
|
| 2231 |
|
|
---------------------------------------------------
|
| 2232 |
|
|
|
| 2233 |
|
|
-- Since the operand and result fixed-point type is the same, this is
|
| 2234 |
|
|
-- a straight multiply by the right operand, the small can be ignored.
|
| 2235 |
|
|
|
| 2236 |
|
|
procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
|
| 2237 |
|
|
begin
|
| 2238 |
|
|
Set_Result (N,
|
| 2239 |
|
|
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
|
| 2240 |
|
|
end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
|
| 2241 |
|
|
|
| 2242 |
|
|
---------------------------------------------------
|
| 2243 |
|
|
-- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
|
| 2244 |
|
|
---------------------------------------------------
|
| 2245 |
|
|
|
| 2246 |
|
|
-- Since the operand and result fixed-point type is the same, this is
|
| 2247 |
|
|
-- a straight multiply by the right operand, the small can be ignored.
|
| 2248 |
|
|
|
| 2249 |
|
|
procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
|
| 2250 |
|
|
begin
|
| 2251 |
|
|
Set_Result (N,
|
| 2252 |
|
|
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
|
| 2253 |
|
|
end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
|
| 2254 |
|
|
|
| 2255 |
|
|
---------------
|
| 2256 |
|
|
-- Fpt_Value --
|
| 2257 |
|
|
---------------
|
| 2258 |
|
|
|
| 2259 |
|
|
function Fpt_Value (N : Node_Id) return Node_Id is
|
| 2260 |
|
|
Typ : constant Entity_Id := Etype (N);
|
| 2261 |
|
|
|
| 2262 |
|
|
begin
|
| 2263 |
|
|
if Is_Integer_Type (Typ)
|
| 2264 |
|
|
or else Is_Floating_Point_Type (Typ)
|
| 2265 |
|
|
then
|
| 2266 |
|
|
return Build_Conversion (N, Universal_Real, N);
|
| 2267 |
|
|
|
| 2268 |
|
|
-- Fixed-point case, must get integer value first
|
| 2269 |
|
|
|
| 2270 |
|
|
else
|
| 2271 |
|
|
return Build_Conversion (N, Universal_Real, N);
|
| 2272 |
|
|
end if;
|
| 2273 |
|
|
end Fpt_Value;
|
| 2274 |
|
|
|
| 2275 |
|
|
---------------------
|
| 2276 |
|
|
-- Integer_Literal --
|
| 2277 |
|
|
---------------------
|
| 2278 |
|
|
|
| 2279 |
|
|
function Integer_Literal
|
| 2280 |
|
|
(N : Node_Id;
|
| 2281 |
|
|
V : Uint;
|
| 2282 |
|
|
Negative : Boolean := False) return Node_Id
|
| 2283 |
|
|
is
|
| 2284 |
|
|
T : Entity_Id;
|
| 2285 |
|
|
L : Node_Id;
|
| 2286 |
|
|
|
| 2287 |
|
|
begin
|
| 2288 |
|
|
if V < Uint_2 ** 7 then
|
| 2289 |
|
|
T := Standard_Integer_8;
|
| 2290 |
|
|
|
| 2291 |
|
|
elsif V < Uint_2 ** 15 then
|
| 2292 |
|
|
T := Standard_Integer_16;
|
| 2293 |
|
|
|
| 2294 |
|
|
elsif V < Uint_2 ** 31 then
|
| 2295 |
|
|
T := Standard_Integer_32;
|
| 2296 |
|
|
|
| 2297 |
|
|
elsif V < Uint_2 ** 63 then
|
| 2298 |
|
|
T := Standard_Integer_64;
|
| 2299 |
|
|
|
| 2300 |
|
|
else
|
| 2301 |
|
|
return Empty;
|
| 2302 |
|
|
end if;
|
| 2303 |
|
|
|
| 2304 |
|
|
if Negative then
|
| 2305 |
|
|
L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
|
| 2306 |
|
|
else
|
| 2307 |
|
|
L := Make_Integer_Literal (Sloc (N), V);
|
| 2308 |
|
|
end if;
|
| 2309 |
|
|
|
| 2310 |
|
|
-- Set type of result in case used elsewhere (see note at start)
|
| 2311 |
|
|
|
| 2312 |
|
|
Set_Etype (L, T);
|
| 2313 |
|
|
Set_Is_Static_Expression (L);
|
| 2314 |
|
|
|
| 2315 |
|
|
-- We really need to set Analyzed here because we may be creating a
|
| 2316 |
|
|
-- very strange beast, namely an integer literal typed as fixed-point
|
| 2317 |
|
|
-- and the analyzer won't like that. Probably we should allow the
|
| 2318 |
|
|
-- Treat_Fixed_As_Integer flag to appear on integer literal nodes
|
| 2319 |
|
|
-- and teach the analyzer how to handle them ???
|
| 2320 |
|
|
|
| 2321 |
|
|
Set_Analyzed (L);
|
| 2322 |
|
|
return L;
|
| 2323 |
|
|
end Integer_Literal;
|
| 2324 |
|
|
|
| 2325 |
|
|
------------------
|
| 2326 |
|
|
-- Real_Literal --
|
| 2327 |
|
|
------------------
|
| 2328 |
|
|
|
| 2329 |
|
|
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
|
| 2330 |
|
|
L : Node_Id;
|
| 2331 |
|
|
|
| 2332 |
|
|
begin
|
| 2333 |
|
|
L := Make_Real_Literal (Sloc (N), V);
|
| 2334 |
|
|
|
| 2335 |
|
|
-- Set type of result in case used elsewhere (see note at start)
|
| 2336 |
|
|
|
| 2337 |
|
|
Set_Etype (L, Universal_Real);
|
| 2338 |
|
|
return L;
|
| 2339 |
|
|
end Real_Literal;
|
| 2340 |
|
|
|
| 2341 |
|
|
------------------------
|
| 2342 |
|
|
-- Rounded_Result_Set --
|
| 2343 |
|
|
------------------------
|
| 2344 |
|
|
|
| 2345 |
|
|
function Rounded_Result_Set (N : Node_Id) return Boolean is
|
| 2346 |
|
|
K : constant Node_Kind := Nkind (N);
|
| 2347 |
|
|
begin
|
| 2348 |
|
|
if (K = N_Type_Conversion or else
|
| 2349 |
|
|
K = N_Op_Divide or else
|
| 2350 |
|
|
K = N_Op_Multiply)
|
| 2351 |
|
|
and then
|
| 2352 |
|
|
(Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
|
| 2353 |
|
|
then
|
| 2354 |
|
|
return True;
|
| 2355 |
|
|
else
|
| 2356 |
|
|
return False;
|
| 2357 |
|
|
end if;
|
| 2358 |
|
|
end Rounded_Result_Set;
|
| 2359 |
|
|
|
| 2360 |
|
|
----------------
|
| 2361 |
|
|
-- Set_Result --
|
| 2362 |
|
|
----------------
|
| 2363 |
|
|
|
| 2364 |
|
|
procedure Set_Result
|
| 2365 |
|
|
(N : Node_Id;
|
| 2366 |
|
|
Expr : Node_Id;
|
| 2367 |
|
|
Rchk : Boolean := False;
|
| 2368 |
|
|
Trunc : Boolean := False)
|
| 2369 |
|
|
is
|
| 2370 |
|
|
Cnode : Node_Id;
|
| 2371 |
|
|
|
| 2372 |
|
|
Expr_Type : constant Entity_Id := Etype (Expr);
|
| 2373 |
|
|
Result_Type : constant Entity_Id := Etype (N);
|
| 2374 |
|
|
|
| 2375 |
|
|
begin
|
| 2376 |
|
|
-- No conversion required if types match and no range check or truncate
|
| 2377 |
|
|
|
| 2378 |
|
|
if Result_Type = Expr_Type and then not (Rchk or Trunc) then
|
| 2379 |
|
|
Cnode := Expr;
|
| 2380 |
|
|
|
| 2381 |
|
|
-- Else perform required conversion
|
| 2382 |
|
|
|
| 2383 |
|
|
else
|
| 2384 |
|
|
Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc);
|
| 2385 |
|
|
end if;
|
| 2386 |
|
|
|
| 2387 |
|
|
Rewrite (N, Cnode);
|
| 2388 |
|
|
Analyze_And_Resolve (N, Result_Type);
|
| 2389 |
|
|
end Set_Result;
|
| 2390 |
|
|
|
| 2391 |
|
|
end Exp_Fixd;
|